WO2018059513A1 - 下行资源粒度的确定方法、装置及系统 - Google Patents

下行资源粒度的确定方法、装置及系统 Download PDF

Info

Publication number
WO2018059513A1
WO2018059513A1 PCT/CN2017/104077 CN2017104077W WO2018059513A1 WO 2018059513 A1 WO2018059513 A1 WO 2018059513A1 CN 2017104077 W CN2017104077 W CN 2017104077W WO 2018059513 A1 WO2018059513 A1 WO 2018059513A1
Authority
WO
WIPO (PCT)
Prior art keywords
resources
data channel
resource
downlink
downlink control
Prior art date
Application number
PCT/CN2017/104077
Other languages
English (en)
French (fr)
Inventor
石靖
夏树强
张雯
韩祥辉
梁春丽
任敏
张文峰
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2018059513A1 publication Critical patent/WO2018059513A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the present application relates to the field of communications, for example, to a method, device, and system for determining a downlink resource granularity.
  • a 1 ms transmission time interval is used in the LTE system, that is, a 1 ms subframe.
  • TTI transmission time interval
  • the uplink coverage enhancement is considered in the related LTE system, the TTI binding is introduced, and multiple TTIs are bound together to transmit one data block, that is, the transmission time interval is increased.
  • 3GPP 3rd Generation Partnership Project
  • Short Physical Downlink Control Channel (SPDCCH) and a short physics in a reduced TTI (short TTI, sTTI for short).
  • Short Physical Downlink Shared Channel (referred to as sPDSCH).
  • the current working mode is to dynamically notify the DL sTTI band resource allocation by using the first-level DCI in the two-level Downlink Control Information (Physical Downlink Control Channel, PDCCH for short).
  • PDCCH Physical Downlink Control Channel
  • the sPDCCH may be received in the DL sTTI band and the sPDSCH is received in the DL sTTI band by demodulating the sPDCCH.
  • the embodiments of the present disclosure provide a method, an apparatus, and a system for determining a downlink resource granularity, so as to at least solve the problem that a low-latency transmission and an LTE service occupy bandwidth conflict in the related art.
  • a method for determining a downlink resource granularity including:
  • the base station configuration includes a set of x physical resource blocks PRB, wherein part or all of the resources including the set of x PRBs are used to send a second downlink control channel and a second downlink data channel, where the x is positive Integer
  • the base station sends configuration information for configuring the set by using high layer signaling or physical layer signaling carried by the first downlink control channel;
  • the x satisfies at least one of the following conditions: an integer multiple of the granularity of the first downlink data channel resource allocation; and the number of PRBs occupied by the second downlink control channel resource unit, M or M/2 or An integer multiple of the granularity of the second downlink data channel resource allocation;
  • the frequency domain range of the first downlink control channel is not limited to the frequency domain range where the x PRBs are located, and the frequency domain range of the second downlink control channel and the second downlink data channel is limited by x.
  • the x is the number of PRBs or M/2 occupied by the second downlink control channel resource unit or Integer multiple, including: the x is the number of occupied PRBs of the second downlink control channel resource unit, M or M/2 or C times, wherein C is an integer greater than or equal to zero.
  • the resource allocation granularity of the second downlink data channel is one of the following:
  • the number of PRBs occupied by the second downlink control channel resource unit is M or M/2 or PRB; one PRB; x/4 PRB; x/8 PRB.
  • the x simultaneously satisfies the following conditions:
  • the x satisfies one of the following conditions:
  • the first downlink data channel resource allocation granularity and the number of PRBs occupied by the second downlink control channel resource unit M or M/2 or An integer multiple of the common multiple
  • the first downlink data channel resource allocation granularity is M or M/2 or
  • the M is the number of PRBs occupied by the second downlink control channel resource unit.
  • the resource allocation granularity of the second downlink data channel is one of the following: RBG; the number of PRBs occupied by the second downlink control channel resource unit is M or M/2 or PRB; one PRB; x/4 PRB; x/8 PRB.
  • the x is an integer multiple of the first downlink data channel resource allocation granularity
  • the first downlink data channel resource allocation granularity is PRB or RBG
  • the x is the first C times the granularity of the downlink data channel resource allocation, wherein the C is an integer greater than or equal to 0.
  • the resource allocation granularity of the second downlink data channel meets one of the following conditions: RBG; the number of PRBs occupied by the second downlink control channel resource unit, M or M/2, or PRB; one PRB; x/4 PRBs; x/8 PRBs; 1 of the Y resources, dividing the resources of the second downlink data channel into Y shares, wherein Y-1 resource sizes Same, Y is a positive integer.
  • the size of the Y resources is one of the following:
  • Y-1 resource size is The Yth resource size is
  • Y-1 resource size is The Yth resource size is Where P is the number of PRBs included in the RBG;
  • Y-1 resource size is The Yth resource size is Where Q is M or M/2 or M is the number of PRBs occupied by the sCCE.
  • the resource allocation granularity of the second downlink data channel is x/4 or x/8 or a maximum of Y resources is allocated, the following one is included:
  • Using 3 bits in the second downlink control channel indicates the following information in up to 4 resources: ⁇ all Resources, the first 1/2 resources, the last 1/2 resources, the first 1/4 of the resources, the next 1/4 of the resources, the next 1/4 of the resources, and the last 1/4 of the resources ⁇ ;
  • Using 4 bits in the second downlink control channel indicates the following information in up to 8 resources: ⁇ all resources, resources of the first 1/2, resources of the last 1/2, resources of the first 1/4, and 1/4 of the next Resources, the next 1/4 of the resources, the last 1/4 of the resources, the first 1/8 of the resources, the second 1/8 of the resources, the third 1/8 of the resources, the fourth 1/8 Resources, the fifth 1/8 resource, the sixth 1/8 resource, the seventh 1/8 resource, and the eighth 1/8 resource ⁇ .
  • the resource allocation granularity of the second downlink data channel is x/4 PRBs or x/8 PRBs, the following one is included:
  • Using 3 bits in the second downlink control channel indicates the following information in up to 4 resources: ⁇ all resources, the first 1/2 resources, the last 1/2 resources, the first 1/4 resources, the next 1/4 Resources, the next quarter of resources, and the last quarter of resources ⁇ ;
  • Using 4 bits in the second downlink control channel indicates the following information in up to 8 resources: ⁇ all resources, resources of the first 1/2, resources of the last 1/2, resources of the first 1/4, and 1/4 of the next Resources, the next 1/4 of the resources, the last 1/4 of the resources, the first 1/8 of the resources, the second 1/8 of the resources, the third 1/8 of the resources, the fourth 1/8 Resources, the fifth 1/8 resource, the sixth 1/8 resource, the seventh 1/8 resource, and the eighth 1/8 resource ⁇ .
  • a method for determining a downlink resource granularity is further provided, where: the downlink control information carried by the first downlink control channel when the first two symbols or the first three symbols are located in the subframe
  • the method includes: scheduling an uplink grant of the uplink data channel; or scheduling an uplink grant of the uplink data channel and a downlink grant of the second downlink data channel.
  • the scheduled second downlink data channel is the first two symbols in the subframe or the first TTI after the first three symbols.
  • the second downlink data channel is the first two symbols in the subframe or the first TTI after the first three symbols.
  • a method for determining a downlink resource granularity including:
  • the terminal receives the allocated x physical resource block PRB sets, where part or all of the resources of the set of the x PRBs are used to send the second downlink control channel and the second downlink data channel, where
  • the x is a positive integer
  • the terminal receives configuration information for configuring the set, which is sent by using physical layer signaling carried by the high layer signaling or the first downlink control channel;
  • the x satisfies at least one of the following conditions: an integer multiple of the granularity of the first downlink data channel resource allocation; and the number of PRBs occupied by the second downlink control channel resource unit, M or M/2 or An integer multiple of the granularity of the second downlink data channel resource allocation;
  • the frequency domain range of the first downlink control channel is not limited to the frequency domain range where the x PRBs are located, and the frequency domain range of the second downlink control channel and the second downlink data channel is limited by x.
  • the x is the number of PRBs or M/2 occupied by the second downlink control channel resource unit or Integer multiple, including: the x is the number of occupied PRBs of the second downlink control channel resource unit, M or M/2 or C times, wherein C is an integer greater than or equal to zero.
  • the resource allocation granularity of the second downlink data channel is one of the following:
  • the number of PRBs occupied by the second downlink control channel resource unit is M or M/2 or PRB; one PRB; x/4 PRB; x/8 PRB.
  • the x satisfies the following condition: an integer multiple of the granularity of the first downlink data channel resource allocation, and an integer multiple of the number of PRBs occupied by the second downlink control channel resource unit.
  • the x satisfies one of the following conditions:
  • the first downlink data channel resource allocation granularity and the number of PRBs occupied by the second downlink control channel resource unit M or M/2 or An integer multiple of the common multiple
  • the first downlink data channel resource allocation granularity is M or M/2 or
  • the M is the number of PRBs occupied by the second downlink control channel resource unit.
  • the resource allocation granularity of the second downlink data channel is one of the following: RBG; the number of PRBs occupied by the second downlink control channel resource unit is M or M/2 or PRB; one PRB; x/4 PRB; x/8 PRB.
  • the first downlink data channel resource allocation granularity is PRB or RBG, where x is C times the first downlink data channel resource allocation granularity, where C is an integer greater than or equal to 0.
  • the resource allocation granularity of the second downlink data channel meets one of the following conditions: RBG; the number of PRBs occupied by the second downlink control channel resource unit, M or M/2, or PRB; one PRB; x/4 PRBs; x/8 PRBs; 1 of the Y resources, dividing the resources of the second downlink data channel into Y shares, wherein Y-1 resource sizes Same, Y is a positive integer.
  • the size of the Y resources is one of the following:
  • Y-1 resource size is The Yth resource size is
  • Y-1 resource size is The Yth resource size is Where P is the number of PRBs included in the RBG;
  • Y-1 resource size is The Yth resource size is Where Q is M or M/2 or M is the number of PRBs occupied by the sCCE.
  • the resource allocation granularity of the second downlink data channel is x/4 or x/8 or a maximum of Y resources is allocated, the following one is included:
  • Using 3 bits in the second downlink control channel indicates the following information in up to 4 resources: ⁇ all resources, the first 1/2 resources, the last 1/2 resources, the first 1/4 resources, the next 1/4 Resources, the next quarter of resources, and the last quarter of resources ⁇ ;
  • Using 4 bits in the second downlink control channel indicates the following information in up to 8 resources: ⁇ all resources, resources of the first 1/2, resources of the last 1/2, resources of the first 1/4, and 1/4 of the next Resources, the next 1/4 of the resources, the last 1/4 of the resources, the first 1/8 of the resources, the second 1/8 of the resources, the third 1/8 of the resources, the fourth 1/8 Resources, the fifth 1/8 resource, the sixth 1/8 resource, the seventh 1/8 resource, and the eighth 1/8 resource ⁇ .
  • the resource allocation granularity of the second downlink data channel is x/4 PRBs or x/8 PRBs, the following one is included:
  • Using 3 bits in the second downlink control channel indicates the following information in up to 4 resources: ⁇ all resources, the first 1/2 resources, the last 1/2 resources, the first 1/4 resources, the next 1/4 Resources, the next quarter of resources, and the last quarter of resources ⁇ ;
  • Using 4 bits in the second downlink control channel indicates the following information in up to 8 resources: ⁇ all Resources, the first 1/2 resources, the last 1/2 resources, the first 1/4 of the resources, the next 1/4 of the resources, the next 1/4 of the resources, the last 1/4 of the resources, the first 1 /8 resources, the second 1/8 resource, the third 1/8 resource, the fourth 1/8 resource, the fifth 1/8 resource, the sixth 1/8 resource, The seventh 1/8 resource, the eighth 1/8 resource ⁇ .
  • a method for determining a downlink resource granularity is further provided, where: the downlink control information carried by the first downlink control channel when the first two symbols or the first three symbols are located in the subframe include:
  • the terminal when receiving the downlink control information, the terminal includes:
  • At least one of the downlink grants for scheduling the second downlink data channel in the TTI is received in a first TTI after the first two symbols or the first three symbols in the subframe.
  • the terminal when receiving the downlink control information, includes: receiving, in the first downlink control channel, an uplink grant for scheduling an uplink data channel, and not expecting to receive the first two symbols in a scheduling subframe or before Downlink grant of the second downlink data channel in the first TTI after the three symbols, and reception in the first TTI after the first two symbols or the first three symbols in the subframe Downlink authorization of the second downlink data channel.
  • the terminal when receiving the downlink control information, receives an uplink grant for scheduling an uplink data channel, a first two symbols in a subframe, or a first after the first three symbols in the first downlink control channel. At least one of downlink grants of a second downlink data channel in one TTI, and undesired reception in the first TTI after the first two symbols or the first three symbols in the subframe Downlink authorization of the second downlink data channel.
  • a device for determining a downlink resource granularity is further provided, which is applied to a base station, where the device includes:
  • a configuration module configured to configure a set of x physical resource block PRBs, where part or all of the resources of the set of x PRBs are used to send a second downlink control channel and a second downlink a data channel, wherein the x is a positive integer;
  • the x satisfies at least one of the following conditions: an integer multiple of the granularity of the first downlink data channel resource allocation; and the number of PRBs occupied by the second downlink control channel resource unit, M or M/2 or An integer multiple of the granularity of the second downlink data channel resource allocation;
  • the sending module is configured to send configuration information for configuring the set by using high layer signaling or physical layer signaling carried by the first downlink control channel;
  • the frequency domain range of the first downlink control channel is not limited to the frequency domain range where the x PRBs are located, and the frequency domain range of the second downlink control channel and the second downlink data channel is limited by x.
  • the x is the number of PRBs or M/2 occupied by the second downlink control channel resource unit or Integer multiple, including: the x is the number of occupied PRBs of the second downlink control channel resource unit, M or M/2 or C times, wherein C is an integer greater than or equal to zero.
  • the resource allocation granularity of the second downlink data channel is one of the following:
  • the number of PRBs occupied by the second downlink control channel resource unit is M or M/2 or PRB; one PRB; x/4 PRB; x/8 PRB.
  • the x simultaneously satisfies the following conditions:
  • the x satisfies one of the following conditions:
  • the first downlink data channel resource allocation granularity and the number of PRBs occupied by the second downlink control channel resource unit M or M/2 or An integer multiple of the common multiple
  • the first downlink data channel resource allocation granularity is M or M/2 or
  • the M is the number of PRBs occupied by the second downlink control channel resource unit.
  • the resource allocation granularity of the second downlink data channel is one of the following: RBG; the number of PRBs occupied by the second downlink control channel resource unit is M or M/2 or PRB; one PRB; x/4 PRB; x/8 PRB.
  • the x is an integer multiple of the first downlink data channel resource allocation granularity
  • the first downlink data channel resource allocation granularity is PRB or RBG
  • the x is the first C times the granularity of the downlink data channel resource allocation, wherein the C is an integer greater than or equal to 0.
  • the resource allocation granularity of the second downlink data channel meets one of the following conditions: RBG; the number of PRBs occupied by the second downlink control channel resource unit, M or M/2, or PRB; one PRB; x/4 PRBs; x/8 PRBs; 1 of the Y resources, dividing the resources of the second downlink data channel into Y shares, wherein Y-1 resource sizes Same, Y is a positive integer.
  • the size of the Y resources is one of the following:
  • Y-1 resource size is The Yth resource size is
  • Y-1 resource size is The Yth resource size is Where P is the number of PRBs included in the RBG;
  • Y-1 resource size is The Yth resource size is Where Q is M or M/2 or M is the number of PRBs occupied by the sCCE.
  • the resource allocation granularity of the second downlink data channel is x/4 or x/8 or a maximum of Y resources is allocated, the following one is included:
  • Using 3 bits in the second downlink control channel indicates the following information in up to 4 resources: ⁇ all resources, the first 1/2 resources, the last 1/2 resources, the first 1/4 resources, the next 1/4 Resources, the next quarter of resources, and the last quarter of resources ⁇ ;
  • Using 4 bits in the second downlink control channel indicates the following information in up to 8 resources: ⁇ all resources, resources of the first 1/2, resources of the last 1/2, resources of the first 1/4, and 1/4 of the next Resources, the next 1/4 of the resources, the last 1/4 of the resources, the first 1/8 of the resources, the second 1/8 of the resources, the third 1/8 of the resources, the fourth 1/8 Resources, the fifth 1/8 resource, the sixth 1/8 resource, the seventh 1/8 resource, and the eighth 1/8 resource ⁇ .
  • the resource allocation granularity of the second downlink data channel is x/4 PRBs or x/8 PRBs, the following one is included:
  • Using 3 bits in the second downlink control channel indicates the following information in up to 4 resources: ⁇ all resources, the first 1/2 resources, the last 1/2 resources, the first 1/4 resources, the next 1/4 Resources, the next quarter of resources, and the last quarter of resources ⁇ ;
  • Using 4 bits in the second downlink control channel indicates the following information in up to 8 resources: ⁇ all resources, resources of the first 1/2, resources of the last 1/2, resources of the first 1/4, and 1/4 of the next Resources, the next 1/4 of the resources, the last 1/4 of the resources, the first 1/8 of the resources, the second 1/8 of the resources, the third 1/8 of the resources, the fourth 1/8 Resources, the fifth 1/8 resource, the sixth 1/8 resource, the seventh 1/8 resource, and the eighth 1/8 resource ⁇ .
  • the scheduled second downlink data channel is the first two symbols in the subframe.
  • the second downlink data channel in the subsequent TTI.
  • a device for determining a downlink resource granularity includes:
  • the receiving module is configured to receive, by using the high layer signaling or the physical layer signaling carried by the first downlink control channel, configuration information for configuring a set, where the set is a set of x physical resource blocks PRB allocated by the base station, The part or all resources in the set of the x PRBs are used to send the second downlink control channel and the second downlink data channel, where the x is a positive integer;
  • the x satisfies at least one of the following conditions: an integer multiple of the granularity of the first downlink data channel resource allocation; and the number of PRBs occupied by the second downlink control channel resource unit, M or M/2 or An integer multiple of the granularity of the second downlink data channel resource allocation;
  • the frequency domain range of the first downlink control channel is not limited to the frequency domain range where the x PRBs are located, and the frequency domain range of the second downlink control channel and the second downlink data channel is limited by x.
  • the x is the number of PRBs or M/2 occupied by the second downlink control channel resource unit or Integer multiple, including: the x is the number of occupied PRBs of the second downlink control channel resource unit, M or M/2 or C times, wherein C is an integer greater than or equal to zero.
  • the resource allocation granularity of the second downlink data channel is one of the following:
  • the number of PRBs occupied by the second downlink control channel resource unit is M or M/2 or PRB; one PRB; x/4 PRB; x/8 PRB.
  • the x satisfies the following condition: an integer multiple of the granularity of the first downlink data channel resource allocation, and an integer multiple of the number of PRBs occupied by the second downlink control channel resource unit.
  • the x satisfies one of the following conditions:
  • the first downlink data channel resource allocation granularity and the number of PRBs occupied by the second downlink control channel resource unit M or M/2 or An integer multiple of the common multiple
  • the first downlink data channel resource allocation granularity is M or M/2 or
  • the M is the number of PRBs occupied by the second downlink control channel resource unit.
  • the resource allocation granularity of the second downlink data channel is one of the following: RBG; the number of PRBs occupied by the second downlink control channel resource unit is M or M/2 or PRB; one PRB; x/4 PRB; x/8 PRB.
  • the x is an integer multiple of the first downlink data channel resource allocation granularity
  • the first downlink data channel resource allocation granularity is PRB or RBG
  • the x is the first C times the granularity of the downlink data channel resource allocation, wherein the C is an integer greater than or equal to 0.
  • the resource allocation granularity of the second downlink data channel meets one of the following conditions: RBG; the number of PRBs occupied by the second downlink control channel resource unit, M or M/2, or PRB; one PRB; x/4 PRBs; x/8 PRBs; 1 of the Y resources, dividing the resources of the second downlink data channel into Y shares, wherein Y-1 resource sizes Same, Y is a positive integer.
  • the size of the Y resources is one of the following:
  • Y-1 resource size is The Yth resource size is
  • Y-1 resource size is The Yth resource size is Where P is the number of PRBs included in the RBG;
  • Y-1 resource size is The Yth resource size is Where Q is M or M/2 or M is the number of PRBs occupied by the short channel control unit sCCE.
  • the resource allocation granularity of the second downlink data channel is x/4 or x/8 or a maximum of Y resources is allocated, the following one is included:
  • Using 3 bits in the second downlink control channel indicates the following information in up to 4 resources: ⁇ all resources, the first 1/2 resources, the last 1/2 resources, the first 1/4 resources, the next 1/4 Resources, the next quarter of resources, and the last quarter of resources ⁇ ;
  • Using 4 bits in the second downlink control channel indicates the following information in up to 8 resources: ⁇ all resources, resources of the first 1/2, resources of the last 1/2, resources of the first 1/4, and 1/4 of the next Resources, the next 1/4 of the resources, the last 1/4 of the resources, the first 1/8 of the resources, the second 1/8 of the resources, the third 1/8 of the resources, the fourth 1/8 Resources, the fifth 1/8 resource, the sixth 1/8 resource, the seventh 1/8 resource, and the eighth 1/8 resource ⁇ .
  • the resource allocation granularity of the second downlink data channel is x/4 PRBs or x/8 PRBs, the following one is included:
  • Using 3 bits in the second downlink control channel indicates the following information in up to 4 resources: ⁇ all resources, the first 1/2 resources, the last 1/2 resources, the first 1/4 resources, the next 1/4 Resources, the next quarter of resources, and the last quarter of resources ⁇ ;
  • Using 4 bits in the second downlink control channel indicates the following information in up to 8 resources: ⁇ all resources, resources of the first 1/2, resources of the last 1/2, resources of the first 1/4, and 1/4 of the next Resources, the next 1/4 of the resources, the last 1/4 of the resources, the first 1/8 of the resources, the second 1/8 of the resources, the third 1/8 of the resources, the fourth 1/8 Resources, the fifth 1/8 resource, the sixth 1/8 resource, the seventh 1/8 resource, and the eighth 1/8 resource ⁇ .
  • the scheduled second downlink data channel is the first two symbols in the subframe.
  • the second downlink data channel in the subsequent TTI.
  • a system for determining a downlink resource granularity includes: a base station, a terminal;
  • the base station configures, for the terminal, a set of x physical resource blocks PRB, where part or all of the resources of the set of x PRBs are used to send a second downlink control channel and a second downlink data channel, where , the x is a positive integer;
  • the x satisfies at least one of the following conditions: an integer multiple of the granularity of the first downlink data channel resource allocation; and the number of PRBs occupied by the second downlink control channel resource unit, M or M/2 or An integer multiple of the granularity of the second downlink data channel resource allocation;
  • the frequency domain range of the first downlink control channel is not limited to the frequency domain range where the x PRBs are located, and the frequency domain range of the second downlink control channel and the second downlink data channel is limited by x.
  • the x is the number of PRBs or M/2 occupied by the second downlink control channel resource unit or Integer multiple, including: the x is the number of occupied PRBs of the second downlink control channel resource unit, M or M/2 or C times, wherein C is an integer greater than or equal to zero.
  • the resource allocation granularity of the second downlink data channel is one of the following:
  • the number of PRBs occupied by the second downlink control channel resource unit is M or M/2 or PRB; one PRB; x/4 PRB; x/8 PRB.
  • the x simultaneously satisfies the following conditions:
  • the x satisfies one of the following conditions:
  • the first downlink data channel resource allocation granularity and the number of PRBs occupied by the second downlink control channel resource unit M or M/2 or An integer multiple of the common multiple
  • the first downlink data channel resource allocation granularity is M or M/2 or
  • the M is the number of PRBs occupied by the second downlink control channel resource unit.
  • the resource allocation granularity of the second downlink data channel is one of the following: RBG; the number of PRBs occupied by the second downlink control channel resource unit is M or M/2 or PRB; one PRB; x/4 PRB; x/8 PRB.
  • the x is an integer multiple of the first downlink data channel resource allocation granularity
  • the first downlink data channel resource allocation granularity is PRB or RBG
  • the x is the first C times the granularity of the downlink data channel resource allocation, wherein the C is an integer greater than or equal to 0.
  • the resource allocation granularity of the second downlink data channel meets one of the following conditions: RBG; the number of PRBs occupied by the second downlink control channel resource unit, M or M/2, or PRB; one PRB; x/4 PRBs; x/8 PRBs; 1 of the Y resources, dividing the resources of the second downlink data channel into Y shares, wherein Y-1 resource sizes Same, Y is a positive integer.
  • the size of the Y resources is one of the following:
  • Y-1 resource size is The Yth resource size is
  • Y-1 resource size is The Yth resource size is Where P is the number of PRBs included in the RBG;
  • Y-1 resource size is The Yth resource size is Where Q is M or M/2 or M is the number of PRBs occupied by the sCCE.
  • the resource allocation granularity of the second downlink data channel is x/4 or x/8 or a maximum of Y resources is allocated, the following one is included:
  • Using 3 bits in the second downlink control channel indicates the following information in up to 4 resources: ⁇ all resources, the first 1/2 resources, the last 1/2 resources, the first 1/4 resources, the next 1/4 Resources, the next quarter of resources, and the last quarter of resources ⁇ ;
  • Using 4 bits in the second downlink control channel indicates the following information in up to 8 resources: ⁇ all resources, resources of the first 1/2, resources of the last 1/2, resources of the first 1/4, and 1/4 of the next Resources, the next 1/4 of the resources, the last 1/4 of the resources, the first 1/8 of the resources, the second 1/8 of the resources, the third 1/8 of the resources, the fourth 1/8 Resources, the fifth 1/8 resource, the sixth 1/8 resource, the seventh 1/8 resource, and the eighth 1/8 resource ⁇ .
  • the resource allocation granularity of the second downlink data channel is x/4 PRBs or x/8 PRBs, the following one is included:
  • Using 3 bits in the second downlink control channel indicates the following information in up to 4 resources: ⁇ all resources, the first 1/2 resources, the last 1/2 resources, the first 1/4 resources, the next 1/4 Resources, the next quarter of resources, and the last quarter of resources ⁇ ;
  • Using 4 bits in the second downlink control channel indicates the following information in up to 8 resources: ⁇ all resources, resources of the first 1/2, resources of the last 1/2, resources of the first 1/4, and 1/4 of the next Resources, the next 1/4 of the resources, the last 1/4 of the resources, the first 1/8 of the resources, the second 1/8 of the resources, the third 1/8 of the resources, the fourth 1/8 Resources, the fifth 1/8 resource, the sixth 1/8 resource, the seventh 1/8 resource, and the eighth 1/8 resource ⁇ .
  • the scheduled second downlink data channel is the first two symbols in the subframe. It The second downlink data channel in the latter TTI.
  • a storage medium is also provided.
  • the storage medium is arranged to store program code for performing the following steps:
  • the base station configuration includes a set of x physical resource blocks PRB, wherein part or all of the resources including the set of x PRBs are used to send a second downlink control channel and a second downlink data channel, where the x is positive Integer
  • the base station sends configuration information for configuring the set by using high layer signaling or physical layer signaling carried by the first downlink control channel;
  • the x satisfies at least one of the following conditions: an integer multiple of the granularity of the first downlink data channel resource allocation; and the number of PRBs occupied by the second downlink control channel resource unit, M or M/2 or An integer multiple of the granularity of the second downlink data channel resource allocation;
  • the frequency domain range of the first downlink control channel is not limited to the frequency domain range where the x PRBs are located, and the frequency domain range of the second downlink control channel and the second downlink data channel is limited by x.
  • the storage medium is further arranged to store program code for performing the following steps:
  • the terminal receives the allocated x physical resource block PRB sets, where part or all of the resources including the set of x PRBs are used to send the second downlink control channel and the second downlink data channel, where the x is positive Integer
  • the terminal receives configuration information for configuring the set, which is sent by using physical layer signaling carried by the high layer signaling or the first downlink control channel;
  • the x satisfies at least one of the following conditions: an integer multiple of the granularity of the first downlink data channel resource allocation; and the number of PRBs occupied by the second downlink control channel resource unit, M or M/2 or An integer multiple of the granularity of the second downlink data channel resource allocation;
  • the frequency domain range of the first downlink control channel is not limited to the frequency domain range where the x PRBs are located, and the frequency domain range of the second downlink control channel and the second downlink data channel is limited by x.
  • An embodiment of the present disclosure further provides an electronic device, including:
  • At least one processor At least one processor
  • the memory stores instructions executable by the at least one processor, the instructions being executed by the at least one processor to cause the at least one processor to perform the method described above.
  • the base station configuration includes a set of x physical resource blocks PRB, where part or all of the resources including the set of x PRBs are used to send the second downlink control channel and the second downlink data channel, where the x a positive integer; the base station sends configuration information for configuring the set by using high layer signaling or physical layer signaling carried by the first downlink control channel; wherein the x meets at least one of the following conditions: being the first downlink data An integer multiple of the channel resource allocation granularity; the number of PRBs occupied by the second downlink control channel resource unit, M or M/2 or An integer multiple of the granularity of the second downlink data channel resource; wherein the frequency domain range of the first downlink control channel is not limited to the frequency domain range where the x PRBs are located, and the second downlink control channel and The frequency domain range of the second downlink data channel is limited by the frequency domain range in which the x PRBs are located.
  • the problem of the bandwidth conflict between the low-latency transmission and the LTE service in the related art is solved, and the low-latency service and the LTE legacy service can effectively use the downlink resources in the system bandwidth and avoid resource waste or conflict, and reduce the internal DL sTTI band. Resource allocation overhead, so that low-latency services and LTE traditional services can coexist reasonably.
  • FIG. 1 is a flowchart 1 of a method for determining a downlink resource granularity according to an embodiment of the present disclosure
  • FIG. 2 is a second flowchart of a method for determining a downlink resource granularity according to an embodiment of the present disclosure
  • FIG. 3 is a first schematic diagram when x satisfies an integer multiple of a frequency domain size of a second downlink control channel resource element according to an embodiment of the present disclosure
  • 4A and 4B are the first downlink data channel resource points satisfied according to an embodiment of the present disclosure.
  • Schematic diagram 2 of the integer multiplier of the minimum common divisor of the frequency domain size of the second downlink control channel resource unit;
  • 5A and 5B are schematic diagrams 3 of x satisfying an integer multiple of a first downlink data channel resource allocation granularity according to an embodiment of the present disclosure
  • FIG. 6 is a schematic view of a fourth embodiment according to the present disclosure.
  • Figure 7 is a schematic illustration of a fifth embodiment in accordance with the present disclosure.
  • FIG. 8 is a structural block diagram of a determining apparatus applied to a downlink resource granularity of a base station according to an embodiment of the present disclosure
  • FIG. 9 is a schematic structural diagram of an electronic device according to an embodiment of the present disclosure.
  • the first downlink control channel refers to a PDCCH
  • the first downlink data channel refers to a PDSCH.
  • the second downlink control channel refers to sPDCCH
  • the second downlink data channel refers to sPDSCH.
  • the uplink data channel in the present disclosure refers to sPUSCH.
  • the sPDCCH, the sPDSCH, and the sPUSCH are channels in a short TTI (referred to as sTTI), and the length of the sTTI is 2 OFDM symbols or 3 OFDM symbols or 4 OFDM symbols or 1 slot.
  • the method steps described in this application file may be run in a Long Term Evolution (LTE) system, and the network architecture of the network may include network side devices (such as base stations) and terminals.
  • LTE Long Term Evolution
  • a method for determining a downlink resource granularity that can be run on the foregoing network architecture is provided.
  • the operating environment of the foregoing information transmission method provided in this embodiment of the present application is not limited to the foregoing network architecture.
  • FIG. 1 is a flowchart 1 of a method for determining a downlink resource granularity according to an embodiment of the present disclosure. As shown in FIG. 1, the method includes the following steps:
  • the base station configuration includes a set of x physical resource blocks PRB, where part or all of the resources including the set of x PRBs are used to send the second downlink control channel and the second downlink data channel, where the x is a positive integer; wherein the x satisfies at least one of the following conditions: an integer multiple of a granularity of the first downlink data channel resource allocation; and a number of PRBs M or M/2 occupied by the second downlink control channel resource unit An integer multiple of the granularity of the second downlink data channel resource allocation;
  • Step S104 The base station sends, by using the high layer signaling or the physical layer signaling carried by the first downlink control channel, configuration information for configuring the set.
  • the frequency domain range of the first downlink control channel is not limited to x.
  • the frequency domain range in which the PRB is located, the frequency domain range in which the second downlink control channel and the second downlink data channel are located is limited by the frequency domain range in which the x PRBs are located.
  • the above-mentioned steps solve the problem that the low-latency transmission and the LTE service occupy bandwidth conflict in the related art, so that the low-latency service and the LTE traditional service can effectively use the downlink resources in the system bandwidth and avoid resource waste or conflict, and reduce
  • the internal resource allocation overhead of the DL sTTI band enables the low-latency service to coexist reasonably with the traditional LTE service.
  • the x is the number of PRBs or M/2 occupied by the second downlink control channel resource unit or Integer multiple, including: the x is the number of occupied PRBs of the second downlink control channel resource unit, M or M/2 or C times, where C is an integer greater than or equal to zero.
  • the resource allocation granularity of the second downlink data channel is one of the following:
  • the number of PRBs occupied by the second downlink control channel resource unit is M or M/2 or PRB; one PRB; x/4 PRB; x/8 PRB.
  • the x satisfies the following condition: an integer multiple of the granularity of the first downlink data channel resource allocation, and an integer multiple of the number of PRBs occupied by the second downlink control channel resource unit.
  • the x satisfies one of the following conditions: the first downlink data channel resource allocation granularity and the second downlink control channel resource
  • the number of PRBs occupied by the unit is M or M/2 or An integer multiple of the common multiple; or, the M or M/2 of the first downlink data channel resource allocation granularity or
  • the M is the number of PRBs occupied by the second downlink control channel resource unit.
  • the resource allocation granularity of the second downlink data channel is one of the following: RBG; the number of PRBs occupied by the second downlink control channel resource unit is M or M/2 or PRB; one PRB; x/4 PRB; x/8 PRB.
  • the first downlink data channel resource allocation granularity is a PRB or an RBG, where the x is the first downlink data channel.
  • C times the resource allocation granularity, where C is an integer greater than or equal to zero.
  • the resource allocation granularity of the second downlink data channel meets one of the following conditions: RBG; the number of PRBs occupied by the second downlink control channel resource unit, M or M/2 or PRB; one PRB; x/4 PRBs; x/8 PRBs; 1 of the Y resources, the resources of the second downlink data channel are divided into Y shares, wherein Y-1 resources are the same size , Y is a positive integer.
  • the size of the Y resources is one of the following:
  • Y-1 resource size is The Yth resource size is
  • Y-1 resource size is The Yth resource size is Where P is the number of PRBs included in the RBG;
  • Y-1 resource size is The Yth resource size is Where Q is M or M/2 or M is the number of PRBs occupied by the sCCE.
  • the resource allocation granularity of the second downlink data channel is x/4 or x/8 or a maximum of Y resources is allocated, the following one is included:
  • Using 3 bits in the second downlink control channel indicates the following information in up to 4 resources: ⁇ all resources, the first 1/2 resources, the last 1/2 resources, the first 1/4 resources, the next 1/4 Resources, the next quarter of resources, and the last quarter of resources ⁇ ;
  • Using 4 bits in the second downlink control channel indicates the following information in up to 8 resources: ⁇ all resources, resources of the first 1/2, resources of the last 1/2, resources of the first 1/4, and 1/4 of the next Resources, the next 1/4 of the resources, the last 1/4 of the resources, the first 1/8 of the resources, the second 1/8 of the resources, the third 1/8 of the resources, the fourth 1/8 Resources, the fifth 1/8 resource, the sixth 1/8 resource, the seventh 1/8 resource, and the eighth 1/8 resource ⁇ .
  • the resource allocation granularity of the second downlink data channel is x/4 PRBs or x/8 PRBs, the following one is included:
  • Using 3 bits in the second downlink control channel indicates the following information in up to 4 resources: ⁇ all resources, the first 1/2 resources, the last 1/2 resources, the first 1/4 resources, the next 1/4 Resources, the next quarter of resources, and the last quarter of resources ⁇ ;
  • Using 4 bits in the second downlink control channel indicates the following information in up to 8 resources: ⁇ all resources, resources of the first 1/2, resources of the last 1/2, resources of the first 1/4, and 1/4 of the next Resources, the next 1/4 of the resources, the last 1/4 of the resources, the first 1/8 of the resources, the second 1/8 of the resources, the third 1/8 of the resources, the fourth 1/8 Resources, the fifth 1/8 resource, the sixth 1/8 resource, the seventh 1/8 resource, and the eighth 1/8 resource ⁇ .
  • the downlink control information that is carried includes: scheduling an uplink grant of the uplink data channel; or scheduling an uplink grant of the uplink data channel.
  • the downlink grant of the second downlink data channel is not limited to:
  • the scheduled second downlink data channel is the first two symbols in the subframe or the first TTI after the first three symbols.
  • the second downlink data channel is the first two symbols in the subframe or the first TTI after the first three symbols.
  • FIG. 2 is a second flowchart of a method for determining a downlink resource granularity according to an embodiment of the present disclosure. As shown in FIG. 2, the method includes the following steps:
  • step S202 the terminal receives the allocated x physical resource block PRB sets, where part or all of the resources of the set of x PRBs are used to send the second downlink control channel and the second downlink data channel, where the x is a positive integer; wherein the x satisfies at least one of the following conditions: an integer multiple of a granularity of the first downlink data channel resource allocation; and a number of PRBs M or M/2 occupied by the second downlink control channel resource unit An integer multiple of the granularity of the second downlink data channel resource allocation;
  • Step S204 The terminal receives configuration information for configuring the set, which is sent by using the high layer signaling or the physical layer signaling carried by the first downlink control channel, where the frequency domain of the first downlink control channel is not limited.
  • the frequency domain range in which the second downlink control channel and the second downlink data channel are located is limited by the frequency domain range in which the x PRBs are located.
  • the x is the number of PRBs or M/2 occupied by the second downlink control channel resource unit or Integer multiple, including: the x is the number of occupied PRBs of the second downlink control channel resource unit, M or M/2 or C times, where C is an integer greater than or equal to zero.
  • the resource allocation granularity of the second downlink data channel is one of the following: the number of PRBs occupied by the second downlink control channel resource unit, M or M/2 or PRB; one PRB; x/4 PRB; x/8 PRB.
  • the x satisfies the following condition: an integer multiple of the granularity of the first downlink data channel resource allocation, and an integer multiple of the number of PRBs occupied by the second downlink control channel resource unit.
  • the x satisfies one of the following conditions: the first downlink data channel resource allocation granularity and the second downlink control channel resource
  • the number of PRBs occupied by the unit is M or M/2 or An integer multiple of the common multiple; or, the M or M/2 of the first downlink data channel resource allocation granularity or
  • the M is the number of PRBs occupied by the second downlink control channel resource unit.
  • the resource allocation granularity of the second downlink data channel is one of the following: RBG; the number of PRBs occupied by the second downlink control channel resource unit is M or M/2 or PRB; one PRB; x/4 PRB; x/8 PRB.
  • the first downlink data channel resource allocation granularity is a PRB or an RBG, where the x is the first downlink data channel.
  • C times the resource allocation granularity, where C is an integer greater than or equal to zero.
  • the resource allocation granularity of the second downlink data channel meets one of the following conditions: RBG; the number of PRBs occupied by the second downlink control channel resource unit, M or M/2 or PRB; one PRB; x/4 PRBs; x/8 PRBs; 1 of the Y resources, the resources of the second downlink data channel are divided into Y shares, wherein Y-1 resources are the same size , Y is a positive integer.
  • the size of the Y resources is one of the following:
  • Y-1 resource size is The Yth resource size is
  • Y-1 resource size is The Yth resource size is Where P is the number of PRBs included in the RBG;
  • Y-1 resource size is The Yth resource size is Where Q is M or M/2 or M is the number of PRBs occupied by the sCCE.
  • the resource allocation granularity of the second downlink data channel is x/4 or x/8 or a maximum of Y resources is allocated, the following one is included:
  • Using 3 bits in the second downlink control channel indicates the following information in up to 4 resources: ⁇ all resources, the first 1/2 resources, the last 1/2 resources, the first 1/4 resources, the next 1/4 Resources, the next quarter of resources, and the last quarter of resources ⁇ ;
  • Using 4 bits in the second downlink control channel indicates the following information in up to 8 resources: ⁇ all resources, resources of the first 1/2, resources of the last 1/2, resources of the first 1/4, and 1/4 of the next Resources, the next 1/4 of the resources, the last 1/4 of the resources, the first 1/8 of the resources, the second 1/8 of the resources, the third 1/8 of the resources, the fourth 1/8 Resources, the fifth 1/8 resource, the sixth 1/8 resource, the seventh 1/8 resource, and the eighth 1/8 resource ⁇ .
  • the resource allocation granularity of the second downlink data channel is x/4 PRBs or x/8 PRBs, the following one is included:
  • Using 3 bits in the second downlink control channel indicates the following information in up to 4 resources: ⁇ all resources, the first 1/2 resources, the last 1/2 resources, the first 1/4 resources, the next 1/4 Resources, the next quarter of resources, and the last quarter of resources ⁇ ;
  • Using 4 bits in the second downlink control channel indicates the following information in up to 8 resources: ⁇ all resources, resources of the first 1/2, resources of the last 1/2, resources of the first 1/4, and 1/4 of the next Resources, the next 1/4 of the resources, the last 1/4 of the resources, the first 1/8 of the resources, the second 1/8 of the resources, the third 1/8 of the resources, the fourth 1/8 Resources, the fifth 1/8 resource, the sixth 1/8 resource, the seventh 1/8 resource, and the eighth 1/8 resource ⁇ .
  • the downlink control information that is carried includes:
  • the uplink grant of the uplink data channel and the downlink grant of the second downlink data channel are scheduled.
  • the terminal when receiving the downlink control information, the terminal includes:
  • the terminal when receiving the downlink control information, includes: the first downlink control channel Receiving an uplink grant for scheduling an uplink data channel, and not expecting to receive a downlink grant of a second downlink data channel in a first TTI after the first two symbols in the scheduling subframe or the first three symbols, and in the subframe
  • the downlink grant of the second downlink data channel in the TTI is received in the first TTI after the two symbols or the first three symbols.
  • the terminal when receiving the downlink control information, receives an uplink grant for scheduling an uplink data channel, a first two symbols in a subframe, or a first TTI after the first three symbols in the first downlink control channel. At least one of downlink grants of the second downlink data channel, and undesired reception of the second downlink data channel in the TTI in the first TTI after the first two symbols or the first three symbols in the subframe Downstream authorization.
  • a method for determining a downlink resource granularity is provided, so that the terminal can receive downlink information when the delay is reduced in a short TTI and coexist reasonably with the LTE legacy service transmission.
  • the base station sequentially sends a plurality of second physical downlink control channels, sPDCCH, in the candidate set, where the downlink control information carried by the sPDCCH includes resource allocation information of the second physical downlink data channel.
  • FIG. 3 is a first schematic diagram of the first embodiment of the present disclosure, where x is an integer multiple of the frequency domain size of the second downlink control channel resource unit.
  • the symbol of the sPDCCH is not used in the sTTI of the two symbols.
  • the part is used by the sPDSCH, that is, the resource index in the unused portion of the sPDCCH is larger than the sPDCCH detected by the terminal and is located in the frequency domain of the sPDSCH.
  • the sTTI band is allocated with sCCE as the granularity.
  • the number of sCCEs included in the sTTI band may be one of the sets ⁇ 4, 8, 12, 16, 20, 24, 28, 32, 36 ⁇ .
  • the sPDSCH is redistributed through the resources in the DCI carried in the sPDCCH in the sTTI band.
  • Information indication For example, the sPDSCH uses the resource in the sTTI band at the granularity of x/4, and x is the DL sTTI size.
  • the PDCCH region now blindly detects the DCI including the DL sTTI band, and the DL sTTI band region location and the region size are 16 sCCEs.
  • the sPDCCH is blindly detected in the first symbol in the DL sTTI band, and the candidate set position is sequentially detected, and the DL scheduling (grant) is detected in the third candidate set, wherein the resource redistribution information 3 bit indicates that the 010 is in the DL sTTI band.
  • the sPDSCH is received by the sPDCCH in the OFDM channel. Therefore, the sPDSCH of the received sPDCCH is in front of the sPDSCH frequency domain. Therefore, the sPDSCH can use the resources in the OFDM symbol of the sPDCCH corresponding to the frequency domain region.
  • Table 1 is a resource allocation table according to Embodiment 1 of the present disclosure, as shown in Table 1:
  • the low-latency service and the LTE traditional service can effectively use the downlink resources in the system bandwidth and avoid resource waste. Or conflict, and reduce the internal resource allocation overhead of the DL sTTI band, so that the low-latency service and the LTE traditional service can coexist reasonably.
  • the base station sequentially sends a plurality of second physical downlink control channels, sPDCCH, in the candidate set, where the downlink control information carried by the sPDCCH includes resource allocation information of the second physical downlink data channel.
  • the unused part of the symbol of the sPDCCH is used by the sPDSCH, that is, the resource index in the unused portion of the sPDCCH is larger than the sPDCCH detected by the terminal and is located in the frequency domain of the sPDSCH.
  • the sTTI band is allocated at the granularity of ERBG.
  • Table 2 is a correspondence table between RBG and system bandwidth according to Embodiment 2 of the present disclosure, as shown in Table 2:
  • FIG. 4A and FIG. 4B are schematic diagrams showing that x satisfies an integer multiple of a minimum common divisor of a first downlink data channel resource allocation granularity and a frequency domain size of a second downlink control channel resource element, according to Embodiment 2 of the present disclosure
  • the resources are used in the sPDCCH and the sPDSCH with the sCCE as the granularity, and the number of ERBGs included in the sTTI band may be in the set ⁇ 1, 2, 3, 4, 5, 6, 7, 8, 9 ⁇ .
  • PRB set ⁇ 12, 24, 36, 48, 60, 72, 84, 96, 108 ⁇ .
  • the sPDSCH is indicated in the sTTI band by the resource reallocation information in the DCI carried in the sPDCCH.
  • the sPDSCH uses the resource in the sTTI band at the granularity of x/4, and x is the DL sTTI size.
  • the PDCCH region now blindly detects the DCI including the DL sTTI band, and the DL sTTI band region location and the region size are 4 ERBGs.
  • the sPDCCH is blindly detected in the first symbol in the DL sTTI band, and the candidate set position is sequentially detected, and the DL grant is detected in the third candidate set, wherein the resource redistribution information 3 bit indication 010 indicates that the DL sTTI band is 1/1 later.
  • the frequency domain region of 4 receives the sPDSCH.
  • Table 3 is a resource allocation table according to Embodiment 2 of the present disclosure, as shown in Table 3:
  • the low-latency service and the LTE legacy service can effectively use the downlink resources in the system bandwidth and avoid resource waste or Collision, while reducing the internal resource allocation overhead of the DL sTTI band, so that low-latency services and LTE traditional services can coexist reasonably.
  • the base station sends the downlink control information including the DL sTTI band resource allocation in the PDCCH of the first physical downlink control channel, and the DL sTTI band uses the type 0/1/2 resource allocation method in the LTE system or other methods, but the resource granularity used is Allocating an integer multiple of the granularity of the first downlink data channel resource, where the first downlink data channel resource allocation granularity is PRB or RBG.
  • the base station sequentially sends a plurality of second physical downlink control channels, sPDCCH, in the candidate set, where the downlink control information carried by the sPDCCH includes resource allocation information of the second physical downlink data channel.
  • the unused part of the symbol of the sPDCCH is used by the sPDSCH, that is, the resource index in the unused portion of the sPDCCH is larger than the sPDCCH detected by the terminal and is located in the frequency domain of the sPDSCH.
  • the sTTI band is allocated at the granularity of RBG.
  • Table 4 is a correspondence table between RBG and system bandwidth according to Embodiment 3 of the present disclosure, as shown in Table 4:
  • FIG. 5A and FIG. 5B are schematic diagrams showing that x satisfies an integer multiple of the first downlink data channel resource allocation granularity according to Embodiment 3 of the present disclosure.
  • the resource is used in the sPDCCH with the sCCE as the granularity, and the sPDSCH is used as the sPDCCH.
  • the number of RBGs included in the sTTI band at this time is a natural number, and no more than 27.
  • the sPDSCH is redistributed through the resources in the DCI carried in the sPDCCH in the sTTI band.
  • Information indication For example, the sPDSCH uses the resource in the sTTI band at the granularity of x/4, and x is the DL sTTI size.
  • the PDCCH region now blindly detects the DCI including the DL sTTI band, and the DL sTTI band region location and the region size are 8 RBGs.
  • the sPDCCH is blindly detected in the first symbol in the DL sTTI band, and the candidate set position is sequentially detected, and the DL grant is detected in the third candidate set, wherein the resource redistribution information 3 bit indication 100 indicates the first 1/2 in the DL sTTI band.
  • the frequency domain region receives the sPDSCH.
  • Table 5 is a resource allocation table according to Embodiment 3 of the present disclosure, as shown in Table 5:
  • the resource is used in the sPDCCH with the sCCE as the granularity.
  • the sCCE is allocated to the non-last sPDSCH resource in the sTTI band, and the last sPDSCH resource in the sTTI band is allocated in the PRB/RBG granularity.
  • the sPDSCH is indicated in the sTTI band by the resource reallocation information in the DCI carried in the sPDCCH.
  • the resource re-allocation information 3 bits indicates that the sPDSCH occupies all the resources of the sTTI band, the first 1/2 resource, the last 1/2 resource, and the first one. /4 resources, the next 1/4 resources, the next 1/4 resources, and the last 1/4 resources ⁇ .
  • the first Y-1 3 resources are or
  • the last resource size is or For example, when the DL sTTI band contains 8 RBGs, there are a total of 32 PRBs. At this time, the first 3 copies of the 4 resources are 6 PRB, and the 4th resource is 14 PRB.
  • the operation may be: the number of PRBs allocated for the sTTI band is assumed to be x, and the included RBG is , where P is RBG size.
  • the PDCCH region now blindly detects the DCI including the DL sTTI band, and the DL sTTI band region location and the region size are 8 RBGs.
  • the sPDCCH is blindly detected in the first symbol in the DL sTTI band, and the candidate set position is sequentially detected, and the DL grant is detected in the second candidate set, wherein the resource redistribution information 3 bit indication 100 indicates the first 1/2 in the DL sTTI band.
  • the frequency domain region receives the sPDSCH, at this time, since the last sCCE of the received sPDCCH is at the sPDSCH frequency At the end of the domain location, therefore, the sPDSCH does not use the resources in the OFDM symbol in which the sPDCCH corresponding to the frequency domain region is located.
  • Table 6 is a second resource allocation table according to Embodiment 3 of the present disclosure, as shown in Table 6:
  • the low-latency service and the LTE legacy service can efficiently use the downlink resources in the system bandwidth and avoid resource waste. Or conflict, and reduce the internal resource allocation overhead of the DL sTTI band, so that the low-latency service and the LTE traditional service can coexist reasonably.
  • the sPDSCH in the second sTTI is scheduled by the PDCCH, that is, there is no need to indicate cross-sTTI scheduling, that is, the sPDSCH of the second sTTI is scheduled to be scheduled when the PDCCH is 2 symbols.
  • the second sTTI may have an sPDCCH that schedules the sPDSCH in the second sTTI, that is, the terminal also needs to detect.
  • the PDCCH may carry an uplink grant for scheduling the uplink data channel sPUSCH.
  • the sPDSCH in the second sTTI is scheduled by the sPDCCH in the second sTTI, that is, the sPDSCH of the second sTTI that is not scheduled when the PDCCH is 2 symbols.
  • the PDCCH may carry an uplink grant for scheduling the uplink data channel sPUSCH.
  • the sPDSCH in the second sTTI is scheduled by the PDCCH, that is, there is no need to indicate cross-sTTI scheduling, that is, the sPDSCH of the second sTTI is scheduled to be scheduled when the PDCCH is 2 symbols.
  • the sPDCCH of the sPDSCH in the second sTTI is not scheduled in the second sTTI, that is, the terminal does not need to detect the sPDCCH in which the sPDSCH is scheduled in the second sTTI.
  • the PDCCH may carry an uplink grant for scheduling the uplink data channel sPUSCH.
  • the PDCCH when the PDCCH is 2 symbols, the PDCCH can also carry the fast DCI or single-level DCI scheduling adjacent next sTTI and does not need to increase the additional signaling indication overhead across the TTI scheduling. At this time, more resources can be used for sPDSCH transmission when the sPDCCH does not exist.
  • FIG. 7 is a schematic diagram of Embodiment 5 of the present disclosure.
  • the sTTI is a combination of 2 OFDM symbols and 3 OFDM symbols
  • the sTTI is divided into sTTI #0-5 in 1 subframe at this time. It contains 3, 2, 2, 3, 2, 2 OFDM symbols in sequence.
  • the sPDSCH in the second sTTI is scheduled by the PDCCH, that is, the cross-sTTI scheduling is not required to be scheduled, that is, the sPDSCH of the second sTTI is scheduled by default when the PDCCH is 3 symbols.
  • the second sTTI may have an sPDCCH that schedules the sPDSCH in the second sTTI, that is, the terminal also needs to detect.
  • the PDCCH may carry an uplink grant for scheduling the uplink data channel sPUSCH.
  • the sPDSCH in the second sTTI is scheduled by the sPDCCH in the second sTTI, that is, the sPDSCH of the second sTTI that is not scheduled when the PDCCH is 3 symbols.
  • the PDCCH may carry an uplink grant for scheduling the uplink data channel sPUSCH.
  • the sPDSCH in the second sTTI is scheduled by the PDCCH, that is, the cross-sTTI scheduling is not required to be scheduled, that is, the sPDSCH of the second sTTI is scheduled to be scheduled when the PDCCH is 3 symbols.
  • the sPDCCH of the sPDSCH in the second sTTI is not scheduled in the second sTTI, that is, the terminal does not need to detect the sPDCCH in which the sPDSCH is scheduled in the second sTTI.
  • the PDCCH may carry an uplink grant for scheduling the uplink data channel sPUSCH.
  • the PDCCH when the PDCCH is 3 symbols, the PDCCH can also carry the fast DCI or the single-level DCI to schedule the next sTTI adjacent to the PDCCH and does not need to increase the additional signaling overhead across the TTI scheduling. At this time, more resources can be used for sPDSCH transmission when the sPDCCH does not exist.
  • the low-latency service and the LTE legacy service can efficiently use the downlink resource in the system bandwidth.
  • the resources are wasted or conflicted, and the internal resource allocation overhead of the DL sTTI band is reduced, so that the low-latency service and the LTE traditional service can coexist reasonably.
  • the method according to the foregoing embodiment can be implemented by means of software plus a necessary general hardware platform, and of course, can also be implemented by hardware.
  • the technical solution of the present disclosure which is essential or contributes to the related art, may be embodied in the form of a software product stored in a storage medium (such as ROM/RAM, disk, CD-ROM).
  • the instructions include a number of instructions for causing a terminal device (which may be a cell phone, a computer, a server, or a network device, etc.) to perform the methods described in various embodiments of the present disclosure.
  • a device for determining a downlink resource granularity is further provided, and the device is configured to implement the foregoing embodiments and implementation manners, and details are not described herein.
  • the term "module” may implement a combination of software and/or hardware of a predetermined function.
  • the apparatus described in the following embodiments may be implemented in software, but hardware, or a combination of software and hardware, is also possible and conceivable.
  • FIG. 8 is a structural block diagram of a determining apparatus for applying a downlink resource granularity to a base station according to an embodiment of the present disclosure. As shown in FIG. 8, the apparatus further includes:
  • the configuration module 82 is configured to configure a set of the x physical resource blocks PRB, where the part or all of the resources of the set of the x PRBs are used to send the second downlink control channel and the second downlink data channel, where
  • the x is a positive integer; wherein the x satisfies at least one of the following conditions: an integer multiple of the granularity of the first downlink data channel resource allocation; and the number of PRBs occupied by the second downlink control channel resource unit, M or M/2 or An integer multiple of the granularity of the second downlink data channel resource allocation;
  • the sending module 84 is connected to the configuration module 82 and configured to pass the high layer signaling or the first downlink control.
  • the physical layer signaling carried by the channel is configured to configure the configuration information of the set.
  • the frequency domain range of the first downlink control channel is not limited to the frequency domain range where the x PRBs are located, and the second downlink control channel is located. And the frequency domain range of the second downlink data channel is limited by the frequency domain range in which the x PRBs are located.
  • the x is the number of PRBs or M/2 occupied by the second downlink control channel resource unit or Integer multiple, including: the x is the number of occupied PRBs of the second downlink control channel resource unit, M or M/2 or C times, where C is an integer greater than or equal to zero.
  • the resource allocation granularity of the second downlink data channel is one of the following: the number of PRBs occupied by the second downlink control channel resource unit, M or M/2 or PRB; one PRB; x/4 PRB; x/8 PRB.
  • the x satisfies the following condition: an integer multiple of the granularity of the first downlink data channel resource allocation, and an integer multiple of the number of PRBs occupied by the second downlink control channel resource unit.
  • the x satisfies one of the following conditions: the first downlink data channel resource allocation granularity and the second downlink control channel resource
  • the number of PRBs occupied by the unit is M or M/2 or An integer multiple of the common multiple; or, the M or M/2 of the first downlink data channel resource allocation granularity or
  • the M is the number of PRBs occupied by the second downlink control channel resource unit.
  • the resource allocation granularity of the second downlink data channel is one of the following: RBG; the number of PRBs occupied by the second downlink control channel resource unit is M or M/2 or PRB; one PRB; x/4 PRB; x/8 PRB.
  • the first downlink data channel resource allocation granularity is a PRB or an RBG, where the x is the first downlink data channel.
  • C times the resource allocation granularity, where C is an integer greater than or equal to zero.
  • the resource allocation granularity of the second downlink data channel meets one of the following conditions: RBG; the number of PRBs occupied by the second downlink control channel resource unit, M or M/2 or PRB; one PRB; x/4 PRBs; x/8 PRBs; 1 of the Y resources, the resources of the second downlink data channel are divided into Y shares, wherein Y-1 resources are the same size , Y is a positive integer.
  • the size of the Y resources is one of the following:
  • Y-1 resource size is The Yth resource size is
  • Y-1 resource size is The Yth resource size is Where P is the number of PRBs included in the RBG;
  • Y-1 resource size is The Yth resource size is Where Q is M or M/2 or M is the number of PRBs occupied by the sCCE.
  • the resource allocation granularity of the second downlink data channel is x/4 or x/8 or a maximum of Y resources is allocated, the following one is included:
  • Using 3 bits in the second downlink control channel indicates the following information in up to 4 resources: ⁇ all resources, the first 1/2 resources, the last 1/2 resources, the first 1/4 resources, the next 1/4 Resources, the next quarter of resources, and the last quarter of resources ⁇ ;
  • Using 4 bits in the second downlink control channel indicates the following information in up to 8 resources: ⁇ all resources, resources of the first 1/2, resources of the last 1/2, resources of the first 1/4, and 1/4 of the next Resources, the next 1/4 of the resources, the last 1/4 of the resources, the first 1/8 of the resources, the second 1/8 of the resources, the third 1/8 of the resources, the fourth 1/8 Resources, the fifth 1/8 resource, the sixth 1/8 resource, the seventh 1/8 resource, and the eighth 1/8 resource ⁇ .
  • the resource allocation granularity of the second downlink data channel is x/4 PRBs or x/8 PRBs, the following one is included:
  • Using 3 bits in the second downlink control channel indicates the following information in up to 4 resources: ⁇ all resources, the first 1/2 resources, the last 1/2 resources, the first 1/4 resources, the next 1/4 Resources, the next quarter of resources, and the last quarter of resources ⁇ ;
  • Using 4 bits in the second downlink control channel indicates the following information in up to 8 resources: ⁇ all resources, resources of the first 1/2, resources of the last 1/2, resources of the first 1/4, and 1/4 of the next Resources, the next 1/4 of the resources, the last 1/4 of the resources, the first 1/8 of the resources, the second 1/8 of the resources, the third 1/8 of the resources, the fourth 1/8 Resources, the fifth 1/8 resource, the sixth 1/8 resource, the seventh 1/8 resource, and the eighth 1/8 resource ⁇ .
  • the scheduled second downlink data channel is after the first two symbols in the subframe.
  • the second downlink data channel in the TTI.
  • a device for determining a downlink resource granularity is further provided.
  • the device comprises:
  • a receiving module configured to receive configuration information for configuring a set sent by physical layer signaling carried by the high layer signaling or the first downlink control channel, where the set is a set of x physical resource blocks PRB allocated by the base station, where And the part of the set of the x PRBs is used to send the second downlink control channel and the second downlink data channel, where the x is a positive integer; wherein the x satisfies at least one of the following conditions: An integer multiple of a downlink data channel resource allocation granularity; a number of PRBs occupied by the second downlink control channel resource unit, M or M/2 or An integer multiple of the granularity of the second downlink data channel resource; wherein the frequency domain range of the first downlink control channel is not limited to the frequency domain range where the x PRBs are located, and the second downlink control channel and The frequency domain range of the second downlink data channel is limited by the frequency domain range in which the x PRBs are located.
  • the x is the number of PRBs or M/2 occupied by the second downlink control channel resource unit or Integer multiple, including: the x is the number of occupied PRBs of the second downlink control channel resource unit, M or M/2 or C times, where C is an integer greater than or equal to zero.
  • the resource allocation granularity of the second downlink data channel is one of the following:
  • the number of PRBs occupied by the second downlink control channel resource unit is M or M/2 or PRB; one PRB; x/4 PRB; x/8 PRB.
  • the x satisfies the following condition: an integer multiple of the granularity of the first downlink data channel resource allocation, and an integer multiple of the number of PRBs occupied by the second downlink control channel resource unit.
  • the x satisfies one of the following conditions: the first downlink data channel resource allocation granularity and the second downlink control channel resource
  • the number of PRBs occupied by the unit is M or M/2 or An integer multiple of the common multiple; or, the M or M/2 of the first downlink data channel resource allocation granularity or
  • the M is the number of PRBs occupied by the second downlink control channel resource unit.
  • the resource allocation granularity of the second downlink data channel is one of the following: RBG; the number of PRBs occupied by the second downlink control channel resource unit is M or M/2 or PRB; one PRB; x/4 PRB; x/8 PRB.
  • the first downlink data channel resource allocation granularity is a PRB or an RBG, where the x is the first downlink data channel.
  • C times the resource allocation granularity, where C is an integer greater than or equal to zero.
  • the resource allocation granularity of the second downlink data channel meets one of the following conditions: RBG; the number of PRBs occupied by the second downlink control channel resource unit, M or M/2 or PRB; one PRB; x/4 PRBs; x/8 PRBs; 1 of the Y resources, the resources of the second downlink data channel are divided into Y shares, wherein Y-1 resources are the same size , Y is a positive integer.
  • the size of the Y resources is one of the following:
  • Y-1 resource size is The Yth resource size is
  • Y-1 resource size is The Yth resource size is Where P is the number of PRBs included in the RBG;
  • Y-1 resource size is The Yth resource size is Where Q is M or M/2 or M is the number of PRBs occupied by the short channel control unit sCCE.
  • the resource allocation granularity of the second downlink data channel is x/4 or x/8 or a maximum of Y resources is allocated, the following one is included:
  • Using 3 bits in the second downlink control channel indicates the following information in up to 4 resources: ⁇ all resources, the first 1/2 resources, the last 1/2 resources, the first 1/4 resources, the next 1/4 Resources, the next quarter of resources, and the last quarter of resources ⁇ ;
  • Using 4 bits in the second downlink control channel indicates the following information in up to 8 resources: ⁇ all resources, resources of the first 1/2, resources of the last 1/2, resources of the first 1/4, and 1/4 of the next Resources, the next 1/4 of the resources, the last 1/4 of the resources, the first 1/8 of the resources, the second 1/8 of the resources, the third 1/8 of the resources, the fourth 1/8 Resources, the fifth 1/8 resource, the sixth 1/8 resource, the seventh 1/8 resource, and the eighth 1/8 resource ⁇ .
  • the resource allocation granularity of the second downlink data channel is x/4 PRBs or x/8 PRBs, the following one is included:
  • Using 3 bits in the second downlink control channel indicates the following information in up to 4 resources: ⁇ all resources, the first 1/2 resources, the last 1/2 resources, the first 1/4 resources, the next 1/4 Resources, the next quarter of resources, and the last quarter of resources ⁇ ;
  • Using 4 bits in the second downlink control channel indicates the following information in up to 8 resources: ⁇ all resources, resources of the first 1/2, resources of the last 1/2, resources of the first 1/4, and 1/4 of the next Resources, 1/4 after the next Resources, the last quarter of resources, the first 1/8 resource, the second 1/8 resource, the third 1/8 resource, the fourth 1/8 resource, the fifth 1 /8 resources, the sixth 1/8 resource, the seventh 1/8 resource, and the eighth 1/8 resource ⁇ .
  • the scheduled second downlink data channel is after the first two symbols in the subframe.
  • the second downlink data channel in the TTI.
  • the above modules may be implemented by software or hardware.
  • the foregoing may be implemented by, but not limited to, the above modules are all located in the same processor; or, the above modules are respectively located in different combinations. In the processor.
  • a system for determining a downlink resource granularity includes: a base station, a terminal;
  • the base station configures, for the terminal, a set of x physical resource blocks PRB, where part or all of the resources of the set of x PRBs are used to send a second downlink control channel and a second downlink data channel, where the x Is a positive integer;
  • the base station sends configuration information for configuring the set to the terminal by using high layer signaling or physical layer signaling carried by the first downlink control channel;
  • the x satisfies at least one of the following conditions: an integer multiple of the granularity of the first downlink data channel resource allocation; and the number of PRBs occupied by the second downlink control channel resource unit, M or M/2 or An integer multiple of the granularity of the second downlink data channel resource allocation;
  • the frequency domain range of the first downlink control channel is not limited to the frequency domain range where the x PRBs are located, and the frequency domain range of the second downlink control channel and the second downlink data channel is limited by x PRBs.
  • the frequency domain range is not limited to the frequency domain range where the x PRBs are located, and the frequency domain range of the second downlink control channel and the second downlink data channel is limited by x PRBs. The frequency domain range.
  • the x is the number of PRBs or M/2 occupied by the second downlink control channel resource unit or Integer multiple, including: the x is the number of occupied PRBs of the second downlink control channel resource unit, M or M/2 or C times, where C is an integer greater than or equal to zero.
  • the resource allocation granularity of the second downlink data channel is one of the following: the number of PRBs occupied by the second downlink control channel resource unit, M or M/2 or PRB; one PRB; x/4 PRB; x/8 PRB.
  • the x satisfies the following condition: an integer multiple of the granularity of the first downlink data channel resource allocation, and an integer multiple of the number of PRBs occupied by the second downlink control channel resource unit.
  • the x satisfies one of the following conditions: the first downlink data channel resource allocation granularity and the second downlink control channel resource
  • the number of PRBs occupied by the unit is M or M/2 or An integer multiple of the common multiple; or, the M or M/2 of the first downlink data channel resource allocation granularity or
  • the M is the number of PRBs occupied by the second downlink control channel resource unit.
  • the resource allocation granularity of the second downlink data channel is one of the following: RBG; the number of PRBs occupied by the second downlink control channel resource unit is M or M/2 or PRB; one PRB; x/4 PRB; x/8 PRB.
  • the first downlink data channel resource allocation granularity is a PRB or an RBG, where the x is the first downlink data channel.
  • C times the resource allocation granularity, where C is an integer greater than or equal to zero.
  • the resource allocation granularity of the second downlink data channel meets one of the following conditions: RBG; the number of PRBs occupied by the second downlink control channel resource unit, M or M/2 or PRB; one PRB; x/4 PRBs; x/8 PRBs; 1 of the Y resources, the resources of the second downlink data channel are divided into Y shares, wherein Y-1 resources are the same size , Y is a positive integer.
  • the size of the Y resources is one of the following:
  • Y-1 resource size is The Yth resource size is
  • Y-1 resource size is The Yth resource size is Where P is the number of PRBs included in the RBG;
  • Y-1 resource size is The Yth resource size is Where Q is M or M/2 or M is the number of PRBs occupied by the sCCE.
  • the resource allocation granularity of the second downlink data channel is x/4 or x/8 or a maximum of Y resources is allocated, the following one is included:
  • Using 3 bits in the second downlink control channel indicates the following information in up to 4 resources: ⁇ all resources, the first 1/2 resources, the last 1/2 resources, the first 1/4 resources, the next 1/4 Resources, after 1/4 of the resources, the last 1/4 of the resources ⁇ ;
  • Using 4 bits in the second downlink control channel indicates the following information in up to 8 resources: ⁇ all resources, resources of the first 1/2, resources of the last 1/2, resources of the first 1/4, and 1/4 of the next Resources, the next 1/4 of the resources, the last 1/4 of the resources, the first 1/8 of the resources, the second 1/8 of the resources, the third 1/8 of the resources, the fourth 1/8 Resources, the fifth 1/8 resource, the sixth 1/8 resource, the seventh 1/8 resource, and the eighth 1/8 resource ⁇ .
  • the resource allocation granularity of the second downlink data channel is x/4 PRBs or x/8 PRBs, the following one is included:
  • Using 3 bits in the second downlink control channel indicates the following information in up to 4 resources: ⁇ all resources, the first 1/2 resources, the last 1/2 resources, the first 1/4 resources, the next 1/4 Resources, the next quarter of resources, and the last quarter of resources ⁇ ;
  • Using 4 bits in the second downlink control channel indicates the following information in up to 8 resources: ⁇ all resources, resources of the first 1/2, resources of the last 1/2, resources of the first 1/4, and 1/4 of the next Resources, the next 1/4 of the resources, the last 1/4 of the resources, the first 1/8 of the resources, the second 1/8 of the resources, the third 1/8 of the resources, the fourth 1/8 Resources, the fifth 1/8 resource, the sixth 1/8 resource, the seventh 1/8 resource, and the eighth 1/8 resource ⁇ .
  • the scheduled second downlink data channel is after the first two symbols in the subframe.
  • the second downlink data channel in the TTI.
  • Embodiments of the present disclosure also provide a storage medium.
  • the storage medium may be a computer readable storage medium storing computer executable instructions arranged to perform the method of any of the above embodiments.
  • the computer readable storage medium may be a transitory computer readable storage medium or a non-transitory computer readable storage medium.
  • the foregoing storage medium may be configured to store program code for performing the following steps:
  • the base station configuration includes a set of x physical resource blocks PRB, where part or all of the resources including the set of x PRBs are used to send a second downlink control channel and a second downlink data channel, where the x is positive An integer; wherein the x satisfies at least one of the following conditions: an integer multiple of a granularity of the first downlink data channel resource allocation; and a number of PRBs M or M/2 occupied by the second downlink control channel resource unit An integer multiple of the granularity of the second downlink data channel resource allocation;
  • the base station sends, by using the high layer signaling or the physical layer signaling carried by the first downlink control channel, configuration information for configuring the set; where the frequency domain range of the first downlink control channel is not limited to x
  • the frequency domain range in which the PRB is located, the frequency domain range in which the second downlink control channel and the second downlink data channel are located is limited by the frequency domain range in which the x PRBs are located.
  • the storage medium is further arranged to store program code for performing the following steps:
  • the terminal receives the allocated x physical resource block PRB sets, where part or all of the resources including the set of x PRBs are used to send the second downlink control channel and the second downlink data channel, where the x is positive.
  • An integer wherein the x satisfies at least one of the following conditions: an integer multiple of a granularity of the first downlink data channel resource allocation; and a number of PRBs M or M/2 occupied by the second downlink control channel resource unit An integer multiple of the granularity of the second downlink data channel resource allocation;
  • the terminal receives the configuration information for configuring the set, which is sent by the physical layer signaling carried by the high-layer signaling or the first downlink control channel, where the frequency domain range of the first downlink control channel is not limited.
  • the frequency domain of the second downlink control channel and the second downlink data channel are limited by the frequency domain range in which the x PRBs are located.
  • the foregoing storage medium may include, but not limited to, a USB flash drive, a Read-Only Memory (ROM), a Random Access Memory (RAM), a mobile hard disk, and a magnetic memory.
  • ROM Read-Only Memory
  • RAM Random Access Memory
  • a mobile hard disk e.g., a hard disk
  • magnetic memory e.g., a hard disk
  • the processor performs the method steps in the foregoing embodiments according to the stored program code in the storage medium.
  • the embodiment of the present disclosure further provides a schematic structural diagram of an electronic device.
  • the electronic device includes:
  • At least one processor 90, one processor 90 in FIG. 9; and a memory (memory) 91 may also include a communication interface (Communications Interface) 92 and a bus 93.
  • the processor 90, the communication interface 92, and the memory 91 can complete communication with each other through the bus 93.
  • Communication interface 92 can be used for information transfer.
  • Processor 90 can invoke logic instructions in memory 91 to perform the methods of the above-described embodiments.
  • logic instructions in the memory 91 described above may be implemented in the form of a software functional unit and sold or used as a stand-alone product, and may be stored in a computer readable storage medium.
  • the memory 91 is a computer readable storage medium and can be used to store a software program, a computer executable program, a program instruction/module corresponding to the method in the embodiment of the present disclosure.
  • the processor 90 executes the function application and the data processing by executing the software program, the instruction and the module stored in the memory 91, that is, the method for determining the downlink resource granularity in the foregoing method embodiment.
  • the memory 91 may include a storage program area and a storage data area, wherein the storage program area may store an operating system, an application required for at least one function; the storage data area may store data created according to usage of the terminal device, and the like. Further, the memory 91 may include a high speed random access memory, and may also include a nonvolatile memory.
  • the technical solution of the embodiments of the present disclosure may be embodied in the form of a software product stored in a storage medium, including one or more instructions for causing a computer device (which may be a personal computer, a server, or a network) The device or the like) performs all or part of the steps of the method described in the embodiments of the present disclosure.
  • the foregoing storage medium may be a non-transitory storage medium, including: a USB flash drive, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk or an optical disk, and the like.
  • modules or steps of the present disclosure described above can be implemented by a general-purpose computing device that can be centralized on a single computing device or distributed across a network of multiple computing devices.
  • they may be implemented by program code executable by a computing device such that they may be stored in a storage device for execution by the computing device, and in some
  • the steps shown or described may be performed in an order different from that herein, or they may be separately fabricated into individual integrated circuit modules, or a plurality of the modules or steps may be implemented as a single integrated circuit module.
  • the disclosure is not limited to any specific combination of hardware and software.
  • the method, device, and system for determining the downlink resource granularity solve the problem that the low-latency transmission and the LTE service occupy bandwidth conflict in the related art, and enable the low-latency service and the LTE traditional service to efficiently use the system bandwidth in the downlink.
  • the resources are avoided and the resources are wasted or conflicted.
  • the internal resource allocation overhead of the DL sTTI band is reduced, so that the low-latency service and the LTE traditional service can coexist reasonably.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种下行资源粒度的确定方法、装置及系统,其中,该方法包括:基站配置包含x个物理资源块PRB的集合,其中,该包含x个PRB的集合中的部分或全部资源用于发送第二下行控制信道和第二下行数据信道,其中,该x为正整数;该基站通过高层信令或第一下行控制信道承载的物理层信令发送用于配置该集合的配置信息。采用上述技术方案,解决了相关技术中低时延传输与LTE业务占用带宽冲突的问题,可以使得低时延业务与LTE传统业务高效地使用系统带宽中下行资源并避免资源浪费或冲突,同时减小DL sTTI band内部资源分配开销,从而实现低时延业务与LTE传统业务合理共存。

Description

下行资源粒度的确定方法、装置及系统 技术领域
本申请涉及通信领域,例如涉及一种下行资源粒度的确定方法、装置及系统。
背景技术
在LTE系统中采用1ms的输时间间隔(Transmission Time Interval,简称为TTI),即1ms子帧。相关LTE系统中考虑上行覆盖增强时引入了TTI绑定,由多个TTI绑定在一起传输一个数据块,即增大了传输时间间隔。目前第三代合作伙伴计划(3rd Generation Partnership Project,简称为3GPP)组织展开了减小传输时间间隔的研究,以使得用户面时间和控制面时延降低。
目前存在两种减小TTI的方法,一种是通过扩大正交频分复用(Orthogonal Frequency Division Multiplexing,简称为OFDM)系统的子载波间隔来缩小单个OFDM符号的时长,该方法在5G的高频通信系统和超密集网络中均有涉及;另一种方法是通过减少单个TTI中OFDM符号的数量来减小TTI长度,该方法的好处是可以和相关LTE系统完全兼容。
目前针对第二种方法,支持时延降低的用户需要在减小的TTI(short TTI,简称为sTTI,)长度中接收短物理下行控制信道(Short Physical Downlink Control Channel,简称为sPDCCH)和短物理下行数据信道(Short Physical Downlink Shared Channel,简称为sPDSCH)。目前可能的工作方式为通过由物理下行控制信道(Physical Downlink Control Channel,简称为PDCCH)承载两级DCI(two-level Downlink Control Information)中的第一级DCI动态通知DL sTTI带(band)资源分配信息,可以在DL sTTI band中接收sPDCCH并通过解调sPDCCH进而在DL sTTI band中接收sPDSCH。目前对于DL sTTI band的分配并未有特别的考虑,但是至少需要考虑与LTE系统中物理下行数据信道(Physical Downlink Shared Channel,简称为PDSCH)合理共存,同时在DL sTTI band内sPDCCH和sPDSCH的资源分配以及两者的共存也需要考虑。因此对于DL sTTI  band资源分配以及DL sTTI band内部的资源分配都需要研究。
针对相关技术中,低时延传输与LTE业务占用带宽冲突的问题,目前还没有有效地解决方案。
发明内容
本公开实施例提供了一种下行资源粒度的确定方法、装置及系统,以至少解决相关技术中低时延传输与LTE业务占用带宽冲突的问题。
根据本公开的另一个实施例,还提供了一种下行资源粒度的确定方法,包括:
基站配置包含x个物理资源块PRB的集合,其中,所述包含x个PRB的集合中的部分或全部资源用于发送第二下行控制信道和第二下行数据信道,其中,所述x为正整数;
所述基站通过高层信令或第一下行控制信道承载的物理层信令发送用于配置所述集合的配置信息;
其中,所述x满足以下条件至少之一:为第一下行数据信道资源分配粒度的整数倍;为第二下行控制信道资源单元占用的PRB数目M或M/2或
Figure PCTCN2017104077-appb-000001
的整数倍;为第二下行数据信道资源分配粒度的整数倍;
其中,所述第一下行控制信道所在频域范围不受限于x个PRB所在的频域范围,所述第二下行控制信道和所述第二下行数据信道所在频域范围受限于x个PRB所在的频域范围。
可选地,所述x为第二下行控制信道资源单元占用的PRB数目M或M/2或
Figure PCTCN2017104077-appb-000002
的整数倍,包括:所述x为第二下行控制信道资源单元的占用的PRB数目M或M/2或
Figure PCTCN2017104077-appb-000003
的C倍,其中,所述C为大于或等于0的整数。
可选地,所述第二下行数据信道的资源分配粒度为以下之一:
所述第二下行控制信道资源单元占用的PRB数目M或M/2或
Figure PCTCN2017104077-appb-000004
个PRB;一个PRB;x/4个PRB;x/8个PRB。
可选地,所述x同时满足以下条件:
为所述第一下行数据信道资源分配粒度的整数倍,所述第二下行控制信道资源单元占用的PRB数目的整数倍。
可选地,在所述第一下行数据信道资源分配粒度为资源块组RBG的情况下,所述x满足以下条件之一:
所述第一下行数据信道资源分配粒度和所述第二下行控制信道资源单元占用的PRB数目M或M/2或
Figure PCTCN2017104077-appb-000005
的公倍数的整数倍;
或者,所述第一下行数据信道资源分配粒度的M或M/2或
Figure PCTCN2017104077-appb-000006
倍,其中,所述M为所述第二下行控制信道资源单元占用的PRB数目。
可选地,所述第二下行数据信道的资源分配粒度为以下之一:RBG;所述第二下行控制信道资源单元占用的PRB数目M或M/2或
Figure PCTCN2017104077-appb-000007
个PRB;一个PRB;x/4个PRB;x/8个PRB。
可选地,在所述x满足为第一下行数据信道资源分配粒度的整数倍的情况下,所述第一下行数据信道资源分配粒度为PRB或RBG,所述x为所述第一下行数据信道资源分配粒度的C倍,其中,所述C为大于或等于0的整数。
可选地,所述第二下行数据信道的资源分配粒度满足以下条件之一:RBG;第二下行控制信道资源单元占用的PRB数目M或M/2或
Figure PCTCN2017104077-appb-000008
个PRB;一个PRB;x/4个PRB;x/8个PRB;Y份资源中的1份,将所述第二下行数据信道的资源最多分为Y份,其中,Y-1份资源大小相同,Y为正整数。
可选地,所述Y份资源的大小为以下之一:
Y-1份资源大小为
Figure PCTCN2017104077-appb-000009
第Y份资源大小为
Figure PCTCN2017104077-appb-000010
Y-1份资源大小为
Figure PCTCN2017104077-appb-000011
第Y份资源大小为
Figure PCTCN2017104077-appb-000012
其中P为RBG包含的PRB数目;
Y-1份资源大小为
Figure PCTCN2017104077-appb-000013
第Y份资源大小为
Figure PCTCN2017104077-appb-000014
其中Q为M或M/2或
Figure PCTCN2017104077-appb-000015
M为sCCE占用的PRB数目。
可选地,所述第二下行数据信道的资源分配粒度为x/4或x/8或最多分配Y份资源时,包括以下之一:
在第二下行控制信道中使用3bits指示最多4份资源中的以下信息:{全部 资源、前1/2份的资源、后1/2的资源、前1/4的资源、次前1/4的资源、次后1/4的资源、最后1/4的资源};
在第二下行控制信道中使用4bits指示最多8份资源中的以下信息:{全部资源、前1/2的资源、后1/2的资源、前1/4的资源、次前1/4的资源、次后1/4的资源、最后1/4的资源、第一份1/8的资源、第二份1/8的资源、第三份1/8的资源、第四份1/8的资源、第五份1/8的资源、第六份1/8的资源、第七份1/8的资源、第八份1/8的资源}。
可选地,所述第二下行数据信道的资源分配粒度为x/4个PRB或x/8个PRB时,包括以下之一:
在第二下行控制信道中使用3bits指示最多4份资源中的以下信息:{全部资源、前1/2份的资源、后1/2的资源、前1/4的资源、次前1/4的资源、次后1/4的资源、最后1/4的资源};
在第二下行控制信道中使用4bits指示最多8份资源中的以下信息:{全部资源、前1/2的资源、后1/2的资源、前1/4的资源、次前1/4的资源、次后1/4的资源、最后1/4的资源、第一份1/8的资源、第二份1/8的资源、第三份1/8的资源、第四份1/8的资源、第五份1/8的资源、第六份1/8的资源、第七份1/8的资源、第八份1/8的资源}。
根据本公开的另一个实施例,还提供了一种下行资源粒度的确定方法,包括:第一下行控制信道在子帧中位于前两个符号或前三个符号时,承载的下行控制信息包括:调度上行数据信道的上行授权;或调度上行数据信道的上行授权,第二下行数据信道的下行授权。
可选地,所述承载的下行控制信息为调度第二下行数据信道的下行授权时,调度的第二下行数据信道为子帧中前两个符号或前三个符号之后的第一个TTI中的第二下行数据信道。
根据本公开的另一个实施例,还提供了一种下行资源粒度的确定方法,包括:
终端接收分配的x个物理资源块PRB集合,其中,所述包含x个PRB的集合中的部分或全部资源用于发送第二下行控制信道和第二下行数据信道,其中, 所述x为正整数;
所述终端接收通过高层信令或第一下行控制信道承载的物理层信令发送的用于配置所述集合的配置信息;
其中,所述x满足以下条件至少之一:为第一下行数据信道资源分配粒度的整数倍;为第二下行控制信道资源单元占用的PRB数目M或M/2或
Figure PCTCN2017104077-appb-000016
的整数倍;为第二下行数据信道资源分配粒度的整数倍;
其中,所述第一下行控制信道所在频域范围不受限于x个PRB所在的频域范围,所述第二下行控制信道和所述第二下行数据信道所在频域范围受限于x个PRB所在的频域范围。
可选地,所述x为第二下行控制信道资源单元占用的PRB数目M或M/2或
Figure PCTCN2017104077-appb-000017
的整数倍,包括:所述x为第二下行控制信道资源单元的占用的PRB数目M或M/2或
Figure PCTCN2017104077-appb-000018
的C倍,其中,所述C为大于或等于0的整数。
可选地,所述第二下行数据信道的资源分配粒度为以下之一:
所述第二下行控制信道资源单元占用的PRB数目M或M/2或
Figure PCTCN2017104077-appb-000019
个PRB;一个PRB;x/4个PRB;x/8个PRB。
可选地,所述x同时满足以下条件:为所述第一下行数据信道资源分配粒度的整数倍,所述第二下行控制信道资源单元占用的PRB数目的整数倍。
可选地,在所述第一下行数据信道资源分配粒度为资源块组RBG的情况下,所述x满足以下条件之一:
所述第一下行数据信道资源分配粒度和所述第二下行控制信道资源单元占用的PRB数目M或M/2或
Figure PCTCN2017104077-appb-000020
的公倍数的整数倍;
或者,所述第一下行数据信道资源分配粒度的M或M/2或
Figure PCTCN2017104077-appb-000021
倍,其中,所述M为所述第二下行控制信道资源单元占用的PRB数目。
可选地,所述第二下行数据信道的资源分配粒度为以下之一:RBG;所述第二下行控制信道资源单元占用的PRB数目M或M/2或
Figure PCTCN2017104077-appb-000022
个PRB;一个PRB;x/4个PRB;x/8个PRB。
可选地,在所述x满足为第一下行数据信道资源分配粒度的整数倍的情况 下,所述第一下行数据信道资源分配粒度为PRB或RBG,所述x为所述第一下行数据信道资源分配粒度的C倍,其中,所述C为大于或等于0的整数。
可选地,所述第二下行数据信道的资源分配粒度满足以下条件之一:RBG;第二下行控制信道资源单元占用的PRB数目M或M/2或
Figure PCTCN2017104077-appb-000023
个PRB;一个PRB;x/4个PRB;x/8个PRB;Y份资源中的1份,将所述第二下行数据信道的资源最多分为Y份,其中,Y-1份资源大小相同,Y为正整数。
可选地,所述Y份资源的大小为以下之一:
Y-1份资源大小为
Figure PCTCN2017104077-appb-000024
第Y份资源大小为
Figure PCTCN2017104077-appb-000025
Y-1份资源大小为
Figure PCTCN2017104077-appb-000026
第Y份资源大小为
Figure PCTCN2017104077-appb-000027
其中P为RBG包含的PRB数目;
Y-1份资源大小为
Figure PCTCN2017104077-appb-000028
第Y份资源大小为
Figure PCTCN2017104077-appb-000029
其中Q为M或M/2或
Figure PCTCN2017104077-appb-000030
M为sCCE占用的PRB数目。
可选地,所述第二下行数据信道的资源分配粒度为x/4或x/8或最多分配Y份资源时,包括以下之一:
在第二下行控制信道中使用3bits指示最多4份资源中的以下信息:{全部资源、前1/2份的资源、后1/2的资源、前1/4的资源、次前1/4的资源、次后1/4的资源、最后1/4的资源};
在第二下行控制信道中使用4bits指示最多8份资源中的以下信息:{全部资源、前1/2的资源、后1/2的资源、前1/4的资源、次前1/4的资源、次后1/4的资源、最后1/4的资源、第一份1/8的资源、第二份1/8的资源、第三份1/8的资源、第四份1/8的资源、第五份1/8的资源、第六份1/8的资源、第七份1/8的资源、第八份1/8的资源}。
可选地,所述第二下行数据信道的资源分配粒度为x/4个PRB或x/8个PRB时,包括以下之一:
在第二下行控制信道中使用3bits指示最多4份资源中的以下信息:{全部资源、前1/2份的资源、后1/2的资源、前1/4的资源、次前1/4的资源、次后1/4的资源、最后1/4的资源};
在第二下行控制信道中使用4bits指示最多8份资源中的以下信息:{全部 资源、前1/2的资源、后1/2的资源、前1/4的资源、次前1/4的资源、次后1/4的资源、最后1/4的资源、第一份1/8的资源、第二份1/8的资源、第三份1/8的资源、第四份1/8的资源、第五份1/8的资源、第六份1/8的资源、第七份1/8的资源、第八份1/8的资源}。
根据本公开的另一个实施例,还提供了一种下行资源粒度的确定方法,包括:第一下行控制信道在子帧中位于前两个符号或前三个符号时,承载的下行控制信息包括:
调度上行数据信道的上行授权;或者
调度所述上行数据信道的上行授权,第二下行数据信道的下行授权。
可选地,终端在接收下行控制信息时,包括:
在所述第一下行控制信道中接收调度所述上行数据信道的上行授权、子帧中前两个符号或前三个符号之后的第一个TTI中的第二下行数据信道的下行授权中至少之一,以及在所述子帧中前两个符号或前三个符号之后的第一个TTI中接收调度所述TTI中的所述第二下行数据信道的下行授权。
可选地,所述终端在接收所述下行控制信息时,包括:在所述第一下行控制信道中接收调度上行数据信道的上行授权、不期望接收调度子帧中前两个符号或前三个符号之后的第一个TTI中的第二下行数据信道的下行授权,以及在所述子帧中前两个符号或前三个符号之后的第一个TTI中接收调度所述TTI中的第二下行数据信道的下行授权。
可选地,所述终端在接收所述下行控制信息时,在所述第一下行控制信道中接收调度上行数据信道的上行授权、子帧中前两个符号或前三个符号之后的第一个TTI中的第二下行数据信道的下行授权中至少之一,以及在所述子帧中前两个符号或前三个符号之后的第一个TTI中不期望接收调度所述TTI中的第二下行数据信道的下行授权。
根据本公开的另一个实施例,还提供了一种下行资源粒度的确定装置,应用于基站,所述装置包括:
配置模块,被配置为配置包含x个物理资源块PRB的集合,其中,所述包含x个PRB的集合中的部分或全部资源用于发送第二下行控制信道和第二下行 数据信道,其中,所述x为正整数;
其中,所述x满足以下条件至少之一:为第一下行数据信道资源分配粒度的整数倍;为第二下行控制信道资源单元占用的PRB数目M或M/2或
Figure PCTCN2017104077-appb-000031
的整数倍;为第二下行数据信道资源分配粒度的整数倍;
发送模块,被配置为通过高层信令或第一下行控制信道承载的物理层信令发送用于配置所述集合的配置信息;
其中,所述第一下行控制信道所在频域范围不受限于x个PRB所在的频域范围,所述第二下行控制信道和所述第二下行数据信道所在频域范围受限于x个PRB所在的频域范围。
可选地,所述x为第二下行控制信道资源单元占用的PRB数目M或M/2或
Figure PCTCN2017104077-appb-000032
的整数倍,包括:所述x为第二下行控制信道资源单元的占用的PRB数目M或M/2或
Figure PCTCN2017104077-appb-000033
的C倍,其中,所述C为大于或等于0的整数。
可选地,所述第二下行数据信道的资源分配粒度为以下之一:
所述第二下行控制信道资源单元占用的PRB数目M或M/2或
Figure PCTCN2017104077-appb-000034
个PRB;一个PRB;x/4个PRB;x/8个PRB。
可选地,所述x同时满足以下条件:
为所述第一下行数据信道资源分配粒度的整数倍,所述第二下行控制信道资源单元占用的PRB数目的整数倍。
可选地,在所述第一下行数据信道资源分配粒度为资源块组RBG的情况下,所述x满足以下条件之一:
所述第一下行数据信道资源分配粒度和所述第二下行控制信道资源单元占用的PRB数目M或M/2或
Figure PCTCN2017104077-appb-000035
的公倍数的整数倍;
或者,所述第一下行数据信道资源分配粒度的M或M/2或
Figure PCTCN2017104077-appb-000036
倍,其中,所述M为所述第二下行控制信道资源单元占用的PRB数目。
可选地,所述第二下行数据信道的资源分配粒度为以下之一:RBG;所述第二下行控制信道资源单元占用的PRB数目M或M/2或
Figure PCTCN2017104077-appb-000037
个PRB;一个PRB;x/4个PRB;x/8个PRB。
可选地,在所述x满足为第一下行数据信道资源分配粒度的整数倍的情况下,所述第一下行数据信道资源分配粒度为PRB或RBG,所述x为所述第一下行数据信道资源分配粒度的C倍,其中,所述C为大于或等于0的整数。
可选地,所述第二下行数据信道的资源分配粒度满足以下条件之一:RBG;第二下行控制信道资源单元占用的PRB数目M或M/2或
Figure PCTCN2017104077-appb-000038
个PRB;一个PRB;x/4个PRB;x/8个PRB;Y份资源中的1份,将所述第二下行数据信道的资源最多分为Y份,其中,Y-1份资源大小相同,Y为正整数。
可选地,所述Y份资源的大小为以下之一:
Y-1份资源大小为
Figure PCTCN2017104077-appb-000039
第Y份资源大小为
Figure PCTCN2017104077-appb-000040
Y-1份资源大小为
Figure PCTCN2017104077-appb-000041
第Y份资源大小为
Figure PCTCN2017104077-appb-000042
其中P为RBG包含的PRB数目;
Y-1份资源大小为
Figure PCTCN2017104077-appb-000043
第Y份资源大小为
Figure PCTCN2017104077-appb-000044
其中Q为M或M/2或
Figure PCTCN2017104077-appb-000045
M为sCCE占用的PRB数目。
可选地,所述第二下行数据信道的资源分配粒度为x/4或x/8或最多分配Y份资源时,包括以下之一:
在第二下行控制信道中使用3bits指示最多4份资源中的以下信息:{全部资源、前1/2份的资源、后1/2的资源、前1/4的资源、次前1/4的资源、次后1/4的资源、最后1/4的资源};
在第二下行控制信道中使用4bits指示最多8份资源中的以下信息:{全部资源、前1/2的资源、后1/2的资源、前1/4的资源、次前1/4的资源、次后1/4的资源、最后1/4的资源、第一份1/8的资源、第二份1/8的资源、第三份1/8的资源、第四份1/8的资源、第五份1/8的资源、第六份1/8的资源、第七份1/8的资源、第八份1/8的资源}。
可选地,所述第二下行数据信道的资源分配粒度为x/4个PRB或x/8个PRB时,包括以下之一:
在第二下行控制信道中使用3bits指示最多4份资源中的以下信息:{全部资源、前1/2份的资源、后1/2的资源、前1/4的资源、次前1/4的资源、次后1/4的资源、最后1/4的资源};
在第二下行控制信道中使用4bits指示最多8份资源中的以下信息:{全部资源、前1/2的资源、后1/2的资源、前1/4的资源、次前1/4的资源、次后1/4的资源、最后1/4的资源、第一份1/8的资源、第二份1/8的资源、第三份1/8的资源、第四份1/8的资源、第五份1/8的资源、第六份1/8的资源、第七份1/8的资源、第八份1/8的资源}。
可选地,所述第一下行控制信道在子帧中位于前两个符号时,在承载第二下行数据信道的下行授权时,调度的第二下行数据信道为子帧中前两个符号之后的TTI中的第二下行数据信道。
根据本公开的另一个实施例,还提供了一种下行资源粒度的确定装置,应用于终端,所述装置包括:
接收模块,被配置为接收通过高层信令或第一下行控制信道承载的物理层信令发送的用于配置集合的配置信息,其中所述集合为基站分配的x个物理资源块PRB集合,其中,所述包含x个PRB的集合中的部分或全部资源用于发送第二下行控制信道和第二下行数据信道,其中,所述x为正整数;
其中,所述x满足以下条件至少之一:为第一下行数据信道资源分配粒度的整数倍;为第二下行控制信道资源单元占用的PRB数目M或M/2或
Figure PCTCN2017104077-appb-000046
的整数倍;为第二下行数据信道资源分配粒度的整数倍;
其中,所述第一下行控制信道所在频域范围不受限于x个PRB所在的频域范围,所述第二下行控制信道和所述第二下行数据信道所在频域范围受限于x个PRB所在的频域范围。
可选地,所述x为第二下行控制信道资源单元占用的PRB数目M或M/2或
Figure PCTCN2017104077-appb-000047
的整数倍,包括:所述x为第二下行控制信道资源单元的占用的PRB数目M或M/2或
Figure PCTCN2017104077-appb-000048
的C倍,其中,所述C为大于或等于0的整数。
可选地,所述第二下行数据信道的资源分配粒度为以下之一:
所述第二下行控制信道资源单元占用的PRB数目M或M/2或
Figure PCTCN2017104077-appb-000049
个PRB;一个PRB;x/4个PRB;x/8个PRB。
可选地,所述x同时满足以下条件:为所述第一下行数据信道资源分配粒度的整数倍,所述第二下行控制信道资源单元占用的PRB数目的整数倍。
可选地,在所述第一下行数据信道资源分配粒度为资源块组RBG的情况下,所述x满足以下条件之一:
所述第一下行数据信道资源分配粒度和所述第二下行控制信道资源单元占用的PRB数目M或M/2或
Figure PCTCN2017104077-appb-000050
的公倍数的整数倍;
或者,所述第一下行数据信道资源分配粒度的M或M/2或
Figure PCTCN2017104077-appb-000051
倍,其中,所述M为所述第二下行控制信道资源单元占用的PRB数目。
可选地,所述第二下行数据信道的资源分配粒度为以下之一:RBG;所述第二下行控制信道资源单元占用的PRB数目M或M/2或
Figure PCTCN2017104077-appb-000052
个PRB;一个PRB;x/4个PRB;x/8个PRB。
可选地,在所述x满足为第一下行数据信道资源分配粒度的整数倍的情况下,所述第一下行数据信道资源分配粒度为PRB或RBG,所述x为所述第一下行数据信道资源分配粒度的C倍,其中,所述C为大于或等于0的整数。
可选地,所述第二下行数据信道的资源分配粒度满足以下条件之一:RBG;第二下行控制信道资源单元占用的PRB数目M或M/2或
Figure PCTCN2017104077-appb-000053
个PRB;一个PRB;x/4个PRB;x/8个PRB;Y份资源中的1份,将所述第二下行数据信道的资源最多分为Y份,其中,Y-1份资源大小相同,Y为正整数。
可选地,所述Y份资源的大小为以下之一:
Y-1份资源大小为
Figure PCTCN2017104077-appb-000054
第Y份资源大小为
Figure PCTCN2017104077-appb-000055
Y-1份资源大小为
Figure PCTCN2017104077-appb-000056
第Y份资源大小为
Figure PCTCN2017104077-appb-000057
其中P为RBG包含的PRB数目;
Y-1份资源大小为
Figure PCTCN2017104077-appb-000058
第Y份资源大小为
Figure PCTCN2017104077-appb-000059
其中Q为M或M/2或
Figure PCTCN2017104077-appb-000060
M为短信道控制单元sCCE占用的PRB数目。
可选地,所述第二下行数据信道的资源分配粒度为x/4或x/8或最多分配Y份资源时,包括以下之一:
在第二下行控制信道中使用3bits指示最多4份资源中的以下信息:{全部资源、前1/2份的资源、后1/2的资源、前1/4的资源、次前1/4的资源、次后1/4的资源、最后1/4的资源};
在第二下行控制信道中使用4bits指示最多8份资源中的以下信息:{全部资源、前1/2的资源、后1/2的资源、前1/4的资源、次前1/4的资源、次后1/4的资源、最后1/4的资源、第一份1/8的资源、第二份1/8的资源、第三份1/8的资源、第四份1/8的资源、第五份1/8的资源、第六份1/8的资源、第七份1/8的资源、第八份1/8的资源}。
可选地,所述第二下行数据信道的资源分配粒度为x/4个PRB或x/8个PRB时,包括以下之一:
在第二下行控制信道中使用3bits指示最多4份资源中的以下信息:{全部资源、前1/2份的资源、后1/2的资源、前1/4的资源、次前1/4的资源、次后1/4的资源、最后1/4的资源};
在第二下行控制信道中使用4bits指示最多8份资源中的以下信息:{全部资源、前1/2的资源、后1/2的资源、前1/4的资源、次前1/4的资源、次后1/4的资源、最后1/4的资源、第一份1/8的资源、第二份1/8的资源、第三份1/8的资源、第四份1/8的资源、第五份1/8的资源、第六份1/8的资源、第七份1/8的资源、第八份1/8的资源}。
可选地,所述第一下行控制信道在子帧中位于前两个符号时,在承载第二下行数据信道的下行授权时,调度的第二下行数据信道为子帧中前两个符号之后的TTI中的第二下行数据信道。
根据本公开的另一个实施例,还提供了一种下行资源粒度的确定系统,所述系统包括:基站,终端;
所述基站为所述终端配置包含x个物理资源块PRB的集合,其中,所述包含x个PRB的集合中的部分或全部资源用于发送第二下行控制信道和第二下行数据信道,其中,所述x为正整数;
所述基站通过高层信令或第一下行控制信道承载的物理层信令向所述终端发送用于配置所述集合的配置信息;
其中,所述x满足以下条件至少之一:为第一下行数据信道资源分配粒度的整数倍;为第二下行控制信道资源单元占用的PRB数目M或M/2或
Figure PCTCN2017104077-appb-000061
的整数倍;为第二下行数据信道资源分配粒度的整数倍;
其中,所述第一下行控制信道所在频域范围不受限于x个PRB所在的频域范围,所述第二下行控制信道和所述第二下行数据信道所在频域范围受限于x个PRB所在的频域范围。
可选地,所述x为第二下行控制信道资源单元占用的PRB数目M或M/2或
Figure PCTCN2017104077-appb-000062
的整数倍,包括:所述x为第二下行控制信道资源单元的占用的PRB数目M或M/2或
Figure PCTCN2017104077-appb-000063
的C倍,其中,所述C为大于或等于0的整数。
可选地,所述第二下行数据信道的资源分配粒度为以下之一:
所述第二下行控制信道资源单元占用的PRB数目M或M/2或
Figure PCTCN2017104077-appb-000064
个PRB;一个PRB;x/4个PRB;x/8个PRB。
可选地,所述x同时满足以下条件:
为所述第一下行数据信道资源分配粒度的整数倍,所述第二下行控制信道资源单元占用的PRB数目的整数倍。
可选地,在所述第一下行数据信道资源分配粒度为资源块组RBG的情况下,所述x满足以下条件之一:
所述第一下行数据信道资源分配粒度和所述第二下行控制信道资源单元占用的PRB数目M或M/2或
Figure PCTCN2017104077-appb-000065
的公倍数的整数倍;
或者,所述第一下行数据信道资源分配粒度的M或M/2或
Figure PCTCN2017104077-appb-000066
倍,其中,所述M为所述第二下行控制信道资源单元占用的PRB数目。
可选地,所述第二下行数据信道的资源分配粒度为以下之一:RBG;所述第二下行控制信道资源单元占用的PRB数目M或M/2或
Figure PCTCN2017104077-appb-000067
个PRB;一个PRB;x/4个PRB;x/8个PRB。
可选地,在所述x满足为第一下行数据信道资源分配粒度的整数倍的情况下,所述第一下行数据信道资源分配粒度为PRB或RBG,所述x为所述第一下行数据信道资源分配粒度的C倍,其中,所述C为大于或等于0的整数。
可选地,所述第二下行数据信道的资源分配粒度满足以下条件之一:RBG;第二下行控制信道资源单元占用的PRB数目M或M/2或
Figure PCTCN2017104077-appb-000068
个PRB;一个PRB;x/4个PRB;x/8个PRB;Y份资源中的1份,将所述第二下行数据信道的资源最多分为Y份,其中,Y-1份资源大小相同,Y为正整数。
可选地,所述Y份资源的大小为以下之一:
Y-1份资源大小为
Figure PCTCN2017104077-appb-000069
第Y份资源大小为
Figure PCTCN2017104077-appb-000070
Y-1份资源大小为
Figure PCTCN2017104077-appb-000071
第Y份资源大小为
Figure PCTCN2017104077-appb-000072
其中P为RBG包含的PRB数目;
Y-1份资源大小为
Figure PCTCN2017104077-appb-000073
第Y份资源大小为
Figure PCTCN2017104077-appb-000074
其中Q为M或M/2或
Figure PCTCN2017104077-appb-000075
M为sCCE占用的PRB数目。
可选地,所述第二下行数据信道的资源分配粒度为x/4或x/8或最多分配Y份资源时,包括以下之一:
在第二下行控制信道中使用3bits指示最多4份资源中的以下信息:{全部资源、前1/2份的资源、后1/2的资源、前1/4的资源、次前1/4的资源、次后1/4的资源、最后1/4的资源};
在第二下行控制信道中使用4bits指示最多8份资源中的以下信息:{全部资源、前1/2的资源、后1/2的资源、前1/4的资源、次前1/4的资源、次后1/4的资源、最后1/4的资源、第一份1/8的资源、第二份1/8的资源、第三份1/8的资源、第四份1/8的资源、第五份1/8的资源、第六份1/8的资源、第七份1/8的资源、第八份1/8的资源}。
可选地,所述第二下行数据信道的资源分配粒度为x/4个PRB或x/8个PRB时,包括以下之一:
在第二下行控制信道中使用3bits指示最多4份资源中的以下信息:{全部资源、前1/2份的资源、后1/2的资源、前1/4的资源、次前1/4的资源、次后1/4的资源、最后1/4的资源};
在第二下行控制信道中使用4bits指示最多8份资源中的以下信息:{全部资源、前1/2的资源、后1/2的资源、前1/4的资源、次前1/4的资源、次后1/4的资源、最后1/4的资源、第一份1/8的资源、第二份1/8的资源、第三份1/8的资源、第四份1/8的资源、第五份1/8的资源、第六份1/8的资源、第七份1/8的资源、第八份1/8的资源}。
可选地,所述第一下行控制信道在子帧中位于前两个符号时,在承载第二下行数据信道的下行授权时,调度的第二下行数据信道为子帧中前两个符号之 后的TTI中的第二下行数据信道。
根据本公开的又一个实施例,还提供了一种存储介质。该存储介质设置为存储用于执行以下步骤的程序代码:
基站配置包含x个物理资源块PRB的集合,其中,所述包含x个PRB的集合中的部分或全部资源用于发送第二下行控制信道和第二下行数据信道,其中,所述x为正整数;
所述基站通过高层信令或第一下行控制信道承载的物理层信令发送用于配置所述集合的配置信息;
其中,所述x满足以下条件至少之一:为第一下行数据信道资源分配粒度的整数倍;为第二下行控制信道资源单元占用的PRB数目M或M/2或
Figure PCTCN2017104077-appb-000076
的整数倍;为第二下行数据信道资源分配粒度的整数倍;
其中,所述第一下行控制信道所在频域范围不受限于x个PRB所在的频域范围,所述第二下行控制信道和所述第二下行数据信道所在频域范围受限于x个PRB所在的频域范围。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:
终端接收分配的x个物理资源块PRB集合,其中,所述包含x个PRB的集合中的部分或全部资源用于发送第二下行控制信道和第二下行数据信道,其中,所述x为正整数;
所述终端接收通过高层信令或第一下行控制信道承载的物理层信令发送的用于配置所述集合的配置信息;
其中,所述x满足以下条件至少之一:为第一下行数据信道资源分配粒度的整数倍;为第二下行控制信道资源单元占用的PRB数目M或M/2或
Figure PCTCN2017104077-appb-000077
的整数倍;为第二下行数据信道资源分配粒度的整数倍;
其中,所述第一下行控制信道所在频域范围不受限于x个PRB所在的频域范围,所述第二下行控制信道和所述第二下行数据信道所在频域范围受限于x个PRB所在的频域范围。
本公开实施例还提供了一种电子设备,包括:
至少一个处理器;以及
与所述至少一个处理器通信连接的存储器;其中,
所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器执行上述的方法。
通过本公开,基站配置包含x个物理资源块PRB的集合,其中,该包含x个PRB的集合中的部分或全部资源用于发送第二下行控制信道和第二下行数据信道,其中,该x为正整数;该基站通过高层信令或第一下行控制信道承载的物理层信令发送用于配置该集合的配置信息;其中,该x满足以下条件至少之一:为第一下行数据信道资源分配粒度的整数倍;为第二下行控制信道资源单元占用的PRB数目M或M/2或
Figure PCTCN2017104077-appb-000078
的整数倍;为第二下行数据信道资源分配粒度的整数倍;其中,该第一下行控制信道所在频域范围不受限于x个PRB所在的频域范围,该第二下行控制信道和该第二下行数据信道所在频域范围受限于x个PRB所在的频域范围。解决了相关技术中低时延传输与LTE业务占用带宽冲突的问题,可以使得低时延业务与LTE传统业务高效地使用系统带宽中下行资源并避免资源浪费或冲突,同时减小DL sTTI band内部资源分配开销,从而实现低时延业务与LTE传统业务合理共存。
附图概述
此处所说明的附图用来提供对本公开的理解,构成本申请的一部分,本公开的示意性实施例及其说明用于解释本公开,并不构成对本公开的不当限定。在附图中:
图1是根据本公开实施例的一种下行资源粒度的确定方法流程图一;
图2是根据本公开实施例的一种下行资源粒度的确定方法流程图二;
图3是根据本公开实施例中x满足为第二下行控制信道资源单元的频域大小的整数倍时的示意图一;
图4A和图4B是根据本公开实施例的该x满足为第一下行数据信道资源分 配粒度和第二下行控制信道资源单元的频域大小的最小公约数的整数倍的示意图二;
图5A和图5B是根据本公开实施例中的x满足为第一下行数据信道资源分配粒度的整数倍的示意图三;
图6是根据本公开实施例四的示意图;
图7是根据本公开实施例五的示意图;
图8是根据本公开实施例的应用于基站一种下行资源粒度的确定装置结构框图;以及
图9是根据本公开实施例的电子设备的结构示意图。
具体实施方式
下文中将参考附图并结合实施例来详细说明本公开。在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
本公开的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
本公开应用于LTE系统时,第一下行控制信道指PDCCH,第一下行数据信道指PDSCH。第二下行控制信道指sPDCCH,第二下行数据信道指sPDSCH。本公开中所述上行数据信道指sPUSCH。其中sPDCCH、sPDSCH、sPUSCH为短TTI(short TTI,称为sTTI)中的信道,sTTI的长度为2个OFDM符号或3个OFDM符号或4个OFDM符号或1个时隙。
实施例1
本申请文件中记载的方法步骤可以运行于长期演进LTE系统中,该网络的网络架构可以包括网络侧设备(例如基站)和终端。在本实施例中提供了一种可运行于上述网络架构上的下行资源粒度的确定方法,本申请实施例中提供的上述信息传输方法的运行环境并不限于上述网络架构。
图1是根据本公开实施例的一种下行资源粒度的确定方法流程图一,如图1所示,包括以下步骤:
步骤S102,基站配置包含x个物理资源块PRB的集合,其中,该包含x个PRB的集合中的部分或全部资源用于发送第二下行控制信道和第二下行数据信道,其中,该x为正整数;其中,该x满足以下条件至少之一:为第一下行数据信道资源分配粒度的整数倍;为第二下行控制信道资源单元占用的PRB数目M或M/2或
Figure PCTCN2017104077-appb-000079
的整数倍;为第二下行数据信道资源分配粒度的整数倍;
步骤S104,该基站通过高层信令或第一下行控制信道承载的物理层信令发送用于配置该集合的配置信息;其中,该第一下行控制信道所在频域范围不受限于x个PRB所在的频域范围,该第二下行控制信道和该第二下行数据信道所在频域范围受限于x个PRB所在的频域范围。
通过上述步骤,解决了相关技术中低时延传输与LTE业务占用带宽冲突的问题,可以使得低时延业务与LTE传统业务高效地使用系统带宽中下行资源并避免资源浪费或冲突,同时减小DL sTTI band内部资源分配开销,从而实现低时延业务与LTE传统业务合理共存。
可选地,该x为第二下行控制信道资源单元占用的PRB数目M或M/2或
Figure PCTCN2017104077-appb-000080
的整数倍,包括:该x为第二下行控制信道资源单元的占用的PRB数目M或M/2或
Figure PCTCN2017104077-appb-000081
的C倍,其中,该C为大于或等于0的整数。
可选地,该第二下行数据信道的资源分配粒度为以下之一:
该第二下行控制信道资源单元占用的PRB数目M或M/2或
Figure PCTCN2017104077-appb-000082
个PRB;一个PRB;x/4个PRB;x/8个PRB。
可选地,该x同时满足以下条件:为该第一下行数据信道资源分配粒度的整数倍,该第二下行控制信道资源单元占用的PRB数目的整数倍。
可选地,在该第一下行数据信道资源分配粒度为资源块组RBG的情况下,该x满足以下条件之一:该第一下行数据信道资源分配粒度和该第二下行控制信道资源单元占用的PRB数目M或M/2或
Figure PCTCN2017104077-appb-000083
的公倍数的整数倍;或者,该第一下行数据信道资源分配粒度的M或M/2或
Figure PCTCN2017104077-appb-000084
倍,其中,该M为该第二下行控制信道资源单元占用的PRB数目。
可选地,该第二下行数据信道的资源分配粒度为以下之一:RBG;该第二下行控制信道资源单元占用的PRB数目M或M/2或
Figure PCTCN2017104077-appb-000085
个PRB;一个PRB;x/4个PRB;x/8个PRB。
可选地,在该x满足为第一下行数据信道资源分配粒度的整数倍的情况下,该第一下行数据信道资源分配粒度为PRB或RBG,该x为该第一下行数据信道资源分配粒度的C倍,其中,该C为大于或等于0的整数。
可选地,该第二下行数据信道的资源分配粒度满足以下条件之一:RBG;第二下行控制信道资源单元占用的PRB数目M或M/2或
Figure PCTCN2017104077-appb-000086
个PRB;一个PRB;x/4个PRB;x/8个PRB;Y份资源中的1份,将该第二下行数据信道的资源最多分为Y份,其中,Y-1份资源大小相同,Y为正整数。
可选地,该Y份资源的大小为以下之一:
Y-1份资源大小为
Figure PCTCN2017104077-appb-000087
第Y份资源大小为
Figure PCTCN2017104077-appb-000088
Y-1份资源大小为
Figure PCTCN2017104077-appb-000089
第Y份资源大小为
Figure PCTCN2017104077-appb-000090
其中P为RBG包含的PRB数目;
Y-1份资源大小为
Figure PCTCN2017104077-appb-000091
第Y份资源大小为
Figure PCTCN2017104077-appb-000092
其中Q为M或M/2或
Figure PCTCN2017104077-appb-000093
M为sCCE占用的PRB数目。
可选地,该第二下行数据信道的资源分配粒度为x/4或x/8或最多分配Y份资源时,包括以下之一:
在第二下行控制信道中使用3bits指示最多4份资源中的以下信息:{全部资源、前1/2份的资源、后1/2的资源、前1/4的资源、次前1/4的资源、次后1/4的资源、最后1/4的资源};
在第二下行控制信道中使用4bits指示最多8份资源中的以下信息:{全部资源、前1/2的资源、后1/2的资源、前1/4的资源、次前1/4的资源、次后1/4的资源、最后1/4的资源、第一份1/8的资源、第二份1/8的资源、第三份1/8的资源、第四份1/8的资源、第五份1/8的资源、第六份1/8的资源、第七份1/8的资源、第八份1/8的资源}。
可选地,该第二下行数据信道的资源分配粒度为x/4个PRB或x/8个PRB时,包括以下之一:
在第二下行控制信道中使用3bits指示最多4份资源中的以下信息:{全部资源、前1/2份的资源、后1/2的资源、前1/4的资源、次前1/4的资源、次后1/4的资源、最后1/4的资源};
在第二下行控制信道中使用4bits指示最多8份资源中的以下信息:{全部资源、前1/2的资源、后1/2的资源、前1/4的资源、次前1/4的资源、次后1/4的资源、最后1/4的资源、第一份1/8的资源、第二份1/8的资源、第三份1/8的资源、第四份1/8的资源、第五份1/8的资源、第六份1/8的资源、第七份1/8的资源、第八份1/8的资源}。
可选地,该第一下行控制信道在子帧中位于前两个符号或前三个符号时,承载的下行控制信息包括:调度上行数据信道的上行授权;或调度上行数据信道的上行授权,第二下行数据信道的下行授权。
可选地,该承载的下行控制信息为调度第二下行数据信道的下行授权时,调度的第二下行数据信道为子帧中前两个符号或前三个符号之后的第一个TTI中的第二下行数据信道。
图2是根据本公开实施例的一种下行资源粒度的确定方法流程图二,如图2所示,包括以下步骤:
步骤S202,终端接收分配的x个物理资源块PRB集合,其中,该包含x个PRB的集合中的部分或全部资源用于发送第二下行控制信道和第二下行数据信道,其中,该x为正整数;其中,该x满足以下条件至少之一:为第一下行数据信道资源分配粒度的整数倍;为第二下行控制信道资源单元占用的PRB数目M或M/2或
Figure PCTCN2017104077-appb-000094
的整数倍;为第二下行数据信道资源分配粒度的整数倍;
步骤S204,该终端接收通过高层信令或第一下行控制信道承载的物理层信令发送的用于配置该集合的配置信息;其中,该第一下行控制信道所在频域范围不受限于x个PRB所在的频域范围,该第二下行控制信道和该第二下行数据信道所在频域范围受限于x个PRB所在的频域范围。
可选地,该x为第二下行控制信道资源单元占用的PRB数目M或M/2或
Figure PCTCN2017104077-appb-000095
的整数倍,包括:该x为第二下行控制信道资源单元的占用的PRB数目M或M/2或
Figure PCTCN2017104077-appb-000096
的C倍,其中,该C为大于或等于0的整数。
可选地,该第二下行数据信道的资源分配粒度为以下之一:该第二下行控制信道资源单元占用的PRB数目M或M/2或
Figure PCTCN2017104077-appb-000097
个PRB;一个PRB;x/4个PRB;x/8个PRB。
可选地,该x同时满足以下条件:为该第一下行数据信道资源分配粒度的整数倍,该第二下行控制信道资源单元占用的PRB数目的整数倍。
可选地,在该第一下行数据信道资源分配粒度为资源块组RBG的情况下,该x满足以下条件之一:该第一下行数据信道资源分配粒度和该第二下行控制信道资源单元占用的PRB数目M或M/2或
Figure PCTCN2017104077-appb-000098
的公倍数的整数倍;或者,该第一下行数据信道资源分配粒度的M或M/2或
Figure PCTCN2017104077-appb-000099
倍,其中,该M为该第二下行控制信道资源单元占用的PRB数目。
可选地,该第二下行数据信道的资源分配粒度为以下之一:RBG;该第二下行控制信道资源单元占用的PRB数目M或M/2或
Figure PCTCN2017104077-appb-000100
个PRB;一个PRB;x/4个PRB;x/8个PRB。
可选地,在该x满足为第一下行数据信道资源分配粒度的整数倍的情况下,该第一下行数据信道资源分配粒度为PRB或RBG,该x为该第一下行数据信道资源分配粒度的C倍,其中,该C为大于或等于0的整数。
可选地,该第二下行数据信道的资源分配粒度满足以下条件之一:RBG;第二下行控制信道资源单元占用的PRB数目M或M/2或
Figure PCTCN2017104077-appb-000101
个PRB;一个PRB;x/4个PRB;x/8个PRB;Y份资源中的1份,将该第二下行数据信道的资源最多分为Y份,其中,Y-1份资源大小相同,Y为正整数。
可选地,该Y份资源的大小为以下之一:
Y-1份资源大小为
Figure PCTCN2017104077-appb-000102
第Y份资源大小为
Figure PCTCN2017104077-appb-000103
Y-1份资源大小为
Figure PCTCN2017104077-appb-000104
第Y份资源大小为
Figure PCTCN2017104077-appb-000105
其中P为RBG包含的PRB数目;
Y-1份资源大小为
Figure PCTCN2017104077-appb-000106
第Y份资源大小为
Figure PCTCN2017104077-appb-000107
其中Q为M或M/2或
Figure PCTCN2017104077-appb-000108
M为sCCE占用的PRB数目。
可选地,该第二下行数据信道的资源分配粒度为x/4或x/8或最多分配Y份资源时,包括以下之一:
在第二下行控制信道中使用3bits指示最多4份资源中的以下信息:{全部资源、前1/2份的资源、后1/2的资源、前1/4的资源、次前1/4的资源、次后1/4的资源、最后1/4的资源};
在第二下行控制信道中使用4bits指示最多8份资源中的以下信息:{全部资源、前1/2的资源、后1/2的资源、前1/4的资源、次前1/4的资源、次后1/4的资源、最后1/4的资源、第一份1/8的资源、第二份1/8的资源、第三份1/8的资源、第四份1/8的资源、第五份1/8的资源、第六份1/8的资源、第七份1/8的资源、第八份1/8的资源}。
可选地,该第二下行数据信道的资源分配粒度为x/4个PRB或x/8个PRB时,包括以下之一:
在第二下行控制信道中使用3bits指示最多4份资源中的以下信息:{全部资源、前1/2份的资源、后1/2的资源、前1/4的资源、次前1/4的资源、次后1/4的资源、最后1/4的资源};
在第二下行控制信道中使用4bits指示最多8份资源中的以下信息:{全部资源、前1/2的资源、后1/2的资源、前1/4的资源、次前1/4的资源、次后1/4的资源、最后1/4的资源、第一份1/8的资源、第二份1/8的资源、第三份1/8的资源、第四份1/8的资源、第五份1/8的资源、第六份1/8的资源、第七份1/8的资源、第八份1/8的资源}。
可选地,该第一下行控制信道在子帧中位于前两个符号或前三个符号时,承载的下行控制信息包括:
调度上行数据信道的上行授权;或者
调度该上行数据信道的上行授权,第二下行数据信道的下行授权。
可选地,终端在接收下行控制信息时,包括:
在该第一下行控制信道中接收调度该上行数据信道的上行授权、子帧中前两个符号或前三个符号之后的第一个TTI中的第二下行数据信道的下行授权中至少之一,以及在该子帧中前两个符号或前三个符号之后的第一个TTI中接收调度该TTI中的该第二下行数据信道的下行授权。
可选地,该终端在接收该下行控制信息时,包括:在该第一下行控制信道 中接收调度上行数据信道的上行授权、不期望接收调度子帧中前两个符号或前三个符号之后的第一个TTI中的第二下行数据信道的下行授权,以及在该子帧中前两个符号或前三个符号之后的第一个TTI中接收调度该TTI中的第二下行数据信道的下行授权。
可选地,该终端在接收该下行控制信息时,在该第一下行控制信道中接收调度上行数据信道的上行授权、子帧中前两个符号或前三个符号之后的第一个TTI中的第二下行数据信道的下行授权中至少之一,以及在该子帧中前两个符号或前三个符号之后的第一个TTI中不期望接收调度该TTI中的第二下行数据信道的下行授权。
下面结合本公开的实施例进行详细说明。
在本公开实施例中,提供一种下行资源粒度的确定方法,以使得终端可以短TTI内接收时延降低时的下行信息并与LTE传统业务传输合理共存。为了能够更加详尽地了解本公开实施例的特点与技术内容,下面结合附图和实施例对本公开实施例的实现进行详细阐述,所附附图仅供参考说明之用,并非用来限定本公开实施例。
实施例一
基站在第一物理下行控制信道PDCCH中发送含有DL sTTI band资源分配的下行控制信息,并且该DL sTTI band使用LTE系统中type 0/1/2资源分配方法或其他方法但是使用的资源颗粒度为第二物理下行控制信道sPDCCH的控制信道单元sCCE的频域大小。其中以sCCE=3PRB且限制在一个OFDM符号中为例。基站在候选集中顺序发送多个第二物理下行控制信道sPDCCH,其中sPDCCH承载的下行控制信息中包含第二物理下行数据信道的资源分配信息。
图3是根据本公开实施例一中x满足为第二下行控制信道资源单元的频域大小的整数倍时的示意图一,如图3所示,在两符号的sTTI中sPDCCH所在符号中未使用部分可供sPDSCH使用,即此时sPDCCH未使用部分中资源索引大于终端检测到的sPDCCH并且位于其sPDSCH频域范围内即可使用。此时sTTI band以sCCE为粒度进行分配。sTTI band中包含的sCCE个数可以为集合{4、8、12、16、20、24、28、32、36}中之一。
此时sPDSCH在sTTI band中通过sPDCCH中承载的DCI中的资源再分配 信息指示。例如,sPDSCH在sTTI band中以x/4的粒度使用资源,x为DL sTTI大小,此时资源再分配信息3bits指示sPDSCH占用全部sTTI band的{全部、前1/2、后1/2、前1/4、次前1/4、次后1/4、最后1/4}。例如DL sTTI band包含16个sCCE时,x/4=3个sCCE=12PRB。
例如对于UE1现在PDCCH区域盲检到包含指示DL sTTI band的DCI,获知DL sTTI band区域位置以及区域大小为16个sCCE。在DL sTTI band中首个符号中盲检sPDCCH,顺序检测候选集位置,在第三个候选集检测到自己的DL调度(grant),其中资源再分配信息3bit指示010表示在DL sTTI band中次后1/4的频域区域接收sPDSCH,此时由于接收的sPDCCH的sCCE在sPDSCH频域之前,因此sPDSCH可以使用该频域区域对应的sPDCCH所在OFDM符号中的资源。
表1是根据本公开实施例一的资源分配情况表,如表1所示:
表1
Index 资源分配[在sTTI band中占用如下分配结果]
000 前1/4
001 次前1/4
010 次后1/4
011 最后1/4
100 前1/2
101 后1/2
110 全部
111 保留状态
通过本实施例一的方案,通过限制DL sTTI band的资源分配的粒度和DL sTTI band内资源分配的粒度,可以使得低时延业务与LTE传统业务高效地使用系统带宽中下行资源并避免资源浪费或冲突,同时减小DL sTTI band内部资源分配开销,从而实现低时延业务与LTE传统业务合理共存。
实施例二
基站在第一物理下行控制信道PDCCH中发送含有DL sTTI band资源分配的下行控制信息,并且该DL sTTI band使用LTE系统中type 0/1/2资源分配方法或其他方法但是使用的资源颗粒度为第一下行数据信道资源分配粒度和第二下行控制信道资源单元的频域大小的最小公约数的整数倍;或者ERBG(增强资源块组)的整数倍,其中ERBG为RBG的M倍,M为第二下行控制信道资源单元sCCE包含的PRB个数。其中以sCCE=3PRB且限制在一个OFDM符号中为例。基站在候选集中顺序发送多个第二物理下行控制信道sPDCCH,其中sPDCCH承载的下行控制信息中包含第二物理下行数据信道的资源分配信息。
在两符号的sTTI中sPDCCH所在符号中未使用部分可供sPDSCH使用,即此时sPDCCH未使用部分中资源索引大于终端检测到的sPDCCH并且位于其sPDSCH频域范围内即可使用。此时sTTI band以ERBG为粒度进行分配。此时RBG为根据系统带宽确定,如表2所示,以20MHz系统带宽为例,对应PRB数为110,此时RBG=4个PRB。以sCCE=3PRB为例,此时ERBG=12个PRB。表2是根据本公开实施例2中RBG与系统带宽的对应表,如表2所示:
表2
Figure PCTCN2017104077-appb-000109
图4A和图4B是根据本公开实施例二的该x满足为第一下行数据信道资源分配粒度和第二下行控制信道资源单元的频域大小的最小公约数的整数倍的示意图,如图4A所示,在sPDCCH以sCCE为颗粒度使用资源,sPDSCH以RBG为颗粒度使用资源时,sTTI band包含的ERBG个数可以为集合{4、8}中之一,即PRB set={48、96}。此时需要对type 0/1限制颗粒度。
如图4B所示,在sPDCCH和sPDSCH均以sCCE为颗粒度使用资源,sTTI band包含的ERBG个数可以为集合{1、2、3、4、5、6、7、8、9}中之一,即 PRB set={12、24、36、48、60、72、84、96、108}。
此时sPDSCH在sTTI band中通过sPDCCH中承载的DCI中的资源再分配信息指示。例如,sPDSCH在sTTI band中以x/4的粒度使用资源,x为DL sTTI大小,此时资源再分配信息3bits指示sPDSCH占用全部sTTI band的{全部资源、前1/2资源、后1/2资源、前1/4资源、次前1/4资源、次后1/4资源、最后1/4资源}。例如DL sTTI band包含4个ERBG时,x/4=1个ERBG=12PRB。
例如对于UE1现在PDCCH区域盲检到包含指示DL sTTI band的DCI,获知DL sTTI band区域位置以及区域大小为4个ERBG。在DL sTTI band中首个符号中盲检sPDCCH,顺序检测候选集位置,在第三个候选集检测到自己的DL grant,其中资源再分配信息3bit指示010表示在DL sTTI band中次后1/4的频域区域接收sPDSCH,此时由于接收的sPDCCH的sCCE在sPDSCH频域之前,因此sPDSCH可以使用该频域区域对应的sPDCCH所在OFDM符号中的资源。表3是根据本公开实施例二的资源分配情况表,如表3所示:
表3
Index 资源分配[在sTTI band中占用如下分配结果]
000 前1/4
001 次前1/4
010 次后1/4
011 最后1/4
100 前1/2
101 后1/2
110 全部
111 保留状态
通过本实施例的方案,通过限制DL sTTI band的资源分配的粒度和DL sTTI band内资源分配的粒度,可以使得低时延业务与LTE传统业务高效地使用系统带宽中下行资源并避免资源浪费或冲突,同时减小DL sTTI band内部资源分配开销,从而实现低时延业务与LTE传统业务合理共存。
实施例三
基站在第一物理下行控制信道PDCCH中发送含有DL sTTI band资源分配的下行控制信息,并且该DL sTTI band使用LTE系统中type 0/1/2资源分配方法或其他方法但是使用的资源颗粒度为为第一下行数据信道资源分配粒度的整数倍,其中第一下行数据信道资源分配粒度为PRB或RBG。基站在候选集中顺序发送多个第二物理下行控制信道sPDCCH,其中sPDCCH承载的下行控制信息中包含第二物理下行数据信道的资源分配信息。
在两符号的sTTI中sPDCCH所在符号中未使用部分可供sPDSCH使用,即此时sPDCCH未使用部分中资源索引大于终端检测到的sPDCCH并且位于其sPDSCH频域范围内即可使用。此时sTTI band以RBG为粒度进行分配。此时RBG为根据系统带宽确定,如表4所示,以20MHz系统带宽为例,对应PRB数为110,此时RBG=4个PRB。另外,此时其中以sCCE=3PRB且限制在一个OFDM符号中为例。表4是根据本公开实施例三的RBG与系统带宽的对应表,如表4所示:
表4
Figure PCTCN2017104077-appb-000110
图5A和图5B是根据本公开实施例三中的x满足为第一下行数据信道资源分配粒度的整数倍的示意图,如图5A所示,在sPDCCH以sCCE为颗粒度使用资源,sPDSCH以RBG为颗粒度使用资源时,此时的sTTI band包含的RBG个数为自然数,不超过27个。sTTI band包含的RBG个数可以为集合{4、8、12、16、20、24}中之一,即PRB set={16、32、48、64、80、96}。
此时sPDSCH在sTTI band中通过sPDCCH中承载的DCI中的资源再分配 信息指示。例如,sPDSCH在sTTI band中以x/4的粒度使用资源,x为DL sTTI大小,此时资源再分配信息3bits指示sPDSCH占用全部sTTI band的{全部资源、前1/2资源、后1/2资源、前1/4资源、次前1/4资源、次后1/4资源、最后1/4资源}。例如DL sTTI band包含8个RBG时,x/4=2个RBG=8PRB。
例如对于UE1现在PDCCH区域盲检到包含指示DL sTTI band的DCI,获知DL sTTI band区域位置以及区域大小为8个RBG。在DL sTTI band中首个符号中盲检sPDCCH,顺序检测候选集位置,在第三个候选集检测到自己的DL grant,其中资源再分配信息3bit指示100表示在DL sTTI band中前1/2的频域区域接收sPDSCH,此时由于接收的sPDCCH的最后一个sCCE在sPDSCH频域位置之后,因此sPDSCH不使用该频域区域对应的sPDCCH所在OFDM符号中的资源。表5是根据本公开实施例三的资源分配情况表,如表5所示:
表5
Index 资源分配[在sTTI band中占用如下分配结果]
000 前1/4
001 次前1/4
010 次后1/4
011 最后1/4
100 前1/2
101 后1/2
110 全部
111 保留状态
如图5B所示,在sPDCCH以sCCE为颗粒度使用资源,对于sPDSCH,对于sTTI band中非最后一个sPDSCH资源分配以sCCE为颗粒度,对于sTTI band中最后一个sPDSCH资源以PRB/RBG粒度分配。sTTI band包含的ERBG个数可以为集合{1、2、3、4、5、6、7、8、9}中之一,即PRB set={12、24、36、48、60、72、84、96、108}。
此时sPDSCH在sTTI band中通过sPDCCH中承载的DCI中的资源再分配 信息指示。例如,sPDSCH在sTTI band中以Y=4份资源的粒度使用资源,此时资源再分配信息3bits指示sPDSCH占用全部sTTI band的{全部资源、前1/2资源、后1/2资源、前1/4资源、次前1/4资源、次后1/4资源、最后1/4资源}。此时Y=4份资源中前Y-1=3份是相等的,并且是sCCE占用的频域资源的整数倍,最后一份资源与前3份资源可能不等。操作可以为:此时假设为sTTI band分配的RBG数目为x个,此时x=4X个PRB,即sTTI band中包含的sCCE个数(非整数不统计)为
Figure PCTCN2017104077-appb-000111
其中P为RBG size,M为sCCE size。前Y-1=3份资源大小为
Figure PCTCN2017104077-appb-000112
Figure PCTCN2017104077-appb-000113
最后一份资源大小为
Figure PCTCN2017104077-appb-000114
Figure PCTCN2017104077-appb-000115
例如DL sTTI band包含8个RBG时,共计32个PRB,此时4份资源中前3份的大小均为6PRB,第4份资源为14PRB。
或者,此时Y=4份资源中前Y-1=3份是相等的,并且是PRB的整数倍即可,最后一份资源与前3份资源可能不等。操作可以为:此时假设为sTTI band分配的RBG数目为x个,此时x=PX=4X个PRB,其中P为RBG size。前Y-1=3份资源大小为
Figure PCTCN2017104077-appb-000116
最后一份资源大小为
Figure PCTCN2017104077-appb-000117
例如DL sTTI band包含8个RBG时,共计32个PRB,此时4份资源中前3份的大小均为8PRB,第4份资源为8PRB。例如DL sTTI band包含10个PRB时,此时4份资源中前3份的大小均为2PRB,第4份资源为4PRB。
或者,此时Y=4份资源中前Y-1=3份是相等的,并且是PRB的整数倍即可,最后一份资源与前3份资源可能不等。操作可以为:此时假设为sTTI band分配的PRB数目为x个,包含的RBG为
Figure PCTCN2017104077-appb-000118
个,其中P为RBG size。前Y-1=3份资源大小为
Figure PCTCN2017104077-appb-000119
最后一份资源大小为
Figure PCTCN2017104077-appb-000120
例如DL sTTI band包含8个RBG时,共计32个PRB,此时4份资源中前3份的大小均为8PRB,第4份资源为8PRB。例如DL sTTI band包含35个PRB时,此时4份资源中前3份的大小均为8PRB,第4份资源为11PRB。
例如对于UE1现在PDCCH区域盲检到包含指示DL sTTI band的DCI,获知DL sTTI band区域位置以及区域大小为8个RBG。在DL sTTI band中首个符号中盲检sPDCCH,顺序检测候选集位置,在第二个候选集检测到自己的DL grant,其中资源再分配信息3bit指示100表示在DL sTTI band中前1/2的频域区域接收sPDSCH,此时由于接收的sPDCCH的最后一个sCCE在sPDSCH频 域位置的最后,因此sPDSCH不使用该频域区域对应的sPDCCH所在OFDM符号中的资源。表6是根据本公开实施例三的第二种资源分配情况表,如表6所示:
表6
Index 资源分配[在sTTI band中占用如下分配结果]
000 前1/4
001 次前1/4
010 次后1/4
011 最后1/4
100 前1/2
101 后1/2
110 全部
111 保留状态
通过本实施例三的方案,通过限制DL sTTI band的资源分配的粒度和DL sTTI band内资源分配的粒度,可以使得低时延业务与LTE传统业务高效地使用系统带宽中下行资源并避免资源浪费或冲突,同时减小DL sTTI band内部资源分配开销,从而实现低时延业务与LTE传统业务合理共存。
实施例四
图6是根据本公开实施例四的示意图,如图6所示,对于sTTI为2个OFDM符号时,此时sTTI在1个子帧中划分为sTTI#0-6。当PDCCH=1符号时,调度第一个sTTI的sPDSCH;当PDCCH=3符号时调度第二个sTTI的sPDSCH。
当PDCCH=2符号时,则由PDCCH调度第二个sTTI中的sPDSCH,即无需指示跨sTTI调度,即默认在PDCCH为2符号时调度的是第二个sTTI的sPDSCH。第二个sTTI中可能存在调度第二个sTTI中sPDSCH的sPDCCH,即终端也需要检测。另外,PDCCH中可以承载调度上行数据信道sPUSCH的上行授权。或者
当PDCCH=2符号时,则由第二个sTTI中sPDCCH调度第二个sTTI中的sPDSCH,即默认在PDCCH为2符号时不会调度的第二个sTTI的sPDSCH。另外,PDCCH中可以承载调度上行数据信道sPUSCH的上行授权。或者
当PDCCH=2符号时,则由PDCCH调度第二个sTTI中的sPDSCH,即无需指示跨sTTI调度,即默认在PDCCH为2符号时调度的是第二个sTTI的sPDSCH。第二个sTTI中没有调度第二个sTTI中sPDSCH的sPDCCH,即终端不需要检测第二个sTTI中调度sPDSCH的sPDCCH。另外,PDCCH中可以承载调度上行数据信道sPUSCH的上行授权。
通过本实施例四的方案,在PDCCH为2符号时,PDCCH也可以承载fast DCI或single-level DCI调度相邻的下一个sTTI并且无需增加跨TTI调度的额外信令指示开销。此时sPDCCH不存在时可以将更多的资源用于sPDSCH传输。
实施例五
图7是根据本公开实施例五的示意图,如图7所示,对于sTTI为2个OFDM符号和3个OFDM符号的组合时,此时sTTI在1个子帧中划分为sTTI#0-5,依次包含3、2、2、3、2、2个OFDM符号。当PDCCH=1符号时,调度第一个sTTI的sPDSCH;当PDCCH=2符号时调度第一个sTTI的sPDSCH。
当PDCCH=3符号时,则由PDCCH调度第二个sTTI中的sPDSCH,即无需指示跨sTTI调度,即默认在PDCCH为3符号时调度的是第二个sTTI的sPDSCH。第二个sTTI中可能存在调度第二个sTTI中sPDSCH的sPDCCH,即终端也需要检测。另外,PDCCH中可以承载调度上行数据信道sPUSCH的上行授权。
或者,当PDCCH=3符号时,则由第二个sTTI中sPDCCH调度第二个sTTI中的sPDSCH,即默认在PDCCH为3符号时不会调度的第二个sTTI的sPDSCH。另外,PDCCH中可以承载调度上行数据信道sPUSCH的上行授权。
或者,当PDCCH=3符号时,则由PDCCH调度第二个sTTI中的sPDSCH,即无需指示跨sTTI调度,即默认在PDCCH为3符号时调度的是第二个sTTI的sPDSCH。第二个sTTI中没有调度第二个sTTI中sPDSCH的sPDCCH,即终端不需要检测第二个sTTI中调度sPDSCH的sPDCCH。另外,PDCCH中可以承载调度上行数据信道sPUSCH的上行授权。
通过本实施例五的方案,在PDCCH为3符号时,PDCCH也可以承载fast DCI或single-level DCI调度相邻的下一个sTTI并且无需增加跨TTI调度的额外信令指示开销。此时sPDCCH不存在时可以将更多的资源用于sPDSCH传输。
与相关技术相比,本公开实施例中通过限制DL sTTI band的资源分配的粒度和或DL sTTI band内资源分配的粒度,可以使得低时延业务与LTE传统业务高效地使用系统带宽中下行资源并避免资源浪费或冲突,同时减小DL sTTI band内部资源分配开销,从而实现低时延业务与LTE传统业务合理共存。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到根据上述实施例的方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件实现。基于这样的理解,本公开的技术方案本质上或者说对相关技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本公开各个实施例所述的方法。
实施例2
在本实施例中还提供了一种下行资源粒度的确定装置,该装置被配置为实现上述实施例及实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。以下实施例所描述的装置可以以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
根据本公开的另一个实施例,图8是根据本公开实施例的应用于基站一种下行资源粒度的确定装置结构框图,如图8所示,该装置还包括:
配置模块82,被配置为配置包含x个物理资源块PRB的集合,其中,该包含x个PRB的集合中的部分或全部资源用于发送第二下行控制信道和第二下行数据信道,其中,该x为正整数;其中,该x满足以下条件至少之一:为第一下行数据信道资源分配粒度的整数倍;为第二下行控制信道资源单元占用的PRB数目M或M/2或
Figure PCTCN2017104077-appb-000121
的整数倍;为第二下行数据信道资源分配粒度的整数倍;
发送模块84,与该配置模块82连接,被配置为通过高层信令或第一下行控 制信道承载的物理层信令发送用于配置该集合的配置信息;其中,该第一下行控制信道所在频域范围不受限于x个PRB所在的频域范围,该第二下行控制信道和该第二下行数据信道所在频域范围受限于x个PRB所在的频域范围。
可选地,该x为第二下行控制信道资源单元占用的PRB数目M或M/2或
Figure PCTCN2017104077-appb-000122
的整数倍,包括:该x为第二下行控制信道资源单元的占用的PRB数目M或M/2或
Figure PCTCN2017104077-appb-000123
的C倍,其中,该C为大于或等于0的整数。
可选地,该第二下行数据信道的资源分配粒度为以下之一:该第二下行控制信道资源单元占用的PRB数目M或M/2或
Figure PCTCN2017104077-appb-000124
个PRB;一个PRB;x/4个PRB;x/8个PRB。
可选地,该x同时满足以下条件:为该第一下行数据信道资源分配粒度的整数倍,该第二下行控制信道资源单元占用的PRB数目的整数倍。
可选地,在该第一下行数据信道资源分配粒度为资源块组RBG的情况下,该x满足以下条件之一:该第一下行数据信道资源分配粒度和该第二下行控制信道资源单元占用的PRB数目M或M/2或
Figure PCTCN2017104077-appb-000125
的公倍数的整数倍;或者,该第一下行数据信道资源分配粒度的M或M/2或
Figure PCTCN2017104077-appb-000126
倍,其中,该M为该第二下行控制信道资源单元占用的PRB数目。
可选地,该第二下行数据信道的资源分配粒度为以下之一:RBG;该第二下行控制信道资源单元占用的PRB数目M或M/2或
Figure PCTCN2017104077-appb-000127
个PRB;一个PRB;x/4个PRB;x/8个PRB。
可选地,在该x满足为第一下行数据信道资源分配粒度的整数倍的情况下,该第一下行数据信道资源分配粒度为PRB或RBG,该x为该第一下行数据信道资源分配粒度的C倍,其中,该C为大于或等于0的整数。
可选地,该第二下行数据信道的资源分配粒度满足以下条件之一:RBG;第二下行控制信道资源单元占用的PRB数目M或M/2或
Figure PCTCN2017104077-appb-000128
个PRB;一个PRB;x/4个PRB;x/8个PRB;Y份资源中的1份,将该第二下行数据信道的资源最多分为Y份,其中,Y-1份资源大小相同,Y为正整数。
可选地,该Y份资源的大小为以下之一:
Y-1份资源大小为
Figure PCTCN2017104077-appb-000129
第Y份资源大小为
Figure PCTCN2017104077-appb-000130
Y-1份资源大小为
Figure PCTCN2017104077-appb-000131
第Y份资源大小为
Figure PCTCN2017104077-appb-000132
其中P为RBG包含的PRB数目;
Y-1份资源大小为
Figure PCTCN2017104077-appb-000133
第Y份资源大小为
Figure PCTCN2017104077-appb-000134
其中Q为M或M/2或
Figure PCTCN2017104077-appb-000135
M为sCCE占用的PRB数目。
可选地,该第二下行数据信道的资源分配粒度为x/4或x/8或最多分配Y份资源时,包括以下之一:
在第二下行控制信道中使用3bits指示最多4份资源中的以下信息:{全部资源、前1/2份的资源、后1/2的资源、前1/4的资源、次前1/4的资源、次后1/4的资源、最后1/4的资源};
在第二下行控制信道中使用4bits指示最多8份资源中的以下信息:{全部资源、前1/2的资源、后1/2的资源、前1/4的资源、次前1/4的资源、次后1/4的资源、最后1/4的资源、第一份1/8的资源、第二份1/8的资源、第三份1/8的资源、第四份1/8的资源、第五份1/8的资源、第六份1/8的资源、第七份1/8的资源、第八份1/8的资源}。
可选地,该第二下行数据信道的资源分配粒度为x/4个PRB或x/8个PRB时,包括以下之一:
在第二下行控制信道中使用3bits指示最多4份资源中的以下信息:{全部资源、前1/2份的资源、后1/2的资源、前1/4的资源、次前1/4的资源、次后1/4的资源、最后1/4的资源};
在第二下行控制信道中使用4bits指示最多8份资源中的以下信息:{全部资源、前1/2的资源、后1/2的资源、前1/4的资源、次前1/4的资源、次后1/4的资源、最后1/4的资源、第一份1/8的资源、第二份1/8的资源、第三份1/8的资源、第四份1/8的资源、第五份1/8的资源、第六份1/8的资源、第七份1/8的资源、第八份1/8的资源}。
可选地,该第一下行控制信道在子帧中位于前两个符号时,在承载第二下行数据信道的下行授权时,调度的第二下行数据信道为子帧中前两个符号之后的TTI中的第二下行数据信道。
根据本公开的另一个实施例,还提供了一种下行资源粒度的确定装置,应 用于终端,该装置包括:
接收模块,被配置为接收通过高层信令或第一下行控制信道承载的物理层信令发送的用于配置集合的配置信息,其中该集合为基站分配的x个物理资源块PRB集合,其中,该包含x个PRB的集合中的部分或全部资源用于发送第二下行控制信道和第二下行数据信道,其中,该x为正整数;其中,该x满足以下条件至少之一:为第一下行数据信道资源分配粒度的整数倍;为第二下行控制信道资源单元占用的PRB数目M或M/2或
Figure PCTCN2017104077-appb-000136
的整数倍;为第二下行数据信道资源分配粒度的整数倍;其中,该第一下行控制信道所在频域范围不受限于x个PRB所在的频域范围,该第二下行控制信道和该第二下行数据信道所在频域范围受限于x个PRB所在的频域范围。
可选地,该x为第二下行控制信道资源单元占用的PRB数目M或M/2或
Figure PCTCN2017104077-appb-000137
的整数倍,包括:该x为第二下行控制信道资源单元的占用的PRB数目M或M/2或
Figure PCTCN2017104077-appb-000138
的C倍,其中,该C为大于或等于0的整数。
可选地,该第二下行数据信道的资源分配粒度为以下之一:
该第二下行控制信道资源单元占用的PRB数目M或M/2或
Figure PCTCN2017104077-appb-000139
个PRB;一个PRB;x/4个PRB;x/8个PRB。
可选地,该x同时满足以下条件:为该第一下行数据信道资源分配粒度的整数倍,该第二下行控制信道资源单元占用的PRB数目的整数倍。
可选地,在该第一下行数据信道资源分配粒度为资源块组RBG的情况下,该x满足以下条件之一:该第一下行数据信道资源分配粒度和该第二下行控制信道资源单元占用的PRB数目M或M/2或
Figure PCTCN2017104077-appb-000140
的公倍数的整数倍;或者,该第一下行数据信道资源分配粒度的M或M/2或
Figure PCTCN2017104077-appb-000141
倍,其中,该M为该第二下行控制信道资源单元占用的PRB数目。
可选地,该第二下行数据信道的资源分配粒度为以下之一:RBG;该第二下行控制信道资源单元占用的PRB数目M或M/2或
Figure PCTCN2017104077-appb-000142
个PRB;一个PRB;x/4个PRB;x/8个PRB。
可选地,在该x满足为第一下行数据信道资源分配粒度的整数倍的情况下,该第一下行数据信道资源分配粒度为PRB或RBG,该x为该第一下行数据信道 资源分配粒度的C倍,其中,该C为大于或等于0的整数。
可选地,该第二下行数据信道的资源分配粒度满足以下条件之一:RBG;第二下行控制信道资源单元占用的PRB数目M或M/2或
Figure PCTCN2017104077-appb-000143
个PRB;一个PRB;x/4个PRB;x/8个PRB;Y份资源中的1份,将该第二下行数据信道的资源最多分为Y份,其中,Y-1份资源大小相同,Y为正整数。
可选地,该Y份资源的大小为以下之一:
Y-1份资源大小为
Figure PCTCN2017104077-appb-000144
第Y份资源大小为
Figure PCTCN2017104077-appb-000145
Y-1份资源大小为
Figure PCTCN2017104077-appb-000146
第Y份资源大小为
Figure PCTCN2017104077-appb-000147
其中P为RBG包含的PRB数目;
Y-1份资源大小为
Figure PCTCN2017104077-appb-000148
第Y份资源大小为
Figure PCTCN2017104077-appb-000149
其中Q为M或M/2或
Figure PCTCN2017104077-appb-000150
M为短信道控制单元sCCE占用的PRB数目。
可选地,该第二下行数据信道的资源分配粒度为x/4或x/8或最多分配Y份资源时,包括以下之一:
在第二下行控制信道中使用3bits指示最多4份资源中的以下信息:{全部资源、前1/2份的资源、后1/2的资源、前1/4的资源、次前1/4的资源、次后1/4的资源、最后1/4的资源};
在第二下行控制信道中使用4bits指示最多8份资源中的以下信息:{全部资源、前1/2的资源、后1/2的资源、前1/4的资源、次前1/4的资源、次后1/4的资源、最后1/4的资源、第一份1/8的资源、第二份1/8的资源、第三份1/8的资源、第四份1/8的资源、第五份1/8的资源、第六份1/8的资源、第七份1/8的资源、第八份1/8的资源}。
可选地,该第二下行数据信道的资源分配粒度为x/4个PRB或x/8个PRB时,包括以下之一:
在第二下行控制信道中使用3bits指示最多4份资源中的以下信息:{全部资源、前1/2份的资源、后1/2的资源、前1/4的资源、次前1/4的资源、次后1/4的资源、最后1/4的资源};
在第二下行控制信道中使用4bits指示最多8份资源中的以下信息:{全部资源、前1/2的资源、后1/2的资源、前1/4的资源、次前1/4的资源、次后1/4 的资源、最后1/4的资源、第一份1/8的资源、第二份1/8的资源、第三份1/8的资源、第四份1/8的资源、第五份1/8的资源、第六份1/8的资源、第七份1/8的资源、第八份1/8的资源}。
可选地,该第一下行控制信道在子帧中位于前两个符号时,在承载第二下行数据信道的下行授权时,调度的第二下行数据信道为子帧中前两个符号之后的TTI中的第二下行数据信道。
上述各个模块是可以通过软件或硬件来实现的,对于后者,可以通过以下方式实现,但不限于此:上述模块均位于同一处理器中;或者,上述各个模块以任意组合的形式分别位于不同的处理器中。
实施例3
根据本公开的另一个实施例,还提供了一种下行资源粒度的确定系统,该系统包括:基站,终端;
该基站为该终端配置包含x个物理资源块PRB的集合,其中,该包含x个PRB的集合中的部分或全部资源用于发送第二下行控制信道和第二下行数据信道,其中,该x为正整数;
该基站通过高层信令或第一下行控制信道承载的物理层信令向该终端发送用于配置该集合的配置信息;
其中,该x满足以下条件至少之一:为第一下行数据信道资源分配粒度的整数倍;为第二下行控制信道资源单元占用的PRB数目M或M/2或
Figure PCTCN2017104077-appb-000151
的整数倍;为第二下行数据信道资源分配粒度的整数倍;
其中,该第一下行控制信道所在频域范围不受限于x个PRB所在的频域范围,该第二下行控制信道和该第二下行数据信道所在频域范围受限于x个PRB所在的频域范围。
可选地,该x为第二下行控制信道资源单元占用的PRB数目M或M/2或
Figure PCTCN2017104077-appb-000152
的整数倍,包括:该x为第二下行控制信道资源单元的占用的PRB数目M或M/2或
Figure PCTCN2017104077-appb-000153
的C倍,其中,该C为大于或等于0的整数。
可选地,该第二下行数据信道的资源分配粒度为以下之一:该第二下行控制信道资源单元占用的PRB数目M或M/2或
Figure PCTCN2017104077-appb-000154
个PRB;一个PRB;x/4个 PRB;x/8个PRB。
可选地,该x同时满足以下条件:为该第一下行数据信道资源分配粒度的整数倍,该第二下行控制信道资源单元占用的PRB数目的整数倍。
可选地,在该第一下行数据信道资源分配粒度为资源块组RBG的情况下,该x满足以下条件之一:该第一下行数据信道资源分配粒度和该第二下行控制信道资源单元占用的PRB数目M或M/2或
Figure PCTCN2017104077-appb-000155
的公倍数的整数倍;或者,该第一下行数据信道资源分配粒度的M或M/2或
Figure PCTCN2017104077-appb-000156
倍,其中,该M为该第二下行控制信道资源单元占用的PRB数目。
可选地,该第二下行数据信道的资源分配粒度为以下之一:RBG;该第二下行控制信道资源单元占用的PRB数目M或M/2或
Figure PCTCN2017104077-appb-000157
个PRB;一个PRB;x/4个PRB;x/8个PRB。
可选地,在该x满足为第一下行数据信道资源分配粒度的整数倍的情况下,该第一下行数据信道资源分配粒度为PRB或RBG,该x为该第一下行数据信道资源分配粒度的C倍,其中,该C为大于或等于0的整数。
可选地,该第二下行数据信道的资源分配粒度满足以下条件之一:RBG;第二下行控制信道资源单元占用的PRB数目M或M/2或
Figure PCTCN2017104077-appb-000158
个PRB;一个PRB;x/4个PRB;x/8个PRB;Y份资源中的1份,将该第二下行数据信道的资源最多分为Y份,其中,Y-1份资源大小相同,Y为正整数。
可选地,该Y份资源的大小为以下之一:
Y-1份资源大小为
Figure PCTCN2017104077-appb-000159
第Y份资源大小为
Figure PCTCN2017104077-appb-000160
Y-1份资源大小为
Figure PCTCN2017104077-appb-000161
第Y份资源大小为
Figure PCTCN2017104077-appb-000162
其中P为RBG包含的PRB数目;
Y-1份资源大小为
Figure PCTCN2017104077-appb-000163
第Y份资源大小为
Figure PCTCN2017104077-appb-000164
其中Q为M或M/2或
Figure PCTCN2017104077-appb-000165
M为sCCE占用的PRB数目。
可选地,该第二下行数据信道的资源分配粒度为x/4或x/8或最多分配Y份资源时,包括以下之一:
在第二下行控制信道中使用3bits指示最多4份资源中的以下信息:{全部资源、前1/2份的资源、后1/2的资源、前1/4的资源、次前1/4的资源、次后 1/4的资源、最后1/4的资源};
在第二下行控制信道中使用4bits指示最多8份资源中的以下信息:{全部资源、前1/2的资源、后1/2的资源、前1/4的资源、次前1/4的资源、次后1/4的资源、最后1/4的资源、第一份1/8的资源、第二份1/8的资源、第三份1/8的资源、第四份1/8的资源、第五份1/8的资源、第六份1/8的资源、第七份1/8的资源、第八份1/8的资源}。
可选地,该第二下行数据信道的资源分配粒度为x/4个PRB或x/8个PRB时,包括以下之一:
在第二下行控制信道中使用3bits指示最多4份资源中的以下信息:{全部资源、前1/2份的资源、后1/2的资源、前1/4的资源、次前1/4的资源、次后1/4的资源、最后1/4的资源};
在第二下行控制信道中使用4bits指示最多8份资源中的以下信息:{全部资源、前1/2的资源、后1/2的资源、前1/4的资源、次前1/4的资源、次后1/4的资源、最后1/4的资源、第一份1/8的资源、第二份1/8的资源、第三份1/8的资源、第四份1/8的资源、第五份1/8的资源、第六份1/8的资源、第七份1/8的资源、第八份1/8的资源}。
可选地,该第一下行控制信道在子帧中位于前两个符号时,在承载第二下行数据信道的下行授权时,调度的第二下行数据信道为子帧中前两个符号之后的TTI中的第二下行数据信道。
实施例4
本公开的实施例还提供了一种存储介质。所述存储介质可以是计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令设置为执行上述任一实施例中的方法。所述计算机可读存储介质可以是暂态计算机可读存储介质,也可以是非暂态计算机可读存储介质。可选地,在本实施例中,上述存储介质可以被设置为存储用于执行以下步骤的程序代码:
S1,基站配置包含x个物理资源块PRB的集合,其中,该包含x个PRB的集合中的部分或全部资源用于发送第二下行控制信道和第二下行数据信道,其 中,该x为正整数;其中,该x满足以下条件至少之一:为第一下行数据信道资源分配粒度的整数倍;为第二下行控制信道资源单元占用的PRB数目M或M/2或
Figure PCTCN2017104077-appb-000166
的整数倍;为第二下行数据信道资源分配粒度的整数倍;
S2,该基站通过高层信令或第一下行控制信道承载的物理层信令发送用于配置该集合的配置信息;其中,该第一下行控制信道所在频域范围不受限于x个PRB所在的频域范围,该第二下行控制信道和该第二下行数据信道所在频域范围受限于x个PRB所在的频域范围。
可选地,存储介质还被设置为存储用于执行以下步骤的程序代码:
S3,终端接收分配的x个物理资源块PRB集合,其中,该包含x个PRB的集合中的部分或全部资源用于发送第二下行控制信道和第二下行数据信道,其中,该x为正整数;其中,该x满足以下条件至少之一:为第一下行数据信道资源分配粒度的整数倍;为第二下行控制信道资源单元占用的PRB数目M或M/2或
Figure PCTCN2017104077-appb-000167
的整数倍;为第二下行数据信道资源分配粒度的整数倍;
S4,该终端接收通过高层信令或第一下行控制信道承载的物理层信令发送的用于配置该集合的配置信息;其中,该第一下行控制信道所在频域范围不受限于x个PRB所在的频域范围,该第二下行控制信道和该第二下行数据信道所在频域范围受限于x个PRB所在的频域范围。
可选地,在本实施例中,上述存储介质可以包括但不限于:U盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
可选地,在本实施例中,处理器根据存储介质中已存储的程序代码执行上述实施例中方法步骤。
可选地,本实施例中的示例可以参考上述实施例及可选实施方式中所描述的示例,本实施例在此不再赘述。
本公开实施例还提供了一种电子设备的结构示意图。参见图9,该电子设备包括:
至少一个处理器(processor)90,图9中以一个处理器90为例;和存储器 (memory)91,还可以包括通信接口(Communications Interface)92和总线93。其中,处理器90、通信接口92、存储器91可以通过总线93完成相互间的通信。通信接口92可以用于信息传输。处理器90可以调用存储器91中的逻辑指令,以执行上述实施例的方法。
此外,上述的存储器91中的逻辑指令可以通过软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。
存储器91作为一种计算机可读存储介质,可用于存储软件程序、计算机可执行程序,如本公开实施例中的方法对应的程序指令/模块。处理器90通过运行存储在存储器91中的软件程序、指令以及模块,从而执行功能应用以及数据处理,即实现上述方法实施例中的下行资源粒度的确定方法。
存储器91可包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序;存储数据区可存储根据终端设备的使用所创建的数据等。此外,存储器91可以包括高速随机存取存储器,还可以包括非易失性存储器。
本公开实施例的技术方案可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括一个或多个指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本公开实施例所述方法的全部或部分步骤。而前述的存储介质可以是非暂态存储介质,包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等多种可以存储程序代码的介质,也可以是暂态存储介质。
显然,本领域的技术人员应该明白,上述的本公开的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些 情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本公开不限制于任何特定的硬件和软件结合。
以上所述仅为本公开的实施例而已,并不用于限制本公开,对于本领域的技术人员来说,本公开可以有各种更改和变化。凡在本公开实施例的范围之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。
工业实用性
本申请提供的下行资源粒度的确定方法、装置及系统,解决了相关技术中低时延传输与LTE业务占用带宽冲突的问题,可以使得低时延业务与LTE传统业务高效地使用系统带宽中下行资源并避免资源浪费或冲突,同时减小DL sTTI band内部资源分配开销,从而实现低时延业务与LTE传统业务合理共存。

Claims (41)

  1. 一种下行资源粒度的确定方法,包括:
    基站配置包含x个物理资源块PRB的集合,其中,所述包含x个PRB的集合中的部分或全部资源用于发送第二下行控制信道和第二下行数据信道,其中,所述x为正整数;
    所述基站通过高层信令或第一下行控制信道承载的物理层信令发送用于配置所述集合的配置信息;
    其中,所述x满足以下条件至少之一:为第一下行数据信道资源分配粒度的整数倍;为第二下行控制信道资源单元占用的PRB数目M或M/2或
    Figure PCTCN2017104077-appb-100001
    的整数倍;为第二下行数据信道资源分配粒度的整数倍;
    其中,所述第一下行控制信道所在频域范围不受限于x个PRB所在的频域范围,所述第二下行控制信道和所述第二下行数据信道所在频域范围受限于x个PRB所在的频域范围。
  2. 根据权利要求1所述的方法,其中,所述x为第二下行控制信道资源单元占用的PRB数目M或M/2或
    Figure PCTCN2017104077-appb-100002
    的整数倍,包括:所述x为第二下行控制信道资源单元的占用的PRB数目M或M/2或
    Figure PCTCN2017104077-appb-100003
    的C倍,其中,所述C为大于或等于0的整数。
  3. 根据权利要求2所述的方法,其中,所述第二下行数据信道的资源分配粒度为以下之一:
    所述第二下行控制信道资源单元占用的PRB数目M或M/2或
    Figure PCTCN2017104077-appb-100004
    个PRB;一个PRB;x/4个PRB;x/8个PRB。
  4. 根据权利要求1所述的方法,其中,所述x同时满足以下条件:
    为所述第一下行数据信道资源分配粒度的整数倍,所述第二下行控制信道资源单元占用的PRB数目的整数倍。
  5. 根据权利要求4所述的方法,其中,在所述第一下行数据信道资源分配粒度为资源块组RBG的情况下,所述x满足以下条件之一:
    所述第一下行数据信道资源分配粒度和所述第二下行控制信道资源单元占用的PRB数目M或M/2或
    Figure PCTCN2017104077-appb-100005
    的公倍数的整数倍;
    或者,所述第一下行数据信道资源分配粒度的M或M/2或
    Figure PCTCN2017104077-appb-100006
    倍,其中,所述M为所述第二下行控制信道资源单元占用的PRB数目。
  6. 根据权利要求4所述的方法,其中,所述第二下行数据信道的资源分配粒度为以下之一:RBG;所述第二下行控制信道资源单元占用的PRB数目M或M/2或
    Figure PCTCN2017104077-appb-100007
    个PRB;一个PRB;x/4个PRB;x/8个PRB。
  7. 根据权利要求1所述的方法,其中,在所述x满足为第一下行数据信道资源分配粒度的整数倍的情况下,所述第一下行数据信道资源分配粒度为PRB或RBG,所述x为所述第一下行数据信道资源分配粒度的C倍,其中,所述C为大于或等于0的整数。
  8. 根据权利要求7所述的方法,其中,所述第二下行数据信道的资源分配粒度满足以下条件之一:RBG;第二下行控制信道资源单元占用的PRB数目M或M/2或
    Figure PCTCN2017104077-appb-100008
    个PRB;一个PRB;x/4个PRB;x/8个PRB;Y份资源中的1份,将所述第二下行数据信道的资源最多分为Y份,其中,Y-1份资源大小相同,Y为正整数。
  9. 根据权利要求8所述的方法,其中,所述Y份资源的大小为以下之一:
    Y-1份资源大小为
    Figure PCTCN2017104077-appb-100009
    第Y份资源大小为
    Figure PCTCN2017104077-appb-100010
    Y-1份资源大小为
    Figure PCTCN2017104077-appb-100011
    第Y份资源大小为
    Figure PCTCN2017104077-appb-100012
    其中P为RBG包含的PRB数目;
    Y-1份资源大小为
    Figure PCTCN2017104077-appb-100013
    第Y份资源大小为
    Figure PCTCN2017104077-appb-100014
    其中Q为M或M/2或
    Figure PCTCN2017104077-appb-100015
    M为sCCE占用的PRB数目。
  10. 根据权利要求8中所述的方法,其中,所述第二下行数据信道的资源分配粒度为x/4或x/8或最多分配Y份资源时,包括以下之一:
    在第二下行控制信道中使用3bits指示最多4份资源中的以下信息:{全部资源、前1/2份的资源、后1/2的资源、前1/4的资源、次前1/4的资源、次后1/4的资源、最后1/4的资源};
    在第二下行控制信道中使用4bits指示最多8份资源中的以下信息:{全部资源、前1/2的资源、后1/2的资源、前1/4的资源、次前1/4的资源、次后1/4的资源、最后1/4的资源、第一份1/8的资源、第二份1/8的资源、第三份1/8的资源、第四份1/8的资源、第五份1/8的资源、第六份1/8的资源、第七份1/8的资源、第八份1/8的资源}。
  11. 根据权利要求3或6中任一项所述的方法,其中,所述第二下行数据信道的资源分配粒度为x/4个PRB或x/8个PRB时,包括以下之一:
    在第二下行控制信道中使用3bits指示最多4份资源中的以下信息:{全部资源、前1/2份的资源、后1/2的资源、前1/4的资源、次前1/4的资源、次后1/4的资源、最后1/4的资源};
    在第二下行控制信道中使用4bits指示最多8份资源中的以下信息:{全部资源、前1/2的资源、后1/2的资源、前1/4的资源、次前1/4的资源、次后1/4的资源、最后1/4的资源、第一份1/8的资源、第二份1/8的资源、第三份1/8 的资源、第四份1/8的资源、第五份1/8的资源、第六份1/8的资源、第七份1/8的资源、第八份1/8的资源}。
  12. 一种下行资源粒度的确定方法,包括:第一下行控制信道在子帧中位于前两个符号或前三个符号时,承载的下行控制信息包括:
    调度上行数据信道的上行授权;或
    调度上行数据信道的上行授权,第二下行数据信道的下行授权。
  13. 根据权利要求12所述的方法,其中,所述承载的下行控制信息为调度第二下行数据信道的下行授权时,调度的第二下行数据信道为子帧中前两个符号或前三个符号之后的第一个TTI中的第二下行数据信道。
  14. 一种下行资源的确定下行资源粒度的确定方法,包括:
    终端接收分配的x个物理资源块PRB集合,其中,所述包含x个PRB的集合中的部分或全部资源用于发送第二下行控制信道和第二下行数据信道,其中,所述x为正整数;
    所述终端接收通过高层信令或第一下行控制信道承载的物理层信令发送的用于配置所述集合的配置信息;
    其中,所述x满足以下条件至少之一:为第一下行数据信道资源分配粒度的整数倍;为第二下行控制信道资源单元占用的PRB数目M或M/2或
    Figure PCTCN2017104077-appb-100016
    的整数倍;为第二下行数据信道资源分配粒度的整数倍;
    其中,所述第一下行控制信道所在频域范围不受限于x个PRB所在的频域范围,所述第二下行控制信道和所述第二下行数据信道所在频域范围受限于x个PRB所在的频域范围。
  15. 根据权利要求14所述的方法,其中,所述x为第二下行控制信道资源单 元占用的PRB数目M或M/2或
    Figure PCTCN2017104077-appb-100017
    的整数倍,包括:所述x为第二下行控制信道资源单元的占用的PRB数目M或M/2或
    Figure PCTCN2017104077-appb-100018
    的C倍,其中,所述C为大于或等于0的整数。
  16. 根据权利要求14所述的方法,其中,所述第二下行数据信道的资源分配粒度为以下之一:
    所述第二下行控制信道资源单元占用的PRB数目M或M/2或
    Figure PCTCN2017104077-appb-100019
    个PRB;一个PRB;x/4个PRB;x/8个PRB。
  17. 根据权利要求14所述的方法,其中,所述x同时满足以下条件:为所述第一下行数据信道资源分配粒度的整数倍,所述第二下行控制信道资源单元占用的PRB数目的整数倍。
  18. 根据权利要求17所述的方法,其中,在所述第一下行数据信道资源分配粒度为资源块组RBG的情况下,所述x满足以下条件之一:
    所述第一下行数据信道资源分配粒度和所述第二下行控制信道资源单元占用的PRB数目M或M/2或
    Figure PCTCN2017104077-appb-100020
    的公倍数的整数倍;
    或者,所述第一下行数据信道资源分配粒度的M或M/2或
    Figure PCTCN2017104077-appb-100021
    倍,其中,所述M为所述第二下行控制信道资源单元占用的PRB数目。
  19. 根据权利要求17所述的方法,其中,所述第二下行数据信道的资源分配粒度为以下之一:RBG;所述第二下行控制信道资源单元占用的PRB数目M或M/2或
    Figure PCTCN2017104077-appb-100022
    个PRB;一个PRB;x/4个PRB;x/8个PRB。
  20. 根据权利要求14所述的方法,其中,在所述x满足为第一下行数据信道资源分配粒度的整数倍的情况下,所述第一下行数据信道资源分配粒度为PRB或RBG,所述x为所述第一下行数据信道资源分配粒度的C倍,其中,所述C 为大于或等于0的整数。
  21. 根据权利要20所述的方法,其中,所述第二下行数据信道的资源分配粒度满足以下条件之一:RBG;第二下行控制信道资源单元占用的PRB数目M或M/2或
    Figure PCTCN2017104077-appb-100023
    个PRB;一个PRB;x/4个PRB;x/8个PRB;Y份资源中的1份,将所述第二下行数据信道的资源最多分为Y份,其中,Y-1份资源大小相同,Y为正整数。
  22. 根据权利要求21所述的方法,其中,所述Y份资源的大小为以下之一:
    Y-1份资源大小为
    Figure PCTCN2017104077-appb-100024
    第Y份资源大小为
    Figure PCTCN2017104077-appb-100025
    Y-1份资源大小为
    Figure PCTCN2017104077-appb-100026
    第Y份资源大小为
    Figure PCTCN2017104077-appb-100027
    其中P为RBG包含的PRB数目;
    Y-1份资源大小为
    Figure PCTCN2017104077-appb-100028
    第Y份资源大小为
    Figure PCTCN2017104077-appb-100029
    其中Q为M或M/2或
    Figure PCTCN2017104077-appb-100030
    M为sCCE占用的PRB数目。
  23. 根据权利要求21中所述的方法,其中,所述第二下行数据信道的资源分配粒度为x/4或x/8或最多分配Y份资源时,包括以下之一:
    在第二下行控制信道中使用3bits指示最多4份资源中的以下信息:{全部资源、前1/2份的资源、后1/2的资源、前1/4的资源、次前1/4的资源、次后1/4的资源、最后1/4的资源};
    在第二下行控制信道中使用4bits指示最多8份资源中的以下信息:{全部资源、前1/2的资源、后1/2的资源、前1/4的资源、次前1/4的资源、次后1/4的资源、最后1/4的资源、第一份1/8的资源、第二份1/8的资源、第三份1/8的资源、第四份1/8的资源、第五份1/8的资源、第六份1/8的资源、第七份1/8的资源、第八份1/8的资源}。
  24. 根据权利要求16或19中任一项所述的方法,其中,所述第二下行数据信道的资源分配粒度为x/4个PRB或x/8个PRB时,包括以下之一:
    在第二下行控制信道中使用3bits指示最多4份资源中的以下信息:{全部资源、前1/2份的资源、后1/2的资源、前1/4的资源、次前1/4的资源、次后1/4的资源、最后1/4的资源};
    在第二下行控制信道中使用4bits指示最多8份资源中的以下信息:{全部资源、前1/2的资源、后1/2的资源、前1/4的资源、次前1/4的资源、次后1/4的资源、最后1/4的资源、第一份1/8的资源、第二份1/8的资源、第三份1/8的资源、第四份1/8的资源、第五份1/8的资源、第六份1/8的资源、第七份1/8的资源、第八份1/8的资源}。
  25. 一种下行资源粒度的确定方法,包括:第一下行控制信道在子帧中位于前两个符号或前三个符号时,承载的下行控制信息包括:
    调度上行数据信道的上行授权;或者
    调度所述上行数据信道的上行授权,第二下行数据信道的下行授权。
  26. 根据权利要求25所述的方法,其中,终端在接收下行控制信息时,包括:
    在所述第一下行控制信道中接收调度所述上行数据信道的上行授权、子帧中前两个符号或前三个符号之后的第一个TTI中的第二下行数据信道的下行授权中至少之一,以及在所述子帧中前两个符号或前三个符号之后的第一个TTI中接收调度所述TTI中的所述第二下行数据信道的下行授权。
  27. 根据权利要求25所述的方法,其中,所述终端在接收所述下行控制信息时,包括:在所述第一下行控制信道中接收调度上行数据信道的上行授权、不期望接收调度子帧中前两个符号或前三个符号之后的第一个TTI中的第二下行 数据信道的下行授权,以及在所述子帧中前两个符号或前三个符号之后的第一个TTI中接收调度所述TTI中的第二下行数据信道的下行授权。
  28. 根据权利要求25所述的方法,其中,所述终端在接收所述下行控制信息时,在所述第一下行控制信道中接收调度上行数据信道的上行授权、子帧中前两个符号或前三个符号之后的第一个TTI中的第二下行数据信道的下行授权中至少之一,以及在所述子帧中前两个符号或前三个符号之后的第一个TTI中不期望接收调度所述TTI中的第二下行数据信道的下行授权。
  29. 一种下行资源粒度的确定装置,应用于基站,所述装置包括:
    配置模块,被配置为配置包含x个物理资源块PRB的集合,其中,所述包含x个PRB的集合中的部分或全部资源用于发送第二下行控制信道和第二下行数据信道,其中,所述x为正整数;
    其中,所述x满足以下条件至少之一:为第一下行数据信道资源分配粒度的整数倍;为第二下行控制信道资源单元占用的PRB数目M或M/2或
    Figure PCTCN2017104077-appb-100031
    的整数倍;为第二下行数据信道资源分配粒度的整数倍;
    发送模块,被配置为通过高层信令或第一下行控制信道承载的物理层信令发送用于配置所述集合的配置信息;
    其中,所述第一下行控制信道所在频域范围不受限于x个PRB所在的频域范围,所述第二下行控制信道和所述第二下行数据信道所在频域范围受限于x个PRB所在的频域范围。
  30. 根据权利要求29所述的装置,其中,所述x为第二下行控制信道资源单元占用的PRB数目M或M/2或
    Figure PCTCN2017104077-appb-100032
    的整数倍,包括:所述x为第二下行控制信道资源单元的占用的PRB数目M或M/2或
    Figure PCTCN2017104077-appb-100033
    的C倍,其中,所述C为大 于或等于0的整数。
  31. 根据权利要求29所述的装置,其中,所述x同时满足以下条件:
    为所述第一下行数据信道资源分配粒度的整数倍,所述第二下行控制信道资源单元占用的PRB数目的整数倍。
  32. 根据权利要求29所述的装置,其中,在所述x满足为第一下行数据信道资源分配粒度的整数倍的情况下,所述第一下行数据信道资源分配粒度为PRB或RBG,所述x为所述第一下行数据信道资源分配粒度的C倍,其中,所述C为大于或等于0的整数。
  33. 一种下行资源粒度的确定装置,应用于终端,所述装置包括:
    接收模块,被配置为接收通过高层信令或第一下行控制信道承载的物理层信令发送的用于配置集合的配置信息,其中所述集合为基站分配的x个物理资源块PRB集合,其中,所述包含x个PRB的集合中的部分或全部资源用于发送第二下行控制信道和第二下行数据信道,其中,所述x为正整数;
    其中,所述x满足以下条件至少之一:为第一下行数据信道资源分配粒度的整数倍;为第二下行控制信道资源单元占用的PRB数目M或M/2或
    Figure PCTCN2017104077-appb-100034
    的整数倍;为第二下行数据信道资源分配粒度的整数倍;
    其中,所述第一下行控制信道所在频域范围不受限于x个PRB所在的频域范围,所述第二下行控制信道和所述第二下行数据信道所在频域范围受限于x个PRB所在的频域范围。
  34. 根据权利要求33所述的装置,其中,所述x为第二下行控制信道资源单元占用的PRB数目M或M/2或
    Figure PCTCN2017104077-appb-100035
    的整数倍,包括:所述x为第二下行控制信道资源单元的占用的PRB数目M或M/2或
    Figure PCTCN2017104077-appb-100036
    的C倍,其中,所述C为大 于或等于0的整数。
  35. 根据权利要求33所述的装置,其中,所述x同时满足以下条件:
    为所述第一下行数据信道资源分配粒度的整数倍,所述第二下行控制信道资源单元占用的PRB数目的整数倍。
  36. 根据权利要求33所述的装置,其中,在所述x满足为第一下行数据信道资源分配粒度的整数倍的情况下,所述第一下行数据信道资源分配粒度为PRB或RBG,所述x为所述第一下行数据信道资源分配粒度的C倍,其中,所述C为大于或等于0的整数。
  37. 一种下行资源粒度的确定系统,包括:基站,终端;
    所述基站为所述终端配置包含x个物理资源块PRB的集合,其中,所述包含x个PRB的集合中的部分或全部资源用于发送第二下行控制信道和第二下行数据信道,其中,所述x为正整数;
    所述基站通过高层信令或第一下行控制信道承载的物理层信令向所述终端发送用于配置所述集合的配置信息;
    其中,所述x满足以下条件至少之一:为第一下行数据信道资源分配粒度的整数倍;为第二下行控制信道资源单元占用的PRB数目M或M/2或
    Figure PCTCN2017104077-appb-100037
    的整数倍;为第二下行数据信道资源分配粒度的整数倍;
    其中,所述第一下行控制信道所在频域范围不受限于x个PRB所在的频域范围,所述第二下行控制信道和所述第二下行数据信道所在频域范围受限于x个PRB所在的频域范围。
  38. 根据权利要求37所述的系统,其中,所述x为第二下行控制信道资源单元占用的PRB数目M或M/2或
    Figure PCTCN2017104077-appb-100038
    的整数倍,包括:所述x为第二下行控制 信道资源单元的占用的PRB数目M或M/2或
    Figure PCTCN2017104077-appb-100039
    的C倍,其中,所述C为大于或等于0的整数。
  39. 根据权利要求37所述的系统,其中,所述x同时满足以下条件:
    为所述第一下行数据信道资源分配粒度的整数倍,所述第二下行控制信道资源单元占用的PRB数目的整数倍。
  40. 根据权利要求37所述的系统,其中,在所述x满足为第一下行数据信道资源分配粒度的整数倍的情况下,所述第一下行数据信道资源分配粒度为PRB或RBG,所述x为所述第一下行数据信道资源分配粒度的C倍,其中,所述C为大于或等于0的整数。
  41. 一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令设置为执行权利要求1-13或14-28中任一项的方法。
PCT/CN2017/104077 2016-09-30 2017-09-28 下行资源粒度的确定方法、装置及系统 WO2018059513A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610879219.2A CN107889250A (zh) 2016-09-30 2016-09-30 下行资源粒度的确定方法、装置及系统
CN201610879219.2 2016-09-30

Publications (1)

Publication Number Publication Date
WO2018059513A1 true WO2018059513A1 (zh) 2018-04-05

Family

ID=61762492

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/104077 WO2018059513A1 (zh) 2016-09-30 2017-09-28 下行资源粒度的确定方法、装置及系统

Country Status (2)

Country Link
CN (1) CN107889250A (zh)
WO (1) WO2018059513A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101790224A (zh) * 2009-01-22 2010-07-28 中兴通讯股份有限公司 基站向中继站下发控制信息及传输控制信息的方法及系统
US20120099518A1 (en) * 2009-06-26 2012-04-26 Lg Electronics Inc. Apparatus for transmitting and receiving control information for repeater and method thereof
CN103391563A (zh) * 2012-05-11 2013-11-13 中兴通讯股份有限公司 下行控制信息发送方法、检测方法、基站及用户设备
CN104938014A (zh) * 2013-01-18 2015-09-23 高通股份有限公司 用于长期演进(lte)的基于增强型控制信道单元(ecce)的物理下行链路共享信道(pdsch)资源分配

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101790224A (zh) * 2009-01-22 2010-07-28 中兴通讯股份有限公司 基站向中继站下发控制信息及传输控制信息的方法及系统
US20120099518A1 (en) * 2009-06-26 2012-04-26 Lg Electronics Inc. Apparatus for transmitting and receiving control information for repeater and method thereof
CN103391563A (zh) * 2012-05-11 2013-11-13 中兴通讯股份有限公司 下行控制信息发送方法、检测方法、基站及用户设备
CN104938014A (zh) * 2013-01-18 2015-09-23 高通股份有限公司 用于长期演进(lte)的基于增强型控制信道单元(ecce)的物理下行链路共享信道(pdsch)资源分配

Also Published As

Publication number Publication date
CN107889250A (zh) 2018-04-06

Similar Documents

Publication Publication Date Title
CN108347776B (zh) 一种通信系统中资源分配的方法及设备
US8184585B2 (en) Method for allocating resource, and method for transmitting resource allocation information
WO2018228500A1 (zh) 一种调度信息传输方法及装置
WO2018141244A1 (zh) 一种资源调度方法、装置及系统
WO2019096004A1 (zh) 资源配置方法、装置和系统
WO2010078843A1 (zh) 资源分配方法、网络设备和无线系统
WO2018126854A1 (zh) 一种上行传输方法、终端、网络侧设备
US20200045733A1 (en) Uplink Scheduling For NR-U
JP7019914B2 (ja) 無線通信方法および装置
JP7408825B2 (ja) サーチスペースのモニタリング方法及び機器
WO2017054777A1 (zh) 无线通信中的一种降低网络延迟的方法和装置
CN109803383B (zh) 发送和接收信息的方法及装置
US11258571B2 (en) Downlink control information transmission method, apparatus, and system
JP6455521B2 (ja) 無線通信システム、基地局装置、端末装置及び送信方法
CN111555839B (zh) 载波聚合中上行载波资源的分配方法及设备
WO2024093878A1 (zh) 一种通信方法及装置
JP7288902B2 (ja) データ伝送方法、端末装置及びネットワーク装置
WO2018228497A1 (zh) 一种指示方法、处理方法及装置
CN108811142B (zh) 资源分配方法、相关装置及系统
CN108135031B (zh) 资源调度方法、装置及系统
CN111742599A (zh) 无线通信方法、用户设备和网络设备
CN111277376B (zh) 混合自动重传请求应答传输方法及设备
WO2018059513A1 (zh) 下行资源粒度的确定方法、装置及系统
WO2017205999A1 (zh) 一种数据传输的方法、设备和系统
CN112996114B (zh) 资源调度方法、装置、设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17854963

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17854963

Country of ref document: EP

Kind code of ref document: A1