WO2018058324A1 - 一种移动性管理方法、设备及通信系统 - Google Patents

一种移动性管理方法、设备及通信系统 Download PDF

Info

Publication number
WO2018058324A1
WO2018058324A1 PCT/CN2016/100428 CN2016100428W WO2018058324A1 WO 2018058324 A1 WO2018058324 A1 WO 2018058324A1 CN 2016100428 W CN2016100428 W CN 2016100428W WO 2018058324 A1 WO2018058324 A1 WO 2018058324A1
Authority
WO
WIPO (PCT)
Prior art keywords
network device
terminal
network
identifier
request
Prior art date
Application number
PCT/CN2016/100428
Other languages
English (en)
French (fr)
Inventor
金爱进
陈中平
周汉
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2016/100428 priority Critical patent/WO2018058324A1/zh
Publication of WO2018058324A1 publication Critical patent/WO2018058324A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/40Network security protocols

Definitions

  • the embodiments of the present invention relate to the field of communications, and in particular, to a mobility management method, device, and communication system.
  • LTE long term evolution
  • 3GPP 3rd generation partnership project
  • EPS evolved packet system
  • MME mobile management entity
  • PGW packet data network gateway
  • SGW serving gateway
  • control plane-user plane CU
  • the control plane (CP) may include a logical function such as an MME and a gateway control plane (GW-C), and the user plane may include a logic function such as a gateway user plane (GW-U). body.
  • the GW-U is mainly used to forward data service packets, and the logic for forwarding data service packets is controlled by the CP.
  • FIG. 1 The control plane (CP) may include a logical function such as an MME and a gateway control plane (GW-C), and the user plane may include a logic function such as a gateway user plane (GW-U). body.
  • the GW-U is mainly used to forward data service packets, and the logic for forwarding data service packets is controlled by the CP.
  • the first GW-U implements the logical function of the packet data network gateway user plane (PGW-U) and implements the logical function of the serving gateway user plane (SGW-U). . If the terminal moves, in order to ensure the terminal's service connection For the continuity, the anchor gateway (that is, the PGW-U that forwards the data packet) during the terminal movement cannot be changed. That is, as shown in FIG.
  • Router 1 can continue to access the APP service via the first GW-U.
  • the transmission path of the data service packet at this time is as shown by the solid line in FIG. 2, wherein the first GW-U implements the logic function of the PGW-U, and the second GW-U implements the logic function of the SGW-U.
  • the terminal moves, the terminal continues to access the APP service through the second GW-U, the router 2, the router 1 and via the first GW-U, although the service continuity of the terminal is guaranteed, but As a result, the service path is detoured, resulting in an increase in the delay in receiving the data service packet.
  • the embodiment of the invention provides a mobility management method and device, which take into account the service continuity of the terminal and the delay of receiving data service packets.
  • a first aspect of the embodiments of the present invention provides a communication system, including: a locator/ID separation protocol (LISP) network and a mobile communication network.
  • the LISP network includes a tunnel router (TR) to be accessed after the terminal moves, and the mobile communication network includes a network device that has a signaling interface with the TR, and the network device is an anchor device for forwarding data service packets.
  • the network device is a device for controlling an anchor device that forwards data service packets.
  • the network device is configured to learn to switch the gateway, and send a registration request to the TR through the signaling interface, where the registration request includes an identifier of the terminal or an identifier of the service flow of the terminal, and the registration request is used to notify that the gateway needs to be switched.
  • the TR is used to trigger the handover of the route of the LISP network after receiving the registration request from the network device.
  • the communication system provided by the embodiment of the present invention includes a LISP network and a mobile communication network.
  • the gateway can be switched under the premise of ensuring service continuity of the terminal.
  • the business path bypass that is, taking into account the business continuity of the terminal and receiving data The delay of the service message.
  • the network device can send the registration to the first TR through the signaling interface.
  • the registration request is used to notify that a gateway handover is required to perform routing switching in the LISP network, so that the LISP network is not aware of the gateway change, or the handover time of the route in the LISP network is longer than the handover of the gateway in the mobile communication network. Time-induced packet loss occurs.
  • the TR in order to enable the network device to know in time that the routing switch in the LISP network is completed, after the routing of the LISP network is completed, the TR is used to send the network device through the signaling interface.
  • a registration request acknowledgement is sent, the registration request acknowledgement is used to notify that the handover of the route in the LISP network has been completed, and the network device is configured to receive the registration request acknowledgement from the TR.
  • the network device when the network device is a device for controlling an anchor device that forwards data service packets, the network device is configured to receive from the MME.
  • the bearer request is modified, and the gateway needs to be switched according to the location information of the terminal included in the modified bearer request, so as to know that the gateway needs to be switched.
  • the communication system when the network device is an anchor device for forwarding data service packets, the communication system further includes a GW for controlling the network device.
  • the GW-C is configured to receive the terminal-based modified bearer request from the MME, determine, according to the modify bearer request, that the gateway switch needs to be performed, and send a session request message to the network device; the network device is configured to receive the session request message from the GW-C, to learn The gateway needs to be switched; wherein the session request message includes creating a session request or modifying a session request.
  • a second aspect of the embodiments of the present invention provides a mobility management method, including:
  • the network device After knowing that the gateway needs to be switched, the network device sends a registration request to the TR through the signaling interface between the network device and the TR.
  • TR is the TR that needs to be accessed after the terminal moves.
  • the registration request includes the identifier of the terminal or the identifier of the service flow of the terminal, and the registration request is used to notify that the gateway needs to be switched.
  • the mobile communication network to which the network device belongs is deployed in conjunction with the LISP network to which the TR belongs.
  • the network device is an anchor device for forwarding data service packets, or the network device is used to control an anchor device for forwarding data service packets. device of.
  • the mobility management method provided by the embodiment of the present invention is applied to a system in which a mobile communication network and a LISP network are combined.
  • the gateway can be switched under the premise of ensuring the service continuity of the terminal, thereby avoiding the phenomenon that the service path is bypassed, that is, taking into account the service of the terminal. Continuity and the delay in receiving data service packets.
  • the network device can send the registration to the first TR through the signaling interface.
  • the registration request is used to notify that a gateway handover is required to perform routing switching in the LISP network, so that the LISP network is not aware of the gateway change, or the handover time of the route in the LISP network is longer than the handover of the gateway in the mobile communication network. Time-induced packet loss occurs.
  • the mobility management method may further include: The device receives a registration request acknowledgement from the TR through a signaling interface, and the registration request acknowledgement is used to notify that the handover of the route in the LISP network has been completed.
  • the network device when the network device is a device for controlling an anchor device for forwarding data service packets, the network device learns that the gateway needs to be switched.
  • the network device may receive the modify bearer request from the MME, and determine that the gateway needs to be switched according to the location information of the terminal included in the modify bearer request.
  • the network device may determine, according to the location information of the terminal included in the modify bearer request, whether to switch the gateway based on the terminal; in the scenario of service flow switching for the terminal, the network The device may determine, according to the location information in the modified bearer request, and the locally stored service information, whether the gateway needs to be switched based on the service flow of the terminal.
  • the network device determines that it does not need to be cut When changing the gateway, the terminal can be mobility managed according to the mobility management method in the existing standard protocol.
  • the network device when the network device is an anchor device for forwarding data service packets, if the GW-C slave MME is used to control the network device Receiving a terminal-based modified bearer request, and determining that a gateway switchover is required according to the received modify bearer request, the GW-C may notify the network device that the gateway needs to be switched, that is, the network device is informed that the gateway needs to be switched.
  • the method includes: the network device receives a session request message from the GW-C, and the session request message includes creating a session request or modifying a session request.
  • a third aspect of the embodiments of the present invention provides a mobility management method, including:
  • the first TR receives the registration request from the network device by using a signaling interface between the first TR and the network device, and triggers switching of the route of the LISP network to which the first TR belongs.
  • the first TR is a TR that needs to be accessed after the terminal moves.
  • the registration request includes an identifier of the terminal or an identifier of the service flow of the terminal, and the registration request is used to notify that the gateway needs to be switched.
  • the mobile communication network to which the network device belongs is deployed in conjunction with the LISP network, and the network device is an anchor device for forwarding data service packets, or the network device is a device for controlling an anchor device for forwarding data service packets.
  • the mobility management method provided by the embodiment of the present invention is applied to a system in which a mobile communication network and a LISP network are combined.
  • the gateway can be switched under the premise of ensuring the service continuity of the terminal, thereby avoiding the phenomenon that the service path is bypassed, that is, taking into account the service of the terminal. Continuity and the delay in receiving data service packets.
  • the network device can send the registration to the first TR through the signaling interface.
  • the registration request is used to notify that a gateway handover is required to perform routing switching in the LISP network, so that the LISP network is not aware of the gateway change, or the handover time of the route in the LISP network is longer than the handover of the gateway in the mobile communication network. Time-induced packet loss occurs.
  • the first TR sends a registration to the network device through the signaling interface. Acknowledgment is made to enable the network device to know in time that the route switch in the LISP network has been completed.
  • the switching of the route of the LISP network to which the first TR belongs to the first TR may specifically include: the first TR sends a mapping request to the mapping server, so that the mapping server receives the mapping. Sending a first mapping notification to the second TR after the request, and after receiving the mapping notification confirmation from the second TR, sending a second mapping notification to the first TR, the second mapping notification is used to notify that the switching of the route in the LISP network has been Completed, the second TR is the TR accessed before the terminal moves.
  • the mobility management method may further include: the first TR receives the second mapping notification from the mapping server, and the first TR sends the registration request to the network device by using the signaling interface. Acknowledgment, the registration request acknowledgement is used to notify that the handover of the route in the LISP network has been completed.
  • the mapping request when the registration request includes the identifier of the terminal, the mapping request includes the identifier of the terminal, and the first TR corresponding to the identifier of the terminal. a routing location identifier (RLOC), where the first mapping notification includes an identifier of the terminal, and an RLOC of the first TR corresponding to the identifier of the terminal; when the registration request includes the identifier of the service flow of the terminal, the mapping request includes The identifier of the service flow, and the RLOC of the first TR corresponding to the identifier of the service flow, where the first mapping notification includes an identifier of the service flow, and an RLOC of the first TR corresponding to the identifier of the service flow.
  • RLOC routing location identifier
  • the mobility management method may further include: The first mapping notification is received from the mapping server, and the second TR sends a mapping notification confirmation to the mapping server.
  • a fourth aspect of the embodiments of the present invention provides a network device, including: a learning unit and a sending unit.
  • the network device may further include: a receiving unit, configured to receive, by using a signaling interface, a registration request acknowledgement from the TR, and the registration request acknowledgement is used to notify the LISP network The switching of the route in is completed.
  • the learning unit when the network device is a device for controlling an anchor device for forwarding data service packets, the learning unit is specifically used to The MME receives the modify bearer request, and determines that the gateway needs to be switched according to the location information of the terminal included in the modify bearer request.
  • the learning unit when the network device is an anchor device that forwards the data service packet, the learning unit is specifically configured to receive the session request from the GW-C.
  • the message, the GW-C is used to control the network device, and the session request message is sent by the GW-C after receiving the terminal-based modified bearer request from the MME and determining that the gateway switch needs to be performed according to the modify bearer request; the session request message includes creating Session request or modify session request.
  • a fifth aspect of the embodiments of the present invention provides a first TR, including: a receiving unit and a triggering unit.
  • a receiving unit configured to receive a registration request from the network device by using a signaling interface between the first TR and the network device, where the first TR is a TR that needs to be accessed after the terminal moves, and the registration request includes the identifier of the terminal or the service flow of the terminal
  • the identifier is used to notify that the gateway is to be switched;
  • the triggering unit is configured to trigger the switching of the route of the LISP network to which the first TR belongs;
  • the mobile communication network to which the network device belongs is deployed in combination with the LISP network, and the network device is a data service report.
  • the anchor device forwarded by the text, or the network device is a device for controlling the anchor device for forwarding the data service packet.
  • the TR may further include: a sending unit, and a triggering unit, configured to send a mapping request to the mapping server, so that After receiving the mapping request, the mapping server sends a first mapping notification to the second TR, and after receiving the mapping notification acknowledgement from the second TR, sends a second mapping notification to the first TR, where the second mapping notification is used to notify the LISP network.
  • the switching of the middle route is completed, the second TR is the TR accessed before the terminal moves, the receiving unit is further configured to receive the second mapping notification from the mapping server, and the sending unit is configured to send the registration request confirmation to the network device by using the signaling interface.
  • the registration request confirmation is used to notify that the handover of the route in the LISP network has been completed.
  • the mapping request sent by the sending unit when the registration request received by the receiving unit includes the identifier of the terminal, the mapping request sent by the sending unit includes the identifier of the terminal, and The RLOC of the first TR corresponding to the identifier of the terminal, the first mapping notification includes the identifier of the terminal, and the RLOC of the first TR corresponding to the identifier of the terminal; and the registration request received by the receiving unit includes the identifier of the service flow of the terminal
  • the mapping request sent by the sending unit includes an identifier of the service flow, and an RLOC of the first TR corresponding to the identifier of the service flow, where the first mapping notification includes an identifier of the service flow, and the first corresponding to the identifier of the service flow.
  • TR's RLOC when the registration request received by the receiving unit includes the identifier of the terminal, the mapping request sent by the sending unit includes the identifier of the terminal, and The RLOC of the first TR corresponding to the identifier of the terminal, the first mapping
  • a sixth aspect of the embodiments of the present invention provides a network device, including: a processor, a memory, a system bus, and a signaling interface.
  • the memory is used to store computer execution instructions, the processor and the memory are connected through a system bus, the signaling interface is used to implement signaling interaction between the network device and the TR, and TR is a TR that needs to be accessed after the terminal moves; when the network device is running
  • the processor executing the memory-stored computer-executable instructions to cause the network device to perform the behavior of the network device in the communication system of any of the first aspect or the possible implementation of the first aspect, or to perform the second aspect or the The behavior of the network device in any of the mobility management methods of the second aspect; wherein the mobile communication network to which the network device belongs is deployed in conjunction with the LISP network to which the TR belongs, and the network device is an anchor for forwarding data service packets.
  • the device, or network device is a device for controlling an anchor device that forwards data service packets.
  • a seventh aspect of the embodiments of the present invention provides a TR, including: a processor, a memory, a system bus, and a signaling interface; the memory is configured to store a computer execution instruction, and process The device and the memory are connected through a system bus, the signaling interface is used to implement the signaling interaction between the TR and the network device, the TR is the TR that needs to be accessed after the terminal moves; and when the TR is running, the processor executes the computer to execute the instruction of the memory storage.
  • the TR performs the behavior of the TR in any of the communication systems as in the first aspect or the possible implementation of the first aspect, or performs any of the possible implementations of the third or third aspect of the claim
  • the behavior of the first TR in the sexual management method; the LISP network to which the TR belongs is deployed in conjunction with the mobile communication network to which the network device belongs, the network device is the anchor device for forwarding data service packets, or the network device is used for data services.
  • An eighth aspect of the embodiments of the present invention provides a mobility management method, including:
  • the network device After the network device learns that the gateway needs to be registered, the network device sends a registration request to the TR through the signaling interface between the network device and the TR.
  • TR is the TR that the terminal needs to access.
  • the registration request includes the identifier of the terminal or the identifier of the service flow of the terminal. The registration request is used to notify that the gateway registration is required.
  • the mobile communication network to which the network device belongs is deployed in conjunction with the LISP network to which the TR belongs.
  • the network device is an anchor device for forwarding data service packets, or the network device is used to control an anchor device for forwarding data service packets. device of.
  • the mobility management method provided by the embodiment of the present invention is applied to a system in which a mobile communication network and a LISP network are combined, and a signaling interface is disposed between the network device in the mobile communication network and the TR in the LISP network.
  • the network device can send a registration request to the TR through the signaling interface when the gateway needs to be registered, the registration request is used to notify that the gateway registration is required, so as to be in the LISP network.
  • the registration of the execution route is applied to a system in which a mobile communication network and a LISP network are combined, and a signaling interface is disposed between the network device in the mobile communication network and the TR in the LISP network.
  • the mobility management method may further include: The network device receives a registration request acknowledgement from the TR through a signaling interface, and the registration request acknowledgement is used to notify that registration of the route in the LISP network has been completed.
  • the network device when the network device is the device for controlling the anchor device that forwards the data service packet, the network device knows that the gateway registration needs to be performed, and the network device may receive the created data path response sent by the GW-U. And determining, according to the creation data path response, that the gateway needs to be registered for the terminal; or, the network device determines that the service flow of the terminal needs to be offloaded to the GW-U, and determines that the gateway registration needs to be performed for the service flow of the terminal.
  • the network device learns that the gateway registration needs to be performed, specifically: the network device Receiving a create data path request sent by the GW-C, and determining, according to the create data path request, that the gateway needs to be registered for the terminal.
  • the GW-C for controlling the network device can determine that the service flow of the terminal needs to be offloaded to the network device, the GW-C can send a create session request to the network device, and the GW-C can notify the network device that the gateway needs to be switched, that is, The network device is informed that the gateway registration is required to be performed by the network device.
  • the network device receives the request for creating a session from the GW-C, and determines that the gateway needs to be registered for the service flow of the terminal according to the creation session request.
  • a ninth aspect of the embodiments of the present invention provides a mobility management method, including:
  • the TR receives the registration request from the network device through the signaling interface between the TR and the network device, and triggers the switching of the route of the LISP network to which the TR belongs.
  • TR is the TR that the terminal needs to access.
  • the registration request includes the identifier of the terminal or the identifier of the service flow of the terminal. The registration request is used to notify that the gateway registration is required.
  • the mobile communication network to which the network device belongs is deployed in conjunction with the LISP network, and the network device is an anchor device for forwarding data service packets, or the network device is a device for controlling an anchor device for forwarding data service packets.
  • the mobility management method provided by the embodiment of the present invention is applied to a system in which a mobile communication network and a LISP network are combined, and a signaling interface is disposed between the network device in the mobile communication network and the TR in the LISP network.
  • the network device can send a registration request to the TR through the signaling interface when the gateway needs to be registered, the registration request is used to notify that the gateway registration is required, so as to be in the LISP network.
  • the registration of the execution route is applied to a system in which a mobile communication network and a LISP network are combined, and a signaling interface is disposed between the network device in the mobile communication network and the TR in the LISP network.
  • the mobility management method may further include: the TR sends a mapping request to the mapping server, and the TR slave mapping The server receives the mapping notification, and the TR sends a registration request acknowledgement to the network device through the signaling interface, and the registration request acknowledgement is used to notify that the registration of the route in the LISP network has been completed.
  • the mapping request when the registration request includes the identifier of the terminal, the mapping request includes the identifier of the terminal, and the RLOC of the TR corresponding to the identifier of the terminal;
  • the mapping request when the registration request includes the identifier of the service flow of the terminal, the mapping request includes the identifier of the service flow and the RLOC of the TR corresponding to the identifier of the service flow.
  • a tenth aspect of the embodiments of the present invention provides a mobility management method, including:
  • the network device After detecting the logout operation of the terminal, the network device sends a registration request to the TR through the signaling interface between the network device and the TR.
  • TR is the TR currently accessed by the terminal, and the registration request includes the identifier of the terminal or the identifier of the service flow of the terminal, and the registration request is used to notify that the gateway needs to be logged off.
  • the mobile communication network to which the network device belongs is deployed in conjunction with the LISP network to which the TR belongs.
  • the network device is an anchor device for forwarding data service packets, or the network device is used to control an anchor device for forwarding data service packets. device of.
  • the mobility management method provided by the embodiment of the present invention is applied to a system in which a mobile communication network and a LISP network are combined, and a signaling interface is disposed between the network device in the mobile communication network and the TR in the LISP network.
  • a deregistration request is sent to the TR through the signaling interface, and the deregistration request is used to notify that the gateway is to be logged off, so that the logout of the route is performed in the LISP network. This avoids the situation that the LISP network cannot detect the departure of the terminal and cannot delete the related data in time.
  • the mobility management method may further include: The network device receives the registration request confirmation from the TR through the signaling interface, and the registration request confirmation is used to notify the LISP. The logout of the route in the network has been completed.
  • An eleventh aspect of the embodiments of the present invention provides a mobility management method, including:
  • the TR receives the deregistration request from the network device through the signaling interface between the TR and the network device, and triggers the logout of the route of the LISP network to which the TR belongs.
  • TR is the TR currently accessed by the terminal, and the registration request includes the identifier of the terminal or the identifier of the service flow of the terminal, and the registration request is used to notify that the gateway needs to be logged off.
  • the mobile communication network to which the network device belongs is deployed in conjunction with the LISP network, and the network device is an anchor device for forwarding data service packets, or the network device is a device for controlling an anchor device for forwarding data service packets.
  • the mobility management method provided by the embodiment of the present invention is applied to a system in which a mobile communication network and a LISP network are combined, and a signaling interface is disposed between the network device in the mobile communication network and the TR in the LISP network.
  • a deregistration request is sent to the TR through the signaling interface, and the deregistration request is used to notify that the gateway is to be logged off, so that the logout of the route is performed in the LISP network. This avoids the situation that the LISP network cannot detect the departure of the terminal and cannot delete the related data in time.
  • the mobility management method may further include: after the logout of the gateway of the LISP network is completed, The TR sends a registration request confirmation to the network device through the signaling interface, and the registration request confirmation is used to notify that the logout of the route in the LISP network has been completed.
  • the mobility management method may further include: the TR sending a request solicit map request (SMR) message to the peer TR;
  • SMR message includes an identifier of the terminal, where the SMR message is used to trigger the peer TR to update the RLOC corresponding to the identifier of the terminal, and the deregistration request includes the service flow of the terminal.
  • the SMR message includes an identifier of the service flow of the terminal, and the SMR message is used to trigger the peer TR to update the RLOC corresponding to the identifier of the service flow of the terminal.
  • the mobile device when the network device is an anchor device for forwarding data service packets, the mobile device sends the SMR message to the peer TR before the TR sends the SMR message.
  • the method may further include: the TR determines that the mapping notification sent by the mapping server is not received, and the TR sends a mapping request to the mapping server; wherein, when the deregistration request includes the identifier of the terminal, the mapping notification is used to notify the terminal that the target has been switched The mapping request includes the identifier of the terminal.
  • the mapping notification is used to notify the terminal that the service flow has been switched to the target TR, and the mapping request includes the identifier of the service flow of the terminal.
  • FIG. 1 is a network architecture diagram of a CU separation technology provided by the prior art
  • FIG. 2 is a schematic diagram of a transmission path of a data service packet after the terminal moves according to the prior art
  • FIG. 3 is a simplified schematic diagram of a system architecture to which an embodiment of the present invention is applied according to an embodiment of the present invention
  • FIG. 4 is a flowchart of a mobility management method according to an embodiment of the present invention.
  • FIG. 5 is a flowchart of another mobility management method according to an embodiment of the present invention.
  • FIG. 6 is a flowchart of another mobility management method according to an embodiment of the present invention.
  • FIG. 7 is a flowchart of another mobility management method according to an embodiment of the present invention.
  • FIG. 8 is a flowchart of another mobility management method according to an embodiment of the present invention.
  • FIG. 9 is a flowchart of another mobility management method according to an embodiment of the present invention.
  • FIG. 10 is a flowchart of another mobility management method according to an embodiment of the present invention.
  • FIG. 11 is a flowchart of another mobility management method according to an embodiment of the present invention.
  • FIG. 12 is a flowchart of another mobility management method according to an embodiment of the present invention.
  • FIG. 13 is a schematic structural diagram of a network device according to an embodiment of the present disclosure.
  • FIG. 14 is a schematic structural diagram of another network device according to an embodiment of the present disclosure.
  • FIG. 15 is a schematic structural diagram of another network device according to an embodiment of the present disclosure.
  • FIG. 16 is a schematic structural diagram of a TR according to an embodiment of the present invention.
  • FIG. 17 is a schematic structural diagram of another TR according to an embodiment of the present invention.
  • FIG. 18 is a schematic diagram showing the composition of another TR according to an embodiment of the present invention.
  • FIG. 19 is a schematic structural diagram of another network device according to an embodiment of the present disclosure.
  • FIG. 20 is a schematic structural diagram of another TR according to an embodiment of the present invention.
  • the embodiment of the present invention provides a mobility management method.
  • the basic principle is that by combining the mobile communication network with the LISP network, the gateway can be switched when the terminal moves and the gateway needs to be switched. And, by setting a signaling interface between the network device in the mobile communication network and the first TR in the LISP network, after the terminal moves, the network device can go through the signaling interface when learning that the gateway needs to be switched.
  • a TR sends a registration request, and the registration request is used to notify that a gateway handover is required.
  • the registration request may include an identifier of the terminal or an identifier of the service flow of the terminal, so that the first TR triggers the route in the LISP network after receiving the registration request.
  • the handover avoids the fact that the LISP network cannot detect the gateway change, or the handover time of the route in the LISP network is longer than the packet loss caused by the handover time of the gateway in the mobile communication network.
  • FIG. 3 shows a system architecture to which an embodiment of the present invention can be applied.
  • the system architecture can include: a terminal 11, a mobile communication network, and a LISP network.
  • the mobile communication network may be an EPS using a CU separation technology.
  • the mobile communication network may at least include: a base station 12, an MME 13, a GW-U 14, and a GW-C 15.
  • the MME 13 and the GW-C 15 constitute a CP.
  • the mobile communication network may also be a 5G network.
  • the CP may include a network element consisting of a logical function module such as mobility management (MM) and session management control (SM-C), GW.
  • -U 14 can be a network element composed of logical function modules such as session management user (SM-U).
  • the LISP network may include at least: a first TR 16 and a second TR 17 located on the public network, and a mapping server 18 located in the mapping system.
  • the terminal 11 may include various handheld devices (such as mobile phones, smart terminals, multimedia devices, or streaming devices, etc.) having wireless communication functions, in-vehicle devices, wearable devices, computing devices, or other processing devices connected to the wireless modem, and User equipment (UE), mobile station (MS), terminal device, and the like.
  • UE User equipment
  • MS mobile station
  • terminal device and the like.
  • the above-mentioned devices are collectively referred to as the terminal 11.
  • the base station 12 may be a base station (BS) or a base station controller of wireless communication.
  • the base station 12 is a device deployed in the radio access network to provide wireless communication functions for the terminal 11.
  • the main functions of the base station 12 are: management of radio resources, compression of an Internet Protocol (IP) header, and user data flow. Encryption, selection of MME when user equipment is attached, routing of user plane data to SGW, organization and transmission of paging messages, organization and transmission of broadcast messages, configuration of measurement and measurement reports for mobility or scheduling, and the like.
  • Base station 12 may include various forms of macro base stations, micro base stations, relay stations, access points, and the like.
  • base station In systems using different radio access technologies, the names of devices with base station functions may be different, for example, in an LTE system, called an evolved base station (evolved NodeB, eNB or eNodeB), in the third generation. In the 3rd Generation Telecommunication (3G) system, it is called a base station (Node B) or the like. With the evolution of communication technology, "base station” The name may change. Moreover, base station 12 may be other means of providing wireless communication functionality to terminal 11 in other possible situations. For convenience of description, in the embodiment of the present invention, a device that provides a wireless communication function for the terminal 11 is referred to as a base station 12.
  • a base station 12 a device that provides a wireless communication function for the terminal 11 is referred to as a base station 12.
  • the MME 13 is mainly responsible for the transmission of Non-Access-Stratiction (NAS) signaling, NAS signaling encryption, roaming, tracking, and allocation of user temporary identity.
  • NAS Non-Access-Stratiction
  • the GW-U 14 and the GW-C 15 are jointly responsible for providing the service gateway function, the mobility anchor function, the policy execution function, and the like for the terminal 11.
  • the GW-U 14 is used as an anchor device for forwarding service data packets, and is mainly responsible for forwarding service data packets.
  • the GW-C 15 maintains a signaling interface with the surrounding network elements and is responsible for controlling the logic of the GW-U 14 for forwarding service data packets.
  • the first TR 16 and the second TR 17 are TRs having an ingress tunnel router (ITR) and an egress tunnel router (ETR) function.
  • ITR ingress tunnel router
  • ERR egress tunnel router
  • the mapping server 18 is mainly used to collect and store the identifier of the terminal 11 and the RLOC of the TR corresponding to the identifier of the terminal 11 from the TR having the ETR function.
  • the GW-U 14 is deployed corresponding to the first TR 16, or the first TR 16 is deployed as a functional module inside the GW-U 14.
  • a signaling interface is provided between the first TR 16 and the GW-U 14, or a signaling interface is provided between the first TR 16 and the GW-C 15 for controlling the GW-U 14.
  • the GW-C 15 needs to perform the correspondence between the first TR 16 and the GW-U 14. Configuration.
  • the embodiment of the present invention is exemplified by a signaling interface between the first TR 16 and the GW-U 14.
  • the GW-U 14 and the GW-C 15 may be the network devices in the embodiments of the present invention in different application scenarios.
  • a signaling interface is disposed between the GW-U 14 and the first TR 16.
  • a signaling interface is provided between the GW-C 15 and the first TR 16.
  • the first TR 16 is a TR that needs to be accessed after the terminal 11 moves
  • the second TR 17 is a TR that is accessed before the terminal 11 moves.
  • FIG. 4 is a flowchart of a mobility management method according to an embodiment of the present invention, which is applied to the system shown in FIG. 3. As shown in FIG. 4, the method may include:
  • the embodiment of the present invention is applied to a scenario of gateway switching.
  • the GW-U 14 shown in FIG. 3 is the network device in the embodiment of the present invention
  • the GW-U 14 is a gateway to which the terminal needs to be switched after the terminal moves.
  • the GW-C 15 shown in FIG. 3 is the network device in the embodiment of the present invention
  • the GW-C 15 is a gateway for controlling the gateway to be switched after the terminal moves.
  • the network device learns that the gateway needs to be switched.
  • the network device can know that the gateway needs to be switched.
  • the network device learns that the gateway needs to be switched.
  • the network device may receive the modified bearer request sent by the MME, and according to the location of the terminal included in the modified bearer request.
  • the information determines that the gateway needs to be switched, ie, switched from the second TR to the first TR.
  • the network device may further determine that the gateway handover is terminal-based; when the second TR is a gateway based on the granularity of the service flow, the network device may further determine The handover from the gateway is based on the traffic of the terminal.
  • the network device learns that the gateway needs to be switched.
  • the network device may receive the create session request or modify the session request sent by the GW-C.
  • the GW-C sends a create session request or a modify session request to the network device when determining that the gateway needs to be switched, that is, when the second TR switches to the first TR.
  • the GW-C can display (or implicitly) notify the network device whether the handover of the gateway is terminal-based or terminal-based traffic flow by creating a session request or modifying a session request.
  • the network device sends a registration request to the first TR by using a signaling interface.
  • the registration request includes an identifier of the terminal or an identifier of the service flow of the terminal. This registration request is used to notify that a gateway switch is required.
  • the registration request may include the end End identifier, such as the terminal's end-host identifier (EID).
  • EID end-host identifier
  • the registration request may include an identifier of the service flow, such as an n-tuple for identifying the service flow.
  • the identifier of the service flow includes a 5-tuple, and the 5-tuple may include: a source IP address, a destination IP address, a protocol type, a source port, and a destination port.
  • the identity of the service flow may also include some elements in the 5-tuple.
  • the first TR After the first TR receives the registration request sent by the network device by using the signaling interface, triggering handover of the route of the LISP network.
  • the first TR may send a mapping request to the mapping server.
  • the mapping server may perform a corresponding routing switch, and may send a first mapping notification to the second TR according to the received mapping request.
  • the second TR performs a corresponding route switch according to the first mapping notification, and sends a mapping notification acknowledgement to the mapping server after the execution is completed.
  • the mapping server may send a second mapping notification to the first TR, the second mapping notification being used to notify that the routing handover is completed in the LISP network.
  • the first TR can learn that the routing switching in the LISP network is completed, and then perform the following step 204.
  • the mapping request includes the identifier of the terminal and the RLOC of the first TR corresponding to the identifier of the terminal.
  • the first mapping notification includes the identifier of the terminal, and the RLOC of the first TR corresponding to the identifier of the terminal, so that the mapping server and the second TR update the RLOC corresponding to the terminal, that is, perform corresponding routing switching for the terminal.
  • the mapping request When the registration request includes the identifier of the service flow of the terminal, the mapping request includes an identifier of the service flow, and an RLOC of the first TR corresponding to the identifier of the service flow.
  • the first mapping notification includes an identifier of the service flow, and an RLOC of the first TR corresponding to the identifier of the service flow, so that the mapping server and the second TR update the RLOC corresponding to the service flow of the terminal, that is, the service flow for the terminal is performed.
  • the corresponding route switch When the registration request includes the identifier of the service flow of the terminal, the mapping request includes an identifier of the service flow, and an RLOC of the first TR corresponding to the identifier of the service flow.
  • the first TR sends a registration request acknowledgement to the network device by using a signaling interface, where the registration request acknowledgement is used to notify that the route switch in the LISP network is completed.
  • the network device receives the registration request acknowledgement sent by the first TR through the signaling interface.
  • the handover in the mobile communication network may be further completed, so that the terminal successfully switches.
  • step 11 - step 15b in the embodiment 4 is performed, or step 17 - step 20c in the embodiment 5 is performed.
  • the mobility management method provided by the embodiment of the present invention is applied to a system in which a mobile communication network and a LISP network are combined.
  • the gateway can be switched under the premise of ensuring the service continuity of the terminal, thereby avoiding the phenomenon that the service path is bypassed, that is, taking into account the service of the terminal. Continuity and the delay in receiving data service packets.
  • the network device can send a registration request to the first TR through the signaling interface,
  • the registration request is used to notify that a gateway handover is required to perform routing switching in the LISP network, so that the LISP network cannot detect the gateway change, or the handover time of the route in the LISP network is longer than the handover time of the gateway in the mobile communication network.
  • the situation of packet loss occurs.
  • the first TR sends a registration request acknowledgement to the network device through the signaling interface, so that the network device knows in time that the route switch in the LISP network is completed.
  • FIG. 5 is a flowchart of another mobility management method according to an embodiment of the present invention, which is applied to the system shown in FIG. 3. As shown in FIG. 5, the method may include:
  • the embodiment of the present invention is applied to a scenario of gateway registration.
  • the GW-U 14 shown in FIG. 3 is the network device in the embodiment of the present invention
  • the GW-U 14 is a gateway that the terminal needs to access.
  • the GW-C 15 shown in FIG. 3 is the network device in the embodiment of the present invention
  • the GW-C 15 is a gateway for controlling the gateway that the terminal needs to access.
  • the network device learns that gateway registration is required.
  • the network device can obtain the knowledge that the gateway registration is required.
  • the network device learns that the gateway registration needs to be performed. Specifically, the network device receives the created data path response sent by the GW-U, and determines according to the created data path response. The gateway needs to be registered for the terminal. Alternatively, the network device is required to perform gateway registration. The network device determines that the service flow of the terminal needs to be offloaded to the GW-U, and determines that the gateway needs to be registered for the service flow of the terminal.
  • the network device learns that the gateway registration needs to be performed. Specifically, the network device receives the creation data path request sent by the GW-C, and determines that the terminal needs to be targeted according to the creation data path request. Register the gateway. Alternatively, the network device is notified that the gateway registration is required. The network device receives the creation session request sent by the GW-C, and determines that the gateway registration is required for the service flow of the terminal according to the creation session request. The create session request is sent by the GW-C after determining that the service flow of the terminal needs to be offloaded to the network device.
  • the network device sends a registration request to the first TR by using a signaling interface.
  • the registration request includes an identifier of the terminal or an identifier of the service flow of the terminal. This registration request is used to notify that gateway registration is required.
  • step 302 The detailed description of the step 302 is similar to the specific description of the step 202, and details are not described herein again.
  • the first TR After the first TR receives the registration request sent by the network device by using the signaling interface, triggering the registration of the route of the LISP network.
  • the first TR may send a mapping request to the mapping server.
  • the mapping server may perform corresponding routing registration, and after performing the completion of the routing registration, send a mapping notification to the first TR to notify the first TR that the routing registration in the LISP network is completed, and then perform the following steps. 304.
  • the mapping request includes the identifier of the terminal, and the RLOC of the first TR corresponding to the identifier of the terminal, so that the mapping server adds the identifier of the terminal in the mapping database, and the terminal The corresponding RLOC is identified, that is, the corresponding route registration is performed for the terminal.
  • the mapping request includes the identifier of the service flow, and the RLOC of the first TR corresponding to the identifier of the service flow, so that the mapping server adds the identifier of the service flow in the mapping database. And the RLOC corresponding to the identifier of the service flow, that is, performing corresponding route registration for the service flow of the terminal.
  • the first TR sends a registration request acknowledgement to the network device by using a signaling interface, where the registration request acknowledgement is used to notify that the route registration in the LISP network has been completed.
  • the network device receives a registration request acknowledgement sent by the first TR through the signaling interface.
  • step 9 - step 20 in the embodiment 1 is performed, or step 8 - step 20 in the embodiment 2 is performed, or step 12 - step 16 in the embodiment 3 is performed.
  • the mobility management method provided by the embodiment of the present invention is applied to a system in which a mobile communication network and a LISP network are combined, and a signaling interface is disposed between the network device in the mobile communication network and the first TR in the LISP network.
  • the network device may send a registration request to the first TR through the signaling interface when it is learned that the gateway registration is required, and the registration request is used to notify that the gateway registration is required, so that The registration of the route is performed in the LISP network.
  • the first TR After the route registration is completed in the LISP network, the first TR sends a registration request acknowledgement to the network device through the signaling interface, so that the network device knows in time that the route registration in the LISP network has been completed.
  • FIG. 6 is a flowchart of another mobility management method according to an embodiment of the present invention. As shown in FIG. 6, the method may include:
  • the embodiment of the present invention is applied to a scenario where a gateway is logged out.
  • the network device when the network device is an anchor device for forwarding data service packets, the network device is a gateway where the terminal currently resides.
  • the network device when the network device is a device for controlling an anchor device for forwarding data service packets, the network device is a gateway for controlling a gateway currently camped on by the terminal.
  • TR is the TR currently accessed by the terminal.
  • the network device detects the logout operation of the terminal.
  • the logout operation is used to trigger sending a registration request to the TR.
  • the network device can detect the logout operation of the terminal.
  • the network device sends a registration request to the TR through a signaling interface.
  • the deregistration request includes an identifier of the terminal or an identifier of the service flow of the terminal.
  • the deregistration request is used to notify that a gateway logout is required.
  • the deregistration request may be for a terminal or a certain service flow for the terminal.
  • the deregistration request includes the identifier of the terminal.
  • the deregistration request includes the identifier of the service flow of the terminal.
  • the TR receives a deregistration request sent by the network device through the signaling interface, and triggers the logout of the route of the LISP network.
  • the TR receives the deregistration request sent by the network device, the corresponding data update can be performed.
  • the TR may delete the identifier of the terminal and the RLOC corresponding to the identifier of the terminal when the registration request includes the identifier of the terminal.
  • the TR may delete the service flow of the terminal.
  • the TR may determine whether the mapping notification sent by the mapping server is received. If it is determined that the mapping notification sent by the mapping server is not received, the TR sends a mapping request to the mapping server, so that the mapping server performs corresponding data update and peers to the peer. The TR sends an SMR message for the peer TR to perform a corresponding data update. If the TR determines that the mapping notification sent by the mapping server is received, the TR only sends an SMR message to the peer TR for the corresponding TR to perform the corresponding data update.
  • the mapping notification is used to notify the terminal that the terminal has been switched to the target TR, and the mapping request includes the identifier of the terminal, in the SMR message, when the identifier of the terminal is included in the deregistration request.
  • the SMR message is used to trigger the peer TR to update the RLOC corresponding to the identifier of the terminal.
  • the peer TR performs the corresponding data update. Specifically, the peer TR deletes the corresponding mapping cache, and re-acquires and updates the RLOC corresponding to the identifier of the terminal according to the identifier of the terminal included in the SMR message.
  • the mapping server performs corresponding data update. Specifically, the mapping server retrieves and deletes the identifier of the terminal and the RLOC corresponding to the identifier of the terminal.
  • the mapping notification is used to notify the terminal that the service flow has been switched to the target TR, and the mapping request includes the identifier of the service flow of the terminal, and the SMR message includes the identifier of the service flow of the terminal.
  • the SMR message is used to trigger the peer TR to update the RLOC corresponding to the identity of the service flow of the terminal.
  • the peer TR performs the corresponding data update. Specifically, the peer TR deletes the corresponding mapping cache, and reacquires and updates the identifier corresponding to the service flow of the terminal according to the identifier of the service flow of the terminal included in the SMR message. RLOC.
  • the mapping server performs corresponding data update. Specifically, the mapping server retrieves and deletes the identifier of the service flow of the terminal, and the RLOC corresponding to the identifier of the service flow of the terminal.
  • the TR sends a deregistration request acknowledgement to the network device by using a signaling interface, where the deregistration request acknowledgement is used to notify that the route logout in the LISP network has been completed.
  • the network device receives a deregistration request acknowledgement sent by the TR through the signaling interface.
  • the mobility management method provided by the embodiment of the present invention is applied to a system in which a mobile communication network and a LISP network are combined, and a signaling interface is disposed between the network device in the mobile communication network and the TR in the LISP network.
  • a deregistration request is sent to the TR through the signaling interface, and the deregistration request is used to notify that the gateway is to be logged off, so that the logout of the route is performed in the LISP network. This avoids the situation that the LISP network cannot detect the departure of the terminal and cannot delete the related data in time.
  • the TR After the route logout is completed in the LISP network, the TR sends a deregistration request acknowledgement to the network device through the signaling interface, so that the network device knows in time that the route logout in the LISP network has been completed. In addition, the TR sends the SMR message to the peer TR, so that the peer TR of the service peer can update the related data in time, thereby avoiding service forwarding errors. Or the phenomenon of packet loss appears.
  • the mobility management method involved in the embodiments of the present invention may also be applied to a system combining a Wireless Fidelity (WiFi) network and a LISP network, so as to implement wifi access.
  • Lossless switching when applied to a system combining a wifi network and a LISP network, the difference from the above mobility management method is that the network device in the foregoing embodiment may be an AP (corresponding to the data service packet in the foregoing embodiment).
  • the forwarded anchor device may also be an AC (corresponding to the device for controlling the anchor device for forwarding data service packets in the foregoing embodiment).
  • the foregoing embodiment is not limited to the system combined with the LISP network, and can also be used for other Internet Protocol in Internet Protocol (IP-in-IP)-based terminal access node switching.
  • IP-in-IP Internet Protocol
  • the implementation process of the network is similar to the implementation process described in the embodiment of the present invention, and the embodiments of the present invention are not described herein again.
  • the embodiments of the present invention take a different application scenario as an example, and specifically introduce the mobility management method of the present invention by using the following embodiments 1-6.
  • the following embodiments are applied to a system in which a mobile communication network and a LISP network are combined.
  • the network device included in the mobile communication network and the TR included in the LISP network have a signaling interface, and the network device may be a GW-U or a GW-C.
  • TR is the TR corresponding to GW-U.
  • the mobility management method of the present invention is specifically described by taking an attach procedure and the network device being a GW-U as an example.
  • Step 1 The terminal sends an attach request to the base station.
  • Step 2 The base station sends an attach request to the MME.
  • Step 3 The MME sends a create session request to the GW-C.
  • Step 4 The GW-C sends a create data path request to the GW-U.
  • the GW-U After the GW-U receives the create data path request sent by the GW-C, the GW-U can create the data path, and after the creation is completed, the The process of registering users on the LISP network can be as follows:
  • Step 5 The GW-U sends a register request to the terminal to the TR.
  • the TR refers to the TR corresponding to the GW-U
  • the signaling interface exists between the TR and the GW-U
  • the specific step 5 may be that the GW-U sends the terminal to the TR through the signaling interface between the TR and the TR.
  • Registration request includes the identity of the terminal (EID).
  • the registration process of the LISP network can be performed. Specifically, the following steps 6 - 7 can be performed:
  • Step 6 The TR sends a map register to the map server.
  • the mapping request includes an EID and an RLOC of the TR corresponding to the EID.
  • Step 7 The mapping server sends a map notification to the TR.
  • the mapping notification is used to notify the TR that the terminal is registered in the LISP network.
  • the mapping server receives the mapping request sent by the TR, the EID included in the mapping request and the RLOC of the TR may be correspondingly saved, and after the saving is completed, the mapping notification is sent to the TR.
  • the registration request confirmation process can be performed. Specifically, the following step 8 can be performed:
  • Step 8 The TR sends a request acknowledgement (register ACK) to the GW-U.
  • step 8 may be that the TR sends a request confirmation of the terminal to the GW-U through a signaling interface with the GW-U.
  • Step 9 The GW-U sends a create data path response to the GW-C.
  • Step 10 The GW-C sends a create session response to the MME.
  • Step 11 The MME sends an initial context setup request/attach accept to the base station.
  • Step 12 The base station sends an RRC connection reconfiguration to the terminal.
  • Step 13 The terminal sends an RRC connection reconfiguration complete to the base station (RRC connection) Reconfiguration complete).
  • Step 14 The base station sends an initial context setup response to the MME.
  • Step 15 Direct transfer between the terminal and the base station.
  • Step 16 The base station sends an attach complete to the MME.
  • Step 17 The MME sends a modify bearer request to the GW-C.
  • Step 17a The GW-C sends a modify bearer request to the GW-U.
  • Step 17b The GW-U sends a modify bearer response to the GW-C.
  • Step 18 The GW-C sends a modify bearer response to the MME.
  • Step 19 The MME sends a notify request to the Home Subscriber Server (HSS).
  • HSS Home Subscriber Server
  • Step 20 The HSS sends a notify response to the MME.
  • a signaling interface may be set between the GW-U and the TR, or a signaling interface may be set between the GW-C and the TR. .
  • there is a signaling interface between the GW-U and the TR and the connection flow between the LISP network and the mobile communication network is completed through the signaling interface between the GW-U and the TR as an example.
  • step 9 is performed first, then step 5 - step 8 is performed, and after step 8 is performed, step 10 - step 20 is performed;
  • Step 5 is replaced by: GW-C sends a registration request of the terminal to the TR, where TR refers to the TR corresponding to GW-C, and there is a signaling interface between TR and GW-C, that is, step 5 may be The GW-C sends a registration request of the terminal to the TR through a signaling interface with the TR;
  • TR sends a request confirmation to the GW-C terminal.
  • the TR sends a request confirmation of the terminal to the GW-C through a signaling interface with the GW-C.
  • the mobility management method of the present invention is specifically described by taking a PDN connectivity procedure and a network device as a GW-U.
  • Step 1 The terminal sends a PDN connectivity request to the MME.
  • Step 2 - Step 9. Steps 2 and 9 are the same as steps 3 and 10 in Embodiment 1, and are not described here.
  • Step 10 The MME sends a bearer setup request/PDN connectivity accept to the base station.
  • Step 11 - Step 12 Steps 11 to 12 are the same as steps 12 to 13 in Embodiment 1, and are not described here.
  • Step 13 The base station sends a bearer setup response to the MME.
  • Step 14 is the same as step 15 in Embodiment 1, and details are not described herein again.
  • Step 15 The base station sends a PDN connectivity complete to the MME.
  • Step 16 - Step 20 Steps 16 to 20 are the same as steps 17 to 20 in Embodiment 1, and are not described here.
  • a signaling interface may be set between the GW-U and the TR, or a signaling interface may be set between the GW-C and the TR.
  • the above process is a PDN connection process in which a signaling interface exists between GW-U and TR, and the interaction between the LISP network and the mobile communication network is completed through a signaling interface between the GW-U and the TR.
  • step 8 is performed first, then step 4 - step 7 is performed, and after step 7 is performed, step 9 - step 20 is performed;
  • Step 4 is replaced by: GW-C sends a registration request of the terminal to the TR, where TR refers to the TR corresponding to GW-C, and there is a signaling interface between TR and GW-C, ie Step 4 may specifically be that the GW-C sends a registration request of the terminal to the TR through a signaling interface between the TR and the TR;
  • TR sends a request confirmation to the GW-C terminal.
  • the TR sends a request confirmation of the terminal to the GW-C through a signaling interface with the GW-C.
  • the mobility management method of the present invention is specifically described by taking the tracking area update (TAU) process and the network device as the GW-U as an example.
  • TAU tracking area update
  • Step 1 The terminal triggers the TAU procedure (trigger to start TAU Procedure).
  • Step 2 The terminal sends a TAU request (TAU request) to the base station.
  • Step 3 The base station sends a TAU request to the MME.
  • Step 4 The MME sends a modify bearer request to the GW-C.
  • Step 5 The GW-C sends a create session request to the target GW-U.
  • the GW-U may be reselected according to the location of the terminal, that is, the target GW-U is determined, and the create session request is sent to the target GW-U.
  • Step 6 The target GW-U sends a registration request of the terminal to the target TR.
  • the target TR refers to the TR corresponding to the target GW-U, and there is a signaling interface between the target TR and the target GW-U, that is, the specific step 6 may be that the target GW-U passes the letter with the target TR.
  • the interface is caused to send a registration request of the terminal to the target TR, where the registration request includes an identifier (EID) of the terminal.
  • the handover process of the LISP network can be performed. Specifically, the following steps 7 to 10 can be performed:
  • Step 7 The target TR sends a map register to the map server.
  • the mapping request includes an EID and an RLOC of the target TR corresponding to the EID.
  • Step 8 The mapping server sends a first map notification (map notify) to the source TR.
  • the source TR refers to a TR corresponding to the source GW-U, and a signaling interface exists between the source TR and the source GW-U.
  • the first mapping notification includes an EID and an RLOC of the target TR corresponding to the EID. After the mapping server receives the mapping request sent by the target TR, the EID included in the mapping request may be saved corresponding to the RLOC of the target TR, and after the saving is completed, the first mapping notification is sent to the source TR.
  • Step 9 The source TR sends a map notify ack to the mapping server.
  • the RLOC corresponding to the EID may be updated according to the first mapping notification, that is, the RLOC corresponding to the EID is updated by the RLOC of the source TR to the RLOC of the target TR, and After the update is complete, a mapping notification confirmation is sent to the mapping server.
  • Step 10 The mapping server sends a second map notification (map notify) to the target TR.
  • the second mapping notification is used to notify the target TR, and the terminal completes the handover in the LISP network.
  • the registration request confirmation process may be performed. Specifically, the following step 11 may be performed:
  • Step 11 The target TR sends a request acknowledgment (register ACK) to the target GW-U.
  • the step 11 may specifically be that the target TR sends a request confirmation of the terminal to the target GW-U through a signaling interface with the target GW-U.
  • the TAU process on the wireless network side can be continued. Specifically, the following steps 12 - 16 can be performed:
  • Step 12 The target GW-U sends a create session response to the GW-C.
  • Step 13 The GW-C sends a modify bearer response to the MME.
  • Step 14 The MME sends a TAU accept (TAU accept) to the terminal.
  • Step 15 The terminal sends a TAU complete (TAU complete) to the MME.
  • Step 16 The GW-C sends a delete session request to the source GW-U, and the source GW-U sends a delete session response to the GW-C.
  • the session of the terminal may be deleted, and after the deletion is completed, the delete session response is sent to the GW-C.
  • a signaling interface may be set between the GW-U and the target TR, or a letter may be set between the GW-C and the target TR.
  • the above process is a TAU process in which a signaling interface exists between the GW-U and the target TR, and the interaction between the LISP network and the mobile communication network is completed through a signaling interface between the GW-U and the target TR.
  • Step 6 is replaced by: GW-C sends a registration request of the terminal to the target TR, where the target TR refers to the TR corresponding to the target GW-U, and there is a signaling interface between the target TR and the GW-C, that is, step 6 Specifically, the GW-C sends a registration request of the terminal to the target TR by using a signaling interface with the target TR;
  • the interpretation of the source TR in step 8 is replaced by: the source TR refers to the TR corresponding to the source GW-U, and there is a signaling interface between the source TR and the GW-C;
  • Step 11 is replaced by: the target TR sends a request confirmation to the GW-C.
  • the target TR transmits a request confirmation of the terminal to the GW-C through a signaling interface with the GW-C.
  • the mobility management method of the present invention is specifically described by taking an X2-based handover procedure and the network device as a GW-U as an example.
  • Step 1 The target base station sends a path switch request to the MME.
  • Step 2 - Step 6 Steps 2 and 6 are the same as steps 4 and 8 in Embodiment 3, and are not described here.
  • Step 6a The source TR sends an end marker message to the source GW-U.
  • the end marker message includes an EID.
  • the source GW-U may send an end marker message on the original forwarding path according to the received end marker message.
  • Step 7 The source TR sends a request to the peer TR (peer-TR) to request a solicit map request.
  • the solicit map request carries the EID of the terminal.
  • the source TR may update the RLOC corresponding to the EID according to the first mapping notification, that is, the RLOC corresponding to the EID is updated by the RLOC of the source TR to the RLOC of the target TR, and
  • the solicit map request is sent to the peer TR, so that the peer TR re-acquires the RLOC of the TR corresponding to the terminal, and the re-acquired RLOC is the RLOC of the target TR.
  • Step 8 - Step 12 The steps 8 to 12 are the same as the steps 9 to 13 in the embodiment 3, and are not described here.
  • Step 13 The MME sends a path switch request ACK to the target base station.
  • Step 14 The target base station sends a release resource request to the source base station.
  • Step 15a The GW-C sends a delete session request to the source GW-U.
  • Step 15b The source GW-U sends a delete session response to the GW-C.
  • a signaling interface may be set between the GW-U and the target TR, or a letter may be set between the GW-C and the target TR.
  • the above process is an X2 based handover procedure in which a signaling interface exists between the GW-U and the target TR, and the interaction between the LISP network and the mobile communication network is completed through a signaling interface between the GW-U and the target TR.
  • step 4 with: GW-C sends a registration request of the terminal to the target TR, where
  • the target TR refers to the TR corresponding to the target GW-U, and there is a signaling interface between the target TR and the GW-C, that is, the specific step 4 may be that the GW-C passes the signaling interface with the target TR to the target.
  • TR sends a registration request of the terminal;
  • the interpretation of the source TR in step 6 is replaced by: the source TR refers to the TR corresponding to the source GW-U, and there is a signaling interface between the source TR and the GW-C;
  • Step 10 is replaced by: the target TR sends a request confirmation to the GW-C.
  • the target TR transmits a request confirmation of the terminal to the GW-C through a signaling interface with the GW-C.
  • the above process is based on the X2 handover process of the user, and the X2 handover process based on the service flow may also be performed by using the above process.
  • the registration request of the terminal in step 4 does not include an EID, but includes an n-tuple, which is an n-tuple of a service flow that needs to perform X2 handover;
  • the mapping request in step 5 does not include the EID and the RLOC of the target TR corresponding to the EID, but includes the n-tuple and the RLOC of the target TR corresponding to the n-tuple, so that the mapping server will include the n- included in the mapping request.
  • the tuple is saved corresponding to the RLOC of the target TR;
  • the first mapping notification in step 6 does not include the EID and the RLOC of the target TR corresponding to the EID, but includes the n-tuple and the RLOC of the target TR corresponding to the n-tuple, so that the source TR updates according to the first mapping notification.
  • the RLOC corresponding to the n-tuple, the RLOC corresponding to the n-tuple is updated by the RLOC of the source TR to the RLOC of the target TR;
  • the end marker message in step 6a does not include the EID, but includes the n-tuple;
  • the solicit map request in step 7 carries not the EID of the terminal but the n-tuple of the service flow.
  • the mobility management method of the present invention is specifically described by taking the S1 based handover procedure and the network device as the GW-U as an example.
  • Step 1 The source base station decision to initiate a S1 handover (decision to trigger a relocation via S1).
  • Step 2 The source base station sends a handover request to the MME.
  • Step 3 The MME sends a modify bearer request to the GW-C.
  • Step 3a The GW-C sends a create session request to the target GW-U, and the target GW-U sends a create session response to the GW-C.
  • Step 3b The GW-C sends a modify bearer response to the MME.
  • Step 5 The MME sends a handover request to the target base station.
  • Step 5a The target base station sends a handover request acknowledgement (ACK) to the MME.
  • ACK handover request acknowledgement
  • Step 6 The MME sends a create indirect data forwarding tunnel request to the GW-C.
  • Step 6a The GW-C sends an indirect data tunnel forwarding request to the target GW-U, and the target GW-U sends a create indirect data forwarding tunnel response to the GW-C.
  • Step 6b The GW-C sends an indirect data tunnel forwarding request to the source GW-U, and the source GW-U sends an indirect data tunnel forwarding response to the GW-C.
  • Step 6c The GW-C sends an indirect data tunnel forwarding response to the MME.
  • Step 7 The MME sends a handover command to the source base station.
  • Step 7a The source base station sends a handover command to the terminal.
  • Step 8 The source base station sends an eNB status transfer to the MME.
  • Step 8a The MME sends an MME status transfer to the target base station.
  • Step 8c Indirect forwarding of data is completed by the source base station, the source GW-U, the target GW-U, and the target base station.
  • Step 9 The terminal sends a handover confirm to the target base station.
  • the target base station sends a handover notify to the MME.
  • Step 10 The MME sends a modify bearer request to the GW-C.
  • Step 11 The GW-C sends a modify session request to the target GW-U.
  • Step 12 The target GW-U sends a registration request of the terminal to the target TR.
  • the target TR refers to the TR corresponding to the target GW-U, and the signaling interface exists between the target TR and the target GW-U, that is, the specific step 12 may be that the target GW-U passes the letter with the target TR.
  • the interface is caused to send a registration request of the terminal to the target TR, where the registration request includes an identifier (EID) of the terminal.
  • Step 13 The target TR sends a map register to the map server.
  • the mapping request includes an EID and an RLOC of the target TR corresponding to the EID.
  • Step 14 LISP handover process.
  • Step 15 The mapping server sends a map notify to the target TR.
  • the mapping notification includes an EID and an RLOC of the target TR corresponding to the EID.
  • the mapping server receives the mapping request sent by the target TR, the EID included in the mapping request may be saved corresponding to the RLOC of the target TR, and after the saving is completed, the mapping notification is sent to the target TR.
  • the process of sending an end marker message to the source GW-U by the source TR may be further included, and the end marker message includes an EID, so that the end marker sent by the source TR is received at the source GW-U.
  • the source GW-U may send an end marker message on the original forwarding path according to the received end marker message.
  • Step 16 The target TR sends a request acknowledgement (register ACK) to the target GW-U.
  • the step 16 may specifically be that the target TR sends a request confirmation of the terminal to the target GW-U through a signaling interface with the target GW-U.
  • Step 17 The target GW-U sends a modify session request to the GW-C.
  • Step 18 The GW-C sends a modify bearer response to the MME.
  • Step 19 The MME sends a UE context release command to the source base station, and the source base station sends a UE context release complete to the MME.
  • Step 20 The MME sends a delete indirect data forwarding tunnel request to the GW-C.
  • Step 20a The GW-C sends a delete session request to the source GW-U and deletes the indirect data tunnel forwarding request, and the source GW-U sends a delete session response to the GW-C and deletes the indirect data tunnel. Delete indirect data forwarding tunnel response.
  • Step 20b The GW-C sends a delete indirect data tunnel forwarding request to the target GW-U, and the target GW-U sends a delete indirect data tunnel forwarding response to the GW-C.
  • Step 20c The GW-C sends a delete indirect data tunnel forwarding response to the MME.
  • a signaling interface may be set between the GW-U and the target TR, or a letter may be set between the GW-C and the target TR.
  • Order interface is an S1 based handover procedure in which a signaling interface exists between the GW-U and the target TR, and the interaction between the LISP network and the mobile communication network is completed through a signaling interface between the GW-U and the target TR.
  • Step 12 is replaced by: GW-C sends a registration request of the terminal to the target TR, where the target TR refers to the TR corresponding to the target GW-U, and there is a signaling interface between the target TR and the GW-C, that is, step 12 Specifically, the GW-C sends a registration request of the terminal to the target TR by using a signaling interface with the target TR;
  • Step 16 is replaced by: the target TR sends a request confirmation to the GW-C.
  • the target TR transmits a request confirmation of the terminal to the GW-C through a signaling interface with the GW-C.
  • the above process is based on the X2 handover process of the user, and the X2 handover process based on the service flow may also be performed by using the above process.
  • the registration request of the terminal in step 12 does not include an EID, but includes an n-tuple, which is an n-tuple of a service flow that needs to perform S1 handover;
  • the mapping request in step 13 does not include the EID and the RLOC of the target TR corresponding to the EID, but includes the n-tuple and the RLOC of the target TR corresponding to the n-tuple, so that the mapping server will include the n- included in the mapping request.
  • the tuple is saved corresponding to the RLOC of the target TR;
  • the end marker does not include the EID, but includes the n-tuple.
  • the mobility management method of the present invention is specifically introduced by taking the traffic flow offload process and the network device as the GW-C as an example.
  • Step 1 The terminal initiates a service request for a new service.
  • Step 2 The GW-U detects the service flow of the new service of the terminal.
  • the GW-U may be an R-GWU.
  • the R-GWU may detect the service flow of the new service of the terminal.
  • the GW-U can also be an L-GWU. Since all services of the terminal pass the L-GWU by default, when the terminal initiates a new service, the L-GWU can detect the service flow of the new service of the terminal.
  • Step 3 The GW-U sends an event report to the GW-C.
  • the GW-U can match the service according to the pre-configured rule or the rule delivered by the GW-C.
  • the GW-U sends an event report to the GW-C according to the matching result of the rule.
  • Step 4 The GW-C determines that the service flow of the new service needs to be offloaded to the L-GWU.
  • the GW-C may determine, according to information such as the location of the new service, whether the service flow of the new service needs to be offloaded to the L-GWU.
  • the GW-C may establish a dedicated bearer for the new service to complete the traffic offloading, or if the new service has been transmitted by the L-GWU, the GW-C may deliver a corresponding service flow processing method to the L-GWU. For L-GWU Complete the diversion of the business.
  • the GW-C may also be based on the bearer resource modification procedure initiated by the terminal, or the IP-Connectivity Access Network (IP-CAN) initiated by the Policy and Charging Rules Function (PCRF).
  • IP-CAN IP-Connectivity Access Network
  • PCRF Policy and Charging Rules Function
  • Step 5 The GW-C sends a create session request (or modify the session request) to the GW-U, and the GW-U receives the create session response (or modify the session response) sent by the GW-C.
  • Step 6 The GW-C sends a registration request to the first TR.
  • the first TR is a TR corresponding to the L-GWU, and a signaling interface exists between the first TR and the GW-C.
  • the specific step is: the GW-C passes the signaling interface with the first TR.
  • a TR sends a registration request, which includes the identity of the service flow of the new service of the terminal.
  • Step 7 The first TR registers the service flow of the new service of the terminal into the LISP network.
  • the TR in the data center (DC) where the new service is located can retrieve the new one from the LISP network according to the identifier of the service flow of the new service.
  • the TR of the service flow of the service corresponds to the TR, that is, the first TR can be detected, and the downlink data is sent to the first TR.
  • a signaling interface may be set between the GW-U and the first TR, or between the GW-C and the first TR. Set up the signaling interface.
  • the above process is a service flow offload flow in which the signaling interface exists between the GW-C and the first TR, and the interaction between the LISP network and the mobile communication network is completed through the signaling interface between the GW-C and the first TR. .
  • the step 6 is replaced by: the GW-U sends a registration request to the first TR, where the first TR and the GW-U have a signaling interface, that is, the specific step 6 may be: the GW-U passes the first The signaling interface between the TRs sends a registration request of the terminal to the first TR.
  • the GW-U may receive the create session request or repair sent by the GW-C in step 5. After changing the session request, a registration request is sent to the first TR.
  • each network element such as a network device, and a TR, includes a hardware structure and/or a software module for performing various functions in order to implement the above functions.
  • a network element such as a network device, and a TR
  • the present invention can be implemented in a combination of hardware or hardware and computer software in combination with the algorithm steps of the various examples described in the embodiments disclosed herein. Whether a function is implemented in hardware or computer software to drive hardware depends on the specific application and design constraints of the solution. A person skilled in the art can use different methods for implementing the described functions for each particular application, but such implementation should not be considered to be beyond the scope of the present invention.
  • the embodiment of the present invention may divide the function module into the network device according to the foregoing method example.
  • each function module may be divided according to each function, or two or more functions may be integrated into one processing module.
  • the above integrated modules can be implemented in the form of hardware or in the form of software functional modules. It should be noted that the division of the module in the embodiment of the present invention is schematic, and is only a logical function division, and the actual implementation may have another division manner.
  • FIG. 13 is a schematic diagram showing a possible composition of the network device involved in the foregoing embodiment.
  • the network device may include: the learning unit 51. And transmitting unit 52.
  • the learning unit 51 is configured to support the network device to perform step 201 in the mobility management method shown in FIG. 4, step 301 in the mobility management method shown in FIG. 5, and the mobility management method shown in FIG. Step 401, step 4 in the mobility management method shown in FIG. 7, step 3 in the mobility management method shown in FIG. 8, step 5 in the mobility management method shown in FIG. 9, shown in FIG. Step 3 in the mobility management method, step 11 in the mobility management method shown in FIG. 11, and creation (modification) session response in step 5 in the mobility management method shown in FIG.
  • the sending unit 52 is configured to support the network device to perform step 202 in the mobility management method shown in FIG. 4, step 302 in the mobility management method shown in FIG. 5, and steps in the mobility management method shown in FIG. 402, in the mobility management method shown in FIG. Step 5, step 4 in the mobility management method shown in FIG. 8, step 6 in the mobility management method shown in FIG. 9, step 4 in the mobility management method shown in FIG. 10, shown in FIG. Step 12 in the mobility management method, and step 6 in the mobility management method shown in FIG.
  • the network device may further include: a receiving unit 53.
  • the receiving unit 53 is configured to support the network device to perform step 205 in the mobility management method shown in FIG. 4, step 305 in the mobility management method shown in FIG. 5, and steps in the mobility management method shown in FIG. 405, step 8 in the mobility management method shown in FIG. 7, step 7 in the mobility management method shown in FIG. 8, step 11 in the mobility management method shown in FIG. 9, and movement shown in FIG. Step 10 in the sex management method, step 16 in the mobility management method shown in FIG.
  • the network device provided by the embodiment of the present invention is used to execute the mobility management method described above, so that the same effect as the mobility management method described above can be achieved.
  • FIG. 15 shows another possible composition diagram of the network device involved in the above embodiment.
  • the network device includes a processing module 61 and a communication module 62.
  • the processing module 61 is configured to control and manage the action of the network device.
  • the processing module 1201 is configured to support the network device to perform step 201 in the mobility management method shown in FIG. 4, in the mobility management method shown in FIG. Step 301, step 401 in the mobility management method shown in FIG. 6, step 4 in the mobility management method shown in FIG. 7, step 3 in the mobility management method shown in FIG. 8, and shown in FIG. Step 5 in the mobility management method, step 3 in the mobility management method shown in FIG. 10, step 11 in the mobility management method shown in FIG. 11, and step 5 in the mobility management method shown in FIG. Creating (modifying) session responses, and/or other processes for the techniques described herein.
  • the communication module 62 is configured to support communication of the network device with other network entities, such as the functional modules or network entities shown in FIG. 3, FIG. 16, FIG. 17, FIG. 18 or FIG.
  • the communication between the two can be used to perform step 202, step 205 in the mobility management method shown in FIG. 4, step 302, step 305 in the mobility management method shown in FIG. 5, and the movement shown in FIG. Steps 402 and 405 in the mobility management method, steps 5 and 8 in the mobility management method shown in FIG. 7, and steps 4 and 7 in the mobility management method shown in FIG. Steps 6 and 11 in the mobility management method, steps 4 and 10 in the mobility management method shown in FIG. 10, and steps 12 and 16 in the mobility management method shown in FIG. Step 6 in the mobility management method, step 405 in the mobility management method shown in FIG. 6.
  • the network device may also include a storage module 63 for storing program codes and data of the network device.
  • the processing module 61 can be a processor or a controller. It is possible to implement or carry out the various illustrative logical blocks, modules and circuits described in connection with the present disclosure.
  • the processor can also be a combination of computing functions, for example, including one or more microprocessor combinations, a combination of a DSP and a microprocessor, and the like.
  • the communication module 62 can be a transceiver, a transceiver circuit, a communication interface, or the like.
  • the storage module 63 can be a memory.
  • the network device When the processing module 61 is a processor, the communication module 62 is a communication interface, and the storage module 63 is a memory, the network device according to the embodiment of the present invention may be the network device shown in FIG.
  • the network device provided by the embodiment of the present invention is used to execute the mobility management method described above, so that the same effect as the mobility management method described above can be achieved.
  • the embodiment of the present invention may divide the function module into the TR according to the foregoing method example.
  • each function module may be divided according to each function, or two or more functions may be integrated into one processing module.
  • the above integrated modules can be implemented in the form of hardware or in the form of software functional modules. It should be noted that the division of the module in the embodiment of the present invention is schematic, and is only a logical function division, and the actual implementation may have another division manner.
  • FIG. 16 shows a possible composition diagram of the TR involved in the above and the embodiments, as shown in FIG.
  • the TR may include a receiving unit 71 and a trigger unit 72.
  • the receiving unit 71 is configured to support the TR to perform the registration request sent by the receiving network device through the signaling interface in step 203 in the mobility management method shown in FIG. 4, and the steps in the mobility management method shown in FIG.
  • the triggering unit 72 is configured to support the TR to perform the switching of the route triggering the LISP network in step 203 in the mobility management method shown in FIG. 4, and the triggering LISP network in step 303 in the mobility management method shown in FIG.
  • the TR may further include: a sending unit 73.
  • the transmitting unit 73 is configured to support the step 204 of performing the TR in the mobility management method shown in FIG. 4, the step 304 in the mobility management method shown in FIG. 5, and the step 404 in the mobility management method shown in FIG. Step 8 in the mobility management method shown in FIG. 7, step 7 in the mobility management method shown in FIG. 8, step 11 in the mobility management method shown in FIG. 9, and mobility in FIG. Step 10 in the management method, step 16 in the mobility management method shown in FIG.
  • the TR provided by the embodiment of the present invention is used to execute the mobility management method described above, and thus The same effect as the above mobility management method can be achieved.
  • Fig. 18 shows another possible composition diagram of the TR involved in the above embodiment.
  • the TR includes a processing module 81 and a communication module 82.
  • the processing module 81 is for controlling management of the actions of the TR and/or other processes for the techniques described herein, such as for performing the triggering LISP network in step 203 of the mobility management method illustrated in FIG.
  • the communication module 82 is configured to support communication of the TR with other network entities, such as communication with the functional modules or network entities shown in FIG. 3, FIG. 16, FIG. 17, FIG. 18 or FIG. 20, eg, for performing the map
  • the TR may also include a storage module 83 for storing program codes and data of the TR.
  • the processing module 81 can be a processor or a controller. It is possible to implement or carry out the various illustrative logical blocks, modules and circuits described in connection with the present disclosure.
  • the processor can also be a combination of computing functions, for example, including one or more microprocessor combinations, a combination of a DSP and a microprocessor, and the like.
  • the communication module 82 can be a transceiver, Transceiver circuit or communication interface.
  • the storage module 83 can be a memory.
  • the TR involved in the embodiment of the present invention may be the TR shown in FIG.
  • the TR provided by the embodiment of the present invention is used to execute the above mobility management method, and thus the same effect as the mobility management method described above can be achieved.
  • FIG. 19 is a schematic structural diagram of a network device according to an embodiment of the present invention.
  • the network device may be GW-U 14 or GW-C 15 in the network architecture shown in FIG.
  • the network device can include a processor 91, a memory 92, a system bus 93, and a signaling interface 94.
  • the processor 91 may be a processor or a collective name of a plurality of processing elements.
  • the processor 91 may be a general central processing unit (CPU), or an application-specific integrated circuit (ASIC), or one or more program execution programs for controlling the present invention.
  • An integrated circuit such as one or more digital signal processors (DSPs), or one or more field programmable gate arrays (FPGAs).
  • processor 91 may include one or more CPUs, such as CPU0 and CPU1 in FIG.
  • the network device can include multiple processors, such as processor 91 and processor 95 in FIG. Each of these processors can be a single-CPU processor or a multi-core processor.
  • a processor herein may refer to one or more devices, circuits, and/or processing cores for processing data, such as computer program instructions.
  • the memory 92 can be a read-only memory (ROM) or other type of static storage device that can store static information and instructions, a random access memory (RAM) or other type that can store information and instructions.
  • Dynamic storage device also can be electrically erasable programmable read only memory (electrically Erasable programmable read-only memory (EEPROM), compact disc read-only memory (CD-ROM) or other optical disc storage, optical disc storage (including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.)
  • EEPROM electrically erasable programmable read only memory
  • CD-ROM compact disc read-only memory
  • optical disc storage including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.
  • the memory can exist independently
  • the memory 92 is used to store application code for executing the solution of the present invention, and is controlled by the processor 91 for execution.
  • the processor 91 is operative to execute application code stored in the memory 92.
  • the system bus 93 may be an industry standard architecture (ISA) bus, a peripheral component (PCI) bus, or an extended industry standard architecture (EISA) bus.
  • ISA industry standard architecture
  • PCI peripheral component
  • EISA extended industry standard architecture
  • the bus can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is shown in Figure 19, but it does not mean that there is only one bus or one type of bus.
  • the signaling interface 94 uses devices such as any transceiver for communicating with other devices or communication networks, such as Ethernet, radio access network (RAN), and wireless local area networks (WLAN). Wait.
  • the signaling interface 94 can include a receiving unit implementing a receiving function and a transmitting unit implementing a transmitting function.
  • signaling interface 94 is used to implement signaling interactions between network devices and TRs in a LISP network.
  • FIG. 20 is a schematic structural diagram of a TR according to an embodiment of the present invention.
  • the TR may be the first TR 16 or the second TR 17 in the network architecture shown in FIG. As shown in FIG. 20, the TR may include a processor 1001, a memory 1002, a system bus 1003, and a signaling interface 1004.
  • the processor 1001 may be a processor or a collective name of a plurality of processing elements.
  • the processor 1001 may be a CPU, or an ASIC, or one or more integrated circuits for controlling the execution of the program of the present invention, for example: one or more DSP, or one or more FPGAs.
  • the processor 1001 may include one or more CPUs, such as CPU0 and CPU1 in FIG.
  • the TR may include multiple processors, such as processor 1001 and processor 1005 in FIG. Each of these processors can be a single-CPU processor or a multi-CPU processor.
  • a processor herein may refer to one or more devices, circuits, and/or processing cores for processing data, such as computer program instructions.
  • the memory 1002 may be a ROM or other type of static storage device that can store static information and instructions, RAM or other types of dynamic storage devices that can store information and instructions, or EEPROM, CD-ROM or other optical disk storage, optical disk storage. (including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), magnetic disk storage media or other magnetic storage devices, or can be used to carry or store desired program code in the form of instructions or data structures and can be Any other media accessed, but not limited to this.
  • the memory can exist independently and be connected to the processor via a bus.
  • the memory can also be integrated with the processor.
  • the memory 1002 is used to store application code for executing the solution of the present invention, and is controlled by the processor 1001 for execution.
  • the processor 1001 is configured to execute application code stored in the memory 1002.
  • the system bus 1003 can be an ISA bus, a PCI bus, or an EISA bus.
  • the bus can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is shown in FIG. 20, but it does not mean that there is only one bus or one type of bus.
  • Signaling interface 1004 using any type of transceiver, for communicating with other devices or communication networks, such as Ethernet, RAN, WLAN, and the like.
  • the communication interface 1004 may include a receiving unit that implements a receiving function, and a transmitting unit that implements a transmitting function.
  • the signaling interface 1004 is used to implement signaling interactions between the TR and network devices in the mobile communication network.
  • the disclosed apparatus and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the modules or units is only a logical function division.
  • there may be another division manner for example, multiple units or components may be used.
  • the combination may be integrated into another device, or some features may be ignored or not performed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may be one physical unit or multiple physical units, that is, may be located in one place, or may be distributed to multiple different places. . Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a readable storage medium. Based on such understanding, the technical solution of the embodiments of the present invention may contribute to the prior art or all or part of the technical solution may be embodied in the form of a software product stored in a storage medium. A number of instructions are included to cause a device (which may be a microcontroller, chip, etc.) or a processor to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a USB flash drive, a mobile hard disk, and a read-only memory (English: Read-Only Memory, Jane) Weighing: ROM), random access memory (English: Random Access Memory, RAM), disk or optical disk, and other media that can store program code.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例公开了一种移动性管理方法、设备及通信系统,涉及通信领域,以兼顾终端的业务连续性以及接收数据业务报文的时延。具体方案为,通信系统包括LISP网络,LISP网络包括终端移动之后需接入的TR,和移动通信网络,移动通信网络包括与TR之间存在信令接口的网络设备,网络设备用于获知需切换网关,通过信令接口向TR发送注册请求,注册请求包括终端的标识或终端的业务流的标识,注册请求用于通知需进行网关切换;TR用于从网络设备接收注册请求后,触发LISP网络的路由的切换;网络设备是数据业务报文转发的锚点设备,或者是用于对数据业务报文转发的锚点设备进行控制的设备。本发明实施例用于移动性管理的过程中。

Description

一种移动性管理方法、设备及通信系统 技术领域
本发明实施例涉及通信领域,尤其涉及一种移动性管理方法、设备及通信系统。
背景技术
随着通信技术的发展,业界为了确保第三代合作伙伴项目(the 3rd generation partnership project,3GPP)网络的领先优势,制定了移动通信网络的长期演进(long term evolution,LTE)计划,并在该LTE计划的指导下定义了新的移动通信网络架构,称为演进分组系统(evolved packet system,EPS)。该EPS的核心网主要包括移动管理实体(mobile management entity,MME)、分组数据网网关(packet data network gateway,PGW)和服务网关(serving gateway,SGW)三个逻辑功能体。
在现有技术中,为了实现灵活部署,并方便扩容,业界又提出了控制面-用户面(control plane-user plane,CU)分离技术,其主要是基于控制和转发解耦的思想将核心网分为控制面和用户面。具体的,采用了CU分离技术的网络架构图可以如图1所示。其中,控制面(control plane,CP)可以包括MME、控制面网关(gateway control plane,GW-C)等逻辑功能体,用户面可以包括用户面网关(gateway user plane,GW-U)等逻辑功能体。GW-U主要用于转发数据业务报文,其转发数据业务报文的逻辑由CP控制完成。在这种网络架构下,如图2所示,当终端处于基站1的覆盖范围内时,可以通过第一GW-U和路由器1接入访问应用(Application,APP)业务,数据业务报文的传输路径如图2中的虚线所示。其中,第一GW-U既实现分组数据网用户面网关(packet data network gateway user plane,PGW-U)的逻辑功能,还实现服务用户面网关(serving gateway user plane,SGW-U)的逻辑功能。若终端发生了移动,为了确保终端的业务连 续性,终端移动过程中的锚点网关(即转发数据报文的PGW-U)是不能发生变化的。也就是说,如图2所示,若终端由基站1的覆盖范围移动到基站2(基站2和基站1由不同的网关管理)的覆盖范围内,则终端需通过第二GW-U、路由器2、路由器1并经由第一GW-U才能继续访问APP业务。此时的数据业务报文的传输路径如图2中的实线所示,其中第一GW-U实现PGW-U的逻辑功能,第二GW-U实现SGW-U的逻辑功能。
现有技术中至少存在如下问题:若终端发生移动,终端通过第二GW-U、路由器2、路由器1并经由第一GW-U继续访问APP业务,虽然保证了终端的业务连续性,但是会导致业务路径迂回,从而导致终端接收到数据业务报文的时延增大。
发明内容
本发明实施例提供一种移动性管理方法及设备,以兼顾终端的业务连续性以及接收数据业务报文的时延。
为达到上述目的,本发明的实施例采用如下技术方案:
本发明实施例的第一方面,提供一种通信系统,包括:位置和标识分离协议(locator/ID separation protocol,LISP)网络和移动通信网络。该LISP网络包括终端移动之后需接入的隧道路由器(tunnel router,TR),该移动通信网络包括与TR之间存在信令接口的网络设备,该网络设备是数据业务报文转发的锚点设备,或者,网络设备是用于对数据业务报文转发的锚点设备进行控制的设备。
网络设备用于获知需切换网关,并通过信令接口向TR发送注册请求,其中,该注册请求包括终端的标识或终端的业务流的标识,注册请求用于通知需进行网关切换。TR用于从网络设备接收注册请求后,触发LISP网络的路由的切换。
本发明实施例提供的通信系统包括LISP网络和移动通信网络,在这种通信系统下,若终端发生移动且需进行网关切换时,便可以在保证终端的业务连续性的前提下进行网关的切换,进而避免了业务路径迂回的现象出现,即兼顾了终端的业务连续性以及接收数据 业务报文的时延。并且,通过在移动通信网络中的网络设备和LISP网络中的第一TR之间设置信令接口,使得在终端发生移动且需要切换网关时,网络设备可以通过信令接口向第一TR发送注册请求,该注册请求用于通知需进行网关切换,以便在LISP网络中执行路由的切换,这样避免了LISP网络无法感知网关变化,或LISP网络中路由的切换时间长于移动通信网络中网关的切换的时间导致的数据包丢失的情况出现。
结合第一方面,在一种可能的实现方式中,为了使得网络设备及时获知在LISP网络中的路由切换已完成,在LISP网络的路由的切换完成后,TR用于通过信令接口向网络设备发送注册请求确认,注册请求确认用于通知在LISP网络中的路由的切换已完成,网络设备用于从TR接收注册请求确认。
结合第一方面和上述可能的实现方式,在另一种可能的实现方式中,当网络设备是用于对数据业务报文转发的锚点设备进行控制的设备时,网络设备用于从MME接收修改承载请求,根据修改承载请求中包括的终端的位置信息确定需切换网关,以获知需切换网关。
结合第一方面和上述可能的实现方式,在另一种可能的实现方式中,当网络设备是数据业务报文转发的锚点设备时,通信系统还包括用于对网络设备进行控制的GW-C;GW-C用于从MME接收基于终端的修改承载请求,根据修改承载请求确定需进行网关切换,向网络设备发送会话请求消息;网络设备用于从GW-C接收会话请求消息,以获知需切换网关;其中,会话请求消息包括创建会话请求或修改会话请求。
本发明实施例的第二方面,提供一种移动性管理方法,包括:
网络设备在获知需切换网关后,通过网络设备与TR之间的信令接口,向TR发送注册请求。TR为终端移动之后需接入的TR,注册请求包括终端的标识或终端的业务流的标识,注册请求用于通知需进行网关切换。
其中,网络设备所属的移动通信网络与TR所属的LISP网络结合部署,网络设备是数据业务报文转发的锚点设备,或者,网络设备是用于对数据业务报文转发的锚点设备进行控制的设备。
本发明实施例提供的移动性管理方法,应用于移动通信网络与LISP网络相结合的系统中。在这种架构下,若终端发生移动且需进行网关切换时,便可以在保证终端的业务连续性的前提下进行网关的切换,进而避免了业务路径迂回的现象出现,即兼顾了终端的业务连续性以及接收数据业务报文的时延。并且,通过在移动通信网络中的网络设备和LISP网络中的第一TR之间设置信令接口,使得在终端发生移动且需要切换网关时,网络设备可以通过信令接口向第一TR发送注册请求,该注册请求用于通知需进行网关切换,以便在LISP网络中执行路由的切换,这样避免了LISP网络无法感知网关变化,或LISP网络中路由的切换时间长于移动通信网络中网关的切换的时间导致的数据包丢失的情况出现。
结合第二方面,在一种可能的实现方式中,为了使得网络设备及时获知在LISP网络中的路由切换已完成,在LISP网络的路由的切换完成后,该移动性管理方法还可以包括:网络设备通过信令接口,从TR接收注册请求确认,注册请求确认用于通知在LISP网络中的路由的切换已完成。
结合第二方面和上述可能的实现方式,在另一种可能的实现方式中,当网络设备是用于对数据业务报文转发的锚点设备进行控制的设备时,网络设备获知需切换网关具体的可以包括:网络设备从MME接收修改承载请求,并根据修改承载请求中包括的终端的位置信息确定需切换网关。
例如,在具体实现中,在针对终端进行切换的场景中,网络设备可以根据修改承载请求中包括的终端的位置信息确定是否需基于终端切换网关;在针对终端的业务流切换的场景中,网络设备可以根据修改承载请求中的位置信息,以及本地存储的业务信息确定是否需基于终端的业务流切换网关。当然,当网络设备确定出不需切 换网关时,可以按照现有标准协议中的移动性管理方法对终端进行移动性管理。
结合第二方面和上述可能的实现方式,在另一种可能的实现方式中,当网络设备是数据业务报文转发的锚点设备时,若用于对网络设备进行控制的GW-C从MME接收到基于终端的修改承载请求,并根据该接收到的修改承载请求确定需进行网关切换,GW-C可以通知网络设备需切换网关,也就是说,此时网络设备获知需切换网关具体的可以包括:网络设备从GW-C接收到会话请求消息,会话请求消息包括创建会话请求或修改会话请求。
本发明实施例的第三方面,提供一种移动性管理方法,包括:
第一TR通过第一TR与网络设备之间的信令接口,从网络设备接收注册请求,并触发第一TR所属的LISP网络的路由的切换。第一TR为终端移动之后需接入的TR,注册请求包括终端的标识或终端的业务流的标识,注册请求用于通知需进行网关切换。
其中,网络设备所属的移动通信网络与LISP网络结合部署,网络设备是数据业务报文转发的锚点设备,或者,网络设备是用于对数据业务报文转发的锚点设备进行控制的设备。
本发明实施例提供的移动性管理方法,应用于移动通信网络与LISP网络相结合的系统中。在这种架构下,若终端发生移动且需进行网关切换时,便可以在保证终端的业务连续性的前提下进行网关的切换,进而避免了业务路径迂回的现象出现,即兼顾了终端的业务连续性以及接收数据业务报文的时延。并且,通过在移动通信网络中的网络设备和LISP网络中的第一TR之间设置信令接口,使得在终端发生移动且需要切换网关时,网络设备可以通过信令接口向第一TR发送注册请求,该注册请求用于通知需进行网关切换,以便在LISP网络中执行路由的切换,这样避免了LISP网络无法感知网关变化,或LISP网络中路由的切换时间长于移动通信网络中网关的切换的时间导致的数据包丢失的情况出现。另外,在LISP网络中路由切换完成之后,第一TR通过信令接口向网络设备发送注册请 求确认,以使得网络设备及时获知在LISP网络中的路由切换已完成。
结合第三方面,在一种可能的实现方式中,第一TR触发第一TR所属的LISP网络的路由的切换具体的可以包括:第一TR向映射服务器发送映射请求,以便映射服务器收到映射请求后向第二TR发送第一映射通知,并在从第二TR接收到映射通知确认之后,向第一TR发送第二映射通知,第二映射通知用于通知在LISP网络中路由的切换已完成,第二TR为终端移动之前接入的TR。
为了使得网络设备及时获知在LISP网络中的路由切换已完成,该移动性管理方法还可以包括:第一TR从映射服务器接收第二映射通知,第一TR通过信令接口向网络设备发送注册请求确认,注册请求确认用于通知在LISP网络中的路由的切换已完成。
结合第三方面和上述可能的实现方式,在另一种可能的实现方式中,当注册请求中包括终端的标识时,映射请求中包括终端的标识,以及与终端的标识对应的第一TR的路由位置标识(routing locator,RLOC),第一映射通知中包括终端的标识,以及与终端的标识对应的第一TR的RLOC;当注册请求中包括终端的业务流的标识时,映射请求中包括业务流的标识,以及与业务流的标识对应的第一TR的RLOC,第一映射通知中包括业务流的标识,以及与业务流的标识对应的第一TR的RLOC。
结合第三方面和上述可能的实现方式,在另一种可能的实现方式中,为了使得第一TR可以获知在LISP网络的路由的切换是否完成,该移动性管理方法还可以包括:第二TR从映射服务器接收第一映射通知,第二TR向映射服务器发送映射通知确认。
本发明实施例的第四方面,提供一种网络设备,包括:获知单元和发送单元。
获知单元,用于获知需切换网关;发送单元,用于通过网络设备与TR之间的信令接口,向TR发送注册请求,TR为终端移动之后需接入的TR,注册请求包括终端的标识或终端的业务流的标识, 注册请求用于通知需进行网关切换;其中,网络设备所属的移动通信网络与TR所属的LISP网络结合部署,网络设备是数据业务报文转发的锚点设备,或者,网络设备是用于对数据业务报文转发的锚点设备进行控制的设备。
结合第四方面,在一种可能的实现方式中,该网络设备还可以包括:接收单元;接收单元,用于通过信令接口,从TR接收注册请求确认,注册请求确认用于通知在LISP网络中的路由的切换已完成。
结合第四方面和上述可能的实现方式,在另一种可能的实现方式中,当网络设备是用于对数据业务报文转发的锚点设备进行控制的设备时,获知单元,具体用于从MME接收修改承载请求;根据修改承载请求中包括的终端的位置信息确定需切换网关。
结合第四方面和上述可能的实现方式,在另一种可能的实现方式中,当网络设备是数据业务报文转发的锚点设备时,获知单元,具体用于从GW-C接收到会话请求消息,GW-C用于对网络设备进行控制,会话请求消息是GW-C在从MME接收到基于终端的修改承载请求并根据修改承载请求确定需进行网关切换之后发送的;会话请求消息包括创建会话请求或修改会话请求。
本发明实施例的第五方面,提供一种第一TR,包括:接收单元和触发单元。
接收单元,用于通过第一TR与网络设备之间的信令接口,从网络设备接收注册请求,第一TR为终端移动之后需接入的TR,注册请求包括终端的标识或终端的业务流的标识,注册请求用于通知需进行网关切换;触发单元,用于触发第一TR所属的LISP网络的路由的切换;网络设备所属的移动通信网络与LISP网络结合部署,网络设备是数据业务报文转发的锚点设备,或者,网络设备是用于对数据业务报文转发的锚点设备进行控制的设备。
结合第五方面,在一种可能的实现方式中,该TR还可以包括:发送单元;触发单元,具体用于向映射服务器发送映射请求,以便 映射服务器收到映射请求后向第二TR发送第一映射通知,并在从第二TR接收到映射通知确认之后,向第一TR发送第二映射通知,第二映射通知用于通知在LISP网络中路由的切换已完成,第二TR为终端移动之前接入的TR;接收单元,还用于从映射服务器接收第二映射通知;发送单元,用于通过信令接口向网络设备发送注册请求确认,注册请求确认用于通知在LISP网络中的路由的切换已完成。
结合第五方面和上述可能的实现方式,在另一种可能的实现方式中,当接收单元接收到的注册请求中包括终端的标识时,发送单元发送的映射请求中包括终端的标识,以及与终端的标识对应的第一TR的RLOC,第一映射通知中包括终端的标识,以及与终端的标识对应的第一TR的RLOC;当接收单元接收到的注册请求中包括终端的业务流的标识时,发送单元发送的映射请求中包括业务流的标识,以及与业务流的标识对应的第一TR的RLOC,第一映射通知中包括业务流的标识,以及与业务流的标识对应的第一TR的RLOC。
本发明实施例的第六方面,提供一种网络设备,包括:处理器、存储器、系统总线和信令接口。
存储器用于存储计算机执行指令,处理器与存储器通过系统总线连接,信令接口用于实现网络设备与TR之间的信令交互,TR为终端移动之后需接入的TR;当网络设备运行时,处理器执行存储器存储的计算机执行指令,以使网络设备执行如第一方面或第一方面的可能的实现方式中任一通信系统中网络设备的行为功能,或者,执行如第二方面或第二方面的可能的实现方式中任一移动性管理方法中网络设备的行为功能;其中,网络设备所属的移动通信网络与TR所属的LISP网络结合部署,网络设备是数据业务报文转发的锚点设备,或者,网络设备是用于对数据业务报文转发的锚点设备进行控制的设备。
本发明实施例的第七方面,提供一种TR,包括:处理器、存储器、系统总线和信令接口;存储器用于存储计算机执行指令,处理 器与存储器通过系统总线连接,信令接口用于实现TR与网络设备之间的信令交互,TR为终端移动之后需接入的TR;当TR运行时,处理器执行存储器存储的计算机执行指令,以使TR执行如第一方面或第一方面的可能的实现方式中任一通信系统中TR的行为功能,或者执行如权利要求第三方面或第三方面的可能的实现方式中任一移动性管理方法中第一TR的行为功能;TR所属的LISP网络与网络设备所属的移动通信网络结合部署,网络设备是数据业务报文转发的锚点设备,或者,网络设备是用于对数据业务报文转发的锚点设备进行控制的设备。
本发明实施例的第八方面,提供一种移动性管理方法,包括:
网络设备在获知需进行网关注册后,通过网络设备与TR之间的信令接口,向TR发送注册请求。TR为终端需接入的TR,注册请求包括终端的标识或终端的业务流的标识,注册请求用于通知需进行网关注册。
其中,网络设备所属的移动通信网络与TR所属的LISP网络结合部署,网络设备是数据业务报文转发的锚点设备,或者,网络设备是用于对数据业务报文转发的锚点设备进行控制的设备。
本发明实施例提供的移动性管理方法,应用于移动通信网络与LISP网络相结合的系统中,且移动通信网络中的网络设备和LISP网络中的TR之间设置有信令接口。在这种架构下,当终端新接入基站时,网络设备可以在获知需进行网关注册时,通过信令接口向TR发送注册请求,该注册请求用于通知需进行网关注册,以便在LISP网络中执行路由的注册。
结合第八方面,在一种可能的实现方式中,为了使得网络设备及时获知在LISP网络中的路由的注册已完成,在LISP网络的路由的注册完成后,该移动性管理方法还可以包括:网络设备通过信令接口,从TR接收注册请求确认,注册请求确认用于通知在LISP网络中的路由的注册已完成。
结合第八方面和上述可能的实现方式,在另一种可能的实现方 式中,当网络设备是用于对数据业务报文转发的锚点设备进行控制的设备时,网络设备获知需进行网关注册具体的可以包括:网络设备接收到GW-U发送的创建数据路径响应,并根据创建数据路径响应确定需针对终端进行网关的注册;或者,网络设备确定需将终端的业务流分流到GW-U,并确定需针对终端的业务流进行网关注册。
结合第八方面和上述可能的实现方式,在另一种可能的实现方式中,当网络设备是数据业务报文转发的锚点设备时,网络设备获知需进行网关注册具体的可以是:网络设备接收GW-C发送的创建数据路径请求,并根据创建数据路径请求确定需针对终端进行网关的注册。或者,若用于对网络设备进行控制的GW-C在确定需对终端的业务流分流到网络设备后,可以向网络设备发送创建会话请求,GW-C可以通知网络设备需切换网关,也就是说,此时网络设备获知需进行网关注册具体的可以包括:网络设备从GW-C接收到创建会话请求,并根据创建会话请求确定需针对终端的业务流进行网关注册。
本发明实施例的第九方面,提供一种移动性管理方法,包括:
TR通过TR与网络设备之间的信令接口,从网络设备接收注册请求,并触发TR所属的LISP网络的路由的切换。TR为终端需接入的TR,注册请求包括终端的标识或终端的业务流的标识,注册请求用于通知需进行网关注册。
其中,网络设备所属的移动通信网络与LISP网络结合部署,网络设备是数据业务报文转发的锚点设备,或者,网络设备是用于对数据业务报文转发的锚点设备进行控制的设备。
本发明实施例提供的移动性管理方法,应用于移动通信网络与LISP网络相结合的系统中,且移动通信网络中的网络设备和LISP网络中的TR之间设置有信令接口。在这种架构下,当终端新接入基站时,网络设备可以在获知需进行网关注册时,通过信令接口向TR发送注册请求,该注册请求用于通知需进行网关注册,以便在LISP网络中执行路由的注册。
结合第九方面,在一种可能的实现方式中,为了使得网络设备及时获知在LISP网络中的路由注册已完成,该移动性管理方法还可以包括:TR向映射服务器发送映射请求,TR从映射服务器接收映射通知,TR通过信令接口向网络设备发送注册请求确认,注册请求确认用于通知在LISP网络中的路由的注册已完成。
结合第九方面和上述可能的实现方式,在另一种可能的实现方式中,当注册请求中包括终端的标识时,映射请求中包括终端的标识,以及与终端的标识对应的TR的RLOC;当注册请求中包括终端的业务流的标识时,映射请求中包括业务流的标识,以及与业务流的标识对应的TR的RLOC。
本发明实施例的第十方面,提供一种移动性管理方法,包括:
网络设备在检测到终端的注销操作后,通过网络设备与TR之间的信令接口,向TR发送去注册请求。TR为终端当前接入的TR,注册请求包括终端的标识或终端的业务流的标识,注册请求用于通知需进行网关注销。
其中,网络设备所属的移动通信网络与TR所属的LISP网络结合部署,网络设备是数据业务报文转发的锚点设备,或者,网络设备是用于对数据业务报文转发的锚点设备进行控制的设备。
本发明实施例提供的移动性管理方法,应用于移动通信网络与LISP网络相结合的系统中,且移动通信网络中的网络设备和LISP网络中的TR之间设置有信令接口。在这种架构下,当网络设备检测到终端的注销操作时,通过信令接口向TR发送去注册请求,该去注册请求用于通知需进行网关注销,以便在LISP网络中执行路由的注销,这样避免了LISP网络无法感知终端的离开导致的不能及时删除相关数据的情况出现。
结合第十方面,在一种可能的实现方式中,为了使得网络设备及时获知在LISP网络中的路由的注销已完成,在LISP网络的路由的注销完成后,该移动性管理方法还可以包括:网络设备通过信令接口,从TR接收去注册请求确认,去注册请求确认用于通知在LISP 网络中的路由的注销已完成。
本发明实施例的第十一方面,提供一种移动性管理方法,包括:
TR通过TR与网络设备之间的信令接口,从网络设备接收去注册请求,并触发TR所属的LISP网络的路由的注销。TR为终端当前接入的TR,去注册请求包括终端的标识或终端的业务流的标识,去注册请求用于通知需进行网关注销。
其中,网络设备所属的移动通信网络与LISP网络结合部署,网络设备是数据业务报文转发的锚点设备,或者,网络设备是用于对数据业务报文转发的锚点设备进行控制的设备。
本发明实施例提供的移动性管理方法,应用于移动通信网络与LISP网络相结合的系统中,且移动通信网络中的网络设备和LISP网络中的TR之间设置有信令接口。在这种架构下,当网络设备检测到终端的注销操作时,通过信令接口向TR发送去注册请求,该去注册请求用于通知需进行网关注销,以便在LISP网络中执行路由的注销,这样避免了LISP网络无法感知终端的离开导致的不能及时删除相关数据的情况出现。
结合第十一方面,在一种可能的实现方式中,为了使得网络设备及时获知在LISP网络中的路由注册已完成,该移动性管理方法还可以包括:在LISP网络的网关的注销完成后,TR通过信令接口向网络设备发送去注册请求确认,去注册请求确认用于通知在LISP网络中的路由的注销已完成。
结合第十一方面和上述可能的实现方式,在另一种可能的实现方式中,为了使得业务对端的对等TR能够及时进行相应数据的更新,避免业务转发出错或丢包的现象出现,在TR通过TR与网络设备之间的信令接口,从网络设备接收去注册请求之后,该移动性管理方法还可以包括:TR向对等TR发送请求发起映射请求(solicit map request,SMR)消息;其中,当去注册请求中包括终端的标识时,SMR消息中包括终端的标识,SMR消息用于触发对等TR更新与终端的标识对应的RLOC;当去注册请求中包括终端的业务流的 标识时,SMR消息中包括终端的业务流的标识,SMR消息用于触发对等TR更新与终端的业务流的标识对应的RLOC。
结合第十一方面和上述可能的实现方式,在另一种可能的实现方式中,当网络设备是数据业务报文转发的锚点设备时,在TR向对等TR发送SMR消息之前,该移动性管理方法还可以包括:TR确定未接收到映射服务器发送的映射通知,TR向映射服务器发送映射请求;其中,当去注册请求中包括终端的标识时,映射通知用于通知终端已切换到目标TR,映射请求中包括终端的标识;当去注册请求中包括终端的业务流的标识时,映射通知用于通知终端的业务流已切换到目标TR,映射请求中包括终端的业务流的标识。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为现有技术提供的一种采用CU分离技术的网络架构图;
图2为现有技术提供的一种终端移动之后数据业务报文的传输路径示意图;
图3为本发明实施例提供的一种应用本发明实施例的系统架构的简化示意图;
图4为本发明实施例提供的一种移动性管理方法的流程图;
图5为本发明实施例提供的另一种移动性管理方法的流程图;
图6为本发明实施例提供的另一种移动性管理方法的流程图;
图7为本发明实施例提供的另一种移动性管理方法的流程图;
图8为本发明实施例提供的另一种移动性管理方法的流程图;
图9为本发明实施例提供的另一种移动性管理方法的流程图;
图10为本发明实施例提供的另一种移动性管理方法的流程图;
图11为本发明实施例提供的另一种移动性管理方法的流程图;
图12为本发明实施例提供的另一种移动性管理方法的流程图;
图13为本发明实施例提供的一种网络设备的组成示意图;
图14为本发明实施例提供的另一种网络设备的组成示意图;
图15为本发明实施例提供的另一种网络设备的组成示意图;
图16为本发明实施例提供的一种TR的组成示意图;
图17为本发明实施例提供的另一种TR的组成示意图;
图18为本发明实施例提供的另一种TR的组成示意图;
图19为本发明实施例提供的另一种网络设备的组成示意图;
图20为本发明实施例提供的另一种TR的组成示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在终端发生移动的情况下,为了兼顾终端的业务连续性以及接收数据业务报文的时延,本发明实施例提供一种移动性管理方法。其基本原理是:通过将移动通信网络与LISP网络结合部署,使得在终端发生移动且需要切换网关的情况下,可以进行网关的切换。并且,通过在移动通信网络中的网络设备与LISP网络中的第一TR之间设置信令接口,使得在终端发生移动之后,网络设备在获知需要切换网关时,可以通过该信令接口向第一TR发送注册请求,该注册请求用于通知需进行网关切换,注册请求中可以包括终端的标识或终端的业务流的标识,以便于第一TR在接收到注册请求之后,触发LISP网络中路由的切换,避免了LISP网络无法感知网关变化,或LISP网络中路由的切换时间长于移动通信网络中网关的切换的时间导致的数据包丢失的情况出现。
下面将结合附图对本发明实施例的实施方式进行详细描述。
如图3所示,图3示出的是可以应用本发明实施例的系统架构 的简化示意图。该系统架构可以包括:终端11、移动通信网络和LISP网络。
其中,移动通信网络可以是采用了CU分离技术的EPS。具体的,该移动通信网络至少可以包括:基站12、MME 13、GW-U 14、GW-C 15。MME 13和GW-C 15组成了CP。另外,该移动通信网络还可以是5G网络,此时CP可以包括移动性管理(mobility management,MM)、控制面会话管理(session management control,SM-C)等逻辑功能模块组成的网元,GW-U 14可以为用户面会话管理(session management user,SM-U)等逻辑功能模块组成的网元。
LISP网络至少可以包括:位于公网的第一TR 16和第二TR 17、位于映射系统的映射服务器18。
终端11可以包括各种具有无线通信功能的手持设备(如手机、智能终端、多媒体设备或流媒体设备等)、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其他处理设备,以及各种形式的用户设备(User Equipment,UE),移动台(Mobile Station,MS),终端设备(terminal device)等等。为方便描述,上面提到的设备统称为终端11。
基站12可以是无线通信的基站(Base Station,BS)或基站控制器等。基站12是一种部署在无线接入网中用以为终端11提供无线通信功能的装置,其主要功能有:进行无线资源的管理、互联网协议(Internet Protocol,IP)头的压缩及用户数据流的加密、用户设备附着时进行MME的选择、路由用户面数据至SGW、寻呼消息的组织和发送、广播消息的组织和发送、以移动性或调度为目的的测量及测量报告的配置等等。基站12可以包括各种形式的宏基站、微基站、中继站、接入点等等。在采用不同的无线接入技术的系统中,具备基站功能的设备的名称可能会有所不同,例如,在LTE系统中,称为演进的基站(evolved NodeB,eNB或eNodeB),在第3代移动通信技术(The 3rd Generation Telecommunication,3G)系统中,称为基站(Node B)等等。随着通信技术的演进,“基站”这一 名称可能会变化。此外,在其它可能的情况下,基站12可以是其它为终端11提供无线通信功能的装置。为方便描述,本发明实施例中,为终端11提供无线通信功能的装置称为基站12。
MME 13主要负责非接入层协议(Non-Access-Stratum,NAS)信令的传输、NAS信令加密、漫游、跟踪、分配用户临时身份标识等功能。
GW-U 14和GW-C 15共同负责为终端11提供业务网关功能、移动锚点功能,策略执行功能等。具体的:GW-U 14作为转发业务数据报文的锚点设备,主要负责业务数据报文的转发。GW-C 15保持与周边网元的信令接口,负责控制GW-U 14转发业务数据报文的逻辑。
第一TR 16和第二TR 17均为具备入口隧道路由器(ingress tunnel router,ITR)和出口隧道路由器(egress tunnel router,ETR)功能的TR。
映射服务器18主要用于从具备ETR功能的TR收集并存储终端11的标识和与终端11的标识对应的TR的RLOC。
在本发明实施例中,GW-U 14与第一TR 16对应部署,或者第一TR 16作为功能模块部署在GW-U 14内部。
第一TR 16与GW-U 14之间设置有信令接口,或者,第一TR 16与用于对GW-U 14进行控制的GW-C 15之间设置有信令接口。另外,当第一TR 16与用于对GW-U 14进行控制的GW-C 15之间设置有信令接口时,GW-C 15需对第一TR 16与GW-U 14的对应关系进行配置。示例性的,作为一种实例,如图3所示,本发明实施例在此第一TR 16与GW-U 14之间设置有信令接口为例示出。
需要说明的是,在本发明实施例中,GW-U 14和GW-C 15在不同的应用场景下,可以分别为本发明实施例中的网络设备。当GW-U 14为本发明实施例中的网络设备时,GW-U 14与第一TR 16之间设置有信令接口。当GW-C 15为本发明实施例中的网络设备时,GW-C 15与第一TR 16之间设置有信令接口。
另外,在本发明实施例中,第一TR 16为终端11移动之后需要接入的TR,第二TR 17为终端11移动前接入的TR。
图4为本发明实施例提供的一种移动性管理方法的流程图,应用于图3所示的系统中。如图4所示,该方法可以包括:
需要说明的是,本发明实施例应用于网关切换的场景中。在本发明实施例中,当图3所示的GW-U 14为本发明实施例中的网络设备时,该GW-U 14是终端移动之后需切换到的网关。当图3所示的GW-C 15为本发明实施例中的网络设备时,该GW-C 15是用于对终端移动之后需切换到的网关进行控制的网关。
201、网络设备获知需切换网关。
其中,在终端发生移动且需要切换网关时,网络设备可以获知需切换网关。
例如,当网络设备为图3所示的GW-C 15时,网络设备获知需切换网关具体的可以是:网络设备接收到MME发送的修改承载请求,并根据修改承载请求中包括的终端的位置信息确定需切换网关,即由第二TR切换到第一TR。可选的,当第二TR为基于终端粒度的网关时,网络设备还可以确定出该网关切换是基于终端的;当第二TR为基于终端的业务流粒度的网关时,网络设备还可以确定出该网关的切换是基于终端的业务流的。
当网络设备为图3所示的GW-U 14时,网络设备获知需切换网关具体的可以是:网络设备接收到GW-C发送的创建会话请求或修改会话请求。其中,GW-C是在确定出需切换网关,即由第二TR切换到第一TR时,向网络设备发送创建会话请求或修改会话请求的。GW-C可以通过创建会话请求或修改会话请求显示(或隐示)地通知网络设备该网关的切换是基于终端的,还是基于终端的业务流的。
202、网络设备通过信令接口向第一TR发送注册请求。其中,注册请求包括终端的标识或终端的业务流的标识。该注册请求用于通知需进行网关切换。
例如,当网关的切换是基于终端的时,该注册请求可以包括终 端的标识,如终端的终端标识(end-host identifier,EID)。当网关的切换是基于终端的某个业务流的时,该注册请求中可以包括该业务流的标识,如用于标识该业务流的n元组(n-tuple)。示例性的,业务流的标识包括五元组(5-tuple),该5-tuple可以包括:源IP地址,目的IP地址,协议类型、源端口,目的端口。当然,业务流的标识也可以包括该5-tuple中的部分元素。
203、第一TR接收网络设备通过信令接口发送的注册请求后,触发LISP网络的路由的切换。
例如,在第一TR接收到网络设备发送的注册请求之后,第一TR可以向映射服务器发送映射请求。映射服务器在接收到映射请求之后,可以执行相应的路由切换,并可以根据接收到的映射请求向第二TR发送第一映射通知。第二TR根据第一映射通知执行相应的路由切换,并在执行完成之后向映射服务器发送映射通知确认。映射服务器在接收到映射通知确认之后,可以向第一TR发送第二映射通知,该第二映射通知用于通知在LISP网络中路由切换完成。第一TR在接收到映射服务器发送的第二映射通知后,便可以获知在LISP网络中的路由切换完成,进而执行以下步骤204。
其中,当注册请求中包括终端的标识时,映射请求中包括终端的标识,以及与终端的标识对应的第一TR的RLOC。第一映射通知中包括终端的标识,以及与终端的标识对应的第一TR的RLOC,以便于映射服务器和第二TR更新与终端对应的RLOC,即针对终端执行相应的路由切换。
当注册请求中包括终端的业务流的标识时,映射请求中包括业务流的标识,以及与业务流的标识对应的第一TR的RLOC。第一映射通知中包括业务流的标识,以及与业务流的标识对应的第一TR的RLOC,以便于映射服务器和第二TR更新与终端的业务流对应的RLOC,即针对终端的业务流执行相应的路由切换。
204、第一TR通过信令接口向网络设备发送注册请求确认,该注册请求确认用于通知在LISP网络中的路由切换已完成。
205、网络设备接收第一TR通过信令接口发送的注册请求确认。
其中,在网络设备接收到第一TR发送的注册请求确认之后,可以进一步的完成在移动通信网络中的切换,以使终端成功切换。例如,执行实施例4中的步骤11-步骤15b,或者,执行实施例5中的步骤17-步骤20c。
本发明实施例提供的移动性管理方法,应用于移动通信网络与LISP网络相结合的系统中。在这种架构下,若终端发生移动且需进行网关切换时,便可以在保证终端的业务连续性的前提下进行网关的切换,进而避免了业务路径迂回的现象出现,即兼顾了终端的业务连续性以及接收数据业务报文的时延。
通过在移动通信网络中的网络设备和LISP网络中的第一TR之间设置信令接口,使得在终端发生移动且需要切换网关时,网络设备可以通过信令接口向第一TR发送注册请求,该注册请求用于通知需进行网关切换,以便在LISP网络中执行路由的切换,这样避免了LISP网络无法感知网关变化,或LISP网络中路由的切换时间长于移动通信网络中网关的切换的时间导致的数据包丢失的情况出现。另外,在LISP网络中路由切换完成之后,第一TR通过信令接口向网络设备发送注册请求确认,以使得网络设备及时获知在LISP网络中的路由切换已完成。
图5为本发明实施例提供的另一种移动性管理方法的流程图,应用于图3所示的系统中。如图5所示,该方法可以包括:
需要说明的是,本发明实施例应用于网关注册的场景中。在本发明实施例中,当图3所示的GW-U 14为本发明实施例中的网络设备时,该GW-U 14是终端需接入的网关。当图3所示的GW-C 15为本发明实施例中的网络设备时,该GW-C 15是用于对终端需接入的网关进行控制的网关。
301、网络设备获知需进行网关注册。
其中,在终端在网络设备建立新会话时,网络设备可以获取获知需进行网关注册。
例如,当网络设备为图3所示的GW-C 15时,网络设备获知需进行网关注册具体的可以是:网络设备接收到GW-U发送的创建数据路径响应,并根据创建数据路径响应确定需针对终端进行网关的注册。或者,网络设备获知需进行网关注册具体的可以是:网络设备确定需将终端的业务流分流到GW-U,并确定需针对终端的业务流进行网关注册。
当网络设备为图3所示的GW-U 14时,网络设备获知需进行网关注册具体的可以是:网络设备接收GW-C发送的创建数据路径请求,并根据创建数据路径请求确定需针对终端进行网关的注册。或者,网络设备获知需进行网关注册具体的可以是:网络设备接收GW-C发送的创建会话请求,并根据创建会话请求确定需针对终端的业务流进行网关注册。该创建会话请求是GW-C在确定需对终端的业务流分流到网络设备后发送的。
302、网络设备通过信令接口向第一TR发送注册请求。其中,注册请求包括终端的标识或终端的业务流的标识。该注册请求用于通知需进行网关注册。
步骤302的具体描述与步骤202的具体描述类似,本处不再赘述。
303、第一TR接收网络设备通过信令接口发送的注册请求后,触发LISP网络的路由的注册。
例如,在第一TR接收到网络设备发送的注册请求之后,第一TR可以向映射服务器发送映射请求。映射服务器在接收到映射请求之后,可以执行相应的路由注册,并在执行完成路由注册之后,向第一TR发送映射通知,以通知第一TR在LISP网络中的路由注册完成,进而执行以下步骤304。
其中,当注册请求中包括终端的标识时,映射请求中包括终端的标识,以及与终端的标识对应的第一TR的RLOC,以便于映射服务器在映射数据库中添加终端的标识,以及与终端的标识对应的RLOC,即针对终端执行相应的路由注册。
当注册请求中包括终端的业务流的标识时,映射请求中包括业务流的标识,以及与业务流的标识对应的第一TR的RLOC,以便于映射服务器在映射数据库中添加业务流的标识,以及与业务流的标识对应的RLOC,即针对终端的业务流执行相应的路由注册。
304、第一TR通过信令接口向网络设备发送注册请求确认,该注册请求确认用于通知在LISP网络中的路由注册已完成。
305、网络设备接收第一TR通过信令接口发送的注册请求确认。
其中,在网络设备接收到第一TR发送的注册请求确认之后,可以进一步的完成在移动通信网络中的注册,以使终端成功注册到网络中进行业务数据报文的传输。例如,执行实施例1中的步骤9-步骤20,或者执行实施例2中的步骤8-步骤20,或者执行实施例3中的步骤12-步骤16。
本发明实施例提供的移动性管理方法,应用于移动通信网络与LISP网络相结合的系统中,且移动通信网络中的网络设备和LISP网络中的第一TR之间设置有信令接口。在这种架构下,当终端新接入基站时,网络设备可以在获知需进行网关注册时,通过信令接口向第一TR发送注册请求,该注册请求用于通知需进行网关注册,以便在LISP网络中执行路由的注册。
在LISP网络中路由注册完成之后,第一TR通过信令接口向网络设备发送注册请求确认,以使得网络设备及时获知在LISP网络中的路由注册已完成。
图6为本发明实施例提供的另一种移动性管理方法的流程图,如图6所示,该方法可以包括:
需要说明的是,本发明实施例应用于网关注销的场景中。在本发明实施例中,当网络设备是数据业务报文转发的锚点设备时,该网络设备是终端当前驻留的网关。当网络设备是用于对数据业务报文转发的锚点设备进行控制的设备时,该网络设备是用于对终端当前驻留的网关进行控制的网关。TR为终端当前接入的TR。
401、网络设备检测到终端的注销操作。
其中,注销操作用于触发向TR发送去注册请求。
例如,当终端离开(detach),或者某个业务结束,或者终端需进行网关切换,或者终端的某个业务需进行网关切换时,网络设备可以检测到终端的注销操作。
402、网络设备通过信令接口向TR发送去注册请求。其中,去注册请求包括终端的标识或终端的业务流的标识。去注册请求用于通知需进行网关注销。
例如,该去注册请求可以是针对终端的,也可以是针对终端的某个业务流的。当终端离开或终端需进行网关切换时,该去注册请求中包括终端的标识。当终端的某个业务结束或某个业务需进行网关切换时,该去注册请求中包括终端的业务流的标识。
其中,对于业务流的标识的具体描述可以参考本发明另一实施例中步骤202的相应描述,在此不详细赘述。
403、TR接收网络设备通过信令接口发送的去注册请求,触发LISP网络的路由的注销。
例如,在TR接收到网络设备发送的去注册请求之后,可以进行相应的数据更新。
其中,当去注册请求中包括终端的标识时,TR可以删除终端的标识,以及与终端的标识对应的RLOC,当去注册请求中包括终端的业务流的标识时,TR可以删除终端的业务流的标识,以及与终端的业务流的标识对应的RLOC。
进一步的,TR可以判断是否接收到映射服务器发送的映射通知,若确定未接收到映射服务器发送的映射通知,则TR向映射服务器发送映射请求,以便映射服务器进行相应的数据更新,并向对等TR发送SMR消息,以便对等TR进行相应的数据更新。若TR确定接收到映射服务器发送的映射通知,则TR仅向对等TR发送SMR消息,以便对等TR进行相应的数据更新。
其中,当去注册请求中包括终端的标识时,映射通知用于通知终端已切换到目标TR,映射请求中包括终端的标识,SMR消息中 包括终端的标识,SMR消息用于触发对等TR更新与终端的标识对应的RLOC。此时,对等TR进行相应的数据更新具体的为,对等TR删除相应的映射缓存,并根据SMR消息中包括的终端的标识,重新获取并更新该终端的标识对应的RLOC。映射服务器进行相应的数据更新具体的为,映射服务器检索并删除终端的标识,以及与终端的标识对应的RLOC。
当去注册请求中包括终端的业务流的标识时,映射通知用于通知终端的业务流已切换到目标TR,映射请求中包括终端的业务流的标识,SMR消息中包括终端的业务流的标识,SMR消息用于触发对等TR更新与终端的业务流的标识对应的RLOC。此时,对等TR进行相应的数据更新具体的为,对等TR删除相应的映射缓存,并根据SMR消息中包括的终端的业务流的标识,重新获取并更新该终端的业务流的标识对应的RLOC。映射服务器进行相应的数据更新具体的为,映射服务器检索并删除终端的业务流的标识,以及与终端的业务流的标识对应的RLOC。
404、TR通过信令接口向网络设备发送去注册请求确认,该去注册请求确认用于通知在LISP网络中的路由注销已完成。
405、网络设备接收TR通过信令接口发送的去注册请求确认。
本发明实施例提供的移动性管理方法,应用于移动通信网络与LISP网络相结合的系统中,且移动通信网络中的网络设备和LISP网络中的TR之间设置有信令接口。在这种架构下,当网络设备检测到终端的注销操作时,通过信令接口向TR发送去注册请求,该去注册请求用于通知需进行网关注销,以便在LISP网络中执行路由的注销,这样避免了LISP网络无法感知终端的离开导致的不能及时删除相关数据的情况出现。
在LISP网络中路由注销完成之后,TR通过信令接口向网络设备发送去注册请求确认,以使得网络设备及时获知在LISP网络中的路由注销已完成。另外,TR通过向对等TR发送SMR消息,使得业务对端的对等TR可以及时更新相关数据,避免了业务转发出错 或丢包的现象出现。
需要说明的是,本发明实施例中所涉及到的移动性管理方法还可以应用于无线保真(Wireless Fidelity,wifi)网络与LISP网络相结合的系统中,以用于实现wifi接入间的无损切换,当应用于wifi网络与LISP网络相结合的系统中时,与上述移动性管理方法的区别是,上述实施例中的网络设备可以是AP(相当于上述实施例中的数据业务报文转发的锚点设备),也可以是AC(相当于上述实施例中的用于对数据业务报文转发的锚点设备进行控制的设备)。当然,上述实施例也不只限于与LISP网络相结合的系统中,还可以用于其他基于互联网协议到互联网协议(Internet Protocol in Internet Protocol,IP-in-IP)的能够实现终端接入节点切换的网络相结合的系统中,其实现过程与本发明实施例所描述的实现过程类似,本发明实施例在此不再一一赘述。
为了便于本领域技术人员的理解,本发明实施例以不同应用场景为例,通过以下实施例1-6对本发明的移动性管理方法进行具体的介绍。其中,以下实施例均应用于移动通信网络与LISP网络相结合的系统中,移动通信网络包括的网络设备与LISP网络包括的TR存在信令接口,网络设备可以为GW-U或GW-C,TR为与GW-U对应的TR。
实施例1,如图7所示,以附着(attach)流程,且网络设备为GW-U为例,对本发明的移动性管理方法进行具体介绍。
步骤1:终端向基站发送附着请求(attach request)。
步骤2:基站向MME发送附着请求。
步骤3:MME向GW-C发送创建会话请求(create session request)。
步骤4:GW-C向GW-U发送创建数据路径请求(create data path request)。
其中,在GW-U接收到GW-C发送的创建数据路径请求之后,GW-U可以进行数据路径的创建,并在创建完成之后,可以执行向 LISP网络注册用户的过程,具体的可以执行以下步骤5:
步骤5:GW-U向TR发送终端的注册(register)请求。
其中,TR指的是与GW-U对应的TR,TR与GW-U之间存在信令接口,即步骤5具体的可以是,GW-U通过与TR之间的信令接口向TR发送终端的注册请求,注册请求中包括终端的标识(EID)。
在GW-U向TR发送终端的注册请求之后,可以执行LISP网络的注册流程,具体的可以执行以下步骤6-步骤7:
步骤6:TR向映射服务器(map server)发送映射请求(map register)。
其中,该映射请求中包括EID,以及与EID对应的TR的RLOC。
步骤7:映射服务器向TR发送映射通知(map notify)。
其中,该映射通知用于通知TR,终端在LISP网络中注册完成。在映射服务器接收到TR发送的映射请求之后,可以将映射请求中包括的EID和TR的RLOC对应保存,并在保存完成之后,向TR发送映射通知。
在LISP网络的注册流程完成之后,可以执行注册请求确认过程,具体的可以执行以下步骤8:
步骤8:TR向GW-U发送终端的请求确认(register ACK)。
其中,步骤8具体的可以是,TR通过与GW-U之间的信令接口向GW-U发送终端的请求确认。
步骤9:GW-U向GW-C发送创建数据路径响应(create data path response)
步骤10:GW-C向MME发送创建会话响应(create session response)。
步骤11:MME向基站发送初始上下文建立请求/附着接受(initial context setup request/attach accept)。
步骤12:基站向终端发送RRC连接重配置(RRC connection reconfiguration)
步骤13:终端向基站发送RRC连接重配置完成(RRC connection  reconfiguration complete)。
步骤14:基站向MME发送初始上下文建立响应(initial context setup response)
步骤15:终端与基站之间进行直接传输(direct transfer)。
步骤16:基站向MME发送附着完成(attach complete)。
步骤17:MME向GW-C发送修改承载请求(modify bearer request)。
步骤17a:GW-C向GW-U发送修改承载请求;
步骤17b:GW-U向GW-C发送修改承载响应(modify bearer response)。
步骤18:GW-C向MME发送修改承载响应。
步骤19:MME向归属用户服务器(Home Subscriber Server,HSS)发送通知请求(notify request)。
步骤20:HSS向MME发送通知响应(notify response)。
需要说明的是,在本发明实施例中为了实现LISP网络和移动通信网络的交互,可以在GW-U和TR之间设置信令接口,也可以在GW-C和TR之间设置信令接口。上述流程中是以GW-U和TR之间存在信令接口,并通过GW-U和TR之间的信令接口完成LISP网络和移动通信网络的交互为例的Attach流程。
当通过GW-C和TR之间的信令接口完成LISP网络和移动通信网络的交互时,与上述流程的区别为:
在执行完步骤1-4之后,先执行步骤9,然后再执行步骤5-步骤8,并在执行完步骤8之后,执行步骤10-步骤20;
将步骤5替换为:GW-C向TR发送终端的注册请求,其中,TR指的是与GW-C对应的TR,TR与GW-C之间存在信令接口,即步骤5具体的可以是,GW-C通过与TR之间的信令接口向TR发送终端的注册请求;
将步骤8替换为:TR向GW-C发送终端的请求确认。例如,TR通过与GW-C之间的信令接口向GW-C发送终端的请求确认。
实施例2,如图8所示,以公共数据网络(Public Data Network,PDN)连接过程(PDN connectivity procedure),且网络设备为GW-U为例,对本发明的移动性管理方法进行具体介绍。
步骤1:终端向MME发送PDN连接请求(PDN connectivity request)。
步骤2-步骤9。其中,步骤2-步骤9分别与实施例1中的步骤3-步骤10相同,此处不再一一赘述。
步骤10:MME向基站发送承载建立请求/PDN连接接受(bearer setup request/PDN connectivity accept)。
步骤11-步骤12。其中,步骤11-步骤12分别与实施例1中的步骤12-步骤13相同,此处不再一一赘述。
步骤13:基站向MME发送承载建立响应(bearer setup response)
步骤14。其中,步骤14与实施例1中的步骤15相同,此处不再赘述。
步骤15:基站向MME发送PDN连接完成(PDN connectivity complete)。
步骤16-步骤20。其中步骤16-步骤20分别与实施例1中的步骤17-步骤20相同,此处不再一一赘述。
需要说明的是,在本发明实施例中为了实现LISP网络和移动通信网络的交互,可以在GW-U和TR之间设置信令接口,也可以在GW-C和TR之间设置信令接口。上述流程中是以GW-U和TR之间存在信令接口,并通过GW-U和TR之间的信令接口完成LISP网络和移动通信网络的交互为例的PDN连接流程。
当通过GW-C和TR之间的信令接口完成LISP网络和移动通信网络的交互时,与上述流程的区别为:
在执行完步骤1-3之后,先执行步骤8,然后再执行步骤4-步骤7,并在执行完步骤7之后,执行步骤9-步骤20;
将步骤4替换为:GW-C向TR发送终端的注册请求,其中,TR指的是与GW-C对应的TR,TR与GW-C之间存在信令接口,即 步骤4具体的可以是,GW-C通过与TR之间的信令接口向TR发送终端的注册请求;
将步骤7替换为:TR向GW-C发送终端的请求确认。例如,TR通过与GW-C之间的信令接口向GW-C发送终端的请求确认。
实施例3,如图9所示,以跟踪区域更新(tracking area update,TAU)流程,且网络设备为GW-U为例,对本发明的移动性管理方法进行具体介绍。
步骤1:终端触发TAU流程(trigger to start TAU Procedure)。
步骤2:终端向基站发送TAU请求(TAU request)。
步骤3:基站向MME发送TAU请求。
步骤4:MME向GW-C发送修改承载请求(modify bearer request)。
步骤5:GW-C向目标GW-U发送创建会话请求(create session request)。
其中,在GW-C接收到MME发送的修改承载请求之后,可以根据终端所处位置重新选择GW-U,即确定出目标GW-U,并向目标GW-U发送创建会话请求。
步骤6:目标GW-U向目标TR发送终端的注册(register)请求。
其中,目标TR指的是与目标GW-U对应的TR,目标TR与目标GW-U之间存在信令接口,即步骤6具体的可以是,目标GW-U通过与目标TR之间的信令接口向目标TR发送终端的注册请求,该注册请求中包括终端的标识(EID)。
在目标GW-U向目标TR发送注册请求之后,可以执行LISP网络的切换流程,具体的可以执行以下步骤7-步骤10:
步骤7:目标TR向映射服务器(map server)发送映射请求(map register)。
其中,该映射请求中包括EID,以及与EID对应的目标TR的RLOC。
步骤8:映射服务器向源TR发送第一映射通知(map notify)。
其中,源TR指的是与源GW-U对应的TR,源TR与源GW-U之间存在信令接口。该第一映射通知中包括EID,以及与EID对应的目标TR的RLOC。在映射服务器接收到目标TR发送的映射请求之后,可以将映射请求中包括的EID和目标TR的RLOC对应保存,并在保存完成之后,向源TR发送第一映射通知。
步骤9:源TR向映射服务器发送映射通知确认(map notify ACK)。
其中,在源TR接收到映射服务器发送的第一映射通知之后,可以根据第一映射通知更新与EID对应的RLOC,即将与EID对应的RLOC由源TR的RLOC更新为目标TR的RLOC,并在更新完成之后,向映射服务器发送映射通知确认。
步骤10:映射服务器向目标TR发送第二映射通知(map notify)。
其中,该第二映射通知用于通知目标TR,终端在LISP网络中切换完成。
在LISP网络的切换流程完成之后,可以执行注册请求确认过程,具体的可以执行以下步骤11:
步骤11:目标TR向目标GW-U发送终端的请求确认(register ACK)。
其中,步骤11具体的可以是目标TR通过与目标GW-U之间的信令接口向目标GW-U发送终端的请求确认。
在执行完注册请求确认过程之后,可以继续执行无线网络侧的TAU流程,具体的可以执行以下步骤12-步骤16:
步骤12:目标GW-U向GW-C发送创建会话响应(create session response)。
步骤13:GW-C向MME发送修改承载响应(modify bearer response)。
步骤14:MME向终端发送TAU接受(TAU accept)。
步骤15:终端向MME发送TAU完成(TAU complete)。
步骤16:GW-C向源GW-U发送删除会话请求(delete session request),源GW-U向GW-C发送删除会话响应(delete session response)。
其中,在源GW-U接收到GW-C发送的删除会话请求之后,可以将终端的会话删除,并在删除完成之后,向GW-C发送删除会话响应。
需要说明的是,在本发明实施例中为了实现LISP网络和移动通信网络的交互,可以在GW-U和目标TR之间设置信令接口,也可以在GW-C和目标TR之间设置信令接口。上述流程中是以GW-U和目标TR之间存在信令接口,并通过GW-U和目标TR之间的信令接口完成LISP网络和移动通信网络的交互为例的TAU流程。
当通过GW-C和目标TR之间的信令接口完成LISP网络和移动通信网络的交互时,与上述流程的区别为:
将步骤6替换为:GW-C向目标TR发送终端的注册请求,其中,目标TR指的是与目标GW-U对应的TR,目标TR与GW-C之间存在信令接口,即步骤6具体的可以是,GW-C通过与目标TR之间的信令接口向目标TR发送终端的注册请求;
将步骤8中的源TR的解释替换为:源TR指的是与源GW-U对应的TR,源TR与GW-C之间存在信令接口;
将步骤11替换为:目标TR向GW-C发送终端的请求确认。例如,目标TR通过与GW-C之间的信令接口向GW-C发送终端的请求确认。
实施例4,如图10所示,以基于X2的切换(X2based handover)流程,且网络设备为GW-U为例,对本发明的移动性管理方法进行具体介绍。
步骤1:目标基站向MME发送路径切换请求(path switch request)。
步骤2-步骤6。其中,步骤2-步骤6分别与实施例3中的步骤4-步骤8相同,此处不再一一赘述。
步骤6a:源TR向源GW-U发送end marker消息。
其中,该end marker消息中包括EID。在源GW-U接收到源TR发送的end marker消息之后,源GW-U可以根据接收到的end marker消息,在原转发路径上发送end marker报文。
步骤7:源TR向对等TR(peer-TR)发送请求发起映射请求(solicit map request)。
其中,该solicit map request中携带终端的EID。在源TR接收到映射服务器发送的第一映射通知之后,源TR可以根据第一映射通知更新与EID对应的RLOC,即将与EID对应的RLOC由源TR的RLOC更新为目标TR的RLOC,并在更新完成之后向对等TR发送solicit map request,以便对等TR重新获取与该终端对应的TR的RLOC,重新获取到的RLOC为目标TR的RLOC。
步骤8-步骤12,。其中,步骤8-步骤12分别与实施例3中的步骤9-步骤13相同,此处不再一一赘述。
步骤13:MME向目标基站发送路径切换请求确认(path switch request ACK)。
步骤14:目标基站向源基站发送释放资源(release resource)请求。
步骤15a:GW-C向源GW-U发送删除会话请求。
步骤15b:源GW-U向GW-C发送删除会话响应。
需要说明的是,在本发明实施例中为了实现LISP网络和移动通信网络的交互,可以在GW-U和目标TR之间设置信令接口,也可以在GW-C和目标TR之间设置信令接口。上述流程中是以GW-U和目标TR之间存在信令接口,并通过GW-U和目标TR之间的信令接口完成LISP网络和移动通信网络的交互为例的X2based handover流程。
当通过GW-C和目标TR之间的信令接口完成LISP网络和移动通信网络的交互时,与上述流程的区别为:
将步骤4替换为:GW-C向目标TR发送终端的注册请求,其中, 目标TR指的是与目标GW-U对应的TR,目标TR与GW-C之间存在信令接口,即步骤4具体的可以是,GW-C通过与目标TR之间的信令接口向目标TR发送终端的注册请求;
将步骤6中的源TR的解释替换为:源TR指的是与源GW-U对应的TR,源TR与GW-C之间存在信令接口;
将步骤10替换为:目标TR向GW-C发送终端的请求确认。例如,目标TR通过与GW-C之间的信令接口向GW-C发送终端的请求确认。
另外,上述流程是基于用户的X2切换流程,还可以采用上述流程进行基于业务流的X2切换流程。
当采用上述流程进行基于业务流的X2切换流程时,与上述流程的区别为:
步骤4中的终端的注册请求中不包括EID,而包括的是n-tuple,该n-tuple为需要进行X2切换的业务流的n-tuple;
步骤5中的映射请求中不包括EID以及与EID对应的目标TR的RLOC,而包括的是n-tuple以及与n-tuple对应的目标TR的RLOC,以便映射服务器将映射请求中包括的n-tuple和目标TR的RLOC对应保存;
步骤6中的第一映射通知中不包括EID以及与EID对应的目标TR的RLOC,而包括的是n-tuple以及与n-tuple对应的目标TR的RLOC,以便源TR根据第一映射通知更新与n-tuple对应的RLOC,即将与n-tuple对应的RLOC由源TR的RLOC更新为目标TR的RLOC;
步骤6a中的end marker消息中不包括EID,而包括的是n-tuple;
步骤7中的solicit map request中携带的不是终端的EID,而是业务流的n-tuple。
实施例5,如图11所示,以基于S1的切换(S1 based handover)流程,且网络设备为GW-U为例,对本发明的移动性管理方法进行具体介绍。
步骤1:源基站决策发起S1切换(decision to trigger a relocation via S1)。
步骤2:源基站向MME发送切换请求(handover required)。
步骤3:MME向GW-C发送修改承载请求(modify bearer request)。
步骤3a:GW-C向目标GW-U发送创建会话请求(create session request),目标GW-U向GW-C发送创建会话响应(create session response)。
步骤3b:GW-C向MME发送修改承载响应(modify bearer response)。
步骤5:MME向目标基站发送切换请求(handover request)。
步骤5a:目标基站向MME发送切换请求确认(handover request ACK)。
步骤6:MME向GW-C发送创建间接数据隧道转发请求(create indirect data forwarding tunnel request)。
步骤6a:GW-C向目标GW-U发送创建间接数据隧道转发请求,目标GW-U向GW-C发送创建间接数据隧道转发响应(create indirect data forwarding tunnel response)。
步骤6b:GW-C向源GW-U发送创建间接数据隧道转发请求,源GW-U向GW-C发送创建间接数据隧道转发响应。
步骤6c:GW-C向MME发送创建间接数据隧道转发响应。
步骤7:MME向源基站发送切换命令(handover command)。
步骤7a:源基站向终端发送切换命令。
步骤8:源基站向MME发送基站状态迁移(eNB status transfer)。
步骤8a:MME向目标基站发送MME状态迁移(MME status transfer)。
步骤8c:通过源基站、源GW-U、目标GW-U、目标基站完成间接数据转发(indirect forwarding of data)。
步骤9:终端向目标基站发送切换确认(handover confirm),目 标基站向MME发送切换通知(handover notify)。
步骤10:MME向GW-C发送修改承载请求。
步骤11:GW-C向目标GW-U发送修改会话请求(modify session request)。
步骤12:目标GW-U向目标TR发送终端的注册(register)请求。
其中,目标TR指的是与目标GW-U对应的TR,目标TR与目标GW-U之间存在信令接口,即步骤12具体的可以是,目标GW-U通过与目标TR之间的信令接口向目标TR发送终端的注册请求,该注册请求中包括终端的标识(EID)。
步骤13:目标TR向映射服务器(map server)发送映射请求(map register)。
其中,该映射请求中包括EID,以及与EID对应的目标TR的RLOC。
步骤14:LISP切换流程。
步骤15:映射服务器向目标TR发送映射通知(map notify)。
其中,该映射通知中包括EID,以及与EID对应的目标TR的RLOC。在映射服务器接收到目标TR发送的映射请求之后,可以将映射请求中包括的EID和目标TR的RLOC对应保存,并在保存完成之后,向目标TR发送映射通知。
在执行步骤13-步骤15的过程中,还可以包括源TR向源GW-U发送end marker消息的过程,该end marker消息中包括EID,以便在源GW-U接收到源TR发送的end marker消息之后,源GW-U可以根据接收到的end marker消息,在原转发路径上发送end marker报文。
步骤16:目标TR向目标GW-U发送终端的请求确认(register ACK)。
其中,步骤16具体的可以是目标TR通过与目标GW-U之间的信令接口向目标GW-U发送终端的请求确认。
步骤17:目标GW-U向GW-C发送修改会话请求。
步骤18:GW-C向MME发送修改承载响应。
步骤19:MME向源基站发送终端上下文释放命令(UE context release command),源基站向MME发送终端上下文释放完成(UE context release complete)。
步骤20:MME向GW-C发送删除间接数据隧道转发请求(delete indirect data forwarding tunnel request)。
步骤20a:GW-C向源GW-U发送删除会话请求(delete session request)和删除间接数据隧道转发请求,源GW-U向GW-C发送删除会话响应(delete session response)和删除间接数据隧道转发响应(delete indirect data forwarding tunnel response)。
步骤20b:GW-C向目标GW-U发送删除间接数据隧道转发请求,目标GW-U向GW-C发送删除间接数据隧道转发响应。
步骤20c:GW-C向MME发送删除间接数据隧道转发响应。
需要说明的是,在本发明实施例中为了实现LISP网络和移动通信网络的交互,可以在GW-U和目标TR之间设置信令接口,也可以在GW-C和目标TR之间设置信令接口。上述流程中是以GW-U和目标TR之间存在信令接口,并通过GW-U和目标TR之间的信令接口完成LISP网络和移动通信网络的交互为例的S1 based handover流程。
当通过GW-C和目标TR之间的信令接口完成LISP网络和移动通信网络的交互时,与上述流程的区别为:
将步骤12替换为:GW-C向目标TR发送终端的注册请求,其中,目标TR指的是与目标GW-U对应的TR,目标TR与GW-C之间存在信令接口,即步骤12具体的可以是,GW-C通过与目标TR之间的信令接口向目标TR发送终端的注册请求;
将步骤16替换为:目标TR向GW-C发送终端的请求确认。例如,目标TR通过与GW-C之间的信令接口向GW-C发送终端的请求确认。
另外,上述流程是基于用户的X2切换流程,还可以采用上述流程进行基于业务流的X2切换流程。
当采用上述流程进行基于业务流的X2切换流程时,与上述流程的区别为:
步骤12中的终端的注册请求中不包括EID,而包括的是n-tuple,该n-tuple为需要进行S1切换的业务流的n-tuple;
步骤13中的映射请求中不包括EID以及与EID对应的目标TR的RLOC,而包括的是n-tuple以及与n-tuple对应的目标TR的RLOC,以便映射服务器将映射请求中包括的n-tuple和目标TR的RLOC对应保存;
end marker消息中不包括EID,而包括的是n-tuple。
实施例6,如图12所示,以业务流分流(offload)流程,且网络设备为GW-C为例,对本发明的移动性管理方法进行具体介绍。
步骤1:终端发起针对新业务的业务请求。
步骤2:GW-U检测到终端的新业务的业务流。
其中,该GW-U可以是R-GWU,此时在终端将该新业务的业务流发送至R-GWU时,R-GWU便可以检测到终端的新业务的业务流。该GW-U也可以是L-GWU,由于终端的所有业务都默认经由该L-GWU,因此,当终端发起新业务时,L-GWU便可以检测到终端的新业务的业务流。
步骤3:GW-U向GW-C发送事件上报。
其中,GW-U可以根据预先配置的规则或者GW-C下发的规则,对业务进行匹配,当业务匹配到该规则时,按照规则的匹配结果向GW-C发送事件上报。
步骤4:GW-C确定需将新业务的业务流分流到L-GWU。
其中,GW-C可以根据该新业务的位置等信息确定是否需将新业务的业务流分流到L-GWU。GW-C可以为该新业务建立专有承载,以便完成业务的分流,或者,若该新业务已经由L-GWU传输,那么GW-C可以向该L-GWU下发相应的业务流处理方法,以便L-GWU 完成业务的分流。
另外,GW-C也可以根据终端发起的承载资源修改流程,或者策略与计费规则功能PCRF(Policy and Charging Rules Function,PCRF)发起的IP连接接入网(IP-Connectivity Access Network,IP-CAN)会话修改确定将业务流分流到L-GWU。
步骤5:GW-C向GW-U发送创建会话请求(或者修改会话请求),GW-U接收GW-C发送的创建会话响应(或者修改会话响应)。
步骤6:GW-C向第一TR发送注册请求。
其中,第一TR为与L-GWU对应的TR,第一TR与GW-C之间存在信令接口,步骤6具体的为:GW-C通过与第一TR之间的信令接口向第一TR发送注册请求,该注册请求中包括终端的新业务的业务流的标识。
步骤7:第一TR将终端的新业务的业务流注册到LISP网络中。
其中,在注册完成之后,若有下行数据需要发送,该新业务所在的数据中心(data centre,DC)中的TR便可以根据该新业务的业务流的标识,从LISP网络中检索与该新业务的业务流的标识对应的TR,即可以检测到第一TR,并将下行数据发送至第一TR。
需要说明的是,在本发明实施例中为了实现LISP网络和移动通信网络的交互,可以在GW-U和第一TR之间设置信令接口,也可以在GW-C和第一TR之间设置信令接口。上述流程中是以GW-C和第一TR之间存在信令接口,并通过GW-C和第一TR之间的信令接口完成LISP网络和移动通信网络的交互为例的业务流offload流程。
当通过GW-U和第一TR之间的信令接口完成LISP网络和移动通信网络的交互时,与上述流程的区别为:
将步骤6替换为:GW-U向第一TR发送终端的注册请求,其中,第一TR与GW-U之间存在信令接口,即步骤6具体的可以是,GW-U通过与第一TR之间的信令接口向第一TR发送终端的注册请求。GW-U可以在接收到步骤5中的GW-C发送的创建会话请求或者修 改会话请求之后,向第一TR发送注册请求。
上述主要从各个网元之间交互的角度对本发明实施例提供的方案进行了介绍。可以理解的是,各个网元,例如网络设备、TR为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的算法步骤,本发明能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
本发明实施例可以根据上述方法示例对网络设备进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本发明实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
在采用对应各个功能划分各个功能模块的情况下,图13示出了上述和实施例中涉及的网络设备的一种可能的组成示意图,如图13所示,该网络设备可以包括:获知单元51和发送单元52。
其中,获知单元51,用于支持网络设备执行图4所示的移动性管理方法中的步骤201,图5所示的移动性管理方法中的步骤301,图6所示的移动性管理方法中的步骤401,图7所示的移动性管理方法中的步骤4,图8所示的移动性管理方法中的步骤3,图9所示的移动性管理方法中的步骤5,图10所示的移动性管理方法中的步骤3,图11所示的移动性管理方法中的步骤11,图12所示的移动管理方法中的步骤5中的创建(修改)会话响应。
发送单元52,用于支持网络设备执行图4所示的移动性管理方法中的步骤202,图5所示的移动性管理方法中的步骤302,图6所示的移动性管理方法中的步骤402,图7所示的移动性管理方法中 的步骤5,图8所示的移动性管理方法中的步骤4,图9所示的移动性管理方法中的步骤6,图10所示的移动性管理方法中的步骤4,图11所示的移动性管理方法中的步骤12,图12所示的移动管理方法中的步骤6。
在本发明实施例中,进一步的,如图14所示,该网络设备还可以包括:接收单元53。
接收单元53,用于支持网络设备执行图4所示的移动性管理方法中的步骤205,图5所示的移动性管理方法中的步骤305,图6所示的移动性管理方法中的步骤405,图7所示的移动性管理方法中的步骤8,图8所示的移动性管理方法中的步骤7,图9所示的移动性管理方法中的步骤11,图10所示的移动性管理方法中的步骤10,图11所示的移动性管理方法中的步骤16。
需要说明的是,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
本发明实施例提供的网络设备,用于执行上述移动性管理方法,因此可以达到与上述移动性管理方法相同的效果。
在采用集成的单元的情况下,图15示出了上述实施例中所涉及的网络设备的另一种可能的组成示意图。如图15所示,该网络设备包括:处理模块61和通信模块62。
处理模块61用于对网络设备的动作进行控制管理,例如,处理模块1201用于支持网络设备执行图4所示的移动性管理方法中的步骤201,图5所示的移动性管理方法中的步骤301,图6所示的移动性管理方法中的步骤401,图7所示的移动性管理方法中的步骤4,图8所示的移动性管理方法中的步骤3,图9所示的移动性管理方法中的步骤5,图10所示的移动性管理方法中的步骤3,图11所示的移动性管理方法中的步骤11,图12所示的移动管理方法中的步骤5中的创建(修改)会话响应、和/或用于本文所描述的技术的其它过程。通信模块62用于支持网络设备与其他网络实体的通信,例如与图3、图16、图17、图18或图20中示出的功能模块或网络实体 之间的通信,如可以用于执行图4所示的移动性管理方法中的步骤202、步骤205,图5所示的移动性管理方法中的步骤302、步骤305,图6所示的移动性管理方法中的步骤402、步骤405,图7所示的移动性管理方法中的步骤5、步骤8,图8所示的移动性管理方法中的步骤4、步骤7,图9所示的移动性管理方法中的步骤6、步骤11,图10所示的移动性管理方法中的步骤4、步骤10,图11所示的移动性管理方法中的步骤12、步骤16,图12所示的移动管理方法中的步骤6,图6所示的移动性管理方法中的步骤405。网络设备还可以包括存储模块63,用于存储网络设备的程序代码和数据。
其中,处理模块61可以是处理器或控制器。其可以实现或执行结合本发明公开内容所描述的各种示例性的逻辑方框,模块和电路。处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。通信模块62可以是收发器、收发电路或通信接口等。存储模块63可以是存储器。
当处理模块61为处理器,通信模块62为通信接口,存储模块63为存储器时,本发明实施例所涉及的网络设备可以为图19所示的网络设备。
需要说明的是,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
本发明实施例提供的网络设备,用于执行上述移动性管理方法,因此可以达到与上述移动性管理方法相同的效果。
本发明实施例可以根据上述方法示例对TR进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本发明实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
在采用对应各个功能划分各个功能模块的情况下,图16示出了上述和实施例中涉及的TR的一种可能的组成示意图,如图16所示, 该TR可以包括:接收单元71和触发单元72。
其中,接收单元71,用于支持TR执行图4所示的移动性管理方法中的步骤203中的接收网络设备通过信令接口发送的注册请求,图5所示的移动性管理方法中的步骤303中的接收网络设备通过信令接口发送的注册请求,图6所示的移动性管理方法中的步骤403中的接收网络设备通过信令接口发送的注册请求,图7所示的移动性管理方法中的步骤5,图8所示的移动性管理方法中的步骤4,图9所示的移动性管理方法中的步骤6,图10所示的移动性管理方法中的步骤4,图11所示的移动性管理方法中的步骤12,图12所示的移动性管理方法中的步骤6。
触发单元72,用于支持TR执行图4所示的移动性管理方法中的步骤203中的触发LISP网络的路由的切换,图5所示的移动性管理方法中的步骤303中的触发LISP网络的路由的注册,图6所示的移动性管理方法中的步骤403中的触发LISP网络的路由的注销,图7所示的移动性管理方法中的步骤6,图8所示的移动性管理方法中的步骤5,图9所示的移动性管理方法中的步骤7,图10所示的移动性管理方法中的步骤5,图11所示的移动性管理方法中的步骤13,图12所示的移动性管理方法中的步骤7。
在本发明实施例中,进一步的,如图17所示,该TR还可以包括:发送单元73。
发送单元73,用于支持TR执行图4所示的移动性管理方法中的步骤204,图5所示的移动性管理方法中的步骤304,图6所示的移动性管理方法中的步骤404,图7所示的移动性管理方法中的步骤8,图8所示的移动性管理方法中的步骤7,图9所示的移动性管理方法中的步骤11,图10所示的移动性管理方法中的步骤10,图11所示的移动性管理方法中的步骤16。
需要说明的是,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
本发明实施例提供的TR,用于执行上述移动性管理方法,因此 可以达到与上述移动性管理方法相同的效果。
在采用集成的单元的情况下,图18示出了上述实施例中所涉及的TR的另一种可能的组成示意图。如图18所示,该TR包括:处理模块81和通信模块82。
处理模块81用于对TR的动作进行控制管理和/或用于本文所描述的技术的其它过程,如,用于执行图4所示的移动性管理方法中的步骤203中的触发LISP网络的路由的切换,图5所示的移动性管理方法中的步骤303中的触发LISP网络的路由的注册,图6所示的移动性管理方法中的步骤403中的触发LISP网络的路由的注销,图7所示的移动性管理方法中的步骤6,图8所示的移动性管理方法中的步骤5,图9所示的移动性管理方法中的步骤7,图10所示的移动性管理方法中的步骤5,图11所示的移动性管理方法中的步骤13,图12所示的移动性管理方法中的步骤7。通信模块82用于支持TR与其他网络实体的通信,例如与图3、图16、图17、图18或图20中示出的功能模块或网络实体之间的通信,如,用于执行图4所示的移动性管理方法中的步骤203中的接收网络设备通过信令接口发送的注册请求、步骤204,图5所示的移动性管理方法中的步骤303中的接收网络设备通过信令接口发送的注册请求、步骤304,图6所示的移动性管理方法中的步骤403中的接收网络设备通过信令接口发送的注册请求、步骤404,图7所示的移动性管理方法中的步骤5、步骤8,图8所示的移动性管理方法中的步骤4、步骤7,图9所示的移动性管理方法中的步骤6、步骤11,图10所示的移动性管理方法中的步骤4、步骤10,图11所示的移动性管理方法中的步骤12、步骤16,图12所示的移动性管理方法中的步骤6。TR还可以包括存储模块83,用于存储TR的程序代码和数据。
其中,处理模块81可以是处理器或控制器。其可以实现或执行结合本发明公开内容所描述的各种示例性的逻辑方框,模块和电路。处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。通信模块82可以是收发器、 收发电路或通信接口等。存储模块83可以是存储器。
当处理模块81为处理器,通信模块82为通信接口,存储模块83为存储器时,本发明实施例所涉及的TR可以为图20所示的TR。
需要说明的是,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
本发明实施例提供的TR,用于执行上述移动性管理方法,因此可以达到与上述移动性管理方法相同的效果。
图19为本发明实施例提供的一种网络设备的组成示意图。该网络设备可以是图3所示的网络架构中的GW-U 14或GW-C 15。如图19所示,该网络设备可以包括:处理器91、存储器92、系统总线93和信令接口94。
处理器91可以是一个处理器,也可以是多个处理元件的统称。例如,处理器91可以是一个通用中央处理器(central processing unit,CPU),也可以是特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制本发明方案程序执行的集成电路,例如:一个或多个微处理器(digital signal processor,DSP),或,一个或者多个现场可编程门阵列(field programmable gate array,FPGA)。
在具体实现中,作为一种实施例,处理器91可以包括一个或多个CPU,例如图19中的CPU0和CPU1。
在具体实现中,作为一种实施例,网络设备可以包括多个处理器,例如图19中的处理器91和处理器95。这些处理器中的每一个可以是一个单核(single-CPU)处理器,也可以是一个多核(multi-CPU)处理器。这里的处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
存储器92可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically  erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器可以是独立存在,通过总线与处理器相连接。存储器也可以和处理器集成在一起。
其中,存储器92用于存储执行本发明方案的应用程序代码,并由处理器91来控制执行。处理器91用于执行存储器92中存储的应用程序代码。
系统总线93可以是工业标准体系结构(industry standard architecture,ISA)总线、外部设备互连(peripheral component,PCI)总线或扩展工业标准体系结构(extended industry standard architecture,EISA)总线等。该总线可以分为地址总线、数据总线、控制总线等。为便于表示,图19中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
信令接口94,使用任何收发器一类的装置,用于与其他设备或通信网络通信,如以太网,无线接入网(radio access network,RAN),无线局域网(wireless local area networks,WLAN)等。信令接口94可以包括接收单元实现接收功能,以及发送单元实现发送功能。例如,信令接口94用于实现网络设备与LISP网络中的TR之间的信令交互。
图20为本发明实施例提供的一种TR的组成示意图。该TR可以是图3所示的网络架构中的第一TR 16或第二TR 17。如图20所示,该TR可以包括:处理器1001、存储器1002、系统总线1003和信令接口1004。
处理器1001可以是一个处理器,也可以是多个处理元件的统称。例如,处理器1001可以是一个CPU,也可以是ASIC,或一个或多个用于控制本发明方案程序执行的集成电路,例如:一个或多 个DSP,或,一个或者多个FPGA。在具体实现中,作为一种实施例,处理器1001可以包括一个或多个CPU,例如图20中的CPU0和CPU1。
在具体实现中,作为一种实施例,TR可以包括多个处理器,例如图20中的处理器1001和处理器1005。这些处理器中的每一个可以是一个single-CPU处理器,也可以是一个multi-CPU处理器。这里的处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
存储器1002可以是ROM或可存储静态信息和指令的其他类型的静态存储设备,RAM或者可存储信息和指令的其他类型的动态存储设备,也可以是EEPROM、CD-ROM或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器可以是独立存在,通过总线与处理器相连接。存储器也可以和处理器集成在一起。
其中,存储器1002用于存储执行本发明方案的应用程序代码,并由处理器1001来控制执行。处理器1001用于执行存储器1002中存储的应用程序代码。
系统总线1003可以是ISA总线、PCI总线或EISA总线等。该总线可以分为地址总线、数据总线、控制总线等。为便于表示,图20中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
信令接口1004,使用任何收发器一类的装置,用于与其他设备或通信网络通信,如以太网,RAN,WLAN等。通信接口1004可以包括接收单元实现接收功能,以及发送单元实现发送功能。例如,信令接口1004用于实现TR与移动通信网络中的网络设备之间的信令交互。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地 了解到,为描述的方便和简洁,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个装置,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是一个物理单元或多个物理单元,即可以位于一个地方,或者也可以分布到多个不同地方。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个可读取存储介质中。基于这样的理解,本发明实施例的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该软件产品存储在一个存储介质中,包括若干指令用以使得一个设备(可以是单片机,芯片等)或处理器(processor)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(英文:Read-Only Memory,简 称:ROM)、随机存取存储器(英文:Random Access Memory,简称:RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (21)

  1. 一种通信系统,其特征在于,包括:
    位置和标识分离协议LISP网络,所述LISP网络包括终端移动之后需接入的隧道路由器TR;和
    移动通信网络,所述移动通信网络包括与所述TR之间存在信令接口的网络设备,所述网络设备用于获知需切换网关,通过所述信令接口向所述TR发送注册请求,其中,所述注册请求包括所述终端的标识或所述终端的业务流的标识,所述注册请求用于通知需进行网关切换;
    所述TR用于从所述网络设备接收所述注册请求后,触发所述LISP网络的路由的切换;
    其中,所述网络设备是数据业务报文转发的锚点设备,或者,所述网络设备是用于对所述数据业务报文转发的锚点设备进行控制的设备。
  2. 根据权利要求1所述的通信系统,其特征在于,
    在所述LISP网络的所述路由的切换完成后,所述TR用于通过所述信令接口向所述网络设备发送注册请求确认,所述注册请求确认用于通知在所述LISP网络中的所述路由的切换已完成;
    所述网络设备用于从所述TR接收所述注册请求确认。
  3. 根据权利要求1或2所述的通信系统,其特征在于,当所述网络设备是用于对所述数据业务报文转发的锚点设备进行控制的设备时,
    所述网络设备用于从移动管理实体MME接收修改承载请求,根据所述修改承载请求中包括的所述终端的位置信息确定需切换网关,以获知需切换网关。
  4. 根据权利要求1或2所述的通信系统,其特征在于,当所述网络设备是数据业务报文转发的锚点设备时,所述通信系统还包括用于对所述网络设备进行控制的控制面网关GW-C;
    所述GW-C用于从MME接收基于所述终端的修改承载请求,根 据所述修改承载请求确定需进行网关切换,向所述网络设备发送会话请求消息;
    所述网络设备用于从所述GW-C接收所述会话请求消息,以获知需切换网关;
    其中,所述会话请求消息包括创建会话请求或修改会话请求。
  5. 一种移动性管理方法,其特征在于,包括:
    网络设备获知需切换网关;
    所述网络设备通过所述网络设备与隧道路由器TR之间的信令接口,向所述TR发送注册请求,所述TR为终端移动之后需接入的TR,所述注册请求包括所述终端的标识或所述终端的业务流的标识,所述注册请求用于通知需进行网关切换;
    其中,所述网络设备所属的移动通信网络与所述TR所属的位置和标识分离协议LISP网络结合部署,所述网络设备是数据业务报文转发的锚点设备,或者,所述网络设备是用于对所述数据业务报文转发的锚点设备进行控制的设备。
  6. 根据权利要求5所述的方法,其特征在于,还包括:
    所述网络设备通过所述信令接口,从所述TR接收注册请求确认,所述注册请求确认用于通知在所述LISP网络中的路由的切换已完成。
  7. 根据权利要求5或6所述的方法,其特征在于,当所述网络设备是用于对所述数据业务报文转发的锚点设备进行控制的设备时,所述网络设备获知需切换网关,包括:
    所述网络设备从移动管理实体MME接收修改承载请求;
    所述网络设备根据所述修改承载请求中包括的所述终端的位置信息确定需切换网关。
  8. 根据权利要求5或6所述的方法,其特征在于,当所述网络设备是数据业务报文转发的锚点设备时,所述网络设备获知需切换网关,包括:
    所述网络设备从控制面网关GW-C接收到会话请求消息,所述 GW-C用于对所述网络设备进行控制,所述会话请求消息是所述GW-C在从MME接收到基于所述终端的修改承载请求并根据所述修改承载请求确定需进行网关切换之后发送的;
    所述会话请求消息包括创建会话请求或修改会话请求。
  9. 一种移动性管理方法,其特征在于,包括:
    第一隧道路由器TR通过所述第一TR与网络设备之间的信令接口,从所述网络设备接收注册请求,所述第一TR为终端移动之后需接入的TR,所述注册请求包括所述终端的标识或所述终端的业务流的标识,所述注册请求用于通知需进行网关切换;及
    所述第一TR触发所述第一TR所属的位置和标识分离协议LISP网络的路由的切换;
    其中,所述网络设备所属的移动通信网络与所述LISP网络结合部署,所述网络设备是数据业务报文转发的锚点设备,或者,所述网络设备是用于对所述数据业务报文转发的锚点设备进行控制的设备。
  10. 根据权利要求9所述的方法,其特征在于,所述第一TR触发所述第一TR所属的位置和标识分离协议LISP网络的路由的切换,包括:
    所述第一TR向映射服务器发送映射请求,以便所述映射服务器收到所述映射请求后向第二TR发送第一映射通知,并在从所述第二TR接收到映射通知确认之后,向所述第一TR发送第二映射通知,所述第二映射通知用于通知在所述LISP网络中所述路由的切换已完成,所述第二TR为所述终端移动之前接入的TR;
    所述方法还包括:
    所述第一TR从所述映射服务器接收所述第二映射通知;
    所述第一TR通过所述信令接口向所述网络设备发送注册请求确认,所述注册请求确认用于通知在所述LISP网络中的所述路由的切换已完成。
  11. 根据权利要求10所述的方法,其特征在于,
    当所述注册请求中包括所述终端的标识时,所述映射请求中包括 所述终端的标识,以及与所述终端的标识对应的所述第一TR的路由位置标识RLOC,所述第一映射通知中包括所述终端的标识,以及与所述终端的标识对应的所述第一TR的RLOC;
    当所述注册请求中包括所述终端的业务流的标识时,所述映射请求中包括所述业务流的标识,以及与所述业务流的标识对应的所述第一TR的RLOC,所述第一映射通知中包括所述业务流的标识,以及与所述业务流的标识对应的所述第一TR的RLOC。
  12. 根据权利要求10或11所述的方法,其特征在于,还包括:
    所述第二TR从所述映射服务器接收所述第一映射通知;
    所述第二TR向所述映射服务器发送所述映射通知确认。
  13. 一种网络设备,其特征在于,包括:获知单元和发送单元;
    所述获知单元,用于获知需切换网关;
    所述发送单元,用于通过所述网络设备与隧道路由器TR之间的信令接口,向所述TR发送注册请求,所述TR为终端移动之后需接入的TR,所述注册请求包括所述终端的标识或所述终端的业务流的标识,所述注册请求用于通知需进行网关切换;
    其中,所述网络设备所属的移动通信网络与所述TR所属的位置和标识分离协议LISP网络结合部署,所述网络设备是数据业务报文转发的锚点设备,或者,所述网络设备是用于对所述数据业务报文转发的锚点设备进行控制的设备。
  14. 根据权利要求13所述的网络设备,其特征在于,还包括:接收单元;
    所述接收单元,用于通过所述信令接口,从所述TR接收注册请求确认,所述注册请求确认用于通知在所述LISP网络中的路由的切换已完成。
  15. 根据权利要求13或14所述的网络设备,其特征在于,当所述网络设备是用于对所述数据业务报文转发的锚点设备进行控制的设备时,
    所述获知单元,具体用于从移动管理实体MME接收修改承载请 求;根据所述修改承载请求中包括的所述终端的位置信息确定需切换网关。
  16. 根据权利要求13或14所述的网络设备,其特征在于,当所述网络设备是数据业务报文转发的锚点设备时,
    所述获知单元,具体用于从控制面网关GW-C接收到会话请求消息,所述GW-C用于对所述网络设备进行控制,所述会话请求消息是所述GW-C在从MME接收到基于所述终端的修改承载请求并根据所述修改承载请求确定需进行网关切换之后发送的;
    所述会话请求消息包括创建会话请求或修改会话请求。
  17. 一种第一隧道路由器TR,其特征在于,包括:接收单元和触发单元;
    所述接收单元,用于通过所述第一TR与网络设备之间的信令接口,从所述网络设备接收注册请求,所述第一TR为终端移动之后需接入的TR,所述注册请求包括所述终端的标识或所述终端的业务流的标识,所述注册请求用于通知需进行网关切换;
    所述触发单元,用于触发所述第一TR所属的位置和标识分离协议LISP网络的路由的切换;
    所述网络设备所属的移动通信网络与所述LISP网络结合部署,所述网络设备是数据业务报文转发的锚点设备,或者,所述网络设备是用于对所述数据业务报文转发的锚点设备进行控制的设备。
  18. 根据权利要求17所述的第一TR,其特征在于,还包括:发送单元;
    所述触发单元,具体用于向映射服务器发送映射请求,以便所述映射服务器收到所述映射请求后向第二TR发送第一映射通知,并在从所述第二TR接收到映射通知确认之后,向所述第一TR发送第二映射通知,所述第二映射通知用于通知在所述LISP网络中所述路由的切换已完成,所述第二TR为所述终端移动之前接入的TR;
    所述接收单元,还用于从所述映射服务器接收所述第二映射通知;
    发送单元,用于通过所述信令接口向所述网络设备发送注册请求确认,所述注册请求确认用于通知在所述LISP网络中的所述路由的切换已完成。
  19. 根据权利要求18所述的第一TR,其特征在于,
    当所述接收单元接收到的所述注册请求中包括所述终端的标识时,所述发送单元发送的所述映射请求中包括所述终端的标识,以及与所述终端的标识对应的所述第一TR的路由位置标识RLOC,所述第一映射通知中包括所述终端的标识,以及与所述终端的标识对应的所述第一TR的RLOC;
    当所述接收单元接收到的所述注册请求中包括所述终端的业务流的标识时,所述发送单元发送的所述映射请求中包括所述业务流的标识,以及与所述业务流的标识对应的所述第一TR的RLOC,所述第一映射通知中包括所述业务流的标识,以及与所述业务流的标识对应的所述第一TR的RLOC。
  20. 一种网络设备,其特征在于,包括:处理器、存储器、系统总线和信令接口;
    所述存储器用于存储计算机执行指令,所述处理器与所述存储器通过所述系统总线连接,所述信令接口用于实现所述网络设备与隧道路由器TR之间的信令交互,所述TR为终端移动之后需接入的TR;
    当所述网络设备运行时,所述处理器执行所述存储器存储的所述计算机执行指令,以使所述网络设备执行如权利要求1-4任意一项所述的通信系统中网络设备的行为功能,或者如权利要求5-8任意一项所述的移动性管理方法中网络设备的行为功能;
    其中,所述网络设备所属的移动通信网络与所述TR所属的位置和标识分离协议LISP网络结合部署,所述网络设备是数据业务报文转发的锚点设备,或者,所述网络设备是用于对所述数据业务报文转发的锚点设备进行控制的设备。
  21. 一种隧道路由器TR,其特征在于,包括:处理器、存储器、系统总线和信令接口;
    所述存储器用于存储计算机执行指令,所述处理器与所述存储器通过所述系统总线连接,所述信令接口用于实现所述TR与网络设备之间的信令交互,所述TR为终端移动之后需接入的TR;
    当所述TR运行时,所述处理器执行所述存储器存储的所述计算机执行指令,以使所述TR执行如权利要求1-4任意一项所述的通信系统中TR的行为功能,或者执行如权利要求9-11任意一项所述的移动性管理方法中第一TR的行为功能;
    所述TR所属的位置和标识分离协议LISP网络与所述网络设备所属的移动通信网络结合部署,所述网络设备是数据业务报文转发的锚点设备,或者,所述网络设备是用于对所述数据业务报文转发的锚点设备进行控制的设备。
PCT/CN2016/100428 2016-09-27 2016-09-27 一种移动性管理方法、设备及通信系统 WO2018058324A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/100428 WO2018058324A1 (zh) 2016-09-27 2016-09-27 一种移动性管理方法、设备及通信系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/100428 WO2018058324A1 (zh) 2016-09-27 2016-09-27 一种移动性管理方法、设备及通信系统

Publications (1)

Publication Number Publication Date
WO2018058324A1 true WO2018058324A1 (zh) 2018-04-05

Family

ID=61763247

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/100428 WO2018058324A1 (zh) 2016-09-27 2016-09-27 一种移动性管理方法、设备及通信系统

Country Status (1)

Country Link
WO (1) WO2018058324A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11202276B2 (en) 2020-01-15 2021-12-14 Cisco Technology, Inc. Techniques for supporting user equipment paging in an enterprise fabric

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102045693A (zh) * 2009-10-16 2011-05-04 中兴通讯股份有限公司 信息上报/通知、切换和数据转发方法、an及ilr
CN102447618A (zh) * 2011-10-31 2012-05-09 杭州华三通信技术有限公司 一种lisp网络中的路由切换方法及其装置
CN102868612A (zh) * 2011-07-04 2013-01-09 中兴通讯股份有限公司 基于lisp的移动性实现方法及隧道路由器
CN102957605A (zh) * 2011-08-24 2013-03-06 中兴通讯股份有限公司 一种切换实现方法、系统和源出口隧道路由器
US20150188802A1 (en) * 2013-12-26 2015-07-02 Electronics And Telecommunications Research Institute System for supporting multi-tenant based on private ip address in virtual private cloud networks and operating method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102045693A (zh) * 2009-10-16 2011-05-04 中兴通讯股份有限公司 信息上报/通知、切换和数据转发方法、an及ilr
CN102868612A (zh) * 2011-07-04 2013-01-09 中兴通讯股份有限公司 基于lisp的移动性实现方法及隧道路由器
CN102957605A (zh) * 2011-08-24 2013-03-06 中兴通讯股份有限公司 一种切换实现方法、系统和源出口隧道路由器
CN102447618A (zh) * 2011-10-31 2012-05-09 杭州华三通信技术有限公司 一种lisp网络中的路由切换方法及其装置
US20150188802A1 (en) * 2013-12-26 2015-07-02 Electronics And Telecommunications Research Institute System for supporting multi-tenant based on private ip address in virtual private cloud networks and operating method thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
D. FARINACCI ET AL.: "The Locator/ID Separation Protocol (LISP", IETF RFC 6830, 31 January 2013 (2013-01-31), XP015086542 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11202276B2 (en) 2020-01-15 2021-12-14 Cisco Technology, Inc. Techniques for supporting user equipment paging in an enterprise fabric

Similar Documents

Publication Publication Date Title
JP6386176B2 (ja) 進化型パケットコアにおけるスムーズなue転送
JP5704666B2 (ja) 通信システムと通信制御方法及びユーザ装置
US8855045B2 (en) Method and system for controlling establishment of local IP access
US20180167854A1 (en) Terminal device, mme, and control method
US20190230490A1 (en) Method and apparatus for managing packet data network connection on basis of local area in wireless communication system
WO2014183715A1 (zh) 一种网关更新信息通知方法及控制器
US10813036B2 (en) Anchor gateway switching method, apparatus, and system
WO2016035230A1 (ja) モビリティ管理及びベアラ管理を移転するための方法及び装置
EP3410752B1 (en) Mobility management method, apparatus and system
KR20150075118A (ko) 통신 시스템 및 경로 제어 방법
JP2018508155A (ja) 通信システム
EP2850912B1 (en) Efficient distribution of signaling messages in a mobility access gateway or local mobility anchor
WO2011137715A1 (zh) 单信道语音连续性实现方法及系统
WO2021134725A1 (zh) 通信方法及装置
WO2018058324A1 (zh) 一种移动性管理方法、设备及通信系统
WO2017166291A1 (zh) 一种通信方法、终端、基站和移动性管理设备
WO2011085636A1 (zh) 一种wcdma核心网及基于wcdma核心网的切换方法
WO2013053330A1 (zh) 流迁移方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16917084

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16917084

Country of ref document: EP

Kind code of ref document: A1