WO2018058575A1 - 一种飞行图像数据的处理方法、系统及地面端设备 - Google Patents

一种飞行图像数据的处理方法、系统及地面端设备 Download PDF

Info

Publication number
WO2018058575A1
WO2018058575A1 PCT/CN2016/101206 CN2016101206W WO2018058575A1 WO 2018058575 A1 WO2018058575 A1 WO 2018058575A1 CN 2016101206 W CN2016101206 W CN 2016101206W WO 2018058575 A1 WO2018058575 A1 WO 2018058575A1
Authority
WO
WIPO (PCT)
Prior art keywords
image data
pieces
external device
local
display
Prior art date
Application number
PCT/CN2016/101206
Other languages
English (en)
French (fr)
Inventor
薛冰
尤中乾
杨小虎
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2016/101206 priority Critical patent/WO2018058575A1/zh
Priority to CN201680002522.2A priority patent/CN107079101A/zh
Publication of WO2018058575A1 publication Critical patent/WO2018058575A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/90Arrangement of cameras or camera modules, e.g. multiple cameras in TV studios or sports stadiums
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/42Methods or arrangements for coding, decoding, compressing or decompressing digital video signals characterised by implementation details or hardware specially adapted for video compression or decompression, e.g. dedicated software implementation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/44Decoders specially adapted therefor, e.g. video decoders which are asymmetric with respect to the encoder

Definitions

  • the present invention relates to the field of UAV communication, and in particular, to a method and system for processing flight image data and a ground end device.
  • the image data processing system In order to see the shooting effect in real time, it is necessary to configure an image data processing system to transmit the image data of the drone to the ground end in real time, and then present it through the display device on the ground side.
  • the image data In order to transmit the real-time image data of the drone to the ground end, the image data needs to be compressed first, usually using the H.264 encoding algorithm, and then the compressed image data is transmitted to the ground through the wireless link, at the ground end.
  • the H.264 decoding algorithm is used to restore the original image data and output it to the display.
  • multi-channel image data Due to the use of multiple cameras, multi-channel image data is generated on the drone.
  • multi-channel local decoding display can be used.
  • the ground terminal can locally decode and display the multi-channel image, but the cost is high.
  • the technical problem to be solved by the present invention is to provide a method and system for processing flight image data and a ground end device, which can solve the problem of high cost of local display multi-path images on the ground end in the prior art.
  • a technical solution adopted by the present invention is to provide a method for processing flight image data, comprising: a ground end device receiving at least two pieces of image data from a drone; and transmitting the at least two to an external device
  • the road image data is such that the external device parses the at least two pieces of image data and displays the at least two pieces of image data.
  • the transmitting the at least two pieces of image data to the external device comprises: transmitting at least one of the at least two pieces of image data to one of the external devices.
  • the transmitting the at least two pieces of image data to the external device comprises: transmitting the at least two pieces of image data to the external device by using a USB protocol and/or a wireless communication protocol.
  • the ground end device After receiving the at least two pieces of image data from the drone, the ground end device includes: saving the received at least two pieces of image data; receiving an image data output instruction from a local or the external device; The image data corresponding to the image data output instruction is transmitted to the external device.
  • the method further includes: receiving a local decoding display instruction from the local device or the external device; locally decoding the image data corresponding to the local decoding display instruction, The original image data is restored; the decoded image data is transmitted to an external display using a standard image transmission protocol to cause the external display to display the original image.
  • the at least two pieces of image data are code streams compressed by the same encoding algorithm.
  • the at least two pieces of image data are code streams compressed by different encoding algorithms.
  • another technical solution adopted by the present invention is to provide a processing system for flying image data, which is embedded in a ground end device, and includes: a wireless communication module, configured to receive at least two from the drone And the output module is configured to send the at least two pieces of image data to the external device, so that the external device parses the at least two pieces of image data and displays the at least two pieces of image data.
  • the output module is configured to send at least one of the at least two pieces of image data to one of the external devices.
  • the output module is configured to send the at least two pieces of image data to the external device by using a USB protocol and/or a wireless communication protocol.
  • the system further includes: a storage module, configured to save the received image data; an instruction module, configured to receive an image data output instruction from a local or the external device; the output module is used to The external device transmits image data corresponding to the image data output instruction.
  • the instruction module is further configured to receive a local decoding display instruction from a local device or the external device; the system further includes a local decoding module, configured to locally decode image data corresponding to the local decoding display instruction, to restore Raw image data; the output module is further used for adoption
  • the standard image transmission protocol transmits the decoded image data to an external display to cause the external display to display the original image.
  • a ground end device including: a processor and a first wireless communication circuit connected to the processor; the first wireless communication circuit is used for Receiving at least two pieces of image data from the drone; the processor is configured to control the ground end device to send the at least two pieces of image data to an external device, so that the external device parses the at least two pieces of image data and The at least two pieces of image data are displayed.
  • the processor is configured to control the ground end device to send one of the at least two pieces of image data to one of the external devices.
  • the device further comprises: a USB interface and/or a second wireless communication circuit, to enable the processor to simultaneously send the at least the external device to the external device through the USB interface and/or the second wireless communication circuit Two way image data.
  • the device further comprises: a memory for saving the received image data; the processor is further configured to receive an image data output instruction from a local or the external device; and send the image data to the external device The image data outputs image data corresponding to the instruction.
  • the processor is further configured to receive a local decoding display instruction from a local or the external device;
  • the device further includes: a local decoding chip for locally decoding image data corresponding to the local decoding display instruction to restore original image data; and a standard image interface for causing the processor to pass the standard image interface
  • the decoded image data is transmitted to an external display to cause the external display to display the original image.
  • the invention has the beneficial effects that the present invention transmits the at least two image data received by the ground end device to the accessed external device by using the external device, and the ground end device is decoded.
  • the local does not need a dedicated decoding chip, nor does it require a standard image interface, which reduces the cost of the ground-end device.
  • the external device performs decoding calculation, and the ground-end device does not need complicated operation and signal conversion, thereby saving power consumption. Reduced due to increased power consumption The probability of temperature rise on the ground end device further reduces the cost of heat dissipation.
  • FIG. 1 is a flow chart of a first embodiment of a method for processing flight image data of the present invention
  • FIG. 2 is a flow chart of a second embodiment of a method for processing flight image data of the present invention
  • FIG. 3 is a flow chart of a third embodiment of a method for processing flight image data according to the present invention.
  • FIG. 4 is a schematic structural view of a first embodiment of a processing system for flying image data according to the present invention.
  • FIG. 5 is a schematic structural diagram of a second embodiment of a processing system for flying image data according to the present invention.
  • FIG. 6 is a schematic structural diagram of a third embodiment of a processing system for flying image data according to the present invention.
  • FIG. 7 is a schematic structural view of a first embodiment of a ground end device according to the present invention.
  • Figure 8 is a schematic structural view of a second embodiment of the ground end device of the present invention.
  • FIG. 9 is a schematic structural view of a third embodiment of a ground end device according to the present invention.
  • Figure 10 is a block diagram showing the structure of a fourth embodiment of the ground end device of the present invention.
  • FIG. 1 is a flowchart of a first embodiment of a method for processing flight image data according to the present invention. As shown in FIG. 1, the method for processing flight image data of the present invention includes:
  • Step S101 The ground end device receives at least two pieces of image data from the drone;
  • the drone is usually equipped with a plurality of cameras, and the images captured by each camera are different, so at least two pieces of image data are generated and transmitted to the ground end device.
  • the at least two pieces of image data may be a code stream compressed by the same coding algorithm, or may be a code stream compressed by a different coding algorithm.
  • the drone is equipped with two cameras, and the images captured by the two cameras are different. The drone passes the images taken by the two cameras.
  • the same encoding algorithm H.264 compresses, generates two streams, and sends the two streams to the ground through the wireless link.
  • the drone can also compress images taken by different cameras through different encoding algorithms (such as H.264 and H.265).
  • Step S102 Send at least two pieces of image data to the external device, so that the external device parses the received at least two pieces of image data and displays the at least two pieces of image data.
  • the external device is a device that can analyze and display image data, such as a smart phone or a tablet computer, and is not specifically limited herein.
  • the step S102 specifically includes:
  • Step S1021 Send at least two pieces of image data to an external device by using a USB protocol and/or a wireless communication protocol.
  • the ground end device sends at least two pieces of image data to the external device by using a USB protocol, wherein the ground end device can access only one external device, and send at least two pieces of image data to the external device, by external
  • the device parses the received at least two pieces of image data and displays the at least two pieces of image data; wherein, when the external device displays at least two pieces of image data, the image data of different roads may be displayed by switching display manner, or a split screen may be used.
  • the display mode displays images of different roads at the same time, and can display only one of at least two image data.
  • the ground end device can also access a plurality of external devices, and send at least one image data of at least two pieces of image data to one of the plurality of external devices.
  • the ground end device uses the USB protocol to send at least two pieces of image data to the external device, and in other applications, the ground end device can transmit images to the external device by using a wireless communication protocol (such as WiFi, Bluetooth, 4G, etc.). Data, of course, the ground-end device can also send image data to external devices using both the USB protocol and the wireless communication protocol.
  • a wireless communication protocol such as WiFi, Bluetooth, 4G, etc.
  • the ground end device receives at least two pieces of image data from the drone, and transmits at least two pieces of image data to the external device, and parses and displays the image data through the external device, so that the ground end device does not need to perform local decoding. This eliminates the need for a local decoder chip and standard image interface, reducing the cost of terrestrial equipment.
  • FIG. 2 is a flowchart of a second embodiment of a method for processing flight image data according to the present invention.
  • the second embodiment of the method for processing flight image data of the present invention is based on the first embodiment of the method for processing flight image data of the present invention, and further includes:
  • Step S201 save the received image data
  • the ground end device has a storage function, and can store the received image data to call the image data at any time.
  • Step S202 receiving an image data output instruction from a local or external device
  • the accessed external device when the local device detects that an external device is accessed, the accessed external device has control of all image data received by the ground device, and may send image data output to the ground device. Command, choose to output one or more image data.
  • the terrestrial device receives four channels of image data, which are A1, A2, A3, and A4, respectively, wherein the external device can select the A1 and A2 outputs and send the image data output commands of the outputs A1 and A2.
  • the ground device when the local device detects that an external device is connected, the ground device still has control of all received image data, and can locally send image data output commands to all external accesses.
  • One or more of the devices send all image data.
  • the terrestrial device receives four channels of image data, which are A1, A2, A3, and A4, respectively.
  • the four-way image data can be sent to the outside. The device is then selected by the external device to decode and display one or more of them.
  • Step S203 The image data corresponding to the image data output instruction is transmitted to the external device.
  • the ground device transmits the image data to the external device through the USB protocol and/or the wireless communication protocol.
  • the ground end device receives the image data output commands of the outputs A1 and A2, and transmits A1 and A2 to the external device.
  • step S101 the present embodiment can be combined with the first embodiment of the method for processing flight image data of the present invention.
  • the ground end device sends the received at least two images to the external device.
  • the ground end device may choose to decode the display image data locally.
  • FIG. 3 is a flowchart of a third embodiment of a method for processing flight image data according to the present invention.
  • the third embodiment of the method for processing flight image data of the present invention is based on the second embodiment of the method for processing flight image data of the present invention, and further includes:
  • Step S301 Receive a local decoding display instruction from a local or external device
  • the local device when the local device detects that an external device is accessed, the accessed external device has control of all image data received by the ground device, and may send a local decoding display to the ground device. Command, select one of the image data for local decoding.
  • the ground device when the local device detects that an external device is connected, the ground device still has control of all the received image data, and can locally send a local decoding display command to select one of the image data for performing. Local decoding.
  • Step S302 locally decoding image data corresponding to the local decoding display instruction to restore original image data
  • the terrestrial device has a local decoding function, and when it receives a local decoding display instruction from a local or external device, locally decodes the image data corresponding to the local decoding display instruction.
  • the ground end device receives three image data, which are A, B, and C respectively.
  • the image data indicating local decoding in the local decoding display instruction is A
  • A is locally decoded
  • B and C are not locally decoded.
  • Step S303 The decoded image data is sent to the external display by using a standard image transmission protocol to cause the external display to display the original image.
  • the standard image transmission protocol may be any one of an image interface transmission protocol such as HDMI or SDI, which is not specifically limited herein.
  • the present embodiment After the execution of the present embodiment detects that an external device is accessed in step S203, the present embodiment can be combined with the second embodiment of the method for processing flight image data of the present invention.
  • the ground end device may select a decoding display by a local or external device.
  • the road image data so that the external device can decode the display image data
  • the local decoded display image data can be selected, thereby improving the flexibility of the ground end device to decode and display the image data.
  • FIG. 4 is a schematic structural diagram of a first embodiment of a processing system for flying image data according to the present invention.
  • the processing system 40 for flying image data of the present invention is embedded in the ground end device, and includes: a wireless communication module 401 and an output module 402 connected to each other;
  • the wireless communication module 401 is configured to receive at least two pieces of image data from the drone;
  • the output module 402 is configured to send at least two pieces of image data to the external device, so that the external device parses at least two pieces of image data and displays the at least two pieces of image data.
  • the external device is a device that can analyze and display image data, such as a smart phone or a tablet computer, and is not specifically limited herein.
  • the ground end device transmits the received at least two pieces of image data to the output module 402, wherein the at least two pieces of image data may be
  • the code stream compressed by the same encoding algorithm may also be a code stream compressed by different encoding algorithms (such as H.264 and H.265);
  • the output module 402 sends the received at least two pieces of image data to an external device, so that The external device parses the received image data and displays the at least two pieces of image data.
  • the output module 402 is specifically configured to send at least two pieces of image data to an external device by using a USB protocol and/or a wireless communication protocol.
  • the output module 402 sends two image data to the external device by using the USB protocol, namely B1 and B2, wherein the ground device A only accesses one external device C, and the ground device A will image data. Both B1 and B2 are sent to the external device C, and the external device C can parse and display the image data B1 and B2, and can display the parsed image data by means of switching display or split screen display, and the external device C can also select to display the B1 separately. And any one of B2; of course, in other applications, the ground end device A can access a plurality of external devices, for example, access two external devices C1 and C2, and at this time, the output module 402 is directed to different external devices. One of the transmissions B1 and B2, for example, sends image data B1 to C1 and image data B2 to C2 to make it different. The device displays image data of different roads. For another example: send B1 and B2 to C1 and B1 to C2.
  • the wireless communication module receives the at least two pieces of image data from the drone in the processing system of the flight image data, and the output module transmits the received at least two pieces of image data to the external device to enable the external device to parse and display
  • the received image data is such that the ground end device of the processing system embedding the flight image data does not need a local decoding chip and a standard image interface, and the display image data can be decoded by the external device, thereby reducing the cost of the ground end device.
  • FIG. 5 is a schematic structural diagram of a second embodiment of a processing system for flying image data according to the present invention. 5 is similar to the structure of FIG. 4, and is not described here again. The difference is that the storage module 503 and the instruction module 504 are further included. The wireless communication module 501, the storage module 503, the instruction module 504, and the output module 502 are sequentially connected.
  • the storage module 503 is configured to save the received at least two pieces of image data
  • the storage of the received at least two pieces of image data may be sequential storage of the received image data, or may be non-sequential storage, which is not specifically limited herein.
  • the instruction module 504 is configured to receive an image data output instruction from a local or external device
  • the external device may obtain control of all image data received by the ground end device, and send an image data output command to select one or more image data for display; the ground end device also The received control of the image data may still be retained, and the image data output command may be sent locally to select one or more images to be transmitted to the external device.
  • the terrestrial device receives four channels of image data, which are A1, A2, A3, and A4, respectively.
  • the local device detects that an external device is connected, the four-way image data can be sent to the outside. The device is then selected by the external device to decode and display one or more of them.
  • the output module 502 is configured to send image data corresponding to the image data output instruction to the external device.
  • the ground end device transmits the image data corresponding to the image data output instruction to the external device through the output module 502 by using the USB protocol and/or the wireless communication protocol.
  • the ground end device of the processing system in which the flight image data is embedded transmits the received at least two pieces of image data to the external device, and is decoded and displayed by the external device.
  • the ground end device may choose to decode and display the image data locally.
  • FIG. 6 is a schematic structural diagram of a third embodiment of a processing system for flying image data according to the present invention. 6 is similar to the structure of FIG. 5, and is not described here again. The difference is that the local decoding module 606 is further included.
  • the wireless communication module 601, the storage module 603, the instruction module 604, the local decoding module 605, and the output module 602 are sequentially connected. .
  • the instruction module 604 is further configured to receive a local decoding display instruction from a local or external device;
  • the local decoding module 605 is configured to locally decode the image data corresponding to the local decoding display instruction to restore the original image data.
  • the output module 602 is further configured to transmit the decoded image data to an external display using a standard image transmission protocol to cause the external display to display the original image.
  • the standard image transmission protocol may be any one of image interface transmission protocols such as HDMI, DVI or SDI.
  • the processing system of the flight image data is such that the ground-end device in which the system is embedded can selectively decode and display one-way image data through a local or external device, so that the external device can decode the display image data, and can select The local decoding displays the image data, thereby improving the flexibility of the ground end device to decode and display the image data.
  • FIG. 7 is a schematic structural diagram of a first embodiment of a ground end device according to the present invention.
  • the ground terminal device 70 of the present invention includes: a processor 701 and a first wireless communication circuit 702 and a USB interface 703 connected to the processor 701 via a bus;
  • the first wireless communication circuit 702 is configured to receive at least two pieces of image data from the drone; the first wireless communication circuit 702 can include, but is not limited to, at least one antenna, at least one receiver, and the like.
  • the processor 701 transmits at least two pieces of image data to the external device through the USB interface 703, so that the external device parses at least two pieces of image data and displays the at least two pieces of image data.
  • the number of the USB interfaces 703 may be one or multiple.
  • the number of external devices accessing the ground terminal device 70 may be one or multiple.
  • the number of external devices accessing the ground terminal device 70 is two, and the processor 701 can send at least two image data to one of the external devices, or two to two external devices.
  • the external device separately transmits one way image data, and may also send all at least two pieces of image data to the two external devices separately, so that the external device parses and displays the received image data.
  • the ground end device transmits image data to the external device through the USB interface, and in other embodiments, the ground end device may also transmit image data to the external device through the wireless communication circuit.
  • FIG. 8 is a schematic structural diagram of a second embodiment of a ground end device according to the present invention. 8 is similar to the structure of FIG. 7, and is not described herein again, except that the second wireless communication circuit 804 is further connected to the processor 801 via a bus.
  • the processor 801 transmits at least two pieces of image data to the external device through the USB interface 803 and/or the second wireless communication circuit 804.
  • the second communication circuit 804 can include, but is not limited to, at least one transmitter.
  • the processor 801 can simultaneously send at least two pieces of image data to the external device through the USB interface and the second wireless communication circuit 804, and can also pass through the USB interface 803 or the second wireless device.
  • the communication circuit 804 transmits image data to an external device.
  • FIG. 9 is a schematic structural diagram of a third embodiment of the ground end device of the present invention. 9 is similar to the structure of FIG. 8, and is not described here again, except that the memory 905 is further connected to other components through a bus.
  • the memory 905 is configured to save the received image data
  • the processor 901 is further configured to receive an image data output instruction from a local or external device, and send the image data corresponding to the image data output instruction to the external device.
  • the processor 901 when the processor 901 detects that an external device is accessed, the accessed external device has control of all image data received by the ground device, and may send image data output to the processor 901. Command, choose to output one or more image data.
  • the ground end device receives four pieces of image data, which are D1, D2, D3, and D4, respectively, wherein the external device can select the D1 and D2 outputs, and send the image data output commands of the outputs D1 and D2.
  • the ground end device transmits the received at least two pieces of image data to the external device for decoding display by the external device, and in other embodiments, the ground end device may select to locally decode the display image data.
  • the ground terminal device still has control of all received image data, and can locally send an image data output instruction to one or more of all connected external devices. Send all image data.
  • the ground end device receives four image data, which are D1, D2, D3, and D4, respectively.
  • the four-way image data can be sent to the outside. The device is then selected by the external device to decode and display one or more of them.
  • FIG. 10 is a schematic structural diagram of a fourth embodiment of a ground end device according to the present invention. 10 is similar to the structure of FIG. 9, and is not described here again, except that the local decoding chip 1006 and the standard image interface 1007 are respectively connected to other components through a bus.
  • the processor 1001 is further configured to receive a local decoding display instruction from a local or external device;
  • the local decoding chip 1006 is configured to locally decode the image data corresponding to the local decoding display instruction to restore the original image data.
  • the standard image interface 1007 is for causing the processor 1001 to transmit the decoded image data to the external display through the standard image interface 1007 to cause the external display to display the original image.
  • the standard image transmission protocol supported by the standard image interface 1007 may be one or more of HDMI or SDI, which is not specifically limited herein.
  • processor 1001 and local decoder chip 1006 can be combined into one device.
  • the ground end device can decode the image data through the local decoding chip and output the image data through the standard image interface, so that the external display displays the original image, thereby improving the ground.
  • the end device decodes the flexibility of displaying image data.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Closed-Circuit Television Systems (AREA)

Abstract

本发明公开了一种飞行图像数据的处理方法、系统及地面端设备,所述飞行图像数据的处理方法包括:地面端设备接收来自无人机的至少两路图像数据;向外部设备发送所述至少两路图像数据,以使得所述外部设备解析所述至少两路图像数据并显示。通过上述方法,本发明能够通过外部设备解码并显示所述接收到的至少两路图像数据,从而减少地面端设备的成本。

Description

一种飞行图像数据的处理方法、系统及地面端设备 【技术领域】
本发明涉及无人机通信领域,特别是涉及一种飞行图像数据的处理方法、系统及地面端设备。
【背景技术】
随着无人机的广泛使用,其低成本、易于操作的特点,使其成为航拍首选设备。航拍过程中,为了实时看到拍摄效果,需要配置图像数据处理系统,将无人机的图像数据实时传输到地面端,再通过地面端的显示设备呈现出来。为了能把无人机的实时图像数据传输到地面端,首先需要对图像数据进行压缩,通常采用H.264编码算法,然后把压缩后的图像数据通过无线链路传输到地面端,在地面端采用H.264解码算法,还原出原始图像数据,输出到显示屏上显示。
由于多摄像头的使用,无人机上会产生多路图像数据,现有技术中,可以采用多路本地解码显示。在无人机发送多路图像数据的情况下,地面端可以本地解码显示多路图像,但是成本较高。
【发明内容】
本发明主要解决的技术问题是提供一种飞行图像数据的处理方法、系统及地面端设备,能够解决现有技术中地面端本地显示多路图像成本高的问题。
为解决上述技术问题,本发明采用的一个技术方案是:提供一种飞行图像数据的处理方法,包括:地面端设备接收来自无人机的至少两路图像数据;向外部设备发送所述至少两路图像数据,以使得所述外部设备解析所述至少两路图像数据并显示所述至少两路图像数据。
其中,所述向外部设备发送所述至少两路图像数据包括:向所述外部设备中的一个发送所述至少两路图像数据中的至少一路图像数据。
其中,所述向外部设备发送所述至少两路图像数据包括:采用USB协议和/或无线通信协议向所述外部设备发送所述至少两路图像数据。
其中,所述地面端设备接收来自无人机的至少两路图像数据之后,包括:将接收到的所述至少两路图像数据保存;接收有来自本地或所述外部设备的图像数据输出指令;向所述外部设备发送所述图像数据输出指令对应的图像数据。
其中,所述接收来自本地或所述外部设备的图像数据输出指令之后,进一步包括:接收来自本地或所述外部设备的本地解码显示指令;本地解码所述本地解码显示指令对应的图像数据,以还原出原始图像数据;采用标准图像传输协议向外部显示器发送解码后的所述图像数据,以使外部显示器显示原始图像。
其中,所述至少两路图像数据是经过相同编码算法压缩的码流。
其中,所述至少两路图像数据是经过不同编码算法压缩的码流。
为解决上述技术问题,本发明采用的另一个技术方案是:提供一种飞行图像数据的处理系统,内嵌于地面端设备中,包括:无线通信模块,用于接收来自无人机的至少两路图像数据;输出模块,用于向外部设备发送所述至少两路图像数据,以使得所述外部设备解析所述至少两路图像数据并显示所述至少两路图像数据。
其中,所述输出模块用于向所述外部设备中的一个发送所述至少两路图像数据中的至少一路图像数据。
其中,所述输出模块用于采用USB协议和/或无线通信协议向所述外部设备发送所述至少两路图像数据。
其中,所述系统进一步包括:存储模块,用于将接收到的所述图像数据保存;指令模块,用于接收来自本地或所述外部设备的图像数据输出指令;所述输出模块用于向所述外部设备发送所述图像数据输出指令对应的图像数据。
其中,所述指令模块进一步用于接收自本地或所述外部设备的本地解码显示指令;所述系统进一步包括本地解码模块,用于本地解码所述本地解码显示指令对应的图像数据,以还原出原始图像数据;所述输出模块进一步用于采用 标准图像传输协议向外部显示器发送解码后的所述图像数据,以使外部显示器显示原始图像。
为解决上述技术问题,本发明采用的又一个技术方案是:提供一种地面端设备,包括:处理器和与所述处理器连接的第一无线通信电路;所述第一无线通信电路用于接收来自无人机的至少两路图像数据;所述处理器用于控制所述地面端设备向外部设备发送所述至少两路图像数据,以使得所述外部设备解析所述至少两路图像数据并显示所述至少两路图像数据。
其中,所述处理器用于控制所述地面端设备向所述外部设备中的一个发送所述至少两路图像数据中的一路图像数据。
其中,所述设备进一步包括:USB接口和/或第二无线通信电路,以使所述处理器通过所述USB接口和/或所述第二无线通信电路同时向所述外部设备发送所述至少两路图像数据。
其中,所述设备进一步包括:存储器,用于将接收到的所述图像数据保存;所述处理器进一步用于接收来自本地或所述外部设备的图像数据输出指令;以及向所述外部设备发送所述图像数据输出指令对应的图像数据。
其中,所述处理器进一步用于接收来自本地或所述外部设备的本地解码显示指令;
所述设备进一步包括:本地解码芯片,用于本地解码所述本地解码显示指令对应的图像数据,以还原出原始图像数据;以及标准图像接口,用于使所述处理器通过所述标准图像接口向外部显示器发送解码后的所述图像数据,以使外部显示器显示原始图像。
本发明的有益效果是:区别于现有技术的情况,本发明通过将地面端设备接收到的至少两路图像数据发送到接入的外部设备中,由外部设备进行解码显示,使得地面端设备本地不需要专用的解码芯片,也不需要标准图像接口,减少了地面端设备的成本;而且利用外部设备进行解码计算,地面端设备不需要进行繁杂的运算和信号转换,能够节省功耗,从而降低由于功耗提高而导致的 地面端设备温度升高的几率,进一步减少散热成本。
【附图说明】
图1是本发明飞行图像数据的处理方法第一实施方式的流程图;
图2是本发明飞行图像数据的处理方法第二实施方式的流程图;
图3是本发明飞行图像数据的处理方法第三实施方式的流程图;
图4是本发明飞行图像数据的处理系统第一实施方式的结构示意图;
图5是本发明飞行图像数据的处理系统第二实施方式的结构示意图;
图6是本发明飞行图像数据的处理系统第三实施方式的结构示意图;
图7是本发明地面端设备第一实施方式的结构示意图;
图8是本发明地面端设备第二实施方式的结构示意图;
图9是本发明地面端设备第三实施方式的结构示意图;
图10是本发明地面端设备第四实施方式的结构示意图。
【具体实施方式】
为使本领域的技术人员更好地理解本发明的技术方案,下面结合附图和具体实施方式对本发明所提供的飞行图像数据的处理方法、系统及地面端设备做进一步详细描述。
请参阅图1,图1是本发明飞行图像数据的处理方法第一实施方式的流程图。如图1所示,本发明飞行图像数据的处理方法包括:
步骤S101:地面端设备接收来自无人机的至少两路图像数据;
具体地,无人机通常安装有多个摄像头,每个摄像头拍摄的图像不同,因此会产生至少两路图像数据,并发送给地面端设备。
其中,所述至少两路图像数据可以是经过相同编码算法压缩的码流,也可以是经过不同编码算法压缩的码流。例如,在一个应用例中,无人机安装有两个摄像头,两个摄像头拍摄的图像不同,无人机将两个摄像头拍摄的图像经过 同一个编码算法H.264进行压缩,生成两路码流,并将两路码流通过无线链路向地面端发送。当然,在其他应用例中,无人机也可以将不同摄像头拍摄的图像经过不同编码算法(如H.264和H.265)进行压缩。
步骤S102:向外部设备发送至少两路图像数据,以使得外部设备解析接收到的至少两路图像数据并显示所述至少两路图像数据。
其中,外部设备是能够解析并显示图像数据的设备,例如智能手机、平板电脑等,此处不做具体限定。
其中,步骤S102具体包括:
步骤S1021:采用USB协议和/或无线通信协议向外部设备发送至少两路图像数据。
具体地,在一个应用例中,地面端设备采用USB协议向外部设备发送至少两路图像数据,其中,地面端设备可以只接入一个外部设备,向外部设备发送至少两路图像数据,由外部设备解析接收到的至少两路图像数据并显示所述至少两路图像数据;其中,外部设备显示至少两路图像数据时,可以采用切换显示的方式显示不同路的图像数据,也可以采用分屏显示的方式同时显示不同路的图像,也可以只显示至少两路图像数据中的任意一路。当然,地面端设备也可以接入多个外部设备,向多个外部设备中的一个发送至少两路图像数据中的至少一路图像数据。
上述应用例中,地面端设备采用USB协议向外部设备发送至少两路图像数据,而在其他应用例中,地面端设备可以采用无线通信协议(如WiFi、蓝牙、4G等)向外部设备发送图像数据,当然,地面端设备也可以同时采用USB协议和无线通信协议向外部设备发送图像数据。
在上述实施方式中,地面端设备接收来自无人机的至少两路图像数据,并向外部设备发送至少两路图像数据,通过外部设备解析并显示图像数据,使得地面端设备无需进行本地解码,从而无需本地解码芯片和标准图像接口,减少了地面端设备的成本。
请参阅图2,图2是本发明飞行图像数据的处理方法第二实施方式的流程图。如图2所示,本发明飞行图像数据的处理方法第二实施方式是在本发明飞行图像数据的处理方法第一实施方式的基础上,进一步包括:
步骤S201:将接收到的图像数据保存;
具体地,地面端设备具备存储功能,可以将接收到的图像数据进行保存,以随时调用图像数据。
步骤S202:接收来自本地或外部设备的图像数据输出指令;
具体地,在一个应用例中,当地面端设备检测到有外部设备接入时,接入的外部设备具有地面端设备接收到的所有图像数据的控制权,可以向地面端设备发送图像数据输出指令,选择输出其中一路或者多路图像数据。例如,地面端设备接收到四路图像数据,分别是A1、A2、A3和A4,其中,外部设备可以选择A1和A2输出,并发送输出A1和A2的图像数据输出指令。
当然,在其他应用例中,当地面端设备检测到有外部设备接入时,地面端设备仍然具有接收到的所有图像数据的控制权,可以本地发送图像数据输出指令,向所有接入的外部设备中的一个或多个发送所有图像数据。在上述应用例中,地面端设备接收到四路图像数据,分别是A1、A2、A3和A4,当地面端设备检测到有外部设备接入时,可以将这四路图像数据都发送给外部设备,然后由外部设备选择解码显示其中的一路或多路。
步骤S203:向外部设备发送图像数据输出指令对应的图像数据。
具体地,当地面端设备接收到来自本地或外部设备的图像数据输出指令时,地面端设备通过USB协议和/或无线通信协议向外部设备发送图像数据。在上述应用例中,地面端设备接收到输出A1和A2的图像数据输出指令,则向外部设备发送A1和A2。
本实施方式的执行在步骤S101之后,本实施方式可以与本发明飞行图像数据的处理方法第一实施方式相结合。
在上述实施方式中,地面端设备向外部设备发送接收到的至少两路图像数 据,由外部设备进行解码显示,而在其他实施方式中,地面端设备可以选择在本地解码显示图像数据。
具体参阅图3,图3是本发明飞行图像数据的处理方法第三实施方式的流程图。如图3所示,本发明飞行图像数据的处理方法第三实施方式是在本发明飞行图像数据的处理方法第二实施方式的基础上,进一步包括:
步骤S301:接收来自本地或外部设备的本地解码显示指令;
具体地,在一个应用例中,当地面端设备检测到有外部设备接入时,接入的外部设备具有地面端设备接收到的所有图像数据的控制权,可以向地面端设备发送本地解码显示指令,选择其中一路图像数据进行本地解码。
当然,在其他应用例中,当地面端设备检测到有外部设备接入时,地面端设备仍然具有接收到的所有图像数据的控制权,可以本地发送本地解码显示指令,选择其中一路图像数据进行本地解码。
步骤S302:本地解码所述本地解码显示指令对应的图像数据,以还原出原始图像数据;
具体地,地面端设备具有本地解码功能,当其接收到来自本地或外部设备的本地解码显示指令,则将本地解码显示指令对应的图像数据进行本地解码。例如,地面端设备接收到三个图像数据,分别是A、B和C,本地解码显示指令中指示进行本地解码的图像数据是A,则将A进行本地解码,而B和C不进行本地解码。
步骤S303:采用标准图像传输协议向外部显示器发送解码后的图像数据,以使外部显示器显示原始图像。
其中,标准图像传输协议可以是HDMI或者SDI等图像接口传输协议中的任一种,此处不再具体限定。
本实施方式的执行在步骤S203检测到有外部设备接入之后,本实施方式可以与本发明飞行图像数据的处理方法第二实施方式相结合。
上述实施方式中,地面端设备可以通过本地或者外部设备选择解码显示一 路图像数据,从而在外部设备可以解码显示图像数据的基础上,可以选择本地解码显示图像数据,进而提高地面端设备解码显示图像数据的灵活性。
请参阅图4,图4是本发明飞行图像数据的处理系统第一实施方式的结构示意图。如图4所示,本发明飞行图像数据的处理系统40,内嵌于地面端设备中,包括:相互连接的无线通信模块401和输出模块402;
其中,无线通信模块401用于接收来自无人机的至少两路图像数据;
输出模块402用于向外部设备发送至少两路图像数据,以使得外部设备解析至少两路图像数据并显示所述至少两路图像数据。
其中,外部设备是能够解析并显示图像数据的设备,例如智能手机、平板电脑等,此处不做具体限定。
具体地,地面端设备通过无线通信模块401接收来自无人机的至少两路图像数据后,将接收到的至少两路图像数据传输到输出模块402,其中,所述至少两路图像数据可以是经过相同编码算法压缩的码流,也可以是经过不同编码算法压缩的码流(如H.264和H.265);输出模块402将接收到的至少两路图像数据向外部设备发送,以使外部设备解析接收到的图像数据并显示所述至少两路图像数据。
其中,输出模块402具体用于采用USB协议和/或无线通信协议向外部设备发送至少两路图像数据。
在一个应用例中,输出模块402采用USB协议向外部设备发送两路图像数据,分别为B1和B2,其中,地面端设备A只接入一个外部设备C,此时地面端设备A将图像数据B1和B2均发送给外部设备C,外部设备C可以解析并显示图像数据B1和B2,并可以采用切换显示或者分屏显示的方式显示解析后的图像数据,外部设备C也可以选择单独显示B1和B2中的任何一个;当然,在其他应用例中,地面端设备A可以接入多个外部设备,例如接入两个外部设备C1和C2,此时,输出模块402向不同的外部设备中的一个发送B1和B2中的至少一个,例如向C1发送图像数据B1,向C2发送图像数据B2,以使不同外 部设备显示不同路的图像数据。再如:向C1发送B1和B2,向C2发送B1。
上述实施方式中,飞行图像数据的处理系统中无线通信模块接收来自无人机的至少两路图像数据,输出模块将接收到的至少两路图像数据向外部设备发送,以使外部设备解析并显示接收到的图像数据,从而使得内嵌所述飞行图像数据的处理系统的地面端设备无需本地解码芯片和标准图像接口,通过外部设备即能够解码显示图像数据,进而减少地面端设备的成本。
请参阅图5,图5是本发明飞行图像数据的处理系统第二实施方式的结构示意图。图5与图4结构类似,此处不再赘述,不同之处在于进一步包括:存储模块503、指令模块504;其中,无线通信模块501、存储模块503、指令模块504和输出模块502依次连接。
存储模块503用于将接收到的至少两路图像数据保存;
其中,将接收到的至少两路图像数据保存可以是顺序存储接收到的图像数据,也可以是非顺序存储,此处不做具体限定。
指令模块504用于接收来自本地或外部设备的图像数据输出指令;
具体地,当检测到有外部设备接入时,外部设备可以获得地面端设备接收到的所有图像数据的控制权,发送图像数据输出指令以选择一路或者多路图像数据进行显示;地面端设备也可以仍然保留接收到的所述图像数据的控制权,本地发送图像数据输出指令以选择一路或者多路图像向外部设备发送。在上述应用例中,地面端设备接收到四路图像数据,分别是A1、A2、A3和A4,当地面端设备检测到有外部设备接入时,可以将这四路图像数据都发送给外部设备,然后由外部设备选择解码显示其中的一路或多路。
输出模块502用于向外部设备发送图像数据输出指令对应的图像数据。
具体地,地面端设备通过输出模块502采用USB协议和/或无线通信协议向外部设备发送图像数据输出指令对应的图像数据。
在上述实施方式中,内嵌有飞行图像数据的处理系统的地面端设备向外部设备发送接收到的至少两路图像数据,由外部设备进行解码显示,而在其他实 施方式中,地面端设备可以选择在本地解码显示图像数据。
具体参阅图6,图6是本发明飞行图像数据的处理系统第三实施方式的结构示意图。图6与图5结构类似,此处不再赘述,不同之处在于进一步包括本地解码模块606;其中,无线通信模块601、存储模块603、指令模块604、本地解码模块605和输出模块602依次连接。
其中,指令模块604进一步用于接收来自本地或外部设备的本地解码显示指令;
本地解码模块605用于本地解码所述本地解码显示指令对应的图像数据,以还原出原始图像数据;
输出模块602进一步用于采用标准图像传输协议向外部显示器发送解码后的图像数据,以使外部显示器显示原始图像。
其中,标准图像传输协议可以是HDMI、DVI或SDI等图像接口传输协议中的任一种。
在上述实施方式中,飞行图像数据的处理系统使得内嵌有该系统的地面端设备可以通过本地或者外部设备选择解码显示一路图像数据,从而在外部设备可以解码显示图像数据的基础上,可以选择本地解码显示图像数据,进而提高地面端设备解码显示图像数据的灵活性。
请参阅图7,图7是本发明地面端设备第一实施方式的结构示意图。如图7所示,本发明地面端设备70包括:处理器701和通过总线连接于处理器701的第一无线通信电路702、USB接口703;
第一无线通信电路702用于接收来自无人机的至少两路图像数据;第一无线通信电路702可以包括但不限于至少一个天线、至少一个接收器等。
处理器701通过USB接口703向外部设备发送至少两路图像数据,以使得外部设备解析至少两路图像数据并显示所述至少两路图像数据。
其中,USB接口703的数量可以是一个,也可以是多个;接入地面端设备70的外部设备的数量可以是一个,也可以是多个。
在一个应用例中,接入地面端设备70的外部设备的数量是两个,通过两个USB接口接入,处理器701可以向其中一个外部设备发送至少两路图像数据,也可以向两个外部设备分别发送一路图像数据,也可以向两个外部设备分别发送全部至少两路图像数据,以使外部设备解析并显示接收到的图像数据。
在上述实施方式中,地面端设备通过USB接口向外部设备发送图像数据,而在其他实施方式中,地面端设备也可以通过无线通信电路向外部设备发送图像数据。
具体参阅图8,图8是本发明地面端设备第二实施方式的结构示意图。图8与图7结构类似,此处不再赘述,不同之处在于进一步包括:第二无线通信电路804,第二无线通信电路804通过总线与处理器801连接。
处理器801通过USB接口803和/或第二无线通信电路804向外部设备发送至少两路图像数据。第二通信电路804可以包括但不限于至少一个发送器。
具体地,当有外部设备接入地面端设备80时,处理器801可以通过USB接口和第二无线通信电路804同时向外部设备发送至少两路图像数据,也可以通过USB接口803或者第二无线通信电路804向外部设备发送图像数据。
请参阅图9,图9是本发明地面端设备第三实施方式的结构示意图。图9与图8结构类似,此处不再赘述,不同之处在于进一步包括:存储器905,通过总线与其他部件相互连接。
存储器905用于将接收到的图像数据保存;
处理器901进一步用于接收来自本地或外部设备的图像数据输出指令,并向外部设备发送图像数据输出指令对应的图像数据。
具体地,在一个应用例中,当处理器901检测到有外部设备接入时,接入的外部设备具有地面端设备接收到的所有图像数据的控制权,可以向处理器901发送图像数据输出指令,选择输出其中一路或者多路图像数据。例如,地面端设备接收到四路图像数据,分别是D1、D2、D3和D4,其中,外部设备可以选择D1和D2输出,并发送输出D1和D2的图像数据输出指令。
在上述实施方式中,地面端设备向外部设备发送接收到的至少两路图像数据,由外部设备进行解码显示,而在其他实施方式中,地面端设备可以选择在本地解码显示图像数据。例如:当处理器901检测到有外部设备接入时,地面端设备仍然具有接收到的所有图像数据的控制权,可以本地发送图像数据输出指令,向所有接入的外部设备中的一个或多个发送所有图像数据。在上述应用例中,地面端设备接收到四路图像数据,分别是D1、D2、D3和D4,当地面端设备检测到有外部设备接入时,可以将这四路图像数据都发送给外部设备,然后由外部设备选择解码显示其中的一路或多路。
具体参阅图10,图10是本发明地面端设备第四实施方式的结构示意图。图10与图9结构类似,此处不再赘述,不同之处在于进一步包括:本地解码芯片1006和标准图像接口1007,分别通过总线与其他部件连接。
其中,处理器1001进一步用于接收来自本地或外部设备的本地解码显示指令;
本地解码芯片1006用于本地解码所述本地解码显示指令对应的图像数据,以还原出原始图像数据;
标准图像接口1007用于使处理器1001通过标准图像接口1007向外部显示器发送解码后的图像数据,以使外部显示器显示原始图像。
其中,所述标准图像接口1007支持的标准图像传输协议可以是HDMI或者SDI中的一种或多种,在此不做具体限定。
在一个应用例中,处理器1001与本地解码芯片1006可以被合并为一个器件。
上述实施方式中,地面端设备在可以通过外部设备解码并显示图像数据的基础上,还可以通过本地解码芯片解码图像数据,并通过标准图像接口输出,以使外部显示器显示原始图像,从而提高地面端设备解码显示图像数据的灵活性。
以上所述仅为本发明的实施方式,并非因此限制本发明的专利范围,凡是 利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (17)

  1. 一种飞行图像数据的处理方法,其特征在于,包括:
    地面端设备接收来自无人机的至少两路图像数据;以及
    向外部设备发送所述至少两路图像数据,以使得所述外部设备解析所述至少两路图像数据并显示所述至少两路图像数据。
  2. 根据权利要求1所述的方法,其特征在于,所述向外部设备发送所述至少两路图像数据包括:
    向所述外部设备中的一个发送所述至少两路图像数据中的至少一路图像数据。
  3. 根据权利要求1所述的方法,其特征在于,所述向外部设备发送所述至少两路图像数据包括:
    采用USB协议和/或无线通信协议向所述外部设备发送所述至少两路图像数据。
  4. 根据权利要求1所述的方法,其特征在于,所述地面端设备接收来自无人机的至少两路图像数据之后,包括:
    将接收到的所述至少两路图像数据保存;
    接收来自本地或所述外部设备的图像数据输出指令;以及
    向所述外部设备发送所述图像数据输出指令对应的图像数据。
  5. 根据权利要求4的方法,其特征在于,所述接收来自本地或所述外部设备的图像数据输出指令之后,进一步包括:
    接收来自本地或所述外部设备的本地解码显示指令;
    本地解码所述本地解码显示指令对应的图像数据,以还原出原始图像数据;以及
    采用标准图像传输协议向外部显示器发送解码后的所述图像数据,以使外部显示器显示原始图像。
  6. 根据权利要求1至5任一项所述的方法,其特征在于,所述至少两路图像数据是经过相同编码算法压缩的码流。
  7. 根据权利要求1至5任一项所述的方法,其特征在于,所述至少两路图像数据是经过不同编码算法压缩的码流。
  8. 一种飞行图像数据的处理系统,内嵌于地面端设备中,其特征在于,包括:
    无线通信模块,用于接收来自无人机的至少两路图像数据;以及
    输出模块,用于向外部设备发送所述至少两路图像数据,以使得所述外部设备解析所述至少两路图像数据并显示所述至少两路图像数据。
  9. 根据权利要求8所述的系统,其特征在于,所述输出模块用于向所述外部设备中的一个发送所述至少两路图像数据中的至少一路图像数据。
  10. 根据权利要求8所述的系统,其特征在于,所述输出模块用于采用USB协议和/或无线通信协议向所述外部设备发送所述至少两路图像数据。
  11. 根据权利要求8所述的系统,其特征在于,
    所述系统进一步包括:
    存储模块,用于将接收到的所述至少两路图像数据保存;以及
    指令模块,用于接收来自本地或所述外部设备的图像数据输出指令;
    所述输出模块用于向所述外部设备发送所述图像数据输出指令对应的图像数据。
  12. 根据权利要求11所述的系统,其特征在于,
    所述指令模块进一步用于接收来自本地或所述外部设备的本地解码显示指令;
    所述系统进一步包括本地解码模块,用于本地解码所述本地解码显示指令对应的图像数据,以还原出原始图像数据;以及
    所述输出模块进一步用于采用标准图像传输协议向外部显示器发送解码后的所述图像数据,以使外部显示器显示原始图像。
  13. 一种地面端设备,其特征在于,包括:处理器和与所述处理器连接的第 一无线通信电路;
    所述第一无线通信电路用于接收来自无人机的至少两路图像数据;以及
    所述处理器用于控制所述地面端设备向外部设备发送所述至少两路图像数据,以使得所述外部设备解析所述至少两路图像数据并显示所述至少两路图像数据。
  14. 根据权利要求13所述的设备,其特征在于,所述处理器用于控制所述地面端设备向所述外部设备中的一个发送所述至少两路图像数据中的一路图像数据。
  15. 根据权利要求13所述的设备,其特征在于,进一步包括:USB接口和/或第二无线通信电路,以使所述处理器通过所述USB接口和/或所述第二无线通信电路同时向所述外部设备发送所述至少两路图像数据。
  16. 根据权利要求13所述的设备,其特征在于,
    进一步包括:存储器,用于将接收到的所述图像数据保存;
    所述处理器进一步用于:
    接收来自本地或所述外部设备的图像数据输出指令;以及
    向所述外部设备发送所述图像数据输出指令对应的图像数据。
  17. 根据权利要求13所述的设备,其特征在于,
    所述处理器进一步用于接收来自本地或所述外部设备的本地解码显示指令;
    所述设备进一步包括:
    本地解码芯片,用于本地解码所述本地解码显示指令对应的图像数据,以还原出原始图像数据;以及
    标准图像接口,用于使所述处理器通过所述标准图像接口向外部显示器发送解码后的所述图像数据,以使外部显示器显示原始图像。
PCT/CN2016/101206 2016-09-30 2016-09-30 一种飞行图像数据的处理方法、系统及地面端设备 WO2018058575A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2016/101206 WO2018058575A1 (zh) 2016-09-30 2016-09-30 一种飞行图像数据的处理方法、系统及地面端设备
CN201680002522.2A CN107079101A (zh) 2016-09-30 2016-09-30 一种飞行图像数据的处理方法、系统及地面端设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/101206 WO2018058575A1 (zh) 2016-09-30 2016-09-30 一种飞行图像数据的处理方法、系统及地面端设备

Publications (1)

Publication Number Publication Date
WO2018058575A1 true WO2018058575A1 (zh) 2018-04-05

Family

ID=59624165

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/101206 WO2018058575A1 (zh) 2016-09-30 2016-09-30 一种飞行图像数据的处理方法、系统及地面端设备

Country Status (2)

Country Link
CN (1) CN107079101A (zh)
WO (1) WO2018058575A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108702487A (zh) * 2017-11-20 2018-10-23 深圳市大疆创新科技有限公司 无人机的图像传输方法和装置
CN109688374A (zh) * 2018-12-12 2019-04-26 深圳慧源创新科技有限公司 无人机双路图传分屏显示技术
CN109672837A (zh) * 2019-01-24 2019-04-23 深圳慧源创新科技有限公司 航拍设备实时视频录制方法、移动终端和计算机存储介质
CN110460811B (zh) * 2019-07-31 2021-03-02 视联动力信息技术股份有限公司 一种基于视联网的多媒体数据处理方法及系统
WO2021217581A1 (zh) * 2020-04-30 2021-11-04 深圳市大疆创新科技有限公司 数据传输方法、数据传输系统、可移动设备和终端设备
CN112291519B (zh) * 2020-10-21 2022-02-15 深圳慧源创新科技有限公司 显示画面切换方法、装置、电子设备和存储介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102137255A (zh) * 2010-01-21 2011-07-27 联想(北京)有限公司 一种便携式解码器、用于解码器的显示方法以及显示系统
US20130022105A1 (en) * 2002-04-01 2013-01-24 Broadcom Corporation Video Decoding System Supporting Multiple Standards
CN103035258A (zh) * 2011-10-06 2013-04-10 东芝三星存储技术韩国株式会社 用于减小负荷的多媒体装置
CN103067773A (zh) * 2012-12-13 2013-04-24 罗传藻 动态音视频字幕系统及方法
CN103281573A (zh) * 2013-05-14 2013-09-04 无锡北斗星通信息科技有限公司 多功能视音频信号收发装置
CN204887278U (zh) * 2015-09-15 2015-12-16 成都时代星光科技有限公司 无人机空中自组网图像传输系统
CN205510277U (zh) * 2016-02-06 2016-08-24 普宙飞行器科技(深圳)有限公司 一种无人机全景图像传输设备

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105744222B (zh) * 2016-02-03 2019-03-26 普宙飞行器科技(深圳)有限公司 一种无人机无线图像/视频传输、共享及存储系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130022105A1 (en) * 2002-04-01 2013-01-24 Broadcom Corporation Video Decoding System Supporting Multiple Standards
CN102137255A (zh) * 2010-01-21 2011-07-27 联想(北京)有限公司 一种便携式解码器、用于解码器的显示方法以及显示系统
CN103035258A (zh) * 2011-10-06 2013-04-10 东芝三星存储技术韩国株式会社 用于减小负荷的多媒体装置
CN103067773A (zh) * 2012-12-13 2013-04-24 罗传藻 动态音视频字幕系统及方法
CN103281573A (zh) * 2013-05-14 2013-09-04 无锡北斗星通信息科技有限公司 多功能视音频信号收发装置
CN204887278U (zh) * 2015-09-15 2015-12-16 成都时代星光科技有限公司 无人机空中自组网图像传输系统
CN205510277U (zh) * 2016-02-06 2016-08-24 普宙飞行器科技(深圳)有限公司 一种无人机全景图像传输设备

Also Published As

Publication number Publication date
CN107079101A (zh) 2017-08-18

Similar Documents

Publication Publication Date Title
WO2018058575A1 (zh) 一种飞行图像数据的处理方法、系统及地面端设备
CN107258086B (zh) 针对汇显示器的静态帧图像质量改进的方法、装置及系统
KR101973735B1 (ko) 전자 디바이스 통신을 위한 방법 및 장치
CN103092552A (zh) 一种实现多屏显示的方法及系统
WO2023036258A1 (zh) 基于无人机的视频直播方法、系统、设备及存储介质
US20130257687A1 (en) Display system, display device, and related methods of operation
TWI588773B (zh) 傳送網路資料之裝置、系統與方法
US11711797B2 (en) Method and device capable of executing instructions remotely in accordance with multiple logic units
CN109391839B (zh) 一种自适应hdmi接口视频传输装置
CN203747905U (zh) 一种视频监播系统
EP2667536A2 (en) Method and system for adaptive streaming in a multipath environment.
CN205105347U (zh) 视频的无线传输设备、视频播放设备及系统
CN103581616A (zh) 监控系统、图像压缩串行器以及图像解压缩解串行器
CN113992998A (zh) 无线多媒体软件狗及系统、计算机软件狗及操作方法
KR101410837B1 (ko) 비디오 메모리의 모니터링을 이용한 영상 처리 장치
US20200186855A1 (en) Smart remote monitoring system and method
US11575974B2 (en) Electronic device and method for controlling electronic device
CN103428493A (zh) 轻型化高清视频无线传输系统
CN104244085A (zh) 基于现场可编程门阵列的多媒体数据传输方法及装置
CN204408536U (zh) 无人机飞行器用的大流量图像传输设备
CN102638726A (zh) 一种基于太赫兹无线通信的多媒体流传输方法及系统
CN107454462B (zh) 一种数据传输方法、装置及系统
CN108306836B (zh) 数据传输装置、智能交互平板及数据传输方法
CN205092920U (zh) 高分辨率视频传输系统
US10025550B2 (en) Fast keyboard for screen mirroring

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16917325

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16917325

Country of ref document: EP

Kind code of ref document: A1