WO2018059269A1 - 消息的识别方法和装置 - Google Patents

消息的识别方法和装置 Download PDF

Info

Publication number
WO2018059269A1
WO2018059269A1 PCT/CN2017/102205 CN2017102205W WO2018059269A1 WO 2018059269 A1 WO2018059269 A1 WO 2018059269A1 CN 2017102205 W CN2017102205 W CN 2017102205W WO 2018059269 A1 WO2018059269 A1 WO 2018059269A1
Authority
WO
WIPO (PCT)
Prior art keywords
core network
message
nas
network entity
paging message
Prior art date
Application number
PCT/CN2017/102205
Other languages
English (en)
French (fr)
Inventor
戴明增
曾清海
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP21156608.8A priority Critical patent/EP3886511B1/en
Priority to EP17854719.6A priority patent/EP3503619B1/en
Publication of WO2018059269A1 publication Critical patent/WO2018059269A1/zh
Priority to US16/369,344 priority patent/US11895617B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W68/00User notification, e.g. alerting and paging, for incoming communication, change of service or the like
    • H04W68/005Transmission of information for alerting of incoming communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0011Control or signalling for completing the hand-off for data sessions of end-to-end connection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/03Protecting confidentiality, e.g. by encryption
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/10Integrity
    • H04W12/106Packet or message integrity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/08Reselecting an access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W68/00User notification, e.g. alerting and paging, for incoming communication, change of service or the like
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/11Allocation or use of connection identifiers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/022Selective call receivers
    • H04W88/023Selective call receivers with message or information receiving capability
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/12Setup of transport tunnels

Definitions

  • the embodiments of the present application relate to communication technologies, and in particular, to a method and an apparatus for identifying a message.
  • the fourth generation mobile communication technology (4G) network is composed of an evolved base station (evolved Node B; eNB) and an evolved packet core network (Evolved Packet Core; EPC), wherein The EPC includes a Mobility Management Entity (MME) and a Serving Gateway (SGW).
  • eNB evolved Node B
  • EPC evolved Packet Core
  • MME Mobility Management Entity
  • SGW Serving Gateway
  • 5G Next Generation Core
  • EPC Next Generation Core
  • the base station eNB In the existing Long Term Evolution (LTE) network, the base station eNB is connected to the EPC, and in the process of smooth evolution to the 5G network, the LTE network evolves into an evolved LTE network (evolved LTE, referred to as: eLTE).
  • eLTE evolved LTE
  • the base station eNB In the eLTE network, the base station eNB is connected to the EPC and the NG-Core at the same time, which ensures the backward compatibility and ensures the user to use the new service brought by the NG-Core earlier.
  • There are multiple entities in the NG-Core for example, including Mobility Management (MM) entities and session management (SM) entities, and multiple SM entities in the NG-Core. Provide different types of sessions.
  • NG-Core supports network slicing, and one user equipment (User Equipment; UE for short) can access multiple network slices at the same time.
  • MM Mobility Management
  • SM session management
  • the user equipment (User Equipment; UE) in the LTE system has only one core network (EPC), but in the eLTE network, the UE can have two core networks (ie, EPC and NG-Core).
  • EPC User Equipment
  • NG-Core the UE has multiple core network entities or network slice switches can be accessed.
  • the NG-Core is introduced in the 5G, how to connect the UE to different core network entities is a technical problem to be solved by the present application.
  • the embodiment of the present application provides a method and an apparatus for identifying a message, so that the UE can be connected to different core network entities.
  • an embodiment of the present application provides a method for identifying a message, including:
  • the user equipment UE receives the paging message sent by the access network device
  • the UE establishes a data connection with a core network entity to which the paging message belongs.
  • the UE receives a paging message sent by the access network device, and determines a core network entity to which the paging message belongs to the multiple core network entities served by the UE, and establishes and searches for The data connection between the core network entities to which the message belongs. Since the UE can determine the core network entity to which the paging message belongs to the plurality of core network entities serving the UE, and establish a data connection with the core network entity to which the paging message belongs, thereby effectively supporting the UE simultaneously Access to different core network entities.
  • the plurality of core network entities are located in different network formats.
  • the paging message carries identification information, and the identification information is used to determine a core network entity to which the paging message belongs.
  • the identification information includes type identification information of a core network entity to which the paging message belongs.
  • the identification information includes device identification information of a UE in a core network entity to which the paging message belongs.
  • the identification information includes a time-frequency resource corresponding to a core network entity to which the paging message belongs.
  • the method for identifying the message provided by each of the foregoing possible designs may be based on the type identification information of the core network entity to which the paging message belongs, the device identification information of the UE in the core network entity to which the paging message belongs, or the core network entity according to the paging message.
  • the time-frequency resource identifies the core network entity to which the paging message belongs, thereby making the determination manner of the core network entity to which the paging message belongs is flexible and diverse.
  • the UE establishes a data connection with a core network entity to which the paging message belongs, including:
  • the UE sends the NAS message to a core network entity to which the paging message belongs.
  • the method for identifying the message provided by the above possible design is to send the paging message to the NAS to which the paging message belongs, and receive the NAS message sent by the NAS, and return the NAS message to the base station, so that the UE can be effectively supported at the same time. Access to different core network entities.
  • the embodiment of the present application provides a method for identifying a message, including:
  • the access network device sends a paging message to the user equipment UE;
  • the access network device sends the NAS message to a core network entity to which the NAS message belongs.
  • the access network device by sending a paging message to the UE, and receiving the NAS message sent by the UE according to the paging message, by determining the NAS message in the multiple core network entities of the access network device The core network entity to which it belongs, and sends the NAS message to the core network entity to which the NAS message belongs. Since the access network device determines the core network entity to which the NAS message belongs in the plurality of core network entities of the access network device, The NAS message is sent to the corresponding core network entity, thereby effectively supporting the UE to access different core network entities at the same time.
  • the access network device determines a core network entity to which the NAS message belongs to the multiple core network entities of the access network device, including:
  • Radio resource management RRC message sent by the UE, where the RRC message is used to deliver the NAS message, where the RRC includes a type identifier of a core network entity to which the NAS message belongs;
  • the access network device determines, according to the type identifier, a core network entity to which the NAS message belongs in multiple core network entities of the access network device.
  • the access network device determines a core network entity to which the NAS message belongs to the multiple core network entities of the access network device, including:
  • the method for identifying the message provided by each of the foregoing possible designs may determine the core network entity to which the NAS message belongs according to the type identifier of the core network entity to which the NAS message belongs or the mapping relationship between the logical channel and the core network entity.
  • the method for determining the core network entity to which the NAS message belongs is more flexible.
  • an embodiment of the present application provides a message identification apparatus, including:
  • a receiving module configured to receive a paging message sent by the access network device
  • a determining module configured to determine a core network entity to which the paging message belongs to multiple core network entities serving the UE
  • a establishing module configured to establish a data connection with a core network entity to which the paging message belongs.
  • the plurality of core network entities are located in different network formats.
  • the paging message carries identification information, and the identification information is used to determine a core network entity to which the paging message belongs.
  • the identification information includes type identification information of a core network entity to which the paging message belongs.
  • the identification information includes device identification information of a UE in a core network entity to which the paging message belongs.
  • the identification information includes a time-frequency resource corresponding to a core network entity to which the paging message belongs.
  • the establishing module is specifically configured to:
  • the embodiment of the present application provides a message identification apparatus, including:
  • a sending module configured to send a paging message to the user equipment UE
  • a receiving module configured to receive a NAS message sent by the UE according to the paging message
  • a determining module configured to determine a core network entity to which the NAS message belongs in multiple core network entities of the access network device
  • the sending module is further configured to send the NAS message to a core network entity to which the NAS message belongs.
  • the determining module is specifically configured to:
  • Radio resource management RRC message where the RRC message is used to deliver the NAS message, where the RRC includes a type identifier of a core network entity to which the NAS message belongs;
  • the determining module is specifically configured to:
  • the fourth aspect and the identification device of the message provided by each possible design of the fourth aspect may have the beneficial effects of referring to the second aspect and the possible effects of the second aspect, and no longer Narration.
  • the embodiment of the present application provides a user equipment UE, including:
  • a receiver configured to receive a paging message sent by the access network device
  • a processor configured to determine a core network entity to which the paging message belongs to multiple core network entities serving the UE;
  • the processor is configured to establish a data connection with a core network entity to which the paging message belongs.
  • the plurality of core network entities are located in different network formats.
  • the paging message carries identification information, and the identification information is used to determine a core network entity to which the paging message belongs.
  • the identification information includes type identification information of a core network entity to which the paging message belongs.
  • the identification information includes device identification information of a UE in a core network entity to which the paging message belongs.
  • the identification information includes a time-frequency resource corresponding to a core network entity to which the paging message belongs.
  • the transmitter is further configured to send the paging message to a NAS to which the paging message belongs;
  • the receiver is further configured to receive a NAS message sent by the NAS;
  • the transmitter is further configured to send the NAS message to a core network entity to which the paging message belongs.
  • an embodiment of the present application provides an access network device, including:
  • a transmitter configured to send a paging message to the user equipment UE
  • a receiver configured to receive a NAS message sent by the UE according to the paging message
  • a processor configured to determine a core network entity to which the NAS message belongs in multiple core network entities of the access network device
  • the transmitter is further configured to send the NAS message to a core network entity to which the NAS message belongs.
  • the receiver is further configured to receive a radio resource management RRC message sent by the UE, where the RRC message is used to deliver the NAS message, where the RRC includes the NAS message Type identifier of the core network entity;
  • the processor is further configured to determine, according to the type identifier, a core network entity to which the NAS message belongs in multiple core network entities of the access network device.
  • the receiver is further configured to receive an RRC message, where the RRC message is used to deliver the NAS message;
  • the processor is further configured to determine a logical channel used when the RRC message is delivered;
  • the processor is further configured to determine, according to a mapping relationship between the logical channel and a core network entity, a core network entity corresponding to the logical channel.
  • the beneficial effects of the access network device provided by the foregoing sixth aspect and the possible designs of the sixth aspect can be referred to the beneficial effects brought by the second aspect and the possible designs of the second aspect, and no longer Narration.
  • FIG. 1 is a schematic flowchart of Embodiment 1 of a method for identifying a message according to an embodiment of the present disclosure
  • FIG. 2 is a schematic diagram of a sending process of a paging message
  • FIG. 3 is a schematic diagram of a sending process of a NAS message
  • FIG. 4 is a schematic diagram of a transmission process of a NAS message
  • FIG. 5 is a schematic diagram of a transmission process of a NAS message
  • FIG. 6 is a schematic flowchart of Embodiment 2 of a method for identifying a message according to an embodiment of the present disclosure
  • FIG. 7 is a schematic diagram of a UE switching from a source base station to a target base station
  • FIG. 8 is a schematic diagram 1 of a data bearer type
  • FIG. 9 is a schematic diagram 2 of a data bearer type
  • FIG. 10 is a schematic flowchart of Embodiment 3 of a method for identifying a message according to an embodiment of the present disclosure
  • FIG. 11 is a schematic flowchart diagram of Embodiment 4 of a method for identifying a message according to an embodiment of the present disclosure
  • FIG. 12 is a schematic structural diagram of Embodiment 1 of a device for identifying a message according to an embodiment of the present disclosure
  • FIG. 13 is a schematic structural diagram of Embodiment 2 of a device for identifying a message according to an embodiment of the present disclosure
  • FIG. 14 is a schematic structural diagram of an embodiment of a UE according to an embodiment of the present disclosure.
  • FIG. 15 is a schematic structural diagram of an embodiment of a network side device according to an embodiment of the present disclosure.
  • the method for identifying a message according to the embodiment of the present application can be applied to eLTE and 5G systems.
  • the eLTE network architecture is adopted.
  • some services need to be transmitted through the EPC, and another part of the service passes through the NG-Core.
  • Delivery which requires the UE to be able to connect to the EPC and NG-Core at the same time, or different UEs, some UEs are connected to the EPC, and some UEs are connected to the NG-Core.
  • the same UE can be connected to multiple core network entities at the same time, for example, different services are connected to different SM entities, or the same UE can be connected to different network slices at the same time.
  • the method, device, and device for identifying a message provided by the embodiment of the present application are directed to solving the technical problem that the UE cannot connect to different core network entities at the same time in the prior art.
  • FIG. 1 is a schematic flowchart diagram of Embodiment 1 of a method for identifying a message according to an embodiment of the present disclosure. As shown in FIG. 1, the method in this embodiment may include:
  • Step 101 The UE receives a paging message sent by the access network device.
  • the UE is attached to different core network entities at the same time.
  • the UE may be attached to the EPC and the NG-Core at the same time, or may be attached to the MM entity and the SM entity in the NG-Core at the same time.
  • Multiple SM entities in the NG-Core such as SM1 and SM2 entities, can also be attached to multiple network slices in the NG-Core, such as Network Slice 1 and Network Slice 2.
  • FIG. 2 is a schematic diagram of a sending process of a paging message.
  • a UE is attached to an EPC and an NG-Core as an example.
  • the user data is obtained for the called party. Arrive at the core network ie EPC and / or NG-Core. After the user data reaches the core network device, a paging message is generated. For example, when the user data arrives at the EPC, the EPC generates an EPC paging message. When the user data reaches the NG-Core, the NG-Core generates the NG-Core.
  • the core network device sends a paging message to the base station, and the base station sends the received paging message to the UE through a Radio Resource Control (RRC) layer.
  • RRC Radio Resource Control
  • the UE is in the third state, the user data directly arrives at the base station for the UE in the third state.
  • the base station When the user data arrives at the base station, the base station generates a paging message.
  • the EPC is generated.
  • a paging message when the user data arrives at the NG-Core, generates an NG-Core paging message.
  • the third state is that there is a UE signaling link between the core network and the base station, and the connection between the UE and the base station is in a released state.
  • Step 102 The UE determines a core network entity to which the paging message belongs to the plurality of core network entities served by the UE.
  • the core network entity may include a network slice in the core network device and the core network device, for example, an EPC, an NG-Core, an SM entity, an MM entity, or multiple network slices in the NG-Core, such as a network slice. 1 and network slice 2 and so on.
  • the UE After receiving the paging message sent by the access network device, the UE will identify the type of the paging message, that is, determine which core network entity the paging message belongs to. For example, if the paging message is sent by the EPC, the type of the paging message is an EPC paging message, and the paging message belongs to the EPC.
  • the paging message is The type is an NG-Core paging message, and the paging message belongs to the NG-Core. If the paging message is sent by the MM in the NG-Core, the type of the paging message is an MM paging message, and the paging message belongs to MM, if the paging message is sent by the SM in the NG-Core, the type of the paging message is an SM paging message, and the paging message belongs to the SM, and the type of the paging message sent by the network slice is The types of paging messages sent by the core network device are similar, and are not described here.
  • the UE may determine, by using the identification information carried in the paging message, the core network entity to which the paging message belongs.
  • the core network entity to which the paging message belongs can be identified in the following manners.
  • the first type if the identification information includes the type identification information of the core network entity to which the paging message belongs, the paging is identified.
  • the core network entity to which the message belongs includes identification based on the type identification information.
  • the access network device may add the type identification information of the core network entity to the paging message, so that the UE identifies, according to the type identification information, which core network entity the paging message is from. .
  • the type identification information In practical applications, it can be implemented as follows:
  • the paging-type is an enumerated type, and the value of the enumerated type includes the EPC and the NG-Core.
  • the core network entity to which the paging message belongs is the EPC, and the enumerated type.
  • the core network entity to which the paging message belongs is NG-Core.
  • the second type if the identification information includes the device identification information of the UE in the core network entity to which the paging message belongs, the core network entity to which the identification paging message belongs includes identifying according to the device identification information of the UE.
  • different core network entities may allocate different device identification information to the UE, and carry the allocated device identification information in the paging message and send the message to the UE.
  • the UE may Identify which core network entity the paging message came from. For example, in the initial attach phase, the EPC assigns the device identification information 1 to the UE, and the NG-Core assigns the device identification information 2 to the UE.
  • the EPC assigns the device identification information 1 to the UE
  • the NG-Core assigns the device identification information 2 to the UE.
  • the EPC sends a paging message, which includes the device identification information 1.
  • the NG-Core sends a paging message, which includes the device identification information 2.
  • the paging message After receiving the paging message, if the paging message includes the device identification information 1, the paging message is a paging message sent by the EPC, that is, the core network entity to which the paging message belongs is an EPC, if the paging If the message includes the device identification information, the paging message is a paging message sent by the NG-Core, that is, the core network entity to which the paging message belongs is NG-Core.
  • the third type if the identification information includes a time-frequency resource corresponding to the core network entity to which the paging message belongs, the core network entity to which the identification paging message belongs includes the identification according to the time-frequency resource.
  • the UE can distinguish the types of different paging messages by receiving the paging occasion of the paging message.
  • the paging occasion refers to a time-frequency resource that the access network device allocates a paging message for the UE.
  • the paging message detected by the UE at the paging occasion 1 is an EPC paging message, that is, the core network entity to which the paging message detected at the paging occasion 1 belongs is an EPC, and the UE detects the paging at the paging occasion 2.
  • the message is an NG-Core paging message, that is, the core network entity to which the paging message detected at the paging occasion 2 belongs is NG-Core or the like.
  • Step 103 The UE establishes a data connection with a core network entity to which the paging message belongs.
  • the paging message will be sent to the NAS to which the paging message belongs according to the type of the paging message, so that the NAS Initiate the corresponding business establishment process. For example, if it is identified that the core network entity to which the paging message belongs is an EPC, the paging message is sent to the EPC NAS, and if the core network entity to which the paging message belongs is identified as NG-Core, the paging message is sent.
  • the transmission mode is similar to that of the core network entity of the EPC and the NG-Core, and is not described here.
  • the paging message may carry the SM entity identifier that generates the paging message.
  • the paging message may carry the slice that generates the paging message. Identification, etc., in order to determine the core network entity to which the paging message belongs.
  • the UE After the UE submits the paging message to the NAS to which the paging message belongs, it will receive the NAS message sent by the NAS and send the NAS message to the access network device.
  • the access network device identifies the type of the NAS message according to the received NAS message, that is, identifies which NAS the NAS message is sent by, and after identifying, sends the NAS message to the core network entity to which the NAS message belongs.
  • 3 is a schematic diagram of a flow of sending a NAS message. As shown in FIG. 3, in the embodiment, the type of the NAS message includes an EPC NAS and an NG-Core NAS as an example.
  • the network side device recognizes that the NAS message is sent by the EPC NAS, The NAS message is sent to the EPC, and if the NAS message is identified as being sent by the NG-Core NAS, the NAS message is sent to the NG-Core.
  • the method for identifying the NAS message in the embodiment of the present invention is applicable to NAS message identification in all other situations, such as a service request message sent by the UE at the time of calling, an attached message sent by the UE, and the like.
  • the access network device can determine the core network entity to which the NAS message belongs in the following manners.
  • the first type the access network device receives the RRC message sent by the UE, where the RRC message is used to deliver the NAS message, where the RRC includes the type identifier of the core network entity to which the NAS message belongs, and the access network device determines the NAS according to the type identifier.
  • the access network device is a base station. Since the UE is attached to two different core network entities, there are two NASs in the system. If the UE is attached to the EPC and the NG-Core at the same time, the system includes the EPC NAS and the NG-Core NAS. If the UE is in the MM at the same time, The entity and the SM entity are attached, and the system includes the MM NAS and the SM NAS. If the UE is attached to both the SM1 entity and the SM2 entity, the system includes the SM1NAS and the SM2NAS. In addition, the NAS message is transmitted between the UE and the base station by using the RRC message.
  • the UE may carry the type identifier of the core network entity to which the NAS message belongs in the RRC message, so that the base station may
  • the core network entity to which the NAS message belongs is identified according to the received type identifier.
  • the core network entity to which the NAS message belongs is the EPC.
  • the core network entity to which the NAS message belongs is NG-Core.
  • the value of NASType2 is similar to that of NASType1, and is not mentioned here.
  • the core network entity to which the NAS belongs can be distinguished by the type identifier of the SM entity; for different network slices, the core network entity to which the NAS belongs can be distinguished by the type identifier of the network slice.
  • the second case: the access network device is a core network entity.
  • 4 is a schematic diagram of a transmission process of a NAS message.
  • the identification of a core network entity to which a NAS message belongs is implemented by a NAS proxy function entity, wherein the NAS proxy function entity is a logical entity, and its physical location may be located in a core network. It can also be located in the Radio Access Network (RA).
  • RA Radio Access Network
  • the NAS layer of the UE When the NAS layer of the UE generates NAS messages, it can be used in the NAS.
  • the information carries the type identifier of the core network entity to which the NAS message belongs. In the specific implementation process, the type identifier can be used as part of the Protocol Data Unit (PDU) and the NAS message is transmitted through the RRC message.
  • PDU Protocol Data Unit
  • the NAS proxy function entity can identify the core network entity to which the NAS message belongs by using the type identifier in the NAS PDU.
  • the second type receiving an RRC message, and determining a logical channel used when delivering the RRC message; the RRC message is used to deliver the NAS message; and determining a core network entity corresponding to the logical channel according to a mapping relationship between the logical channel and the core network entity .
  • the access side device may be, for example, a base station. Since the UE can send the NAS message to the base station through different logical channels, when receiving the NAS message, the base station first needs to determine the logical channel entity that sends the NAS message, and the logical channel entity is logical channel index (referred to as: LCID) And identifying, according to the mapping relationship between the pre-stored logical channel and the core network entity, determining the core network entity to which the NAS message corresponding to the logical channel belongs.
  • LCID logical channel index
  • the UE may send the RRC for transmitting the EPC NAS message to the signalling radio bearer (SRB) 1 for transmission, and the RRC for transmitting the NG-Core NAS message to the SRB2 for transmission.
  • the base station can determine the core network entity to which the NAS message belongs according to the mapping relationship between the logical channel and the core network entity. For example, when the base station configures the SRB1, the dedicated LCID is allocated.
  • the UE receives the configuration, the UE establishes a one-to-one corresponding entity for the SRB1.
  • the RRC layer When the UE sends the radio signaling bearer, the RRC layer generates the message and submits the corresponding message.
  • the bottom layer entity after receiving the MAC layer, the MAC entity fills in the LCID; when the MAC layer corresponding to the base station receives the LCID, the base station determines that the RRC message is the SRB1.
  • the UE may determine the core network entity to which the NAS message belongs in the following manners.
  • the first type the UE receives the RRC message sent by the access network device, where the RRC message is used to deliver the NAS message, where the RRC includes the type identifier of the core network entity to which the NAS message belongs, and the access network device determines the NAS message according to the type identifier.
  • the access network device is a base station. Since the UE is attached to two different core network entities, there are two NASs in the system. If the UE is attached to the EPC and the NG-Core at the same time, the system includes the EPC NAS and the NG-Core NAS. If the UE is in the MM at the same time, The entity and the SM entity are attached, and the system includes the MM NAS and the SM NAS. If the UE is attached to both the SM1 entity and the SM2 entity, the system includes the SM1NAS and the SM2NAS. In addition, the NAS message is transmitted between the UE and the base station through the RRC message.
  • the base station when the base station sends the NAS message to the UE, the base station may carry the type identifier of the core network entity to which the NAS message belongs in the RRC message, so that the UE may The core network entity to which the NAS message belongs is identified according to the received type identifier.
  • EPC NAS and NG-Core NAS Take EPC NAS and NG-Core NAS as an example. In practical applications, you can do this in the following ways:
  • the core network entity to which the NAS message belongs is the EPC.
  • the core network entity to which the NAS message belongs is NG-Core.
  • the value of NASType2 is similar to that of NASType1, and is not mentioned here.
  • the NAS message is delivered to the corresponding core network entity.
  • FIG. 5 is a schematic diagram of the transmission process of the NAS message.
  • the NAS proxy function entity needs to be implemented on the UE side to complete the identification and delivery of the core network entity to which the NAS message belongs.
  • the NAS of the core network device may add the type identifier of the core network entity to which the NAS message belongs in the NAS message, or may add the type identifier to the NAS proxy function entity on the network side.
  • the specific manner of adding the identifier is not limited in this embodiment.
  • the type identifier may be used as a part of the NAS PDU, and the NAS message is transmitted to the UE through an RRC message, and the RRC layer of the UE delivers the NAS PDU to the NAS proxy function entity.
  • the NAS proxy function entity can identify the core network entity to which the NAS message belongs by using the type identifier in the NAS PDU, and then deliver the NAS message to the corresponding NAS layer.
  • the second type receiving an RRC message, and determining a logical channel used when delivering the RRC message; the RRC message is used to deliver the NAS message; and determining a core network entity corresponding to the logical channel according to a mapping relationship between the logical channel and the core network entity .
  • the access side device may be, for example, a base station. Since the base station can send the NAS message to the UE through different logical channels, when receiving the NAS message, the UE first needs to determine the logical channel entity that sends the NAS message, and the logical channel entity is identified by the LCID, and according to the pre-stored logical channel and The mapping relationship between the core network entities determines the core network entity to which the NAS message corresponding to the logical channel belongs. For example, the eNB may send the RRC for sending the EPC NAS message to the SRB1 for transmission, and the RRC for sending the NG-Core NAS message to the SRB2 for transmission.
  • the UE After receiving the RRC message, the UE according to the logical channel and The mapping relationship between the core network entities can determine the core network entity to which the NAS message belongs. For example, when the base station configures the SRB1, the dedicated LCID is allocated. When the UE receives the configuration, the UE establishes a one-to-one corresponding entity for the SRB1. When the base station sends the radio signaling bearer, the RRC layer generates the message and delivers the corresponding message. The bottom layer entity, after the MAC entity receives the LCID, fills in the LCID; when the MAC layer corresponding to the UE receives the LCID, the UE determines that the RRC message is the SRB1. After the UE RRC layer recognizes the NAS message type, the NAS message is delivered to the corresponding NAS entity.
  • the paging message is taken as an example for description.
  • the NAS message can be identified in the manner provided in this embodiment, for example, During the process of establishing a bearer between the UE and the network side device, the information exchange process between the UE and the core network device is medium.
  • the UE receives the paging message sent by the access network device, and determines the core network entity to which the paging message belongs to the multiple core network entities served by the UE, and establishes and searches for the core network entity to which the paging message belongs to the UE.
  • the data connection between the core network entities to which the message belongs Since the UE can determine the core network entity to which the paging message belongs to the plurality of core network entities serving the UE, and establish a data connection with the core network entity to which the paging message belongs, thereby effectively supporting the UE simultaneously Access to different core network entities.
  • This embodiment provides another NAS message identification method.
  • the core network entity is first selected by the UE or the core network, and then the base station acquires the selected core network information from the UE or the core network. For example, suppose the core network selected The entity is an EPC or an NG-Core, and the base station transmits the NAS message sent by the UE to the EPC or the NG-Core through the RRC message, or the core network informs the base station that the selected core network entity is the S1 message, and the base station forwards the NAS message. To the EPC or NG-Core; the RRC of the UE also needs to know the selected core network entity.
  • the UE RRC layer forwards all received NAS messages to the UE EPC NAS entity, and if it is the selected NG-Core, the UE RRC layer submits all received NAS messages to the UE NG-Core NAS entity.
  • the selected core network information needs to be transmitted between the base stations, so that the UE moves to the new base station, and the base station can complete the NAS message routing according to the selected core network information, for example, during the handover process, the source The base station sends a handover request message to the target base station, where the handover request message includes core network information selected by the UE, and the target base station completes the NAS route according to the core network information selected by the UE.
  • the core network entity may include an EPC and an NG-Core, wherein the EPC is located in the LTE system, and the NG-Core is located in the 5G system.
  • FIG. 6 is a schematic flowchart diagram of Embodiment 2 of a method for identifying a message according to an embodiment of the present disclosure.
  • This embodiment relates to a specific process of how to switch from a source base station to a target base station after the UE is simultaneously connected to different core network entities.
  • the UE is simultaneously connected to the EPC and the NG-Core as an example for the UE to simultaneously connect to the MM entity and the SM entity in the NG-Core, and simultaneously connect to multiple SM entities in the NG-Core and to the UE.
  • the mode of switching from the source base station to the target base station is similar to that when connecting to the EPC and the NG-Core at the same time, and therefore will not be described again.
  • the method in this embodiment may include:
  • Step 601 The target base station receives a handover request message sent by the source base station, where the handover request message carries bearer type indication information.
  • FIG. 7 is a schematic diagram of a UE switching from a source base station to a target base station.
  • the UE switches from a source base station to a target base station, which is based on a direct interface (for example, X2) between the source base station and the target base station. Switch.
  • X2 direct interface
  • the source base station When the handover condition is met, if the source base station receives the measurement result and meets the handover threshold, the source base station sends a handover request message to the target base station, where the handover request message includes the bearer type indication information, for example, the EPC bearer or the NG-
  • the Core data stream may also be the network slice information corresponding to the bearer or the data stream, and may also be the network entity information (such as the corresponding SM entity) corresponding to the bearer or the data stream.
  • the bearer type indication information is used to complete data forwarding and/or complete data path switching between the source base station and the target base station.
  • FIG. 8 is a schematic diagram 1 of data bearer type
  • FIG. 9 is a schematic diagram 2 of data bearer type.
  • EPC and NG-core respectively transmit data through different bearer types, for example, based on EPC and base station.
  • the existing bearer type passes data, such as RB1; and the NG-Core and the base station pass data in a stream/flow manner, such as f1.
  • Mode 1 As shown in FIG. 8, f1 and RB1 share one DRB1.
  • the UE For the uplink, if the F1 and the RB1 share one DRB1, the UE needs to add a data label when transmitting the uplink data, so that when the base station receives the data, the data is sent to the corresponding core network, and the data label is used to identify the f1. And RB1, if the data with the label f1 is sent to the NG-Core, the data with the label RB1 is sent to the EPC; for the downlink base station, the data of the f1 and the data of the RB1 are all mapped to the same air interface bearer, that is, the DRB1.
  • Method 2 As shown in Figure 9, f1 and RB1 use different DRBs.
  • the DRB and f1 or RB1 are pre-stored in the base station.
  • DRB1 corresponds to RB1
  • DRB2 corresponds to f1.
  • the base station sends data received from the EPC to the UE through DRB1, and the data received from the NG-core is sent to the UE through DRB2.
  • the base station transmits the data received from the DRB1 to the EPC, and transmits the data received from the DRB2 to the NG-Core.
  • the bearer type refers to that the source base station sends the indication that the DRB1 includes both the F1 and the RB1, that is, the EPC bearer RB1 and the NG-Core data stream f1, to the target base station;
  • the bearer type is used to indicate that DRB1 corresponds to EPC RB1, and DRB2 corresponds to NG-Core f1; so that the target base station completes data forwarding and data path switching of EPC bearer RB1 and NG-Core data stream f1, respectively.
  • Step 602 The target base station determines an admission control and/or a data forwarding manner according to the bearer type indication information.
  • the target base station determines the bearer data forwarding method.
  • the data is forwarded to avoid data loss during the handover process, and the source base station needs to forward the data packet that is not successfully transmitted, to be delivered, and the like to the target base station, and the target base station performs further data transmission.
  • the target base station can determine a specific data forwarding manner, for example, setting a dedicated forwarding channel for f1 and RB1 respectively, for example, the target base station allocates dedicated data forwarding information for f1, and the target base station allocates dedicated data for RB1.
  • the data forwarding information data forwarding information includes a data forwarding destination address, which is allocated by the target base station. For example, based on the GPRS Tunneling Protocol (GTP), the data forwarding information includes a GTP Tunnel Endpoint Identifier (TEID) and an Internet Protocol (Internet Protocol; IP) address.
  • GTP GPRS Tunneling Protocol
  • IP Internet Protocol
  • Step 603 The target base station sends a handover response message carrying the data forwarding information to the source base station, so that the source base station sends an RRC connection reconfiguration message to the UE, so that the UE switches from the source base station to the target base station.
  • the target base station after receiving the bearer type indication information sent by the source base station, the target base station configures the bearer according to the bearer type indication information and determines the handover path. For example, the target base station will decide whether to use the above manner 1 or use the above manner 2 to deliver f1, RB1, and the like in the air interface. After the configuration is successful, the data forwarding information is carried in the handover response message and sent to the source base station, so that the source base station learns that the data will be forwarded according to f1 or RB1.
  • the source base station After receiving the handover response message sent by the target base station, the source base station sends an RRC connection reconfiguration message to the UE, and the UE will switch from the source base station to the target base station, and perform a random access procedure to complete the handover process of the base station.
  • Step 604 The target base station receives the handover notification message sent by the source base station, and sends a path switch request message to the core network entity.
  • the source base station sends a handover notification message to the target base station, so that the target base station learns that the handover process has been completed.
  • the target base station will go to the core network.
  • the entity sends a path switch request message to cause the core network entity to switch the data delivery path.
  • the target base station sends a path switch request message to the EPC and the NG-Core respectively.
  • the data transfer path of the RB1 is switched from the source base station ⁇ ->EPC to the target base station ⁇ ->EPC; the data transfer path of the f1 is from the source base station.
  • -> NG core switches to the target base station ⁇ ->NG core.
  • the target base station will release RBs or data streams that have not completed path switching.
  • the data transmission path can be simultaneously switched from the core network entity corresponding to the source base station to the core network entity corresponding to the target base station, thereby ensuring data transmission. Correctness.
  • FIG. 10 is a schematic flowchart diagram of Embodiment 3 of a method for identifying a message according to an embodiment of the present disclosure.
  • This embodiment involves After the UE is simultaneously connected to different core network entities, the UE needs to perform authentication authentication on different core network entities respectively, and how the base station obtains the air interface for adding/decrypting from different core network entities respectively.
  • the UE is simultaneously connected to the EPC and the NG-Core as an example.
  • the base station performs encryption/decryption and simultaneously connects to the EPC and the NG-Core for encryption/decryption. The way is similar, so I won't go into details.
  • the transmitting end of the embodiment of the present application may be a UE, a base station, or another communication device.
  • the receiving end may be a UE, a base station, or another communication device.
  • the sending end is a UE
  • the sending end is a UE.
  • the receiving end may be a base station, and when the sending end is a base station, the receiving end may be a UE.
  • the specific embodiments of the sending end and the receiving end are not limited in the embodiment of the present application.
  • the method in this embodiment may include:
  • Step 1001 The base station receives the first security configuration information sent by the first core network entity and the second security configuration information sent by the second core network entity, and determines the target from the first security configuration information and the second security configuration information according to the security rule. Security configuration information.
  • the UE since the UE accesses different core network entities, for example, EPC and NG-Core, the UE may need to complete authentication authentication on the EPC and the NG-core respectively. In this way, the base station may obtain the security configuration of the air interface completion encryption/decryption or integrity protection/checking from the EPC and the NG-core respectively. Since there is only one RRC in this embodiment, the security configuration used by the RRC needs to be agreed between the base station and the UE, so that the receiver can complete the decryption and integrity check using the correct security configuration.
  • the security configuration information may include a security algorithm, a security key, and the like.
  • the base station may determine the target security configuration information from the first security configuration information and the second security configuration information according to the following security rules: (1) using the first security configuration information sent by the EPC as the target security configuration information; (2) using the second security configuration information sent by the NG-core as the target security configuration information; and (3) using the newly obtained security configuration information as Target security configuration information; (4) The first obtained security configuration information is used as the target security configuration information.
  • Step 1002 The base station performs encryption/decryption or integrity protection/checking on the RRC message according to the target security configuration information.
  • the base station after determining the target security configuration information, the base station will perform encryption/decryption or integrity protection/checking on the RRC message according to the target security configuration information.
  • Step 1003 The base station sends the target security configuration information to the UE, where the UE performs encryption/decryption or integrity protection/checking on the RRC message according to the target security configuration information.
  • the base station needs to indicate the determined target security configuration information to the UE, so that the UE and the base station use the same security configuration information. It should be noted that if the base station updates the determined security configuration information, it also needs to indicate the updated security configuration information to the UE.
  • first security configuration information and the second security configuration information respectively sent by the UE according to the first core network entity and the second core network entity may be used according to the security rule from the first security configuration information and the second security configuration.
  • the target security configuration information is determined in the information, and the determined target security configuration information is sent to the base station.
  • the base station determines the target security configuration information according to the security configuration information sent by the core network entity, and sends the target security configuration message to the UE, so that the UE and the UE
  • the base station uses the same security configuration information to perform encryption/decryption or integrity protection/checking on the RRC message, thereby ensuring the security of the RRC message.
  • FIG. 11 is a schematic flowchart diagram of Embodiment 4 of a method for identifying a message according to an embodiment of the present disclosure.
  • This embodiment relates to a specific process of how the base station selects security configuration information to encrypt data after the UE is simultaneously connected to different core network entities.
  • the UE is simultaneously connected to the EPC and the NG-Core as an example.
  • the base station encrypts the data and simultaneously connects to the EPC and the NG-Core to encrypt the data. The way is similar, so I won't go into details.
  • the transmitting end of the embodiment of the present application may be a UE, a base station, or another communication device.
  • the receiving end may be a UE, a base station, or another communication device.
  • the sending end is a UE
  • the sending end is a UE.
  • the receiving end may be a base station, and when the sending end is a base station, the receiving end may be a UE.
  • the specific embodiments of the sending end and the receiving end are not limited in the embodiment of the present application.
  • the method in this embodiment may include:
  • Step 1101 The base station receives the first security configuration information sent by the first core network entity and the second security configuration information sent by the second core network entity, and determines the target security configuration information from the first security configuration information and the second security configuration information. .
  • the first core network entity is an EPC
  • the second core network entity is an NG-Core as an example.
  • the EPC and the base station transmit data based on the existing bearer mode, for example, RB1; and the NG-Core and the base station transmit data according to the flow/flow mode, for example, flow1. Therefore, determining the target security configuration information includes the following two methods: First: flow1 and RB1 share one DRB1. In this case, the base station needs to select corresponding security configuration information according to the security rule, where the security rule is the same as the security rule in step 1001. , will not repeat them here.
  • the second type: flow1 and RB1 use different DRBs. In this case, different security configuration information can be applied. For example, DRB1 corresponding to flow1 uses NG-core security configuration information, and DRB2 corresponding to RB1 uses EPC security configuration information.
  • Step 1102 The base station encrypts and decrypts the data according to the target security configuration information.
  • Step 1103 The base station sends the target security configuration information to the UE, so that the UE encrypts and decrypts the data according to the target security configuration information.
  • the base station encrypts the data according to the determined target security configuration information, and sends the target security configuration information to the UE.
  • the UE In order for the UE to encrypt and decrypt data using the same security configuration information as the base station.
  • the base station determines the target security configuration information according to the security configuration information sent by the core network entity, and sends the target security configuration message to the UE, so that the UE and the base station use the same security.
  • the configuration information encrypts/decrypts the data to ensure data security.
  • the dual NAS corresponds to different RRC, that is, dual NAS and dual RRC
  • the RRC is independent
  • the NAS message is identified
  • the paging message is identified
  • the NAS only needs to send a message to the corresponding RRC layer for processing.
  • FIG. 12 is a schematic structural diagram of Embodiment 1 of a device for identifying a message according to an embodiment of the present disclosure.
  • the identification device may be an independent UE, and may also be a device integrated in the UE, and the device may be implemented by software, hardware or a combination of software and hardware. As shown in FIG. 12, the identification device includes:
  • the receiving module 11 is configured to receive a paging message sent by the access network device.
  • a determining module 12 configured to determine a core network entity to which the paging message belongs to multiple core network entities serving the UE;
  • the establishing module 13 is configured to establish a data connection with a core network entity to which the paging message belongs.
  • the receiving module 11 may be a receiver in the UE, and the determining module 12 and the establishing module 13 may be corresponding to the processor in the UE, or the receiving module 11 may further integrate some functions of the processor.
  • the device for identifying the message provided by the embodiment of the present application may perform the foregoing method embodiment, and the implementation principle and the technical effect are similar, and details are not described herein again.
  • the plurality of core network entities are located in different network systems.
  • the paging message carries identification information, where the identification information is used to determine a core network entity to which the paging message belongs.
  • the identification information includes type identification information of a core network entity to which the paging message belongs.
  • the identification information includes device identification information of a UE in a core network entity to which the paging message belongs.
  • the identification information includes a time-frequency resource corresponding to a core network entity to which the paging message belongs.
  • the establishing module 13 is specifically configured to:
  • the device for identifying the message provided by the embodiment of the present application may perform the foregoing method embodiment, and the implementation principle and the technical effect are similar, and details are not described herein again.
  • FIG. 13 is a schematic structural diagram of Embodiment 2 of a device for identifying a message according to an embodiment of the present disclosure.
  • the identification device may be a separate access network device, or may be a device integrated in the access network device, and the device may be implemented by software, hardware or a combination of software and hardware. As shown in FIG. 13, the identification device includes:
  • the sending module 21 is configured to send a paging message to the user equipment UE, where the UE identifies the type of the paging message;
  • the receiving module 22 is configured to receive a NAS message that is sent by the UE according to the paging message.
  • a determining module 23 configured to determine a core network entity to which the NAS message belongs in multiple core network entities of the access network device;
  • the sending module 21 is further configured to send the NAS message to a core network entity to which the NAS message belongs.
  • the sending module 21 may be a transmitter in the access network device, where the receiving module 22 may be a receiver in the access network device, and the determining module 23 may be a processor in the access network device.
  • the transmitting module 21 and the receiving module 22 may also integrate some of the functions of the processor.
  • the device for identifying the message provided by the embodiment of the present application may perform the foregoing method embodiment, and the implementation principle and the technical effect are similar, and details are not described herein again.
  • the determining module 23 is specifically configured to:
  • the RRC message is used to deliver the NAS a message, where the RRC includes a type identifier of a core network entity to which the NAS message belongs;
  • the determining module 23 is specifically configured to:
  • the device for identifying the message provided by the embodiment of the present application may perform the foregoing method embodiment, and the implementation principle and the technical effect are similar, and details are not described herein again.
  • FIG. 14 is a schematic structural diagram of an embodiment of a UE according to an embodiment of the present disclosure.
  • the UE may include a transmitter 20, a processor 21, a memory 22, and at least one communication bus 23.
  • the communication bus 23 is used to implement a communication connection between components.
  • the memory 22 may include a high speed RAM memory 22, and may also include a non-volatile memory NVM, such as at least one disk memory 22, in which various programs may be stored for performing various processing functions and implementing the method of the present embodiment. step.
  • the UE may further include a receiver 24, and the receiver 24 in this embodiment may be an input interface having a communication function and a function of receiving information, and may also be a radio frequency module or a baseband module on the UE.
  • the transmitter 20 can be a corresponding output interface having a communication function and a function of transmitting information, and can also be a radio frequency module or a baseband module on the UE.
  • the transmitter 20 and the receiver 24 may be integrated into one UE, or may be independent two communication interfaces.
  • the receiver 24 is configured to receive a paging message sent by the access network device.
  • the processor 21 is configured to determine a core network entity to which the paging message belongs to multiple core network entities serving the UE;
  • the processor 21 is configured to establish a data connection with a core network entity to which the paging message belongs.
  • the plurality of core network entities are located in different network systems.
  • the paging message carries identification information, where the identification information is used to determine a core network entity to which the paging message belongs.
  • the identification information includes type identification information of a core network entity to which the paging message belongs.
  • the identification information includes device identification information of a UE in a core network entity to which the paging message belongs.
  • the identification information includes a time-frequency resource corresponding to a core network entity to which the paging message belongs.
  • the sender 20 is configured to send the paging message to the NAS to which the paging message belongs;
  • the receiver 24 is configured to receive a NAS message sent by the NAS.
  • the transmitter 20 is configured to send the NAS message to a core network entity to which the paging message belongs.
  • the UE provided by the embodiment of the present application may perform the foregoing method embodiments, and the implementation principles and technical effects thereof are similar, and details are not described herein again.
  • FIG. 15 is a schematic structural diagram of an embodiment of an access network device according to an embodiment of the present disclosure.
  • the access network device can include a transmitter 30, a processor 31, a memory 32, and at least one communication bus 33.
  • the communication bus 33 is used to implement a communication connection between components.
  • Memory 32 may contain high speed RAM memory 32, too Non-volatile storage NVMs may also be included, such as at least one disk storage 32 in which various programs may be stored for performing various processing functions and implementing the method steps of the present embodiments.
  • the access network device may further include a receiver 34.
  • the receiver 34 in this embodiment may be a corresponding input interface having a communication function and a receiving information function, and may also be a radio frequency module or a baseband on the access network device.
  • the transmitter 30 in this embodiment may be a corresponding output interface having a communication function and a function of transmitting information, and may also be a radio frequency module or a baseband module on the access network device.
  • the transmitter 30 and the receiver 34 may be integrated in one network side device, or may be independent two communication interfaces.
  • the transmitter 30 is configured to send a paging message to the user equipment UE.
  • a receiver 34 configured to receive a NAS message sent by the UE according to the paging message
  • the processor 31 is configured to determine a core network entity to which the NAS message belongs in multiple core network entities of the access network device;
  • the transmitter 30 is further configured to send the NAS message to a core network entity to which the NAS message belongs.
  • the receiver 34 is further configured to receive a radio resource management RRC message sent by the UE, where the RRC message is used to deliver the NAS message, where the RRC includes a core network to which the NAS message belongs.
  • the processor 31 is further configured to determine, according to the type identifier, a core network entity to which the NAS message belongs in multiple core network entities of the access network device.
  • the receiver 34 is further configured to receive an RRC message, where the RRC message is used to deliver the NAS message.
  • the processor 31 is further configured to determine a logical channel used when the RRC message is delivered, where the processor 31 is further configured to determine the logic according to a mapping relationship between the logical channel and a core network entity.
  • the core network entity corresponding to the channel.
  • the access network device provided by the embodiment of the present application may perform the foregoing method embodiments, and the implementation principle and technical effects are similar, and details are not described herein again.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Telephonic Communication Services (AREA)

Abstract

本申请实施例提供一种消息的识别方法和装置,该方法包括:用户设备UE接收接入网设备发送的寻呼消息;所述UE确定为所述UE服务的多个核心网实体中所述寻呼消息所属的核心网实体;所述UE建立与所述寻呼消息所属的核心网实体的数据连接。本申请实施例提供的消息的识别方法和装置能够将UE连接到不同的核心网实体中。

Description

消息的识别方法和装置
本申请要求于2016年9月30日提交中国专利局、申请号为201610874215.5、申请名称为“消息的识别方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信技术,尤其涉及一种消息的识别方法和装置。
背景技术
第四代移动通信技术(the 4th Generation mobile communication technology;简称:4G)网络由演进型基站(evolved Node B;简称:eNB)和演进的分组核心网(Evolved Packet Core;简称:EPC)组成,其中,EPC包括移动管理实体(Mobility Management Entity;简称:MME)和服务网关(Serving Gateway;简称:SGW)等。
为了满足更高速率、更低时延、更多样的业务等需求,第三代合作伙伴计划(3rd Generation Partnership Project;简称:3GPP)正在定义第五代移动通信技术(the 5th Generation mobile communication technology;简称:5G)。其中,在5G中将引入新的核心网,即下一代核心网(Next Generation Core;简称:NG-Core)。NG-Core相对于EPC,引入了更多的新功能,如支持网络切片(Network slicing),基于流的QoS机制等。
在现有的长期演进(Long Term Evolution;简称:LTE)网络中,基站eNB和EPC连接,而在向5G网络平滑演进的过程中,LTE网络会演进为演进的LTE网络(evolved LTE,简称:eLTE)。在eLTE网络中,基站eNB同时连接到EPC和NG-Core,可在保证后向兼容性的同时,保证用户较早的使用NG-Core带来的新业务。NG-Core中有多个实体,例如包括移动管理(Mobility Management;简称:MM)实体和会话管理(session management;简称:SM)实体,还可以同时在NG-Core中的多个SM实体,分别提供不同类型的会话。另外,NG-Core中支持网络切片,一个用户设备(User Equipment;简称:UE)可以同时接入多个网络切片。
目前LTE系统中用户设备(User Equipment;简称:UE)只有一个核心网(EPC)可接入,但在eLTE网络中,UE可以有两个核心网(即EPC和NG-Core)可接入;在5G NR网络中UE有多个核心网实体或者网络切片切换可接入。当在5G中引入NG-Core后,如何将UE连接到不同的核心网实体中,是本申请要解决的技术问题。
发明内容
本申请实施例提供一种消息的识别方法和装置,以使UE可以连接到不同的核心网实体中。
第一方面,本申请实施例提供一种消息的识别方法,包括:
用户设备UE接收接入网设备发送的寻呼消息;
所述UE确定为所述UE服务的多个核心网实体中所述寻呼消息所属的核心网实体;
所述UE建立与所述寻呼消息所属的核心网实体的数据连接。
上述第一方面提供的消息的识别方法,UE通过接收接入网设备发送的寻呼消息,并确定为该UE服务的多个核心网实体中寻呼消息所属的核心网实体,并建立与寻呼消息所属的核心网实体之间的数据连接。由于UE可以确定出为该UE服务的多个核心网实体中寻呼消息所属的核心网实体,并建立与寻呼消息所属的核心网实体之间的数据连接,由此可以有效的支持UE同时接入不同的核心网实体中。
在一种可能的设计中,所述多个核心网实体位于不同的网络制式中。
在一种可能的设计中,所述寻呼消息中携带有识别信息,所述识别信息用于确定所述寻呼消息所属的核心网实体。
在一种可能的设计中,所述识别信息包括所述寻呼消息所属核心网实体的类型标识信息。
在一种可能的设计中,所述识别信息包括所述寻呼消息所属核心网实体中的UE的设备标识信息。
在一种可能的设计中,所述识别信息包括所述寻呼消息所属核心网实体对应的时频资源。
上述各可能的设计所提供的消息的识别方法,可以根据寻呼消息所属核心网实体的类型标识信息、寻呼消息所属核心网实体中UE的设备标识信息或根据寻呼消息所属核心网实体对应的时频资源,识别寻呼消息所属的核心网实体,由此可以使得寻呼消息所属核心网实体的确定方式较灵活且多样化。
在一种可能的设计中,所述UE建立与所述寻呼消息所属的核心网实体的数据连接,包括:
所述UE将所述寻呼消息发送到所述寻呼消息所属的NAS;
所述UE接收所述NAS发送的NAS消息;
所述UE将所述NAS消息发送给所述寻呼消息所属的核心网实体。
上述可能的设计所提供的消息的识别方法,通过将寻呼消息发送到该寻呼消息所属的NAS,并接收NAS发送的NAS消息,并将NAS消息返回到基站,因此可以有效的支持UE同时接入不同的核心网实体中。
第二方面,本申请实施例提供一种消息的识别方法,包括:
接入网设备向用户设备UE发送寻呼消息;
所述接入网设备接收所述UE根据所述寻呼消息发送的NAS消息;
所述接入网设备确定所述接入网设备的多个核心网实体中所述NAS消息所属的核心网实体;
所述接入网设备将所述NAS消息发送给所述NAS消息所属的核心网实体。
上述第二方面提供的消息的识别方法,接入网设备通过向UE发送寻呼消息,并接收UE根据寻呼消息发送的NAS消息,通过确定接入网设备的多个核心网实体中NAS消息所属的核心网实体,并将NAS消息发送给NAS消息所属的核心网实体。由于接入网设备通过确定接入网设备的多个核心网实体中NAS消息所属的核心网实体, 向对应的核心网实体发送NAS消息,由此可以有效的支持UE同时接入不同的核心网实体中。
在一种可能的设计中,所述接入网设备确定所述接入网设备的多个核心网实体中所述NAS消息所属的核心网实体,包括:
所述接入网设备接收所述UE发送的无线资源管理RRC消息;所述RRC消息用于传递所述NAS消息,所述RRC中包括所述NAS消息所属的核心网实体的类型标识;
所述接入网设备根据所述类型标识,确定所述接入网设备的多个核心网实体中所述NAS消息所属的核心网实体。
在一种可能的设计中,所述接入网设备确定所述接入网设备的多个核心网实体中所述NAS消息所属的核心网实体,包括:
接收RRC消息,并确定传递所述RRC消息时所使用的逻辑信道;所述RRC消息用于传递所述NAS消息;
根据所述逻辑信道与核心网实体之间的映射关系,确定所述逻辑信道对应的核心网实体。
上述各可能的设计所提供的消息的识别方法,可以根据NAS消息所属的核心网实体的类型标识或逻辑信道与核心网实体之间的映射关系,确定NAS消息所属的核心网实体,由此可以使得NAS消息所属的核心网实体的确定方式较灵活。
第三方面,本申请实施例提供一种消息的识别装置,包括:
接收模块,用于接收接入网设备发送的寻呼消息;
确定模块,用于确定为所述UE服务的多个核心网实体中所述寻呼消息所属的核心网实体;
建立模块,用于建立与所述寻呼消息所属的核心网实体的数据连接。
在一种可能的设计中,所述多个核心网实体位于不同的网络制式中。
在一种可能的设计中,所述寻呼消息中携带有识别信息,所述识别信息用于确定所述寻呼消息所属的核心网实体。
在一种可能的设计中,所述识别信息包括所述寻呼消息所属核心网实体的类型标识信息。
在一种可能的设计中,所述识别信息包括所述寻呼消息所属核心网实体中的UE的设备标识信息。
在一种可能的设计中,所述识别信息包括所述寻呼消息所属核心网实体对应的时频资源。
在一种可能的设计中,所述建立模块,具体用于:
将所述寻呼消息发送到所述寻呼消息所属的NAS;
接收所述NAS发送的NAS消息;
将所述NAS消息发送给所述寻呼消息所属的核心网实体。
上述第三方面以及第三方面的各可能的设计所提供的消息的识别装置,其有益效果可以参照上述第一方面以及第一方面的各可能的设计所带来的有益效果,在此不再赘述。
第四方面,本申请实施例提供一种消息的识别装置,包括:
发送模块,用于向用户设备UE发送寻呼消息;
接收模块,用于接收所述UE根据所述寻呼消息发送的NAS消息;
确定模块,用于确定所述接入网设备的多个核心网实体中所述NAS消息所属的核心网实体;
所述发送模块,还用于将所述NAS消息发送给所述NAS消息所属的核心网实体。
在一种可能的设计中,所述确定模块,具体用于:
接收所述UE发送的无线资源管理RRC消息;所述RRC消息用于传递所述NAS消息,所述RRC中包括所述NAS消息所属的核心网实体的类型标识;
根据所述类型标识,确定所述接入网设备的多个核心网实体中所述NAS消息所属的核心网实体。
在一种可能的设计中,所述确定模块,具体用于:
接收RRC消息,并确定传递所述RRC消息时所使用的逻辑信道;所述RRC消息用于传递所述NAS消息;
根据所述逻辑信道与核心网实体之间的映射关系,确定所述逻辑信道对应的核心网实体。
上述第四方面以及第四方面的各可能的设计所提供的消息的识别装置,其有益效果可以参照上述第二方面以及第二方面的各可能的设计所带来的有益效果,在此不再赘述。
第五方面,本申请实施例提供一种用户设备UE,包括:
接收器,用于接收接入网设备发送的寻呼消息;
处理器,用于确定为所述UE服务的多个核心网实体中所述寻呼消息所属的核心网实体;
所述处理器,用于建立与所述寻呼消息所属的核心网实体的数据连接。
在一种可能的设计中,所述多个核心网实体位于不同的网络制式中。
在一种可能的设计中,所述寻呼消息中携带有识别信息,所述识别信息用于确定所述寻呼消息所属的核心网实体。
在一种可能的设计中,所述识别信息包括所述寻呼消息所属核心网实体的类型标识信息。
在一种可能的设计中,所述识别信息包括所述寻呼消息所属核心网实体中的UE的设备标识信息。
在一种可能的设计中,所述识别信息包括所述寻呼消息所属核心网实体对应的时频资源。
在一种可能的设计中,所述发送器,还用于将所述寻呼消息发送到所述寻呼消息所属的NAS;
所述接收器,还用于接收所述NAS发送的NAS消息;
所述发送器,还用于将所述NAS消息发送给所述寻呼消息所属的核心网实体。
上述第五方面以及第五方面的各可能的设计所提供的UE,其有益效果可以参照上述第一方面以及第一方面的各可能的设计所带来的有益效果,在此不再赘述。
第六方面,本申请实施例提供一种接入网设备,包括:
发送器,用于向用户设备UE发送寻呼消息;
接收器,用于接收所述UE根据所述寻呼消息发送的NAS消息;
处理器,用于确定所述接入网设备的多个核心网实体中所述NAS消息所属的核心网实体;
所述发送器,还用于将所述NAS消息发送给所述NAS消息所属的核心网实体。
在一种可能的设计中,所述接收器,还用于接收所述UE发送的无线资源管理RRC消息;所述RRC消息用于传递所述NAS消息,所述RRC中包括所述NAS消息所属的核心网实体的类型标识;
所述处理器,还用于根据所述类型标识,确定所述接入网设备的多个核心网实体中所述NAS消息所属的核心网实体。
在一种可能的设计中,所述接收器,还用于接收RRC消息;所述RRC消息用于传递所述NAS消息;
所述处理器,还用于确定传递所述RRC消息时所使用的逻辑信道;
所述处理器,还用于根据所述逻辑信道与核心网实体之间的映射关系,确定所述逻辑信道对应的核心网实体。
上述第六方面以及第六方面的各可能的设计所提供的接入网设备,其有益效果可以参照上述第二方面以及第二方面的各可能的设计所带来的有益效果,在此不再赘述。
附图说明
图1为本申请实施例提供的消息的识别方法实施例一的流程示意图;
图2为寻呼消息的发送流程示意图;
图3为NAS消息的发送流程示意图;
图4为NAS消息的传输流程示意图;
图5为NAS消息的传输流程示意图;
图6为本申请实施例提供的消息的识别方法实施例二的流程示意图;
图7为UE从源基站切换到目标基站的示意图;
图8为数据的承载类型示意图一;
图9为数据的承载类型示意图二;
图10为本申请实施例提供的消息的识别方法实施例三的流程示意图;
图11为本申请实施例提供的消息的识别方法实施例四的流程示意图;
图12为本申请实施例提供的消息的识别装置实施例一的结构示意图;
图13为本申请实施例提供的消息的识别装置实施例二的结构示意图;
图14为本申请实施例提供的UE实施例的结构示意图;
图15为本申请实施例提供的网络侧设备实施例的结构示意图。
具体实施方式
本申请实施例涉及的消息的识别方法,可以适用于eLTE和5G系统中,在eLTE和5G系统中,由于在eLTE和5G系统中引入了下一代核心网NG-Core,因此,eLTE网络架构下,对于同一个UE,需要部分业务通过EPC传递,另一部分业务通过NG-Core 传递,这就需要UE能够同时连接到EPC和NG-Core,或者不同的UE,部分UE连接到EPC,部分UE连接到NG-Core。对于5G网络架构中,同UE可同时连接到多个核心网实体,如不同的业务连接到不同的SM实体,或者同一个UE可同时连接到不同的网络切片中。
因此,本申请实施例提供的消息的识别方法、装置和设备,旨在解决现有技术中UE无法同时连接到不同的核心网实体的技术问题。
下面以具体地实施例对本申请的技术方案进行详细说明。下面这几个具体的实施例可以相互结合,对于相同或相似的概念或过程可能在某些实施例不再赘述。
图1为本申请实施例提供的消息的识别方法实施例一的流程示意图。如图1所示,本实施例的方法可以包括:
步骤101、UE接收接入网设备发送的寻呼消息。
在本实施例中,假设UE同时在不同的核心网实体附着,例如:UE可以同时在EPC和NG-Core附着,也可以同时在NG-Core中的MM实体和SM实体附着,还可以同时在NG-Core中的多个SM实体,如SM1和SM2实体附着,还可以同时在NG-Core中的多个网络切片,如网络切片1和网络切片2附着。
图2为寻呼消息的发送流程示意图,如图2所示,本实施例中以UE同时附着在EPC和NG-Core为例进行说明,当UE处于空闲态时,对于被叫,用户数据会到达核心网即EPC和/或NG-Core。当用户数据到达核心网设备后,会生成寻呼消息,例如当用户数据到达EPC时,则由EPC生成EPC寻呼消息,当用户数据到达NG-Core时,由NG-Core生成NG-Core寻呼消息,之后核心网设备将寻呼消息发送到基站,基站通过无线资源管理(Radio Resource Control,简称RRC)层将收到的寻呼消息发送给UE。当UE处于第三态时,对于处于该第三态的UE,用户数据会直接到达基站,当用户数据到达基站后,由基站生成寻呼消息,当用户数据由EPC到达基站时,则生成EPC寻呼消息,当用户数据到达NG-Core时,则生成NG-Core寻呼消息。其中,第三态为核心网和基站之间存在UE信令链路,而UE和基站之间的连接处于释放状态。
步骤102、UE确定为UE服务的多个核心网实体中寻呼消息所属的核心网实体。
在本实施例中,核心网实体可以包括核心网设备和核心网设备中的网络切片,例如:EPC、NG-Core、SM实体、MM实体或者NG-Core中的多个网络切片,如网络切片1和网络切片2等。当UE接收到接入网设备发送的寻呼消息后,将识别该寻呼消息的类型,即确定寻呼消息属于哪个核心网实体。举例来说,若该寻呼消息是由EPC发送,则寻呼消息的类型为EPC寻呼消息,该寻呼消息属于EPC,若该寻呼消息是由NG-Core发送,则寻呼消息的类型为NG-Core寻呼消息,该寻呼消息属于NG-Core,若该寻呼消息是由NG-Core中的MM发送,则寻呼消息的类型为MM寻呼消息,该寻呼消息属于MM,若该寻呼消息是由NG-Core中的SM发送,则寻呼消息的类型为SM寻呼消息,该寻呼消息属于SM,对于由网络切片发送的寻呼消息的类型,与由核心网设备发送的寻呼消息的类型相似,此处不再赘述。
在具体的实现过程中,UE可以通过寻呼消息中携带的识别信息确定寻呼消息所属的核心网实体。具体地,可以通过以下几种方式识别寻呼消息所属的核心网实体。
第一种:若识别信息包括寻呼消息所属核心网实体的类型标识信息,则识别寻呼 消息所属核心网实体包括根据该类型标识信息进行识别。
具体地,接入网设备在发送寻呼消息时,可以在寻呼消息中增加核心网实体的类型标识信息,以便UE根据该类型标识信息,识别该寻呼消息是来自于哪一个核心网实体。在实际应用中,可以通过如下方式实现:
Figure PCTCN2017102205-appb-000001
其中,paging-type为枚举类型,且枚举类型的值包括EPC和NG-Core,当枚举类型的值为EPC时,说明该寻呼消息所属的核心网实体为EPC,当枚举类型的值为NG-Core时,说明该寻呼消息所属的核心网实体为NG-Core。
第二种:若识别信息包括寻呼消息所属核心网实体中的UE的设备标识信息,则识别寻呼消息所属的核心网实体包括根据该UE的设备标识信息来识别。
具体地,不同的核心网实体可以给UE分配不同的设备标识信息,并将分配的设备标识信息携带在寻呼消息中发送给UE,UE在接收到寻呼消息之后,根据设备标识信息即可识别该寻呼消息来自哪一个核心网实体。例如:在初始附着阶段,EPC给UE分配了设备标识信息1,NG-Core给UE分配了设备标识信息2。当数据到达EPC时,EPC下发寻呼消息,其中包含设备标识信息1,如果数据到达NG-Core时,NG-Core下发寻呼消息,其中包含设备标识信息2。UE在接收到寻呼消息后,若寻呼消息中包含设备标识信息1,则说明该寻呼消息是EPC下发的寻呼消息,即寻呼消息所属的核心网实体为EPC,若寻呼消息中包含设备标识信息,则说明该寻呼消息是NG-Core下发的寻呼消息,即寻呼消息所属的核心网实体为NG-Core。
第三种:若识别信息包括寻呼消息所属核心网实体对应的时频资源,则识别寻呼消息所属的核心网实体包括根据时频资源来识别。
具体地,UE可以通过接收寻呼消息的寻呼时机来区分不同的寻呼消息的类型。其中,寻呼时机是指接入网设备为UE分配的接收寻呼消息的时频资源。例如,UE在寻呼时机1检测到的寻呼消息为EPC寻呼消息,即在寻呼时机1检测到的寻呼消息所属的核心网实体为EPC,UE在寻呼时机2检测到寻呼消息为NG-Core寻呼消息,即在寻呼时机2检测到的寻呼消息所属的核心网实体为NG-Core等。
步骤103、UE建立与寻呼消息所属的核心网实体的数据连接。
在本实施例中,继续参照图2所示,当UE识别出寻呼消息所属的核心网实体之后,将根据寻呼消息的类型,将寻呼消息发送到寻呼消息所属的NAS,以便NAS发起相应的业务建立流程。例如:若识别出寻呼消息所属的核心网实体为EPC,则将该寻呼消息发送到EPC NAS,若识别出寻呼消息所属的核心网实体为NG-Core,则将该寻呼消息发送到NG-Core NAS等,对于寻呼消息所属的核心网实体为SM或MM时,其发送方式与所属的核心网实体为EPC和NG-Core时的发送方式类似,此处不再赘述。另外,在核心网有多个SM实体时,寻呼消息里面可以携带产生该寻呼消息的SM实体标识;核心网有多个网络切片时,寻呼消息里面可以携带产生该寻呼消息的切片标识等,以便确定寻呼消息所属的核心网实体。
UE将寻呼消息递交到寻呼消息所属的NAS之后,将接收NAS发送的NAS消息,并向接入网设备发送该NAS消息。接入网设备根据接收到的NAS消息,对NAS消息的类型进行识别,即识别出该NAS消息是由哪一个NAS发送,识别出后,将NAS消息发送到NAS消息所属的核心网实体。图3为NAS消息的发送流程示意图,如图3所示,本实施例中以NAS消息的类型包括EPC NAS和NG-Core NAS为例进行说明,若网络侧设备识别出NAS消息为EPC NAS发送的,则将该NAS消息发送到EPC,若识别出NAS消息为NG-Core NAS发送的,则将该NAS消息发送到NG-Core。本实施例中以响应寻呼消息为例的NAS消息识别的方法适用于所有其他情况的NAS消息识别,如主叫时UE发送的业务请求消息,UE发送的附着消息等。
在具体的实现过程中,对于上行NAS消息,接入网设备可以通过以下几种方式确定NAS消息所属的核心网实体。
第一种:接入网设备接收UE发送的RRC消息,该RRC消息用于传递NAS消息,该RRC中包括NAS消息所属的核心网实体的类型标识,接入网设备根据该类型标识,确定NAS消息所属的核心网实体。
具体地,采用这种方式时,有两种情况,第一种情况:接入网设备为基站。由于UE附着在两个不同的核心网实体上,因此,系统中会有两个NAS,若UE同时在EPC和NG-Core附着,则系统包括EPC NAS和NG-Core NAS,若UE同时在MM实体和SM实体附着,则系统包括MM NAS和SM NAS,若UE同时在SM1实体和SM2实体附着,则系统包括SM1NAS和SM2NAS。另外,NAS消息是通过RRC消息在UE和基站之间进行传递的,因此,UE在向基站发送NAS消息时,可以在RRC消息中携带NAS消息所属的核心网实体的类型标识,这样,基站可以根据接收到的类型标识,识别NAS消息所属的核心网实体。以EPC NAS和NG-Core NAS为例,在实际应用中,可以通过如下方式实现:
Figure PCTCN2017102205-appb-000002
其中,如果NASType1的值为EPC_NAS时,说明该NAS消息所属的核心网实体为EPC,当NASType1的值为NG-Core NAS时,说明该NAS消息所属的核心网实体为NG-Core。NASType2的取值与NASType1类似,此处不再赘述。
同样地,对于SM1和SM2,NAS所属的核心网实体可以通过SM实体的类型标识来区分;对于不同的网络切片,NAS所属的核心网实体可以通过网络切片的类型标识来区分。
第二种情况:接入网设备为核心网实体。图4为NAS消息的传输流程示意图,如图4所示,NAS消息所属的核心网实体的识别由NAS代理功能实体实现,其中,该NAS代理功能实体为逻辑实体,其物理位置可位于核心网,也可位于无线接入网(Radio Access Network简称:RAN)。当UE的NAS层在生成NAS消息时,可以在NAS消 息中携带NAS消息所属的核心网实体的类型标识,在具体的实现过程中,可以将类型标识作为NAS协议数据单元(Protocol Data Unit;简称:PDU)的一部分,并将NAS消息通过RRC消息传输至基站,基站将该NAS消息发送至NAS代理功能实体。NAS代理功能实体通过NAS PDU中的类型标识即可识别出NAS消息所属的核心网实体。
第二种:接收RRC消息,并确定传递RRC消息时所使用的逻辑信道;该RRC消息用于传递NAS消息;根据逻辑信道与核心网实体之间的映射关系,确定逻辑信道对应的核心网实体。
具体地,本识别方法中,接入侧设备例如可以为基站。由于UE可以通过不同的逻辑信道向基站发送NAS消息,基站在接收到NAS消息时,首先需要确定发送该NAS消息的逻辑信道实体,该逻辑信道实体由逻辑信道索引(logical channel index;简称:LCID)标识,并根据预先存储的逻辑信道与核心网实体之间的映射关系,确定出逻辑信道对应的NAS消息所属的核心网实体。例如:UE可以将用于发送EPC NAS消息的RRC放在信令无线承载(signalling radio bearers;简称:SRB)1中进行发送,将用于发送NG-Core NAS消息的RRC放在SRB2中进行发送,基站在接收到RRC消息之后,根据逻辑信道与核心网实体之间的映射关系,即可确定出NAS消息所属的核心网实体。例如基站配置SRB1时,分配专用的LCID,UE接收到该配置时,对于该SRB1建立一一对应的实体,UE在发送该无线信令承载时,RRC层生成该消息,并将其递交到对应的底层实体,MAC实体接收到后在MAC层子头上填入该LCID;基站对应的MAC层在接收到该LCID时,则基站判断该RRC消息为该SRB1。
在具体的实现过程中,对于下行NAS消息,UE可以通过以下几种方式确定NAS消息所属的核心网实体。
第一种:UE接收接入网设备发送的RRC消息,该RRC消息用于传递NAS消息,该RRC中包括NAS消息所属的核心网实体的类型标识,接入网设备根据类型标识,确定NAS消息所属的核心网实体。
具体地,采用这种方式时,有两种情况,第一种情况:接入网设备为基站。由于UE附着在两个不同的核心网实体上,因此,系统中会有两个NAS,若UE同时在EPC和NG-Core附着,则系统包括EPC NAS和NG-Core NAS,若UE同时在MM实体和SM实体附着,则系统包括MM NAS和SM NAS,若UE同时在SM1实体和SM2实体附着,则系统包括SM1NAS和SM2NAS。另外,NAS消息是通过RRC消息在UE和基站之间进行传递的,因此,基站在向UE发送NAS消息时,可以在RRC消息中携带NAS消息所属的核心网实体的类型标识,这样,UE可以根据接收到的类型标识,识别NAS消息所属的核心网实体。以EPC NAS和NG-Core NAS为例,在实际应用中,可以通过如下方式实现:
Figure PCTCN2017102205-appb-000003
其中,如果NASType1的值为EPC_NAS时,说明该NAS消息所属的核心网实体为EPC,当NASType1的值为NG-Core NAS时,说明该NAS消息所属的核心网实体为NG-Core。NASType2的取值与NASType1类似,此处不再赘述。
UE RRC层识别出NAS消息所属的核心网实体之后,将该NAS消息递交到对应的核心网实体。
第二种情况:图5为NAS消息的传输流程示意图,如图5所示,对于下行,NAS代理功能实体需要在UE侧实现,以完成NAS消息所属的核心网实体的识别和递交。当核心网设备在生成NAS消息时,可以由核心网设备的NAS在NAS消息中添加NAS消息所属的核心网实体的类型标识,也可以由网络侧的NAS代理功能实体添加该类型标识,对于类型标识的具体添加方式,本实施例在此不作限制。在具体的实现过程中,可以将类型标识作为NAS PDU的一部分,并将NAS消息通过RRC消息传输至UE,UE的RRC层将该NAS PDU递交给NAS代理功能实体。NAS代理功能实体通过NAS PDU中的类型标识即可识别出NAS消息所属的核心网实体,再将该NAS消息递交至相应的NAS层。
第二种:接收RRC消息,并确定传递RRC消息时所使用的逻辑信道;该RRC消息用于传递NAS消息;根据逻辑信道与核心网实体之间的映射关系,确定逻辑信道对应的核心网实体。
具体地,本识别方法中,接入侧设备例如可以为基站。由于基站可以通过不同的逻辑信道向UE发送NAS消息,UE在接收到NAS消息时,首先需要确定发送该NAS消息的逻辑信道实体,该逻辑信道实体由LCID标识,并根据预先存储的逻辑信道与核心网实体之间的映射关系,确定出逻辑信道对应的NAS消息所属的核心网实体。例如:基站可以将用于发送EPC NAS消息的RRC放在SRB1中进行发送,将用于发送NG-Core NAS消息的RRC放在SRB2中进行发送,UE在接收到RRC消息之后,根据逻辑信道与核心网实体之间的映射关系,即可确定出NAS消息所属的核心网实体。例如基站配置SRB1时,分配专用的LCID,UE接收到该配置时,对于该SRB1建立一一对应的实体,基站在发送该无线信令承载时,RRC层生成该消息,并将其递交到对应的底层实体,MAC实体接收到后在MAC层子头上填入该LCID;UE对应的MAC层在接收到该LCID时,则UE判断该RRC消息为该SRB1。UE RRC层识别出NAS消息类型后,将该NAS消息递交到对应的NAS实体。
需要进行说明的是,本实施例中只是以寻呼消息为例进行说明,实际上凡是在涉及到NAS消息的场景中,均可以用本实施例中提供的方式进行NAS消息的识别,例如在UE和网络侧设备建立承载的过程中,UE和核心网设备的信息交互过程中等。
本申请实施例提供的消息的识别方法,UE通过接收接入网设备发送的寻呼消息,并确定为该UE服务的多个核心网实体中寻呼消息所属的核心网实体,并建立与寻呼消息所属的核心网实体之间的数据连接。由于UE可以确定出为该UE服务的多个核心网实体中寻呼消息所属的核心网实体,并建立与寻呼消息所属的核心网实体之间的数据连接,由此可以有效的支持UE同时接入不同的核心网实体中。
本实施例提供另外一种NAS消息识别方法。首先由UE或者核心网选择核心网实体,之后基站从UE或者核心网获取所选择的核心网信息。例如假设选择的核心网实 体为EPC或NG-Core,由UE通过RRC消息,或者由核心网通过S1消息通知基站所选的核心网实体为EPC或NG-Core,则后续所有UE发送的NAS消息,基站都将其转发至EPC或NG-Core;UE的RRC同样需要获知所选择的核心网实体。如果选择的是EPC,UE RRC层将所有接收的NAS消息递交至UE EPC NAS实体,如果是选择的NG-Core,UE RRC层则将所有接收到的NAS消息递交至UE NG-Core NAS实体。在切换或者UE移动时,所选择的核心网信息需要在基站间传递,以便于UE移动到新的基站,该基站可以根据该选择的核心网信息完成NAS消息路由,例如在切换过程中,源基站发送切换请求消息至目标基站,该切换请求消息中包含UE所选择的核心网信息,目标基站根据该UE所选择的核心网信息完成NAS路由。
可选地,多个核心网实体位于不同的网络制式中。例如:核心网实体可以包括EPC和NG-Core,其中,EPC位于LTE系统中,NG-Core位于5G系统中。
图6为本申请实施例提供的消息的识别方法实施例二的流程示意图。本实施例涉及的是UE同时连接到不同的核心网实体后,如何从源基站切换到目标基站的具体过程。本实施例中以UE同时连接到EPC和NG-Core为例进行说明,对于UE同时连接到NG-Core中的MM实体和SM实体、同时连接到NG-Core中的多个SM实体以及对于UE同时连接到NG-Core中的不同网络切片时,其从源基站切换到目标基站的方式与同时连接到EPC和NG-Core时的切换方式类似,故不再赘述。如图6所示,本实施例的方法可以包括:
步骤601、目标基站接收源基站发送的切换请求消息,该切换请求消息中携带有承载类型指示信息。
在本实施例中,图7为UE从源基站切换到目标基站的示意图,如图7所示,UE从源基站切换到目标基站,是基于源基站和目标基站的直接接口(例如X2)的切换。在这个切换过程中,由于数据分别是从EPC和NG-core到达基站,当UE移动到目标基站时,数据路径需要同时从EPC和NG-core切换至目标基站。
在满足切换条件时,如源基站接收到测量结果满足切换门限时,源基站将发送切换请求消息到目标基站,其中,该切换请求消息中包含承载类型指示信息,例如即为EPC承载还是NG-Core数据流,还可为所述承载或数据流对应的网络切片信息,还可为所述承载或者数据流对应的网络实体信息(如对应的SM实体)。所述承载类型指示信息用于完成源基站和目标基站间的数据转发和\或完成数据路径切换。
具体地,图8为数据的承载类型示意图一,图9为数据的承载类型示意图二,如图8所示,EPC和NG-core分别通过不同的承载类型传递数据,例如:EPC和基站间基于现有的承载类型传递数据,例如RB1;而NG-Core和基站间基于流/flow的方式传递数据,如f1。本领域技术人员可以理解,采用这两种承载类型之后,在空口,就有两种可能的方式:方式一:如图8所示,f1和RB1共用一个DRB1。对于上行,如果f1和RB1共用一个DRB1,则UE在发送上行数据时需要增加数据标签,以便于基站在接收到该数据时,将该数据发送至对应的核心网,该数据标签用于识别f1和RB1,如将标签为f1的数据发送至NG-Core,将标签为RB1的数据发送至EPC;对于下行基站接收到将f1的数据和RB1的数据都映射到同一个空口承载即DRB1。方式二:如图9所示,f1和RB1使用不同的DRB。此时,基站中预先保存有DRB和f1或RB1 之间的映射关系,例如:DRB1对应RB1,DRB2对应f1,这样,在下行时,基站将从EPC接收到的数据通过DRB1发给UE,将从NG-core接收到的数据通过DRB2发给UE;而对于上行,基站将从DRB1接收到的数据发送至EPC,将从DRB2接收到的数据发送至NG-Core。
例如在上述方式一中,所述承载类型指的是源基站将DRB1同时包含f1和RB1,即同时包含EPC承载RB1和NG-Core数据流f1的指示发给目标基站;在上述方式二中,所述承载类型用于指示DRB1对应于EPC RB1,DRB2对应于NG-Core f1;以便于目标基站分别完成EPC承载RB1和NG-Core数据流f1的数据转发和数据路径切换。
步骤602、目标基站根据承载类型指示信息确定准入控制和/或数据转发方式。
本实施例中,目标基站接收到承载类型指示后,判断该承载数据转发方法。所述数据转发为为了避免在切换过程中的数据丢失,源基站需要将未发送成功,待传递等数据包转发至目标基站,由目标基站完成进一步的数据传输。根据源基站的承载类型指示信息,目标基站可以判断具体的数据转发方式,如为f1和RB1分别设置专用的转发通道,如目标基站为f1分配专用的数据转发信息,目标基站为RB1分配专用的数据转发信息数据转发信息包含数据转发目标地址,该数据转发目标地址是由目标基站分配的。例如:基于GPRS隧道协议(GPRS Tunnelling Protocol;简称:GTP)的方式,则数据转发信息包含GTP隧道端点标识(Tunnel Endpoint Identifier;简称:TEID)和网络之间互连的协议(Internet Protocol;简称:IP)地址。
步骤603、目标基站向源基站发送携带有数据转发信息的切换响应消息,以供源基站向UE发送RRC连接重配置消息,以使UE从源基站切换至目标基站。
在本实施例中,目标基站在接收到源基站发送的承载类型指示信息之后,将根据承载类型指示信息配置该承载以及决定切换路径。例如:目标基站将决定是使用上述方式一还是使用上述方式二在空口传递f1和RB1等。配置成功后,将数据转发信息携带在切换响应消息中发送给源基站,以使源基站获知,将根据f1还是RB1转发数据。
源基站接收到目标基站发送的切换响应消息之后,会向UE发送RRC连接重配置消息,UE将从源基站切换至目标基站,并进行随机接入过程,以完成基站的切换过程。
步骤604、目标基站接收源基站发送的切换通知消息,并向核心网实体发送路径切换请求消息。
在本实施例中,当UE成功的从源基站切换至目标基站之后,源基站将向目标基站发送切换通知消息,以使目标基站获知该切换过程已完成,此时,目标基站将向核心网实体发送路径切换请求消息,以使核心网实体将数据的传递路径进行切换。例如:目标基站分别向EPC和NG-Core发送路径切换请求消息,此时,RB1的数据传递路径从源基站<->EPC切换至目标基站<->EPC;f1的数据传递路径从源基站<->NG core切换至目标基站<->NG core。目标基站将释放没有完成路径切换的RB或者数据流。
本申请实施例提供的消息的识别方法,UE从源基站切换到目标基站时,数据的传递路径可以同时从源基站对应的核心网实体切换至目标基站对应的核心网实体,保证了数据传递的正确性。
图10为本申请实施例提供的消息的识别方法实施例三的流程示意图。本实施例涉 及的是UE同时连接到不同的核心网实体后,UE需要分别在不同的核心网实体完成鉴权认证,则基站如何分别从不同的核心网实体得到空口进行加/解密的具体过程。本实施例中以UE同时连接到EPC和NG-Core为例进行说明,对于UE同时连接到不同的网络切片时,基站进行加/解密的方式与同时连接到EPC和NG-Core进行加/解密的方式类似,故不再赘述。
本申请实施例涉及的发送端可以是UE,也可以是基站,还可以是其他的通信设备,接收端可以是UE,也可以是基站,还可以是其他的通信设备,当发送端为UE时,接收端可以为基站,当发送端为基站时,接收端可以是UE。总之,本申请实施例对发送端和接收端的具体形式并不做限制。
如图10所示,本实施例的方法可以包括:
步骤1001、基站接收第一核心网实体发送的第一安全配置信息和第二核心网实体发送的第二安全配置信息,并根据安全规则从第一安全配置信息和第二安全配置信息中确定目标安全配置信息。
在本实施例中,由于UE分别接入不同的核心网实体,例如:EPC和NG-Core,则UE可能需要分别在EPC和NG-core完成鉴权认证。这样,基站可能分别从EPC和NG-core得到空口完成加/解密或完整性保护/校验的安全配置。由于本实施例中只有一个RRC,所以基站和UE间需要约定对该RRC使用的安全配置,以便于接收方能使用正确的安全配置完成解密和完整性校验。其中,安全配置信息可以包括安全算法,安全秘钥等。
基站在接收到EPC发送的第一安全配置信息和NG-Core发送的第二安全配置信息之后,可以按照如下几种安全规则从第一安全配置信息和第二安全配置信息中确定目标安全配置信息:(1)将EPC发送的第一安全配置信息作为目标安全配置信息;(2)将NG-core发送的第二安全配置信息作为目标安全配置信息;(3)将最新得到的安全配置信息作为目标安全配置信息;(4)将最先得到的安全配置信息作为目标安全配置信息。
步骤1002、基站根据目标安全配置信息对RRC消息进行加/解密或完整性保护/校验。
在本实施例中,基站在确定出目标安全配置信息之后,将根据目标安全配置信息对RRC消息进行加/解密或完整性保护/校验。
步骤1003、基站将目标安全配置信息发送给UE,以供UE根据目标安全配置信息对RRC消息进行加/解密或完整性保护/校验。
在本实施例中,基站需要将确定的目标安全配置信息指示给UE,以便于UE和基站使用相同的安全配置信息。值得注意的是,如果基站更新确定的安全配置信息,则同样需要指示更新后的安全配置信息给UE。
需要说明的是,也可以由UE根据第一核心网实体和第二核心网实体分别发送的第一安全配置信息和第二安全配置信息,根据安全规则从第一安全配置信息和第二安全配置信息中确定目标安全配置信息,并将确定出的目标安全配置信息发送给基站。
本申请实施例提供的消息的识别方法,由于基站根据不同的核心网实体发送的安全配置信息,确定目标安全配置信息,并将目标安全配置消息发送给UE,以使UE和 基站使用相同的安全配置信息对RRC消息进行加/解密或完整性保护/校验,从而保证了RRC消息的安全性。
图11为本申请实施例提供的消息的识别方法实施例四的流程示意图。本实施例涉及的是UE同时连接到不同的核心网实体后,基站如何选择安全配置信息对数据进行加密的具体过程。本实施例中以UE同时连接到EPC和NG-Core为例进行说明,对于UE同时连接到不同的网络切片时,基站对数据进行加密的方式与同时连接到EPC和NG-Core对数据进行加密的方式类似,故不再赘述。
本申请实施例涉及的发送端可以是UE,也可以是基站,还可以是其他的通信设备,接收端可以是UE,也可以是基站,还可以是其他的通信设备,当发送端为UE时,接收端可以为基站,当发送端为基站时,接收端可以是UE。总之,本申请实施例对发送端和接收端的具体形式并不做限制。
如图11所示,本实施例的方法可以包括:
步骤1101、基站接收第一核心网实体发送的第一安全配置信息和第二核心网实体发送的第二安全配置信息,并从第一安全配置信息和第二安全配置信息中确定目标安全配置信息。
在本实施例中,以第一核心网实体为EPC,第二核心网实体为NG-Core为例进行说明。EPC和基站间基于现有的承载方式传递数据,例如RB1;而NG-Core和基站间基于流/flow的方式传递数据,例如flow1。因此,确定目标安全配置信息包括如下两种方式:第一种:flow1和RB1共用一个DRB1,此时,基站需要根据安全规则选择相应的安全配置信息,其中安全规则和步骤1001中的安全规则相同,此处不再赘述。第二种:flow1和RB1使用不同的DRB,此时,可以应用不同的安全配置信息,例如flow1对应的DRB1使用NG-core的安全配置信息;而对RB1对应的DRB2使用EPC的安全配置信息。
步骤1102、基站根据目标安全配置信息对数据进行加解密。
步骤1103、基站将目标安全配置信息发送给UE,以供UE根据目标安全配置信息对数据进行加解密。
在本实施例中,基站根据确定出的目标安全配置信息对数据进行加密,并将该目标安全配置信息发送给UE。以使UE使用与基站相同的安全配置信息对数据进行加解密。
本申请实施例提供的消息的识别方法,由于基站根据不同的核心网实体发送的安全配置信息,确定目标安全配置信息,并将目标安全配置消息发送给UE,以使UE和基站使用相同的安全配置信息对数据进行加/解密,从而保证了数据的安全性。
可选地,在上述任一实施例的基础上,若双NAS对应于不同的RRC,即双NAS和双RRC时,由于RRC是独立的,在进行NAS消息的识别、寻呼消息的识别以及目标安全配置信息的选择时,NAS只要将消息发送到对应的RRC层进行处理即可。
图12为本申请实施例提供的消息的识别装置实施例一的结构示意图。该识别装置可以为独立的UE,还可以为集成在UE中的装置,该装置可以通过软件、硬件或者软硬件结合的方式实现。如图12所示,该识别装置包括:
接收模块11,用于接收接入网设备发送的寻呼消息;
确定模块12,用于确定为所述UE服务的多个核心网实体中所述寻呼消息所属的核心网实体;
建立模块13,用于建立与所述寻呼消息所属的核心网实体的数据连接。
可选的,上述接收模块11对应可以为UE中的接收器,上述确定模块12和建立模块13对应可以为UE中的处理器,或者该接收模块11还可以集成处理器的部分功能。
本申请实施例提供的消息的识别装置,可以执行上述方法实施例,其实现原理和技术效果类似,在此不再赘述。
可选地,所述多个核心网实体位于不同的网络制式中。
可选地,所述寻呼消息中携带有识别信息,所述识别信息用于确定所述寻呼消息所属的核心网实体。
可选地,所述识别信息包括所述寻呼消息所属核心网实体的类型标识信息。
可选地,所述识别信息包括所述寻呼消息所属核心网实体中的UE的设备标识信息。
可选地,所述识别信息包括所述寻呼消息所属核心网实体对应的时频资源。
可选地,所述建立模块13,具体用于:
将所述寻呼消息发送到所述寻呼消息所属的NAS;
接收所述NAS发送的NAS消息;
将所述NAS消息发送给所述寻呼消息所属的核心网实体。
本申请实施例提供的消息的识别装置,可以执行上述方法实施例,其实现原理和技术效果类似,在此不再赘述。
图13为本申请实施例提供的消息的识别装置实施例二的结构示意图。该识别装置可以为独立的接入网设备,还可以为集成在接入网设备中的装置,该装置可以通过软件、硬件或者软硬件结合的方式实现。如图13所示,该识别装置包括:
发送模块21,用于向用户设备UE发送寻呼消息,以供所述UE识别所述寻呼消息的类型;
接收模块22,用于接收所述UE根据所述寻呼消息发送的NAS消息;
确定模块23,用于确定所述接入网设备的多个核心网实体中所述NAS消息所属的核心网实体;
所述发送模块21,还用于将所述NAS消息发送给所述NAS消息所属的核心网实体。
可选的,上述发送模块21可以为接入网设备中的发送器,上述接收模块22对应可以为接入网设备中的接收器,上述确定模块23对应可以为接入网设备中的处理器,或者该发送模块21和接收模块22还可以集成处理器的部分功能。
本申请实施例提供的消息的识别装置,可以执行上述方法实施例,其实现原理和技术效果类似,在此不再赘述。
可选地,所述确定模块23,具体用于:
接收所述UE发送的无线资源管理RRC消息;所述RRC消息用于传递所述NAS 消息,所述RRC中包括所述NAS消息所属的核心网实体的类型标识;
根据所述类型标识,确定所述接入网设备的多个核心网实体中所述NAS消息所属的核心网实体。
可选地,所述确定模块23,具体用于:
接收RRC消息,并确定传递所述RRC消息时所使用的逻辑信道;所述RRC消息用于传递所述NAS消息;
根据所述逻辑信道与核心网实体之间的映射关系,确定所述逻辑信道对应的核心网实体。
本申请实施例提供的消息的识别装置,可以执行上述方法实施例,其实现原理和技术效果类似,在此不再赘述。
图14为本申请实施例提供的UE实施例的结构示意图。如图14所示,该UE可以包括发送器20、处理器21、存储器22和至少一个通信总线23。通信总线23用于实现元件之间的通信连接。存储器22可能包含高速RAM存储器22,也可能还包括非易失性存储NVM,例如至少一个磁盘存储器22,存储器22中可以存储各种程序,用于完成各种处理功能以及实现本实施例的方法步骤。另外,该UE还可以包括接收器24,本实施例中的接收器24可以为相应的具有通信功能和接收信息功能的输入接口,还可以为UE上的射频模块或者基带模块,本实施例中的发送器20可以为相应的具有通信功能和发送信息功能的输出接口,还可以为UE上的射频模块或者基带模块。可选的,该发送器20和接收器24可以集成在一个UE中,也可以分别为独立的两个通信接口。
本实施例中,接收器24,用于接收接入网设备发送的寻呼消息;
处理器21,用于确定为所述UE服务的多个核心网实体中所述寻呼消息所属的核心网实体;
所述处理器21,用于建立与所述寻呼消息所属的核心网实体的数据连接。
可选地,所述多个核心网实体位于不同的网络制式中。
可选地,所述寻呼消息中携带有识别信息,所述识别信息用于确定所述寻呼消息所属的核心网实体。
可选地,所述识别信息包括所述寻呼消息所属核心网实体的类型标识信息。
可选地,所述识别信息包括所述寻呼消息所属核心网实体中的UE的设备标识信息。
可选地,所述识别信息包括所述寻呼消息所属核心网实体对应的时频资源。
可选地,发送器20,用于将所述寻呼消息发送到所述寻呼消息所属的NAS;
所述接收器24,用于接收所述NAS发送的NAS消息;
所述发送器20,用于将所述NAS消息发送给所述寻呼消息所属的核心网实体。
本申请实施例提供的UE,可以执行上述方法实施例,其实现原理和技术效果类似,在此不再赘述。
图15为本申请实施例提供的接入网设备实施例的结构示意图。如图15所示,该接入网设备可以包括发送器30、处理器31、存储器32和至少一个通信总线33。通信总线33用于实现元件之间的通信连接。存储器32可能包含高速RAM存储器32,也 可能还包括非易失性存储NVM,例如至少一个磁盘存储器32,存储器32中可以存储各种程序,用于完成各种处理功能以及实现本实施例的方法步骤。另外,该接入网设备还可以包括接收器34,本实施例中的接收器34可以为相应的具有通信功能和接收信息功能的输入接口,还可以为接入网设备上的射频模块或者基带模块,本实施例中的发送器30可以为相应的具有通信功能和发送信息功能的输出接口,还可以为接入网设备上的射频模块或者基带模块。可选的,该发送器30和接收器34可以集成在一个网络侧设备中,也可以分别为独立的两个通信接口。
本实施例中,发送器30,用于向用户设备UE发送寻呼消息;
接收器34,用于接收所述UE根据所述寻呼消息发送的NAS消息;
处理器31,用于确定所述接入网设备的多个核心网实体中所述NAS消息所属的核心网实体;
所述发送器30,还用于将所述NAS消息发送给所述NAS消息所属的核心网实体。
可选地,所述接收器34,还用于接收所述UE发送的无线资源管理RRC消息;所述RRC消息用于传递所述NAS消息,所述RRC中包括所述NAS消息所属的核心网实体的类型标识;
所述处理器31,还用于根据所述类型标识,确定所述接入网设备的多个核心网实体中所述NAS消息所属的核心网实体。
可选地,所述接收器34,还用于接收RRC消息;所述RRC消息用于传递所述NAS消息;
所述处理器31,还用于确定传递所述RRC消息时所使用的逻辑信道;所述处理器31,还用于根据所述逻辑信道与核心网实体之间的映射关系,确定所述逻辑信道对应的核心网实体。
本申请实施例提供的接入网设备,可以执行上述方法实施例,其实现原理和技术效果类似,在此不再赘述。

Claims (20)

  1. 一种消息的识别方法,其特征在于,所述方法包括:
    用户设备UE接收接入网设备发送的寻呼消息;
    所述UE确定为所述UE服务的多个核心网实体中所述寻呼消息所属的核心网实体;
    所述UE建立与所述寻呼消息所属的核心网实体的数据连接。
  2. 根据权利要求1所述的方法,其特征在于,所述多个核心网实体位于不同的网络制式中。
  3. 根据权利要求1或2所述的方法,其特征在于,所述寻呼消息中携带有识别信息,所述识别信息用于确定所述寻呼消息所属的核心网实体。
  4. 根据权利要求3所述的方法,其特征在于,所述识别信息包括所述寻呼消息所属核心网实体的类型标识信息。
  5. 根据权利要求3所述的方法,其特征在于,所述识别信息包括所述寻呼消息所属核心网实体中的UE的设备标识信息。
  6. 根据权利要求3所述的方法,其特征在于,所述识别信息包括所述寻呼消息所属核心网实体对应的时频资源。
  7. 根据权利要求1-6任一项所述的方法,其特征在于,所述UE建立与所述寻呼消息所属的核心网实体的数据连接,包括:
    所述UE将所述寻呼消息发送到所述寻呼消息所属的NAS;
    所述UE接收所述NAS发送的NAS消息;
    所述UE将所述NAS消息发送给所述寻呼消息所属的核心网实体。
  8. 一种消息的识别方法,其特征在于,所述方法包括:
    接入网设备向用户设备UE发送寻呼消息;
    所述接入网设备接收所述UE根据所述寻呼消息发送的NAS消息;
    所述接入网设备确定所述接入网设备的多个核心网实体中所述NAS消息所属的核心网实体;
    所述接入网设备将所述NAS消息发送给所述NAS消息所属的核心网实体。
  9. 根据权利要求8所述的方法,其特征在于,所述接入网设备确定所述接入网设备的多个核心网实体中所述NAS消息所属的核心网实体,包括:
    所述接入网设备接收所述UE发送的无线资源管理RRC消息;所述RRC消息用于传递所述NAS消息,所述RRC中包括所述NAS消息所属的核心网实体的类型标识;
    所述接入网设备根据所述类型标识,确定所述接入网设备的多个核心网实体中所述NAS消息所属的核心网实体。
  10. 根据权利要求8所述的方法,其特征在于,所述接入网设备确定所述接入网设备的多个核心网实体中所述NAS消息所属的核心网实体,包括:
    接收RRC消息,并确定传递所述RRC消息时所使用的逻辑信道;所述RRC消息用于传递所述NAS消息;
    根据所述逻辑信道与核心网实体之间的映射关系,确定所述逻辑信道对应的核心网实体。
  11. 一种消息的识别装置,其特征在于,包括:
    接收模块,用于接收接入网设备发送的寻呼消息;
    确定模块,用于确定为所述UE服务的多个核心网实体中所述寻呼消息所属的核心网实体;
    建立模块,用于建立与所述寻呼消息所属的核心网实体的数据连接。
  12. 根据权利要求11所述的装置,其特征在于,所述多个核心网实体位于不同的网络制式中。
  13. 根据权利要求11或12所述的装置,其特征在于,所述寻呼消息中携带有识别信息,所述识别信息用于确定所述寻呼消息所属的核心网实体。
  14. 根据权利要求13所述的装置,其特征在于,所述识别信息包括所述寻呼消息所属核心网实体的类型标识信息。
  15. 根据权利要求13所述的装置,其特征在于,所述识别信息包括所述寻呼消息所属核心网实体中的UE的设备标识信息。
  16. 根据权利要求13所述的装置,其特征在于,所述识别信息包括所述寻呼消息所属核心网实体对应的时频资源。
  17. 根据权利要求11-16任一项所述的装置,其特征在于,所述建立模块,具体用于:
    将所述寻呼消息发送到所述寻呼消息所属的NAS;
    接收所述NAS发送的NAS消息;
    将所述NAS消息发送给所述寻呼消息所属的核心网实体。
  18. 一种消息的识别装置,其特征在于,包括:
    发送模块,用于向用户设备UE发送寻呼消息;
    接收模块,用于接收所述UE根据所述寻呼消息发送的NAS消息;
    确定模块,用于确定所述接入网设备的多个核心网实体中所述NAS消息所属的核心网实体;
    所述发送模块,还用于将所述NAS消息发送给所述NAS消息所属的核心网实体。
  19. 根据权利要求18所述的装置,其特征在于,所述确定模块,具体用于:
    接收所述UE发送的无线资源管理RRC消息;所述RRC消息用于传递所述NAS消息,所述RRC中包括所述NAS消息所属的核心网实体的类型标识;
    根据所述类型标识,确定所述接入网设备的多个核心网实体中所述NAS消息所属的核心网实体。
  20. 根据权利要求18所述的装置,其特征在于,所述确定模块,具体用于:
    接收RRC消息,并确定传递所述RRC消息时所使用的逻辑信道;所述RRC消息用于传递所述NAS消息;
    根据所述逻辑信道与核心网实体之间的映射关系,确定所述逻辑信道对应的核心网实体。
PCT/CN2017/102205 2016-09-30 2017-09-19 消息的识别方法和装置 WO2018059269A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP21156608.8A EP3886511B1 (en) 2016-09-30 2017-09-19 Message identification method and apparatus
EP17854719.6A EP3503619B1 (en) 2016-09-30 2017-09-19 Message recognition method and device
US16/369,344 US11895617B2 (en) 2016-09-30 2019-03-29 Message identification method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610874215.5 2016-09-30
CN201610874215.5A CN108307456B (zh) 2016-09-30 2016-09-30 消息的识别方法和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/369,344 Continuation US11895617B2 (en) 2016-09-30 2019-03-29 Message identification method and apparatus

Publications (1)

Publication Number Publication Date
WO2018059269A1 true WO2018059269A1 (zh) 2018-04-05

Family

ID=61763136

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/102205 WO2018059269A1 (zh) 2016-09-30 2017-09-19 消息的识别方法和装置

Country Status (4)

Country Link
US (1) US11895617B2 (zh)
EP (2) EP3886511B1 (zh)
CN (2) CN113225784B (zh)
WO (1) WO2018059269A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102665147B1 (ko) 2014-05-08 2024-05-10 인터디지탈 패튼 홀딩스, 인크 Ue를 전용 코어 네트워크 노드에 리디렉트하기 위한 방법들 및 이동성 관리 엔티티(mme)
CN107770847B (zh) * 2016-08-22 2020-11-27 华为技术有限公司 网络接入方法、接入设备和终端设备
KR20180047652A (ko) * 2016-11-01 2018-05-10 삼성전자주식회사 무선 통신 시스템에서 서비스 제공 방법 및 장치
EP3563595B1 (en) * 2016-12-30 2023-09-13 Intel Corporation Methods and devices for radio communications
WO2018134483A1 (en) * 2017-01-23 2018-07-26 Nokia Technologies Oy Method and apparatus for complementary and equivalent network slice deployment in a network environment
US11576226B2 (en) * 2017-05-10 2023-02-07 Lg Electronics Inc. Method for requesting RRC connection and apparatus supporting same
CN113330789A (zh) * 2019-01-24 2021-08-31 苹果公司 用于在连接到5g核心网(5gcn)时操作增强型机器类型通信(emtc)和窄带物联网(nb-iot)用户设备(ue)的系统和方法
WO2021081731A1 (zh) * 2019-10-29 2021-05-06 北京小米移动软件有限公司 连接建立方法及装置、基站、用户设备和核心网设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101018417A (zh) * 2007-02-14 2007-08-15 华为技术有限公司 Imsi寻呼过程中的核心网选择方法及其装置
CN101188862A (zh) * 2007-03-01 2008-05-28 中兴通讯股份有限公司 一种无线网络中的路由方法
CN101257707A (zh) * 2007-03-01 2008-09-03 中兴通讯股份有限公司 一种无线网络中移动终端激活业务时的路由方法
CN102421167A (zh) * 2010-09-28 2012-04-18 中兴通讯股份有限公司 主叫业务、被叫业务的实现方法和签约服务器
CN102457825A (zh) * 2010-10-15 2012-05-16 电信科学技术研究院 一种数据的传输方法和设备
CN102763372A (zh) * 2010-02-12 2012-10-31 华为技术有限公司 一种异种网络切换时选择网关方法、装置及系统

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE398383T1 (de) * 2001-04-07 2008-07-15 Ericsson Telefon Ab L M Routing einer paging-antwort zu einem kernnetzknoten in einem mobilfunkkommunikationsnetz
US7580388B2 (en) * 2004-06-01 2009-08-25 Lg Electronics Inc. Method and apparatus for providing enhanced messages on common control channel in wireless communication system
US9198156B2 (en) * 2004-08-23 2015-11-24 Telefonaktiebolaget L M Ericsson (Publ) Paging mobile stations in a hybrid network
SE532487C2 (sv) * 2006-10-18 2010-02-02 Teliasonera Ab RAB differentiering mellan nätverksoperatörer i delat nät
CN101500281A (zh) * 2008-01-30 2009-08-05 华为技术有限公司 一种路由非接入层消息的方法
US8838089B2 (en) * 2008-10-20 2014-09-16 Htc Corporation Method of improving radio resource control connenction establishment in a wireless communication system and related communication device
US8547969B2 (en) * 2009-03-31 2013-10-01 Interdigital Patent Holdings, Inc. Method and apparatus for providing non-packet switched service in a target radio access technology network
US8868114B2 (en) * 2009-12-11 2014-10-21 Telefonaktiebolaget L M Ericsson (Publ) Network entity for mobile communications
KR20140006987A (ko) * 2011-10-03 2014-01-16 엘지전자 주식회사 무선 통신 시스템에서 단말의 접속을 제어하는 방법 및 장치
WO2014104505A1 (ko) * 2012-12-26 2014-07-03 엘지전자 주식회사 무선 통신 시스템에서 서브밴드 측정 방법 및 이를 위한 장치
US20160286464A1 (en) * 2013-03-20 2016-09-29 Telefonaktiebolaget L M Ericsson (Publ) Method for Filtering Uplink Data Based on the Characteristic of a Logical Bearer
US9648582B2 (en) * 2014-11-06 2017-05-09 Intel IP Corporation RAN paging mechanism to enable enhanced coverage mode
EP3297352B1 (en) * 2015-06-23 2023-08-23 Huawei Technologies Co., Ltd. Control information sending method and detection method, base station and user equipment
EP4138464A3 (en) * 2015-08-31 2023-03-15 Samsung Electronics Co., Ltd. Method and apparatus for implementing wireless protocol configurable according to services and devices
WO2017039042A1 (ko) * 2015-09-04 2017-03-09 엘지전자(주) 무선 통신 시스템에서 단말의 데이터 송수신 방법 및 장치
EP3400739B1 (en) * 2016-01-08 2020-05-20 Telefonaktiebolaget LM Ericsson (publ) Radio network nodes and methods performed therein
US11026142B2 (en) * 2016-01-20 2021-06-01 Qualcomm Incorporated Techniques for providing uplink-based mobility
US10979998B2 (en) * 2016-02-05 2021-04-13 Telefonaktiebolaget Lm Ericsson (Publ) Radio network node, communication device and methods performed therein
WO2017135859A1 (en) * 2016-02-05 2017-08-10 Telefonaktiebolaget Lm Ericsson (Publ) Network nodes and methods performed therein
US10772034B2 (en) * 2016-03-30 2020-09-08 Lg Electronics Inc. System information transmission method and base station, and system information reception method and user equipment
WO2017174550A1 (en) * 2016-04-05 2017-10-12 Nokia Solutions And Networks Management International Gmbh Implementing radio access network slicing in a mobile network
US11026060B2 (en) * 2016-05-13 2021-06-01 Huawei Technologies Co., Ltd. Systems and methods for network slice attachment and configuration

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101018417A (zh) * 2007-02-14 2007-08-15 华为技术有限公司 Imsi寻呼过程中的核心网选择方法及其装置
CN101188862A (zh) * 2007-03-01 2008-05-28 中兴通讯股份有限公司 一种无线网络中的路由方法
CN101257707A (zh) * 2007-03-01 2008-09-03 中兴通讯股份有限公司 一种无线网络中移动终端激活业务时的路由方法
CN102763372A (zh) * 2010-02-12 2012-10-31 华为技术有限公司 一种异种网络切换时选择网关方法、装置及系统
CN102421167A (zh) * 2010-09-28 2012-04-18 中兴通讯股份有限公司 主叫业务、被叫业务的实现方法和签约服务器
CN102457825A (zh) * 2010-10-15 2012-05-16 电信科学技术研究院 一种数据的传输方法和设备

Also Published As

Publication number Publication date
EP3503619A4 (en) 2019-10-16
EP3503619B1 (en) 2021-03-10
US11895617B2 (en) 2024-02-06
CN108307456A (zh) 2018-07-20
EP3886511A2 (en) 2021-09-29
CN108307456B (zh) 2021-05-07
EP3503619A1 (en) 2019-06-26
US20190230621A1 (en) 2019-07-25
CN113225784A (zh) 2021-08-06
EP3886511A3 (en) 2021-12-29
EP3886511B1 (en) 2024-01-17
CN113225784B (zh) 2022-08-09

Similar Documents

Publication Publication Date Title
WO2018059269A1 (zh) 消息的识别方法和装置
CN110972103B (zh) 一种通信方法及装置
KR102220436B1 (ko) 데이터 처리를 구현하기 위한 방법, 네트워크 디바이스 및 시스템, 및 저장 매체
US10306529B2 (en) Method and apparatus for assigning data to split bearers in dual connectivity
CN108924871B (zh) 无线配置方法、用户设备和基站
CN105848222B (zh) 用于切换的方法和基站设备
US8867428B2 (en) Split-cell relay application protocol
WO2015161482A1 (zh) Mptcp连接的移动性管理方法和装置
WO2015096465A1 (zh) 一种安全密钥上下文分发方法,移动管理实体及基站
RU2667150C2 (ru) Устройство управления и способ управления передачей обслуживания по однонаправленному каналу
CN110351747B (zh) 用于配置中继节点的方法和设备
WO2016061789A1 (zh) 无线资源控制rrc消息处理方法、装置和系统
TWI657679B (zh) 處理系統間行動中的封包資料流的裝置及方法
WO2016061785A1 (zh) 无线资源控制rrc连接方法、重连接方法和装置
JP2014511168A (ja) 移動体通信ネットワークおよび方法
CN111405625B (zh) 一种切换方法、基站、通信系统及存储介质
WO2015070445A1 (zh) 一种建立无线承载的方法及基站
WO2018202131A1 (zh) 通信方法、装置及系统
WO2018228311A1 (zh) 数据分流方法和装置
WO2017219365A1 (zh) 数据传输的方法和装置
WO2014166458A1 (zh) 切换方法、装置、基站、系统及计算机存储介质
US20230354136A1 (en) Integrated access and backhaul communication method and apparatus
WO2023124822A1 (zh) 一种通信协作方法及装置
CN118042491A (zh) 用于配置中继节点的方法和设备
CN108924826B (zh) 数据传送的控制方法及设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17854719

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017854719

Country of ref document: EP

Effective date: 20190321

NENP Non-entry into the national phase

Ref country code: DE