WO2018058988A1 - 一种导频映射方法及装置 - Google Patents

一种导频映射方法及装置 Download PDF

Info

Publication number
WO2018058988A1
WO2018058988A1 PCT/CN2017/086291 CN2017086291W WO2018058988A1 WO 2018058988 A1 WO2018058988 A1 WO 2018058988A1 CN 2017086291 W CN2017086291 W CN 2017086291W WO 2018058988 A1 WO2018058988 A1 WO 2018058988A1
Authority
WO
WIPO (PCT)
Prior art keywords
dmrs
control
channel
data channel
data
Prior art date
Application number
PCT/CN2017/086291
Other languages
English (en)
French (fr)
Inventor
林祥利
王磊
高学娟
潘学明
Original Assignee
电信科学技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 电信科学技术研究院 filed Critical 电信科学技术研究院
Publication of WO2018058988A1 publication Critical patent/WO2018058988A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a pilot mapping method and apparatus.
  • TTI transmission time interval
  • sTTI Short Transmission Time Interval
  • each radio frame is composed of a subframe.
  • each subframe has two slots.
  • Each slot is composed of a fixed number of Orthogonal Frequency Division Multiplexing (OFDM) symbols.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the length of the sTTI is 7 OFDM symbols, occupying one slot of the subframe.
  • a control region and a data region exist in an sTTI having a length of 7 OFDM symbols.
  • the resources of the control region are mainly used for transmitting a control channel, and the resources of the data region are mainly used for transmitting a data channel.
  • the resources in the control area that are not used to transmit the control channel may be used to transmit a data channel.
  • the control channel and data channel of the control region need to be demodulated based on Demodulation Reference Symbol (DMRS).
  • DMRS Demodulation Reference Symbol
  • the shortened physical downlink control channel (shortened PDCCH) carrying the downlink control information is demodulated based on the cell-specific reference signals (CRS).
  • CRS cell-specific reference signals
  • Embodiments of the present invention provide a pilot mapping method and apparatus for allocating independent DMRSs for control channels and data channels of a control region to implement DMRS-based demodulation of control region control channels and data channels.
  • a pilot mapping method comprising:
  • DMRS for data channel demodulation and DMRS for control channel demodulation are avoided.
  • Resource conflicts which in turn enable independent demodulation of control region control channels and data channels based on DMRS.
  • mapping the DMRS to the control channel and the first data channel in the control area respectively includes:
  • the first DMRS and the second DMRS are respectively mapped in the resource units belonging to the control area.
  • mapping the DMRS to the control channel and the first data channel in the control area respectively includes:
  • mapping in the resource unit belonging to the control region, the first DMRS; and using the DMRS of the second data channel in the data region as the second DMRS.
  • the resource unit of the first DMRS mapping is different from the resource unit of the second DMRS mapping.
  • the first DMRS mapped resource unit and the second DMRS mapped resource unit are evenly distributed among all resource units in the short transmission time interval.
  • the port number corresponding to the first DMRS is different from the port number of the second DMRS. Resource conflicts between the DMRS for data channel demodulation and the DMRS for control channel demodulation are avoided.
  • a pilot mapping apparatus has a function of implementing the pilot mapping method involved above, and the function may be implemented by hardware or by executing corresponding software by hardware.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the modules can be software and/or hardware.
  • the apparatus comprises:
  • a determining unit configured to determine a control channel to be demodulated and a first data channel, where the resource unit transmitting the control channel and the resource unit transmitting the first data channel are all control areas within a short transmission time interval ;
  • a processing unit configured to determine, by the determining unit, the control channel and the first data channel to be demodulated in the control region, respectively mapping a demodulation reference signal DMRS, where the control channel is The DMRS is a first DMRS, the DMRS of the first data channel is a second DMRS, and the first DMRS and the second DMRS are independent of each other.
  • the processing unit specifically maps the DMRS to the control channel and the first data channel in the control area by using:
  • the first DMRS and the second DMRS are respectively mapped in the resource units belonging to the control area.
  • the processing unit specifically maps the DMRS to the control channel and the first data channel in the control area by using:
  • mapping is performed in the resource unit belonging to the control area a DMRS; and the DMRS of the second data channel in the data area is used as the second DMRS.
  • the processing unit is different from the first DMRS mapped resource unit and the second DMRS mapped resource unit respectively mapped by the control channel and the first data channel.
  • the processing unit is configured by the first DMRS mapped resource unit and the second DMRS mapped resource unit that are respectively mapped by the control channel and the first data channel, where Uniform distribution among all resource units in a short transmission time interval.
  • the processing unit is different from the port number of the first DMRS and the second DMRS respectively mapped by the control channel and the first data channel. Resource conflicts between the DMRS for data channel demodulation and the DMRS for control channel demodulation are avoided.
  • the pilot mapping apparatus may be implemented in a hardware form.
  • the pilot mapping apparatus includes a processor and a memory, and the processor is configured to support the pilot mapping apparatus to perform the foregoing.
  • the pilot mapping apparatus can also include a memory for coupling with a processor that holds the necessary program instructions and data.
  • the control channel to be demodulated and the first data channel are determined, wherein the resource unit transmitting the control channel and the resource unit transmitting the first data channel are all controlled within a short transmission time interval.
  • a demodulation reference signal DMRS is respectively mapped to the control channel and the first data channel in the control region, where a DMRS of the control channel is a first DMRS, and a DMRS of the first data channel It is a second DMRS, and the first DMRS and the second DMRS are independent of each other.
  • independent DMRS is allocated for the control channel and the data channel of the control region, thereby implementing DMRS-based demodulation of the control region control channel and the data channel.
  • FIG. 1 is a flowchart of a pilot mapping method according to an embodiment of the present invention
  • FIG. 2 is a flowchart of an implementation process for mapping a DMRS to the control channel and the first data channel in the control area according to an embodiment of the present disclosure
  • FIG. 4 is a flowchart of another implementation process for mapping a DMRS to the control channel and the first data channel in the control area according to an embodiment of the present disclosure
  • FIG. 7 is a schematic structural diagram of a pilot mapping apparatus according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of still another pilot mapping apparatus according to an embodiment of the present invention.
  • An embodiment of the present invention provides a pilot mapping method, which allocates independent DMRSs for control channels and data channels of a control region to implement DMRS-based demodulation of control region control channels and data channels.
  • the pilot mapping method described in this embodiment of the present invention can be applied to an LTE system, or other wireless communication system adopting various radio access technologies, and can also be applied to a subsequent evolution system using an LTE system, such as a fifth generation 5G system. Wait.
  • LTE system or other wireless communication system adopting various radio access technologies
  • a subsequent evolution system using an LTE system such as a fifth generation 5G system. Wait.
  • LTE system such as a fifth generation 5G system.
  • Figure 1 is a flowchart of a pilot mapping method according to an embodiment of the present invention. As shown in Figure 1, the method includes:
  • S101 Determine a control channel to be demodulated and a first data channel.
  • the length of the short transmission time interval sTTI is 7 OFDM symbols in the LTE system, and the control region and the data region exist in an sTTI having a length of 7 OFDM symbols, and the resources of the control region are mainly used for transmission control.
  • Channels, resources of the data area are mainly used to transmit data channels. Resources that are not used to transmit control channels in the control region can be used to transport data channels.
  • the control channel and the data channel of the control region need to be demodulated based on the demodulation reference signal DMRS.
  • a network device eg, a base station
  • a control channel to be demodulated and a first data channel
  • a resource unit transmitting the control channel and a resource unit transmitting the first data channel are each a short transmission time interval
  • the control region within the sTTI, in the LTE system, the resource unit may be an OFDM symbol.
  • the network device after determining that the control channel and the first data channel need to be demodulated, the network device (for example, the base station) separately maps the control channel and the first data channel in the control region. Adjust the reference signal DMRS.
  • the DMRS of the control channel is recorded as a first DMRS
  • the DMRS of the first data channel is recorded as a second DMRS
  • the first DMRS and the first The two DMRSs are independent of each other.
  • the mapping of the content of the control channel sPDCCH in the control region may be continuously distributed in the control region, or may be discontinuously distributed in the control region.
  • the resources of the remaining unmapped control channels in the control region are available for mapping of data channels.
  • Embodiments of the present invention will be described in detail below with respect to the implementation process of separately mapping DMRSs for the control channel and the first data channel in the control area according to the foregoing embodiments.
  • FIG. 2 is a flowchart of an implementation process for mapping a DMRS to the control channel and the first data channel in the control area according to an embodiment of the present invention. As shown in FIG. 2, the method includes:
  • the short transmission time interval sTTI includes 7 OFDM symbols, and the 7 OFDM symbols may be partially allocated to the control region, or may be partially allocated to the control region.
  • all resource elements in the short transmission time interval sTTI belong to the control area.
  • all 7 OFDM symbols are given to the control region, that is, 7 OFDM symbols in the sTTI belong to the control region at this time.
  • S202 Map, in the resource unit belonging to the control area, the first DMRS and the second DMRS respectively.
  • the network device after all the 7 OFDM symbols in the sTTI are given to the control region, the network device respectively maps the first DMRS and the second DMRS in the resource unit, thereby implementing the control region control channel and data.
  • the channel is based on DMRS demodulation.
  • mapping the DMRS for the control channel and the first data channel in the control area is described in detail in conjunction with the resource mapping diagram.
  • the LTE system is taken as an example, the sTTI length is 7 OFDM symbols, and 12 subcarriers are used as a unit in the frequency domain.
  • the legacy downlink control region occupies the first two resource units of the subframe, except for the resource elements occupied by the traditional downlink control region and the pilot, the first n resource units are used for transmitting the control channel, and the later resource units are used for data. Channel transmission.
  • the second DMRS for data channel demodulation occupies the sixth and seventh OFDM symbols in the sTTI time domain, occupying the 2nd, 7th, and 12th subcarriers in the frequency domain.
  • the first DMRS for control channel demodulation occupies the 3rd and 4th OFDM symbols in the sTTI time domain, occupying the 2nd, 7th, and 12th subcarriers in the frequency domain, and the first DMRS and the second DMRS use completely different DMRSs. Port number.
  • FIG. 4 is a flowchart of an implementation process for mapping a DMRS to the control channel and the first data channel in the control area according to an embodiment of the present invention. As shown in FIG. 4, the method includes:
  • a resource unit belonging to the data area and a resource unit belonging to the control area are stored in the short transmission time interval, and the DMRS of the second data channel is mapped in the data area.
  • the LTE system is taken as an example.
  • the short transmission time interval sTTI includes 7 OFDM symbols, and the 7 OFDM symbols may be partially allocated to the control region, or may be partially allocated to the control region.
  • the resource unit belonging to the data area and the resource unit belonging to the control area exist in the short transmission time interval sTTI, and the data channel is recorded as the second data channel, and the second data channel is mapped in the data area.
  • DMRS For the LTE system, the 7 OFDM symbol parts are allocated to the control area, and the second OFDM symbol is partially allocated to the second data area, that is, 7 OFDM symbols in the sTTI belong to the control area at this time, and a part belongs to the second data area.
  • S402 Map the first DMRS in a resource unit belonging to the control area.
  • the first DMRS is mapped in a resource unit OFDM symbol belonging to a control region in an sTTI.
  • S403 Use the DMRS of the second data channel in the data area as the second DMRS.
  • the embodiment of the present invention further provides an implementation process for mapping the DMRS to the control channel and the first data channel in the control area, and the resource mapping diagram is used for detailed description.
  • the sTTI is 7 OFDM symbols in length, and 12 subcarriers are used as a unit in the frequency domain.
  • the traditional downlink control region is assumed.
  • PDCCH occupies the first two OFDM symbols of the subframe, assuming that the control region of the sTTI occupies the first four OFDM symbols, the data region occupies the next three OFDM symbols in the sTTI, and the DMRS for the demodulation of the data region occupies the sTTI time domain.
  • the sixth and seventh OFDM symbols occupy the 2nd, 7th, and 12th subcarriers in the frequency domain.
  • the first n resource elements of the control region are used to transmit a control channel, and there is no resource unit in the control region for transmitting a control channel for transmitting a data channel.
  • the second DMRS for data channel demodulation occupies the sixth and seventh OFDM symbols in the sTTI time domain, occupying the 2nd, 7th, and 12th subcarriers in the frequency domain.
  • the first DMRS for control channel demodulation occupies the 3rd and 4th OFDM symbols in the sTTI time domain, occupying the 2nd, 7th, and 12th subcarriers in the frequency domain, and the first DMRS and the second DMRS use completely different DMRSs. Port number.
  • demodulating the DMRS in the second DMRS reuse data area of the data channel transmitted in the control region.
  • the second DMRS for data channel demodulation occupies the 3rd and 4th OFDM symbols in the sTTI time domain, occupying the 2nd, 7th, and 12th subcarriers in the frequency domain.
  • the first DMRS used for control channel demodulation occupies the 3rd and 4th OFDM symbols in the sTTI time domain, occupying the 2nd, 6th, and 12th subcarriers in the frequency domain.
  • the first DMRS and the second DMRS are used The port number of the completely different DMRS.
  • demodulating the DMRS in the second DMRS reuse data area of the data channel transmitted in the control region.
  • the resource unit of the first DMRS mapping is different from the resource unit of the second DMRS mapping.
  • the first DMRS mapped resource unit and the second DMRS mapped resource unit are evenly distributed among all resource units in the short transmission time interval.
  • the embodiment of the present invention further provides a pilot mapping apparatus.
  • the principle of solving the problem is similar to the function method performed by the network device in the pilot mapping method shown in FIG. 1 to FIG. Therefore, the implementation of the device can be referred to the implementation of the method, and the repeated description will not be repeated.
  • a pilot mapping apparatus comprising: a determining unit 101 and a processing unit 102.
  • a determining unit 101 configured to determine a control channel to be demodulated and a first data channel, where the resource unit transmitting the control channel and the resource unit transmitting the first data channel are all controlled within a short transmission time interval region.
  • a processing unit 102 configured to determine, by the determining unit 101, the control channel and the first data channel to be demodulated in the control region, respectively, to demodulate a reference signal DMRS, where the control
  • the DMRS of the channel is a first DMRS
  • the DMRS of the first data channel is a second DMRS
  • the first DMRS and the second DMRS are independent of each other.
  • the processing unit 102 specifically maps the DMRS to the control channel and the first data channel in the control area in the following manner:
  • the first DMRS and the second DMRS are respectively mapped in the resource units belonging to the control area.
  • the processing unit 102 specifically maps the DMRS to the control channel and the first data channel in the control area in the following manner:
  • mapping is performed in the resource unit belonging to the control area a DMRS; and the DMRS of the second data channel in the data area is used as the second DMRS.
  • the processing unit 102 is different from the first DMRS mapped resource unit and the second DMRS mapped resource unit respectively mapped by the control channel and the first data channel.
  • the processing unit 102 is configured by using the first DMRS mapped resource unit and the second DMRS mapped resource unit that are respectively mapped by the control channel and the first data channel. It is evenly distributed among all resource units in the short transmission time interval.
  • the processing unit 102 separates the control channel and the first data channel respectively.
  • the mapped first DMRS is different from the port number of the second DMRS.
  • the pilot mapping device may be a network device
  • the hardware structure and processing of the pilot mapping device provided by the embodiment of the present invention are taken as an example of the following by using the pilot mapping device as a network device. The way to explain.
  • the pilot mapping apparatus includes a processor 1001 and a memory 1002.
  • the memory 1002 is configured to store program code executed by the processor 1001.
  • the processor 1001 is configured to read the program code stored in the memory 1002 and perform the following process:
  • a DMRS of the control channel is a first DMRS
  • a DMRS of the first data channel is a Two DMRSs
  • the first DMRS and the second DMRS are independent of each other.
  • the processor 1001 specifically maps the DMRS to the control channel and the first data channel in the control area in the following manner:
  • the first DMRS and the second DMRS are respectively mapped in the resource units belonging to the control area.
  • the processor 1001 specifically maps the DMRS to the control channel and the first data channel in the control area in the following manner:
  • mapping is performed in the resource unit belonging to the control area a DMRS; and the DMRS of the second data channel in the data area is used as the second DMRS.
  • the processor 1001 is different from the first DMRS mapped resource unit and the second DMRS mapped resource unit respectively mapped by the control channel and the first data channel.
  • the processor 1001 is configured by using the first DMRS mapped resource unit and the second DMRS mapped resource unit that are respectively mapped by the control channel and the first data channel. It is evenly distributed among all resource units in the short transmission time interval.
  • the processor 1001 is different from the port number of the first DMRS and the second DMRS respectively mapped by the control channel and the first data channel. Resource conflicts between the DMRS for data channel demodulation and the DMRS for control channel demodulation are avoided.
  • the control channel to be demodulated and the first data channel are determined, wherein the resource unit transmitting the control channel and the resource unit transmitting the first data channel are all controlled within a short transmission time interval.
  • a demodulation reference signal DMRS is respectively mapped to the control channel and the first data channel in the control region, where a DMRS of the control channel is a first DMRS, and a DMRS of the first data channel For the first Two DMRSs, and the first DMRS and the second DMRS are independent of each other.
  • independent DMRS is allocated for the control channel and the data channel of the control region, thereby implementing DMRS-based demodulation of the control region control channel and the data channel.
  • embodiments of the present invention can be provided as a method, system, or computer program product. Accordingly, the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment, or a combination of software and hardware. Moreover, the invention can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) including computer usable program code.
  • computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种导频映射方法及装置,用以为控制区域的控制信道和数据信道分配独立的DMRS,进而实现控制区域控制信道和数据信道基于DMRS的解调。所述方法包括:确定待进行解调的控制信道和第一数据信道,其中,传输所述控制信道的资源单元和传输所述第一数据信道的资源单元均属于短传输时间间隔内的控制区域,为所述控制区域内的所述控制信道和所述第一数据信道,分别映射解调参考信号DMRS,其中,所述控制信道的DMRS为第一DMRS,所述第一数据信道的DMRS为第二DMRS,且所述第一DMRS与所述第二DMRS彼此独立。

Description

一种导频映射方法及装置
本申请要求在2016年9月29日提交中国专利局、申请号为201610868470.9、发明名称为“一种导频映射方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及通信技术领域,尤其涉及一种导频映射方法及装置。
背景技术
随着移动通信业务需求的发展变化,未来移动通信系统中对用户面时延性能提出了更高的要求。提高用户时延性能的主要方法之一是降低传输时间间隔(Transmission Time Interval,TTI)长度,引入短传输时间间隔(Short Transmission Time Interval,sTTI)。
通信网络中以无线帧(raido frame)为单位传输信号,每个无线帧由子帧(subframe)构成,例如长期演进(Long Term Evolution,LTE)网络中,每个子帧有2个时隙(slot),每个slot由固定个数的正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号组成。引入sTTI的LTE网络中,sTTI的长度为7个OFDM符号,占用子帧的一个时隙。在一个长度为7个OFDM符号的sTTI中存在控制区域和数据区域,控制区域的资源主要用于传输控制信道,数据区域的资源主要用于传输数据信道。其中,控制区域中未用于传输控制信道的资源可以用于传输数据信道。控制区域的控制信道和数据信道需要基于解调参考信号(Demodulation Reference Symbol,DMRS)解调。
但是,目前应用sTTI的通信网络中,一般基于小区专属导频信号(Cell-specific reference signals,CRS)对承载下行控制信息的短物理下行控制信道(shortened physical downlink control channel,shortened PDCCH)进行解调,并不存在基于DMRS对shortened PDCCH进行解调的方法。
发明内容
本发明实施例提供一种导频映射方法及装置,用以为控制区域的控制信道和数据信道分配独立的DMRS,以实现控制区域控制信道和数据信道基于DMRS的解调。
本发明的目的是通过以下技术方案实现的:
第一方面,提供了一种导频映射方法,所述方法包括:
确定待进行解调的控制信道和第一数据信道,其中,传输所述控制信道的资源单元和传输所述第一数据信道的资源单元均属于短传输时间间隔内的控制区域;
为所述控制区域内的所述控制信道和所述第一数据信道,分别映射解调参考信号 DMRS;其中,所述控制信道的DMRS为第一DMRS,所述第一数据信道的DMRS为第二DMRS,且所述第一DMRS与所述第二DMRS彼此独立。通过为所述控制区域内的所述控制信道和所述第一数据信道,分别映射彼此独立的解调参考信号DMRS,避免了用于数据信道解调的DMRS与用于控制信道解调的DMRS的资源冲突,进而实现控制区域控制信道和数据信道基于DMRS的独立解调。
一种可能的实施方式中,为所述控制区域内的所述控制信道和所述第一数据信道,分别映射DMRS,包括:
若短传输时间间隔内的资源单元全部属于控制区域,则在属于控制区域的资源单元中,分别映射所述第一DMRS和所述第二DMRS。
一种可能的实施方式中,为所述控制区域内的所述控制信道和所述第一数据信道,分别映射DMRS,包括:
若短传输时间间隔内存在属于数据区域的资源单元和属于控制区域的资源单元,且所述数据区域内映射有第二数据信道的DMRS,则
在属于控制区域的资源单元中,映射所述第一DMRS;并将所述数据区域内第二数据信道的DMRS,作为所述第二DMRS。
一种可能的实施方式中,所述第一DMRS映射的资源单元和所述第二DMRS映射的资源单元不同。
一种可能的实施方式中,所述第一DMRS映射的资源单元和所述第二DMRS映射的资源单元,在所述短传输时间间隔内的全部资源单元中均匀分布。
一种可能的实施方式中,所述第一DMRS对应的端口号,与所述第二DMRS的端口号不同。避免了用于数据信道解调的DMRS与用于控制信道解调的DMRS的资源冲突。
第二方面,提供了一种导频映射装置,该导频映射装置具有实现上述涉及的导频映射方法的功能,所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。所述模块可以是软件和/或硬件。
采用集成单元的情况下,所述装置包括:
确定单元,用于确定待进行解调的控制信道和第一数据信道,其中,传输所述控制信道的资源单元和传输所述第一数据信道的资源单元均属于短传输时间间隔内的控制区域;
处理单元,用于为所述确定单元确定的,所述控制区域内待进行解调的所述控制信道和所述第一数据信道,分别映射解调参考信号DMRS,其中,所述控制信道的DMRS为第一DMRS,所述第一数据信道的DMRS为第二DMRS,且所述第一DMRS与所述第二DMRS彼此独立。通过为所述控制区域内的所述控制信道和所述第一数据信道,分别映射彼此独立的解调参考信号DMRS,避免了用于数据信道解调的DMRS与用于控制信道解调的DMRS的资源冲突,进而实现控制区域控制信道和数据信道基于DMRS的独立解调。
一种可能的实施方式中,所述处理单元具体采用如下方式为所述控制区域内的所述控制信道和所述第一数据信道,分别映射DMRS:
若短传输时间间隔内的资源单元全部属于控制区域,则在属于控制区域的资源单元中,分别映射所述第一DMRS和所述第二DMRS。
一种可能的实施方式中,所述处理单元具体采用如下方式为所述控制区域内的所述控制信道和所述第一数据信道,分别映射DMRS:
若短传输时间间隔内存在属于数据区域的资源单元和属于控制区域的资源单元,且所述数据区域内映射有第二数据信道的DMRS,则在属于控制区域的资源单元中,映射所述第一DMRS;并将所述数据区域内第二数据信道的DMRS,作为所述第二DMRS。
一种可能的实施方式中,所述处理单元为所述控制信道和所述第一数据信道分别映射的所述第一DMRS映射的资源单元和所述第二DMRS映射的资源单元不同。
一种可能的实施方式中,所述处理单元为所述控制信道和所述第一数据信道分别映射的所述第一DMRS映射的资源单元和所述第二DMRS映射的资源单元,在所述短传输时间间隔内的全部资源单元中均匀分布。
一种可能的实施方式中,所述处理单元为所述控制信道和所述第一数据信道分别映射的所述第一DMRS与所述第二DMRS的端口号不同。避免了用于数据信道解调的DMRS与用于控制信道解调的DMRS的资源冲突。
本发明实施例中,上述导频映射装置还可以采用硬件形式实现,在采用硬件形式时,所述导频映射装置包括处理器和存储器,所述处理器被配置为支持导频映射装置执行上述涉及的导频映射方法。所述导频映射装置还可以包括存储器,所述存储器用于与处理器耦合,其保存必要的程序指令和数据。
本发明实施例中,确定待进行解调的控制信道和第一数据信道,其中,传输所述控制信道的资源单元和传输所述第一数据信道的资源单元均属于短传输时间间隔内的控制区域,为所述控制区域内的所述控制信道和所述第一数据信道,分别映射解调参考信号DMRS,其中,所述控制信道的DMRS为第一DMRS,所述第一数据信道的DMRS为第二DMRS,且所述第一DMRS与所述第二DMRS彼此独立。通过本发明,为控制区域的控制信道和数据信道分配独立的DMRS,进而实现控制区域控制信道和数据信道基于DMRS的解调。
附图说明
图1为本发明实施例提供的一种导频映射方法的流程图;
图2为本发明实施例提供的一种为所述控制区域内的所述控制信道和所述第一数据信道分别映射DMRS的实施过程流程图;
图3为本发明实施例提供的一种当n=2时,用于数据信道和控制信道解调的DMRS资源映射示意图;
图4为本发明实施例提供的另一种为所述控制区域内的所述控制信道和所述第一数据信道分别映射DMRS的实施过程流程图;
图5为本发明实施例提供的一种当n=3时,用于数据信道和控制信道解调的DMRS资源映射示意图;
图6为本发明实施例提供的一种当n=2时,用于数据信道和控制信道解调的另一DMRS资源映射示意图;
图7为本发明实施例提供的一种导频映射装置的结构示意图;
图8为本发明实施例提供的又一种导频映射装置的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,并不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明实施例提供一种导频映射方法,为控制区域的控制信道和数据信道分配独立的DMRS,以实现控制区域控制信道和数据信道基于DMRS的解调。
本发明实施例以下将对本发明实施例提供的导频映射方法的实施过程进行详细说明。
本发明实施例描述的导频映射方法可以适用于LTE系统,或其他采用各种无线接入技术的无线通信系统,此外,还可以适用于使用LTE系统后续的演进系统,如第五代5G系统等。为清楚起见,本发明实施例以下仅以LTE系统为例进行说明。
图1为本发明实施例提供的一种导频映射方法的流程图,如图1所示,包括:
S101:确定待进行解调的控制信道和第一数据信道。
本发明实施例中,在LTE系统中短传输时间间隔sTTI的长度为7个OFDM符号,在一个长度为7个OFDM符号的sTTI中存在控制区域和数据区域,控制区域的资源主要用于传输控制信道,数据区域的资源主要用于传输数据信道。控制区域中未用于传输控制信道的资源可以用于传输数据信道。当控制区域中未用于传输控制信道的资源用于传输数据信道时,控制区域的控制信道和数据信道需要基于解调参考信号DMRS解调。通过网络设备(例如,基站)来确定待进行解调的控制信道和第一数据信道,其中,传输所述控制信道的资源单元和传输所述第一数据信道的资源单元均属于短传输时间间隔sTTI内的控制区域,在LTE系统中,上述资源单元可以是OFDM符号。
S102:为所述控制区域内的所述控制信道和所述第一数据信道,分别映射DMRS。
本发明实施例中,网络设备(例如,基站)在确定控制信道和第一数据信道需要进行解调后,为所述控制区域内的所述控制信道和所述第一数据信道,分别映射解调参考信号DMRS。其中,为了方便区分,本发明实施例中,将所述控制信道的DMRS记为第一DMRS,将所述第一数据信道的DMRS记为第二DMRS,且所述第一DMRS与所述第二DMRS彼此独立。
本发明实施例中,控制信道sPDCCH在控制区域内容的映射,可以连续地分布在控制区域,也可以是非连续地分布在控制区域中。控制区域中剩余的未映射控制信道的资源可用于数据信道的映射。
本发明实施例以下将结合实际应用对上述实施例涉及的为所述控制区域内的所述控制信道和所述第一数据信道,分别映射DMRS的实施过程进行详细的说明。
图2为本发明实施例提供的一种为所述控制区域内的所述控制信道和所述第一数据信道分别映射DMRS的实施过程流程图,如图2所示,包括:
S201:短传输时间间隔内的资源单元全部属于控制区域。
本发明实施例中,短传输时间间隔sTTI包括7个OFDM符号,这7个OFDM符号可以全部分给控制区域,也可以部分分给控制区域。在该实施方式中,短传输时间间隔sTTI内的资源单元全部属于控制区域,针对LTE系统,即将7个OFDM符号全部分给控制区域,即sTTI中的7个OFDM符号此时都属于控制区域。
S202:在属于控制区域的资源单元中,分别映射所述第一DMRS和所述第二DMRS。
本发明实施例中,在将sTTI中的7个OFDM符号全部分给控制区域后,网络设备分别在资源单元中映射所述第一DMRS和所述第二DMRS,进而实现控制区域控制信道和数据信道基于DMRS的解调。
本发明实施例以下将对本发明实施例提供的为所述控制区域内的所述控制信道和所述第一数据信道分别映射DMRS的实施过程结合资源映射图进行详细说明。
本发明实施例中,以LTE系统为例,sTTI长度为7个OFDM符号,频域上以12个子载波为一个单元,在短传输时间间隔sTTI内的资源单元全部属于控制区域的情况下,假设传统下行控制区域(Legacy PDCCH)占据子帧的前两个资源单元,除去传统下行控制区域和导频所占的资源单元,前n个资源单元用于传输控制信道,后面的资源单元用于数据信道传输。
图3给出n=2时,用于数据信道和控制信道解调的DMRS资源映射示意图,如图3所示。用于数据信道解调的第二DMRS占据sTTI时域上的第6、7个OFDM符号,占据频域上第2、7、12个子载波。用于控制信道解调的第一DMRS占据sTTI时域上第3、4个OFDM符号,占据频域上第2、7、12个子载波,所述第一DMRS和第二DMRS使用完全不同的DMRS的端口号。
图4为本发明实施例提供的另一种为所述控制区域内的所述控制信道和所述第一数据信道分别映射DMRS的实施过程流程图,如图4所示,包括:
S401:短传输时间间隔内存在属于数据区域的资源单元和属于控制区域的资源单元,且所述数据区域内映射有第二数据信道的DMRS。
本发明实施例中,以LTE系统为例,短传输时间间隔sTTI包括7个OFDM符号,这7个OFDM符号可以全部分给控制区域,也可以部分分给控制区域。在该实施方式中,短传输时间间隔sTTI内存在属于数据区域的资源单元和属于控制区域的资源单元,将该数据信道记为第二数据信道,所述数据区域内映射有第二数据信道的DMRS。针对LTE系统,即将7个OFDM符号部分分给控制区域,部分分给第二数据区域,即sTTI中的7个OFDM符号此时一部分属于控制区域,一部分属于第二数据区域。
S402:在属于控制区域的资源单元中,映射所述第一DMRS。
本发明实施例中,在sTTI中属于控制区域的资源单元OFDM符号中,映射所述第一DMRS。
S403:将所述数据区域内第二数据信道的DMRS,作为所述第二DMRS。
本发明实施例以下将对本发明实施例提供的又一种为所述控制区域内的所述控制信道和所述第一数据信道分别映射DMRS的实施过程,结合资源映射图进行详细说明。
本发明实施例中,sTTI长度为7个OFDM符号,频域上以12个子载波为一个单元,在短传输时间间隔sTTI内的资源单元部分属于控制区域的情况下,假设传统下行控制区域(Legacy PDCCH)占据子帧的前两个OFDM符号,假设sTTI的控制区域占据前4个OFDM符号,数据区域占据sTTI中后面的3个OFDM符号,数据区域用于解调的DMRS占据sTTI时域上的第6、7个OFDM符号,占据频域上第2、7、12个子载波。控制区域的前n个资源单元用于传输控制信道,控制区域内没有用于传输控制信道的资源单元用于传输数据信道。
图5给出n=3时,用于数据信道和控制信道解调的DMRS资源映射示意图,如图5所示。用于数据信道解调的第二DMRS占据sTTI时域上的第6、7个OFDM符号,占据频域上第2、7、12个子载波。用于控制信道解调的第一DMRS占据sTTI时域上第3、4个OFDM符号,占据频域上第2、7、12个子载波,所述第一DMRS和第二DMRS使用完全不同的DMRS的端口号。且在控制区域内传输的数据信道的第二DMRS重用数据区域内的DMRS进行解调。
图6中给出n=2时,用于数据信道和控制信道解调的DMRS资源映射示意图,如图6所示。用于数据信道解调的第二DMRS占据sTTI时域上的第3、4个OFDM符号,占据频域上第2、7、12个子载波。用于控制信道解调的第一DMRS占据sTTI时域上第3、4个OFDM符号,占据频域上第2、6、12个子载波。所述第一DMRS和第二DMRS使用 完全不同的DMRS的端口号。且在控制区域内传输的数据信道的第二DMRS重用数据区域内的DMRS进行解调。
一种可能的实施方式中,所述第一DMRS映射的资源单元和所述第二DMRS映射的资源单元不同。
一种可能的实施方式中,所述第一DMRS映射的资源单元和所述第二DMRS映射的资源单元,在所述短传输时间间隔内的全部资源单元中均匀分布。
基于同一发明构思,本发明实施例中还提供了一种导频映射装置,由于该装置解决问题的原理与上述图1至图6所示的导频映射方法中网络设备执行的功能方法相似,因此该装置的实施可以参见方法的实施,重复之处不再赘述。
图7所示的实施例中,提供了一种导频映射装置,所述装置包括:确定单元101和处理单元102。
确定单元101,用于确定待进行解调的控制信道和第一数据信道,其中,传输所述控制信道的资源单元和传输所述第一数据信道的资源单元均属于短传输时间间隔内的控制区域。
处理单元102,用于为所述确定单元101确定的,所述控制区域内待进行解调的所述控制信道和所述第一数据信道,分别映射解调参考信号DMRS,其中,所述控制信道的DMRS为第一DMRS,所述第一数据信道的DMRS为第二DMRS,且所述第一DMRS与所述第二DMRS彼此独立。
一种可能的实施方式中,所述处理单元102具体采用如下方式为所述控制区域内的所述控制信道和所述第一数据信道,分别映射DMRS:
若短传输时间间隔内的资源单元全部属于控制区域,则在属于控制区域的资源单元中,分别映射所述第一DMRS和所述第二DMRS。
一种可能的实施方式中,所述处理单元102具体采用如下方式为所述控制区域内的所述控制信道和所述第一数据信道,分别映射DMRS:
若短传输时间间隔内存在属于数据区域的资源单元和属于控制区域的资源单元,且所述数据区域内映射有第二数据信道的DMRS,则在属于控制区域的资源单元中,映射所述第一DMRS;并将所述数据区域内第二数据信道的DMRS,作为所述第二DMRS。
一种可能的实施方式中,所述处理单元102为所述控制信道和所述第一数据信道分别映射的所述第一DMRS映射的资源单元和所述第二DMRS映射的资源单元不同。
一种可能的实施方式中,所述处理单元102为所述控制信道和所述第一数据信道分别映射的所述第一DMRS映射的资源单元和所述第二DMRS映射的资源单元,在所述短传输时间间隔内的全部资源单元中均匀分布。
一种可能的实施方式中,所述处理单元102为所述控制信道和所述第一数据信道分别 映射的所述第一DMRS与所述第二DMRS的端口号不同。
在具体实施过程中所述导频映射装置可以为网络设备,本发明实施例以下以所述导频映射装置为网络设备为例对本发明实施例提供的所述导频映射装置的硬件结构、处理方式进行说明。
图8所示的示例中,所述导频映射装置包括:处理器1001和存储器1002。
存储器1002,用于存储处理器1001执行的程序代码。
处理器1001,用于读取存储器1002中存储的程序代码,执行下列过程:
确定待进行解调的控制信道和第一数据信道,其中,传输所述控制信道的资源单元和传输所述第一数据信道的资源单元均属于短传输时间间隔内的控制区域;
为所述控制区域内的所述控制信道和所述第一数据信道,分别映射解调参考信号DMRS;其中,所述控制信道的DMRS为第一DMRS,所述第一数据信道的DMRS为第二DMRS,且所述第一DMRS与所述第二DMRS彼此独立。。
一种可能的实施方式中,所述处理器1001具体采用如下方式为所述控制区域内的所述控制信道和所述第一数据信道,分别映射DMRS:
若短传输时间间隔内的资源单元全部属于控制区域,则在属于控制区域的资源单元中,分别映射所述第一DMRS和所述第二DMRS。
一种可能的实施方式中,所述处理器1001具体采用如下方式为所述控制区域内的所述控制信道和所述第一数据信道,分别映射DMRS:
若短传输时间间隔内存在属于数据区域的资源单元和属于控制区域的资源单元,且所述数据区域内映射有第二数据信道的DMRS,则在属于控制区域的资源单元中,映射所述第一DMRS;并将所述数据区域内第二数据信道的DMRS,作为所述第二DMRS。
一种可能的实施方式中,所述处理器1001为所述控制信道和所述第一数据信道分别映射的所述第一DMRS映射的资源单元和所述第二DMRS映射的资源单元不同。
一种可能的实施方式中,所述处理器1001为所述控制信道和所述第一数据信道分别映射的所述第一DMRS映射的资源单元和所述第二DMRS映射的资源单元,在所述短传输时间间隔内的全部资源单元中均匀分布。
一种可能的实施方式中,所述处理器1001为所述控制信道和所述第一数据信道分别映射的所述第一DMRS与所述第二DMRS的端口号不同。避免了用于数据信道解调的DMRS与用于控制信道解调的DMRS的资源冲突。
本发明实施例中,确定待进行解调的控制信道和第一数据信道,其中,传输所述控制信道的资源单元和传输所述第一数据信道的资源单元均属于短传输时间间隔内的控制区域,为所述控制区域内的所述控制信道和所述第一数据信道,分别映射解调参考信号DMRS,其中,所述控制信道的DMRS为第一DMRS,所述第一数据信道的DMRS为第 二DMRS,且所述第一DMRS与所述第二DMRS彼此独立。通过本发明,为控制区域的控制信道和数据信道分配独立的DMRS,进而实现控制区域控制信道和数据信道基于DMRS的解调。
本领域内的技术人员应明白,本发明的实施例可提供为方法、系统、或计算机程序产品。因此,本发明可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管已描述了本发明的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本发明范围的所有变更和修改。
显然,本领域的技术人员可以对本发明实施例进行各种改动和变型而不脱离本发明实施例的精神和范围。这样,倘若本发明实施例的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (13)

  1. 一种导频映射方法,其特征在于,包括:
    确定待进行解调的控制信道和第一数据信道,其中,传输所述控制信道的资源单元和传输所述第一数据信道的资源单元均属于短传输时间间隔内的控制区域;
    为所述控制区域内的所述控制信道和所述第一数据信道,分别映射解调参考信号DMRS;
    其中,所述控制信道的DMRS为第一DMRS,所述第一数据信道的DMRS为第二DMRS,且所述第一DMRS与所述第二DMRS彼此独立。
  2. 如权利要求1所述的方法,其特征在于,为所述控制区域内的所述控制信道和所述第一数据信道,分别映射DMRS,包括:
    若短传输时间间隔内的资源单元全部属于控制区域,则
    在属于控制区域的资源单元中,分别映射所述第一DMRS和所述第二DMRS。
  3. 如权利要求1所述的方法,其特征在于,为所述控制区域内的所述控制信道和所述第一数据信道,分别映射DMRS,包括:
    若短传输时间间隔内存在属于数据区域的资源单元和属于控制区域的资源单元,且所述数据区域内映射有第二数据信道的DMRS,则
    在属于控制区域的资源单元中,映射所述第一DMRS;并
    将所述数据区域内第二数据信道的DMRS,作为所述第二DMRS。
  4. 如权利要求1至3任一项所述的方法,其特征在于,所述第一DMRS映射的资源单元和所述第二DMRS映射的资源单元不同。
  5. 如权利要求4所述的方法,其特征在于,所述第一DMRS映射的资源单元和所述第二DMRS映射的资源单元,在所述短传输时间间隔内的全部资源单元中均匀分布。
  6. 如权利要求5所述的方法,其特征在于,所述第一DMRS对应的端口号,与所述第二DMRS的端口号不同。
  7. 一种导频映射装置,其特征在于,包括:
    确定单元,用于确定待进行解调的控制信道和第一数据信道,其中,传输所述控制信道的资源单元和传输所述第一数据信道的资源单元均属于短传输时间间隔内的控制区域;
    处理单元,用于为所述确定单元确定的,所述控制区域内待进行解调的所述控制信道和所述第一数据信道,分别映射解调参考信号DMRS,其中,所述控制信道的DMRS为第一DMRS,所述第一数据信道的DMRS为第二DMRS,且所述第一DMRS与所述第二DMRS彼此独立。
  8. 如权利要求7所述的装置,其特征在于,所述处理单元具体采用如下方式为所述 控制区域内的所述控制信道和所述第一数据信道,分别映射DMRS:
    若短传输时间间隔内的资源单元全部属于控制区域,则
    在属于控制区域的资源单元中,分别映射所述第一DMRS和所述第二DMRS。
  9. 如权利要求7所述的装置,其特征在于,所述处理单元具体采用如下方式为所述控制区域内的所述控制信道和所述第一数据信道,分别映射DMRS:
    若短传输时间间隔内存在属于数据区域的资源单元和属于控制区域的资源单元,且所述数据区域内映射有第二数据信道的DMRS,则
    在属于控制区域的资源单元中,映射所述第一DMRS;并
    将所述数据区域内第二数据信道的DMRS,作为所述第二DMRS。
  10. 如权利要求7至9任一项所述的装置,其特征在于,所述处理单元为所述控制信道和所述第一数据信道分别映射的所述第一DMRS映射的资源单元和所述第二DMRS映射的资源单元不同。
  11. 如权利要求10所述的装置,其特征在于,所述处理单元为所述控制信道和所述第一数据信道分别映射的所述第一DMRS映射的资源单元和所述第二DMRS映射的资源单元,在所述短传输时间间隔内的全部资源单元中均匀分布。
  12. 如权利要求11所述的装置,其特征在于,所述处理单元为所述控制信道和所述第一数据信道分别映射的所述第一DMRS与所述第二DMRS的端口号不同。
  13. 一种导频映射装置,其特征在于,所述导频映射装置包括:处理器和存储器;
    存储器,用于存储处理器执行的程序代码;
    处理器,用于确定待进行解调的控制信道和第一数据信道,其中,传输所述控制信道的资源单元和传输所述第一数据信道的资源单元均属于短传输时间间隔内的控制区域;为所述控制区域内的所述控制信道和所述第一数据信道,分别映射解调参考信号DMRS;其中,所述控制信道的DMRS为第一DMRS,所述第一数据信道的DMRS为第二DMRS,且所述第一DMRS与所述第二DMRS彼此独立。
PCT/CN2017/086291 2016-09-29 2017-05-27 一种导频映射方法及装置 WO2018058988A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610868470.9 2016-09-29
CN201610868470.9A CN107888347B (zh) 2016-09-29 2016-09-29 一种导频映射方法及装置

Publications (1)

Publication Number Publication Date
WO2018058988A1 true WO2018058988A1 (zh) 2018-04-05

Family

ID=61762476

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/086291 WO2018058988A1 (zh) 2016-09-29 2017-05-27 一种导频映射方法及装置

Country Status (2)

Country Link
CN (1) CN107888347B (zh)
WO (1) WO2018058988A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102057612A (zh) * 2008-06-11 2011-05-11 诺基亚西门子通信公司 局域优化的上行链路控制信道
CN103081550A (zh) * 2011-07-25 2013-05-01 日本电气株式会社 在移动通信系统的扩展载波上提供波束赋形的物理下行链路控制信道(pdcch)
CN105898872A (zh) * 2016-03-31 2016-08-24 电信科学技术研究院 一种上行传输方法及装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2728444T3 (es) * 2011-11-14 2019-10-24 Samsung Electronics Co Ltd Procedimiento de asignación de recursos de señalización de referencia para transmisión de canal de control en sistema de comunicación inalámbrica
US11177919B2 (en) * 2013-01-18 2021-11-16 Texas Instruments Incorporated Methods for energy-efficient unicast and multicast transmission in a wireless communication system
US10230513B2 (en) * 2013-03-12 2019-03-12 Samsung Electronics Co., Ltd. Method and apparatus for transmitting/receiving control channel in wireless communication system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102057612A (zh) * 2008-06-11 2011-05-11 诺基亚西门子通信公司 局域优化的上行链路控制信道
CN103081550A (zh) * 2011-07-25 2013-05-01 日本电气株式会社 在移动通信系统的扩展载波上提供波束赋形的物理下行链路控制信道(pdcch)
CN105898872A (zh) * 2016-03-31 2016-08-24 电信科学技术研究院 一种上行传输方法及装置

Also Published As

Publication number Publication date
CN107888347B (zh) 2020-03-24
CN107888347A (zh) 2018-04-06

Similar Documents

Publication Publication Date Title
CN102611524B (zh) 一种传输信息的方法、系统及设备
JP5864718B2 (ja) ワイヤレス通信システムにおいて干渉を減らすための方法、装置、基地局およびユーザー機器
KR102248027B1 (ko) 다운링크 제어 정보 dci 송신 방법 및 장치
WO2018228500A1 (zh) 一种调度信息传输方法及装置
US9813213B2 (en) Downlink channel decoding method, downlink information transmission method, user equipment, and base station
US20140369292A1 (en) Wireless Communication Method and Communication Apparatus
EP2660994B1 (en) Method and device for allocating reference resource
JP6592180B2 (ja) セルラ無線通信におけるリソース利用のためのブランキングパターンの指標
WO2012130066A1 (zh) 一种下行控制信道的资源指示及检测方法、设备
WO2013159676A1 (zh) 一种e-pdcch传输及盲检的方法及装置
CN102231913B (zh) 一种分配和确定pdcch的方法、系统及设备
TW201838370A (zh) 用於對無線通訊系統中的控制資源集進行配置的方法和設備
WO2012152149A1 (zh) 一种物理下行控制信道上的信息收发方法及设备
WO2013023541A1 (zh) 一种下行控制信息传输方法及装置
JP2015516128A (ja) 下り制御情報送信方法、検出方法、基地局及びユーザ機器
WO2013097120A1 (zh) 下行控制信道的搜索空间的映射方法和装置
WO2013020491A1 (zh) 一种导频信号发送方法和设备
WO2013013643A1 (zh) 控制信道的接收和发送方法和装置
WO2020063464A1 (zh) Dmrs处理方法、装置、系统、设备、终端、存储介质
CN103378885B (zh) 下行数据的发送、接收方法和装置
WO2019184565A1 (zh) 物理下行共享信道接收及其时域资源指示方法、装置、存储介质、基站、终端
WO2016150224A1 (zh) 一种数据传输方法及装置
CN103563468A (zh) 发送装置、接收装置、发送方法及接收方法
WO2018196849A1 (zh) 解调参考信号的资源映射方法及基站
WO2013091234A1 (zh) 下行控制信道的资源映射方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17854444

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17854444

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 04/10/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 17854444

Country of ref document: EP

Kind code of ref document: A1