WO2018056616A1 - Method for screening patient-specific stem cell therapeutic agent - Google Patents

Method for screening patient-specific stem cell therapeutic agent Download PDF

Info

Publication number
WO2018056616A1
WO2018056616A1 PCT/KR2017/009839 KR2017009839W WO2018056616A1 WO 2018056616 A1 WO2018056616 A1 WO 2018056616A1 KR 2017009839 W KR2017009839 W KR 2017009839W WO 2018056616 A1 WO2018056616 A1 WO 2018056616A1
Authority
WO
WIPO (PCT)
Prior art keywords
patient
cells
stem cells
derived
mesenchymal stem
Prior art date
Application number
PCT/KR2017/009839
Other languages
French (fr)
Korean (ko)
Inventor
장종욱
나덕렬
이정민
Original Assignee
사회복지법인 삼성생명공익재단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 사회복지법인 삼성생명공익재단 filed Critical 사회복지법인 삼성생명공익재단
Publication of WO2018056616A1 publication Critical patent/WO2018056616A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids

Definitions

  • the present invention relates to a method for screening a patient-specific stem cell therapy.
  • Suitable therapeutic agents may be different.
  • the disease-causing variation may vary from patient to patient, so selecting a therapeutic agent suitable for a patient-specific mutation is a very important problem, and securing a method for screening a patient-specific treatment agent. Is needed.
  • the inventors of the present invention are studying a method for selecting a patient-specific customized therapeutic agent, co-culturing a patient-derived cell and a candidate group of mesenchymal stem cells, and confirming the change of the patient-derived cell according to the co-culture.
  • the present invention was completed by confirming that stem cells showing a particularly excellent effect on patients or diseases can be selected quickly.
  • an object of the present invention is to provide a method for screening a patient-specific stem cell therapy.
  • the present invention comprises the steps of (1) co-culturing the patient-derived cells and candidate stem cells; And (2) selecting stem cells by measuring changes in proliferative, differentiating or pathological markers of patient derived cells; It provides a method for screening a patient-specific stem cell therapy comprising a.
  • FIG. 1 is a schematic diagram showing a co-culture method of a screening model for selecting stem cells showing an excellent therapeutic effect on Alzheimer's dementia (AD) neuron cells.
  • AD Alzheimer's dementia
  • Figure 2 is a cord blood-derived mesenchymal stem cells (UCB-MSC), umbilical cord-derived mesenchymal stem cells (WJ-MSC) or fat-derived mesenchymal stem cells (Adipose-MSC) in the treatment group to check the degree of cell activity to prevent cell death The figure which showed the result which confirmed the effect.
  • UB-MSC cord blood-derived mesenchymal stem cells
  • WJ-MSC umbilical cord-derived mesenchymal stem cells
  • Adipose-MSC fat-derived mesenchymal stem cells
  • FIG. 3 is a diagram showing the results of the classification of secretion proteins by function of umbilical cord-derived mesenchymal stem cells (WJ-MSC) treatment group.
  • WJ-MSC umbilical cord-derived mesenchymal stem cells
  • Figure 4 is a diagram showing the results of the classification of secreted proteins by the function of adipose-derived mesenchymal stem cells (Adipose-MSC) treatment group.
  • Adipose-MSC adipose-derived mesenchymal stem cells
  • FIG. 5 is a diagram showing a method for establishing a stem cell therapeutic screening model for each Alzheimer's type dementia subtype.
  • Figure 6 shows the expression level of SOX2 and Nestin of APP-NPC or PS-1-NPC in adipose-derived mesenchymal stem cells (Adipose-MSC) treatment group or umbilical cord-derived mesenchymal stem cell (WJ-MSC) treatment group Is a diagram showing.
  • Adipose-MSC adipose-derived mesenchymal stem cells
  • WJ-MSC umbilical cord-derived mesenchymal stem cell
  • MAP2 and Tuj1 Neuron-specific class III of APP-NPC or PS-1-NPC in adipose-derived mesenchymal stem cell (Adipose-MSC) treated group or umbilical cord-derived mesenchymal stem cell (WJ-MSC) treated group.
  • Adipose-MSC adipose-derived mesenchymal stem cell
  • WJ-MSC umbilical cord-derived mesenchymal stem cell
  • Figure 8 shows the co-culture of Alzheimer subtype-derived PS1-NPC, sAD (Sporadic AD) -NPC and fat-derived mesenchymal stem cells (Adipose-MSC) treatment group or umbilical cord-derived mesenchymal stem cell (WJ-MSC) treatment group It is a figure which shows the result of comparing cell proliferation ability.
  • Figure 9 compares the cell proliferation capacity of co-culture of Alzheimer subtype-derived PS1-NPC, sAD-NPC and adipose-derived mesenchymal stem cell (Adipose-MSC) treatment group or umbilical cord-derived mesenchymal stem cell (WJ-MSC) treatment group
  • Figure 1 shows the results.
  • FIG. 10 shows the pathological factor ubiquitin according to co-culture of Alzheimer subtype-derived PS1-NPC, sAD-NPC and adipose-derived mesenchymal stem cell (Adipose-MSC) treated group or umbilical cord-derived mesenchymal stem cell (WJ-MSC) treated group. It is a figure which shows the result of comparing and quantifying the change of expression of a conjugate.
  • FIG. 11 is a diagram showing a method for establishing a stem cell therapeutic screening model using neurons derived from Alzheimer's disease patients.
  • Figure 12 compares and quantified the expression changes of ubiquitin conjugates according to co-culture of Alzheimer's patients-derived neurons and adipose-derived mesenchymal stem cells (Adipose-MSC) treatment group or umbilical cord-derived mesenchymal stem cell (WJ-MSC) treatment group. The results are shown.
  • Adipose-MSC adipose-derived mesenchymal stem cells
  • WJ-MSC umbilical cord-derived mesenchymal stem cell
  • the present invention comprises the steps of (1) co-culturing the patient-derived cells and candidate stem cells; And (2) selecting stem cells by measuring changes in proliferative, differentiating or pathological markers of patient derived cells; It provides a method for screening a patient-specific stem cell therapy comprising a.
  • the screening method of the present invention enables the rapid selection of stem cells that can have the most effect on patient cells, and thus can be effectively used for screening patient-specific stem cell therapeutics and developing them as therapeutic agents.
  • the present invention will be described in detail.
  • Step (1) of the present invention is a step of co-culturing patient derived cells and candidate stem cells.
  • patient-derived cell means a cell isolated and obtained from a patient, and since the cell is directly isolated from the patient, a cell having a characteristic capable of reflecting all genetic and pathological factors of the individual patient. it means. Therefore, it can be expected that the selected stem cell therapeutics that have an effect on the patient-derived cells will have an excellent effect on the patient.
  • the patient-derived cell may be a cell derived from a patient having each disease subtype, and when used, it is possible to effectively select a stem cell therapeutic agent having a particular effect on a specific disease subtype.
  • the patient-derived cells of the present invention may preferably be cells derived from a patient with degenerative brain disease, and the cells derived from the patient with degenerative brain disease are derived differentiated stem cells derived from patients with degenerative brain disease or subtypes thereof (Induced Pluripotent Stem Cell, iPSC), nerve cell or nerve progenitor cell nerve.
  • iPSC Insulated Pluripotent Stem Cell
  • the "degenerative brain disease” is a specific brain cell group of the brain and spinal cord gradually loses its function, the death of cerebral neurons which is most important for information transmission of the nervous system, synapses that transmit information between the brain neurons and brain nerve cells It is a disease caused by the formation or function problems of the brain and the ideal increase or decrease of electrical activity of the cranial nerve.
  • Degenerative brain diseases are classified by considering the main symptoms and invading brain areas, and include Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD).
  • the degenerative brain disease of the present invention may be one or more selected from the group consisting of forgetfulness, dementia, Alzheimer's disease, Parkinson's disease and Huntington's disease.
  • the "candidate stem cell” means a stem cell population used for the purpose of selecting stem cells showing the best effect.
  • the candidate stem cells cells showing the best effect on the patient-derived cells as compared to other stem cells can be selected as a patient-specific stem cell therapy.
  • Candidate stem cells of step (1) may be derived from one or more selected from the group consisting of cord blood, umbilical cord, bone marrow and fat.
  • the stem cells may be mesenchymal stem cells. According to the screening method of the present invention, it is possible to select a stem cell showing the most excellent effect on the patient-specific, subtype-specific.
  • the effect of each candidate stem cells on Alzheimer's patients derived neuro precursor cells, neurons, and improve the pathological state of Alzheimer's To this end, umbilical cord-derived mesenchymal stem cells are appropriate, and for the purpose of proliferation of neurons, it was confirmed that it is preferable to select umbilical cord-derived mesenchymal stem cells rather than fat-derived mesenchymal stem cells.
  • Co-culture of step (1) of the present invention can be made using a transwell.
  • one embodiment of the present invention provides a method of inoculating a patient-derived cell on top of a chamber of a transwell and inoculating candidate stem cells on a bottom of a transwell chamber.
  • the candidate stem cells can secrete a variety of substances that can affect the patient-derived cells, thereby increasing the growth of the cells derived from the patient May be promoted, expression of pathological markers may be reduced, or cell differentiation may be promoted.
  • culture in the present invention means to grow the cells under environmental conditions that are appropriately artificially controlled, preferably culture may be carried out in the transwell.
  • the patient derived cells and candidate stem cells can be grown in a conventional medium.
  • the medium may contain a nutritional substance required by the cells to be cultured, that is, the cells to be cultured in order to culture specific cells, and may be mixed with an additional material for a special purpose.
  • the medium may also be referred to as an incubator or a culture medium, and is a concept that includes all natural, synthetic, or selective media.
  • the patient-derived cells and candidate stem cells can be cultured according to conventional culture methods.
  • the co-culture of step (1) may be performed for about 5 to 14 days, preferably 5 to 10 days, more preferably 5 to 7 days. At this time, it is preferable to replace the culture medium every two to three days.
  • Step (2) of the present invention is a step of selecting mesenchymal stem cells by measuring the change in proliferative capacity, differentiation capacity or pathological markers of patient-derived cells.
  • stem cells capable of significantly inducing a desired change than other candidate stem cells by measuring a change in proliferative capacity, differentiation capacity or pathological markers of a patient-derived cell are stemmed according to a patient or disease subtype.
  • Selection as a cell therapeutic agent, and the desired change may include without limitation changes that promote cell proliferation, promote differentiation, or inhibit the expression of pathological markers.
  • the proliferative capacity of step (2) can be confirmed by measuring the survival rate of the cells derived from the patients with degenerative brain disease, and the differentiation capacity is MAP2 (microtubule associated protein 2), NF-200 ( neurofilament 200), Tuj1 (Neuron-specific class III beta-tubulin) and VGLUT2 (vesicular glutamate transporter 2) can be characterized by measuring the expression of one or more neuronal differentiation markers selected from the group consisting of.
  • MAP2 microtubule associated protein 2
  • NF-200 neurofilament 200
  • Tuj1 Neuron-specific class III beta-tubulin
  • VGLUT2 vesicular glutamate transporter 2
  • the change in the pathological marker of step (2) may be characterized by measuring the expression of one or more pathological markers selected from the group consisting of ubiquitin conjugates, amyloid beta and tau proteins, inflammation-related cytokines and the like.
  • the present invention may further comprise the step of analyzing the secreted proteins of the selected stem cells of the step (2), after the selection step of (2).
  • the secreted proteins of the stem cells can be classified by function to select specifically expressed secreted proteins. For example, if stem cells are selected that significantly promote the proliferation of patient-derived cells when co-cultured with patient-derived cells among candidate stem cells, the proteins secreted from the selected stem cells are concentrated and analyzed to significantly promote proliferation of certain proteins. You can see if you can.
  • a screening model was constructed to compare the therapeutic potential of various mesenchymal stem cells (MSCs) against Alzheimer's disease (AD). Specifically, as shown in Figure 1, HT22, a hippocampal neuronal cell line of the mouse was inoculated in a medium essential medium-alpha (MEM-alpha) medium in the bottom of the transwell. Thereafter, amyloid beta 42, an Alzheimer's type dementia-specific biomarker and a toxic molecule, was added to oligomer form in the lower well of the transwell inoculated with the HT22 cells to induce cell death. Alzheimer's dementia model was constructed.
  • MCM-alpha medium essential medium-alpha
  • coculture was performed by inoculating cord blood-derived mesenchymal stem cells (UCB-MSC), umbilical cord-derived mesenchymal stem cells (WJ-MSC), or adipose-derived mesenchymal stem cells (Adipose-MSC), respectively.
  • a group not inoculated with MSC was set as a control group, and the effect of preventing cell death by MSCs derived from the above-mentioned different species was confirmed.
  • the expression level of the differentiation marker MAP2 was confirmed through fluorescence.
  • MAP2 protein is a protein that extends to the nerve cell ends during neuronal differentiation, and may be an indicator of whether the cell ends are damaged by neuronal cell death. Therefore, the fluorescence measurement of MAP2 can confirm whether the cells are killed through co-culture of MSC, the results are shown in FIG.
  • the group inoculated and co-cultured with cord blood-derived mesenchymal stem cells (UCB-MSC), umbilical cord-derived mesenchymal stem cells (WJ-MSC) or adipose-derived mesenchymal stem cells (Adipose-MSC), respectively.
  • UB-MSC cord blood-derived mesenchymal stem cells
  • WJ-MSC umbilical cord-derived mesenchymal stem cells
  • Adipose-MSC adipose-derived mesenchymal stem cells
  • cord blood-derived mesenchymal stem cells UMB-MSC
  • umbilical cord-derived mesenchymal stem cells WJ-MSC
  • the culture medium at the bottom of the transwell of the adipose-derived mesenchymal stem cell (Adipose-MSC) treated group was collected, and the collected culture solution was concentrated to increase the concentration of the secreted protein.
  • antibody arrays were performed for the culture medium of each of the concentrated groups. Thereafter, the array results were identified using an analysis program to identify proteins showing more than twofold fold changes in each source.
  • neuronal proteins were separately classified among secretory proteins of umbilical cord-derived mesenchymal stem cells (WJ-MSC) or adipose-derived mesenchymal stem cells (Adipose-MSC) treated groups. Thereafter, the neuronal proteins were reclassified by function to confirm the characteristics of the neuronal proteins secreted by the treatment groups. The results are shown in FIGS. 3 and 4.
  • the umbilical cord-derived mesenchymal stem cells (WJ-MSC) treated group and adipose derived mesenchymal stem cells (Adipose-MSC) treated group showed different protein secretion characteristics.
  • WJ-MSCs umbilical cord-derived mesenchymal stem cells secrete more secretory proteins such as nervous system development, neuronal production, and axon guidance, and secrete more secretory proteins related to the survival of neurons. It was.
  • Adipose-derived mesenchymal stem cells (Adipose-MSC) treated group secreted more proteins involved in the development of the nervous system, signaling pathways, neuronal cell production, cell survival and proliferation It was confirmed that a lot of related proteins secreted.
  • mesenchymal stem cells may be secreted from different populations of secreted proteins for the treatment of diseases, and thus, specific mesenchymal stem cells can be screened for screening patient-specific therapeutic agents.
  • specific mesenchymal stem cells can be screened for screening patient-specific therapeutic agents.
  • co-cultivation of MSCs of different origin and patient-derived disease cells can reduce disease markers or prevent neuronal cell death.
  • MSCs can be screened.
  • the proteins secreted by different MSCs can be identified to select proteins that have an effect on Alzheimer's dementia.
  • Example 1 Based on the screening model of Example 1, in order to build a subtype-specific screening model of the Korean type Alzheimer's dementia, the mesenchymal stem cells of the patient-derived neuronal progenitor cells (NPC) of the Korean type Alzheimer's type dementia The therapeutic ability was confirmed.
  • NPC patient-derived neuronal progenitor cells
  • NPCs AD-NPC
  • MSCs derived from Alzheimer's patient were co-cultured and MSCs having a therapeutic effect were selected.
  • the bottom of the trans well was first coated with poly-L-ornithine (PLO) and laminin.
  • PLO poly-L-ornithine
  • neuroprogenitor APP-NPC or PS-1-NPC of a patient corresponding to the Korean type Alzheimer's dementia subtype APP or PS-1 was inoculated at the bottom of the transwell at 2.5 ⁇ 10 4 / cm 2 .
  • the neural progenitor cells are patient specific cells prepared by collecting somatic cells from dementia patients who visited Samsung Medical Center and dedifferentiating them.
  • WJ-MSC Umbilical cord-derived mesenchymal stem cells
  • Adipose-MSC adipose-derived mesenchymal stem cells
  • the stem cell capacity, differentiation capacity and pathological markers of the umbilical cord-derived mesenchymal stem cells (WJ-MSC) or adipose-derived mesenchymal stem cells (Adipose-MSC) were identified.
  • Stem cell capacity and differentiation capacity were confirmed by Western blot and immunocytochemistry for the expression level of SOX2 / Nestin marker and MAP2 / Tuj1 in AD-NPC co-cultured for 1 week. The results are shown in FIGS. 6 and 7.
  • WJ-MSC umbilical cord-derived mesenchymal stem cells
  • Adipose-MSC adipose-derived mesenchymal stem cells
  • sAD sporadic AD
  • PS-1-NPC umbilical cord-derived mesenchymal stem cells
  • WJ umbilical cord-derived mesenchymal stem cells
  • Adipose-MSC adipose-derived mesenchymal stem cells
  • CCK-8 cell viability assay was performed for 48 hours to confirm the effect of promoting patient-derived NPC proliferation by umbilical cord-derived mesenchymal stem cells (WJ-MSC) or adipose-derived mesenchymal stem cells (Adipose-MSC).
  • WJ-MSC umbilical cord-derived mesenchymal stem cells
  • Adipose-MSC adipose-derived mesenchymal stem cells
  • NPCs were different depending on the type of inoculated MSCs. Both sAD-NPC or PS-1-NPC increased proliferation by cord-derived mesenchymal stem cells (WJ-MSC) or adipose-derived mesenchymal stem cells (Adipose-MSC), but umbilical cord-derived mesenchymal stem cells (WJ-MSC) ) Showed more excellent cell proliferation promoting ability. Therefore, when the purpose of the proliferation of neurons, it can be interpreted that it is preferable to select and use umbilical cord-derived mesenchymal stem cells rather than fat-derived mesenchymal stem cells.
  • WJ-MSC cord-derived mesenchymal stem cells
  • Adipose-MSC adipose-derived mesenchymal stem cells
  • WJ-MSC umbilical cord-derived mesenchymal stem cells
  • the proliferation of NPCs was different depending on the type of inoculated MSCs.
  • PS-1-NPC significantly increased proliferation by umbilical cord-derived mesenchymal stem cells (WJ-MSC) and adipose-derived mesenchymal stem cells (Adipose-MSC).
  • WJ-MSC umbilical cord-derived mesenchymal stem cells
  • Adipose-MSC adipose-derived mesenchymal stem cells
  • BruU experiments use the principle of intercalation between DNA when cells divide and proliferate, thus eliminating the interference of metabolism of the cell itself in addition to proliferation, thus enabling more accurate screening of the cell. Therefore, in the case of the purpose of the proliferation of neurons, it can be interpreted that it is preferable to select the umbilical cord-derived mesenchymal stem cells rather than the adipose-derived mesenchymal stem cells, as well as appropriate stem cell therapy according to the disease subtype of each patient. It can be seen that there is a combination, which can be quickly confirmed by the screening method of the present invention.
  • ubiquitin conjugates In order to screen mesenchymal stem cells that have a pathological effect on neuroprogenitor cells, the effects of ubiquitin conjugates on the increase and decrease were identified.
  • neuroprogenitor cells ubiquitin conjugates increase when abnormal intracellular substances accumulate, and ubiquitin increases when diseases such as Alzheimer's occur. Therefore, co-culture of Alzheimer's patient-derived NPCs with adipose-derived mesenchymal stem cells or umbilical cord-derived mesenchymal stem cells was performed by the method according to Example 2, and the increase and decrease of the ubiquitin conjugate was confirmed in the patient-derived NPCs. The increase and decrease of the ubiquitin conjugate was confirmed by Western blot, and the results are shown in FIG. 10.
  • the ubiquitin conjugates increased in sAD, it was confirmed that the level of ubiquitin conjugates is reduced by co-culture with umbilical cord mesenchymal stem cells.
  • the effect of reducing the ubiquitin conjugates was not found in the adipose derived mesenchymal stem cells, but rather showed an increasing aspect, confirming that it is not suitable for reducing the ubiquitin conjugates. Therefore, the mesenchymal stem cells suitable for improving the pathological condition of Alzheimer's through the screening method of the present invention can be identified and selected from the umbilical cord-derived mesenchymal stem cells.
  • NPCs were differentiated to obtain degenerative subtypes of neurons and screening using the same.
  • the dementia subtype was a mutation of the genetic subtype APP (Amyloid Precursor Protein) / mutation of PS1 (Presenilin 1) / non-genetic subtype sAD (sporadic AD), and after the production of patient-derived dedifferentiated stem cells (iPSC), Cells differentiated by neural lineage were obtained and used for the experiment.
  • APP Amyloid Precursor Protein
  • PS1 Presenilin 1
  • iPSC patient-derived dedifferentiated stem cells
  • the screening method is similar to that of Example 2, but in order to co-culture MSC and neurons, inoculated NPCs of Korean Alzheimer's dementia subtypes at a rate of 2x10 4 / cm 2 and differentiated for 10 weeks to differentiate neurons by dementia subtypes.
  • Cells were obtained.
  • the obtained dementia subtype neurons were inoculated at the bottom of the transwell at 2.5x10 4 / cm 2 , and umbilical cord-derived mesenchymal stem cells (WJ-MSC) or adipose-derived mesenchymal stem cells (Adipose-MSC) were inserted into the insert chamber. Each was inoculated to be 4 / cm 2 .
  • WJ-MSC umbilical cord-derived mesenchymal stem cells
  • Adipose-MSC adipose-derived mesenchymal stem cells
  • Co-cultivation was carried out through the method of 4.1, and mesenchymal stem cells were effectively screened and selected to effectively reduce the pathological characteristics of Alzheimer's disease through the method of 3.3.
  • an experimental group (B + G + N) containing only BDNF, GDNF, and NT3, which are reagents used for differentiating neurons from neuronal progenitor cells, was used. It is shown in 12.
  • the ubiquitin conjugate was increased in the dementia patient-derived neurons, and the level of the ubiquitin conjugate was decreased by co-culture with adipose-derived mesenchymal stem cells or umbilical cord-derived mesenchymal stem cells.
  • the ubiquitin conjugate reduction effect was more excellent in umbilical cord-derived mesenchymal stem cells than adipose derived mesenchymal stem cells. Therefore, the mesenchymal stem cells suitable for improving the pathological condition of Alzheimer's through the screening method of the present invention can be identified and selected from the umbilical cord-derived mesenchymal stem cells.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Chemical & Material Sciences (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Cell Biology (AREA)
  • Medicinal Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Biotechnology (AREA)
  • Food Science & Technology (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Toxicology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Neurology (AREA)
  • Neurosurgery (AREA)
  • Developmental Biology & Embryology (AREA)

Abstract

The present invention relates to a method for screening a patient-specific therapeutic agent. When using the method for screening a patient-specific therapeutic agent of the present invention, it is possible to identify and select the therapeutic ability of mesenchymal stem cells of different origins with respect to disease subtypes or disease effectors. In addition, it is possible to confirm the characteristics of the secretory protein which acts at high efficiency or low efficiency, by analyzing proteins secreted by the selected mesenchymal stem cells, and thus there is the advantage that a customized therapeutic agent for the specific nature of the disease of each patient can be proposed.

Description

환자 맞춤형 줄기세포 치료제의 스크리닝 방법Screening method of patient-specific stem cell therapy
본 발명은 환자 맞춤형 줄기세포 치료제의 스크리닝 방법에 관한 것이다.The present invention relates to a method for screening a patient-specific stem cell therapy.
질환을 치료하기 위한 다양한 치료제가 개발되고 있으나, 질환별로 상이한 양상을 나타내고 있을 뿐만 아니라, 동일한 질환에도 다양한 종류의 유전적 특성을 가진 질환 유발 세포들이 존재하기 때문에, 동일한 질환을 가진 환자라 하더라도, 환자에 적합한 치료제는 상이할 수 있다.Although various therapeutic agents have been developed for treating diseases, the disease-causing cells having various kinds of genetic characteristics are present in the same disease, and even if the patient has the same disease, Suitable therapeutic agents may be different.
하나의 치료제가 특정 질환 세포를 사멸시켜 치료 효과를 나타낸다 하더라도, 다른 유전적 특성을 가진 질환 유발 세포들까지 모두 사멸시키지는 못하기 때문에, 특정 환자에 적합한 치료제가 다른 환자에서는 치료 효과를 나타내지 못할 수도 있으며, 오히려 질환을 심화시키는 역효과를 유발할 수도 있다.Even if one treatment kills certain diseased cells and does not kill all the disease-causing cells with other genetic characteristics, a treatment that is appropriate for one patient may not be effective in another. Rather, it may cause adverse effects that aggravate the disease.
이와 같은 문제점을 해결하고자, 다양한 질병 유발 기전을 연구하고 이를 치료하기 위한 여러 약제들이 개발되고 있으나, 어떤 질환에 어떤 약제를 사용해야 목적하는 치료 효과를 나타낼 수 있는지 여부를 결정하는데 별도의 표준적인 방법은 보고되지 않은 상태여서, 치료제로 사용하는데 제약이 있는 실정이다.In order to solve this problem, various drugs have been developed to study and treat various disease-causing mechanisms.However, a separate standard method for determining whether a drug can be used to achieve a desired therapeutic effect As it is not reported, there is a limit to use as a therapeutic agent.
따라서, 환자의 질환이 동일하다 하더라도 질환을 유발하는 변이가 환자마다 상이할 수 있으므로 환자 특이적 변이에 적합한 치료제를 선별하는 것이 매우 중요한 문제로 대두되고 있으며, 환자 맞춤형의 치료제를 스크리닝하기 위한 방법 확보가 필요한 실정이다.Therefore, even if the patient's disease is the same, the disease-causing variation may vary from patient to patient, so selecting a therapeutic agent suitable for a patient-specific mutation is a very important problem, and securing a method for screening a patient-specific treatment agent. Is needed.
본 발명의 발명자들은 환자 특이적인 맞춤형 치료제를 선별하기 위한 방법에 대하여 연구하던 중, 환자 유래의 세포와 후보군인 중간엽 줄기세포를 공동 배양하고, 공동 배양에 따른 환자 유래 세포의 변화를 확인하는 경우, 환자 또는 질병 특이적으로 우수한 효과를 나타내는 줄기세포를 빠르게 선별할 수 있음을 확인하고 본 발명을 완성하였다. When the inventors of the present invention are studying a method for selecting a patient-specific customized therapeutic agent, co-culturing a patient-derived cell and a candidate group of mesenchymal stem cells, and confirming the change of the patient-derived cell according to the co-culture. The present invention was completed by confirming that stem cells showing a particularly excellent effect on patients or diseases can be selected quickly.
따라서 본 발명의 목적은 환자 맞춤형 줄기세포 치료제의 스크리닝 방법을 제공하는 것이다.Accordingly, an object of the present invention is to provide a method for screening a patient-specific stem cell therapy.
상기와 같은 과제를 해결하기 위해, 본 발명은 (1) 환자 유래 세포 및 후보 줄기 세포를 공동 배양하는 단계; 및 (2) 환자 유래 세포의 증식능, 분화능 또는 병리학적 마커의 변화를 측정하여 줄기 세포를 선별하는 단계; 를 포함하는 환자 맞춤형 줄기세포 치료제의 스크리닝 방법을 제공한다. In order to solve the above problems, the present invention comprises the steps of (1) co-culturing the patient-derived cells and candidate stem cells; And (2) selecting stem cells by measuring changes in proliferative, differentiating or pathological markers of patient derived cells; It provides a method for screening a patient-specific stem cell therapy comprising a.
본 발명의 환자 맞춤형 줄기세포 치료제의 스크리닝 방법을 이용 시, 질병 아형별 또는 질병 작용 인자에 대한 각기 다른 유래의 중간엽 줄기 세포의 치료능을 확인하고 이를 선별할 수 있다. 또한, 선별된 중간엽 줄기 세포가 분비하는 단백질을 분석하여 고효율 또는 저효율적으로 작용하는 분비 단백질의 특성을 확인할 수 있어, 환자 개개인의 질병 특이성에 대한 맞춤형 치료제를 제안할 수 있는 장점이 있다. When using the screening method of the patient-specific stem cell therapeutic agent of the present invention, it is possible to confirm and select the therapeutic ability of mesenchymal stem cells of different origin for the disease subtype or disease effector. In addition, by analyzing the proteins secreted by the selected mesenchymal stem cells can determine the properties of the secreted proteins that work in a high efficiency or low efficiency, there is an advantage that can propose a tailored therapeutic agent for disease specificity of each patient.
도 1은 알츠하이머형 치매(AD) 뉴런 세포에 우수한 치료 효과를 나타내는 줄기세포를 선별하기 위한 스크리닝 모델의 공동 배양 방법에 대한 개략적인 모식도를 나타낸 도이다.1 is a schematic diagram showing a co-culture method of a screening model for selecting stem cells showing an excellent therapeutic effect on Alzheimer's dementia (AD) neuron cells.
도 2는 제대혈 유래 중간엽 줄기세포(UCB-MSC), 탯줄 유래 중간엽 줄기세포(WJ-MSC) 또는 지방 유래 중간엽 줄기세포(Adipose-MSC) 처리군에서 세포 활성 정도를 확인하여 세포 사멸 방지 효과를 확인한 결과를 나타낸 도이다.Figure 2 is a cord blood-derived mesenchymal stem cells (UCB-MSC), umbilical cord-derived mesenchymal stem cells (WJ-MSC) or fat-derived mesenchymal stem cells (Adipose-MSC) in the treatment group to check the degree of cell activity to prevent cell death The figure which showed the result which confirmed the effect.
도 3은 탯줄 유래 중간엽 줄기세포(WJ-MSC) 처리군의 분비 단백질을 기능별로 분류한 결과를 나타낸 도이다.Figure 3 is a diagram showing the results of the classification of secretion proteins by function of umbilical cord-derived mesenchymal stem cells (WJ-MSC) treatment group.
도 4는 지방 유래 중간엽 줄기세포(Adipose-MSC) 처리군의 분비 단백질을 기능별로 분류한 결과를 나타낸 도이다.Figure 4 is a diagram showing the results of the classification of secreted proteins by the function of adipose-derived mesenchymal stem cells (Adipose-MSC) treatment group.
도 5는 알츠하이머형 치매 아형별 줄기세포 치료제 스크리닝 모델 구축 방법을 나타낸 도이다. 5 is a diagram showing a method for establishing a stem cell therapeutic screening model for each Alzheimer's type dementia subtype.
도 6은 지방 유래 중간엽 줄기세포(Adipose-MSC) 처리군 또는 탯줄 유래 중간엽 줄기세포(WJ-MSC) 처리군에서 APP-NPC 또는 PS-1-NPC의 SOX2 및 Nestin의 발현 정도를 확인한 결과를 나타낸 도이다.Figure 6 shows the expression level of SOX2 and Nestin of APP-NPC or PS-1-NPC in adipose-derived mesenchymal stem cells (Adipose-MSC) treatment group or umbilical cord-derived mesenchymal stem cell (WJ-MSC) treatment group Is a diagram showing.
도 7은 지방 유래 중간엽 줄기세포(Adipose-MSC) 처리군 또는 탯줄 유래 중간엽 줄기세포(WJ-MSC) 처리군에서 APP-NPC 또는 PS-1-NPC의 MAP2 및 Tuj1(Neuron-specific class III beta-tubulin) 의 발현 정도를 확인한 결과를 나타낸 도이다.7 shows MAP2 and Tuj1 (Neuron-specific class III) of APP-NPC or PS-1-NPC in adipose-derived mesenchymal stem cell (Adipose-MSC) treated group or umbilical cord-derived mesenchymal stem cell (WJ-MSC) treated group. The figure which showed the result of having confirmed the expression level of beta-tubulin).
도 8은 알츠하이머 아형 유래 PS1-NPC, sAD(Sporadic AD)-NPC 와 지방 유래 중간엽 줄기세포(Adipose-MSC) 처리군 또는 탯줄 유래 중간엽 줄기세포(WJ-MSC) 처리군의 공동 배양에 따른 세포 증식능을 비교한 결과를 나타낸 도이다. Figure 8 shows the co-culture of Alzheimer subtype-derived PS1-NPC, sAD (Sporadic AD) -NPC and fat-derived mesenchymal stem cells (Adipose-MSC) treatment group or umbilical cord-derived mesenchymal stem cell (WJ-MSC) treatment group It is a figure which shows the result of comparing cell proliferation ability.
도 9는 알츠하이머 아형 유래 PS1-NPC, sAD-NPC 와 지방 유래 중간엽 줄기세포(Adipose-MSC) 처리군 또는 탯줄 유래 중간엽 줄기세포(WJ-MSC) 처리군의 공동 배양에 따른 세포 증식능을 비교한 결과를 나타낸 도이다.Figure 9 compares the cell proliferation capacity of co-culture of Alzheimer subtype-derived PS1-NPC, sAD-NPC and adipose-derived mesenchymal stem cell (Adipose-MSC) treatment group or umbilical cord-derived mesenchymal stem cell (WJ-MSC) treatment group Figure 1 shows the results.
도 10은 알츠하이머 아형 유래 PS1-NPC, sAD-NPC 와 지방 유래 중간엽 줄기세포(Adipose-MSC) 처리군 또는 탯줄 유래 중간엽 줄기세포(WJ-MSC) 처리군의 공동 배양에 따른 병리학적 인자 유비퀴틴 접합체의 발현 변화를 비교하고 정량화한 결과를 나타낸 도이다.FIG. 10 shows the pathological factor ubiquitin according to co-culture of Alzheimer subtype-derived PS1-NPC, sAD-NPC and adipose-derived mesenchymal stem cell (Adipose-MSC) treated group or umbilical cord-derived mesenchymal stem cell (WJ-MSC) treated group. It is a figure which shows the result of comparing and quantifying the change of expression of a conjugate.
도 11은 알츠하이머형 치매 환자 유래 뉴런을 이용한 줄기세포 치료제 스크리닝 모델 구축 방법을 나타낸 도이다.11 is a diagram showing a method for establishing a stem cell therapeutic screening model using neurons derived from Alzheimer's disease patients.
도 12는 알츠하이머 환자 유래 뉴런과 지방 유래 중간엽 줄기세포(Adipose-MSC) 처리군 또는 탯줄 유래 중간엽 줄기세포(WJ-MSC) 처리군의 공동 배양에 따른 유비퀴틴 접합체의 발현 변화를 비교하고 정량화한 결과를 나타낸 도이다.Figure 12 compares and quantified the expression changes of ubiquitin conjugates according to co-culture of Alzheimer's patients-derived neurons and adipose-derived mesenchymal stem cells (Adipose-MSC) treatment group or umbilical cord-derived mesenchymal stem cell (WJ-MSC) treatment group. The results are shown.
본 발명은 (1) 환자 유래 세포 및 후보 줄기 세포를 공동 배양하는 단계; 및 (2) 환자 유래 세포의 증식능, 분화능 또는 병리학적 마커의 변화를 측정하여 줄기 세포를 선별하는 단계; 를 포함하는 환자 맞춤형 줄기세포 치료제의 스크리닝 방법을 제공한다. The present invention comprises the steps of (1) co-culturing the patient-derived cells and candidate stem cells; And (2) selecting stem cells by measuring changes in proliferative, differentiating or pathological markers of patient derived cells; It provides a method for screening a patient-specific stem cell therapy comprising a.
본 발명의 스크리닝 방법은 환자 세포에 가장 효과를 나타낼 수 있는 줄기세포를 빠르게 선별할 수 있도록 하므로, 환자 맞춤형 줄기세포 치료제를 스크리닝하여 치료제로 개발하는데 효과적으로 이용할 수 있다. 이하 본 발명을 상세히 설명한다. The screening method of the present invention enables the rapid selection of stem cells that can have the most effect on patient cells, and thus can be effectively used for screening patient-specific stem cell therapeutics and developing them as therapeutic agents. Hereinafter, the present invention will be described in detail.
본 발명의 (1) 단계는 환자 유래 세포 및 후보 줄기 세포를 공동 배양하는 단계이다. Step (1) of the present invention is a step of co-culturing patient derived cells and candidate stem cells.
본 발명에 있어서 “환자 유래 세포”란, 환자로부터 분리, 수득된 세포를 의미하며, 환자로부터 직접 분리되었기 때문에 개별 환자가 가지고 있는 유전적, 병리적 인자를 모두 반영할 수 있는 특징을 가진 세포를 의미한다. 따라서 환자 유래 세포에 효과를 나타내는 선별된 줄기세포 치료제는 환자에서도 우수한 효과를 나타낼 것으로 기대할 수 있다. In the present invention, "patient-derived cell" means a cell isolated and obtained from a patient, and since the cell is directly isolated from the patient, a cell having a characteristic capable of reflecting all genetic and pathological factors of the individual patient. it means. Therefore, it can be expected that the selected stem cell therapeutics that have an effect on the patient-derived cells will have an excellent effect on the patient.
상기 환자 유래 세포는 각 질병 아형을 갖는 환자로부터 유래된 세포일 수 있으며, 이를 이용하는 경우, 특정 질병 아형에 대하여 특히 효과를 갖는 줄기세포 치료제를 효과적으로 선별할 수 있다. The patient-derived cell may be a cell derived from a patient having each disease subtype, and when used, it is possible to effectively select a stem cell therapeutic agent having a particular effect on a specific disease subtype.
본 발명의 환자 유래 세포는 바람직하게는 퇴행성 뇌질환 환자 유래 세포일 수 있으며, 상기 퇴행성 뇌질환 환자 유래 세포는 퇴행성 뇌질환 환자 또는 이의 아형별 환자로부터 유래된 역분화 줄기 세포(Induced Pluripotent Stem Cell, iPSC), 신경 세포 또는 신경 전구 세포신경일 수 있다. The patient-derived cells of the present invention may preferably be cells derived from a patient with degenerative brain disease, and the cells derived from the patient with degenerative brain disease are derived differentiated stem cells derived from patients with degenerative brain disease or subtypes thereof (Induced Pluripotent Stem Cell, iPSC), nerve cell or nerve progenitor cell nerve.
본 발명에 있어서, 상기 "퇴행성 뇌질환"은 뇌와 척수의 특정 뇌세포군이 서서히 그 기능을 잃고 뇌신경계의 정보전달에 가장 중요한 뇌신경세포의 사멸, 뇌신경세포와 뇌신경세포 사이의 정보를 전달하는 시냅스의 형성이나 기능상의 문제, 뇌신경의 전기적 활동성의 이상적 증가나 감소로 인하여 야기되는 질환이다. 퇴행성 뇌질환은 나타나는 주요 증상과 침범되는 뇌부위를 고려하여 구분되며, 알츠하이머병(Alzheimer's disease; AD), 파킨슨병(Parkinson's disease; PD), 헌팅톤병(Huntington's disease: HD) 등이 포함된다.In the present invention, the "degenerative brain disease" is a specific brain cell group of the brain and spinal cord gradually loses its function, the death of cerebral neurons which is most important for information transmission of the nervous system, synapses that transmit information between the brain neurons and brain nerve cells It is a disease caused by the formation or function problems of the brain and the ideal increase or decrease of electrical activity of the cranial nerve. Degenerative brain diseases are classified by considering the main symptoms and invading brain areas, and include Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD).
따라서 본 발명의 퇴행성 뇌질환은 건망증, 치매, 알츠하이머 질환, 파킨슨 질환 및 헌팅턴 질환으로 이루어진 군에서 선택된 1종 이상일 수 있다. Therefore, the degenerative brain disease of the present invention may be one or more selected from the group consisting of forgetfulness, dementia, Alzheimer's disease, Parkinson's disease and Huntington's disease.
본 발명에 있어, 상기 “후보 줄기세포” 란, 가장 우수한 효과를 나타내는 줄기세포를 선별하기 위한 목적으로 이용하는 줄기세포 집단을 의미한다. 후보 줄기세포 중 다른 줄기세포와 비교하여 환자 유래 세포에 가장 우수한 효과를 나타내는 세포를 환자 맞춤형 줄기세포 치료제로 선별할 수 있다. In the present invention, the "candidate stem cell" means a stem cell population used for the purpose of selecting stem cells showing the best effect. Among the candidate stem cells, cells showing the best effect on the patient-derived cells as compared to other stem cells can be selected as a patient-specific stem cell therapy.
상기 (1) 단계의 후보 줄기 세포는 제대혈, 탯줄, 골수 및 지방으로 이루어진 군에서 선택된 1종 이상에서 유래될 수 있다. 본 발명의 목적 상, 상기 줄기 세포는 중간엽 줄기세포일 수 있다. 본 발명의 스크리닝 방법에 따르면 환자 특이적, 아형 특이적으로 가장 우수한 효과를 나타내는 줄기 세포를 선별할 수 있다. 본 발명의 일 실시예에서는 알츠하이머 환자 유래 세포를 이용하여 후보 줄기세포와 공동 배양하고, 각 후보 줄기세포가 알츠하이머 환자 유래 신경전구세포, 신경세포에 미치는 영향을 분석하고, 알츠하이머의 병리학적 상태를 개선하기 위해서는 탯줄 유래 중간엽 줄기세포가 적절하며, 신경세포의 증식을 목적으로 하는 경우, 지방 유래 중간엽 줄기세포보다는 탯줄 유래 중간엽 줄기세포를 선별하여 이용하는 것이 바람직함을 확인하였다. Candidate stem cells of step (1) may be derived from one or more selected from the group consisting of cord blood, umbilical cord, bone marrow and fat. For the purposes of the present invention, the stem cells may be mesenchymal stem cells. According to the screening method of the present invention, it is possible to select a stem cell showing the most excellent effect on the patient-specific, subtype-specific. In one embodiment of the present invention using the cells derived from Alzheimer's patient co-culture with the candidate stem cells, the effect of each candidate stem cells on Alzheimer's patients derived neuro precursor cells, neurons, and improve the pathological state of Alzheimer's To this end, umbilical cord-derived mesenchymal stem cells are appropriate, and for the purpose of proliferation of neurons, it was confirmed that it is preferable to select umbilical cord-derived mesenchymal stem cells rather than fat-derived mesenchymal stem cells.
본 발명의 (1) 단계의 공동 배양은 트랜스 웰을 이용하여 이루어질 수 있다. 예컨대 본 발명의 일 예에서는 트랜스 웰의 챔버의 상단에 환자 유래 세포를, 트랜스 웰 챔버의 하단에 후보 줄기세포를 접종하여 배양하는 방법을 제공한다. 이와 같이 배양하는 경우, 환자 유래 세포와 후보 줄기세포의 상호작용에 의하여, 후보 줄기세포에서는 환자 유래 세포에 영향을 줄 수 있는 다양한 물질을 분비할 수 있으며, 이를 통해 환자 유래 세포는 세포의 생장 증가가 촉진되거나, 병리학적 마커의 발현이 감소되거나, 세포 분화가 촉진 될 수 있다. Co-culture of step (1) of the present invention can be made using a transwell. For example, one embodiment of the present invention provides a method of inoculating a patient-derived cell on top of a chamber of a transwell and inoculating candidate stem cells on a bottom of a transwell chamber. In this culture, by the interaction of the patient-derived cells and the candidate stem cells, the candidate stem cells can secrete a variety of substances that can affect the patient-derived cells, thereby increasing the growth of the cells derived from the patient May be promoted, expression of pathological markers may be reduced, or cell differentiation may be promoted.
본 발명에서 용어 "배양"은 세포를 적당히 인공적으로 조절한 환경조건에서 생육시키는 것을 의미하며, 바람직하게는 트렌스 웰에서 배양이 수행될 수 있다. The term "culture" in the present invention means to grow the cells under environmental conditions that are appropriately artificially controlled, preferably culture may be carried out in the transwell.
상기 환자 유래 세포 및 후보 줄기 세포는 통상의 배지에서 생육 가능하다. 상기 배지는 특정 세포를 배양하기 위하여 배양대상 즉 배양체가 되는 세포가 필요로 하는 영양물질을 포함하는 것으로 특수한 목적을 위한 물질이 추가로 첨가되어 혼합된 것일 수 있다. 상기 배지는 배양기 또는 배양액이라고도 하며, 천연배지, 합성배지 또는 선택배지를 모두 포함하는 개념이다. 상기 환자 유래 세포 및 후보 줄기 세포는 통상의 배양방법에 따라 배양할 수 있다.The patient derived cells and candidate stem cells can be grown in a conventional medium. The medium may contain a nutritional substance required by the cells to be cultured, that is, the cells to be cultured in order to culture specific cells, and may be mixed with an additional material for a special purpose. The medium may also be referred to as an incubator or a culture medium, and is a concept that includes all natural, synthetic, or selective media. The patient-derived cells and candidate stem cells can be cultured according to conventional culture methods.
상기 (1) 단계의 공동 배양은 약 5일 내지 14일, 바람직하게는 5일 내지 10일 동안, 더욱 바람직하게는 5일 내지 7일 동안 이루어질 수 있다. 이 때 배양액은 2 내지 3일 주기로 교체하는 것이 바람직하다. The co-culture of step (1) may be performed for about 5 to 14 days, preferably 5 to 10 days, more preferably 5 to 7 days. At this time, it is preferable to replace the culture medium every two to three days.
본 발명의 (2) 단계는 환자 유래 세포의 증식능, 분화능 또는 병리학적 마커의 변화를 측정하여 중간엽 줄기 세포를 선별하는 단계이다. Step (2) of the present invention is a step of selecting mesenchymal stem cells by measuring the change in proliferative capacity, differentiation capacity or pathological markers of patient-derived cells.
상기 (2) 단계의 선별이란, 환자 유래 세포의 증식능, 분화능 또는 병리학적 마커의 변화를 측정하여, 다른 후보 줄기세포보다 목적하는 변화를 현저하게 유도할 수 있는 줄기세포를 환자 또는 질병 아형 맞춤형 줄기세포 치료제로 선택하는 것을 의미하며, 목적하는 변화는 세포의 증식을 촉진하거나, 분화를 촉진하거나, 병리학적 마커의 발현을 억제하는 변화를 제한없이 포함할 수 있다. In the selection of step (2), stem cells capable of significantly inducing a desired change than other candidate stem cells by measuring a change in proliferative capacity, differentiation capacity or pathological markers of a patient-derived cell are stemmed according to a patient or disease subtype. Selection as a cell therapeutic agent, and the desired change may include without limitation changes that promote cell proliferation, promote differentiation, or inhibit the expression of pathological markers.
환자 유래 세포가 퇴행성 뇌질환 환자 유래 세포인 경우, 상기 (2) 단계의 증식능은 퇴행성 뇌질환 환자 유래 세포의 생존율 측정을 통해 확인할 수 있으며, 분화능은 MAP2 (microtubule associated protein 2), NF-200(neurofilament 200), Tuj1(Neuron-specific class III beta-tubulin) 및 VGLUT2(vesicular glutamate transporter 2) 로 이루어진 군에서 선택된 1종 이상의 신경세포 분화 마커의 발현 측정을 통해 확인하는 것을 특징으로 할 수 있다. When the patient-derived cells are degenerative brain disease-derived cells, the proliferative capacity of step (2) can be confirmed by measuring the survival rate of the cells derived from the patients with degenerative brain disease, and the differentiation capacity is MAP2 (microtubule associated protein 2), NF-200 ( neurofilament 200), Tuj1 (Neuron-specific class III beta-tubulin) and VGLUT2 (vesicular glutamate transporter 2) can be characterized by measuring the expression of one or more neuronal differentiation markers selected from the group consisting of.
또한 (2) 단계의 병리학적 마커의 변화는 유비퀴틴 접합체, 아밀로이드 베타 및 타우 단백질, 염증 관련 사이토카인 등으로 이루어진 군에서 선택된 1종 이상의 병리학적 마커 발현 측정을 통해 확인하는 것을 특징으로 할 수 있다. In addition, the change in the pathological marker of step (2) may be characterized by measuring the expression of one or more pathological markers selected from the group consisting of ubiquitin conjugates, amyloid beta and tau proteins, inflammation-related cytokines and the like.
또한 본 발명은 상기 (2) 단계의 선별 단계 이후, (3) 상기 (2) 단계의 선별된 줄기 세포의 분비 단백질을 분석하는 단계를 더 포함할 수 있다. In another aspect, the present invention may further comprise the step of analyzing the secreted proteins of the selected stem cells of the step (2), after the selection step of (2).
본 발명의 목적 상, 상기 줄기 세포의 분비 단백질은 기능별로 분류하여 특이적으로 발현된 분비 단백질을 선별할 수 있다. 예컨대 후보 줄기세포 중 환자 유래 세포와 공동 배양 시 환자 유래 세포의 증식을 현저하게 촉진하는 줄기세포가 선별된다면, 해당 선별된 줄기세포에서 분비되는 단백질을 농축, 분석하여 어떤 단백질이 증식을 현저하게 촉진할 수 있는지를 확인할 수 있다. For the purposes of the present invention, the secreted proteins of the stem cells can be classified by function to select specifically expressed secreted proteins. For example, if stem cells are selected that significantly promote the proliferation of patient-derived cells when co-cultured with patient-derived cells among candidate stem cells, the proteins secreted from the selected stem cells are concentrated and analyzed to significantly promote proliferation of certain proteins. You can see if you can.
이하, 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로서, 본 발명의 요지에 따라 본 발명의 범위가 이들 실시예에 의해 제한되지 않는다는 것은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.Hereinafter, the examples are only for illustrating the present invention in more detail, and the scope of the present invention is not limited by these examples in accordance with the gist of the present invention, those skilled in the art. Will be self-evident.
실시예Example 1. 알츠하이머형 치매에 효과를 나타내는  1. Effects on Alzheimer's Dementia 중간엽Mesenchyme 줄기세포 스크리닝 모델 구축 Stem Cell Screening Model
1-1. 알츠하이머형 치매(AD)에 대한 중간엽 줄기세포의 치료능 확인을 위한 스크리닝 모델 구축1-1. Screening model for the identification of mesenchymal stem cells for Alzheimer's dementia (AD)
알츠하이머형 치매(alzheimer's disease, AD)에 대한 다양한 중간엽 줄기세포(Mesenchymal Stem Cells, MSC)의 치료능을 비교 확인하기 위하여 스크리닝 모델을 구축하였다. 구체적으로, 도 1에 나타낸 바와 같이, 마우스의 해마 신경 세포주인 HT22를 트렌스 웰 하부의 MEM-alpha(minimum essential medium-alpha) 배지에 접종하였다. 그 후, 알츠하이머형 치매 특이 바이오 마커이고, 독성을 갖는 분자인 아밀로이드 베타 42(Amyloid beta 42)를 올리고머(oligomer) 형태로 상기 HT22 세포가 접종된 트렌스 웰 하부의 배지에 첨가하여, 세포 사멸을 유도하여 알츠하이머 치매 모델을 구축하였다. 그 후, 트렌스 웰 상부에 제대혈 유래 중간엽 줄기세포(UCB-MSC), 탯줄 유래 중간엽 줄기세포(WJ-MSC) 또는 지방 유래 중간엽 줄기세포(Adipose-MSC) 각각 접종하여 공동 배양을 수행하였다. 대조군으로 MSC를 접종하지 않은 군을 설정하고, 상기 각기 다른 유래의 MSC에 의한 세포 사멸 방지 효과를 확인하였다. 구체적으로 분화능 마커인 MAP2 의 발현량을 형광을 통해 확인하였다. MAP2 단백질은 신경세포 분화시 신경 세포 말단까지 뻗어나가는 단백질로, 신경세포 사멸로 인해 세포의 말단이 손상되는지 여부를 확인하는 지표가 될 수 있다. 따라서 MAP2 의 형광 측정을 통해 MSC 공동 배양을 통해 세포가 사멸되는지 여부를 확인할 수 있으며, 그 결과를 도 2에 나타내었다.A screening model was constructed to compare the therapeutic potential of various mesenchymal stem cells (MSCs) against Alzheimer's disease (AD). Specifically, as shown in Figure 1, HT22, a hippocampal neuronal cell line of the mouse was inoculated in a medium essential medium-alpha (MEM-alpha) medium in the bottom of the transwell. Thereafter, amyloid beta 42, an Alzheimer's type dementia-specific biomarker and a toxic molecule, was added to oligomer form in the lower well of the transwell inoculated with the HT22 cells to induce cell death. Alzheimer's dementia model was constructed. Then, coculture was performed by inoculating cord blood-derived mesenchymal stem cells (UCB-MSC), umbilical cord-derived mesenchymal stem cells (WJ-MSC), or adipose-derived mesenchymal stem cells (Adipose-MSC), respectively. . A group not inoculated with MSC was set as a control group, and the effect of preventing cell death by MSCs derived from the above-mentioned different species was confirmed. Specifically, the expression level of the differentiation marker MAP2 was confirmed through fluorescence. MAP2 protein is a protein that extends to the nerve cell ends during neuronal differentiation, and may be an indicator of whether the cell ends are damaged by neuronal cell death. Therefore, the fluorescence measurement of MAP2 can confirm whether the cells are killed through co-culture of MSC, the results are shown in FIG.
도 2에 나타낸 바와 같이, 제대혈 유래 중간엽 줄기세포(UCB-MSC), 탯줄 유래 중간엽 줄기세포(WJ-MSC) 또는 지방 유래 중간엽 줄기세포(Adipose-MSC)를 각각 접종하여 공동배양한 군에서 MAP2 의 형광 발현의 증가를 확인하였으며 세포 사멸을 방지하는 효과가 나타나, 알츠하이머형 치매에 대한 치료능이 나타남을 확인하였으며, 이를 통해 다양한 중간엽 줄기 세포의 치료능을 확인하고, 후보 중간엽 줄기 세포군의 효과를 비교 분석할 수 있음을 확인하였다. As shown in FIG. 2, the group inoculated and co-cultured with cord blood-derived mesenchymal stem cells (UCB-MSC), umbilical cord-derived mesenchymal stem cells (WJ-MSC) or adipose-derived mesenchymal stem cells (Adipose-MSC), respectively. It was confirmed that the increase in fluorescence expression of MAP2 and the effect of preventing apoptosis appeared to be effective for treating Alzheimer's dementia, thereby confirming the therapeutic ability of various mesenchymal stem cells, and candidate mesenchymal stem cell group It was confirmed that the effect of can be compared and analyzed.
1-2. 알츠하이머형 치매의 치료능과 관련된 중간엽 줄기세포의 분비 단백질의 확인 1-2. Identification of Secretory Proteins of Mesenchymal Stem Cells Associated with Alzheimer's Dementia
상기 1-1의 각 군의 공동 배양에 따라, 각기 다른 유래의 MSC가 분비한 단백질을 확인하기 위하여, 제대혈 유래 중간엽 줄기세포(UCB-MSC), 탯줄 유래 중간엽 줄기세포(WJ-MSC) 또는 지방 유래 중간엽 줄기세포(Adipose-MSC) 처리군의 트렌스 웰 하부의 배양액을 수집하고, 분비된 단백질의 농도를 높이기 위하여, 상기 수집한 배양액을 농축하였다. 그 후, 상기 농축된 각 군의 배양액에 대한 항체 어레이를 수행하였다. 그 후, 어레이 결과를 분석 프로그램을 이용하여 각각의 소스에서 2배 이상의 fold change를 보이는 단백질을 확인하였다. 그 후, fold change가 다양하게 나타난 탯줄 유래 중간엽 줄기세포(WJ-MSC) 또는 지방 유래 중간엽 줄기세포(Adipose-MSC) 처리군의 분비 단백질 중 신경 단백질을 따로 분류하였다. 그 후, 상기 신경 단백질을 기능별로 다시 분류하여, 상기 각 처리군이 분비한 신경 단백질의 특징을 확인하였다. 그 결과를 도 3 및 4에 나타내었다.According to the co-culture of each group of 1-1, in order to identify the protein secreted by different MSCs, cord blood-derived mesenchymal stem cells (UCB-MSC), umbilical cord-derived mesenchymal stem cells (WJ-MSC) Alternatively, the culture medium at the bottom of the transwell of the adipose-derived mesenchymal stem cell (Adipose-MSC) treated group was collected, and the collected culture solution was concentrated to increase the concentration of the secreted protein. Thereafter, antibody arrays were performed for the culture medium of each of the concentrated groups. Thereafter, the array results were identified using an analysis program to identify proteins showing more than twofold fold changes in each source. Thereafter, neuronal proteins were separately classified among secretory proteins of umbilical cord-derived mesenchymal stem cells (WJ-MSC) or adipose-derived mesenchymal stem cells (Adipose-MSC) treated groups. Thereafter, the neuronal proteins were reclassified by function to confirm the characteristics of the neuronal proteins secreted by the treatment groups. The results are shown in FIGS. 3 and 4.
도 3 및 도 4에 나타낸 바와 같이, 탯줄 유래 중간엽 줄기세포(WJ-MSC) 처리군과 지방유래 중간엽 줄기세포 (Adipose-MSC) 처리군에서는 상이한 단백질 분비 특성을 나타내었다. 도 3에 나타낸 바와 같이 탯줄 유래 중간엽 줄기세포(WJ-MSC) 에서는 신경계 발달, 신경세포 생성, 액손 가이던스와 같은 분비 단백질을 더 많이 분비하였으며 신경세포의 생존과 관련된 분비 단백질을 많이 분비함을 확인하였다. 또한 도 4에 나타낸 바와 같이, 지방 유래 중간엽 줄기세포(Adipose-MSC) 처리군은 신경계 발달, 신호전달 경로에 관여하는 단백질, 신경세포 생성과 관련된 단백질을 더 많이 분비하였으며, 세포 생존 및 증식과 관련된 단백질들을 많이 분비함을 확인하였다. As shown in Figures 3 and 4, the umbilical cord-derived mesenchymal stem cells (WJ-MSC) treated group and adipose derived mesenchymal stem cells (Adipose-MSC) treated group showed different protein secretion characteristics. As shown in FIG. 3, umbilical cord-derived mesenchymal stem cells (WJ-MSCs) secrete more secretory proteins such as nervous system development, neuronal production, and axon guidance, and secrete more secretory proteins related to the survival of neurons. It was. In addition, as shown in Figure 4, Adipose-derived mesenchymal stem cells (Adipose-MSC) treated group secreted more proteins involved in the development of the nervous system, signaling pathways, neuronal cell production, cell survival and proliferation It was confirmed that a lot of related proteins secreted.
이러한 결과를 통해, 중간엽 줄기세포라도 질병 치료를 위해 분비하는 분비 단백질의 집단은 상이할 수 있으며 이를 통해 치료 효과를 나타내는 특정 중간엽 줄기 세포를 선별하여 환자 맞춤형 치료제를 스크리닝할 수 있음을 확인하였다. 예컨대, 알츠하이머형 치매 인자를 변화시킬 수 있는 맞춤형 MSC 치료제를 선별하기 위하여, 각기 다른 유래의 MSC 와 환자 유래 질병 세포를 공동 배양함으로써, 질병 마커를 감소시키거나 신경 세포 사멸을 방지할 수 있는 최적의 MSC를 스크리닝할 수 있다. 또한, 각기 다른 유래의 MSC가 분비하는 단백질을 파악하여, 알츠하이머형 치매에 효과를 나타내는 단백질을 선별할 수 있다. These results indicate that even mesenchymal stem cells may be secreted from different populations of secreted proteins for the treatment of diseases, and thus, specific mesenchymal stem cells can be screened for screening patient-specific therapeutic agents. . For example, in order to select tailored MSC therapies that can alter Alzheimer's dementia factors, co-cultivation of MSCs of different origin and patient-derived disease cells can reduce disease markers or prevent neuronal cell death. MSCs can be screened. In addition, the proteins secreted by different MSCs can be identified to select proteins that have an effect on Alzheimer's dementia.
실시예 2. 중간엽 줄기세포를 이용한 알츠하이머형 치매 아형별 스크리닝 Example 2 Screening by Subtypes of Alzheimer's Dementia Using Mesenchymal Stem Cells
상기 실시예 1의 스크리닝 모델을 바탕으로, 한국형 알츠하이머형 치매의 아형별 스크리닝 모델을 구축하기 위하여, 한국형 알츠하이머형 치매 아형별 환자 유래 신경전구세포(neural progenitor cell, NPC)에 대한 중간엽 줄기세포의 치료능을 확인하였다. Based on the screening model of Example 1, in order to build a subtype-specific screening model of the Korean type Alzheimer's dementia, the mesenchymal stem cells of the patient-derived neuronal progenitor cells (NPC) of the Korean type Alzheimer's type dementia The therapeutic ability was confirmed.
구체적으로, 실시예 1의 스크리닝 모델을 바탕으로, 도 5에 나타낸 바와 같이 알츠하이머 환자 유래 NPC (AD-NPC) 와 MSC 를 공동 배양하고 치료 효과를 나타내는 MSC 를 선별하였다. 먼저 트렌스 웰 하부를 PLO(poly-L-ornithine) 및 라미닌(laminin)으로 코팅하였다. 그 후, 한국형 알츠하이머형 치매 아형인 APP 또는 PS-1에 해당하는 환자의 신경전구세포 APP-NPC 또는 PS-1-NPC를 트렌스 웰 하부에 2.5x104/cm2로 접종하였다. 상기 신경전구세포들은 삼성서울병원에 방문한 치매 환자로부터 체세포를 채취하고 이를 역분화시켜 제조한 환자 특이적 세포이다. insert chamber에 탯줄 유래 중간엽 줄기세포(WJ-MSC) 또는 지방 유래 중간엽 줄기세포(Adipose-MSC)를 각각 접종하였고, 상기AD-NPC와 MSC의 비율은 10:3이 되도록 하였다. 상기 각 아형별 APP-NPC 또는 PS-1-NPC 를 접종하고 하루 뒤에 이의 배양 상태를 확인하고 분화 배지(Neurobasal A media + B27 w/o vit.A + Glutamax +p/s + BDNF + NT3)에서 7일간 공동 배양을 진행하였다. 그 후, 상기 탯줄 유래 중간엽 줄기세포(WJ-MSC) 또는 지방 유래 중간엽 줄기세포(Adipose-MSC)의 줄기세포능, 분화능 및 병리학적 마커를 확인하였다. 줄기세포능, 분화능은 각각 1주일간 공동배양한 AD-NPC에서 SOX2/Nestin 마커의 발현 정도와 MAP2/Tuj1 의 발현정도를 웨스턴 블랏, 면역세포화학법으로 확인하였다. 그 결과를 도 6 및 7에 나타내었다.Specifically, based on the screening model of Example 1, as shown in FIG. 5, NPCs (AD-NPC) and MSCs derived from Alzheimer's patient were co-cultured and MSCs having a therapeutic effect were selected. The bottom of the trans well was first coated with poly-L-ornithine (PLO) and laminin. Thereafter, neuroprogenitor APP-NPC or PS-1-NPC of a patient corresponding to the Korean type Alzheimer's dementia subtype APP or PS-1 was inoculated at the bottom of the transwell at 2.5 × 10 4 / cm 2 . The neural progenitor cells are patient specific cells prepared by collecting somatic cells from dementia patients who visited Samsung Medical Center and dedifferentiating them. Umbilical cord-derived mesenchymal stem cells (WJ-MSC) or adipose-derived mesenchymal stem cells (Adipose-MSC) were inoculated into the insert chamber, respectively, and the ratio of AD-NPC and MSC was 10: 3. After inoculating APP-NPC or PS-1-NPC for each subtype and confirming its culture state one day later, in differentiation medium (Neurobasal A media + B27 w / o vit.A + Glutamax + p / s + BDNF + NT3) Co-culture was carried out for 7 days. Thereafter, the stem cell capacity, differentiation capacity and pathological markers of the umbilical cord-derived mesenchymal stem cells (WJ-MSC) or adipose-derived mesenchymal stem cells (Adipose-MSC) were identified. Stem cell capacity and differentiation capacity were confirmed by Western blot and immunocytochemistry for the expression level of SOX2 / Nestin marker and MAP2 / Tuj1 in AD-NPC co-cultured for 1 week. The results are shown in FIGS. 6 and 7.
도 6 및 도 7에 나타낸 바와 같이, 탯줄 유래 중간엽 줄기세포(WJ-MSC)와 지방 유래 중간엽 줄기세포(Adipose-MSC) 는 각각 아형에 대하여 다른 정도의 효과를 나타내는 것을 확인하였다. As shown in Figures 6 and 7, umbilical cord-derived mesenchymal stem cells (WJ-MSC) and adipose-derived mesenchymal stem cells (Adipose-MSC) were confirmed to show different effects on subtypes, respectively.
실시예 3. 환자 유래 신경 전구체 세포를 이용한 줄기세포 치료제 스크리닝 Example 3. Screening of Stem Cell Therapeutics Using Patient-Derived Neural Precursor Cells
환자 유래 NPC 에 대한 맞춤형 중간엽 줄기세포 스크리닝을 위하여, 알츠하이머형 치매인 sAD 또는 PS-1에 해당하는 환자의 sAD(sporadic AD)-NPC 또는 PS-1-NPC 와 탯줄 유래 중간엽 줄기세포(WJ-MSC) 또는 지방 유래 중간엽 줄기세포(Adipose-MSC)를 각각 공동배양하고, 각각의 줄기세포가 NPC에 미치는 영향을 확인하였다. 실험은 실시예 2와 동일한 방법으로 수행하였다. For tailored mesenchymal stem cell screening for patient-derived NPCs, sAD (sporadic AD) -NPC or PS-1-NPC and umbilical cord-derived mesenchymal stem cells (WJ) corresponding to Alzheimer's dementia sAD or PS-1 -MSC) or adipose-derived mesenchymal stem cells (Adipose-MSC) were each co-cultured, and the effect of each stem cell on NPC was confirmed. The experiment was carried out in the same manner as in Example 2.
3.1 우수한 증식 촉진능을 갖는 중간엽 줄기세포 스크리닝 - CCK-8 어세이 3.1 Mesenchymal Stem Cell Screening with Excellent Proliferation Promoting Activity-CCK-8 Assay
탯줄 유래 중간엽 줄기세포(WJ-MSC) 또는 지방 유래 중간엽 줄기세포(Adipose-MSC) 에 의한 환자 유래 NPC 증식 촉진 효과를 확인하기 위하여 CCK-8 세포 생존율 어세이를 48시간 동안 수행하고 그 결과를 현미경 사진 및 CCK 흡광도 변화를 통해 확인하였다. 실험에 사용된 bFGF 는 신경전구세포 배양 및 증식시 첨가되는 물질로 신경 전구세포의 분화를 막아 전구세포를 상태를 유지하기 위해 처리된다. bFGF 유무에 따른 세포의 상태 또는 증식 정도의 변화를 확인하기 위하여 bFGF 를 처리하였다. 대조군으로 -bFGF군을 이용하였으며 이는 중간엽 줄기세포를 공동 배양했을 때 증식 촉진 효과를 확인하는 실험에서의 음성대조군이다. 그 결과를 도 8에 나타내었다. CCK-8 cell viability assay was performed for 48 hours to confirm the effect of promoting patient-derived NPC proliferation by umbilical cord-derived mesenchymal stem cells (WJ-MSC) or adipose-derived mesenchymal stem cells (Adipose-MSC). Was confirmed through micrographs and CCK absorbance changes. The bFGF used in the experiment is a substance added during neuronal progenitor cell culture and proliferation, and is treated to maintain the progenitor cell state by preventing neural progenitor cell differentiation. bFGF was treated to confirm the change in the state or proliferation of cells with or without bFGF. As a control group, -bFGF group was used, which is a negative control group in the experiment confirming the proliferation promoting effect when co-cultured mesenchymal stem cells. The results are shown in FIG.
도 8에 나타낸 바와 같이, 접종한 MSC 의 종류에 따라 NPC 의 증식은 상이하게 나타냈다. sAD-NPC 또는 PS-1-NPC 모두 탯줄 유래 중간엽 줄기세포(WJ-MSC) 또는 지방 유래 중간엽 줄기세포(Adipose-MSC) 에 의해 증식이 증가하였으나, 탯줄 유래 중간엽 줄기세포(WJ-MSC)가 더욱 우수한 세포 증식 촉진능을 나타내는 것을 확인하였다. 따라서, 신경세포의 증식을 목적으로 하는 경우, 지방 유래 중간엽 줄기세포보다는 탯줄 유래 중간엽 줄기세포를 선별하여 이용하는 것이 바람직한 것으로 해석할 수 있다. As shown in FIG. 8, the proliferation of NPCs was different depending on the type of inoculated MSCs. Both sAD-NPC or PS-1-NPC increased proliferation by cord-derived mesenchymal stem cells (WJ-MSC) or adipose-derived mesenchymal stem cells (Adipose-MSC), but umbilical cord-derived mesenchymal stem cells (WJ-MSC) ) Showed more excellent cell proliferation promoting ability. Therefore, when the purpose of the proliferation of neurons, it can be interpreted that it is preferable to select and use umbilical cord-derived mesenchymal stem cells rather than fat-derived mesenchymal stem cells.
3.2 우수한 증식 촉진능을 갖는 중간엽 줄기세포 스크리닝 - BradU 어세이 3.2 Mesenchymal Stem Cell Screening with Excellent Proliferation Promoting-BradU Assay
탯줄 유래 중간엽 줄기세포(WJ-MSC) 또는 지방 유래 중간엽 줄기세포(Adipose-MSC) 에 의한 환자 유래 NPC 증식 촉진 효과를 확인하기 위하여 BradU 어세이를 48시간 동안 수행하고 그 결과를 확인하였다. 대조군은 3.1 과 동일하게 설정하으며, 그 결과를 도 9에 나타내었다. BradU assay was performed for 48 hours to confirm the effect of promoting NPC proliferation of the patient by umbilical cord-derived mesenchymal stem cells (WJ-MSC) or adipose-derived mesenchymal stem cells (Adipose-MSC). The control was set in the same manner as 3.1, and the results are shown in FIG. 9.
도 9에 나타낸 바와 같이, 접종한 MSC 의 종류에 따라 NPC 의 증식은 상이하게 나타냈다. 특히 PS-1-NPC 는 탯줄 유래 중간엽 줄기세포(WJ-MSC) 및 지방 유래 중간엽 줄기세포(Adipose-MSC) 에 의해 증식이 현저하게 증가함을 확인하였다. 한편, sAD-NPC의 경우 탯줄 유래 중간엽 줄기세포(WJ-MSC)에 의해 세포 증식이 촉진되었으나, 지방 유래 중간엽 줄기세포(Adipose-MSC)와의 공동 배양에서는 이와 같은 효과를 확인할 수 없었다. BruU 실험은 세포가 증식하면서 분열할떄 DNA 사이에 끼어들어가는 원리를 사용하는 것으로 증식 이외에 세포 자체의 대사 작용에 의한 간섭을 배제할 수 있으므로 보다 정확한 증식 촉진능의 스크리닝을 가능하게 한다. 따라서, 신경세포의 증식을 목적으로 하는 경우, 지방 유래 중간엽 줄기세포보다는 탯줄 유래 중간엽 줄기세포를 선별하여 이용하는 것이 바람직한 것으로 해석할 수 있을 뿐만 아니라, 각 환자별 질병 아형에 따라 적절한 줄기세포 치료제 조합이 있고, 이를 본 발명의 스크리닝 방법에 의하여 신속하게 확인할 수 있음을 알 수 있다. As shown in Fig. 9, the proliferation of NPCs was different depending on the type of inoculated MSCs. In particular, it was confirmed that PS-1-NPC significantly increased proliferation by umbilical cord-derived mesenchymal stem cells (WJ-MSC) and adipose-derived mesenchymal stem cells (Adipose-MSC). In the case of sAD-NPC, cell proliferation was promoted by umbilical cord-derived mesenchymal stem cells (WJ-MSC), but this effect was not confirmed in co-culture with adipose-derived mesenchymal stem cells (Adipose-MSC). BruU experiments use the principle of intercalation between DNA when cells divide and proliferate, thus eliminating the interference of metabolism of the cell itself in addition to proliferation, thus enabling more accurate screening of the cell. Therefore, in the case of the purpose of the proliferation of neurons, it can be interpreted that it is preferable to select the umbilical cord-derived mesenchymal stem cells rather than the adipose-derived mesenchymal stem cells, as well as appropriate stem cell therapy according to the disease subtype of each patient. It can be seen that there is a combination, which can be quickly confirmed by the screening method of the present invention.
3.3 유비퀴틴 접합체를 감소시키는 중간엽 줄기세포 스크리닝3.3 Mesenchymal Stem Cell Screening to Reduce Ubiquitin Conjugates
신경전구체 세포에 대하여 병리학적으로 영향을 미치는 중간엽 줄기세포를 스크리닝하기 위하여 유비퀴틴 접합체의 증감에 대한 영향을 확인하였다. 신경전구체 세포에서는 비정상적인 세포 내 물질들이 쌓일 경우, 유비퀴틴 접합체가 증가하며, 알츠하이머와 같은 질병이 발생하면 유비퀴틴은 증가하게 된다. 따라서 알츠하이머 환자 유래 NPC 와 지방 유래 중간엽 줄기세포 또는 탯줄 유래 중간엽 줄기세포와의 공동 배양을 실시예 2 에 따른 방법으로 수행하고, 환자 유래 NPC 에서 유비퀴틴 접합체의 증감을 확인하였다. 유비퀴틴 접합체의 증감은 웨스턴 블랏을 통해 확인하였으며, 그 결과를 도 10에 나타내었다. In order to screen mesenchymal stem cells that have a pathological effect on neuroprogenitor cells, the effects of ubiquitin conjugates on the increase and decrease were identified. In neuroprogenitor cells, ubiquitin conjugates increase when abnormal intracellular substances accumulate, and ubiquitin increases when diseases such as Alzheimer's occur. Therefore, co-culture of Alzheimer's patient-derived NPCs with adipose-derived mesenchymal stem cells or umbilical cord-derived mesenchymal stem cells was performed by the method according to Example 2, and the increase and decrease of the ubiquitin conjugate was confirmed in the patient-derived NPCs. The increase and decrease of the ubiquitin conjugate was confirmed by Western blot, and the results are shown in FIG. 10.
도 10에 나타낸 바와 같이, 알츠하이머 질병이 없는 대조군과 비교하여, sAD 에서는 유비퀴틴 접합체가 증가하였으며, 탯줄 유래 중간엽 줄기세포와의 공동 배양에 의하여 유비퀴틴 접합체의 수준이 감소됨을 확인하였다. 또한 이와 같은 유비퀴틴 접합체 감소 효과는 지방유래 중간엽 줄기세포에서는 확인되지 않았고, 오히려 증가하는 양상을 나타내어, 유비퀴틴 접합체 감소에 적절하지 않음을 확인하였다. 따라서 본 발명의 스크리닝 방법을 통해 알츠하이머의 병리학적 상태를 개선하기 위해 적합한 중간엽 줄기세포는 탯줄 유래 중간엽 줄기세포임을 확인하고 선별할 수 있다. As shown in Figure 10, compared to the control group without Alzheimer's disease, the ubiquitin conjugates increased in sAD, it was confirmed that the level of ubiquitin conjugates is reduced by co-culture with umbilical cord mesenchymal stem cells. In addition, the effect of reducing the ubiquitin conjugates was not found in the adipose derived mesenchymal stem cells, but rather showed an increasing aspect, confirming that it is not suitable for reducing the ubiquitin conjugates. Therefore, the mesenchymal stem cells suitable for improving the pathological condition of Alzheimer's through the screening method of the present invention can be identified and selected from the umbilical cord-derived mesenchymal stem cells.
실시예 4. 신경세포를 이용한 줄기세포 치료제 스크리닝Example 4 Screening of Stem Cell Therapeutics Using Neurons
4.1 스크리닝을 위한 신경세포와 중간엽 줄기세포의 공동 배양 4.1 Co-culture of Neurons and Mesenchymal Stem Cells for Screening
알츠하이머 환자의 신경세포(뉴런)을 이용하더라도 본 발명에 의한 맞춤형 스크리닝을 적용할 수 있는지 여부를 확인하기 위해 NPC 를 분화시켜 치매 아형별 신경세포을 얻고 이를 이용한 스크리닝을 수행하였다. 치매 아형은 유전적 아형인 APP (Amyloid Precursor Protein)의 mutation / PS1 (Presenilin 1)의 mutation / 비유전적 아형인 sAD (sporadic AD)를 사용하였으며, 환자 유래 역분화줄기세포 (iPSC)를 제조 후, 신경계열로 분화시킨 세포를 수득, 실험에 사용하였다.In order to confirm whether the customized screening according to the present invention can be applied even when using neurons (neurons) of Alzheimer's patients, NPCs were differentiated to obtain degenerative subtypes of neurons and screening using the same. The dementia subtype was a mutation of the genetic subtype APP (Amyloid Precursor Protein) / mutation of PS1 (Presenilin 1) / non-genetic subtype sAD (sporadic AD), and after the production of patient-derived dedifferentiated stem cells (iPSC), Cells differentiated by neural lineage were obtained and used for the experiment.
스크리닝 방법은 실시예 2의 방법과 유사하나, MSC 와 신경세포를 공동배양하기 위하여, 한국형 알츠하이머 치매 아형별 NPC 를 2x104 / cm2의 비율로 접종하고 10주 동안 분화를 진행하여 치매 아형별 신경세포를 수득하였다. 수득된 치매 아형별 신경세포는 트렌스웰 하부에 2.5x104/cm2로 접종하였으며, insert chamber에 탯줄 유래 중간엽 줄기세포(WJ-MSC) 또는 지방 유래 중간엽 줄기세포(Adipose-MSC)를 1x104 / cm2 가 되도록 각각 접종하였다. 이 후 1일 동안 신경세포의 배양상태를 확인한 후, 분화 배지 조건하에서 7일간 공동 배양을 진행하였다. 사용된 공동 배양 과정은 도 11에 나타내었다. The screening method is similar to that of Example 2, but in order to co-culture MSC and neurons, inoculated NPCs of Korean Alzheimer's dementia subtypes at a rate of 2x10 4 / cm 2 and differentiated for 10 weeks to differentiate neurons by dementia subtypes. Cells were obtained. The obtained dementia subtype neurons were inoculated at the bottom of the transwell at 2.5x10 4 / cm 2 , and umbilical cord-derived mesenchymal stem cells (WJ-MSC) or adipose-derived mesenchymal stem cells (Adipose-MSC) were inserted into the insert chamber. Each was inoculated to be 4 / cm 2 . Thereafter, after confirming the culture state of the neurons for 1 day, co-culture was carried out for 7 days under differentiation medium conditions. The coculture procedure used is shown in FIG. 11.
4.2 유비퀴틴 접합체를 감소시키는 중간엽 줄기세포 스크리닝4.2 Mesenchymal Stem Cell Screening to Reduce Ubiquitin Conjugates
상기 4.1 의 방법을 통해 공동 배양을 진행하고, 3.3 과 같은 방법을 통해 알츠하이머 질환의 병리학적 특징을 효과적으로 감소시킬 수 있는 중간엽 줄기세포를 스크리닝하여 선별하였다. 대조군으로는 신경전구세포에서 신경세포로 분화 시 사용되는 시약인 BDNF, GDNF, NT3 만을 첨가한 실험군 (B+G+N) 을 이용하였으며, 실험군으로 MSC 와 신경세포를 공동배양하고 그 결과를 도 12에 나타내었다. Co-cultivation was carried out through the method of 4.1, and mesenchymal stem cells were effectively screened and selected to effectively reduce the pathological characteristics of Alzheimer's disease through the method of 3.3. As a control group, an experimental group (B + G + N) containing only BDNF, GDNF, and NT3, which are reagents used for differentiating neurons from neuronal progenitor cells, was used. It is shown in 12.
도 12에 나타낸 바와 같이, 치매환자 유래 신경세포에서는 유비퀴틴 접합체가 증가하였으며, 지방 유래 중간엽 줄기세포 또는 탯줄 유래 중간엽 줄기세포와의 공동 배양에 의하여 유비퀴틴 접합체의 수준이 감소됨을 확인하였다. 또한 이와 같은 유비퀴틴 접합체 감소 효과는 지방유래 중간엽 줄기세포보다는 탯줄 유래 중간엽 줄기세포에서 더욱 우수한 것으로 나타났다. 따라서 본 발명의 스크리닝 방법을 통해 알츠하이머의 병리학적 상태를 개선하기 위해 적합한 중간엽 줄기세포는 탯줄 유래 중간엽 줄기세포임을 확인하고 선별할 수 있다. As shown in FIG. 12, the ubiquitin conjugate was increased in the dementia patient-derived neurons, and the level of the ubiquitin conjugate was decreased by co-culture with adipose-derived mesenchymal stem cells or umbilical cord-derived mesenchymal stem cells. In addition, the ubiquitin conjugate reduction effect was more excellent in umbilical cord-derived mesenchymal stem cells than adipose derived mesenchymal stem cells. Therefore, the mesenchymal stem cells suitable for improving the pathological condition of Alzheimer's through the screening method of the present invention can be identified and selected from the umbilical cord-derived mesenchymal stem cells.
상기와 같은 결과를 통해 본 발명의 환자 맞춤형 치료제의 스크리닝 방법을 이용 시, 환자 개개인의 질병 또는 이의 아형별로 가장 적합한 환자 맞춤형 줄기 세포 치료제를 선별하여 적용 가능함을 확인하였다. Through the above results, when using the screening method of the patient-specific therapeutic agent of the present invention, it was confirmed that the most suitable patient-specific stem cell therapeutics can be selected and applied for each patient's disease or subtype thereof.

Claims (10)

  1. (1) 환자 유래 세포 및 후보 줄기 세포를 공동 배양하는 단계; 및(1) co-culture of patient derived cells and candidate stem cells; And
    (2) 환자 유래 세포의 증식능, 분화능 또는 병리학적 마커의 변화를 측정하여 중간엽 줄기 세포를 선별하는 단계; 를 포함하는 환자 맞춤형 줄기세포 치료제의 스크리닝 방법.(2) selecting mesenchymal stem cells by measuring changes in proliferative, differentiating or pathological markers of patient derived cells; Screening method for a patient-specific stem cell therapy comprising a.
  2. 제1항에 있어서,The method of claim 1,
    상기 환자 유래 세포는 퇴행성 뇌질환 환자 유래 세포인 것을 특징으로 하는, 환자 맞춤형 줄기세포 치료제의 스크리닝 방법.The patient-derived cells are degenerative brain disease patients derived cells, characterized in that the screening method of patient-specific stem cell therapy.
  3. 제1항에 있어서, 상기 퇴행성 뇌질환 환자 유래 세포는 역분화 줄기 세포(Induced Pluripotent Stem Cell, iPSC), 신경 세포 또는 신경 전구 세포인 것을 특징으로 하는, 환자 맞춤형 줄기세포 치료제의 스크리닝 방법. The method of claim 1, wherein the degenerative brain disease patient-derived cells are induced differentiated stem cells (Induced Pluripotent Stem Cells, iPSCs), neurons, or neuronal progenitor cells.
  4. 제2항에 있어서, 상기 퇴행성 뇌질환은 건망증, 치매, 알츠하이머 질환, 파킨슨 질환 및 헌팅턴 질환으로 이루어진 군에서 선택된 1종 이상인 것을 특징으로 하는, 환자 맞춤형 줄기세포 치료제의 스크리닝 방법.The method of claim 2, wherein the degenerative brain disease is one or more selected from the group consisting of forgetfulness, dementia, Alzheimer's disease, Parkinson's disease, and Huntington's disease.
  5. 제1항에 있어서, The method of claim 1,
    상기 (1) 단계의 줄기 세포는 제대혈, 탯줄, 골수 및 지방으로 이루어진 군에서 선택된 1종 이상에서 유래된 것을 특징으로 하는, 환자 맞춤형 줄기세포 치료제의 스크리닝 방법.The stem cell of step (1) is characterized in that derived from one or more selected from the group consisting of umbilical cord blood, umbilical cord, bone marrow and fat, screening method of patient-specific stem cell therapy.
  6. 제1항에 있어서, 상기 공동 배양은 트랜스 웰에서 수행되며, 환자 유래 세포는 트랜스웰 챔버의 상단, 후보 줄기 세포는 트랜스웰 챔버의 하단에 접종하여 배양되는 것을 특징으로 하는, 환자 맞춤형 줄기세포 치료제의 스크리닝 방법.According to claim 1, wherein the co-cultivation is carried out in a transwell, patient-derived cells are characterized in that the cultured by inoculating the top of the transwell chamber, the candidate stem cells inoculated in the bottom of the transwell chamber, Screening method.
  7. 제2항에 있어서, 상기 (2) 단계의 증식능은 퇴행성 뇌질환 환자 유래 세포의 생존율 측정을 통해 확인하는 것을 특징으로 하는 환자 맞춤형 줄기세포 치료제의 스크리닝 방법.The method of claim 2, wherein the proliferative capacity of step (2) is confirmed by measuring survival rate of cells derived from patients with degenerative brain disease.
  8. 제2항에 있어서, 상기 (2) 단계의 분화능은 MAP2 (microtubule associated protein 2), NF-200(neurofilament 200), Tuj1(Neuron-specific class III beta-tubulin) 및 VGLUT2(vesicular glutamate transporter 2) 로 이루어진 군에서 선택된 1종 이상의 신경세포 분화 마커의 발현 측정을 통해 확인하는 것을 특징으로 하는, 환자 맞춤형 줄기세포 치료제의 스크리닝 방법.The method according to claim 2, wherein the differentiation capacity of step (2) is MAP2 (microtubule associated protein 2), NF-200 (neurofilament 200), Tuj1 (Neuron-specific class III beta-tubulin) and VGLUT2 (vesicular glutamate transporter 2) The method of screening for a patient-specific stem cell therapeutic agent, characterized in that confirmed by measuring the expression of one or more neuronal differentiation markers selected from the group consisting of.
  9. 제2항에 있어서, 상기 (2) 단계의 병리학적 마커의 변화는 유니퀴틴 접합체, 아밀로이드 베타 및 타우 단백질로 이루어진 군에서 선택된 1종 이상의 병리학적 마커 발현 측정을 통해 확인하는 것을 특징으로 하는, 환자 맞춤형 줄기세포 치료제의 스크리닝 방법.The method of claim 2, wherein the change of the pathological marker of step (2) is characterized by measuring the expression of one or more pathological markers selected from the group consisting of uniquitin conjugates, amyloid beta and tau protein. Screening method for customized stem cell therapy.
  10. 제1항에 있어서,The method of claim 1,
    (3) 상기 (2) 단계의 선별된 줄기 세포의 분비 단백질을 분석하는 단계;를 더 포함하는 것을 특징으로 하는, 환자 맞춤형 줄기세포 치료제의 스크리닝 방법.(3) analyzing the secreted protein of the selected stem cells of the step (2); characterized in that it further comprises, the method for screening a patient-specific stem cell therapy.
PCT/KR2017/009839 2016-09-23 2017-09-07 Method for screening patient-specific stem cell therapeutic agent WO2018056616A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20160122492 2016-09-23
KR10-2016-0122492 2016-09-23

Publications (1)

Publication Number Publication Date
WO2018056616A1 true WO2018056616A1 (en) 2018-03-29

Family

ID=61690911

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/009839 WO2018056616A1 (en) 2016-09-23 2017-09-07 Method for screening patient-specific stem cell therapeutic agent

Country Status (2)

Country Link
KR (1) KR20180033062A (en)
WO (1) WO2018056616A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102203861B1 (en) * 2019-05-10 2021-01-15 주식회사 아이피에스바이오 Induced pluripotent stem cells having amyloid precursor protein mutants(v715m) derived from Alzheimer's disease patients

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090008155A (en) * 2007-07-16 2009-01-21 가톨릭대학교 산학협력단 Method for promoting the self-renewal of adult stem cells using mesenchymal stromal cells
KR20090055691A (en) * 2007-11-29 2009-06-03 메디포스트(주) Composition for inducing differentiation and proliferation of neural precursor cells or neural stem cells to neural cells, comprising a human umbilical cord blood-derived mesenchymal stem cell as an active ingredient
US20110262956A1 (en) * 2008-10-07 2011-10-27 Guillermo Munoz Elias Co-culture compositions and methods
WO2014148646A1 (en) * 2013-03-21 2014-09-25 国立大学法人京都大学 Pluripotent stem cell for neuronal differentiation induction

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090008155A (en) * 2007-07-16 2009-01-21 가톨릭대학교 산학협력단 Method for promoting the self-renewal of adult stem cells using mesenchymal stromal cells
KR20090055691A (en) * 2007-11-29 2009-06-03 메디포스트(주) Composition for inducing differentiation and proliferation of neural precursor cells or neural stem cells to neural cells, comprising a human umbilical cord blood-derived mesenchymal stem cell as an active ingredient
US20110262956A1 (en) * 2008-10-07 2011-10-27 Guillermo Munoz Elias Co-culture compositions and methods
WO2014148646A1 (en) * 2013-03-21 2014-09-25 国立大学法人京都大学 Pluripotent stem cell for neuronal differentiation induction

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HOU, LINGLING: "Induction of umbilical cord blood mesenchymal stem cells into neuron-like cells in vitro", INTERNATIONAL JOURNAL OF HEMATOLOGY, 2003, pages 256 - 261, XP036521474, DOI: doi:10.1007/BF02983804 *

Also Published As

Publication number Publication date
KR20180033062A (en) 2018-04-02

Similar Documents

Publication Publication Date Title
Guo et al. Cotransplant of neural stem cells and NT-3 gene modified Schwann cells promote the recovery of transected spinal cord injury
Jadhav et al. Development and neurogenic potential of Müller glial cells in the vertebrate retina
Okano Stem cell biology of the central nervous system
Li et al. Isolation and characterization of neural crest progenitors from adult dorsal root ganglia
Kang et al. Characteristic analyses of a neural differentiation model from iPSC-derived neuron according to morphology, physiology, and global gene expression pattern
Rao Multipotent and restricted precursors in the central nervous system
Shihabuddin et al. The search for neural progenitor cells: prospects for the therapy of neurodegenerative disease
Pagano et al. Isolation and characterization of neural stem cells from the adult human olfactory bulb
Li et al. Multipotent stem cells isolated from the adult mouse retina are capable of producing functional photoreceptor cells
Shim et al. Generation of functional dopamine neurons from neural precursor cells isolated from the subventricular zone and white matter of the adult rat brain using Nurr1 overexpression
Angelastro et al. Downregulation of activating transcription factor 5 is required for differentiation of neural progenitor cells into astrocytes
Liu et al. The adult neural stem and progenitor cell niche is altered in amyotrophic lateral sclerosis mouse brain
JP6761409B2 (en) Neural network formed from pluripotent stem cell-derived cells
Chen et al. Transplanted bone marrow stromal cells migrate, differentiate and improve motor function in rats with experimentally induced cerebral stroke
Xu et al. Cortical interneuron fate determination: diverse sources for distinct subtypes?
Faijerson et al. Reactive astrogliosis induces astrocytic differentiation of adult neural stem/progenitor cells in vitro
Poltavtseva et al. Evaluation of progenitor cell cultures from human embryos for neurotransplantation
Goldman et al. Neural progenitor cells of the adult brain
CN102483407A (en) Methods for predicting the toxicity of a chemical
Kamata et al. A robust culture system to generate neural progenitors with gliogenic competence from clinically relevant induced pluripotent stem cells for treatment of spinal cord injury
Ortega et al. Live imaging of adult neural stem cells in rodents
Nagoshi et al. Neural crest‐derived stem cells display a wide variety of characteristics
Shah et al. A chromatin modulator sustains self-renewal and enables differentiation of postnatal neural stem and progenitor cells
Zhu et al. Efficient generation of corticofugal projection neurons from human embryonic stem cells
Jgamadze et al. Colloids as mobile substrates for the implantation and integration of differentiated neurons into the mammalian brain

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17853330

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17853330

Country of ref document: EP

Kind code of ref document: A1