WO2018059221A1 - 一种下行控制信道接收和发送的方法及设备 - Google Patents

一种下行控制信道接收和发送的方法及设备 Download PDF

Info

Publication number
WO2018059221A1
WO2018059221A1 PCT/CN2017/101120 CN2017101120W WO2018059221A1 WO 2018059221 A1 WO2018059221 A1 WO 2018059221A1 CN 2017101120 W CN2017101120 W CN 2017101120W WO 2018059221 A1 WO2018059221 A1 WO 2018059221A1
Authority
WO
WIPO (PCT)
Prior art keywords
dci
information
terminal
short tti
fast dci
Prior art date
Application number
PCT/CN2017/101120
Other languages
English (en)
French (fr)
Inventor
王磊
潘学明
Original Assignee
电信科学技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 电信科学技术研究院 filed Critical 电信科学技术研究院
Publication of WO2018059221A1 publication Critical patent/WO2018059221A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present invention relates to the field of mobile communications technologies, and in particular, to a method and device for receiving and transmitting a downlink control channel.
  • 1TTI is defined as 1 millisecond, that is, the length of 1 subframe, and a shorter interval data transmission mode is called a short TTI mode.
  • the two-stage Downlink Control Information (DCI) format is currently a research hotspot.
  • the two-stage DCI technology sends part of the DCI information in the traditional control area (called slow DCI, slow DCI), and another part of the information is sent in the control area of each short TTI (called fast DCI, fast DCI).
  • the terminal obtains its own scheduling information through two pieces of information.
  • the drawback of the two-stage DCI is that the terminal cannot acquire the fast DCI in the control region of the short TTI when the slow DCI is not received, and the control cannot be completed.
  • the prior art cannot complete the data transmission when the terminal does not receive the slow DCI.
  • the present invention provides a method and a device for receiving and transmitting a downlink control channel, which are used to solve the problem that a terminal existing in the prior art cannot complete data transmission without receiving a slow DCI.
  • the terminal receives the fast DCI according to a predefined manner without receiving the slow DCI;
  • the terminal transmits data according to the received fast DCI.
  • the terminal receives the fast DCI according to a predefined manner, specifically:
  • the terminal receives the fast DCI by blind detection according to the reference information configured on the network side; or
  • the terminal receives the fast DCI by blind detection at an alternate location; or
  • the terminal receives the fast DCI by blind detection according to the last received DC DCI, where N is a positive integer.
  • the reference information includes at least one of the following information:
  • the terminal after the terminal receives the fast DCI by using the blind detection mode in the candidate location, before the terminal transmits the data according to the fast DCI, the terminal further includes:
  • the terminal determines the length information of the short TTI.
  • the terminal determines length information of the short TTI by using one or more of the following manners:
  • the terminal determines length information of the short TTI according to the length indication information of the short TTI in the received fast DCI;
  • the terminal determines the length information of the short TTI according to the RNTI (Radio Network Tempory Identity) value used for scrambling the received CRC (Cyclic Redundancy Check) sequence of the fast DCI; or
  • the terminal determines the length information of the short TTI according to the time domain location of the received fast DCI.
  • the terminal receives the fast DCI by using a blind DCI received by the last N times, which includes:
  • the terminal receives the fast DCI in a blind manner according to the last received DC DCI, where N is a positive integer.
  • the terminal receives the fast DCI by blind detection, including:
  • the terminal After receiving the fast DCI, the terminal continues to blindly check the fast DCI at a location other than the short TTI scheduled by the fast DCI.
  • the terminal receives the slow DCI in the legacy control zone Legacy Control Region and the fast DCI in the control region of the short TTI.
  • the network side device determines the reference information
  • the network side device sends the reference information to the terminal, so that the terminal receives the fast DCI according to the reference information without receiving the slow DCI.
  • the reference information includes at least one of the following information:
  • the network side device sends the reference information to the terminal, specifically:
  • the network side device sends the reference information through RRC (Radio Resource Control) configuration or broadcast information or other forms of high layer signaling.
  • RRC Radio Resource Control
  • the network side device determines the reference information, including:
  • the network side device determines the reference information according to the traffic volume and/or the service delay requirement; or
  • the network side device determines the reference information according to the information in the slow DCI sent in the previous M times, where M is a positive integer.
  • a processing module configured to receive a fast DCI according to a predefined manner if a slow DCI is not received
  • a transmission module for transmitting data according to the received fast DCI.
  • processing module is specifically configured to:
  • the fast DCI is received in the control region of the short TTI.
  • processing module is specifically configured to:
  • the fast DCI is received by blind detection according to the last received DC DCI, where N is a positive integer.
  • the reference information includes at least one of the following information:
  • processing module is specifically configured to:
  • the length information of the short TTI is determined after receiving the fast DCI by means of blind detection and before the transmission module transmits the data according to the received fast DCI.
  • processing module is specifically configured to:
  • the length information of the short TTI is determined according to the time domain location of the received fast DCI.
  • processing module is further configured to:
  • fast DCI is received in this subframe, where N is a positive integer.
  • processing module is specifically configured to:
  • the blind DCI is continuously blinded at a location other than the short TTI scheduled by the fast DCI.
  • a sending module configured to send the reference information to the terminal, so that the terminal receives the fast DCI according to the reference information without receiving the slow DCI.
  • the reference information includes at least one of the following information:
  • the sending module is specifically configured to:
  • the reference information is transmitted through radio resource control RRC configuration or broadcast information or other forms of high layer signaling.
  • the determining module is specifically configured to:
  • the reference information is determined based on the information in the slow DCI sent before M times, where M is a positive integer.
  • the terminal of the embodiment of the present invention can continue to receive the fast DCI according to the pre-defined manner, and further receive the data according to the fast DCI. Therefore, the embodiment of the present invention can ensure that the terminal does not receive the slow DCI. In the case of continued reception of fast DCI and complete the transmission of data.
  • FIG. 1 is a schematic flowchart of a method for receiving a downlink control channel according to an embodiment of the present disclosure
  • FIG. 2 is a schematic diagram of determining a location of a short TTI control region in a subframe according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of determining a location of a short TTI control region in a subframe according to an embodiment of the present disclosure
  • FIG. 4 is a schematic diagram of blindly detecting fast DCI in a certain subframe according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of specific steps of a method for receiving a downlink control channel according to an embodiment of the present disclosure
  • FIG. 6 is a schematic flowchart of a method for transmitting a downlink control channel according to an embodiment of the present disclosure
  • FIG. 7 is a schematic diagram of a terminal performing discontinuous reception according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of specific steps of a method for transmitting a downlink control channel according to an embodiment of the present disclosure
  • FIG. 9 is a schematic structural diagram of a terminal received by a first downlink control channel according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic structural diagram of a network side device that is sent by a first downlink control channel according to an embodiment of the present disclosure
  • FIG. 11 is a schematic structural diagram of a terminal received by a second downlink control channel according to an embodiment of the present disclosure.
  • FIG. 12 is a schematic structural diagram of a network side device received by a second downlink control channel according to an embodiment of the present disclosure.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • LTE-A Advanced Long Term Evolution
  • UMTS Universal Mobile Telecommunication System
  • the user equipment includes but is not limited to a mobile station (Mobile Station, MS), a mobile terminal (Mobile Terminal), a mobile phone (Mobile Telephone), a mobile phone (handset). And portable devices, etc., the user equipment can communicate with one or more core networks via a Radio Access Network (RAN), for example, the user equipment can be a mobile phone (or "cellular"
  • RAN Radio Access Network
  • the user equipment can be a mobile phone (or "cellular"
  • the telephone device, the computer with wireless communication function, etc., the user equipment can also be a mobile device that is portable, pocket-sized, handheld, built-in, or in-vehicle.
  • a base station may refer to a device in an access network that communicates with a wireless terminal over one or more sectors over an air interface.
  • the base station can be used to convert the received air frame to the IP packet as a router between the wireless terminal and the rest of the access network, wherein the remainder of the access network can include an Internet Protocol (IP) network.
  • IP Internet Protocol
  • the base station can also coordinate attribute management of the air interface.
  • the base station may be a Base Transceiver Station (BTS) in GSM or CDMA, or may be a base station (NodeB) in WCDMA, or may be an evolved base station in LTE (NodeB or eNB or e-NodeB, evolutional Node B), the invention is not limited.
  • BTS Base Transceiver Station
  • NodeB base station
  • NodeB evolved base station
  • LTE Long Term Evolutional Node B
  • an embodiment of the present invention provides a downlink control channel receiving method.
  • Step 101 The terminal receives the fast DCI according to a predefined manner without receiving a slow DCI.
  • Step 102 The terminal performs data transmission according to the received fast DCI.
  • the terminal receives the slow DCI in the legacy control zone Legacy Control Region and the fast DCI in the control region of the short TTI.
  • the terminal receives the slow DCI and the fast DCI, respectively, and acquires its own control information according to the slow DCI and the fast DCI.
  • the slow DCI including the short TTI length information, the control region location information of the short TTI, and the like is sent in the legacy control region Legacy Control Region, and is sent once per subframe; the fast DCI including other control information is in the control region of each short TTI. send.
  • the embodiment of the present invention enables the terminal to continue to receive the fast DCI without receiving the slow DCI in a predefined manner, and completes the data transmission on this basis.
  • the reason why the terminal does not receive the slow DCI may be multiple.
  • the terminal does not receive the downlink control channel in the non-reception mode DRX OFF state, and the DRX OFF state is overwritten.
  • the terminal will not be able to detect and receive the slow DCI in the Legacy Control Region of the subframe.
  • the terminal may not be able to cause the terminal. Successfully received the slow DCI that is in effect in this subframe.
  • the terminal receives the fast DCI according to a predefined manner, specifically:
  • the terminal receives the fast DCI by blind detection according to the reference information configured on the network side; or
  • the terminal receives the fast DCI by blind detection at an alternate location; or
  • the terminal receives the fast DCI by blind detection according to the last received DC DCI, where N is a positive integer, where the candidate location is the location of the control channel in the subframe where the fast DCI may be present.
  • the terminal is enabled to continue receiving the fast DCI in a predefined manner. Specifically, the terminal receives the fast DCI by blind detection according to the reference information configured by the network side, or receives the fast DCI by blind detection, or according to the last successfully received slow DCI. Receive fast DCI.
  • the first step is: when the terminal does not receive the slow DCI, the terminal receives the reference information sent by the network side device;
  • the terminal receives the fast DCI according to the reference information.
  • the reference information includes at least one of reference length information of the short TTI and reference position information of the short TTI control area.
  • the terminal receives the reference information sent by the network side device when the slow DCI is not received. Since the reference information includes the reference length information of the short TTI or the reference location information of the short TTI control region, the terminal can receive the fast DCI according to the reference information.
  • the manner in which the network side device determines the reference information is as follows:
  • the network side device determines the reference information according to the traffic volume and/or the service delay requirement. For example, if the length of the short TTI that meets the current traffic and the service delay requirement is 2-OS (Orthogonal Frequency Division Multiplexing Symbols Length), the network side device can use the 2-OS as the reference information.
  • the reference length information is sent to the terminal; the short TTI control area that meets the current traffic and the service delay requirement may have X locations, and X is a positive integer, and the network side device can satisfy the current X traffic and service.
  • the location of the short TTI control region of the latency requirement is used as the reference information location.
  • the network side device determines the reference length information of the short TTI and the reference location information of the short TTI control region according to the length information of the short TTI and/or the location information of the short TTI control region, where M is a positive integer.
  • the network side device may send the 2-OS as the reference length information of the short TTI to the terminal; the short TTI control of the network side device
  • the location information of the area indicates that the location of the short TTI control area may be X, and X is a positive integer.
  • the network side device may use the location of the short X TTI control areas satisfying the current traffic volume and the service delay requirement as the reference information location. .
  • the foregoing manner is only a possible manner for the network side device to set the reference information, and other manners for setting the reference information and enabling the terminal to receive the fast DCI without receiving the slow DCI can be applied to the embodiment of the present invention. .
  • the terminal acquires reference information configured by the network side device by receiving an SIB (System Information Block) or a radio resource control RRC or other high layer signaling sent by the network side device.
  • SIB System Information Block
  • RRC radio resource control
  • the terminal receives the fast DCI by blind detection according to the reference information, the control area of the short TTI indicated in the reference information.
  • the terminal blindly checks the DCI for all the bandwidths in all the time domain locations, and performs the cyclic redundancy check code CRC check after receiving the DCI. If the verification is successful, the terminal considers the information to be the information required by the terminal, and the terminal considers that the information is the information required by the terminal. Further analysis based on the information of the location yields a fast DCI. For example, as shown in FIG. 2, the reference length information of the short TTI indicates that the length of the short TTI in a certain subframe is 2-OS and the reference location information of the short TTI control region indicates that the region 201 in one subframe is a short TTI control region. The reference position, the terminal blindly checks the fast DCI in the area 201 to receive the fast DCI.
  • the terminal receives the fast DCI by blind detection at the candidate location;
  • the terminal determines the length information of the short TTI
  • the terminal performs data transmission.
  • the terminal receives the fast DCI through the blind detection mode at the location where the fast DCI may exist, and the terminal also needs to determine that other information such as the length information of the short TTI has completed the data transmission.
  • the terminal receives the fast DCI by blind detection in the entire bandwidth of the candidate location;
  • the alternative location refers to a time domain location in the subframe where there may be a downlink control channel carrying the fast DCI.
  • the time domain location of the downlink control channel carrying the fast DCI may refer to the time domain location of all possible short TTI control regions in the subframe in the system. For example, as shown in FIG. 3, in a sub-frame, a control region of a short TTI may appear in the region 301 in FIG. 3 and the time domain position indicated by the region 302, and it is necessary to display all of the intra-subframe region 301 and the region 302.
  • the domain location is the time domain location where a short TTI control region may occur.
  • the terminal attempts to receive the fast DCI by blind detection at all control channel locations of all possible time domain locations. Specifically, the terminal blindly checks the DCI at all the control channel positions of all the time domain locations, and performs the cyclic redundancy check code CRC check after receiving the DCI. If the verification is successful, the terminal considers the information to be the information required by the terminal. The terminal further analyzes the fast DCI according to the information of the location. For example, as shown in FIG. 3, all time domain positions indicated by the area 301 and the area 302 are positions where a short TTI control area may occur, that is, an alternate position, and the terminal performs blind detection at the above position to implement reception of the fast DCI.
  • the method further includes:
  • the terminal determines the length information of the short TTI.
  • the terminal needs to use the information in the fast DCI with other information, such as matching the information in the fast DCI with the length information of the short TTI, the information can be transmitted, so that the terminal passes through the location where the fast DCI may exist. After receiving the fast DCI in the blind detection mode, it is also necessary to determine the length information of the short TTI.
  • the terminal determines length information of the short TTI by using one or more of the following manners:
  • the terminal determines length information of the short TTI according to the length indication information of the short TTI in the received fast DCI;
  • the terminal determines the length information of the short TTI according to the time domain location of the received fast DCI.
  • the terminal determines the length of the short TTI according to the length indication information of the short TTI in the received fast DCI.
  • the fast DCI includes the length indication information of the short TTI.
  • the terminal can know the length of the short TTI by acquiring the length indication information of the short TTI.
  • the fast DCI sent by the network side device contains a short
  • the TTI is a short TTI length indication information of the 2-OS, and the terminal can use the 2-OS as the reference length information of the short TTI after receiving the fast DCI.
  • the terminal determines the length information of the short TTI according to different RNTI values that are scrambled for the received CRC sequence of the fast DCI.
  • the terminal and the network side device have previously agreed to set different RNTI values for different short TTIs.
  • the terminal can determine the length information of the short TTI according to the RNTI value. For example, the terminal and the network side device pre-arrange to use the RNTI value X to scramble the CRC sequence of the fast DCI of the short TTI of the 2-OS, and use the RNTI value Y to add the CRC sequence of the fast DCI of the short TTI of the 7-OS.
  • the short TTI is considered to be 2-OS when the terminal successfully receives the fast DCI by using the RNTI value X, and the terminal successfully uses the RNTI value Y to descramble successfully.
  • the length of the short TTI is considered to be 7-OS.
  • the terminal determines the length of the short TTI according to the time domain location of the received fast DCI. As shown in FIG. 3, assuming that the area 301 is the area where the fast DCI of the short TTI of the 2-OS length is located and the area 302 is the area of the fast DCI of the short TTI of the 7-OS length, the terminal receives the fast DCI on the area 301.
  • the length of the associated short TTI is 2-OS, and the length of the short TTI to which the fast DCI received on the area 302 belongs is 7-OS.
  • the terminal determines information in the last DCI received by the last N times;
  • the terminal receives the fast DCI according to the information in the last DCI received by the last N times.
  • the terminal may receive the fast DCI through the blind detection according to the previous received DC DCI, where N is a positive integer.
  • N is a positive integer.
  • the traffic and the service delay requirement are stable in a certain period of time. Therefore, the terminal can select the information in the last received slow DCI that is closest to the current short TTI as the basis for receiving the fast DCI.
  • the terminal may perform fast DCI according to the above information.
  • Conduct a blind inspection Specifically, the terminal blindly checks the DCI for all the bandwidths of all the X time-domain locations, and performs the cyclic redundancy check code CRC check after receiving the DCI. If the verification is successful, the terminal considers the information to be the information required by the terminal. The terminal further analyzes the fast DCI according to the information of the location.
  • the terminal after receiving the fast DCI by means of blind detection, continues to blindly check the fast DCI at a location other than the short TTI scheduled by the fast DCI.
  • the terminal has received the fast DCI at the area 401 in one subframe, even if the area 402 is still the location where the fast DCI may exist, since the area 402 has been scheduled by the fast DCI received at 401.
  • the TTI represented by region 403 is overwritten so the terminal will not blindly check the fast DCI at region 402.
  • Step 501 The terminal determines that the slow DCI is not received.
  • Step 502 The terminal receives the fast DCI according to one or more of the following manners:
  • the terminal receives the fast DCI by blind detection according to the reference information configured on the network side;
  • the terminal receives the fast DCI by the blind detection mode at the candidate location, and determines the length information of the short TTI according to the fast DCI;
  • the terminal receives the fast DCI by blind detection according to the last received DC DCI, where N is a positive integer;
  • Step 503 The terminal performs data transmission according to the fast DCI.
  • the embodiment of the present invention provides a downlink control channel sending method, including the following steps:
  • Step 601 The network side device determines reference information.
  • Step 602 The network side device sends the reference information to the terminal, so that the terminal receives the fast DCI according to the reference information without receiving the slow DCI.
  • the network side device sends the reference information by using a radio resource to control RRC configuration or broadcast information or other forms of high layer signaling.
  • the network side device notifies the terminal of the reference information through the SIB, and the terminal receives the fast DCI according to the reference information indicated by the received SIB.
  • the reference information includes at least one of the following information:
  • the network side device determines the reference information, where the reference information includes at least one of the reference length information of the short TTI and the reference location information of the short TTI control area; after determining the reference information, the network side device further sends the reference information to the terminal.
  • the determined reference information is such that the terminal determines to receive the fast DCI by blind detection according to the reference information without receiving the slow DCI.
  • the network side device determines the estimated length information of the short TTI and/or the estimated location information of the short TTI control area according to the traffic volume and/or the service delay requirement; or
  • the network side device determines the reference information according to the information in the slow DCI sent in the previous M times, where M is a positive integer.
  • the configuration period of the DRX is a basic unit with a short TTI length, for example, the time domain length of the short TTI is 2-OS, that is, the DRX ON state of the receivable information continues for X 2-OS, where X As a positive integer, since the terminal does not receive the downlink control channel information in the DRX OFF state in which the terminal does not receive information, when the DRX OFF state covers the Legacy Control Region 701 of one subframe, the terminal cannot detect the receipt of the Legacy Control Region 701. Slow DCI.
  • the network side device informs the terminal by using SIB or RRC or other forms, where the reference information includes reference configuration information of the short TTI control channel, such as reference length information of the short TTI or reference position of the short TTI control area. information.
  • the network side device determines the reference information of the short TTI according to the configuration information of the short TTI sent by the previous N. For example, the network side device determines that only a short TTI having a length of 2-OS appears in the subframe according to the length information of the short TTI sent in the previous period. The network side device uses the short TTI of the 2-OS as the reference length information of the short TTI.
  • the network side device determines the reference location information of the short TTI control region according to the location information of the short TTI control region transmitted in the previous period. For example, the network side device determines, according to the location information of the short TTI control region sent in a period of time, that the short TTI control region in the previous period is only at the location indicated by the region 201 of one subframe in FIG. 2, the network side device will be the region. The position in the subframe indicated by 201 serves as reference position information of the short TTI control region. In the case that the terminal does not receive the slow DCI that is valid in the current subframe, the network side device determines the reference information according to the configuration manner of the foregoing reference information, so that the terminal receives the fast DCI by blind detection according to the reference information.
  • the reference short TTI length information determined by the network side device may be a combination of different short TTI lengths, for example, the network side device determines that the recently transmitted short TTI length information includes 2-OS, 3-OS, 4-OS, or 7-OS. Then, the network side device can use any combination including 2-OS, 3-OS, 4-OS, or 7-OS as the reference length information of the short TTI.
  • Step 801 The network side device determines the reference information according to the traffic volume and/or the service delay requirement:
  • Step 802 The network side device sends the determined reference information to the terminal.
  • an embodiment of the present invention provides a terminal for receiving and transmitting a downlink control channel.
  • the principle of the terminal is similar to the embodiment of the present invention. Therefore, the implementation of the terminal can refer to the implementation of the present invention, and the repeated description is not repeated.
  • the terminal received by the first downlink control channel according to the embodiment of the present invention includes:
  • the processing module 901 is configured to receive the fast DCI according to a predefined manner if the slow DCI is not received;
  • the transmission module 902 is configured to perform data transmission according to the received fast DCI.
  • processing module 901 is specifically configured to:
  • the fast DCI is received in the control region of the short TTI.
  • processing module 901 is specifically configured to:
  • the fast DCI is received by blind detection according to the last received DC DCI, where N is a positive integer.
  • the reference information includes at least one of the following information:
  • processing module 901 is specifically configured to:
  • the length information of the short TTI is determined before the transmission module 902 performs transmission of the data based on the received fast DCI.
  • processing module 901 is specifically configured to:
  • the length information of the short TTI is determined according to the time domain location of the received fast DCI.
  • processing module 901 is specifically configured to:
  • the blind DCI is continuously blinded at a location other than the short TTI scheduled by the fast DCI.
  • processing module 901 is further configured to:
  • fast DCI is received in this subframe, where N is a positive integer.
  • the network side device that is sent by the first downlink control channel according to the embodiment of the present invention includes:
  • a determining module 1001 configured to determine reference information
  • the sending module 1002 is configured to send the reference information to the terminal, so that the terminal receives the fast DCI according to the reference information if the slow DCI is not received.
  • the reference information includes at least one of the following information:
  • the sending module 1002 is specifically configured to:
  • the reference information is transmitted through radio resource control RRC configuration or broadcast information or other forms of high layer signaling.
  • the determining module 1001 is specifically configured to:
  • the reference information is determined based on the information in the slow DCI sent before M times, where M is a positive integer.
  • the terminal received by the second downlink control channel in the embodiment of the present invention includes:
  • the processor 1101 is configured to read a program in the memory 1104 and perform the following process:
  • the transceiver 1102 is controlled to receive the fast DCI according to a predefined manner; and the data is transmitted through the transceiver 1102 according to the received fast DCI;
  • the transceiver 1102 is configured to receive and transmit data under the control of the processor 1101.
  • the processor 1101 receives the fast DCI according to the following manner:
  • the transceiver 1102 is controlled to receive a fast DCI by blind detection at an alternate location;
  • N is a positive integer
  • the reference information includes at least one of the following information:
  • the processor 1101 is specifically configured to:
  • the length information of the short TTI is determined after the alternative location receives the fast DCI by blind detection and before the transmission of the data according to the received fast DCI.
  • the processor 1101 is specifically configured to:
  • the length information of the short TTI is determined according to the time domain location of the fast DCI received by the transceiver 1102.
  • the processor 1101 is specifically configured to:
  • the transceiver 1102 After the transceiver 1102 receives the fast DCI, it continues to blindly check the fast DCI at a location other than the short TTI scheduled by the fast DCI.
  • the processor 1101 is specifically configured to:
  • fast DCI is received in this subframe, where N is a positive integer.
  • the processor 1101 is specifically configured to:
  • the control transceiver 1102 receives the slow DCI in the legacy control area Legacy Control Region;
  • the control transceiver 1102 receives the fast DCI in the control region of the short TTI.
  • bus 1100 can include any number of interconnected buses and bridges, and bus 1100 will include one or more processors and memory 1104 represented by general purpose processor 1101. The various circuits of the memory are linked together. The bus 1100 can also link various other circuits, such as peripherals, voltage regulators, and power management circuits, as is known in the art and, therefore, will not be further described herein.
  • Bus interface 1103 provides an interface between bus 1100 and transceiver 1102.
  • the transceiver 1102 can be an element or a plurality of elements, such as a plurality of receivers and transmitters, providing means for communicating with various other devices on a transmission medium. For example, transceiver 1102 receives external data from other devices. The transceiver 1102 is configured to send the processed data of the processor 1101 to other devices.
  • a user interface 1105 can also be provided, such as a keypad, display, speaker, microphone, joystick.
  • the processor 1101 is responsible for managing the bus 1100 and the usual processing, such as running a general purpose operating system as described above.
  • the memory 1104 can be used to store data used by the processor 1101 when performing operations.
  • the processor 1101 may be a CPU (Central Processing Unit), an ASIC (Application Specific Integrated Circuit), an FPGA (Field-Programmable Gate Array), or a CPLD ( Complex Programmable Logic Device, Complex Programmable Logic Device).
  • CPU Central Processing Unit
  • ASIC Application Specific Integrated Circuit
  • FPGA Field-Programmable Gate Array
  • CPLD Complex Programmable Logic Device, Complex Programmable Logic Device
  • the network side device that is sent by the second downlink control channel according to the embodiment of the present invention includes:
  • the processor 1201 is configured to read a program in the memory 1204 and perform the following process:
  • Determining reference information transmitting the reference information to the terminal through the transceiver 1202, so that the terminal receives the fast DCI according to the reference information without receiving the slow DCI;
  • the transceiver 1202 is configured to receive and send data under the control of the processor
  • the reference information includes at least one of the following information:
  • the processor 1201 is specifically configured to:
  • Control transmits the reference information through the radio resource control RRC configuration or broadcast information or other forms of higher layer signaling through the transceiver 1202.
  • the processor 1201 is specifically configured to:
  • the reference information is determined based on the information in the slow DCI sent before M times, where M is a positive integer.
  • bus 1200 can include any number of interconnected buses and bridges, and bus 1200 will include one or more processors represented by processor 1201 and memory represented by memory 1204. The various circuits are linked together. The bus 1200 can also link various other circuits, such as peripherals, voltage regulators, and power management circuits, as is known in the art, and therefore, will not be further described herein.
  • Bus interface 1203 provides an interface between bus 1200 and transceiver 1202. Transceiver 1202 may be an element or multiple elements, such as multiple receivers and transmitters, providing means for communicating with various other devices on a transmission medium. Data processed by processor 1201 is transmitted over wireless medium via antenna 1205. Further, antenna 1205 also receives data and transmits the data to processor 1201.
  • the processor 1201 is responsible for managing the bus 1200 and the usual processing, and can also provide various functions including timing, peripheral interfaces, voltage regulation, power management, and other control functions.
  • the memory 1204 can be used to store data used by the processor 1201 in performing operations.
  • the processor 1201 may be a CPU, an ASIC, an FPGA, or a CPLD.
  • embodiments of the present invention can be provided as a method, system, or computer program product. Accordingly, the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment, or a combination of software and hardware. Moreover, the invention can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) including computer usable program code.
  • computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Abstract

公开了一种下行控制信道接收和发送的方法及设备。本发明实施例提供的一种方法下行控制信道接收方法,包括:终端在未收到slow DCI的情况下,根据预定义方式接收fast DCI;终端根据接收到的fast DCI进行数据的传输。本发明实施例的终端在未收到slow DCI的情况下,能够根据预定义的方式继续接收fast DCI,进一步根据fast DCI进行数据的接收,因此本发明实施例能够保证终端在未收到slow DCI的情况下继续接收fast DCI并完成数据的传输。

Description

一种下行控制信道接收和发送的方法及设备
本申请要求在2016年9月29日提交中国专利局、申请号为201610868396.0、发明名称为“一种下行控制信道接收和发送的方法及设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及移动通信技术领域,特别涉及一种下行控制信道接收和发送的方法及设备。
背景技术
随着增强现实、虚拟现实、超高清视频、移动云等新的业务需求的持续出现和丰富,对未来移动通信系统提出了更高的性能需求,例如更高的峰值速率、更好的用户体验速率、更小的时延、更高的可靠性、更高的频谱效率和更高的能耗效率等,并需要支持更多的用户接入以及使用各种业务类型。为了支持数量巨大的各类终端连接以及不同的业务类型,上下行资源的灵活配置成为技术发展的一大趋势。未来的系统资源可以根据业务的不同,划分成不同的子带,并在子带上划分长度不同的传输时间间隔(Transmission Time Interval,TTI),以满足多种业务需求。
在长期演进(Long Term Evolution,LTE)技术中,将1TTI定义为1毫秒即1个子帧的长度,而更短间隔的数据传输模式被称为短TTI模式。在短TTI技术领域,两段式下行控制信息(Downlink Control Information,DCI)格式是目前的一个研究热点。两段式DCI技术将DCI的部分信息在传统的控制区发送(称之为慢DCI,slow DCI),另一部分信息在每个短TTI的控制区域发送(称之为快DCI,fast DCI),终端通过两部分信息获得自身的调度信息。然而两段式DCI的缺陷在于,终端在未收到slow DCI时,将无法获取短TTI的控制区域中的fast DCI,也就无法完成控制。
综上,现有技术无法在终端没有接收到slow DCI时,无法完成数据的传输。
发明内容
本发明提供一种下行控制信道接收和发送的方法及设备,用以解决现有技术中存在的终端在没有接收到slow DCI的情况下无法完成数据的传输的问题。
本发明实施例提供的一种下行控制信道接收方法,包括:
终端在未收到slow DCI的情况下,根据预定义方式接收fast DCI;
终端根据接收到的fast DCI进行数据的传输。
可选地,终端根据预定义方式接收fast DCI,具体包括:
终端根据网络侧配置的参考信息通过盲检的方式接收fast DCI;或
终端在备选位置通过盲检的方式接收fast DCI;或
终端根据最近N次接收到的slow DCI通过盲检的方式接收fast DCI,其中N为正整数。
可选地,参考信息包括以下信息中的至少一个:
短TTI的参考长度信息;
短TTI控制区域的参考位置信息。
可选地,终端在备选位置通过盲检的方式接收fast DCI之后,在终端根据fast DCI进行数据的传输之前,还包括:
终端确定短TTI的长度信息。
可选地,终端通过以下方式中的一种或者多种确定短TTI的长度信息:
终端根据接收到的fast DCI中的短TTI的长度指示信息确定短TTI的长度信息;或
终端根据接收到的fast DCI的CRC(Cyclic Redundancy Check,循环冗余校验)序列加扰使用的RNTI(Radio Network Tempory Identity,无线网络临时标识)值,确定短TTI的长度信息;或
终端根据接收到的fast DCI所在的时域位置确定短TTI的长度信息。
可选地,终端根据最近N次接收到的slow DCI通过盲检的方式接收fast DCI,具体包括:
终端根据最近N次接收到的slow DCI,在本子帧中通过盲检的方式接收fast DCI,其中N为正整数。
可选地,终端通过盲检方式接收fast DCI,包括:
终端接收到fast DCI后,在fast DCI调度的短TTI以外的位置继续盲检fast DCI。
可选地,终端在传统控制区Legacy Control Region(传统控制区)接收slow DCI,在短TTI的控制区域接收fast DCI。
本发明实施例提供的一种下行控制信道发送的方法,包括:
网络侧设备确定参考信息;
网络侧设备将参考信息发送给终端,以使终端在未收到slow DCI的情况下,根据参考信息接收fast DCI。
可选地,参考信息包括以下信息中的至少一个:
短TTI的参考长度信息;
短TTI控制区域的参考位置信息。
可选地,网络侧设备将参考信息发送给终端,具体包括:
网络侧设备通过RRC(Radio Resource Control,无线资源控制)配置或者广播信息或者其他形式的高层信令发送参考信息。
可选地,网络侧设备确定参考信息,包括:
网络侧设备根据业务量和/或业务时延需求,确定参考信息;或
网络侧设备根据之前M次发送的slow DCI中的信息,确定参考信息,其中M为正整数。
本发明实施例提供的一种下行控制信道接收的终端,包括:
处理模块,用于在未收到slow DCI的情况下,根据预定义方式接收fast DCI;
传输模块,用于根据接收的fast DCI进行数据的传输。
可选地,处理模块具体用于:
在传统控制区Legacy Control Region接收slow DCI;
在短TTI的控制区域接收fast DCI。
可选地,处理模块具体用于:
根据网络侧配置的参考信息通过盲检的方式接收fast DCI;或
在备选位置通过盲检的方式接收fast DCI;或
根据最近N次接收到的slow DCI通过盲检的方式接收fast DCI,其中N为正整数。
可选地,参考信息包括以下信息中的至少一个:
短TTI的参考长度信息;
短TTI控制区域的参考位置信息。
可选地,处理模块具体用于:
在通过盲检的方式接收fast DCI之后,以及在传输模块根据接收的fast DCI进行数据的传输之前,确定短TTI的长度信息。
可选地,处理模块具体用于:
根据接收到的fast DCI中的短TTI的长度指示信息确定短TTI的长度信息;或
根据接收到的fast DCI的循环冗余校验CRC序列加扰使用的无线网络临时标识RNTI值,确定短TTI的长度信息;或
根据接收到的fast DCI所在的时域位置确定短TTI的长度信息。
可选地,处理模块还用于:
根据最近N次接收到的slow DCI,在本子帧中接收fast DCI,其中N为正整数。
可选地,处理模块具体用于:
在接收到fast DCI后,在fast DCI调度的短TTI以外的位置继续盲检fast DCI。
本发明实施例提供的一种下行控制信道发送的网络侧设备,包括:
确定模块,用于确定参考信息;
发送模块,用于将参考信息发送给终端,以使终端在未收到slow DCI的情况下,根据参考信息接收fast DCI。
可选地,参考信息包括以下信息中的至少一个:
短TTI的参考长度信息;
短TTI控制区域的参考位置信息。
可选地,发送模块具体用于:
通过无线资源控制RRC配置或者广播信息或者其他形式的高层信令发送参考信息。
可选地,确定模块具体用于:
根据业务量和/或业务时延需求,确定参考信息;或
根据之前M次发送的slow DCI中的信息,确定参考信息,其中M为正整数。
本发明实施例的终端在未收到slow DCI的情况下,能够根据预定义的方式继续接收fast DCI,进一步根据fast DCI进行数据的接收,因此本发明实施例能够保证终端在未收到slow DCI的情况下继续接收fast DCI并完成数据的传输。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简要介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的一种下行控制信道接收的方法的流程示意图;
图2为本发明实施例提供的第一个确定子帧内短TTI控制区域位置的示意图;
图3为本发明实施例提供的第二个确定子帧内短TTI控制区域位置的示意图;
图4为本发明实施例提供的在某一个子帧内盲检fast DCI的示意图;
图5为本发明实施例提供的一种下行控制信道接收的方法的具体步骤示意图;
图6为本发明实施例提供的一种下行控制信道发送的方法的流程示意图;
图7为本发明实施例提供的终端进行非连续接收的示意图;
图8为本发明实施例提供的一种下行控制信道发送的方法的具体步骤示意图;
图9为本发明实施例提供的第一种下行控制信道接收的终端的结构示意图;
图10为本发明实施例提供的第一种下行控制信道发送的网络侧设备的结构示意图;
图11为本发明实施例提供的第二种下行控制信道接收的终端的结构示意图;
图12为本发明实施例提供的第二种下行控制信道接收的网络侧设备的结构示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
应理解,本发明的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、先进的长期演进(Advanced long term evolution,LTE-A)系统、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)等。
还应理解,在本发明实施例中,用户设备(User Equipment,UE)包括但不限于移动台(Mobile Station,MS)、移动终端(Mobile Terminal)、移动电话(Mobile Telephone)、手机(handset)及便携设备(portable equipment)等,该用户设备可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网进行通信,例如,用户设备可以是移动电话(或称为“蜂窝”电话)、具有无线通信功能的计算机等,用户设备还可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置。
在本发明实施例中,基站(例如,接入点)可以是指接入网中在空中接口上通过一个或多个扇区与无线终端通信的设备。基站可用于将收到的空中帧与IP分组进行相互转换,作为无线终端与接入网的其余部分之间的路由器,其中接入网的其余部分可包括网际协议(IP)网络。基站还可协调对空中接口的属性管理。例如,基站可以是GSM或CDMA中的基站(Base Transceiver Station,BTS),也可以是WCDMA中的基站(NodeB),还可以是LTE中的演进型基站(NodeB或eNB或e-NodeB,evolutional Node B),本发明并不限定。
为了使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明作进一步 地详细描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
如图1所示,本发明实施例提供了一种下行控制信道接收的方法
步骤101:终端在未收到slow DCI的情况下,根据预定义方式接收fast DCI;
步骤102:终端根据接收的fast DCI进行数据的传输。
可选地,终端在传统控制区Legacy Control Region接收slow DCI,以及在短TTI的控制区域接收fast DCI。
在两段式DCI格式中,终端分别接收slow DCI以及fast DCI并根据slow DCI以及fast DCI获取自身的控制信息。其中,包含短TTI长度信息、短TTI的控制区域位置信息等的slow DCI在传统控制区域Legacy Control Region发送,且每个子帧发送一次;包含其他控制信息的fast DCI在每个短TTI的控制区域发送。
由于终端需要根据slow DCI中的信息定位并获取fast DCI,之后根据slow DCI以及fast DCI中的调度信息完成数据的传输,因此在无法获取slow DCI的信息的情况下,终端无法获取fast DCI中的调度信息,也就无法完成数据的传输。本发明实施例通过预定义方式使得终端能够在未收到slow DCI的情况下继续接收fast DCI,在此基础之上完成数据的传输。
其中,终端未接收到slow DCI的原因可能有多种,例如在DRX(Discontinuous Reception,非连续接收)接收模式下,终端在非接收模式DRX OFF状态不会接收下行控制信道,当DRX OFF状态覆盖了一个子帧的Legacy Control Region时,终端将无法在该子帧的Legacy Control Region检测接收slow DCI;另外,终端漏检或者检测错误或者网络侧设备没有资源发送slow DCI,都有可能导致终端没有成功接收到在本子帧生效的slow DCI。
可选地,终端根据预定义方式接收fast DCI,具体包括:
终端根据网络侧配置的参考信息通过盲检的方式接收fast DCI;或
终端在备选位置通过盲检的方式接收fast DCI;或
终端根据最近N次接收到的slow DCI通过盲检的方式接收fast DCI,其中N为正整数,其中备选位置为子帧中可能存在承载fast DCI的控制信道的位置。
在本发明实施例中,通过预定义方式使得终端能够继续接收fast DCI。具体来说,终端在没有收到slow DCI的情况下,或根据网络侧配置的参考信息通过盲检的方式接收fast DCI,或通过盲检方式接收fast DCI,或根据最近一次成功接收的slow DCI接收fast DCI。
下面说明终端在未收到slow DCI的情况下根据参考信息获取fast DCI的过程:
第一步,在终端未收到slow DCI的情况下,终端接收网络侧设备发送的参考信息;
第二步,终端根据参考信息接收fast DCI。
可选地,参考信息至少包括短TTI的参考长度信息和短TTI控制区域的参考位置信息中的一个。
在未收到slow DCI的情况下,终端接收网络侧设备发送的参考信息。由于参考信息中包括短TTI的参考长度信息或者短TTI控制区域的参考位置信息,因此终端根据参考信息能够对fast DCI进行接收。
可选地,网络侧设备确定参考信息的方式有以下几种:
方式一,网络侧设备根据业务量和/或业务时延需求,确定参考信息。例如,满足当前业务量和业务时延需求的短TTI的长度为2-OS(Orthogonal Frequency Division Multiplexing Symbols Length,正交频分复用符号长度),则网络侧设备可以将2-OS作为参考信息中的参考长度信息向终端发送;满足当前业务量和业务时延需求的短TTI控制区域的位置可能有X个,X为正整数,则网络侧设备可以将上述X个满足当前业务量和业务时延需求的短TTI控制区域的位置作为参考信息位置。
方式二,网络侧设备根据之前M次发送的短TTI的长度信息和/或短TTI控制区域的位置信息,确定短TTI的参考长度信息和短TTI控制区域的参考位置信息,其中M为正整数。例如,网络侧设备最近一次发送的短TTI的长度信息指示短TTI的长度为2-OS,则网络侧设备可将2-OS作为短TTI的参考长度信息向终端发送;网络侧设备短TTI控制区域的位置信息指示短TTI控制区域的位置可能有X个,X为正整数,则网络侧设备可以将上述X个满足当前业务量和业务时延需求的短TTI控制区域的位置作为参考信息位置。
上述方式只是网络侧设备设定参考信息的可能的方式,其他实现对参考信息进行设定并能够用于终端在未收到slow DCI的情况下接收fast DCI的方式都能够适用于本发明实施例。
可选地,终端通过接收网络侧设备发出的SIB(System Information Block,系统信息块)或者无线资源控制RRC或者其他高层信令的方式获取网络侧设备配置的参考信息。例如网络侧设备通过SIB将参考信息告知终端,则终端根据接收到的SIB所指示的参考信息对fast DCI进行接收。
可选地,终端根据参考信息,在参考信息中指示的短TTI的控制区域通过盲检接收fast DCI。
具体来说,终端分别在上述全部时域位置的全部带宽盲检DCI,接收到DCI后进行循环冗余校验码CRC校验,如果校验成功,终端认为该信息是终端需要的信息,终端进一步根据该位置的信息进行分析得到fast DCI。例如图2所示,短TTI的参考长度信息指示某一个子帧内的短TTI的长度均为2-OS并且短TTI控制区域的参考位置信息指示一个子帧内的区域201为短TTI控制区域的参考位置,则终端在区域201对fast DCI进行盲检接收fast DCI。
下面说明终端根据备选位置通过盲检方式接收fast DCI并接收数据的步骤:
第一步,终端在备选位置通过盲检方式接收fast DCI;
第二步,终端在接收fast DCI之后,确定短TTI的长度信息;
第三部,终端进行数据传输。
在未收到slow DCI的情况下,终端在可能存在fast DCI的位置通过盲检方式接收fast DCI,终端还需要确定其他信息例如短TTI的长度信息已完成数据传输。
可选地,终端在备选位置的全部带宽通过盲检的方式接收fast DCI;
其中,备选位置是指子帧中可能存在承载fast DCI的下行控制信道的时域位置。
其中,可能存在承载fast DCI的下行控制信道的时域位置是指系统中所有可能出现的短TTI控制区域在子帧中的时域位置。例如图3所示,在一个子帧中短TTI的控制区域可能出现在图3中的区域301以及区域302表示的时域位置,则需要将一个子帧内区域301以及区域302表示的所有时域位置作为可能出现短TTI控制区域的时域位置。
终端在所有可能的时域位置的全部控制信道位置通过盲检的方式尝试接收fast DCI。具体来说,终端分别在上述全部时域位置的全部控制信道位置盲检DCI,接收到DCI后进行循环冗余校验码CRC校验,如果校验成功,终端认为该信息是终端需要的信息,终端进一步根据该位置的信息进行分析得到fast DCI。例如图3所示,区域301以及区域302表示的所有时域位置是可能出现短TTI控制区域的位置,也就是备选位置,则终端在上述位置进行盲检,以实现对fast DCI的接收。
可选地,在终端在可能存在fast DCI的位置通过盲检方式接收fast DCI之后,在终端根据fast DCI进行数据的传输之前,还包括:
终端确定短TTI的长度信息。
由于终端需要将fast DCI中的信息与其他信息相配合使用,比如将fast DCI中的信息与短TTI的长度信息相配合,才能完成信息的传输,因此在通过终端在可能存在fast DCI的位置通过盲检方式接收fast DCI之后,还需要确定短TTI的长度信息。
可选地,终端通过以下方式中的一种或者多种确定短TTI的长度信息:
终端根据接收到的fast DCI中的短TTI的长度指示信息确定短TTI的长度信息;或
终端根据接收到的fast DCI的循环冗余校验CRC序列加扰使用的无线网络临时标识RNTI值,确定短TTI的长度信息;或
终端根据接收到的fast DCI所在的时域位置确定短TTI的长度信息。
下面说明本发明实施例中终端根据fast DCI确定短TTI的长度信息的方式:
方式一,终端根据接收到的fast DCI中的短TTI的长度指示信息确定短TTI的长度。fast DCI中包含短TTI的长度指示信息,终端在接收fast DCI后,通过获取其中的短TTI的长度指示信息就可以知道短TTI的长度。例如,网络侧设备发送的fast DCI中包含了短 TTI为2-OS的短TTI长度指示信息,则终端接收fast DCI后可将2-OS作为短TTI的参考长度信息。
方式二,终端根据对接收到的fast DCI的CRC序列进行加扰的不同RNTI值,确定短TTI的长度信息。终端与网络侧设备事先约定,针对不同的短TTI的长度设定不同的RNTI值,则终端在收到fast DCI后,能够根据RNTI值确定短TTI的长度信息。例如,终端与网络侧设备事先约定采用RNTI值X对2-OS的短TTI的fast DCI的CRC序列进行加扰,并且采用RNTI值Y对7-OS的短TTI的fast DCI的CRC序列进行加扰,其中X、Y为不同的RNTI值,则在终端利用RNTI值X解扰成功接收到fast DCI时认为短TTI的长度为2-OS,并且在终端利用RNTI值Y解扰成功接收到fast DCI时认为短TTI的长度为7-OS。
方式三,终端根据接收到fast DCI的时域位置确定短TTI的长度。如图3所示,假设区域301为2-OS长度的短TTI的fast DCI所在区域并且区域302为7-OS长度的短TTI的fast DCI所在区域,则终端在区域301上接收到的fast DCI所属的短TTI的长度为2-OS,区域302上接收到的fast DCI所属的短TTI的长度为7-OS。
下面说明本发明实施例跟据根据最近N次接收的slow DCI接收fast DCI的步骤:
第一步,终端确定最近N次接收的slow DCI中的信息;
第二步,终端根据最近N次接收的slow DCI中的信息,对fast DCI进行接收。
本发明实施例中,在未收到slow DCI的情况下,终端可以根据之前N次接收的slow DCI接收通过盲检的方式fast DCI,其中N为正整数。其中,由于业务量以及业务时延需求等在一定期限内较为稳定,因此终端可以选择与当前短TTI最为接近的最近一次接收到的slow DCI中的信息作为接收fast DCI的依据。
例如,终端最近一次收到的slow DCI中指示短TTI控制区域的位置有X个,并且短TTI的长度为2-OS,在没有收到slow DCI的情况下,终端可以根据上述信息对fast DCI进行盲检。具体来说,终端分别在上述全部X个时域位置的全部带宽盲检DCI,接收到DCI后进行循环冗余校验码CRC校验,如果校验成功,终端认为该信息是终端需要的信息,终端进一步根据该位置的信息进行分析得到fast DCI。
可选地,终端通过盲检的方式接收到fast DCI后,在fast DCI调度的短TTI以外的位置继续盲检fast DCI。
例如图4所示,如果终端已经在一个子帧中的区域401处收到fast DCI,即便区域402仍然是可能存在fast DCI的位置,由于区域402已经被401处收到的fast DCI调度的短TTI(以区域403表示)覆盖,因此终端将不会在区域402处对fast DCI进行盲检。
下面以图5说明本发明实施例提供的一种下行控制信道接收方法的具体步骤:
步骤501:终端确定未收到slow DCI;
步骤502:终端根据下列方式中的一种或多种接收fast DCI:
终端根据网络侧配置的参考信息通过盲检的方式接收fast DCI;
终端在备选位置通过盲检方式接收fast DCI,并且根据fast DCI确定短TTI的长度信息;
终端根据之前N次接收的slow DCI接收通过盲检的方式fast DCI,其中N为正整数;
步骤503:终端根据fast DCI进行数据的传输。
如图6所示,本发明实施例提供了一种下行控制信道发送方法,包括以下步骤:
步骤601:网络侧设备确定参考信息;
步骤602:网络侧设备将参考信息发送给终端,以使终端在未收到slow DCI的情况下,根据参考信息接收fast DCI。
可选地,网络侧设备通过无线资源控制RRC配置或者广播信息或者其他形式的高层信令发送参考信息。例如网络侧设备通过SIB将参考信息告知终端,则终端根据接收到的SIB所指示的参考信息对fast DCI进行接收。
可选地,参考信息包括以下信息中的至少一个:
短TTI的参考长度信息;
短TTI控制区域的参考位置信息。
本发明实施例中,网络侧设备确定参考信息,其中参考信息至少包括短TTI的参考长度信息和短TTI控制区域的参考位置信息中的一个;网络侧设备在确定参考信息之后,进一步向终端发送确定的参考信息,以使终端在未收到slow DCI的情况下,根据参考信息通过盲检的方式确定接收fast DCI。
可选地,网络侧设备根据业务量和/或业务时延需求,确定短TTI的估计长度信息和/或短TTI控制区域的估计位置信息;或
网络侧设备根据之前M次发送的slow DCI中的信息,确定参考信息,其中M为正整数。
下面说明本发明实施例的网络侧设备确定参考信息并向终端发送的过程:
如图7所示,假设DRX的配置周期以短TTI长度为基本单元,例如短TTI的时域长度为2-OS,也就是说可接收信息的DRX ON状态持续X个2-OS,其中X为正整数,由于终端在不接收信息的DRX OFF状态不会接收下行控制信道的信息,因此当DRX OFF状态覆盖了一个子帧的Legacy Control Region701时,终端将无法检测接收到Legacy Control Region701中的slow DCI。在本实施例中,网络侧设备通过SIB或者RRC或者其他形式将参考信息告知终端,其中参考信息包括短TTI控制信道的参考配置信息,例如短TTI的参考长度信息或者短TTI控制区域的参考位置信息。对于短TTI的参考长度信息,网络侧设备根据之前N发送的短TTI的配置信息,确定短TTI的参考信息。例如,网络侧设备根据前一段时期内发送的短TTI的长度信息,确定子帧中只出现了长度为2-OS的短TTI,则网 络侧设备将2-OS的短TTI作为短TTI的参考长度信息。对于短TTI控制区域的参考位置信息,网络侧设备根据之前一段时期内发送的短TTI控制区域的位置信息,确定短TTI控制区域的参考位置信息。例如网络侧设备根据一段时期内发送的短TTI控制区域的位置信息,确定之前一段时期短TTI控制区域只在如图2中的一个子帧的区域201所表示的位置,则网络侧设备将区域201所表示的子帧中的位置作为短TTI控制区域的参考位置信息。在终端没有收到在本子帧生效的slow DCI的情况下,则网络侧设备按照上述参考信息的配置方式确定参考信息,以使终端根据参考信息通过盲检的方式接收fast DCI。
另外,网络侧设备确定的参考短TTI长度信息可以是不同短TTI长度的组合,例如网络侧设备确定最近发送的短TTI长度信息包括2-OS、3-OS、4-OS或者7-OS,则网络侧设备可将包含2-OS、3-OS、4-OS或者7-OS的任意组合作为短TTI的参考长度信息。
下面以图8说明本发明实施例提供的一种下行控制发送方法的具体步骤:
步骤801:网络侧设备根据业务量和/或业务时延需求,确定参考信息:
步骤802:网络侧设备将确定的参考信息发送至终端。
基于同一发明构思,本发明实施例提供了下行控制信道接收和发送的终端。由于该终端解决问题的原理与本发明实施例相似,因此该终端的实施可以参见本发明的实施,重复之处不在赘述。
如图9所示,本发明实施例提供的第一种下行控制信道接收的终端包括:
处理模块901,用于在未收到slow DCI的情况下,根据预定义方式接收fast DCI;
传输模块902,用于根据接收的fast DCI进行数据的传输。
可选地,处理模块901具体用于:
在传统控制区Legacy Control Region接收slow DCI;
在短TTI的控制区域接收fast DCI。
可选地,处理模块901具体用于:
根据网络侧配置的参考信息通过盲检的方式接收fast DCI;或
在备选位置通过盲检的方式接收fast DCI;或
根据最近N次接收到的slow DCI通过盲检的方式接收fast DCI,其中N为正整数。
可选地,参考信息包括以下信息中的至少一个:
短TTI的参考长度信息;
短TTI控制区域的参考位置信息。
可选地,处理模块901具体用于:
在备选位置的方式接收fast DCI之后,在传输模块902根据接收的fast DCI进行数据的传输之前,确定短TTI的长度信息。
可选地,处理模块901具体用于:
根据接收到的fast DCI中的短TTI的长度指示信息确定短TTI的长度信息;或
根据接收到的fast DCI的循环冗余校验CRC序列加扰使用的无线网络临时标识RNTI值,确定短TTI的长度信息;或
根据接收到的fast DCI所在的时域位置确定短TTI的长度信息。
可选地,处理模块901具体用于:
在接收到fast DCI后,在fast DCI调度的短TTI以外的位置继续盲检fast DCI。
可选地,处理模块901还用于:
根据最近N次接收到的slow DCI,在本子帧中接收fast DCI,其中N为正整数。
如图10所示,本发明实施例提供的第一种下行控制信道发送的网络侧设备,包括:
确定模块1001,用于确定参考信息;
发送模块1002,用于将参考信息发送给终端,以使终端在未收到slow DCI的情况下,根据参考信息接收fast DCI。
可选地,参考信息包括以下信息中的至少一个:
短TTI的参考长度信息;
短TTI控制区域的参考位置信息。
可选地,发送模块1002具体用于:
通过无线资源控制RRC配置或者广播信息或者其他形式的高层信令发送参考信息。
可选地,确定模块1001具体用于:
根据业务量和/或业务时延需求,确定参考信息;或
根据之前M次发送的slow DCI中的信息,确定参考信息,其中M为正整数。
如图11所示,本发明实施例的第二种下行控制信道接收的终端,包括:
处理器1101,用于读取存储器1104中的程序,执行下列过程:
在未收到slow DCI的情况下,根据预定义方式控制收发机1102接收fast DCI;根据接收的fast DCI通过收发机1102进行数据的传输;
收发机1102,用于在处理器1101的控制下接收和发送数据。
可选地,处理器1101根据下列方式接收fast DCI:
根据网络侧配置的参考信息控制收发机1102接收fast DCI;或
在备选位置通过盲检的方式控制收发机1102接收fast DCI;或
根据最近N次接收到的slow DCI控制收发机1102接收fast DCI,其中N为正整数;
其中,参考信息包括以下信息中的至少一个:
短TTI的参考长度信息;
短TTI控制区域的参考位置信息。
可选地,处理器1101具体用于:
在备选位置通过盲检的方式接收fast DCI之后,以及在根据接收的fast DCI进行数据的传输之前,确定短TTI的长度信息。
可选地,处理器1101具体用于:
根据收发机1102接收到的fast DCI中的短TTI的长度指示信息确定短TTI的长度信息;或
根据收发机1102接收到的fast DCI的循环冗余校验CRC序列加扰使用的无线网络临时标识RNTI值,确定短TTI的长度信息;或
根据收发机1102接收到的fast DCI所在的时域位置确定短TTI的长度信息。
可选地,处理器1101具体用于:
在收发机1102接收到fast DCI后,在fast DCI调度的短TTI以外的位置继续盲检fast DCI。
可限度,处理器1101具体用于:
根据最近N次接收到的slow DCI,在本子帧中接收fast DCI,其中N为正整数。
可选地,处理器1101具体用于:
控制收发机1102在传统控制区Legacy Control Region接收slow DCI;
控制收发机1102在短TTI的控制区域接收fast DCI。
在图11中,总线架构(用总线1100来代表),总线1100可以包括任意数量的互联的总线和桥,总线1100将包括由通用处理器1101代表的一个或多个处理器和存储器1104代表的存储器的各种电路链接在一起。总线1100还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口1103在总线1100和收发机1102之间提供接口。收发机1102可以是一个元件,也可以是多个元件,比如多个接收器和发送器,提供用于在传输介质上与各种其他装置通信的单元。例如:收发机1102从其他设备接收外部数据。收发机1102用于将处理器1101处理后的数据发送给其他设备。取决于计算系统的性质,还可以提供用户接口1105,例如小键盘、显示器、扬声器、麦克风、操纵杆。
处理器1101负责管理总线1100和通常的处理,如前述运行通用操作系统。而存储器1104可以被用于存储处理器1101在执行操作时所使用的数据。
可选的,处理器1101可以是CPU(Central Processing Unit,中央处埋器)、ASIC(Application Specific Integrated Circuit,专用集成电路)、FPGA(Field-Programmable Gate Array,现场可编程门阵列)或CPLD(Complex Programmable Logic Device,复杂可编程逻辑器件)。
如图12所示,本发明实施例提供的第二种下行控制信道发送的网络侧设备,包括:
处理器1201,用于读取存储器1204中的程序,执行下列过程:
确定参考信息;将参考信息通过收发机1202发送给终端,以使终端在未收到slow DCI的情况下,根据参考信息接收fast DCI;
收发机1202,用于在处理器的控制下接收和发送数据;
其中,参考信息包括以下信息中的至少一个:
短TTI的参考长度信息;
短TTI控制区域的参考位置信息。
可选地,处理器1201具体用于:
控制通过收发机1202通过无线资源控制RRC配置或者广播信息或者其他形式的高层信令发送参考信息。
可选地,处理器1201具体用于:
根据业务量和/或业务时延需求,确定参考信息;或
根据之前M次发送的slow DCI中的信息,确定参考信息,其中M为正整数。
在图12中,总线架构(用总线1200来代表),总线1200可以包括任意数量的互联的总线和桥,总线1200将包括由处理器1201代表的一个或多个处理器和存储器1204代表的存储器的各种电路链接在一起。总线1200还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口1203在总线1200和收发机1202之间提供接口。收发机1202可以是一个元件,也可以是多个元件,比如多个接收器和发送器,提供用于在传输介质上与各种其他装置通信的单元。经处理器1201处理的数据通过天线1205在无线介质上进行传输,进一步,天线1205还接收数据并将数据传送给处理器1201。
处理器1201负责管理总线1200和通常的处理,还可以提供各种功能,包括定时,外围接口,电压调节、电源管理以及其他控制功能。而存储器1204可以被用于存储处理器1201在执行操作时所使用的数据。
可选的,处理器1201可以是CPU、ASIC、FPGA或CPLD。
本领域内的技术人员应明白,本发明的实施例可提供为方法、系统、或计算机程序产品。因此,本发明可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器 以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管已描述了本发明的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本发明范围的所有变更和修改。
显然,本领域的技术人员可以对本发明实施例进行各种改动和变型而不脱离本发明实施例的精神和范围。这样,倘若本发明实施例的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (24)

  1. 一种下行控制信道接收的方法,其特征在于,包括:
    终端在未收到慢下行控制信息slow DCI的情况下,根据预定义方式接收快下行控制信息fast DCI;
    所述终端根据接收到的所述fast DCI进行数据的传输。
  2. 如权利要求1所述的方法,其特征在于,所述终端根据预定义方式接收fast DCI,具体包括:
    所述终端根据网络侧配置的参考信息通过盲检的方式接收fast DCI;或
    所述终端在备选位置通过盲检的方式接收fast DCI;或
    所述终端根据最近N次接收到的slow DCI通过盲检的方式接收fast DCI,其中N为正整数。
  3. 如权利要求2所述的方法,其特征在于,所述参考信息包括以下信息中的至少一个:
    短传输时间间隔TTI的参考长度信息;
    短TTI控制区域的参考位置信息。
  4. 如权利要求2所述的方法,其特征在于,在所述终端在备选位置通过盲检的方式接收fast DCI之后,在所述终端根据所述fast DCI进行数据的传输之前,还包括:
    所述终端确定短TTI的长度信息。
  5. 如权利要求4所述的方法,其特征在于,所述终端通过以下方式中的一种或者多种确定所述短TTI的长度信息:
    所述终端根据接收到的fast DCI中的短TTI的长度指示信息确定所述短TTI的长度信息;或
    所述终端根据接收到的fast DCI的循环冗余校验CRC序列加扰使用的无线网络临时标识RNTI值,确定短TTI的长度信息;或
    所述终端根据接收到的fast DCI所在的时域位置确定短TTI的所述长度信息。
  6. 如权利要求2所述的方法,其特征在于,所述终端根据最近N次接收到的slow DCI通过盲检的方式接收fast DCI,具体包括:
    所述终端根据最近N次接收到的slow DCI,在本子帧中接收所述fast DCI,其中N为正整数。
  7. 如权利要求2所述的方法,其特征在于,所述终端通过盲检方式接收fast DCI,包括:
    所述终端接收到fast DCI后,在所述fast DCI调度的短TTI以外的位置继续盲检fast DCI。
  8. 如权利要求1~7任一所述方法,其特征在于,所述终端在传统控制区Legacy Control Region接收slow DCI,在短TTI的控制区域接收fast DCI。
  9. 一种下行控制信道发送的方法,其特征在于,包括:
    网络侧设备确定参考信息;
    所述网络侧设备将所述参考信息发送给终端,以使所述终端在未收到slow DCI的情况下,根据参考信息接收fast DCI。
  10. 如权利要求9所述的方法,其特征在于,所述参考信息包括以下信息中的至少一个:
    短TTI的参考长度信息;
    短TTI控制区域的参考位置信息。
  11. 如权利要求9所述方法,其特征在于,所述网络侧设备将所述参考信息发送给终端,具体包括:
    所述网络侧设备通过无线资源控制RRC配置或者广播信息或者其他形式的高层信令发送所述参考信息。
  12. 如权利要求9所述的方法,其特征在于,所述网络侧设备确定所述参考信息,包括:
    所述网络侧设备根据业务量和/或业务时延需求,确定所述参考信息;或
    所述网络侧设备根据之前M次发送的slow DCI中的信息,确定所述参考信息,其中M为正整数。
  13. 一种下行控制信道接收的终端,其特征在于,包括:
    处理模块,用于在未收到slow DCI的情况下,根据预定义方式接收fast DCI;
    传输模块,用于根据接收的所述fast DCI进行数据的传输。
  14. 如权利要求13所述的终端,其特征在于,所述处理模块具体用于:
    根据网络侧配置的参考信息通过盲检的方式接收fast DCI;或
    在备选位置通过盲检的方式接收fast DCI;或
    根据最近N次接收到的slow DCI通过盲检的方式接收fast DCI,其中N为正整数。
  15. 如权利要求14所述的终端,其特征在于,所述参考信息包括以下信息中的至少一个:
    短TTI的参考长度信息;
    短TTI控制区域的参考位置信息。
  16. 如权利要求14所述的终端,其特征在于,所述处理模块还用于:
    在备选位置通过盲检的方式接收fast DCI之后,以及在所述传输模块根据接收的所述fast DCI进行数据的传输之前,确定短TTI的长度信息。
  17. 如权利要求16所述的终端,其特征在于,所述处理模块具体用于:
    根据接收到的fast DCI中的短TTI的长度指示信息确定所述短TTI的长度信息;或
    根据接收到的fast DCI的循环冗余校验CRC序列加扰使用的无线网络临时标识RNTI值,确定短TTI的长度信息;或
    根据接收到的fast DCI所在的时域位置确定短TTI的所述长度信息。
  18. 如权利要求14所述的终端,其特征在于,所述处理模块还用于:
    根据最近N次接收到的slow DCI,在本子帧中接收所述fast DCI,其中N为正整数。
  19. 如权利要求14所述的终端,其特征在于,所述处理模块具体用于:
    在通过盲检的方式接收到fast DCI后,在所述fast DCI调度的短TTI以外的位置继续盲检fast DCI。
  20. 如权利要求13~19任一所述的终端,其特征在于,所述处理模块具体用于:
    在传统控制区Legacy Control Region接收slow DCI;
    在短TTI的控制区域接收fast DCI。
  21. 一种下行控制信道发送的网络侧设备,其特征在于,包括:
    确定模块,用于确定参考信息;
    发送模块,用于将所述参考信息发送给终端,以使所述终端在未收到slow DCI的情况下,根据参考信息接收fast DCI。
  22. 如权利要求21所述的网络侧设备,其特征在于,所述参考信息包括以下信息中的至少一个:
    短TTI的参考长度信息;
    短TTI控制区域的参考位置信息。
  23. 如权利要求21所述的网络侧设备,其特征在于,所述发送模块具体用于:
    通过无线资源控制RRC配置或者广播信息或者其他形式的高层信令发送所述参考信息。
  24. 如权利要求21所述的网络侧设备,其特征在于,所述确定模块具体用于:
    根据业务量和/或业务时延需求,确定所述参考信息;或
    根据之前M次发送的slow DCI中的信息,确定所述参考信息,其中M为正整数。
PCT/CN2017/101120 2016-09-29 2017-09-08 一种下行控制信道接收和发送的方法及设备 WO2018059221A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610868396.0 2016-09-29
CN201610868396.0A CN107889228B (zh) 2016-09-29 2016-09-29 一种下行控制信道接收和发送的方法及设备

Publications (1)

Publication Number Publication Date
WO2018059221A1 true WO2018059221A1 (zh) 2018-04-05

Family

ID=61763114

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/101120 WO2018059221A1 (zh) 2016-09-29 2017-09-08 一种下行控制信道接收和发送的方法及设备

Country Status (2)

Country Link
CN (1) CN107889228B (zh)
WO (1) WO2018059221A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10375717B2 (en) * 2016-05-09 2019-08-06 Spreadtrum Communications (Shanghai) Co., Ltd. User equipment and data transmission method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016142006A1 (en) * 2015-03-09 2016-09-15 Telefonaktiebolaget Lm Ericsson (Publ) Reducing reference signals when communicating multiple sub-subframes between a base station and a wireless terminal

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107371272B (zh) * 2016-05-13 2022-04-29 中兴通讯股份有限公司 下行控制信息的传输方法、装置及系统

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016142006A1 (en) * 2015-03-09 2016-09-15 Telefonaktiebolaget Lm Ericsson (Publ) Reducing reference signals when communicating multiple sub-subframes between a base station and a wireless terminal

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "DCI for sTTI Scheduling", 3GPP TSG-RAN WG1 MEETING #85 R1-165294, 27 May 2016 (2016-05-27), XP051096742 *
LG ELECTRONICS: "Discussion on sPDDCH for Latency Reduction", 3GPP TSG RAN WG1 MEETING #86 R1-166858, 26 August 2016 (2016-08-26), XP051125601 *
NOKIA ET AL.: "On Two-Level DL Control Channel Design for Shorter TTI Operation", 3GPP RSG-RAN WG1 MEETING #86 R1-167082, 26 August 2016 (2016-08-26), XP051125689 *
SAMSUNG: "sPDDCH and sDCI Design", 3GPPTSG RAN WG1 MEETING #85 R1-164793, 27 May 2016 (2016-05-27), XP051096324 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10375717B2 (en) * 2016-05-09 2019-08-06 Spreadtrum Communications (Shanghai) Co., Ltd. User equipment and data transmission method thereof

Also Published As

Publication number Publication date
CN107889228A (zh) 2018-04-06
CN107889228B (zh) 2019-08-23

Similar Documents

Publication Publication Date Title
US11343814B2 (en) Slot scheduling method and apparatus
CN108347778B (zh) 通信方法及装置
RU2685023C1 (ru) Терминал, базовая станция и способ передачи запроса планирования
WO2019128580A1 (zh) 控制信道配置及检测方法和装置、程序及介质
US11026195B2 (en) Communication method and device
WO2018112932A1 (zh) 数据传输方法和装置
TW202013996A (zh) 配置訊息的傳輸方法和終端設備
US10470222B2 (en) Apparatuses and methods for on-demand system information (SI) request through a random access procedure
CN111343717B (zh) 一种寻呼消息的接收方法、发送方法、终端设备及网络设备
WO2017194003A1 (zh) 一种数据传输方法、网络设备及用户设备
EP3637818B1 (en) Signal sending and receiving method and device
WO2019183905A1 (zh) 信号传输的方法、网络设备和终端设备
WO2019085917A1 (zh) 资源分配方法、装置及系统
US20220014901A1 (en) Method and apparatus for identifying user equipment capability in sidelink transmission
WO2018228537A1 (zh) 信息发送、接收方法及装置
WO2014067487A1 (zh) 避免d2d传输干扰的处理方法、用户设备和基站
US10813117B2 (en) Method for wireless communication, network device and terminal device
CN109219138B (zh) 传输处理的方法、装置、电子设备和存储介质
TW201824801A (zh) 傳輸信息的方法、網絡設備和終端設備
WO2016197379A1 (zh) 控制功率的方法和相关设备
WO2016168967A1 (zh) 一种分量载波组的配置方法及设备
TWI616111B (zh) 在未授權頻譜中的無線電資源排程方法及使用其之基地台
WO2017206056A1 (zh) 一种基于非授权频带的通信方法、相关设备及系统
WO2018103051A1 (zh) 无线通信的方法和装置
WO2018059221A1 (zh) 一种下行控制信道接收和发送的方法及设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17854671

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17854671

Country of ref document: EP

Kind code of ref document: A1