WO2018059735A1 - Verfahren zur selbstlokalisierung eines fahrzeugs - Google Patents

Verfahren zur selbstlokalisierung eines fahrzeugs Download PDF

Info

Publication number
WO2018059735A1
WO2018059735A1 PCT/EP2017/001149 EP2017001149W WO2018059735A1 WO 2018059735 A1 WO2018059735 A1 WO 2018059735A1 EP 2017001149 W EP2017001149 W EP 2017001149W WO 2018059735 A1 WO2018059735 A1 WO 2018059735A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
roadway
profile
determined
environment
Prior art date
Application number
PCT/EP2017/001149
Other languages
English (en)
French (fr)
Inventor
Carsten Knoeppel
Original Assignee
Daimler Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daimler Ag filed Critical Daimler Ag
Publication of WO2018059735A1 publication Critical patent/WO2018059735A1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • G01C21/36Input/output arrangements for on-board computers
    • G01C21/3602Input other than that of destination using image analysis, e.g. detection of road signs, lanes, buildings, real preceding vehicles using a camera
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/50Context or environment of the image
    • G06V20/56Context or environment of the image exterior to a vehicle by using sensors mounted on the vehicle
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/50Context or environment of the image
    • G06V20/56Context or environment of the image exterior to a vehicle by using sensors mounted on the vehicle
    • G06V20/588Recognition of the road, e.g. of lane markings; Recognition of the vehicle driving pattern in relation to the road

Definitions

  • the invention relates to a method for self-localization of a vehicle according to the preamble of claim 1.
  • DE 10 2012 004 198 A1 describes a method and a device for assisting a driver when driving a vehicle in the field.
  • an environment of the vehicle is detected by means of at least one detection unit and a terrain profile is determined from data acquired by means of the detection unit. It is envisaged that based on the recorded terrain profile critical
  • Tilting of the vehicle slipping of the vehicle in the longitudinal direction and / or lateral slippage of the vehicle predicted before driving over a leading portion of the terrain profile for the leading section and graphically displayed in the interior of the vehicle by means of at least one display unit.
  • the invention is based on the object to provide a comparison with the prior art improved method for self-localization of a vehicle.
  • a method for self-localization of a vehicle environmental images of the vehicle are detected by means of at least one image acquisition unit. Subsequently, image features are extracted from the environment images and included in a digital image Map environment features compared.
  • roadway-dependent parameters comprising a roadway profile, a pitch angle and a roll angle of the vehicle and a height of the at least one image acquisition unit relative to a road surface, determined and a position of the vehicle in the map environment based on the comparison of image characteristics with the environmental features and based on the determined track profile dependent parameter determined.
  • the roadway profile-dependent parameters are determined on the basis of an image evaluation of at least one of the acquired environmental images using a numerical optimization algorithm.
  • the stereo disparity image includes the current one
  • FIGS. 1 to 3 schematically shows an environmental image B which has been detected by means of an imaging unit (not shown), in particular a camera, of a vehicle, also not shown, in particular autonomously guided.
  • the environmental image B shown in FIG. 1 shows a roadway 1 which lies ahead of the vehicle and whose course and dimensions can be determined on the basis of lane markings and roadway boundaries.
  • the goal here is to locate the vehicle for autonomous driving within a digital environment map.
  • This is the environment image B with a
  • Image capture unit As a monocamera, the vehicle detected.
  • image features M here are the
  • Lane markings and lane boundaries extracted from marker measurements.
  • an iterative solution method such as. B. the so-called Levenberg-Marquard algorithm, the extracted image features M with
  • Environment features U superimposed, which are stored in the digital map of the environment. For example, an angle between the image features M and the
  • a position of the vehicle can be located in a possibly faulty environment map and thus in an environment.
  • the determined position of the vehicle can then be supplied to a train planning unit for an autonomous driving operation of the vehicle.
  • FIG. 2 shows the environmental image B according to FIG. 1.
  • the roadway 1 is subdivided into a plurality of segments S, which represent a surface profile of the roadway 1.
  • the segments S represent a height profile of the roadway 1 starting from a defined and / or determined center line.
  • the surface profile of the roadway 1 is determined here without taking into account a current speed and a current yaw rate of the vehicle on the basis of the current environmental image B. This can be done, for example, by means of nonlinear
  • optimization algorithm such as As the Levenberg-Marquard algorithm or the so-called Gauss-Newton algorithm, take place. Since information on the surface profile of the lane 1 is usually not deposited in the digital environment map, the inclusion of the surface profile of the lane 1 substantially improves the location of the position of the vehicle relative to the surroundings map. Conventional methods use known approaches such. As the so-called Kalman filter or similar tracking methods.
  • Localization of the position of the vehicle may also be faulty.
  • the surface profile of the roadway 1, including other roadway profile-dependent parameters, in particular a pitch angle, a roll angle and a height of the image acquisition unit relative to the road surface, based on the current environmental image B is determined as described above. This allows for improved accuracy in the above-described determination of the position of the roadway 1, including other roadway profile-dependent parameters, in particular a pitch angle, a roll angle and a height of the image acquisition unit relative to the road surface, based on the current environmental image B is determined as described above. This allows for improved accuracy in the above-described determination of the position of the
  • FIG. 3 shows two further ambient images B1, which shows a road intersection in front of the vehicle with certain further image features M1, in this case stop lines and a directional arrow.
  • the extraction of the further image features M1 in the left further environment image B1 without involvement of the surface profile of the roadway 1 is shown.
  • the extracted ones are shown in the left further environment image B1 without involvement of the surface profile of the roadway 1 .
  • the non-linear compensation calculation can also be carried out under short-term unfavorable measurement conditions, such as: As in sun visors, obscured by other vehicles, shadow throws, etc. This approach further increases the robustness and the localization accuracy of the process on.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Theoretical Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Traffic Control Systems (AREA)
  • Navigation (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zur Selbstlokalisierung eines Fahrzeugs, bei dem - Umgebungsbilder (B, B1) des Fahrzeugs mittels zumindest einer Bilderfassungseinheit erfasst werden und - Bildmerkmale (M, M1) aus den Umgebungsbildern (B, B1) extrahiert und in einer digitalen Umgebungskarte hinterlegten Umgebungsmerkmalen (U) überlagert werden. Erfindungsgemäß ist vorgesehen, dass - zusätzlich fahrbahnprofilabhängige Parameter, umfassend ein Oberflächenprofil einer Fahrbahn (1), ein Nickwinkel und ein Wankwinkel des Fahrzeugs sowie eine Höhe der mindestens einen Bilderfassungseinheit relativ zu einer Fahrbahnoberfläche, ermittelt werden, - eine Position und eine Orientierung des Fahrzeugs in der Umgebungskarte anhand des Vergleichs der Bildmerkmale (B, B1) mit den Umgebungsmerkmalen (U) und anhand der ermittelten fahrbahnprofilabhängigen Parameter ermittelt wird und - die fahrbahnprofilabhängigen Parameter anhand einer Auswertung mindestens eines der erfassten Umgebungsbilder (B, B1) unter Verwendung eines numerischen Optimierungsalgorithmus ermittelt werden.

Description

Verfahren zur Selbstlokalisierung eines Fahrzeugs
Die Erfindung betrifft ein Verfahren zur Selbstlokalisierung eines Fahrzeugs gemäß dem Oberbegriff des Anspruchs 1.
Verfahren zur Selbstlokalisierung eines Fahrzeugs sind aus dem Stand der Technik bekannt und werden insbesondere für einen autonomen Fahrbetrieb durchgeführt. Des Weiteren sind in der DE 10 2012 004 198 A1 ein Verfahren und eine Vorrichtung zur Unterstützung eines Fahrers beim Führen eines Fahrzeugs im Gelände beschrieben. Hierbei wird mittels zumindest einer Erfassungseinheit eine Umgebung des Fahrzeugs erfasst und aus mittels der Erfassungseinheit erfassten Daten ein Geländeprofil ermittelt. Dabei ist vorgesehen, dass anhand des erfassten Geländeprofils kritische
Fahrsituationen, insbesondere ein Aufsetzen des Fahrzeugs auf den Boden, ein
Umkippen des Fahrzeugs, ein Rutschen des Fahrzeugs in Längsrichtung und/oder ein seitliches Rutschen des Fahrzeugs, vor einem Überfahren eines vorausliegenden Abschnitts des Geländeprofils für den vorausliegenden Abschnitt prädiziert und im Innenraum des Fahrzeugs mittels zumindest einer Anzeigeeinheit grafisch ausgegeben wird.
Der Erfindung liegt die Aufgabe zu Grunde, ein gegenüber dem Stand der Technik verbessertes Verfahren zur Selbstlokalisierung eines Fahrzeugs anzugeben.
Die Aufgabe wird erfindungsgemäß mit den in Anspruch 1 angegebenen Merkmalen gelöst.
Vorteilhafte Ausgestaltungen der Erfindung sind Gegenstand der Unteransprüche.
Bei einem Verfahren zur Selbstlokalisierung eines Fahrzeugs werden Umgebungsbilder des Fahrzeugs mittels zumindest einer Bilderfassungseinheit erfasst. Anschließend werden Bildmerkmale aus den Umgebungsbildern extrahiert und mit in einer digitalen Umgebungskarte hinterlegten Umgebungsmerkmalen verglichen. Erfindungsgemäß werden zusätzlich fahrbahnprofilabhängige Parameter, umfassend ein Fahrbahnprofil, ein Nickwinkel und ein Wankwinkel des Fahrzeugs sowie eine Höhe der mindestens einen Bilderfassungseinheit relativ zu einer Fahrbahnoberfläche, ermittelt und eine Position des Fahrzeugs in der Umgebungskarte anhand des Vergleichs der Bildmerkmale mit den Umgebungsmerkmalen und anhand der ermittelten fahrbahnprofilabhängigen Parameter ermittelt. Die fahrbahnprofilabhängigen Parameter werden anhand einer Bildauswertung mindestens eines der erfassten Umgebungsbilder unter Verwendung eines numerischen Optimierungsalgorithmus ermittelt.
Das Verfahren ermöglicht eine gegenüber dem Stand der Technik verbesserte
Selbstlokalisierung des Fahrzeugs, da die Ermittlung der fahrbahnprofilabhängigen Parameter auf Basis eines aktuellen Umgebungsbilds und/oder eines aktuellen Stereo- Disparitätsbilds erfolgt. Das Stereo-Disparitätsbild umfasst dabei das aktuelle
Umgebungsbild und die digitale Umgebungskarte, wobei das Umgebungsbild in die Umgebungskarte projiziert und dieser somit überlagert wird. D. h., die Ermittlung der fahrbahnprofilabhängigen Parameter kann ohne Einbeziehung einer aktuellen
Geschwindigkeit und Gierrate des Fahrzeugs erfolgen, so dass eine Fehleranfälligkeit reduziert und eine Genauigkeit bei der Ermittlung erhöht wird. Somit ist das Verfahren gegenüber konventionellen Verfahren zur Selbstlokalisierung robuster.
Ausführungsbeispiele der Erfindung werden im Folgenden anhand von Zeichnungen näher erläutert.
Dabei zeigen:
Fig.1 bis Fig. 3 schematisch mittels einer Bilderfassungseinheit eines Fahrzeugs erfasste
Umgebungsbilder mit extrahierten Bildmerkmalen.
Einander entsprechende Teile sind in allen Figuren mit den gleichen Bezugszeichen versehen.
Die Figuren 1 bis 3 zeigen jeweils schematisch ein Umgebungsbild B, welches mittels einer nicht dargestellten Bilderfassungseinheit, insbesondere einer Kamera, eines ebenfalls nicht gezeigten, insbesondere autonom geführten, Fahrzeugs erfasst wurde. Das in Figur 1 gezeigte Umgebungsbild B zeigt eine dem Fahrzeug vorausliegende Fahrbahn 1 , deren Verlauf und Abmessungen anhand von Fahrspurmarkierungen und Fahrbahnbegrenzungen ermittelbar ist.
Ziel ist es hierbei, das Fahrzeug für einen autonomen Fahrbetrieb innerhalb einer digitalen Umgebungskarte zu lokalisieren. Dazu wird das Umgebungsbild B mit einer
Bilderfassungseinheit, z. B. einer Monokamera, des Fahrzeugs erfasst.
In dem erfassten Umgebungsbild B werden Bildmerkmale M, hierbei die
Fahrspurmarkierungen und Fahrbahnbegrenzungen, anhand von Markierungsmessungen extrahiert. Mittels eines iterativen Lösungsverfahrens, wie z. B. dem sogenannten Levenberg-Marquard-Algorithmus, werden die extrahierten Bildmerkmale M mit
Umgebungsmerkmalen U überlagert, die in der digitalen Umgebungskarte hinterlegt sind. Beispielsweise wird hierbei ein Winkel zwischen den Bildmerkmalen M und den
Umgebungsmerkmalen U ermittelt. Die Ergebnisse werden anschließend in einer nichtlinearen Ausgleichsrechnung kombiniert, um eine Eigenposition und eine
Orientierung des Fahrzeugs zu ermitteln.
Damit kann eine Position des Fahrzeugs in einer möglicherweise fehlerbehafteten Umgebungskarte und somit in einer Umgebung lokalisiert werden. Die ermittelte Position des Fahrzeugs kann anschließend einer Bahnplanungseinheit für einen autonomen Fahrbetrieb des Fahrzeugs zugeführt werden.
Figur 2 zeigt das Umgebungsbild B gemäß Figur 1.
Hierbei ist die Fahrbahn 1 in mehrere Segmente S unterteilt, die ein Oberflächenprofil der Fahrbahn 1 repräsentieren. Insbesondere stellen die Segmente S einen Höhenverlauf der Fahrbahn 1 ausgehend von einer festgelegten und/oder ermittelten Mittellinie dar. Das Oberflächenprofil der Fahrbahn 1 wird hierbei ohne Einbeziehung einer momentanen Geschwindigkeit und einer momentanen Gierrate des Fahrzeugs auf Basis des aktuellen Umgebungsbilds B ermittelt. Dies kann beispielsweise mittels nichtlinearer
Ausgleichsrechnungen, insbesondere mittels eines numerischen
Optimierungsalgorithmus, wie z. B. der Levenberg-Marquard-Algorithmus oder der sogenannte Gauß-Newton-Algorithmus, erfolgen. Da in der digitalen Umgebungskarte üblicherweise keine Informationen bezüglich des Oberflächenprofils der Fahrbahn 1 hinterlegt werden, verbessert die Einbeziehung des Oberflächenprofils der Fahrbahn 1 die Lokalisierung der Position des Fahrzeugs relativ zur Umgebungskarte erheblich. Konventionelle Verfahren verwenden dazu bekannte Ansätze, wie z. B. den sogenannten Kaiman-Filter oder ähnliche Trackingverfahren.
Hierbei werden jedoch die momentane Gierrate und die momentane Geschwindigkeit des Fahrzeugs benötigt, die störungsbehaftet sind, so dass daraus resultierend die
Lokalisierung der Position des Fahrzeugs ebenfalls fehlerbehaftet sein kann.
Daher wird hierbei das Oberflächenprofil der Fahrbahn 1 unter Einbeziehung weiterer fahrbahnprofilabhängiger Parameter, insbesondere eines Nickwinkels, eines Wankwinkels und einer Höhe der Bilderfassungseinheit relativ zur Fahrbahnoberfläche, auf Basis des aktuellen Umgebungsbilds B wie zuvor beschrieben ermittelt. Dies ermöglicht eine verbesserte Genauigkeit bei der oben beschriebenen Ermittlung der Position des
Fahrzeugs relativ zur Umgebungskarte und somit eine erhöhte Robustheit des Verfahrens gegenüber konventionellen Verfahren.
Figur 3 zeigt zwei weitere Umgebungsbilder B1 , die eine vor dem Fahrzeug befindliche Straßenkreuzung mit bestimmten weiteren Bildmerkmalen M1, hierbei Haltelinien und ein Richtungspfeil, zeigt. Dabei wird die Extraktion der weiteren Bildmerkmale M1 im linken weiteren Umgebungsbild B1 ohne Einbeziehung des Oberflächenprofils der Fahrbahn 1 gezeigt. Hierbei ist eine deutliche Abweichung zwischen den extrahierten
Bildmerkmalen M und dem tatsächlichen Verlauf der Merkmale in der Umgebung, also der Haltelinie und des Richtungspfeils, erkennbar. Dies ist insbesondere dadurch begründet, dass das Oberflächenprofil der Fahrbahn 1 nach rechts abfällt, dieses jedoch bei der Extraktion der weiteren Bildmerkmale M1 nicht berücksichtigt wird. D. h. die Fahrbahn 1 wird nur zweidimensional betrachtet.
Im rechten weiteren Umgebungsbild B1 ist die Extraktion der weiteren Bildmerkmale M1 mit Einbeziehung des Oberflächenprofils der Fahrbahn 1 gezeigt. Der Verlauf der extrahierten weiteren Bildmerkmale M1 entspricht hier weitestgehend dem tatsächlichen Verlauf der Merkmale.
Zudem ist es möglich, sowohl die extrahierten Bildmerkmale M, M1 als auch die
Merkmale für das Oberflächenprofil der Fahrbahn 1 in der Umgebungskarte abzulegen und mitzuführen. Unter Verwendung dieser zusätzlichen Informationen kann auch die nichtlineare Ausgleichsrechnung bei kurzzeitig ungünstigen Messbedingungen durchgeführt werden, wie z. B. bei Sonnenblendungen, Verdeckung durch andere Fahrzeuge, Schattenwürfe usw. Dieses Vorgehen erhöht die Robustheit und die Lokalisierungsgenauigkeit des Verfahrens weiter.

Claims

Patentansprüche
1. Verfahren zur Selbstlokalisierung eines Fahrzeugs, bei dem
- Umgebungsbilder (B, B1) des Fahrzeugs mittels zumindest einer
Bilderfassungseinheit erfasst werden,
- Bildmerkmale (M, M1) aus den Umgebungsbildern (B, B1) extrahiert und in einer digitalen Umgebungskarte hinterlegten Umgebungsmerkmalen (U) überlagert werden,
dadurch gekennzeichnet, dass
- zusätzlich fahrbahnprofilabhängige Parameter, umfassend ein Oberflächenprofil einer Fahrbahn (1), ein Nickwinkel und ein Wankwinkel des Fahrzeugs sowie eine Höhe der mindestens einen Bilderfassungseinheit relativ zu einer
Fahrbahnoberfläche, ermittelt werden,
- eine Position und eine Orientierung des Fahrzeugs in der Umgebungskarte anhand des Vergleichs der Bildmerkmale (B, B1) mit den
Umgebungsmerkmalen (U) und anhand der ermittelten fahrbahnprofilabhängigen Parameter ermittelt wird, und
- die fahrbahnprofilabhängigen Parameter anhand einer Auswertung mindestens eines der erfassten Umgebungsbilder (B, B1) unter Verwendung eines numerischen Optimierungsalgorithmus ermittelt werden.
2. Verfahren nach Anspruch 1,
dadurch gekennzeichnet, dass
als numerischer Optimierungsalgorithmus ein Gauß-Newton-Algorithmus angewandt wird.
3. Verfahren nach Anspruch 1 oder 2,
dadurch gekennzeichnet, dass
als numerischer Optimierungsalgorithmus ein Levenberg-Marquard-Algorithmus angewandt wird.
4. Verfahren nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass
die extrahierten Bildmerkmale (M, M1) und das ermittelte Oberflächenprofil der Fahrbahn (1) in der Umgebungskarte abgelegt und bei der Ermittlung der Position und Orientierung des Fahrzeugs berücksichtigt werden.
PCT/EP2017/001149 2016-10-01 2017-09-27 Verfahren zur selbstlokalisierung eines fahrzeugs WO2018059735A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102016011849.0 2016-10-01
DE102016011849.0A DE102016011849A1 (de) 2016-10-01 2016-10-01 Verfahren zur Selbstlokalisierung eines Fahrzeugs

Publications (1)

Publication Number Publication Date
WO2018059735A1 true WO2018059735A1 (de) 2018-04-05

Family

ID=58693274

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2017/001149 WO2018059735A1 (de) 2016-10-01 2017-09-27 Verfahren zur selbstlokalisierung eines fahrzeugs

Country Status (2)

Country Link
DE (1) DE102016011849A1 (de)
WO (1) WO2018059735A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020224970A1 (de) 2019-05-08 2020-11-12 Daimler Ag Verfahren und vorrichtung zur lokalisierung eines fahrzeugs

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7284851B2 (ja) * 2017-09-29 2023-05-31 ジオテクノロジーズ株式会社 情報処理装置
DE102022126770A1 (de) 2022-10-13 2024-04-18 Bayerische Motoren Werke Aktiengesellschaft Verfahren und Vorrichtung zum Ermitteln einer Abweichung einer Lage eines Fahrzeugs von einer Normallage und Fahrzeug

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012004198A1 (de) 2012-03-01 2012-10-04 Daimler Ag Verfahren und Vorrichtung zur Unterstützung eines Fahrers beim Führen eines Fahrzeugs im Gelände

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012004198A1 (de) 2012-03-01 2012-10-04 Daimler Ag Verfahren und Vorrichtung zur Unterstützung eines Fahrers beim Führen eines Fahrzeugs im Gelände

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
ERIC ROYER ET AL: "Monocular Vision for Mobile Robot Localization and Autonomous Navigation", INTERNATIONAL JOURNAL OF COMPUTER VISION, KLUWER ACADEMIC PUBLISHERS, BO, vol. 74, no. 3, 13 January 2007 (2007-01-13), pages 237 - 260, XP019534965, ISSN: 1573-1405, DOI: 10.1007/S11263-006-0023-Y *
JU WON HWANGBO ET AL: "INTEGRATION OF ORBITAL AND GROUND IMAGE NETWORKS FOR THE AUTOMATION OF ROVER LOCALIZATION", ASPRS 2009 ANNUAL CONFERENCE BALTIMORE, MARYLAND ? MARCH, 9 March 2009 (2009-03-09), pages 1 - 13, XP055440924, Retrieved from the Internet <URL:https://www.asprs.org/a/publications/proceedings/baltimore09/0040.pdf> [retrieved on 20180115] *
LATEGAHN HENNING ET AL: "Vision-Only Localization", IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, IEEE, PISCATAWAY, NJ, USA, vol. 15, no. 3, 1 June 2014 (2014-06-01), pages 1246 - 1257, XP011549675, ISSN: 1524-9050, [retrieved on 20140529], DOI: 10.1109/TITS.2014.2298492 *
RONGXING LI ET AL: "Spirit rover localization and topographic mapping at the landing site of Gusev crater, Mars : SPIRIT ROVER LOCALIZATION AT GUSEV CRATER", JOURNAL OF GEOPHYSICAL RESEARCH, vol. 111, no. E2, 12 January 2006 (2006-01-12), US, pages 1 - 13, XP055440920, ISSN: 0148-0227, DOI: 10.1029/2005JE002483 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020224970A1 (de) 2019-05-08 2020-11-12 Daimler Ag Verfahren und vorrichtung zur lokalisierung eines fahrzeugs
DE102019003238A1 (de) * 2019-05-08 2020-11-12 Daimler Ag Fahrzeugortung durch Kartenabgleich unter Berücksichtigung eines Straßenprofils
CN113811743A (zh) * 2019-05-08 2021-12-17 戴姆勒股份公司 用于确定运输工具位置的方法和装置
US20220221291A1 (en) * 2019-05-08 2022-07-14 Daimler Ag Method and device for locating a vehicle
DE102019003238B4 (de) 2019-05-08 2023-04-20 Mercedes-Benz Group AG Fahrzeugortung durch Kartenabgleich unter Berücksichtigung eines Straßenprofils
US11851069B2 (en) 2019-05-08 2023-12-26 Mercedes-Benz Group AG Method and device for locating a vehicle
CN113811743B (zh) * 2019-05-08 2024-06-04 梅赛德斯-奔驰集团股份公司 用于确定运输工具位置的方法和装置

Also Published As

Publication number Publication date
DE102016011849A1 (de) 2017-06-01

Similar Documents

Publication Publication Date Title
DE102011120814B4 (de) Verfahren und Vorrichtung zur Bestimmung eines Winkels zwischen einem Zugfahrzeug und einem damit gekoppelten Anhänger
DE102015203016B4 (de) Verfahren und Vorrichtung zur optischen Selbstlokalisation eines Kraftfahrzeugs in einem Umfeld
EP3584663A1 (de) Verfahren zur automatischen querführung eines folgefahrzeugs in einem fahrzeug-platoon
DE102011082478A1 (de) Verfahren, System sowie Vorrichtung zur Lokalisation eines Fahrzeugs relativ zu einem vordefinierten Bezugssystem
DE102010023162A1 (de) Verfahren zum Unterstützen eines Fahrers eines Kraftfahrzeugs beim Einparken in eine Parklücke, Fahrerassistenzeinrichtung und Kraftfahrzeug
DE102016223422A1 (de) Verfahren zur automatischen Ermittlung extrinsischer Parameter einer Kamera eines Fahrzeugs
WO2017194457A1 (de) Verfahren zur erfassung von verkehrszeichen
DE102014226020A1 (de) Verfahren und Vorrichtung zur Kalibrierung mindestens einer mobilen Sensoreinrichtung
DE102017210112A1 (de) Verfahren und System zur Durchführung einer Kalibrierung eines Sensors
DE102016216070A1 (de) Steuergerät, System mit solch einem Steuergerät und Verfahren zum Betrieb solch eines Systems
DE102013201796A1 (de) Verfahren zur Bereitstellung eines Fahrkorridors für ein Fahrzeug und Fahrassistenzsystem
DE102015116542A1 (de) Verfahren zum Bestimmen einer Parkfläche zum Parken eines Kraftfahrzeugs, Fahrerassistenzsystem sowie Kraftfahrzeug
WO2020001963A1 (de) Verfahren und system zum ermitteln einer relativpose zwischen einem zielobjekt und einem fahrzeug
WO2018059735A1 (de) Verfahren zur selbstlokalisierung eines fahrzeugs
DE102016012345A1 (de) Verfahren zum Erkennen von Objekten
DE112019004285T5 (de) Bordvorrichtung
DE102017219119A1 (de) Verfahren zur Formerkennung eines Objekts in einem Außenbereich eines Kraftfahrzeugs sowie Kraftfahrzeug
DE102014218995A1 (de) Verfahren und Vorrichtung zur Bird-View-Darstellung eines Fahrzeuggespanns sowie nachrüstbare Kamera
DE102017123226A1 (de) Verfahren zum Bestimmen einer kritischen Höhe eines vorausliegenden Streckenabschnitts für ein Fahrzeug, das ein Zugfahrzeug und einen Anhänger umfasst
EP3048557B1 (de) Verfahren zum Ermitteln einer Lage eines Fahrzeugmerkmals
DE102016215538A1 (de) Verfahren zum Transformieren von Sensordaten
EP3704631A2 (de) Verfahren zur ermittlung einer entfernung zwischen einem kraftfahrzeug und einem objekt
EP3621035A1 (de) Verfahren zum führen eines fahrzeugs hinter einem vorausfahrenden fahrzeug
DE102019208507A1 (de) Verfahren zur Bestimmung eines Überlappungsgrades eines Objektes mit einem Fahrstreifen
DE102019107224A1 (de) Fahrunterstützungsverfahren

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17790668

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17790668

Country of ref document: EP

Kind code of ref document: A1