WO2018059440A1 - 干扰测量方法、装置及系统,干扰测量指示方法及装置 - Google Patents

干扰测量方法、装置及系统,干扰测量指示方法及装置 Download PDF

Info

Publication number
WO2018059440A1
WO2018059440A1 PCT/CN2017/103670 CN2017103670W WO2018059440A1 WO 2018059440 A1 WO2018059440 A1 WO 2018059440A1 CN 2017103670 W CN2017103670 W CN 2017103670W WO 2018059440 A1 WO2018059440 A1 WO 2018059440A1
Authority
WO
WIPO (PCT)
Prior art keywords
interference measurement
interference
receiving
configuration
receiving mode
Prior art date
Application number
PCT/CN2017/103670
Other languages
English (en)
French (fr)
Inventor
陈艺戬
李儒岳
鲁照华
张楠
吴昊
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP17854890.5A priority Critical patent/EP3522403B1/en
Priority to US16/338,339 priority patent/US20200028654A1/en
Publication of WO2018059440A1 publication Critical patent/WO2018059440A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/345Interference values
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0073Allocation arrangements that take into account other cell interferences
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/20Monitoring; Testing of receivers
    • H04B17/21Monitoring; Testing of receivers for calibration; for correcting measurements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/336Signal-to-interference ratio [SIR] or carrier-to-interference ratio [CIR]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0026Transmission of channel quality indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/20Monitoring; Testing of receivers
    • H04B17/24Monitoring; Testing of receivers with feedback of measurements to the transmitter
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/382Monitoring; Testing of propagation channels for resource allocation, admission control or handover

Definitions

  • the present invention relates to the field of communications, and in particular, to an interference measurement method, apparatus, and system, and an interference measurement indication method and apparatus.
  • the information reflecting the status of the downlink physical channel mainly includes the following parts: Channel Quality Indication (CQI), precoding.
  • CQI Channel Quality Indication
  • PMI Pre-coding Matrix Indicator
  • RI Rank Indicator
  • CRI CSI-RS resource index
  • the CQI is an indicator to measure the quality of the downlink channel. It will have an important impact on the scheduling behavior of network-side devices.
  • the CQI is represented by an integer value of 0 to 15, which respectively represent different CQI levels, and different CQIs correspond to respective modulation modes and coding rate (MCS), which are divided into 16 cases and can be used in 4 cases.
  • MCS modulation modes and coding rate
  • the user equipment selects a CQI index corresponding to a suitable transport block modulation and coding level and recommends it to the network side device according to the channel quality, so that the network side device performs modulation and coding according to the information. It is best to use the transmission capacity of its channel. Therefore, CQI can also be understood as the quantization of channel quality information. If the quality is good, it can support higher-order modulation and coding methods to obtain higher speed. If the quality is poor, it can only be transmitted in lower-order modulation and coding mode. Guarantee the robustness of transmission;
  • the recommended CQI is generally assumed to be:
  • the network side device simultaneously transmits RI data using the recommended RI as the number of layers of spatial multiplexing, and uses the layer mapping method specified in the protocol.
  • the CINR is calculated according to the SINR (signal to interference and noise ratio) obtained by the receiving algorithm.
  • RI/PMI/CQI calculation and selection is affected by two aspects: channel measurement and interference noise measurement;
  • Another way is to use an explicit method to report interference.
  • the useful signal is calculated by the network side device according to the transmission technology and transmission power used. In this mode, the terminal needs to measure and report the interference.
  • the terminal needs to measure the interference, so that the channel quality can be accurately reflected, so that the transmission can be performed most efficiently, so the accurate interference measurement is the guarantee system.
  • Interference measurement based on reference pilots including interference measurement based on CRS, interference measurement based on CSI-RS, and interference measurement based on proprietary demodulation pilot.
  • Interference measurement based on interference measurement resource which is a dedicated interference measurement resource
  • the reference pilot-based interference measurement is based on the interference received by the reference pilot as a data signal (Data). First, the reference signal is correctly estimated, then the residual is the interference. This method considers that the reference signal and the data are subject to similar interference. In the case of high pilot density, the correlation of the channel can be used to distinguish Interference information and reference signal information, so the performance of channel estimation is also better. This is the early interference measurement method in LTE;
  • Another method is to perform interference measurement according to the IMR. Since the IMR is configurable, and the general IMR is that the cell does not transmit signals, all the interferences detected by other cells may be different, and different IMR positions may correspond to different interferences.
  • the above-mentioned method for performing interference measurement based on reference pilots has the advantage that it can flexibly assign interference measurement resources, measure characteristics of interference signals that are desired to be learned, and this method is based on the measured signals. It is completely interference, there is no aliasing with the wanted signal, so the accuracy is higher; in LTE-A, this method is mainly used.
  • 4G is generally considered to have fewer antennas at the receiving end, and the direction of the receiving antenna is substantially omnidirectional, so the receiving mode is relatively fixed, and the measured interference is less affected by the receiving mode.
  • the signal arrives at the receiving end from multiple paths. If the receiving end is the reception of the omnidirectional wide beam, the receiving end will receive interference in all directions;
  • the transmitting end and the receiving end of the communication system generally use multiple antennas to transmit and receive to obtain a higher rate, which also enables the transmitting and receiving end to have beamforming capability, and can align the beam with a certain beam. Receive in one direction to obtain greater efficiency of transmission and reception, which is equivalent to having a good bundling effect. At the same time, the beams of different nodes can be staggered to reduce interference.
  • the network side device at the transmitting end only specifies the resources for interference measurement, and does not limit the receiving mode of the receiving end interference, because the mainstream configuration uses the omnidirectional wide beam for receiving, and some classics.
  • the interference suppression capability of the receiver is different, it is not particularly large, and the interference measurement results can be considered to be basically the same.
  • the technology development receiver introduces multiple antennas to form a narrow beam, there are multiple receiving channels, which will be a trend.
  • the 3GPP research requirement report published in 3GPP TR 36.913 explicitly mentions the configuration of the terminal receiving antenna as follows:
  • Round 30GHz or Around 70GHz Up to 32 Tx and Rx antenna elements
  • Around 4GHz Up to 8 Tx and Rx antenna elements
  • multiple antennas at the receiving end can be divided into multiple receiving channels RXU, and each receiving channel can adopt different receiving beam directions and widths; multiple receiving Some received weights can also be set between channels, so there is a lot of uncertainty in the interference measurement.
  • the results obtained by using different narrow beams, different RXU selection or combining, and interference measurement are completely different. The difference may be several tens of dB; if the interference is just aligned, the interference may be amplified, and if there is no alignment interference, the interference may be almost zero.
  • the more antennas at the receiving end The narrower the beam, the greater the uncertainty of the measurement results;
  • the terminal may use the problem that is not agreed by the protocol, and use some receiving methods with always small interference to perform interference measurement and report small interference.
  • the network side equipment can not be scheduled in an optimal manner, affecting the overall performance of the network; the network side equipment has no way to control the interference measurement behavior of the terminal.
  • some more desirable interference information such as its desire to measure the magnitude of interference in certain directions.
  • the interference measurement criteria between different user-side devices are different, the user-side device cannot objectively reflect the actual interference, and the network-side device is difficult to control the user-side interference measurement. There is no better technical solution to the problem.
  • An embodiment of the present invention provides an interference measurement method, apparatus, and system, and an interference measurement indication method and apparatus, to at least solve the difference in interference measurement criteria between different user-side devices caused by an increase in the number of receiving antennas in the related art.
  • the user side device cannot objectively reflect the actual interference, and the network side device has difficulty in controlling the user side interference measurement.
  • an interference measurement method including: acquiring an interference measurement resource configuration and an interference measurement receiving mode configuration; performing interference measurement according to the interference measurement resource configuration and the interference measurement receiving mode configuration.
  • an interference measurement indication method including: acquiring one or more sets of interference measurement resources and corresponding interference measurement receiving mode configurations; and respectively performing interference measurement corresponding to the interference measurement resources
  • the resource configuration and the interference measurement receiving mode configuration are sent to the user side device.
  • an interference measurement apparatus including: an acquisition module configured to acquire an interference measurement resource configuration and an interference measurement reception mode configuration; and a measurement module configured to configure and The interference measurement receiving mode is configured to perform interference measurement.
  • an interference measurement system including: a network side device, configured to acquire multiple sets of interference measurement resources and corresponding interference measurement receiving mode configurations; and the plurality of sets of the interference measurement resources respectively Corresponding interference measurement resource configuration and the interference
  • the measurement receiving mode configuration is sent to the user side device; the user side device is configured to acquire the interference measurement resource configuration and the interference measurement receiving mode configuration; and perform interference measurement according to the interference measurement resource configuration and the interference measurement receiving mode configuration.
  • a storage medium is also provided.
  • the storage medium is arranged to store program code for performing the following steps:
  • a storage medium is also provided.
  • the storage medium is arranged to store program code for performing the following steps:
  • the interference measurement resource configuration corresponding to the multiple sets of the interference measurement resources and the interference measurement receiving mode configuration are respectively sent to the user side device.
  • the storage medium is further arranged to store program code for performing the following steps:
  • the interference measurement is performed after the network side device and the user side device configure the predetermined corresponding receiving mode according to the interference measurement receiving manner, the number of receiving antennas existing in the related art may be solved.
  • the measurement criteria of the interference between different user-side devices are different.
  • the user-side device cannot objectively reflect the actual interference.
  • the network-side device is difficult to control the user-side interference measurement.
  • the user-side device is better able to predict the transmission. Interference and provide more dimensions for network side devices to interfere with the effects of coordination.
  • FIG. 1 is a hardware structural diagram of a mobile terminal according to an interference measurement method according to an embodiment of the present invention
  • FIG. 2 is a flow chart of an interference measurement method according to an embodiment of the present invention.
  • FIG. 3 is a flowchart of an interference measurement indication method according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of an interference measurement resource grouping according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of another interference measurement resource grouping according to an embodiment of the present invention.
  • FIG. 7 is a structural diagram of an interference measuring apparatus according to an embodiment of the present invention.
  • FIG. 8 is a structural diagram of an interference measurement indicating device according to an embodiment of the present invention.
  • FIG. 9 is a structural diagram of another interference measurement indicating device according to an embodiment of the present invention.
  • FIG. 10 is a block diagram of an interference measurement system in accordance with an embodiment of the present invention.
  • FIG. 1 is a hardware structural diagram of a mobile terminal according to an interference measurement method according to an embodiment of the present invention.
  • the mobile terminal 10 may include one or more (only one shown) processor 102 (the processor 102 may include, but is not limited to, a processing device such as a microprocessor MCU or a programmable logic device FPGA).
  • a memory 104 that is configured to store data
  • a transmission device 106 that is configured as a communication function.
  • terminal 10 may also include more or fewer components than those shown in FIG. 1, or have a different configuration than that shown in FIG.
  • the memory 104 may be configured as a software program and a module for storing application software, such as program instructions/modules corresponding to the interference measurement method in the embodiment of the present invention, and the processor 102 executes each by executing a software program and a module stored in the memory 104.
  • a functional application and data processing, that is, the above method is implemented.
  • Memory 104 may include high speed random access memory, and may also include non-volatile memory such as one or more magnetic storage devices, flash memory, or other non-volatile solid state memory.
  • memory 104 may further include memory remotely located relative to processor 102, which may be connected to terminal 10 via a network. Examples of such networks include, but are not limited to, the Internet, intranets, local area networks, mobile communication networks, and combinations thereof.
  • Transmission device 106 is arranged to receive or transmit data via a network.
  • the above specific network example may include a wireless network provided by a communication provider of the terminal 10.
  • the transmission device 106 includes a Network Interface Controller (NIC) that can be connected to other network devices through a base station to communicate with the Internet.
  • the transmission device 106 can be a Radio Frequency (RF) module configured to communicate with the Internet wirelessly.
  • NIC Network Interface Controller
  • RF Radio Frequency
  • FIG. 2 is a flowchart of an interference measurement method according to an embodiment of the present invention. As shown in FIG. 2, the flow includes the following steps. step:
  • Step S202 acquiring interference measurement resource configuration and interference measurement receiving mode configuration
  • Table 2 is an interference resource measurement table according to an embodiment of the present invention. As shown in table 2,
  • Interference measurement resources 2 No hair No hair send No hair Interference measurement resources 3 No hair No hair No hair send Interference measurement resources 4 No hair No hair send send Interference measurement resources 5 No hair send send No hair Interference measurement resources 6 No hair send No hair send Interference measurement resources 7 No hair send send send
  • interference measurement resources described in the present invention actually correspond to interferences of different non-working cells.
  • the interference measurement resource configuration includes: an interference strength of the interference cell and an interference feature.
  • interference information generated between multiple interfering cells may be superimposed. Therefore, the interference measurement resource configuration in this embodiment should actually include the superimposed interference strength and interference characteristics.
  • each interference measurement resource can flexibly correspond to different interference measurement configurations.
  • Table 3 is a correspondence table of interference measurement resources and their configurations according to the present embodiment. as shown in Table 3,
  • Interference measurement resource configuration Interference measurement resource 1 Measuring the interference strength and characteristics of the interfering cell 1 Interference measurement resources 2 Measuring the interference strength and characteristics of the interfering cell 2 Interference measurement resources 3 Measuring the interference intensity and characteristics of the interfering cell 3 Interference measurement resources 4 Measuring the superimposed interference intensity and characteristics of interfering cells 2 and 3 Interference measurement resources 5 Measuring the superimposed interference intensity and characteristics of interfering cells 1 and 2 Interference measurement resources 6 Measuring the superimposed interference intensity and characteristics of interfering cells 1 and 3 Interference measurement resources 7 Measuring the superimposed interference intensity and characteristics of interfering cells 1, 2 and 3
  • the interference measurement resource configuration may be obtained from configuration signaling of the network side device; the network side device may pre-define some patterns for the resource location, and according to the above pattern, the corresponding interference measurement resource configuration may be determined.
  • the interference measurement resource may be a periodic resource or a resource that is sent in a multi-slot multi-shot manner.
  • the interference measurement resource may also be a resource that is sent once, and exists only in one subframe.
  • the interference measurement receiving mode configuration includes at least one of the following: a configuration of the receiving antenna, a configuration of the receiving beam, a range configuration of the receiving direction, a configuration of the received polarization mode, and a configuration of the receiving weight.
  • the interference measurement receiving manner includes: a receiving antenna, a receiving beam, a range of receiving directions, a received polarization mode, and a receiving weight.
  • Table 4 corresponds to the interference measurement receiving mode corresponding to the receiving antenna, as shown in Table 4:
  • Interference measurement receiving method Receive 1a Receiving antenna panel 1 receiving Receive 1b Receiving antenna panel 2 receiving Receive 1c Receiving antenna panels 1 and 2 receive
  • the receiving antenna panel in Table 4 can be replaced by a receiving antenna unit, a receiving antenna port, a receiving channel, and the like, which have antenna elements for receiving antenna operation.
  • Table 5 is the interference measurement receiving mode corresponding to the receiving weight, as shown in Table 5:
  • Interference measurement receiving method Receive 2a Receiving weight 1 Receive 2b Receiving weight 2 Receive 2c Receiving weight 3
  • the receiving weights indicated above include: the receiving weight of the antenna in the same polarization direction and the receiving weight of the antenna in different polarization directions;
  • Table 6 is the interference measurement receiving mode corresponding to the range of the receiving direction, as shown in FIG. 6:
  • Interference measurement effect receiving method Receive 3a Measure horizontal angles from 0-180, vertical angles within 45-90 degrees of interference Receive 3b Measure horizontal angles from 0-180, with vertical angles of 90-135 degrees Receive 3c Measure horizontal angles of 180-360, vertical angles of 45-90 degrees of interference Receive 3d Measure horizontal angles 180-360, vertical angles within 90-135 degrees of interference
  • Table 7 is the interference measurement receiving mode corresponding to the receiving beam, as shown in Table 7:
  • the corresponding to the receive beam index may also be the receive weight.
  • the interference measurement receiving manner may be determined according to configuration signaling of the network side device.
  • the network side device sends the receiving mode corresponding to the receiving beam to the user side device through high layer signaling.
  • the user side device After receiving the receiving mode corresponding to the receiving beam in the high layer signaling, the user side device follows the receiving mode.
  • the receiving mode of Table 6 performs the corresponding reception.
  • the receiving manners corresponding to the multiple interference measurement resources are determined according to configuration signaling corresponding to the multiple interference measurement resources.
  • the configuration signaling indicated by the foregoing includes: signaling in an explicit manner and signaling in an implicit manner.
  • the interference measurement resource and the predetermined manner of the receiving manner determine a corresponding receiving manner.
  • the binding relationship corresponding to the receiving mode or the associated signal needs to be found first.
  • the interference measurement receiving manner may be determined according to the received manner of the configured first type of signal.
  • the first type of signal includes at least: a downlink measurement pilot, a downlink demodulation pilot, an uplink demodulation pilot, an uplink measurement pilot, and an uplink random access signal.
  • the first type of signal resource location associated with the interference measurement receiving mode is determined according to the appointment or indication information.
  • the first type of signal resource location includes: a port, a time domain location.
  • the foregoing-mentioned agreement refers to the pre-configured association information between the network side device and the user side device.
  • the user side device can determine the interference measurement receiving mode after acquiring the interference measurement receiving mode according to the agreement.
  • Resource location such as associated port or time domain location.
  • the indication information indicated above is information configured by the network side device.
  • the user side device can determine the resource location such as the port or the time domain location associated with the interference measurement receiving mode after acquiring the interference measurement receiving mode configuration according to the indication information.
  • the interference measurement receiving manner may be determined according to a transmit beam configured by the network side device.
  • the interference measurement receiving mode may be determined according to the indication signaling of the network side.
  • the receiving manner when the interference measurement is performed is determined according to the optimal receiving beam corresponding to the transmitting beam.
  • the interference measurement receiving mode may select and feed back beam determination according to the user side device.
  • the interference measurement receiving mode is determined according to the indication signaling of the network side device.
  • determining a receiving manner when the interference measurement is performed according to an optimal receiving beam corresponding to the feedback beam is performed according to an optimal receiving beam corresponding to the feedback beam.
  • the interference measurement receiving manner may be determined according to a time domain location to which the interference measurement resource belongs.
  • Step S204 Perform interference measurement according to the interference measurement resource configuration and the interference measurement receiving mode configuration.
  • the user equipment receives the interference signal and performs measurement on the interference measurement resource according to the determined interference measurement resource receiving manner.
  • the interference measurement result is fed back to the network side device.
  • the feedback manner includes: a display feedback manner and an implicit feedback manner.
  • the display feedback method is the feedback interference size, and the interference correlation matrix can directly reflect the interference measurement result.
  • the implicit feedback method is to combine the signal measurement part and send the determined CQI to the network side device.
  • the interference measurement criterion between different user-side devices is different due to the increase in the number of receiving antennas in the related art.
  • the user-side device cannot objectively reflect the actual interference, and the network-side device is difficult to the user side.
  • the problem of interference measurement control achieves better real-time interference of the user-side device and predicts the effect of providing more dimensions for the network-side device for interference coordination.
  • FIG. 3 is a flowchart of an interference measurement indication method according to an embodiment of the present invention. Including the following steps:
  • Step S302 acquiring one or more sets of interference measurement resources and corresponding interference measurement receiving mode configurations
  • Step S304 The interference measurement resource configuration corresponding to the interference measurement resource and the interference measurement receiving mode configuration are respectively sent to the user side device.
  • FIG. 4 is a flowchart of another interference measurement indication method according to an embodiment of the present invention. As shown in FIG. 4, the flow further includes the following steps on the basis of the steps shown in FIG. 3:
  • Step S402 dividing the interference measurement resources into multiple groups
  • the interference measurement resources can be divided into multiple groups.
  • the division method includes at least the following:
  • FIG. 5 is a schematic diagram of an interference measurement resource group according to an embodiment of the present invention. Figure 5 Shown. In FIG. 5, the interference measurement resources of different subframes are divided into different groups, but if the interference resources are periodic resources, the number of sets after the grouping is many, so the typical way is to divide the subframe set, and the different subframe sets. Interference measurement resources belong to different groups.
  • FIG. 6 is a schematic diagram of another interference measurement resource group according to an embodiment of the present invention. As shown in FIG. 6 , the interference measurement resources of different sub-bands are divided into different groups in FIG. 6 , but if the number of sub-bands with a large bandwidth is large, the number of sets after grouping will be many, so the typical way is to divide the sub-group. A set of bands, and interference measurement resources in different sets of subbands belong to different groups.
  • the network side device indicates, by the indication instruction, the interference measurement resource group to which the interference measurement resource belongs. At the same time, the terminal side device also determines the manner of the corresponding group according to the indication information.
  • the network side device may also configure a corresponding receiving manner for each interference measurement resource group.
  • Step S404 Configure indication signaling of the receiving mode for the measured interference pilot resources in the plurality of the measured interference resources, respectively.
  • the indication signaling of the interference measurement receiving manner is used to indicate that the user side device receives the interference measurement resource from one or more weights in the received weight codebook set.
  • the codebook includes: an uplink transmission codebook and a downlink reception codebook.
  • the indication signaling may indicate the codeword of the uplink transmission codebook, corresponding to the reception weight, and used to determine the interference measurement. How to receive.
  • the codewords included in the downlink receiving codebook may be pre-agreed or configurable; the indication signaling may indicate the codewords therein, corresponding to the received weights, and used to determine the receiving manner when the interference measurement is performed.
  • the indication signaling is used to indicate the first category associated with the interference measurement receiving manner The type of the signal; determining the interference measurement receiving mode according to the receiving manner corresponding to the associated first type of signal.
  • the indication signaling is used to indicate a type of the first type of signal associated with the interference measurement receiving manner; and the interference measurement receiving manner is determined according to a receiving manner corresponding to the associated first type of signal.
  • the types of the first type of signals include: downlink measurement pilot, downlink demodulation pilot, uplink demodulation pilot, uplink measurement pilot, and uplink random access signal.
  • the indication signaling is used to indicate a resource location of the first type of signal associated with the interference measurement receiving manner; and the interference measurement receiving manner is determined according to a receiving manner corresponding to the associated first type of signal.
  • the first type of signal resource location includes: a port, a time domain location.
  • Embodiment 1 a corresponding description has been made in Embodiment 1, and the user-side device is instructed to determine the interference measurement receiving manner by using the first type of signaling, that is, the signaling by the network side device in an implicit manner.
  • the indication signaling is used to indicate a binding relationship of the receiving manners between the multiple sets of interference measurement resources.
  • the interference measurement is indicated by an implicit manner signaling. It is not visible to network side devices. Therefore, it is necessary to first find the binding relationship corresponding to the receiving mode or the associated signal. It should be pointed out that the binding relationship indicated above represents the relevance of the receiving method. And the correlation includes: the same relationship and other relationships.
  • Table 8 provides a method of determining the manner in which interference measurement resources are received based on the ports of the bundled signals. As shown in Table 8,
  • Table 9 provides an indication of interference measurement with the port and time domain location of the signal according to the binding. The method of receiving the source. As shown in Table 9,
  • Interference measurement resource Binding signal Interference measurement resource group 1 Bind signal port a, time domain position t1 Interference Measurement Resource Group 2 Bind signal port b, time domain position t2
  • the indication signaling is used to indicate a transmit beam associated with the interference measurement receiving mode.
  • the indication signaling is used to indicate a feedback beam associated with the interference measurement receiving mode.
  • the interference measurement criterion between different user-side devices is different due to the increase in the number of receiving antennas in the related art.
  • the user-side device cannot objectively reflect the actual interference, and the network-side device is difficult to the user side.
  • the problem of interference measurement control achieves better real-time interference of the user-side device and predicts the effect of providing more dimensions for the network-side device for interference coordination.
  • the method according to the above embodiment can be implemented by means of software plus a necessary general hardware platform, and of course, by hardware, but in many cases, the former is A better implementation.
  • the technical solution of the present invention which is essential or contributes to the prior art, may be embodied in the form of a software product stored in a storage medium (such as ROM/RAM, disk,
  • the optical disc includes a number of instructions for causing a terminal device (which may be a cell phone, a computer, a server, or a network device, etc.) to perform the methods described in various embodiments of the present invention.
  • module may implement a combination of software and/or hardware of a predetermined function.
  • apparatus described in the following embodiments is preferably implemented in software, hardware, or a combination of software and hardware is implemented. It is also possible and conceived.
  • FIG. 7 is a structural diagram of an interference measuring apparatus according to an embodiment of the present invention. As shown in FIG. 7, the apparatus includes an acquiring module 72 and a measuring module 74.
  • the obtaining module 72 is configured to acquire an interference measurement resource configuration and an interference measurement receiving mode configuration
  • the measurement module 74 is configured to perform interference measurement according to the interference measurement resource configuration and the interference measurement reception mode configuration.
  • the interference receiving manner corresponding to the interference measurement receiving mode configuration is determined by at least: determining according to configuration signaling of the network side device; determining according to the configured receiving manner of the first type of signal; and according to the agreement or indication information Determining the first type of signal resource location associated with the interference measurement receiving mode; determining according to the transmission beam configured by the network side device; determining and feeding back the beam determination according to the user side device and determining according to the time domain location to which the interference measurement resource belongs.
  • module may implement a combination of software and/or hardware of a predetermined function.
  • apparatus described in the following embodiments is preferably implemented in software, hardware, or a combination of software and hardware, is also possible and contemplated.
  • FIG. 8 is a structural diagram of an interference measurement indication device according to an embodiment of the present invention. As shown in FIG. 8, the device includes an acquisition module 82 and a transmission module 84.
  • the obtaining module 82 is configured to acquire one or more sets of interference measurement resources and corresponding interference measurement receiving mode configurations
  • the sending module 84 is configured to separately send the interference measurement resource configuration corresponding to the interference measurement resource and the interference measurement receiving mode configuration to the user side device.
  • FIG. 9 is a structural diagram of another interference measurement indicating device according to an embodiment of the present invention. As shown in FIG. 9, the device includes: in addition to all the modules shown in FIG.
  • a grouping module 92 configured to divide the interference measurement resources into multiple groups
  • the configuration module 94 is configured to configure indication signaling of the receiving mode for the measured interference pilot resources in the plurality of the measured interference resources, respectively.
  • each of the above modules may be implemented by software or hardware.
  • the foregoing may be implemented by, but not limited to, the foregoing modules are all located in the same processor; or, the above modules are in any combination.
  • the forms are located in different processors.
  • FIG. 10 is a structural diagram of an interference measurement system according to an embodiment of the present invention. As shown in FIG. 10, the device includes: a network side device 1002 and a user side device. 1004.
  • the network side device 1002 is configured to acquire one or more sets of interference measurement resources and corresponding interference measurement receiving mode configurations, and respectively configure interference interference resource configurations corresponding to multiple sets of the interference measurement resources and the interference measurement receiving mode configuration To the user side device;
  • the user side device 1004 is configured to acquire the interference measurement resource configuration and the interference measurement receiving mode configuration, and perform interference measurement according to the interference measurement resource configuration and the interference measurement receiving mode configuration.
  • Embodiments of the present invention also provide a storage medium.
  • the storage medium can be configured to store program code for performing the following steps:
  • the foregoing storage medium may include, but not limited to, a USB flash drive, a Read-Only Memory (ROM), a Random Access Memory (RAM), a mobile hard disk, and a magnetic memory.
  • ROM Read-Only Memory
  • RAM Random Access Memory
  • a mobile hard disk e.g., a hard disk
  • magnetic memory e.g., a hard disk
  • Embodiments of the present invention also provide a storage medium.
  • the foregoing storage medium may be configured to store program code for performing the following steps:
  • the interference measurement resource configuration corresponding to the multiple sets of the interference measurement resources and the interference measurement receiving mode configuration are respectively sent to the user side device.
  • the storage medium is further arranged to store program code for performing the following steps:
  • the foregoing storage medium may include, but not limited to, a USB flash drive, a Read-Only Memory (ROM), a Random Access Memory (RAM), a mobile hard disk, and a magnetic memory.
  • ROM Read-Only Memory
  • RAM Random Access Memory
  • a mobile hard disk e.g., a hard disk
  • magnetic memory e.g., a hard disk
  • modules or steps of the present invention described above can be implemented by a general-purpose computing device that can be centralized on a single computing device or distributed across a network of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device such that they may be stored in the storage device by the computing device and, in some cases, may be different from the order herein.
  • the steps shown or described are performed, or they are separately fabricated into individual integrated circuit modules, or a plurality of modules or steps thereof are fabricated as a single integrated circuit module.
  • the invention is not limited to any specific combination of hardware and software.
  • the interference measurement is performed after the network side device and the user side device configure the predetermined corresponding receiving mode according to the interference measurement receiving manner, the number of receiving antennas existing in the related art may be solved.
  • the measurement criteria of the interference between different user-side devices are different.
  • the user-side device cannot objectively reflect the actual interference.
  • the network-side device is difficult to control the user-side interference measurement.
  • the user-side device is better able to predict the transmission. Interference and provide more dimensions for network side devices to interfere with the effects of coordination.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明提供了一种干扰测量方法、装置及系统,干扰测量指示方法及装置。其中,该干扰测量方法包括:获取干扰测量资源配置以及干扰测量接收方式配置;根据所述干扰测量资源配置以及所述干扰测量接收方式配置进行干扰测量。通过本发明,解决了相关技术中存在的由于接收天线的数目增加,所导致的不同用户侧设备之间干扰测量准则不同,用户侧设备不能够客观反映实际的干扰,网络侧设备难以对用户侧干扰测量进行控制的问题,达到用户侧设备更好的预测传输时的真实干扰以及为网络侧设备提供更多的维度用于干扰协调的效果。

Description

干扰测量方法、装置及系统,干扰测量指示方法及装置 技术领域
本发明涉及通信领域,具体而言,涉及一种干扰测量方法、装置及系统,干扰测量指示方法及装置。
背景技术
在长期演进系统(Long Term Evolution,简称LTE)中,反映下行物理信道状态的信息(Channel State Information,简称CSI)主要包括以下几部分内容:信道质量指示(Channels quality indication,简称CQI)、预编码矩阵指示(Pre-coding Matrix Indicator,简称PMI)、秩指示(Rank Indicator,简称RI),导频资源索引(CSI-RS resource index,简称CRI)。其中CQI为衡量下行信道质量好坏的一个指标。会对网络侧设备的调度行为产生重要影响。在3GPP TS 36.213协议中CQI用0~15的整数值来表示,分别代表了不同的CQI等级,不同CQI对应着各自的调制方式和编码码率(MCS),共分16种情况,可以采用4比特信息来表示,如表1所示:
表1
Figure PCTCN2017103670-appb-000001
Figure PCTCN2017103670-appb-000002
在LTE协议中,用户侧设备(User Equipment,简称UE)根据信道质量,选择一种合适的传输块调制编码等级对应的CQI索引推荐给网络侧设备,使得网络侧设备根据该信息进行调制编码可以最好程度发挥其信道的传输能力。因此CQI也可以理解为信道质量信息的量化,如果质量好,可以支持较高阶的调制编码方式,获得更高的速度,如果质量差,只能以较低阶的调制编码方式进行传输,以保障传输的鲁棒性;
在MIMO中,如果使用隐式的方式进信道知道测量一般来说推荐的CQI有如下假设:
(1)网络侧设备使用推荐的RI作为空间复用的层数同时传输RI个数据,并使用协议中规定的层映射方式。
(2)用推荐的PMI对信号预编码处理。
(3)干扰和噪声由用户侧设备测量得到。
根据(1)(2)(3)并采用终端实际使用的接收算法,根据该接收算法处理后得到的SINR(信干噪比)来计算CQI.
RI/PMI/CQI计算和选择的准确程度受到2个方面的影响:信道测量和干扰噪声测量;
还有一种方式是采用显式的方式来上报干扰,有用信号在网络侧设备侧根据使用的传输技术和发送功率自行计算,这种方式下终端需要对干扰进行测量并上报;
所以,不管是在终端侧测量CQI还是网络侧设备自行计算CQI,都需要终端进行干扰的测量,才能使得信道质量能够准确的反映,这样才能最高效的进行传输,因此准确的干扰测量是保障系统性能充分发挥的一个重要的条件;错误的干扰信息可能导致层数与实际信道质量状况不匹配,比如实际只能支持2层,确由于干扰噪声信息的测量错误,误判为能够支持 4层,这样可能导致误码率很高。或者是,实际只能支持低阶的编码调制方式,而误判为可以支持高阶编码调制,也会导致误码率过高。反之,则有可能能够支持多层及高阶编码调制,实际只使用了较少层和低阶编码方式进行传输,导致传输资源的浪费。
现有的干扰测量方法有很多种,主要包括两种:
基于参考导频进行干扰测量:包括基于CRS进行干扰测量、基于CSI-RS进行干扰测量,基于专有解调导频进行干扰测量。
基于干扰测量资源,(interfere measurement resource,简称IMR)进行干扰测量,这是一个专用的干扰测量资源
基于参考导频的干扰测量,其思想是,根据参考导频受到的干扰做为数据信号(Data)受到的干扰。先把参考信号正确的估计出来,那么残余的就是受到的干扰,这种方法认为参考信号和数据受到的干扰情况相似,在导频密度较高的情况下,利用信道的相关性,可以分辨出干扰信息和参考信号的信息,所以信道估计的性能也是比较好的。这是LTE中早期的干扰测量方式;
另外一种方法即根据IMR进行干扰测量,由于IMR可配置,而且一般IMR是本小区不发送信号的,所以测到的都是其他小区的干扰,不同的IMR位置可能对应不同的干扰,相比于前面提到的基于参考导频进行干扰测量的方法,这种方法的优势在于,其能够灵活地指配干扰测量资源,测量期望获知的干扰信号的特征,并且这种方法由于测到的信号完全都是干扰,不存在与有用信号的混叠,因此准确性更高;在LTE-A中,主要使用这种方法
现有技术中,4G典型的考虑都是接收端天线少,并且接收天线的方向基本时全向的,因此接收方式比较固定,测量到的干扰受到接收方式的影响比较小
从信道的角度来看,信号是从多条路径到达接收端的,如果接收端是全向宽波束的接收,接收端会接收到各个方向上的干扰;
随着技术的发展,而通信系统中发送端和接收端一般会采用采多根天线发送和接收来获取更高的速率,这也使得收发端都有了波束成形能力,可以将波束对准某个方向进行接收,以获得更大的发送接收的效率,相当于具有很好的集束效果,同时,也可以将不同节点的波束错开,减少干扰。
现有的干扰测量技术中,发送端网络侧设备只指定了干扰测量的资源,并没有对接收端干扰接收方式进行限定,因为主流的配置均是使用全向的宽波束进行接收,并且一些经典接收机的干扰抑制能力虽然有差别,但不是特别大,可以认为干扰测量结果基本一致。但随着技术发展接收端引入多根天线形成窄的波束,有多个接收通道,将会是一个趋势,3GPP发布的5G的研究需求报告TR 36.913中明确提到了终端接收天线的配置如下:
Round 30GHz or Around 70GHz:Up to 32 Tx and Rx antenna elements Around 4GHz:Up to 8 Tx and Rx antenna elements
对于多根接收天线使用的接收方式就可能有很多种,我们知道接收端的多根天线可以划分为多个接收通道RXU,而每个接收通道有可以采用不同的接收波束方向及宽度;多个接收通道之间也可以设定一些接收的权值,那么这样的话干扰测量就有很大的不确定性,用不同的窄波束、不同的RXU选择或合并、进行干扰测量得到的结果是完全不一样的,有可能差别达到几十个dB;如果刚好对准了干扰,则可能会使得干扰被放大,而如果没有对准干扰,则可能干扰几乎为0,总的来说接收端天线越多,波束越窄,测量结果的不确定性越大;
在接收端的接收方式存在多样性的情况下,如果没有约定,干扰测量的结果是如何测出来的对于网络侧设备是未知的;这样的话网络侧设备在缺少这部分信息的情况下也就不能有效的利用接收端的干扰消除能力来进行更准确干扰协调;丢失了接收空间中干扰协调的控制能力;在接收端接收方式具有较大灵活选择空间的情况下,用户侧设备间也会存在干扰测量准则不一可能导致的公平性问题,部分终端可能会利用协议未约定的问题,采用一些干扰总是较小的接收方式来进行干扰测量,上报小的干扰而 获取更多的调度机会,不能客观的反映各终端实际的干扰,网络侧设备不能以最优的方式进行调度,影响了网络的整体性能;网络侧设备也没有办法去控制终端的干扰测量行为以获得一些更期望获得的干扰信息,比如其期望去测量某些方向上干扰大小。
因此,针对相关技术中由于接收天线的数目增加,所导致的不同用户侧设备之间干扰测量准则不同,用户侧设备不能够客观反映实际的干扰,网络侧设备难以对用户侧干扰测量进行控制的问题,还没有一种比较好的技术方案。
发明内容
本发明实施例提供了一种干扰测量方法、装置及系统,干扰测量指示方法及装置,以至少解决相关技术中由于接收天线的数目增加,所导致的不同用户侧设备之间干扰测量准则不同,用户侧设备不能够客观反映实际的干扰,网络侧设备难以对用户侧干扰测量进行控制的问题。
根据本发明的一个实施例,提供了一种干扰测量方法,包括:获取干扰测量资源配置以及干扰测量接收方式配置;根据所述干扰测量资源配置以及所述干扰测量接收方式配置进行干扰测量。
根据本发明的另一个实施例,提供了一种干扰测量指示方法,包括:获取一套或多套干扰测量资源以及对应的干扰测量接收方式配置;分别将与所述干扰测量资源对应的干扰测量资源配置以及所述干扰测量接收方式配置发送至用户侧设备。
根据本发明的再一个实施例,提供了一种干扰测量装置,包括:获取模块,设置为获取干扰测量资源配置以及干扰测量接收方式配置;测量模块,设置为根据所述干扰测量资源配置以及所述干扰测量接收方式配置进行干扰测量。
根据本发明的另一个实施例,提供了一种干扰测量系统,包括:网络侧设备,设置为获取多套干扰测量资源以及对应的干扰测量接收方式配置;分别将与多套所述干扰测量资源对应的干扰测量资源配置以及所述干扰 测量接收方式配置发送至用户侧设备;用户侧设备,设置为获取所述干扰测量资源配置以及所述干扰测量接收方式配置;根据所述干扰测量资源配置以及干扰测量接收方式配置进行干扰测量。
根据本发明的又一个实施例,还提供了一种存储介质。该存储介质设置为存储用于执行以下步骤的程序代码:
S1,获取干扰测量资源配置以及干扰测量接收方式配置;
S2,根据所述干扰测量资源配置以及所述干扰测量接收方式配置进行干扰测量。
根据本发明的又一个实施例,还提供了一种存储介质。该存储介质设置为存储用于执行以下步骤的程序代码:
S1,获取多套干扰测量资源以及对应的干扰测量接收方式配置;
S2,分别将与多套所述干扰测量资源对应的干扰测量资源配置以及所述干扰测量接收方式配置发送至用户侧设备。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:
S3,将所述干扰测量资源分为多组;
S4,分别为多组所述测量干扰资源中的测量干扰导频资源配置接收方式的指示信令。
通过本发明实施例,由于在网络侧设备与用户侧设备之间根据干扰测量接收方式配置预定相应的接收方式后进行干扰测量,因此,可以解决相关技术中存在的由于接收天线的数目增加,所导致的不同用户侧设备之间干扰测量准则不同,用户侧设备不能够客观反映实际的干扰,网络侧设备难以对用户侧干扰测量进行控制的问题,达到用户侧设备更好的预测传输时的真实干扰以及为网络侧设备提供更多的维度用于干扰协调的效果。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发 明的不当限定。在附图中:
图1是本发明实施例的一种干扰测量方法的移动终端的硬件结构图;
图2是根据本发明实施例的一种干扰测量方法的流程图;
图3是根据本发明实施例的一种干扰测量指示方法的流程图;
图4是根据本发明实施例的另一种干扰测量指示方法的流程图;
图5是根据本发明实施例的一种干扰测量资源分组的示意图;
图6是根据本发明实施例的另一种干扰测量资源分组的示意图;
图7是根据本发明实施例的一种干扰测量装置的结构图;
图8是根据本发明实施例的一种干扰测量指示装置的结构图;
图9是根据本发明实施例的另一种干扰测量指示装置的结构图;
图10是根据本发明实施例的一种干扰测量系统的结构图。
具体实施方式
下文中将参考附图并结合实施例来详细说明本发明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
需要说明的是,本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
实施例1
本申请实施例一所提供的方法实施例可以在移动终端、计算机终端或者类似的运算装置中执行。以运行在终端上为例,图1是本发明实施例的一种干扰测量方法的移动终端的硬件结构图。如图1所示,移动终端10可以包括一个或多个(图中仅示出一个)处理器102(处理器102可以包括但不限于微处理器MCU或可编程逻辑器件FPGA等的处理装置)、设置为存储数据的存储器104、以及设置为通信功能的传输装置106。本领域普通技术人员可以理解,图1所示的结构仅为示意,其并不对上述电子 装置的结构造成限定。例如,终端10还可包括比图1中所示更多或者更少的组件,或者具有与图1所示不同的配置。
存储器104可设置为存储应用软件的软件程序以及模块,如本发明实施例中的干扰测量方法对应的程序指令/模块,处理器102通过运行存储在存储器104内的软件程序以及模块,从而执行各种功能应用以及数据处理,即实现上述的方法。存储器104可包括高速随机存储器,还可包括非易失性存储器,如一个或者多个磁性存储装置、闪存、或者其他非易失性固态存储器。在一些实例中,存储器104可进一步包括相对于处理器102远程设置的存储器,这些远程存储器可以通过网络连接至终端10。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
传输装置106设置为经由一个网络接收或者发送数据。上述的网络具体实例可包括终端10的通信供应商提供的无线网络。在一个实例中,传输装置106包括一个网络适配器(Network Interface Controller,NIC),其可通过基站与其他网络设备相连从而可与互联网进行通讯。在一个实例中,传输装置106可以为射频(Radio Frequency,RF)模块,其设置为通过无线方式与互联网进行通讯。
在本实施例中提供了一种运行于图1中所示终端的干扰测量方法,图2是根据本发明实施例的一种干扰测量方法的流程图,如图2所示,该流程包括如下步骤:
步骤S202,获取干扰测量资源配置以及干扰测量接收方式配置;
需要指出的是,干扰测量资源的选择一般是在零功率测量导频上由网络侧设备来确定的。为了更好的测量干扰测量资源,本实施例中默认正在工作的服务小区不发送任何信号,而测到的信号都是来自其他非服务小区的干扰信号。表2是根据本发明实施例的干扰资源测量表。如表2所示,
表2
  服务小区 干扰小区1 干扰小区2 干扰小区3
干扰测量资源1 未发 发送 未发 未发
干扰测量资源2 未发 未发 发送 未发
干扰测量资源3 未发 未发 未发 发送
干扰测量资源4 未发 未发 发送 发送
干扰测量资源5 未发 发送 发送 未发
干扰测量资源6 未发 发送 未发 发送
干扰测量资源7 未发 发送 发送 发送
因此,可以理解的是,本发明中所描述的干扰测量资源实际上是对应了不同非工作小区的干扰。
可选地,干扰测量资源配置包括:干扰小区的干扰强度以及干扰特征。此外,多个干扰小区之间产生干扰信息可能会产生叠加,因此,本实施例中的干扰测量资源配置实际上还应当包括叠加后的干扰强度以及干扰特征。
需要指出的是,每一个干扰测量资源可以灵活地对应不同的干扰测量配置,例如,表3是根据本实施例的一种干扰测量资源及其配置的对应表。如表3所示,
表3
  干扰测量资源配置
干扰测量资源1 测量干扰小区1的干扰强度及特征
干扰测量资源2 测量干扰小区2的干扰强度及特征
干扰测量资源3 测量干扰小区3的干扰强度及特征
干扰测量资源4 测量干扰小区2和3的叠加干扰强度及特征
干扰测量资源5 测量干扰小区1和2的叠加干扰强度及特征
干扰测量资源6 测量干扰小区1和3的叠加干扰强度及特征
干扰测量资源7 测量干扰小区1、2和3的叠加干扰强度及特征
可选地,干扰测量资源配置可以从网络侧设备的配置信令中获取;网络侧设备会为资源位置会预先定义一些pattern,根据上述pattern便可以确定相应的干扰测量资源配置。
需要指出的是,干扰测量资源可以是周期资源,也可以是以多时隙multi-shot方式发送的资源。当然干扰测量资源也可以是一次发送的资源,只在一个子帧中存在。
可选地,干扰测量接收方式配置至少包括以下之一:接收天线的配置、接收波束的配置,接收方向的范围配置,接收的极化方式配置以及接收权值的配置。
可选地,本领域的技术人员容易理解的是,干扰测量接收方式包括:接收天线,接收波束,接收方向的范围,接收的极化方式以及接收权值。
具体的,表4是对应于接收天线对应的干扰测量接收方式,如表4所示:
表4
  干扰测量接收方式
接收1a 接收天线面板1接收
接收1b 接收天线面板2接收
接收1c 接收天线面板1和2接收
需要指出的是,表4中的接收天线面板可以替换为接收天线单元,接收天线端口,接收通道等其他具有接收天线工作的天线元件。
具体的,表5是接收权值对应的干扰测量接收方式,如表5所示:
表5
  干扰测量接收方式
接收2a 接收权值1
接收2b 接收权值2
接收2c 接收权值3
接收2d 接收权值4
需要指出的是,上述所指出的接收权值包括:同极化方向的天线的接收权值以及是不同极化方向上天线的接收权值;
具体的,表6是接收方向的范围对应的干扰测量接收方式,如图6所示:
表6
  干扰测量效接收方式
接收3a 测量水平角度0-180,垂直角度45-90度内的干扰
接收3b 测量水平角度0-180,垂直角度90-135度内的干扰
接收3c 测量水平角度180-360,垂直角度45-90度内的干扰
接收3d 测量水平角度180-360,垂直角度90-135度内的干扰
具体的,表7是接收波束对应的干扰测量接收方式,如表7所示:
表7
  干扰测量接收方式
接收4a 接收波束1
接收4b 接收波束2
接收4c 接收波束3
接收4d 接收波束4
接收4e 接收波束5
接收4f 接收波束6
接收4g 接收波束7
接收4h 接收波束8
需要指出的是,与接收波束索引对应的也可以是接收权值。
可选地,干扰测量接收方式可以根据网络侧设备的配置信令确定。例如,网络侧设备将接收波束对应的接收方式通过高层信令发送至用户侧设备。用户侧设备在接收到该高层信令中的接收波束对应的接收方式后按照 表6的接收方式执行相应的接收。
具体的,当存在多个干扰测量资源组时,分别根据所述多个干扰测量资源对应的配置信令确定与所述多个干扰测量资源对应的接收方式。
可选地,上述所指出的配置信令包括:显式方式的信令以及隐式方式的信令。
具体地,如果是利用显式方式的信令进行指示的话,那么可以理解干扰测量资源与接收方式预先确定好的对应关系确定相应的接收方式。
具体地,如果是隐式方式的信令进行指示的话,那么则需要先找到接收方式对应的绑定关系或者是相关联信号。
可选地,干扰测量接收方式可以根据配置的第一类信号的接收方式确定。
需要指出的是,该第一类信号至少包括:下行测量导频、下行解调导频、上行解调导频、上行测量导频、上行随机接入信号。
可选地,根据约定或指示信息确定与干扰测量接收方式关联的第一类信号资源位置。
可选地,第一类信号资源位置包括:端口、时域位置。
需要指出的是,上述所指出的约定是指网络侧设备与用户侧设备双方预先配置的关联信息,用户侧设备根据该约定,在获取干扰测量接收方式配置之后,便能够确定与干扰测量接收方式关联的端口或时域位置等资源位置。
需要指出的是,上述所指出的指示信息是由网络侧设备配置的信息。用户侧设备根据该指示信息,在获取干扰测量接收方式配置之后,便能够确定与干扰测量接收方式关联的端口或时域位置等资源位置。
可选地,干扰测量接收方式可以根据网络侧设备配置的发送波束确定。
具体地,当存在多个候选发送波束时,可以根据所述网络侧的指示信令确定所述干扰测量接收方式。
可选地,根据该发送波束对应的最佳接收波束来确定干扰测量时的接收方式。
可选地,干扰测量接收方式可以根据用户侧设备选择并反馈波束确定。
具体地,当存在多个所述选择并反馈的波束时,根据所述网络侧设备的指示信令选择确定干扰测量接收方式。
可选地,根据该反馈波束对应的最佳接收波束来确定干扰测量时的接收方式。
可选地,干扰测量接收方式可以根据干扰测量资源所属的时域位置确定。
步骤S204,根据所述干扰测量资源配置以及所述干扰测量接收方式配置进行干扰测量。
可选地,用户侧设备根据确定后的干扰测量资源接收方式,在扰测量资源上接收干扰信号并进行测量。
可选地,在进行干扰测量之后,将干扰测量结果反馈给网络侧设备。
具体地,反馈方式包括:显示反馈方式以及隐式反馈方式。需要指出的是显示反馈方式是反馈干扰大小,干扰相关矩阵等直接能够反映出干扰测量结果的信息。而隐式反馈方式则是与信号测量部分合并后将确定的CQI发送给网络侧设备。
通过上述步骤,解决了相关技术中存在的由于接收天线的数目增加,所导致的不同用户侧设备之间干扰测量准则不同,用户侧设备不能够客观反映实际的干扰,网络侧设备难以对用户侧干扰测量进行控制的问题,达到了用户侧设备更好的预测传输时的真实干扰以及为网络侧设备提供更多的维度用于干扰协调的效果。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到根据上述实施例的方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理 解,本发明的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本发明各个实施例所述的方法。
实施例2
在本实施例中提供了一种运行于图1中所示终端的干扰测量指示方法,图3是根据本发明实施例的一种干扰测量指示方法的流程图,如图3所示,该流程包括如下步骤:
需要指出的是,有关干扰测量资源、干扰测量资源配置、干扰测量接收方式、干扰测量接收方式相关定义性的描述已经在实施例1中进行了详尽的说明。因此,为了避免重复说明,实施例2中不再对上述术语进行相应的描述。
步骤S302,获取一套或多套干扰测量资源以及对应的干扰测量接收方式配置;
步骤S304,分别将与所述干扰测量资源对应的干扰测量资源配置以及所述干扰测量接收方式配置发送至用户侧设备。
图4是根据本发明实施例的另一种干扰测量指示方法的流程图,如图4所示,该流程在包括图3中所示步骤的基础之上,还包括如下步骤:
步骤S402,将所述干扰测量资源分为多组;
具体的,干扰测量资源可以分为多个组。划分方式至少包括如下几种:
(1)当有M套干扰测量资源且M>1时,简单的一种方式是根据将M套干扰测量资源划分为N组,M>=N。每个干扰测量资源组中可以包括一套或多套干扰测量资源。
(2)根据时域资源进行划分,将在时域上将干扰测量资源分为多个组,图5是根据本发明实施例的一种干扰测量资源分组的示意图。如图5 所示。图5中将不同子帧的干扰测量资源划分为不同的组,但干扰资源如果是周期资源的话,那么分组后的套数会很多,因此典型的方式是划分子帧集合,不同子帧集合内的干扰测量资源分别属于不同的组。
(3)根据频域资源进行划分,将在时域上将干扰测量资源分为多个组,图6是根据本发明实施例的另一种干扰测量资源分组的示意图。如图6所示;图6中将不同子带的干扰测量资源划分为不同的组,但如果带宽较大子带数目较多的话,那么分组后的套数会很多,因此典型的方式是划分子带集合,不同子带集合内的干扰测量资源分别属于不同的组。
(4)根据网络侧设备配置分组方式对应的指示信息。
网络侧设备会通过指示指令指示干扰测量资源相应属于的干扰测量资源组。同时终端侧设备同样也会根据该指示信息,确定相应分组的方式。
需要指出的是,网络侧设备在进行分组时,可以将上述三种分组方式进行结合后,灵活进行分组。同时,网络侧设备也可以为每个干扰测量资源组分别配置相应的接收方式。
步骤S404,分别为多组所述测量干扰资源中的测量干扰导频资源配置接收方式的指示信令。
可选地,所述干扰测量接收方式的指示信令用于指示用户侧设备从接收权值码本集合中一个或多个权值接收所述干扰测量资源。
可选地,所述码本包括:上行发送码本以及下行接收码本。
具体地,使用上行发送码本意味着上行的发送和下行的接收有相同的天线配置;此时指示信令可以指示上行发送码本的码字,对应到接收权值,并用于确定干扰测量时的接收方式。
具体地,下行接收码本中包含的码字可以预先约定或者是可配置的;指示信令可以指示其中的码字,对应到接收权值,并用于确定干扰测量时的接收方式。
可选地,所述指示信令用于指示所述干扰测量接收方式关联的第一类 信号的类型;根据关联的所述第一类型信号对应的接收方式确定所述干扰测量接收方式。
可选地,所述指示信令用于指示所述干扰测量接收方式关联的第一类信号的类型;根据关联的所述第一类型信号对应的接收方式确定所述干扰测量接收方式。
具体的,第一类信号的类型包括:下行测量导频、下行解调导频、上行解调导频、上行测量导频、上行随机接入信号。
可选地,所述指示信令用于指示所述干扰测量接收方式关联的第一类信号的资源位置;根据关联的所述第一类型信号对应的接收方式确定所述干扰测量接收方式。
可选地,所述第一类信号资源位置包括:端口、时域位置。
可选地,在实施例1中已经进行了相应的说明,使用第一类信令即相应于网络侧设备通过隐式方式的信令指示用户侧设备确定干扰测量接收方式。
可选的,所述指示信令用于指示所述多套干扰测量资源间接收方式的绑定关系。
可选地,通过隐式方式的信令指示的干扰测量接收方式。对于网络侧设备是不可见的。因此需要先找到接收方式对应的绑定关系或者是相关联信号。需要指出的是,上述所指出的绑定关系代表了接收方式具有相关性。而该相关性中包括:相同关系以及其他的关系。表8提供了一种跟根据绑定的信号的端口确定干扰测量资源的接收方式的方法。如表8所示,
表8
干扰测量资源 绑定信号
干扰测量资源组1 绑定信号的端口a
干扰测量资源组2 绑定信号的端口b
表9提供了一种跟根据绑定的信号的端口和时域位置确定干扰测量资 源的接收方式的方法。如表9所示,
表9
干扰测量资源 绑定信号
干扰测量资源组1 绑定信号的端口a,时域位置t1
干扰测量资源组2 绑定信号的端口b,时域位置t2
可选地,所述指示信令用于指示所述干扰测量接收方式关联的发送波束。
可选地,所述指示信令用于指示所述干扰测量接收方式关联的反馈波束。
通过上述步骤,解决了相关技术中存在的由于接收天线的数目增加,所导致的不同用户侧设备之间干扰测量准则不同,用户侧设备不能够客观反映实际的干扰,网络侧设备难以对用户侧干扰测量进行控制的问题,达到了用户侧设备更好的预测传输时的真实干扰以及为网络侧设备提供更多的维度用于干扰协调的效果。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到根据上述实施例的方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本发明各个实施例所述的方法。
实施例3
在本实施例中还提供了一种干扰测量装置,该装置用于实现上述实施例及优选实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现 也是可能并被构想的。
图7是根据本发明实施例的一种干扰测量装置的结构图,如图7所示,该装置包括:获取模块72以及测量模块74。
获取模块72,设置为获取干扰测量资源配置以及干扰测量接收方式配置;
测量模块74,设置为根据所述干扰测量资源配置以及所述干扰测量接收方式配置进行干扰测量。
可选地,所述干扰测量接收方式配置对应的干扰接收方式至少通过以下方式进行确定:根据网络侧设备的配置信令确定;根据配置的第一类信号的接收方式确定;根据约定或指示信息确定干扰测量接收方式关联的第一类信号资源位置;根据网络侧设备配置的发送波束确定;根据用户侧设备选择并反馈波束确定以及根据干扰测量资源所属的时域位置确定。
需要说明的是,本实施例中的优选实施方式可以参见实施例1和2中的相关描述,此处不再赘述。
实施例4
在本实施例中还提供了一种干扰测量装置,该装置用于实现上述实施例及优选实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图8是根据本发明实施例的一种干扰测量指示装置的结构图,如图8所示,该装置包括:获取模块82以及发送模块84。
获取模块82,设置为获取一套或多套干扰测量资源以及对应的干扰测量接收方式配置;
发送模块84,设置为分别将与所述干扰测量资源对应的干扰测量资源配置以及所述干扰测量接收方式配置发送至用户侧设备。
图9是根据本发明实施例的另一种干扰测量指示装置的结构图,如图9所示,该装置除包括图8所示的所有模块外,还包括:
分组模块92,设置为将所述干扰测量资源分为多组;
配置模块94,设置为分别为多组所述测量干扰资源中的测量干扰导频资源配置接收方式的指示信令。
需要说明的是,上述各个模块是可以通过软件或硬件来实现的,对于后者,可以通过以下方式实现,但不限于此:上述模块均位于同一处理器中;或者,上述各个模块以任意组合的形式分别位于不同的处理器中。
需要说明的是,本实施例中的优选实施方式可以参见实施例1和2中的相关描述,此处不再赘述。
实施例5
在本实施例中还提供了一种干扰测量系统,图10是根据本发明实施例的一种干扰测量系统的结构图,如图10所示,该装置包括:网络侧设备1002以及用户侧设备1004。
网络侧设备1002,设置为获取一套或多套干扰测量资源以及对应的干扰测量接收方式配置;分别将与多套所述干扰测量资源对应的干扰测量资源配置以及所述干扰测量接收方式配置发送至用户侧设备;
用户侧设备1004,设置为获取所述干扰测量资源配置以及所述干扰测量接收方式配置;根据所述干扰测量资源配置以及干扰测量接收方式配置进行干扰测量。
需要说明的是,本实施例中的优选实施方式可以参见实施例1和2中的相关描述,此处不再赘述。
实施例6
本发明的实施例还提供了一种存储介质。可选地,在本实施例中,上 述存储介质可以被设置为存储用于执行以下步骤的程序代码:
S1,获取干扰测量资源配置以及干扰测量接收方式配置;
S2,根据所述干扰测量资源配置以及所述干扰测量接收方式配置进行干扰测量。
可选地,在本实施例中,上述存储介质可以包括但不限于:U盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
可选地,本实施例中的具体示例可以参考上述实施例及可选实施方式中所描述的示例,本实施例在此不再赘述。
实施例7
本发明的实施例还提供了一种存储介质。可选地,在本实施例中,上述存储介质可以被设置为存储用于执行以下步骤的程序代码:
S1,获取多套干扰测量资源以及对应的干扰测量接收方式配置;
S2,分别将与多套所述干扰测量资源对应的干扰测量资源配置以及所述干扰测量接收方式配置发送至用户侧设备。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:
S3,将所述干扰测量资源分为多组;
S4,分别为多组所述测量干扰资源中的测量干扰导频资源配置接收方式的指示信令。
可选地,在本实施例中,上述存储介质可以包括但不限于:U盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
可选地,本实施例中的具体示例可以参考上述实施例及可选实施方式中所描述的示例,本实施例在此不再赘述。
显然,本领域的技术人员应该明白,上述的本发明的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本发明不限制于任何特定的硬件和软件结合。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
工业实用性
通过本发明实施例,由于在网络侧设备与用户侧设备之间根据干扰测量接收方式配置预定相应的接收方式后进行干扰测量,因此,可以解决相关技术中存在的由于接收天线的数目增加,所导致的不同用户侧设备之间干扰测量准则不同,用户侧设备不能够客观反映实际的干扰,网络侧设备难以对用户侧干扰测量进行控制的问题,达到用户侧设备更好的预测传输时的真实干扰以及为网络侧设备提供更多的维度用于干扰协调的效果。

Claims (31)

  1. 一种干扰测量方法,包括:
    获取干扰测量资源配置以及干扰测量接收方式配置;
    根据所述干扰测量资源配置以及所述干扰测量接收方式配置进行干扰测量。
  2. 根据权利要求1所述的方法,其中,所述干扰测量接收方式配置至少包括以下之一:接收天线的配置、接收波束的配置,接收方向的范围配置,接收的极化方式配置以及接收权值的配置。
  3. 根据权利要求1所述的方法,其中,与所述干扰测量接收方式配置对应的干扰测量接收方式根据网络侧设备的配置信令确定。
  4. 根据权利要求3所述的方法,其中,当存在多个干扰测量资源组时,分别根据所述多个干扰测量资源对应的配置信令确定与所述多个干扰测量资源对应的接收方式。
  5. 根据权利要求1所述的方法,其中,与所述干扰测量接收方式配置对应的干扰测量接收方式根据配置的第一类信号的接收方式确定。
  6. 根据权利要求5所述的方法,其中,所述第一类信号包括以下之一:下行测量导频、下行解调导频、上行解调导频、上行测量导频、上行随机接入信号。
  7. 根据权利要求5所述的方法,其中,根据约定或指示信息确定与干扰测量接收方式关联的第一类信号资源位置。
  8. 根据权利要求7所述的方法,其中,所述第一类信号资源位置包括:端口、时域位置;所述指示信息由网络侧设备配置。
  9. 根据权利要求1所述的方法,其中,与所述干扰测量接收方 式配置对应的干扰测量接收方式根据网络侧设备配置的发送波束确定。
  10. 根据权利要求9所述的方法,其中,当存在多个候选发送波束时,根据所述网络侧的指示信令确定所述干扰测量接收方式。
  11. 根据权利要求1所述的方法,其中,与所述干扰测量接收方式配置对应的干扰测量接收方式根据用户侧设备选择并反馈的波束确定所述干扰测量接收方式。
  12. 根据权利要求1所述的方法,其中,当存在多个选择并反馈的波束所述波束时,根据所述网络侧设备的指示信令选择确定干扰测量接收方式。
  13. 根据权利要求1所述的方法,其中,与所述干扰测量接收方式配置对应的干扰测量接收方式根据干扰测量资源所属的时域位置确定。
  14. 一种干扰测量指示方法,包括:
    获取一套或多套干扰测量资源以及对应的干扰测量接收方式配置;
    分别将与所述干扰测量资源对应的干扰测量资源配置以及所述干扰测量接收方式配置发送至用户侧设备。
  15. 根据权利要求14所述的方法,其中,所述方法还包括:
    将所述干扰测量资源分为多组;
    分别为多组所述测量干扰资源中的测量干扰导频资源配置接收方式的指示信令。
  16. 根据权利要求15所述的方法,其中,分组方式至少包括以下其中之一:
    对所述干扰测量资源在时域上进行分组;对所述干扰测量资源在频域上进行分组;对所述多套干扰测量资源进行分组;网络侧设备配置分组方式对应的指示信息。
  17. 根据权利要求15所述的方法,其中,所述干扰测量资源对应的接收方式至少包括:接收天线、接收波束、接收方向范围、接收的极化方式以及接收权值。
  18. 根据权利要求15所述的方法,其中,所述干扰测量接收方式的指示信令用于指示用户侧设备从接收权值码本集合中一个或多个权值接收所述干扰测量资源。
  19. 根据权利要求18所述的方法,其中,所述码本包括:上行发送码本以及下行接收码本。
  20. 根据权利要求16所述的方法,其中,
    所述指示信令用于指示所述干扰测量接收方式关联的第一类信号的类型;
    根据关联的所述第一类型信号对应的接收方式确定所述干扰测量接收方式。
  21. 根据权利要求16所述的方法,其中,
    所述指示信令用于指示所述干扰测量接收方式关联的第一类信号的资源位置;
    根据关联的所述第一类型信号对应的接收方式确定所述干扰测量接收方式。
  22. 根据权利要求16所述的方法,其中,所述指示信令用于指示所述干扰测量接收方式关联的发送波束。
  23. 根据权利要求16所述的方法,其中,所述指示信令用于指 示所述干扰测量接收方式关联的反馈波束;
  24. 根据权利要求16所述的方法,其中,所述指示信令用于指示所述多套干扰测量资源间接收方式的绑定关系。
  25. 一种干扰测量装置,包括:
    获取模块,设置为获取干扰测量资源配置以及干扰测量接收方式配置
    测量模块,设置为根据所述干扰测量资源配置以及所述干扰测量接收方式配置进行干扰测量。
  26. 根据权利要求25所述的装置,其中,所述干扰测量接收方式配置对应的干扰接收方式至少通过以下方式进行确定:
    根据网络侧设备的配置信令确定;根据配置的第一类信号的接收方式确定;根据约定或指示信息确定干扰测量接收方式关联的第一类信号资源位置;根据网络侧设备配置的发送波束确定;根据用户侧设备选择并反馈波束确定以及根据干扰测量资源所属的时域位置确定。
  27. 一种干扰测量指示装置,包括:
    获取模块,设置为获取一套或多套干扰测量资源以及对应的干扰测量接收方式配置;
    发送模块,设置为分别将与所述干扰测量资源对应的干扰测量资源配置以及所述干扰测量接收方式配置发送至用户侧设备。
  28. 根据权利要求27所述的装置,其中,所述装置还包括:
    分组模块,设置为将所述干扰测量资源分为多组;
    配置模块,设置为分别为多组所述测量干扰资源中的测量干扰导频资源配置接收方式的指示信令。
  29. 一种干扰测量系统,包括:
    网络侧设备,设置为获取一套或多套干扰测量资源以及对应的干扰测量接收方式配置;分别将与多套所述干扰测量资源对应的干扰测量资源配置以及所述干扰测量接收方式配置发送至用户侧设备;
    用户侧设备,设置为获取所述干扰测量资源配置以及所述干扰测量接收方式配置;根据所述干扰测量资源配置以及干扰测量接收方式配置进行干扰测量。
  30. 一种存储介质,所述存储介质包括存储的程序,其中,所述程序运行时执行权利要求1至13中任一项所述的方法。
  31. 一种存储介质,所述存储介质包括存储的程序,其中,所述程序运行时执行权利要求14至24中任一项所述的方法。
PCT/CN2017/103670 2016-09-30 2017-09-27 干扰测量方法、装置及系统,干扰测量指示方法及装置 WO2018059440A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP17854890.5A EP3522403B1 (en) 2016-09-30 2017-09-27 Interference measurement method, device and system, interference measurement indication method and device
US16/338,339 US20200028654A1 (en) 2016-09-30 2017-09-27 Interference measurement method, device and system, interference measurement indication method and device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610879235.1A CN107888307B (zh) 2016-09-30 2016-09-30 干扰测量方法、装置及系统,干扰测量指示方法及装置
CN201610879235.1 2016-09-30

Publications (1)

Publication Number Publication Date
WO2018059440A1 true WO2018059440A1 (zh) 2018-04-05

Family

ID=61763707

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/103670 WO2018059440A1 (zh) 2016-09-30 2017-09-27 干扰测量方法、装置及系统,干扰测量指示方法及装置

Country Status (4)

Country Link
US (1) US20200028654A1 (zh)
EP (1) EP3522403B1 (zh)
CN (1) CN107888307B (zh)
WO (1) WO2018059440A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018176367A1 (en) * 2017-03-31 2018-10-04 Nec Corporation Method and device for interference measurement
US11240685B2 (en) * 2018-01-29 2022-02-01 Samsung Electronics Co., Ltd. Devices and methods of selecting signal processing algorithm based on parameters
CN110740452B (zh) 2018-07-20 2024-10-18 中兴通讯股份有限公司 发现干扰的方法、装置、接收设备、发射设备及存储介质
CN110831047B (zh) * 2018-08-10 2021-11-19 成都华为技术有限公司 波束测量的方法和装置
US11877306B2 (en) * 2020-01-22 2024-01-16 Qualcomm Incorporated Interference measurement configurations in wireless systems
US12022307B2 (en) * 2020-10-02 2024-06-25 Qualcomm Incorporated Measurement of reference signal with polarization
US11916634B2 (en) 2020-10-22 2024-02-27 Qualcomm Incorporated Channel state information (CSI) prediction and reporting

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013147634A1 (en) * 2012-03-30 2013-10-03 Intel Corporation Receiver with improved noise variance estimation
CN103620977A (zh) * 2011-06-24 2014-03-05 三星电子株式会社 用于在ofdm移动通信系统中测量下行链路干扰的方法和装置
CN104284355A (zh) * 2013-07-11 2015-01-14 中兴通讯股份有限公司 一种干扰测量方法、系统及相关设备
CN104982055A (zh) * 2013-02-07 2015-10-14 交互数字专利控股公司 在指向性网状网络中的干扰测量及管理

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8259601B2 (en) * 2007-10-16 2012-09-04 Mediatek Inc. Interference measurement mechanism for frequency reuse in cellular OFDMA systems
JP5715120B2 (ja) * 2009-04-21 2015-05-07 コーニンクレッカ フィリップス エヌ ヴェ チャンネル状態を検出する装置及び方法
WO2012062221A1 (en) * 2010-11-11 2012-05-18 Mediatek Inc. Methods for configuring channel state information measurement in a communications system and communications apparatuses utilizing the same
KR101857659B1 (ko) * 2010-11-22 2018-05-14 엘지전자 주식회사 무선 통신 시스템에서 하향링크 측정 방법 및 장치
CN102419428A (zh) * 2011-09-13 2012-04-18 国网电力科学研究院 无线电干扰测量装置的整体校准方法
WO2013055147A2 (ko) * 2011-10-14 2013-04-18 엘지전자 주식회사 무선 통신 시스템에서 채널상태정보 전송 방법 및 장치
CN103188797A (zh) * 2011-12-28 2013-07-03 北京三星通信技术研究有限公司 一种改变tdd上下行配置的方法
EP2804425B1 (en) * 2012-01-11 2020-06-10 LG Electronics Inc. Method for transceiving channel state information in wireless access system and apparatus for the method
CN110365382B (zh) * 2012-05-10 2022-06-21 中兴通讯股份有限公司 Csi反馈信令的指示配置方法及基站
CN103427967B (zh) * 2012-05-18 2018-05-01 中兴通讯股份有限公司 一种干扰测量资源的管理方法和系统
KR102257623B1 (ko) * 2012-07-02 2021-05-28 엘지전자 주식회사 무선 통신 시스템에서 채널상태정보 보고 방법 및 장치
US8755477B1 (en) * 2012-07-19 2014-06-17 Sprint Spectrum L.P. Method and systems of selecting a mode of operation of a multi-antenna receiver in a radio access network
KR102052420B1 (ko) * 2012-11-02 2019-12-05 코란씨, 엘엘씨 통신 시스템에서 간섭 측정을 위한 방법 및 그 장치
WO2014198032A1 (zh) * 2013-06-13 2014-12-18 华为技术有限公司 信道状态信息测量的方法及设备
KR20160075503A (ko) * 2013-10-21 2016-06-29 엘지전자 주식회사 무선 통신 시스템에서 간섭 측정 자원 설정 방법 및 이를 위한 장치
WO2016018094A1 (ko) * 2014-07-31 2016-02-04 엘지전자 주식회사 Mimo 기술이 적용된 d2d 통신을 지원하기 위한 방법 및 이를 위한 장치
EP3255813B1 (en) * 2015-02-05 2021-03-31 LG Electronics Inc. Method for csi feedback in wireless communication system, and apparatus therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103620977A (zh) * 2011-06-24 2014-03-05 三星电子株式会社 用于在ofdm移动通信系统中测量下行链路干扰的方法和装置
WO2013147634A1 (en) * 2012-03-30 2013-10-03 Intel Corporation Receiver with improved noise variance estimation
CN104982055A (zh) * 2013-02-07 2015-10-14 交互数字专利控股公司 在指向性网状网络中的干扰测量及管理
CN104284355A (zh) * 2013-07-11 2015-01-14 中兴通讯股份有限公司 一种干扰测量方法、系统及相关设备

Also Published As

Publication number Publication date
EP3522403A4 (en) 2019-10-02
EP3522403A1 (en) 2019-08-07
EP3522403B1 (en) 2021-03-10
CN107888307A (zh) 2018-04-06
US20200028654A1 (en) 2020-01-23
CN107888307B (zh) 2021-10-26

Similar Documents

Publication Publication Date Title
US11503600B2 (en) Apparatus and method for transmitting and receiving beam information in wireless communication system
US11166186B2 (en) Method and apparatus for channel and interference measurement and reporting
JP7206186B2 (ja) ダウンリンク及びアップリンクチャネル状態情報を獲得するための方法及び装置
WO2018059440A1 (zh) 干扰测量方法、装置及系统,干扰测量指示方法及装置
EP3577836B1 (en) Dynamic indication for channel state information feedback
JP7288979B2 (ja) ビーム管理を使用するmu-mimoについての報告
TWI580209B (zh) 用於具有天線陣列之基地台之預編碼矩陣指示符增益正規化校正及通道品質指示符回授之方法及裝置
US11811484B2 (en) Apparatuses and methods for multi-user transmissions
US11510080B2 (en) Method and apparatus for triggering multi-beam reporting
KR20230162141A (ko) 다중 가설을 갖는 채널 상태 정보(csi) 피드백
WO2022009151A1 (en) Shared csi-rs for partial-reciprocity based csi feedback
WO2018137642A1 (zh) 信道质量信息的上报方法、多用户调度方法及装置
CN109644363B (zh) 信道质量的测量和反馈方法和装置
CN115843425A (zh) 部分重叠的csi-rs移位
KR20190085815A (ko) 이동 통신 시스템에서 채널 상태 정보 측정 및 보고 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17854890

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017854890

Country of ref document: EP

Effective date: 20190430