WO2018056381A1 - Biaxial inverter device - Google Patents

Biaxial inverter device Download PDF

Info

Publication number
WO2018056381A1
WO2018056381A1 PCT/JP2017/034172 JP2017034172W WO2018056381A1 WO 2018056381 A1 WO2018056381 A1 WO 2018056381A1 JP 2017034172 W JP2017034172 W JP 2017034172W WO 2018056381 A1 WO2018056381 A1 WO 2018056381A1
Authority
WO
WIPO (PCT)
Prior art keywords
converter
monitoring
converters
resolver
excitation
Prior art date
Application number
PCT/JP2017/034172
Other languages
French (fr)
Japanese (ja)
Inventor
明生 中島
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Publication of WO2018056381A1 publication Critical patent/WO2018056381A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/493Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode the static converters being arranged for operation in parallel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L9/00Electric propulsion with power supply external to the vehicle
    • B60L9/16Electric propulsion with power supply external to the vehicle using ac induction motors
    • B60L9/18Electric propulsion with power supply external to the vehicle using ac induction motors fed from dc supply lines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to a two-shaft inverter device that drives two motors and the like that respectively drive left and right drive wheels in an electric vehicle, and more particularly to abnormality detection and redundancy of the RD converter.
  • an inverter device connected to a lower level of an ECU (also referred to as VCU) that performs overall control of the entire vehicle is used to drive a motor for traveling.
  • the inverter device includes a drive circuit configured by an inverter that converts a direct current of the battery into a three-phase alternating current, and a motor control circuit that monitors the rotation of the motor and controls the output and efficiency of the motor.
  • an electric vehicle equipped with a motor that individually drives left and right drive wheels such as using an in-wheel motor drive device, includes a drive circuit and a motor control circuit for the left and right motors in one housing.
  • a two-shaft inverter device is also used.
  • the motor control circuits for the left and right motors are generally provided in one microcomputer.
  • Fig. 8 shows the basic structure of the 2-axis inverter device.
  • the motor control means 21 comprising a microcomputer in the inverter device 101 drives the motors 4 by controlling the left and right motor drive circuits 22 based on commands from the ECU (VCU).
  • the rotational position of the motor 4 is detected by the resolver 25 and is taken into the motor control circuit 21 using the RD converters (resolver / digital converter) 1A, 1B.
  • the RD converters 1A and 1B are interfaces for taking an analog rotational position signal of the resolver 25 into a control circuit, and may be abbreviated as RDC.
  • RDC rotation detectors
  • Various other rotation detectors can be used to detect the rotational position of the motor 4, but a resolver is often used because of excellent rotation detection accuracy.
  • RD converters 1A and 1B are important parts in the inverter device 101, and in the case of a failure, a serious problem occurs such that the vehicle cannot operate. Therefore, failure detection and a redundant circuit have been proposed (for example, Patent Documents 1 to 3).
  • Patent Documents 2 and 3 a plurality of resolvers with different resolutions are attached to improve accuracy and reliability.
  • an AD converter input of a microcomputer is used as a redundant circuit of an RD converter.
  • this configuration depends on the processing speed of the microcomputer, the processing cannot catch up with a motor having a high rotational speed such as that used in an in-wheel motor system with a speed reducer, which is not suitable. Further, depending on the situation, it cannot be determined whether the RD converter is faulty or the AD converter is faulty.
  • an RD converter is used as a backup, but two expensive RD converters are required for one motor, and the rotational position data is compared. Even if there is a difference, it is often impossible to determine which RD converter has failed. For this reason, even if preparations are made for switching to backup in the event of a failure, the judgment necessary for switching cannot be made.
  • Fig. 9 shows an example of a two-axis inverter equipped with a constant monitoring circuit.
  • Monitoring RD converters 1D and 1D are provided in parallel to the left and right RD converters 1A and 1B, respectively.
  • In comparison of rotational position data between the left RD converter 1A and the monitoring RD converter 1D connected in parallel and between the right RD converter 1B and the monitoring RD converter 1D connected in parallel there is a difference. If not, both RD converters are determined to be normal. If there is a difference, one of them is judged as a failure.
  • the criterion for determining the difference is determined, for example, by multiplying the allowable error of the RD converter by a safety factor. Since each RD converter 1A, 1B, 1D has a self-diagnosis function, if there is a problem in the diagnosis, the use of the RD converter is stopped.
  • the monitoring RD converters 1D and 1D are provided in parallel with the left and right RD converters 1A and 1B as shown in the same figure, the number of RD converters increases as described above, and the cost increases. When the converter is normal by self-diagnosis, it is difficult to determine which one has failed.
  • the two-axis inverter device for controlling the motor for driving the electric vehicle has been described.
  • the above problem also applies to the two-axis inverter device for controlling another motor of the electric vehicle.
  • the object of the present invention is to add an additional RD converter for monitoring and to determine which of the two normally used RD converters is abnormal.
  • the motor drive can be continued by the alternative use of the RD converter, and further, it can be determined whether the abnormality is in the excitation circuit or the detection circuit of the normal use RD converter, and the alternative can be performed depending on which one is abnormal.
  • a two-axis inverter device is provided.
  • the two-axis inverter device includes two drive circuits 22 and 22 each having an inverter and driving the corresponding motor 4 of the two motors 4 and 4. 22, 22, a motor control circuit 21 that controls the drive circuits 22 and 22, and two resolvers 25 and 25, each of which corresponds to one of the two motors 4 and 4 when an excitation signal is input.
  • Two normally used RD converters 1A that output and digitize the detection signal of the resolver 25 and input it as output data to the motor control circuit 21.
  • the monitoring RD converter 1C that monitors the two normally used RD converters 1A and 1B, and outputs an excitation signal to the resolver 25 connected on the excitation side of the two resolvers 25 and 25.
  • the monitoring RD converter 1C that digitizes the detection signal of the resolver connected on the detection side of the two resolvers 25, 25 and inputs it as output data to the motor control circuit 21; and the monitoring RD converter 1C
  • the first changeover switch 28 for switching and connecting the two resolvers 25, 25 to the detection side, and inputting a detection signal of the connected resolver 25 to the monitoring RD converter 1C, and two second The change-over switches 31 and 31 are respectively connected to the two resolvers 2 on the excitation side of the monitoring RD converter 1C.
  • the single monitoring RD converter 1C and the changeover switch 28 are provided, and the detection signals of the resolvers 25 and 25 of the two motors 4 and 4 are switched by the changeover switch 28, so that the one monitoring use is performed. Since it is possible to input to the RD converter 1C, it is possible to perform abnormality diagnosis by specifying which of the two normally used RD converters 1A and 1B is abnormal while making the additional number of RD converters one. In some cases, the motor drive can be continued by using the monitoring RD converter 1C as an alternative. Further, the excitation signal output from the corresponding normal use RD converter 1A (1B) of the two normal use RD converters 1A and 1B is switched to the excitation signal output from the monitoring RD converter 1C.
  • the second two changeover switches 31 and 31 for inputting to the resolver 25 are provided, it is possible to determine which of the excitation circuit 3 and the detection circuit 2 of the normally used RD converters 1A and 1B is abnormal. Alternatives can be made depending on which is abnormal. In this way, by adding a simple configuration, it is possible to make a reliable abnormality determination by distinguishing which one of the excitation circuit 3 and the detection circuit 2 of the RD converters 1A, 1B, and 1C is abnormal.
  • the drive of the motors 4 and 4 can be continued by alternative use corresponding to the abnormality of the excitation circuit 3 and the detection circuit 2.
  • the two normally used RD converters 1A and 1B and the monitoring RD converter 1C respectively digitize the excitation signal that generates and outputs the excitation signal and the detection signal of the resolver connected on the detection side.
  • a self-diagnosis means 32 for diagnosing whether or not the RD converters 1A, 1B, and 1C are abnormal based on the detection signal.
  • the self-diagnosis unit 32 it is easy to determine abnormality in the motor control circuit 21, and by providing the first and second changeover switches 28 and 31, switching to alternative use of the monitoring RD converter 1C is possible. it can.
  • the motor control circuit 21 includes a sequential monitoring switching unit 29 having a switch switching unit 29a, an abnormality determination unit 29b, and a used RD converter switching unit 29c.
  • the switch switching unit 29a switches the first and second changeover switches 28 and 31 alternately according to a predetermined rule. As a combination of the changeovers, the switch changeover unit 29a is configured to switch the 2nd changeover switch 29a to one of the second changeover switches 31 and 31.
  • the excitation signal of the corresponding normally used RD converter 1A (1B) is switched to the corresponding resolver 25, and the first changeover switch 28 A combination in which the detection signal of the resolver 25 to which excitation signals of the normally used RD converters 1A and 1B are input is input to the monitoring RD converter 1C and one of the second changeover switches 31 and 31. Therefore, the excitation signal of the monitoring RD converter 1C corresponds to the corresponding resolver of the two resolvers 25, 25. 25, and a combination in which the detection signal of the resolver 25 is a switching state input to the corresponding normal use RD converter 25 among the two normal use RD converters 25, 25.
  • the abnormality determination unit 29b uses the diagnosis result by the self-diagnosis means 32 of each of the RD converters 1A, 1B, and 1C in each combination of the first and second changeover switches 28 and 31 to perform the normal use. Determining which of the detection circuit 2 and the excitation circuit 3 is abnormal in any one of the RD converters 1A, 1B, and 1C among the monitoring RD converters 1A, 1B, and 1C; The used RD converter switching unit 29c is based on the rules determined according to the determination of the abnormality determination unit 29b, and the monitoring RD converter switching unit 29c is operated during normal operation of the motor 4 except during diagnosis of the RD converters 1A and 1B.
  • the detection circuit 2 and / or the excitation circuit 3 of the RD converter 1C is used in place of the detection circuit 2 and / or one of the excitation circuits 3 of the two normally used RD converters 1A and 1B. As described above, even if the switch switching unit 29a selects the combination of the first and second changeover switches 28, 31, 31 and the detection circuits 2A, 2B, 2C used for the operation of the motor 4 are selected. Good.
  • the basic combination by the switch switching unit 29a is a switching state in which excitation signals of the normally used RD converters 1A and 1B are input to the resolvers 25 and 25, respectively, with respect to the excitation side changeover switches 31 and 31.
  • the detection-side changeover switch 28 is also in a switching state in which the detection signals of the resolvers 25 and 25 are input to the normally used RD converters 1A and 1B, respectively.
  • an abnormality determination for specifying which of the two normally used RD converters 1A and 1B is abnormal by adding one monitoring RD converter 1C.
  • the drive of the motor 4 can be continued with the alternative use of the monitoring RD converter 1C, and any abnormality in the excitation circuit and the detection circuit of the normal use RD converters 1A and 1B. Can be used, and alternative use according to which one is abnormal can be performed.
  • the motor control circuit 21 may include a microcomputer (microcomputer) in which one RD converter is incorporated, and the built-in RD converter may be the monitoring RD converter 1C.
  • a microcomputer incorporating one RD converter as described above, the configuration of the two-axis inverter device is simplified.
  • the motor control circuit 21 includes a microcomputer with two built-in RD converters, the two built-in RD converters are the two normally used RD converters 1A and 1B, and the monitoring RD converter 1C has It may be provided outside the microcomputer.
  • the configuration of the two-axis inverter device is further simplified.
  • the two motors 4 and 4 may be motors for driving the left and right wheels 52 and 52 in the electric vehicle, respectively.
  • FIG. 2 is a block diagram showing a simplified conceptual configuration of each RD converter and its redundancy means in the two-axis inverter device of FIG. 1.
  • FIG. 2 is a block diagram specifically illustrating a conceptual configuration of an RD converter and each means for redundancy in the two-axis inverter device of FIG. 1.
  • It is a block diagram which shows the outline of a conceptual structure of the 2-axis type inverter apparatus which concerns on 2nd Embodiment of this invention.
  • It is a block diagram which shows the outline of a conceptual structure of the 2-axis type inverter apparatus which concerns on 3rd Embodiment of this invention.
  • It is a block diagram which shows the basic composition of the conventional 2 axis type inverter apparatus.
  • FIG. 1 shows a conceptual configuration of an electric vehicle.
  • the left and right wheels 52, 52 at the rear of the vehicle 51 are driven wheels that are individually driven by the electric motors 4, 4, and the wheels 53, 53 that are front wheels are steered by the steering device 6.
  • It is a rear-wheel two-wheel drive vehicle which is a driven wheel.
  • Each motor 4 constitutes an in-wheel motor drive device 5 together with a wheel bearing and a speed reducer (not shown) that transmits the rotation of the motor 4 to the wheel 52 at a reduced speed.
  • Each motor 4 is mounted on a chassis (not shown) of a vehicle 51 without constituting an in-wheel motor drive device 5, and is an on-board type that transmits drive to a corresponding wheel 52 via a drive shaft. Also good.
  • Each motor 4 is a three-phase AC motor such as a permanent magnet type synchronous motor.
  • a brake 7 is provided for each of the wheels 52 and 53.
  • An ECU (electric control unit) 8 is provided as a means for overall control of the entire vehicle 51.
  • the ECU 8 is also referred to as a VCU (vehicle control unit).
  • the ECU 8 includes an accelerator input that is an operation amount of the accelerator operation means 9 such as an arsel pedal, a brake input that is an operation amount of the brake operation means 10 such as a brake pedal, and a steering amount of the steering operation means 11 such as a steering handle.
  • a certain steering input is input.
  • the ECU 8 outputs a torque command for driving the left and right motors 4 and 4 to the two-shaft inverter device 20 from the accelerator input, the brake input, and the steering input according to a predetermined rule.
  • the biaxial inverter device 20 is a device that individually drives the left and right motors 4 and 4 according to the left and right torque commands, and uses a battery 12 as a power source.
  • the biaxial inverter device 20 is an inverter device in which means for driving and controlling the two motors 4 and 4 are housed in one housing (not shown). Instead, two independent inverter devices may be housed in one housing.
  • the battery 12 is used as a power source for the entire vehicle 51.
  • the two-axis inverter device 20 includes two drive circuits 22 and 22 that respectively drive the left and right motors 4 and 4, and one motor control circuit that controls the drive circuits 22 and 22. 21.
  • Each drive circuit 22 is a power circuit, and is configured by a brib circuit or the like of a semiconductor switching element such as an IGBT.
  • the inverter converts the DC power of the battery 12 into three-phase AC power for driving the motor 4, and the inverter
  • the semiconductor switching element is configured by a driver circuit (not shown) such as a PWM driver that performs opening / closing control of the semiconductor switching element by pulse width control or the like.
  • the motor control circuit 21 includes a one-chip or one-board microcomputer and a program executed on the microcomputer.
  • the microcomputer includes a CPU (Central Processing Unit) and various electronic circuits such as a memory and an I / O port.
  • the motor control circuit 21 has two individual motor control units 23 and 23 for controlling two drive circuits 22 and 22 respectively corresponding to the left and right motors 4 and 4, and controls the left drive circuit 22 and its control.
  • the left inverter unit 24L is conceptually configured by one motor control unit 23, and the right inverter unit 24R is conceptually configured by the right drive circuit 22 and one motor control unit 23 that performs control thereof. ing.
  • the two individual motor control units 23 and 23 may be conceptually divided into two, for example, may be configured by one microcomputer and its program. Instead, the left and right inverter device sections 24L and 24R may be composed of independent circuit elements and programs. “Left side” and “right side” correspond to the left wheel and the right wheel, respectively, and do not indicate the position.
  • Each individual motor control unit 23 of the motor control circuit 21 controls the magnitude of a current command or the like given from the ECU 8 to the corresponding drive circuit 22 according to the magnitude of the torque command to the corresponding motor 4.
  • the detection signal of the resolver 25 that is a rotation detection sensor of the corresponding motor 4 is monitored, and phase control such as vector control for improving the driving efficiency of the motor 4 is performed. Therefore, high accuracy is required for the rotation detection sensor, and the resolver 25 is used as the rotation detection sensor.
  • the detection signals of the resolvers 25 and 25 are digitized and input to the motor control circuit 21 so that the motor control circuit 21 can handle them.
  • 1A, 1B) when there is no need to individually distinguish a plurality of RD converters, they may be simply referred to as “RD converter 1”).
  • the resolver 25 has an outer ring 34 fixed to a frame (not shown) and an inner ring 35 mechanically connected to the rotating shaft of the motor 4 (see FIG. 2).
  • the resolver 25 detects two rotation signals of a detection coil 38 that detects the SIN wave (sine wave) and a detection coil 39 that detects the COS wave (cosine wave), which are induced from the excitation coil 37 to rotate the inner ring 25. Output as.
  • the RD converter 1 has an excitation circuit 3 for sending an excitation signal to the excitation coil 37 and a detection circuit 2.
  • the detection circuit 2 analyzes the SIN wave and COS wave detection signals output as analog voltage signals from the resolver 25 to detect the rotational position of the inner ring 35, digitizes it, and outputs it as a rotation detection signal.
  • the detection circuit 2 performs an analysis based on the excitation signal (reference signal REF) from the excitation circuit 3 that drives the excitation coil 37 of the resolver 25.
  • the excitation circuit 3 may be provided independently outside the IC constituting the detection circuit 2.
  • the two-shaft inverter device 20 includes a monitoring RD converter 1C separately from the left and right RD converters 1A and 1B, which are normally used RD converters, and the monitoring RD converter 1C with the two resolvers 25, Two excitation signals output by the two normally used RD converters 1A and 1B, and the excitation signal output by the detection-side changeover switch 28 that enables input by switching 25 detection signals and the RD converter 1C for monitoring.
  • Two excitation-side change-over switches 31 and 31 that can be input to the two resolvers 25 and 25 by switching from signals are provided.
  • Sequential monitoring in which the motor control circuit 21 of the two-shaft inverter device 20 determines abnormality of the normally used RD converters 1A, 1B, etc., and uses the monitoring RD converter 1C instead of the RD converter determined to be abnormal.
  • Switching means 29 is provided.
  • each of the RD converters 1A, 1B, 1C has a self-diagnosis means 32.
  • the detection-side changeover switch 28 switches one common terminal Tc between the two switch terminals Ta and Tb for each of the three systems of switch portions 28a, 28b and 28c.
  • the switches 28a, 28b, 28c can be simultaneously switched to the same side by a control signal input to a control terminal (not shown).
  • the changeover switch 28 may be a semiconductor switch or a contact switch.
  • the three common terminals Tc of the changeover switch 28 are connected to the sine output terminal, cosine output terminal and reference signal input terminal of the monitoring RD converter 1C, and the switch terminals Ta and Tb are connected to the left and right resolvers 25 and 25, respectively.
  • the sine detection signal output terminal, the cosine detection signal output terminal, and the excitation signal input terminal are connected. Note that the wiring of each system in the three systems is actually two on each of the high side and the low side as shown in FIG. 3 and FIG. 5, but in FIG. To display. Similarly, there are actually two terminals Ta, Tb, and Tc of each of the three switch sections 28a, 28b, and 28c of the changeover switch 28, and the connection of the two switches in the same manner at the same time.
  • each of the excitation side change-over switches 31 and 31 the high-side and low-side input wirings of the excitation signal of the corresponding resolver 25 are respectively connected to the excitation circuit 3 A (3 B) of the normally used RD converter 1 A (1 B).
  • the switch is switched for each of the high side and low side wirings. It has a switching terminal Td.
  • Each excitation-side change-over switch 31 may be a semiconductor switch or a contact switch similarly to the detection-side change-over switch 28.
  • the sequential monitoring switching means 29 provided in the motor control circuit 21 includes a command for switching the detection-side and excitation-side change-over switches 28, 31, and 31, judgment of abnormality of the RD converter 1, and judgment result of this abnormality. And a command for alternative use by the monitoring RD converter 1C according to the above, according to a predetermined rule.
  • the sequential monitoring switching unit 29 includes a switch switching unit 29a, an abnormality determination unit 29b, and a used RD converter switching unit 29c. Individual functions of the units 29a to 29c will be described later. First, the function of the sequential monitoring switching unit 29 as a whole will be described.
  • the sequential monitoring switching means 29 specifically performs switching, abnormality determination, and switching to alternative use shown in the following Tables 1 and 2.
  • Table 1 shows the judgment and switching performed between the normal use RD converter 1A and the monitoring RD converter 1C.
  • Table 2 shows the decision between the normal use RD converter 1B and the monitoring RD converter 1C. The judgment and switching to be performed are shown respectively.
  • the items in both Tables 1 and 2 are the same except for the left side or the right side.
  • the sequential monitoring switching means 29 uses the self-diagnosis means 32 of the RD converter 1 (1A, 1B, 1C). After the self-diagnosis of the normally used RD converters 1A, 1B, the detection circuit 2 (2A, 1 2B) is switched to the monitoring side. If any one of the self-diagnosis means 32 of the normally used RD converter 1A (1B) and the self-diagnosis means 32 of the monitoring RD converter 1C is determined to be abnormal, the RD converter 1 (1A, 1B, It is determined that the detection circuit 2 of 1C) is abnormal.
  • the excitation circuit 3 of the RD converter 1 is replaced with the normally used RD converter 1A ( The excitation circuit 3A (3B) of 1B) is switched to the excitation circuit 3C of the monitoring RD converter 1C to check whether the detection circuit 2 (2A, 2B) has the same result.
  • the excitation circuit 3 in the RD converter 1 is abnormal.
  • the excitation circuit 3 (3A to 3C) is switched from the excitation circuit 3A (3B) of the normally used RD converter 1A (1B) to the excitation circuit 3C of the monitoring RD converter 1C by the changeover switch 31 on the excitation side. It is confirmed that the self-diagnostic means 32 of both the normally used RD converter 1A (1B) and the monitoring RD converter 1C are determined to be abnormal.
  • the excitation circuit 3 or the detection circuit 2 of the RD converter 1 determined to be abnormal is not used until the repair is completed.
  • the series of processing by the sequential monitoring switching means 29 may be performed a plurality of times, for example, at the time of initial diagnosis, or may be performed every fixed time, for example, every second during the operation of the two-shaft inverter device 20. Good.
  • the excitation circuit 3A of the left-side normally used RD converter 1A drives the excitation coil 37 of the resolver 25, and includes a detection coil 38 for detecting a SIN wave (sine wave) and a detection coil 39 for detecting a COS wave (cosine wave).
  • the detection circuit 2A receives the signal.
  • the monitoring RD converter 1C receives signals from the detection coil 38 that detects the SIN wave of the left resolver 25 and the detection coil 39 that detects the COS wave.
  • the rotational position data from the left resolver 25 is received.
  • the rotational position data measured by the monitoring RD converter 1C is compared with the rotational position data obtained by the left-side normally used RD converter 1A.
  • the detection side changeover switch 28 is switched to the right side, signals from the detection coil 38 for detecting the SIN wave of the right resolver 25 and the detection coil 39 for detecting the COS wave are received, and the signals from the right resolver 25 are received.
  • Measure rotational position data Then, the rotational position data measured by the monitoring RD converter 1C is compared with the rotational position data obtained by the right-side normal use RD converter 1B. In these cases, the excitation circuit 3C of the monitoring RD converter 1C is not used.
  • the switch switching unit 29a switches the detection-side and excitation-side change-over switches 28 and 31 alternately according to a predetermined rule.
  • the excitation switch of the first normal use RD converter 1A is in a switching state in which the excitation signal is input to the first resolver 25 and the detection switch is switched.
  • the basic combination is a switching state in which the excitation signal of the first normally used RD converter 1A (1B) is input to the first resolver 25 for the excitation side changeover switch 31, and the detection side
  • the changeover switch 28 is also in a switching state in which the detection signal of the first resolver 25 is input to the first normally used RD converter 1A (1B).
  • the abnormality determination unit 29b performs the normal use based on the combination of the diagnosis results of the self-diagnosis unit 32 of the RD converters 1A, 1B, and 1C in each combination of the detection side and excitation side changeover switches 28 and 29. Then, it is determined which of the detection circuit 2 and the excitation circuit 3 is abnormal in any of the RD converters 1A, 1B, and 1C for monitoring.
  • the used RD converter switching unit 29c is configured to monitor the normal operation of the motor 4 excluding the diagnosis of the RD converter 1 based on a predetermined rule according to the result of the abnormality determination by the abnormality determination unit 29b.
  • the switch switching unit 29a is used so that the detection circuit 2 and the excitation circuit 3 of the RD converter 1C for use are replaced with the detection circuit 2 and the excitation circuit 3 of the normally used RD converters 1A and 1B, respectively.
  • the selection of the combination of the switching states of the detection side and excitation side changeover switches 28 and 31 and the selection of the detection circuit 2 used for the operation of the motor 25 are performed.
  • the sequential monitoring switching means 29 includes the switch switching unit 29a, the abnormality determination unit 29b, and the used RD converter switching unit 29c having such functions, so that according to the two-axis inverter device 20, one monitoring unit can be used.
  • an abnormality determination can be made to identify which of the two normally used RD converters 1A and 1B is abnormal, and if it is abnormal, the motor can be replaced with the monitoring RD converter 1C.
  • the driving can be continued, and it is possible to determine which abnormality of the excitation circuit 3 and the detection circuit 2 of the normally used RD converters 1A and 1B, and to perform alternative use according to which abnormality is present.
  • the monitoring RD converter 1C and the changeover switch 28 are provided, and detection signals of the resolvers 25 and 25 of the two motors 4 and 4 are sent to the changeover switch. 28, the monitoring RD converter 1C can be input to the monitoring RD converter 1C, so that it is possible to identify which of the two normally used RD converters 1A and 1B is abnormal while the additional number of RD converters is one. Thus, abnormality diagnosis can be performed, and when the abnormality is detected, the motor driving can be continued using the monitoring RD converter 1C instead.
  • the excitation signal output from the monitoring RD converter 1C is switched from the two excitation signals output from the two normally used RD converters 1A and 1B, and input to the two resolvers 25 and 25. Therefore, it is possible to determine which abnormality of the excitation circuit 3 and the detection circuit 2 of the normally used RD converters 1A and 1B, and which one is abnormal. Alternatives can be made accordingly.
  • the first embodiment has been described with respect to the case where the microcomputer constituting the motor control circuit 21 is a type that does not have an RD converter. However, as shown in the second and third embodiments described below, respectively.
  • the microcomputer constituting the motor control circuit 21 has one or two RD converters, the following configuration can be adopted.
  • the second and third embodiments are the same as those of the first embodiment shown in FIGS. 1 to 5 except for matters to be specifically described.
  • the microcomputer constituting the motor control circuit 21 has one RD converter.
  • the built-in RD converter is used as the monitoring RD converter 1C.
  • the microcomputer constituting the motor control circuit 21 has two RD converters.
  • two built-in RD converters are used as RD converters 1A and 1B for normal use, and the monitoring RD converter 1C is externally attached to the microcomputer.
  • the configuration of the two-axis inverter device 20 is further simplified by adopting the above configuration.

Abstract

Provided is a biaxial inverter device in which abnormality determination for identifying whether there is an abnormality in either of two normal use resolver-to-digital (RD) converters can be performed by adding one monitoring RD converter, abnormalities in excitation circuits and detection circuits can be determined, and alternation of detection and alternation of excitation can be distinguished and performed. The present invention is provided with: a first change-over switch (28) which switches between two resolvers (25, 25) and connects one of the resolvers to the detection side of a monitoring RD converter (1C), to cause detection signals of the connected resolver (25) to be inputted into the monitoring RD converter (1C); and two second change-over switches (31, 31) which are respectively connected to the resolvers (25) corresponding to the excitation side of the monitoring RD converter (1C), and which switch the excitation signal inputted into the connected resolver (25), from the excitation signal outputted by the corresponding normal use RD converter (1A(1B)), to the excitation signal outputted by the monitoring RD converter (1C).

Description

2軸型インバータ装置2-axis inverter 関連出願Related applications
 本出願は、2016年9月23日出願の特願2016-185808の優先権を主張するものであり、その全体を参照により本願の一部をなすものとして引用する。 This application claims the priority of Japanese Patent Application No. 2016-185808 filed on September 23, 2016, which is incorporated herein by reference in its entirety.
 この発明は、電気自動車における左右の駆動輪をそれぞれ駆動する2台のモータ等を駆動する2軸型インバータ装置に関し、特にそのRDコンバータの異常検出と冗長化に関する。 The present invention relates to a two-shaft inverter device that drives two motors and the like that respectively drive left and right drive wheels in an electric vehicle, and more particularly to abnormality detection and redundancy of the RD converter.
 電気自動車において、走行用のモータの駆動には、車両全体の統括制御を行うECU(VCUとも称される)の下位に接続されるインバータ装置が用いられる。インバータ装置は、バッテリの直流電流を3相交流電流に変換するインバータで構成される駆動回路、およびモータの回転を監視してモータの出力や効率化の制御を行うモータ制御回路で構成される。 In an electric vehicle, an inverter device connected to a lower level of an ECU (also referred to as VCU) that performs overall control of the entire vehicle is used to drive a motor for traveling. The inverter device includes a drive circuit configured by an inverter that converts a direct current of the battery into a three-phase alternating current, and a motor control circuit that monitors the rotation of the motor and controls the output and efficiency of the motor.
 このようなインバータ装置として、インホイールモータ駆動装置を用いるなど、左右の駆動輪を個別に駆動するモータを備えた電気自動車では、左右のモータの駆動回路およびモータ制御回路を1つの筐体内に備えた2軸型インバータ装置が用いられる。2軸型インバータ装置では、左右のモータに対するモータ制御回路は、一般的に1つのマイコンに設けられる。 As such an inverter device, an electric vehicle equipped with a motor that individually drives left and right drive wheels, such as using an in-wheel motor drive device, includes a drive circuit and a motor control circuit for the left and right motors in one housing. A two-shaft inverter device is also used. In the biaxial inverter device, the motor control circuits for the left and right motors are generally provided in one microcomputer.
 図8は、2軸型インバータ装置の基本構造である。インバータ装置101内のマイコンからなるモータ制御手段21は、ECU(VCU)からの指令に基づき、左右それぞれのモータ駆動回路22を制御して各モータ4を駆動する。その際、モータ4の回転位置をレゾルバ25で検出し、RDコンバータ(レゾルバ/デジタルコンバータ)1A,1Bを用いてモータ制御回路21に取り込む。RDコンバータ1A,1Bは、レゾルバ25のアナログの回転位置信号を制御回路に取り込むためのインターフェースであり、RDCと略称される場合がある。モータ4の回転位置の検出には、他の種々の回転検出器の使用が可能であるが、回転検出精度等に優れることから、レゾルバがよく用いられる。 Fig. 8 shows the basic structure of the 2-axis inverter device. The motor control means 21 comprising a microcomputer in the inverter device 101 drives the motors 4 by controlling the left and right motor drive circuits 22 based on commands from the ECU (VCU). At that time, the rotational position of the motor 4 is detected by the resolver 25 and is taken into the motor control circuit 21 using the RD converters (resolver / digital converter) 1A, 1B. The RD converters 1A and 1B are interfaces for taking an analog rotational position signal of the resolver 25 into a control circuit, and may be abbreviated as RDC. Various other rotation detectors can be used to detect the rotational position of the motor 4, but a resolver is often used because of excellent rotation detection accuracy.
 RDコンバータ1A,1Bはインバータ装置101内での重要部品であり、故障の場合、車両動作ができないなど、重大な問題となる。そのため、故障検出や、冗長回路の提案がされている(例えば、特許文献1~3)。特許文献2,3は、分解能の違うレゾルバを複数個取り付け、精度、信頼度を上げる。 RD converters 1A and 1B are important parts in the inverter device 101, and in the case of a failure, a serious problem occurs such that the vehicle cannot operate. Therefore, failure detection and a redundant circuit have been proposed (for example, Patent Documents 1 to 3). In Patent Documents 2 and 3, a plurality of resolvers with different resolutions are attached to improve accuracy and reliability.
特開平9-072758号公報Japanese Patent Laid-Open No. 9-072758 特開平11-064039号公報JP-A-11-064039 特開2001-082982号公報JP 2001/082982 A
 特許文献1では、RDコンバータの冗長回路として、マイコンのADコンバータ入力を使用している。この構成は、マイコンの処理速度にもよるが、減速機つきのインホイールモータシステムで使用するような、高回転数のモータの場合には処理が追いつかず適さない。さらに、場合によっては、RDコンバータの故障か、ADコンバータの故障かが判断できない。 In Patent Document 1, an AD converter input of a microcomputer is used as a redundant circuit of an RD converter. Although this configuration depends on the processing speed of the microcomputer, the processing cannot catch up with a motor having a high rotational speed such as that used in an in-wheel motor system with a speed reducer, which is not suitable. Further, depending on the situation, it cannot be determined whether the RD converter is faulty or the AD converter is faulty.
 したがって、高回転数のモータの場合にはバックアップ用としてもRDコンバータを使用することになるが、モータ1台に対し、高価なRDコンバータが2個必要になるうえに、回転位置データを比較して差異があっても、どちらのRDコンバータが故障したかを判断できない場合が多い。そのため、故障時のためにバックアップ用に切替えるように準備していても、切替に必要な判断ができない。 Therefore, in the case of a motor with a high rotational speed, an RD converter is used as a backup, but two expensive RD converters are required for one motor, and the rotational position data is compared. Even if there is a difference, it is often impossible to determine which RD converter has failed. For this reason, even if preparations are made for switching to backup in the event of a failure, the judgment necessary for switching cannot be made.
 図9に、常時監視回路を備えた2軸型インバータの例を示す。左右のRDコンバータ1A,1Bにそれぞれ並列に監視用RDコンバータ1D,1Dが設けられる。並列に接続された左側のRDコンバータ1Aと監視用RDコンバータ1Dとの間、および並列に接続された右側のRDコンバータ1Bと監視用RDコンバータ1Dとの間それぞれの回転位置データの比較で、差異がなければ、両方のRDコンバータは正常と判断する。差異があれば、どちらかが故障と判断する。差異の判断基準は、たとえばRDコンバータの許容誤差の2倍に安全率を掛けたもの等で決める。それぞれのRDコンバータ1A,1B,1Dには自己診断機能があるため、その診断で問題があった場合は、そのRDコンバータの使用を中止する。 Fig. 9 shows an example of a two-axis inverter equipped with a constant monitoring circuit. Monitoring RD converters 1D and 1D are provided in parallel to the left and right RD converters 1A and 1B, respectively. In comparison of rotational position data between the left RD converter 1A and the monitoring RD converter 1D connected in parallel and between the right RD converter 1B and the monitoring RD converter 1D connected in parallel, there is a difference. If not, both RD converters are determined to be normal. If there is a difference, one of them is judged as a failure. The criterion for determining the difference is determined, for example, by multiplying the allowable error of the RD converter by a safety factor. Since each RD converter 1A, 1B, 1D has a self-diagnosis function, if there is a problem in the diagnosis, the use of the RD converter is stopped.
 しかし、同図のような左右のRDコンバータ1A,1Bにそれぞれ並列に監視用RDコンバータ1D,1Dを備える場合、上記のようにRDコンバータの個数が多くなってコスト高になるうえ、どちらのRDコンバータも自己診断で正常な場合、どちらが故障したかの判断が困難という問題点ある。 However, when the monitoring RD converters 1D and 1D are provided in parallel with the left and right RD converters 1A and 1B as shown in the same figure, the number of RD converters increases as described above, and the cost increases. When the converter is normal by self-diagnosis, it is difficult to determine which one has failed.
 なお、上記の例は、電気自動車の走行用モータを制御する2軸型インバータ装置について説明したが、電気自動車の他のモータを制御する2軸型インバータ装置においても、上記課題があてはまる。 In the above example, the two-axis inverter device for controlling the motor for driving the electric vehicle has been described. However, the above problem also applies to the two-axis inverter device for controlling another motor of the electric vehicle.
 この発明の目的は、1台の監視用のRDコンバータの追加で2台の通常使用のRDコンバータのいずれが異常であるかを特定する異常判断が行え、かつ異常である場合に前記監視用のRDコンバータの代替使用でモータ駆動を続けることができ、さらに前記通常使用のRDコンバータの励磁回路および検出回路のいずれの異常かが判断できて、そのいずれが異常であるかに応じた代替が行える2軸型インバータ装置を提供することである。 The object of the present invention is to add an additional RD converter for monitoring and to determine which of the two normally used RD converters is abnormal. The motor drive can be continued by the alternative use of the RD converter, and further, it can be determined whether the abnormality is in the excitation circuit or the detection circuit of the normal use RD converter, and the alternative can be performed depending on which one is abnormal. A two-axis inverter device is provided.
 この発明の一構成に係る2軸型インバータ装置は、2つの駆動回路22,22であって、それぞれインバータを有し、2つのモータ4,4のうち対応するモータ4を駆動する2つの駆動回路22,22と、これら駆動回路22,22を制御するモータ制御回路21と、2つのレゾルバ25,25であって、それぞれ、励磁信号が入力されると、前記2つのモータ4,4のうち対応するモータ4の回転を検出する2つのレゾルバ25,25と、2つの通常使用のRDコンバータ1A,1Bであって、それぞれ、前記2つのこれらレゾルバ25,25のうち対応するレゾルバ25に励磁信号を出力してこのレゾルバ25の検出信号をディジタル化して出力データとして前記モータ制御回路21に入力する2つの通常使用のRDコンバータ1A,1Bと、前記2つの通常使用のRDコンバータ1A,1Bを監視する監視用のRDコンバータ1Cであって、前記2つのレゾルバ25,25のうち励磁側において接続されたレゾルバ25に励磁信号を出力し、前記2つのレゾルバ25,25のうち検出側において接続されたレゾルバの検出信号をディジタル化して出力データとして前記モータ制御回路21に入力する監視用のRDコンバータ1Cと、前記監視用のRDコンバータ1Cの検出側に前記2つのレゾルバ25,25を切り替えて接続して、接続されたレゾルバ25の検出信号を前記監視用のRDコンバータ1Cに入力させる第1の切替スイッチ28と、2つの第2の切替スイッチ31,31であって、それぞれ、前記監視用のRDコンバータ1Cの励磁側を前記2つのレゾルバ25,25のうち対応するレゾルバ25に接続して、接続されたレゾルバに入力される励磁信号を、前記2つの通常使用のRDコンバータ25,25のうち対応する通常使用のRDコンバータ25が出力する励磁信号から前記監視用のRDコンバータ1Cが出力する励磁信号にと切り替える2つの第2の切替スイッチ31とを備える。 The two-axis inverter device according to one configuration of the present invention includes two drive circuits 22 and 22 each having an inverter and driving the corresponding motor 4 of the two motors 4 and 4. 22, 22, a motor control circuit 21 that controls the drive circuits 22 and 22, and two resolvers 25 and 25, each of which corresponds to one of the two motors 4 and 4 when an excitation signal is input. The two resolvers 25 and 25 for detecting the rotation of the motor 4 and two normally used RD converters 1A and 1B, respectively, and an excitation signal is sent to the corresponding resolver 25 of the two resolvers 25 and 25, respectively. Two normally used RD converters 1A that output and digitize the detection signal of the resolver 25 and input it as output data to the motor control circuit 21. B and a monitoring RD converter 1C that monitors the two normally used RD converters 1A and 1B, and outputs an excitation signal to the resolver 25 connected on the excitation side of the two resolvers 25 and 25. The monitoring RD converter 1C that digitizes the detection signal of the resolver connected on the detection side of the two resolvers 25, 25 and inputs it as output data to the motor control circuit 21; and the monitoring RD converter 1C The first changeover switch 28 for switching and connecting the two resolvers 25, 25 to the detection side, and inputting a detection signal of the connected resolver 25 to the monitoring RD converter 1C, and two second The change- over switches 31 and 31 are respectively connected to the two resolvers 2 on the excitation side of the monitoring RD converter 1C. , 25 is connected to the corresponding resolver 25, and the excitation signal input to the connected resolver is output by the corresponding normal use RD converter 25 of the two normal use RD converters 25, 25. Two second change-over switches 31 are provided for switching from the signal to the excitation signal output from the monitoring RD converter 1C.
 この構成によると、1つの監視用のRDコンバータ1Cと切替スイッチ28とを設け、2台のモータ4,4のレゾルバ25,25の検出信号を前記切替スイッチ28によって切り替えて前記1つの監視用のRDコンバータ1Cに入力可能としたため、RDコンバータの追加台数を1台としながら、2台の通常使用のRDコンバータ1A,1Bのいずれが異常であるかを特定して異常診断が行え、かつ異常である場合に前記監視用のRDコンバータ1Cの代替使用でモータ駆動を続けることができる。また、前記2つの通常使用のRDコンバータ1A,1Bのうち対応する通常使用のRDコンバータ1A(1B)が出力する励磁信号を、前記監視用のRDコンバータ1Cが出力する励磁信号に切り替えて対応するレゾルバ25に入力する第2の2つの切替スイッチ31,31を有するため、さらに前記通常使用のRDコンバータ1A,1Bの励磁回路3および検出回路2のいずれの異常であるかが判断できて、そのいずれが異常であるかに応じた代替が行える。このように、簡単な構成の追加でRDコンバータ1A,1B,1Cの励磁回路3および検出回路2のいずれが異常であるかを区別して確実な異常判断が行え、しかも異常である場合にも、その励磁回路3および検出回路2の異常に対応した代替使用でモータ4,4の駆動を続行することができる。 According to this configuration, the single monitoring RD converter 1C and the changeover switch 28 are provided, and the detection signals of the resolvers 25 and 25 of the two motors 4 and 4 are switched by the changeover switch 28, so that the one monitoring use is performed. Since it is possible to input to the RD converter 1C, it is possible to perform abnormality diagnosis by specifying which of the two normally used RD converters 1A and 1B is abnormal while making the additional number of RD converters one. In some cases, the motor drive can be continued by using the monitoring RD converter 1C as an alternative. Further, the excitation signal output from the corresponding normal use RD converter 1A (1B) of the two normal use RD converters 1A and 1B is switched to the excitation signal output from the monitoring RD converter 1C. Since the second two changeover switches 31 and 31 for inputting to the resolver 25 are provided, it is possible to determine which of the excitation circuit 3 and the detection circuit 2 of the normally used RD converters 1A and 1B is abnormal. Alternatives can be made depending on which is abnormal. In this way, by adding a simple configuration, it is possible to make a reliable abnormality determination by distinguishing which one of the excitation circuit 3 and the detection circuit 2 of the RD converters 1A, 1B, and 1C is abnormal. The drive of the motors 4 and 4 can be continued by alternative use corresponding to the abnormality of the excitation circuit 3 and the detection circuit 2.
 前記2つの通常使用のRDコンバータ1A,1Bおよび前記監視用のRDコンバータ1Cは、それぞれ、前記励磁信号を生成して出力する励磁回路3と、検出側において接続されたレゾルバの検出信号をディジタル化する検出回路2と、この検出信号から当該RDコンバータ1A,1B,1Cが異常であるか否かを診断する自己診断手段32とを有してもよい。自己診断手段32を有する場合、モータ制御回路21での異常判断が容易であり、第1および第2の切替スイッチ28,31を設けることで、監視用のRDコンバータ1Cの代替使用へ切り替えることができる。 The two normally used RD converters 1A and 1B and the monitoring RD converter 1C respectively digitize the excitation signal that generates and outputs the excitation signal and the detection signal of the resolver connected on the detection side. And a self-diagnosis means 32 for diagnosing whether or not the RD converters 1A, 1B, and 1C are abnormal based on the detection signal. When the self-diagnosis unit 32 is provided, it is easy to determine abnormality in the motor control circuit 21, and by providing the first and second changeover switches 28 and 31, switching to alternative use of the monitoring RD converter 1C is possible. it can.
 前記モータ制御回路21が、スイッチ切替部29a、異常判断部29b、および使用RDコンバータ切替部29cを有する逐次監視切替手段29を備え、
 前記スイッチ切替部29aは、前記第1および第2の切替スイッチ28,31を定められた規則に従って交互に切り替え、この切り替えの組み合わせとして、前記第2の切替スイッチ31,31の一方につき、前記2つの通常使用のRDコンバータ1A,1Bのうち対応する通常使用のRDコンバータ1A(1B)の励磁信号が対応するレゾルバ25に入力される切替状態であり、かつ前記第1の切替スイッチ28につき、前記通常使用のRDコンバータ1A,1Bの励磁信号が入力されるレゾルバ25の検出信号が前記監視用のRDコンバータ1Cに入力される切替状態である組み合わせと、前記第2の切替スイッチ31,31の一方につき、監視用のRDコンバータ1Cの励磁信号が前記2つのレゾルバ25,25のうち対応するレゾルバ25に入力される切替状態であり、かつこのレゾルバ25の検出信号が前記2つの通常使用のRDコンバータ25,25のうち対応する通常使用のRDコンバータ25に入力される切替状態である組み合わせとを含み、
 前記異常判断部29bは、前記第1および第2の切替スイッチ28,31の各組み合わせにおいて、前記各RDコンバータ1A,1B,1Cの前記自己診断手段32による診断の結果を用いて、前記通常使用および監視用のRDコンバータ1A,1B,1CのうちのいずれのRDコンバータ1A,1B,1Cにおける、前記検出回路2および前記励磁回路3のいずれが異常であるかを判断し、
 前記使用RDコンバータ切替部29cは、前記異常判断部29bの判断に応じて、定められた規則に基づき、前記RDコンバータ1A,1Bの診断時を除く通常の前記モータ4の運転時に、前記監視用のRDコンバータ1Cの前記検出回路2および/または前記励磁回路3を前記2つの通常使用のRDコンバータ1A,1Bの一方の前記検出回路2および一方または両方の前記励磁回路3の代わりに使用されるように、前記スイッチ切替部29aによる前記第1および第2の切替スイッチ28,31,31の組み合わせの選択、および前記モータ4の運転に用いる前記検出回路2A,2B,2Cの選択を行ってもよい。
The motor control circuit 21 includes a sequential monitoring switching unit 29 having a switch switching unit 29a, an abnormality determination unit 29b, and a used RD converter switching unit 29c.
The switch switching unit 29a switches the first and second changeover switches 28 and 31 alternately according to a predetermined rule. As a combination of the changeovers, the switch changeover unit 29a is configured to switch the 2nd changeover switch 29a to one of the second changeover switches 31 and 31. Of the two normally used RD converters 1A and 1B, the excitation signal of the corresponding normally used RD converter 1A (1B) is switched to the corresponding resolver 25, and the first changeover switch 28 A combination in which the detection signal of the resolver 25 to which excitation signals of the normally used RD converters 1A and 1B are input is input to the monitoring RD converter 1C and one of the second changeover switches 31 and 31. Therefore, the excitation signal of the monitoring RD converter 1C corresponds to the corresponding resolver of the two resolvers 25, 25. 25, and a combination in which the detection signal of the resolver 25 is a switching state input to the corresponding normal use RD converter 25 among the two normal use RD converters 25, 25. Including
The abnormality determination unit 29b uses the diagnosis result by the self-diagnosis means 32 of each of the RD converters 1A, 1B, and 1C in each combination of the first and second changeover switches 28 and 31 to perform the normal use. Determining which of the detection circuit 2 and the excitation circuit 3 is abnormal in any one of the RD converters 1A, 1B, and 1C among the monitoring RD converters 1A, 1B, and 1C;
The used RD converter switching unit 29c is based on the rules determined according to the determination of the abnormality determination unit 29b, and the monitoring RD converter switching unit 29c is operated during normal operation of the motor 4 except during diagnosis of the RD converters 1A and 1B. The detection circuit 2 and / or the excitation circuit 3 of the RD converter 1C is used in place of the detection circuit 2 and / or one of the excitation circuits 3 of the two normally used RD converters 1A and 1B. As described above, even if the switch switching unit 29a selects the combination of the first and second changeover switches 28, 31, 31 and the detection circuits 2A, 2B, 2C used for the operation of the motor 4 are selected. Good.
 なお、前記スイッチ切替部29aによる基本となる組み合わせは、前記励磁側の切替スイッチ31,31につき、前記通常使用のRDコンバータ1A,1Bの励磁信号が前記レゾルバ25,25にそれぞれ入力される切替状態であり、かつ検出側の切替スイッチ28についても、前記レゾルバ25,25の検出信号が前記通常使用のRDコンバータ1A,1Bにそれぞれ入力される切替状態である。 The basic combination by the switch switching unit 29a is a switching state in which excitation signals of the normally used RD converters 1A and 1B are input to the resolvers 25 and 25, respectively, with respect to the excitation side changeover switches 31 and 31. The detection-side changeover switch 28 is also in a switching state in which the detection signals of the resolvers 25 and 25 are input to the normally used RD converters 1A and 1B, respectively.
 このような機能の逐次監視切替手段29を備えることで、1台の監視用のRDコンバータ1Cの追加で2台の通常使用のRDコンバータ1A,1Bのいずれが異常であるかを特定する異常判断が行え、かつ異常である場合に前記監視用のRDコンバータ1Cの代替使用でモータ4の駆動を続けることができ、さらに前記通常使用のRDコンバータ1A,1Bの励磁回路および検出回路のいずれの異常かが判断できて、そのいずれが異常であるかに応じた代替使用が行える。 By including the sequential monitoring switching means 29 having such a function, an abnormality determination for specifying which of the two normally used RD converters 1A and 1B is abnormal by adding one monitoring RD converter 1C. When the motor 4 can be operated and is abnormal, the drive of the motor 4 can be continued with the alternative use of the monitoring RD converter 1C, and any abnormality in the excitation circuit and the detection circuit of the normal use RD converters 1A and 1B. Can be used, and alternative use according to which one is abnormal can be performed.
 前記モータ制御回路21が、RDコンバータが1個内蔵されたマイコン(マイクロコンピュータ)を備え、前記内蔵されたRDコンバータが前記監視用のRDコンバータ1Cであってもよい。RDコンバータが1個内蔵されたマイコンを上記のように用いることで、2軸型インバータ装置の構成が簡素となる。 The motor control circuit 21 may include a microcomputer (microcomputer) in which one RD converter is incorporated, and the built-in RD converter may be the monitoring RD converter 1C. By using a microcomputer incorporating one RD converter as described above, the configuration of the two-axis inverter device is simplified.
 前記モータ制御回路21が、RDコンバータが2個内蔵されたマイコンを備え、これら内蔵された2つのRDコンバータが前記2つの通常使用のRDコンバータ1A,1Bであり、前記監視用のRDコンバータ1Cが前記マイコンの外部に設けられてもよい。RDコンバータが2個内蔵されたマイコンを上記のように用いることで、2軸型インバータ装置の構成がより簡素となる。 The motor control circuit 21 includes a microcomputer with two built-in RD converters, the two built-in RD converters are the two normally used RD converters 1A and 1B, and the monitoring RD converter 1C has It may be provided outside the microcomputer. By using a microcomputer incorporating two RD converters as described above, the configuration of the two-axis inverter device is further simplified.
 前記2台のモータ4,4が電気自動車における左右の車輪52,52をそれぞれ駆動するモータであってもよい。2軸型インバータ装置20を電気自動車に適用した場合、通常使用のRDコンバータ1A,1Bに異常が発生しても、安全な場所に退避するまで差し当たり走行を続けることができ、走行の安全性が向上する。 The two motors 4 and 4 may be motors for driving the left and right wheels 52 and 52 in the electric vehicle, respectively. When the two-shaft inverter device 20 is applied to an electric vehicle, even if an abnormality occurs in the normally used RD converters 1A and 1B, the vehicle can continue to travel for the time being until it is retracted to a safe place. Will improve.
 請求の範囲および/または明細書および/または図面に開示された少なくとも2つの構成のどのような組合せも、本発明に含まれる。特に、請求の範囲の各請求項の2つ以上のどのような組合せも、本発明に含まれる。 Any combination of at least two configurations disclosed in the claims and / or the specification and / or drawings is included in the present invention. In particular, any combination of two or more of each claim in the claims is included in the present invention.
 この発明は、添付の図面を参考にした以下の好適な実施形態の説明から、より明瞭に理解されるであろう。しかしながら、実施形態および図面は単なる図示および説明のためのものであり、この発明の範囲を定めるために利用されるべきものではない。この発明の範囲は添付の請求の範囲によって定まる。添付図面において、複数の図面における同一の符号は、同一または相当する部分を示す。
この発明の第1の実施形態に係る2軸型インバータ装置を搭載した電気自動車の一例の概念構成を示す説明図である。 図1の2軸型インバータ装置の概念構成の概略を示すブロック図である。 図1の2軸型インバータ装置が備えるRDコンバータおよびその解析対象のレゾルバの概念構成の説明図である。 図1の2軸型インバータ装置におけるRDコンバータおよびその冗長化のための各手段につき概念構成を簡略化して示したブロック図である。 図1の2軸型インバータ装置におけるRDコンバータおよびその冗長化のための各手段につき概念構成を具体化して示したブロック図である。 この発明の第2の実施形態に係る2軸型インバータ装置の概念構成の概略を示すブロック図である。 この発明の第3の実施形態に係る2軸型インバータ装置の概念構成の概略を示すブロック図である。 従来の2軸型インバータ装置の基本構成を示すブロック図である。 2軸型インバータ装置の常時監視型とした提案例に係る冗長化構成例のブロック図である。
The present invention will be more clearly understood from the following description of preferred embodiments with reference to the accompanying drawings. However, the embodiments and drawings are for illustration and description only and should not be used to define the scope of the present invention. The scope of the invention is defined by the appended claims. In the accompanying drawings, the same reference numerals in a plurality of drawings indicate the same or corresponding parts.
It is explanatory drawing which shows the conceptual structure of an example of the electric vehicle carrying the 2 axis type inverter apparatus which concerns on 1st Embodiment of this invention. It is a block diagram which shows the outline of a conceptual structure of the biaxial inverter apparatus of FIG. It is explanatory drawing of the conceptual structure of the RD converter with which the biaxial inverter apparatus of FIG. 1 is equipped, and the resolver of the analysis object. FIG. 2 is a block diagram showing a simplified conceptual configuration of each RD converter and its redundancy means in the two-axis inverter device of FIG. 1. FIG. 2 is a block diagram specifically illustrating a conceptual configuration of an RD converter and each means for redundancy in the two-axis inverter device of FIG. 1. It is a block diagram which shows the outline of a conceptual structure of the 2-axis type inverter apparatus which concerns on 2nd Embodiment of this invention. It is a block diagram which shows the outline of a conceptual structure of the 2-axis type inverter apparatus which concerns on 3rd Embodiment of this invention. It is a block diagram which shows the basic composition of the conventional 2 axis type inverter apparatus. It is a block diagram of the redundant structure example which concerns on the proposal example made into the continuous monitoring type | mold of a 2-axis type inverter apparatus.
 この発明の第1の実施形態を図1ないし図5と共に説明する。図1は電気自動車の概念構成を示す。この電気自動車は、車両51の後部の左右の車輪52,52が、電動のモータ4,4により個別に駆動される駆動輪とされ、前輪である車輪53,53が転舵装置6によって転舵される従動輪である後輪2輪駆動車である。各モータ4は、車輪用軸受およびこのモータ4の回転を車輪52に減速して伝える減速機(いずれも図示せず)と共にインホイールモータ駆動装置5を構成する。各モータ4は、インホイールモータ駆動装置5を構成せずに、車両51のシャーシ(図示せず)上に搭載され、ドライブシャフトを介して対応する車輪52に駆動を伝えるオンボード形式であってもよい。各モータ4は、永久磁石型同期モータ等の3相の交流モータとされている。各車輪52,53に対してブレーキ7が設けられている。 A first embodiment of the present invention will be described with reference to FIGS. FIG. 1 shows a conceptual configuration of an electric vehicle. In this electric vehicle, the left and right wheels 52, 52 at the rear of the vehicle 51 are driven wheels that are individually driven by the electric motors 4, 4, and the wheels 53, 53 that are front wheels are steered by the steering device 6. It is a rear-wheel two-wheel drive vehicle which is a driven wheel. Each motor 4 constitutes an in-wheel motor drive device 5 together with a wheel bearing and a speed reducer (not shown) that transmits the rotation of the motor 4 to the wheel 52 at a reduced speed. Each motor 4 is mounted on a chassis (not shown) of a vehicle 51 without constituting an in-wheel motor drive device 5, and is an on-board type that transmits drive to a corresponding wheel 52 via a drive shaft. Also good. Each motor 4 is a three-phase AC motor such as a permanent magnet type synchronous motor. A brake 7 is provided for each of the wheels 52 and 53.
 制御系を説明する。車両51の全体を統括制御する手段として、ECU(電気制御ユニット)8が設けられている。ECU8は、VCU(車両制御ユニット)とも称される。ECU8には、アルセルペダル等のアクセル操作手段9の操作量であるアクセル入力と、ブレーキペダル等のブレーキ操作手段10の操作量であるブレーキ入力と、ステアリングハンドル等の操舵操作手段11の操舵量である操舵入力が入力される。ECU8は、これらアクセル入力、ブレーキ入力、および操舵入力から、定められた規則に従って前記左右のモータ4,4を駆動するトルク指令を2軸型インバータ装置20に出力する。 Explain the control system. An ECU (electric control unit) 8 is provided as a means for overall control of the entire vehicle 51. The ECU 8 is also referred to as a VCU (vehicle control unit). The ECU 8 includes an accelerator input that is an operation amount of the accelerator operation means 9 such as an arsel pedal, a brake input that is an operation amount of the brake operation means 10 such as a brake pedal, and a steering amount of the steering operation means 11 such as a steering handle. A certain steering input is input. The ECU 8 outputs a torque command for driving the left and right motors 4 and 4 to the two-shaft inverter device 20 from the accelerator input, the brake input, and the steering input according to a predetermined rule.
 2軸型インバータ装置20は、前記左右のモータ4,4を、前記左右のトルク指令に応じて個別に駆動する装置であり、バッテリ12を電源として用いる。2軸型インバータ装置20は、2つのモータ4,4を駆動および制御する手段が1つの筐体(図示せず)等に収められているインバータ装置である。代わりに、2つの独立したインバータ装置が1つの筐体に収められた形式であってもよい。バッテリ12は、車両51の全体の電源として用いられる。 The biaxial inverter device 20 is a device that individually drives the left and right motors 4 and 4 according to the left and right torque commands, and uses a battery 12 as a power source. The biaxial inverter device 20 is an inverter device in which means for driving and controlling the two motors 4 and 4 are housed in one housing (not shown). Instead, two independent inverter devices may be housed in one housing. The battery 12 is used as a power source for the entire vehicle 51.
 図2に示すように、前記2軸型インバータ装置20は、左右のモータ4,4をそれぞれ駆動する2つの駆動回路22,22と、これらの駆動回路22,22を制御する1つのモータ制御回路21とを備える。各駆動回路22はパワー回路であり、IGBT等の半導体スイッチング素子のブリッブ回路等で構成されてバッテリ12の直流電力をモータ4の駆動用の3相の交流電力に変換するインバータと、このインバータの前記半導体スイッチング素子の開閉制御をパルス幅制御等で行うPWMドライバ等のドライバ回路(いずれも図示せず)で構成される。 As shown in FIG. 2, the two-axis inverter device 20 includes two drive circuits 22 and 22 that respectively drive the left and right motors 4 and 4, and one motor control circuit that controls the drive circuits 22 and 22. 21. Each drive circuit 22 is a power circuit, and is configured by a brib circuit or the like of a semiconductor switching element such as an IGBT. The inverter converts the DC power of the battery 12 into three-phase AC power for driving the motor 4, and the inverter The semiconductor switching element is configured by a driver circuit (not shown) such as a PWM driver that performs opening / closing control of the semiconductor switching element by pulse width control or the like.
 モータ制御回路21は、この実施形態では、1チップまたは1ボードのマイコンとこれに実行されるプログラムとで構成される。前記マイコンは、CPU(中央処理装置)とメモリ,I/Oポート等の各種の電子回路からなる。前記モータ制御回路21は、左右のモータ4,4にそれぞれ対する2つの駆動回路22,22をそれぞれ制御する2つの個別モータ制御部23,23を有し、左側の駆動回路22とその制御を行う1つのモータ制御部23とで概念的に左側インバータ装置部24Lが構成され、また右側の駆動回路22とその制御を行う1つのモータ制御部23とで概念的に右側インバータ装置部24Rが構成されている。前記2つの個別モータ制御部23,23は、概念的に2つに分けられていればよく、例えば、1つのマイコンとそのプログラムで構成されていてもよい。代わりに、前記左右のインバータ装置部24L,24Rが独立した回路素子およびプログラムで構成されていてもよい。なお、「左側」および「右側」は、左側の車輪と右側の車輪にそれぞれ対応することを示し、位置を示すものではない。 In this embodiment, the motor control circuit 21 includes a one-chip or one-board microcomputer and a program executed on the microcomputer. The microcomputer includes a CPU (Central Processing Unit) and various electronic circuits such as a memory and an I / O port. The motor control circuit 21 has two individual motor control units 23 and 23 for controlling two drive circuits 22 and 22 respectively corresponding to the left and right motors 4 and 4, and controls the left drive circuit 22 and its control. The left inverter unit 24L is conceptually configured by one motor control unit 23, and the right inverter unit 24R is conceptually configured by the right drive circuit 22 and one motor control unit 23 that performs control thereof. ing. The two individual motor control units 23 and 23 may be conceptually divided into two, for example, may be configured by one microcomputer and its program. Instead, the left and right inverter device sections 24L and 24R may be composed of independent circuit elements and programs. “Left side” and “right side” correspond to the left wheel and the right wheel, respectively, and do not indicate the position.
 前記モータ制御回路21の前記各個別モータ制御部23は、前記ECU8から与えられる、対応するモータ4に対するトルク指令の大きさに応じて対応する前記駆動回路22に与える電流指令等の大きさを制御する他に、対応するモータ4の回転検出用センサであるレゾルバ25の検出信号を監視し、モータ4の駆動の効率化を図るためのベクトル制御等の位相制御を行う。そのため、回転検出用センサの精度には高精度が求められ、前記回転検出用センサとしてレゾルバ25が用いられている。 Each individual motor control unit 23 of the motor control circuit 21 controls the magnitude of a current command or the like given from the ECU 8 to the corresponding drive circuit 22 according to the magnitude of the torque command to the corresponding motor 4. In addition, the detection signal of the resolver 25 that is a rotation detection sensor of the corresponding motor 4 is monitored, and phase control such as vector control for improving the driving efficiency of the motor 4 is performed. Therefore, high accuracy is required for the rotation detection sensor, and the resolver 25 is used as the rotation detection sensor.
 レゾルバ25の出力はアナログ信号であるため、モータ制御回路21で取扱を可能とするために、各レゾルバ25,25の検出信号をディジタル化して前記モータ制御回路21に入力する2つのRDコンバータ1(1A,1B)(なお、複数のRDコンバータを個別に区別する必要のないときは、単に「RDコンバータ1」と称することがある)が設けられている。 Since the output of the resolver 25 is an analog signal, the detection signals of the resolvers 25 and 25 are digitized and input to the motor control circuit 21 so that the motor control circuit 21 can handle them. 1A, 1B) (when there is no need to individually distinguish a plurality of RD converters, they may be simply referred to as “RD converter 1”).
 図3に示すように、レゾルバ25は、フレーム(図示せず)に固定された外輪34とモータ4(図2参照)の回転軸に機械的に接続された内輪35を有する。このレゾルバ25は、内輪25の回転を、励磁コイル37から誘導された、SIN波(正弦波)を検出する検出コイル38とCOS波(余弦波)を検出する検出コイル39との2つの検出信号として出力する。 As shown in FIG. 3, the resolver 25 has an outer ring 34 fixed to a frame (not shown) and an inner ring 35 mechanically connected to the rotating shaft of the motor 4 (see FIG. 2). The resolver 25 detects two rotation signals of a detection coil 38 that detects the SIN wave (sine wave) and a detection coil 39 that detects the COS wave (cosine wave), which are induced from the excitation coil 37 to rotate the inner ring 25. Output as.
 RDコンバータ1は、前記励磁コイル37に励磁信号を送る励磁回路3と、検出回路2を有する。前記検出回路2は、レゾルバ25からアナログ形式の電圧信号で出力されるSIN波およびCOS波の検出信号を解析して内輪35の回転位置を検出し、ディジタル化して回転検出信号として出力する。前記解析のときに検出回路2は、レゾルバ25の励磁コイル37を駆動する励磁回路3からの励磁信号(参照信号REF)を基準にして、解析を行う。励磁回路3は、検出回路2を構成するICの外部に独立して設けられてもよい。 The RD converter 1 has an excitation circuit 3 for sending an excitation signal to the excitation coil 37 and a detection circuit 2. The detection circuit 2 analyzes the SIN wave and COS wave detection signals output as analog voltage signals from the resolver 25 to detect the rotational position of the inner ring 35, digitizes it, and outputs it as a rotation detection signal. At the time of the analysis, the detection circuit 2 performs an analysis based on the excitation signal (reference signal REF) from the excitation circuit 3 that drives the excitation coil 37 of the resolver 25. The excitation circuit 3 may be provided independently outside the IC constituting the detection circuit 2.
 上記の基本構成を有する2軸型インバータ装置20において、この実施形態では、図4に示すように、RDコンバータ1A,1Bの冗長化が図られている。すなわち、2軸型インバータ装置20は、通常使用のRDコンバータである前記左右のRDコンバータ1A,1Bとは別に監視用のRDコンバータ1Cと、この監視用のRDコンバータ1Cに前記2つのレゾルバ25,25の検出信号を切り替えて入力可能とする検出側の切替スイッチ28と、この監視用のRDコンバータ1Cが出力する励磁信号を、前記2つの通常使用のRDコンバータ1A,1Bが出力する2つの励磁信号からそれぞれ切替えて前記2つのレゾルバ25,25に入力可能とする励磁側の2つの切替スイッチ31,31とを備える。2軸型インバータ装置20のモータ制御回路21が、通常使用のRDコンバータ1A,1B等の異常判断を行って、異常と判断されたRDコンバータの代わりに監視用のRDコンバータ1Cを使用させる逐次監視切替手段29を備える。 In the two-axis inverter device 20 having the above basic configuration, in this embodiment, redundancy of the RD converters 1A and 1B is achieved as shown in FIG. That is, the two-shaft inverter device 20 includes a monitoring RD converter 1C separately from the left and right RD converters 1A and 1B, which are normally used RD converters, and the monitoring RD converter 1C with the two resolvers 25, Two excitation signals output by the two normally used RD converters 1A and 1B, and the excitation signal output by the detection-side changeover switch 28 that enables input by switching 25 detection signals and the RD converter 1C for monitoring. Two excitation-side change-over switches 31 and 31 that can be input to the two resolvers 25 and 25 by switching from signals are provided. Sequential monitoring in which the motor control circuit 21 of the two-shaft inverter device 20 determines abnormality of the normally used RD converters 1A, 1B, etc., and uses the monitoring RD converter 1C instead of the RD converter determined to be abnormal. Switching means 29 is provided.
 また、図5に示すように、前記各RDコンバータ1A,1B,1Cは、自己診断手段32を有する。自己診断手段32は、そのRDコンバータ1が異常であるか否かを判断する。例えば、正弦検出信号と余弦検出信号とは、sin2+cos2=1の関係が成り立つため、sin2+cos2の大きさが、1よりもある程度小さい場合、駆動回路22(図2参照)の異常、または検出回路2(2A,2B,2C)の異常と考えられる。この実施形態では、正弦検出信号と余弦検出信号についてsinとcosの検出信号のsin2+cos2の値が定められた閾値以下であると、異常と判断する。 Further, as shown in FIG. 5, each of the RD converters 1A, 1B, 1C has a self-diagnosis means 32. The self-diagnosis means 32 determines whether or not the RD converter 1 is abnormal. For example, since the relationship of sin 2 + cos 2 = 1 holds between the sine detection signal and the cosine detection signal, if the magnitude of sin 2 + cos 2 is somewhat smaller than 1, the drive circuit 22 (see FIG. 2) is abnormal. It is also considered that the detection circuit 2 (2A, 2B, 2C) is abnormal. In this embodiment, when the sine detection signal and the cosine detection signal have a value of sin 2 + cos 2 of the detection signal of sin and cos that is equal to or less than a predetermined threshold value, it is determined as abnormal.
 前記検出側の切替スイッチ28は、図4に簡略化して示すように、3系統の各スイッチ部28a,28b,28cにつき、それぞれ1つのコモン端子Tcを2つのスイッチ端子Ta,Tbの間で切り替えていずれか一方に接続する2つの切替え状態を持つスイッチであって、制御端子(図示せず)へ入力される制御信号によって各スイッチ部28a,28b,28cを同時に同じ側に切り替え可能である。切替スイッチ28は、半導体スイッチであっても、有接点スイッチであってもよい。切替スイッチ28の3系統の各コモン端子Tcは、監視用のRDコンバータ1Cの正弦出力端子および余弦出力端子ならびに参照信号入力端子に接続され、各スイッチ端子Ta,Tbは左右のレゾルバ25,25の正弦検出信号出力端子および余弦検出信号出力端子ならびに励磁信号入力端子に接続される。なお、前記3系統における各系統の配線は、実際には図3および図5に示すようにハイ側およびロー側の各2本であるが、図4では簡単化のために1本で代表して表示する。同様に、切替スイッチ28の前記3系統の各スイッチ部28a,28b,28cの各端子Ta,Tb,Tcは、実際にはそれぞれ2つずつであり、その2つは接続が同時に同様に切り替わる。 As shown in FIG. 4 in a simplified manner, the detection-side changeover switch 28 switches one common terminal Tc between the two switch terminals Ta and Tb for each of the three systems of switch portions 28a, 28b and 28c. The switches 28a, 28b, 28c can be simultaneously switched to the same side by a control signal input to a control terminal (not shown). The changeover switch 28 may be a semiconductor switch or a contact switch. The three common terminals Tc of the changeover switch 28 are connected to the sine output terminal, cosine output terminal and reference signal input terminal of the monitoring RD converter 1C, and the switch terminals Ta and Tb are connected to the left and right resolvers 25 and 25, respectively. The sine detection signal output terminal, the cosine detection signal output terminal, and the excitation signal input terminal are connected. Note that the wiring of each system in the three systems is actually two on each of the high side and the low side as shown in FIG. 3 and FIG. 5, but in FIG. To display. Similarly, there are actually two terminals Ta, Tb, and Tc of each of the three switch sections 28a, 28b, and 28c of the changeover switch 28, and the connection of the two switches in the same manner at the same time.
 前記各励磁側の切替スイッチ31,31は、それぞれ、対応するレゾルバ25の励磁信号のハイ側およびロー側の入力配線が、前記通常使用のRDコンバータ1A(1B)の励磁回路3A(3B)の2本の出力配線に接続される状態と、監視用のRDコンバータ1Cの励磁回路3Cの2本の出力配線に接続される状態とを切り替えるスイッチであり、ハイ側およびロー側の配線毎に切り替える切り替え端子Tdを有している。各励磁側の切替スイッチ31は、検出側の切替スイッチ28と同様に、半導体スイッチであっても、有接点スイッチであってもよい。 In each of the excitation side change-over switches 31 and 31, the high-side and low-side input wirings of the excitation signal of the corresponding resolver 25 are respectively connected to the excitation circuit 3 A (3 B) of the normally used RD converter 1 A (1 B). A switch for switching between a state connected to the two output wirings and a state connected to the two output wirings of the excitation circuit 3C of the monitoring RD converter 1C. The switch is switched for each of the high side and low side wirings. It has a switching terminal Td. Each excitation-side change-over switch 31 may be a semiconductor switch or a contact switch similarly to the detection-side change-over switch 28.
 前記モータ制御回路21に設けられた前記逐次監視切替手段29は、検出側および励磁側の切替スイッチ28,31,31の切り替えの指令と、RDコンバータ1の異常の判断と、この異常の判断結果に応じた監視用のRDコンバータ1Cによる代替使用のための指令とを、定められた規則に従って行う。この逐次監視切替手段29は、スイッチ切替部29a、異常判断部29b、および使用RDコンバータ切替部29cを有する。各部29a~29cの個々の機能は、後に説明する。まず、逐次監視切替手段29の全体として機能を説明する。 The sequential monitoring switching means 29 provided in the motor control circuit 21 includes a command for switching the detection-side and excitation-side change-over switches 28, 31, and 31, judgment of abnormality of the RD converter 1, and judgment result of this abnormality. And a command for alternative use by the monitoring RD converter 1C according to the above, according to a predetermined rule. The sequential monitoring switching unit 29 includes a switch switching unit 29a, an abnormality determination unit 29b, and a used RD converter switching unit 29c. Individual functions of the units 29a to 29c will be described later. First, the function of the sequential monitoring switching unit 29 as a whole will be described.
 前記逐次監視切替手段29は、具体的には次の表1および表2に示す切替え、異常判断、および代替使用への切替えを行う。表1は左側の通常使用のRDコンバータ1Aと監視用のRDコンバータ1Cとの間で行う判断および切替えを、表2は右側の通常使用のRDコンバータ1Bと監視用のRDコンバータ1Cとの間で行う判断および切替えをそれぞれ示す。両表1および2の項目は、左側であるか右側であるかを除き、同じ項目である。 The sequential monitoring switching means 29 specifically performs switching, abnormality determination, and switching to alternative use shown in the following Tables 1 and 2. Table 1 shows the judgment and switching performed between the normal use RD converter 1A and the monitoring RD converter 1C. Table 2 shows the decision between the normal use RD converter 1B and the monitoring RD converter 1C. The judgment and switching to be performed are shown respectively. The items in both Tables 1 and 2 are the same except for the left side or the right side.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 前記逐次監視切替手段29は、RDコンバータ1(1A,1B,1C)の自己診断手段32を利用するものであり、通常使用のRDコンバータ1A,1Bの自己診断の後、検出回路2(2A,2B)を監視側に切り替える。通常使用のRDコンバータ1A(1B)の自己診断手段32と、監視用RDコンバータ1Cの自己診断手段32のどちらか一方で異常と判断された場合、異常と判断したRDコンバータ1(1A,1B,1C)の検出回路2を異常と判断する。検出回路2A(2B)が異常と判断されたRDコンバータ1A(1B)について、確実性を高めるために、励磁側の切替スイッチ31で、RDコンバータ1の励磁回路3を通常使用のRDコンバータ1A(1B)の励磁回路3A(3B)から監視用RDコンバータ1Cの励磁回路3Cに切り替えて、検出回路2(2A,2B)が同様の結果になるかチェックする。 The sequential monitoring switching means 29 uses the self-diagnosis means 32 of the RD converter 1 (1A, 1B, 1C). After the self-diagnosis of the normally used RD converters 1A, 1B, the detection circuit 2 (2A, 1 2B) is switched to the monitoring side. If any one of the self-diagnosis means 32 of the normally used RD converter 1A (1B) and the self-diagnosis means 32 of the monitoring RD converter 1C is determined to be abnormal, the RD converter 1 (1A, 1B, It is determined that the detection circuit 2 of 1C) is abnormal. For the RD converter 1A (1B) in which the detection circuit 2A (2B) is determined to be abnormal, in order to increase the reliability, the excitation circuit 3 of the RD converter 1 is replaced with the normally used RD converter 1A ( The excitation circuit 3A (3B) of 1B) is switched to the excitation circuit 3C of the monitoring RD converter 1C to check whether the detection circuit 2 (2A, 2B) has the same result.
 両方の自己診断手段32で異常と判断された場合は、RDコンバータ1における励磁回路3の異常と判断する。確実性を高めるために、励磁側の切替スイッチ31で、励磁回路3(3A~3C)を通常使用のRDコンバータ1A(1B)の励磁回路3A(3B)から監視用RDコンバータ1Cの励磁回路3Cに切り替えて、通常使用のRDコンバータ1A(1B)と監視用RDコンバータ1Cの両方の自己診断手段32で異常と判断されることを確認する。異常と判断されたRDコンバータ1の励磁回路3または検出回路2は、修理が完了するまで使用しない。 When it is determined that both of the self-diagnostic means 32 are abnormal, it is determined that the excitation circuit 3 in the RD converter 1 is abnormal. In order to increase the reliability, the excitation circuit 3 (3A to 3C) is switched from the excitation circuit 3A (3B) of the normally used RD converter 1A (1B) to the excitation circuit 3C of the monitoring RD converter 1C by the changeover switch 31 on the excitation side. It is confirmed that the self-diagnostic means 32 of both the normally used RD converter 1A (1B) and the monitoring RD converter 1C are determined to be abnormal. The excitation circuit 3 or the detection circuit 2 of the RD converter 1 determined to be abnormal is not used until the repair is completed.
 なお、前記逐次監視切替手段29による一連の処理は、例えば初期診断時に複数回行うようにしてもよく、また2軸型インバータ装置20の動作中に一定時間毎、例えば1秒毎に行ってもよい。 The series of processing by the sequential monitoring switching means 29 may be performed a plurality of times, for example, at the time of initial diagnosis, or may be performed every fixed time, for example, every second during the operation of the two-shaft inverter device 20. Good.
 上記の一連のスイッチ切替え、異常判断、代替使用につき、具体例で説明する。左側の通常使用のRDコンバータ1Aの励磁回路3Aはレゾルバ25の励磁コイル37を駆動し、SIN波(正弦波)を検出する検出コイル38とCOS波(余弦波)を検出する検出コイル39からの信号を検出回路2Aが受け取る。 The above series of switch switching, abnormality judgment, and alternative use will be described with specific examples. The excitation circuit 3A of the left-side normally used RD converter 1A drives the excitation coil 37 of the resolver 25, and includes a detection coil 38 for detecting a SIN wave (sine wave) and a detection coil 39 for detecting a COS wave (cosine wave). The detection circuit 2A receives the signal.
 監視用のRDコンバータ1Cは、検出側の切替スイッチ28が左側に切替わっている場合は、左側のレゾルバ25のSIN波を検出する検出コイル38とCOS波を検出する検出コイル39からの信号を受け取り、左側のレゾルバ25からの回転位置データを計測する。そして、この監視用のRDコンバータ1Cで計測した回転位置データを左側の通常使用のRDコンバータ1Aで得られた回転位置データと比較する。検出側の切替スイッチ28が右側に切替わっている場合は、右側のレゾルバ25のSIN波を検出する検出コイル38とCOS波を検出する検出コイル39からの信号を受け取り、右側のレゾルバ25からの回転位置データを計測する。そして、この監視用のRDコンバータ1Cで計測した回転位置データを右側の通常使用のRDコンバータ1Bで得られた回転位置データと比較する。これらの場合は、監視用のRDコンバータ1Cの励磁回路3Cは使用しない。 When the changeover switch 28 on the detection side is switched to the left side, the monitoring RD converter 1C receives signals from the detection coil 38 that detects the SIN wave of the left resolver 25 and the detection coil 39 that detects the COS wave. The rotational position data from the left resolver 25 is received. Then, the rotational position data measured by the monitoring RD converter 1C is compared with the rotational position data obtained by the left-side normally used RD converter 1A. When the detection side changeover switch 28 is switched to the right side, signals from the detection coil 38 for detecting the SIN wave of the right resolver 25 and the detection coil 39 for detecting the COS wave are received, and the signals from the right resolver 25 are received. Measure rotational position data. Then, the rotational position data measured by the monitoring RD converter 1C is compared with the rotational position data obtained by the right-side normal use RD converter 1B. In these cases, the excitation circuit 3C of the monitoring RD converter 1C is not used.
 前記逐次監視切替手段29の前記スイッチ切替部29a、異常判断部29b、および使用RDコンバータ切替部29cの個々の機能につき説明する。前記スイッチ切替部29aは、前記検出側および励磁側の切替スイッチ28,31を定められた規則に従って交互に切り替える。この切り替えの組み合わせとして、前記励磁側の切替スイッチ31につき、第1の前記通常使用のRDコンバータ1Aの励磁信号が第1のレゾルバ25に入力される切替状態であって、かつ検出側の切替スイッチ28につき、第1のレゾルバ25の検出信号が前記監視用のRDコンバータ1Cに入力される切替状態である組み合わせと、監視用のRDコンバータ1Cの励磁信号が第1のレゾルバ25に入力される切替状態であって、かつこの第1のレゾルバ25の検出信号が第1の通常使用のRDコンバータ1A(1B)に入力される切替状態である組み合わせとを含む。基本となる組み合わせは、前記励磁側の切替スイッチ31につき、第1の前記通常使用のRDコンバータ1A(1B)の励磁信号が第1のレゾルバ25に入力される切替状態であって、かつ検出側の切替スイッチ28についても、第1のレゾルバ25の検出信号が第1の通常使用のRDコンバータ1A(1B)に入力される切替状態である。 The individual functions of the switch switching unit 29a, the abnormality determination unit 29b, and the used RD converter switching unit 29c of the sequential monitoring switching unit 29 will be described. The switch switching unit 29a switches the detection-side and excitation-side change-over switches 28 and 31 alternately according to a predetermined rule. As a combination of this switching, the excitation switch of the first normal use RD converter 1A is in a switching state in which the excitation signal is input to the first resolver 25 and the detection switch is switched. 28, the combination in which the detection signal of the first resolver 25 is input to the monitoring RD converter 1C and the switching in which the excitation signal of the monitoring RD converter 1C is input to the first resolver 25 And a combination in which the detection signal of the first resolver 25 is switched to be input to the first normally used RD converter 1A (1B). The basic combination is a switching state in which the excitation signal of the first normally used RD converter 1A (1B) is input to the first resolver 25 for the excitation side changeover switch 31, and the detection side The changeover switch 28 is also in a switching state in which the detection signal of the first resolver 25 is input to the first normally used RD converter 1A (1B).
 前記異常判断部29bは、前記検出側および励磁側の切替スイッチ28,29の各組み合わせにおいて、前記各RDコンバータ1A,1B,1Cの前記自己診断部32の診断結果の組み合わせに基づいて前記通常使用および監視用のRDコンバータ1A,1B,1CのうちのいずれのRDコンバータ1における、前記検出回路2および前記励磁回路3のいずれが異常であるかを判断する。 The abnormality determination unit 29b performs the normal use based on the combination of the diagnosis results of the self-diagnosis unit 32 of the RD converters 1A, 1B, and 1C in each combination of the detection side and excitation side changeover switches 28 and 29. Then, it is determined which of the detection circuit 2 and the excitation circuit 3 is abnormal in any of the RD converters 1A, 1B, and 1C for monitoring.
 前記使用RDコンバータ切替部29cは、前記異常判断部29bの異常判断の結果に応じて、定められた規則に基づき、前記RDコンバータ1の診断時を除く通常の前記モータ4の運転時に、前記監視用のRDコンバータ1Cの前記検出回路2および前記励磁回路3が個別に前記通常使用のRDコンバータ1A,1Bの前記検出回路2および前記励磁回路3に代替使用されるように、前記スイッチ切替部29aによる前記検出側および励磁側の切替スイッチ28,31の切替状態の組み合わせの選択、および前記モータ25の運転に用いる前記検出回路2の選択を行うようにする。 The used RD converter switching unit 29c is configured to monitor the normal operation of the motor 4 excluding the diagnosis of the RD converter 1 based on a predetermined rule according to the result of the abnormality determination by the abnormality determination unit 29b. The switch switching unit 29a is used so that the detection circuit 2 and the excitation circuit 3 of the RD converter 1C for use are replaced with the detection circuit 2 and the excitation circuit 3 of the normally used RD converters 1A and 1B, respectively. The selection of the combination of the switching states of the detection side and excitation side changeover switches 28 and 31 and the selection of the detection circuit 2 used for the operation of the motor 25 are performed.
 前記逐次監視切替手段29がこのような機能のスイッチ切替部29a、異常判断部29b、および使用RDコンバータ切替部29cを有することで、この2軸型インバータ装置20によると、1台の監視用のRDコンバータ1Cの追加で2台の通常使用のRDコンバータ1A,1Bのいずれが異常であるかを特定する異常判断が行え、かつ異常である場合に前記監視用のRDコンバータ1Cの代替使用でモータ駆動を続けることができ、さらに前記通常使用のRDコンバータ1A,1Bの励磁回路3および検出回路2のいずれの異常かが判断できて、そのいずれが異常であるかに応じた代替使用が行える。 The sequential monitoring switching means 29 includes the switch switching unit 29a, the abnormality determination unit 29b, and the used RD converter switching unit 29c having such functions, so that according to the two-axis inverter device 20, one monitoring unit can be used. With the addition of the RD converter 1C, an abnormality determination can be made to identify which of the two normally used RD converters 1A and 1B is abnormal, and if it is abnormal, the motor can be replaced with the monitoring RD converter 1C. The driving can be continued, and it is possible to determine which abnormality of the excitation circuit 3 and the detection circuit 2 of the normally used RD converters 1A and 1B, and to perform alternative use according to which abnormality is present.
 上記構成の2軸型インバータ装置20によると、以上のように、監視用のRDコンバータ1Cと切替スイッチ28とを備え、2台のモータ4,4のレゾルバ25,25の検出信号を前記切替スイッチ28によって切り替えて前記監視用のRDコンバータ1Cに入力可能としたため、RDコンバータの追加台数を1台としながらも、2台の通常使用のRDコンバータ1A,1Bのいずれが異常であるかを特定して異常診断が行え、かつ異常である場合に前記監視用のRDコンバータ1Cを代わりに用いてモータ駆動を続けることができる。 According to the two-axis inverter device 20 having the above configuration, as described above, the monitoring RD converter 1C and the changeover switch 28 are provided, and detection signals of the resolvers 25 and 25 of the two motors 4 and 4 are sent to the changeover switch. 28, the monitoring RD converter 1C can be input to the monitoring RD converter 1C, so that it is possible to identify which of the two normally used RD converters 1A and 1B is abnormal while the additional number of RD converters is one. Thus, abnormality diagnosis can be performed, and when the abnormality is detected, the motor driving can be continued using the monitoring RD converter 1C instead.
 また、前記監視用のRDコンバータ1Cが出力する励磁信号を、前記2つの通常使用のRDコンバータ1A,1Bが出力する2つの励磁信号それぞれから切替えて前記2つのレゾルバ25,25に入力する励磁側の2つの切替スイッチ31,31を有するため、さらに前記通常使用のRDコンバータ1A,1Bの励磁回路3および検出回路2のいずれの異常であるかが判断できて、そのいずれが異常であるかに応じた代替が行える。 Further, the excitation signal output from the monitoring RD converter 1C is switched from the two excitation signals output from the two normally used RD converters 1A and 1B, and input to the two resolvers 25 and 25. Therefore, it is possible to determine which abnormality of the excitation circuit 3 and the detection circuit 2 of the normally used RD converters 1A and 1B, and which one is abnormal. Alternatives can be made accordingly.
 なお、前記第1の実施形態は、モータ制御回路21を構成するマイコンがRDコンバータを有しない形式である場合につき説明したが、以下に説明する第2および第3の実施形態にそれぞれ示すように、モータ制御回路21を構成するマイコンがRDコンバータを1つまたは2つ有する場合は、次の構成とすることができる。なお、第2および第3の実施形態において、特に説明する事項の他は、図1~図5に示した第1の実施形態と同様である。 The first embodiment has been described with respect to the case where the microcomputer constituting the motor control circuit 21 is a type that does not have an RD converter. However, as shown in the second and third embodiments described below, respectively. When the microcomputer constituting the motor control circuit 21 has one or two RD converters, the following configuration can be adopted. The second and third embodiments are the same as those of the first embodiment shown in FIGS. 1 to 5 except for matters to be specifically described.
 図6に示す第2の実施形態では、モータ制御回路21を構成するマイコンがRDコンバータを1つ有する。この実施形態において、内蔵されたRDコンバータが監視用のRDコンバータ1Cとして用いられる。RDコンバータが1個内蔵されたマイコンを上記のように用いることで、この2軸型インバータ装置20の構成が簡素となる。 In the second embodiment shown in FIG. 6, the microcomputer constituting the motor control circuit 21 has one RD converter. In this embodiment, the built-in RD converter is used as the monitoring RD converter 1C. By using a microcomputer incorporating one RD converter as described above, the configuration of the two-axis inverter device 20 is simplified.
 図7に示す第3の実施形態では、モータ制御回路21を構成するマイコンがRDコンバータを2つ有する。この実施形態において、内蔵された2つのRDコンバータを通常使用のRDコンバータ1A,1Bとして用い、監視用のRDコンバータ1Cは前記マイコンに対して外付けとされる。RDコンバータが2個内蔵されたマイコンの場合、上記の構成とすることで、この2軸型インバータ装置20の構成がより簡素となる。 In the third embodiment shown in FIG. 7, the microcomputer constituting the motor control circuit 21 has two RD converters. In this embodiment, two built-in RD converters are used as RD converters 1A and 1B for normal use, and the monitoring RD converter 1C is externally attached to the microcomputer. In the case of a microcomputer incorporating two RD converters, the configuration of the two-axis inverter device 20 is further simplified by adopting the above configuration.
 なお、上記各実施形態は、2つのインバータ装置部24L,24Rが同じ筐体内に収められた2軸型インバータ装置に適用した例につき説明したが、参考例として、2つのインバータ装置部24L,24Rを含む2つで1組となるインバータ装置にも、この発明の2軸型インバータ装置と同様に適用することができる。 In addition, although each said embodiment demonstrated about the example applied to the biaxial inverter apparatus in which the two inverter apparatus parts 24L and 24R were accommodated in the same housing | casing, as a reference example, two inverter apparatus parts 24L and 24R The present invention can also be applied to a pair of inverter devices including two in the same manner as the two-axis inverter device of the present invention.
 以上のとおり、図面を参照しながら好適な実施形態を説明したが、本発明の趣旨を逸脱しない範囲内で、種々の追加、変更または削除が可能である。したがって、そのようなものも本発明の範囲内に含まれる。 As described above, the preferred embodiments have been described with reference to the drawings, but various additions, changes, or deletions can be made without departing from the spirit of the present invention. Therefore, such a thing is also included in the scope of the present invention.
1A,1B…通常使用のRDコンバータ
1C…監視用のRDコンバータ
4…モータ
20…2軸型インバータ装置
21…モータ制御回路
22…駆動回路
25…レゾルバ
28…第1の切替スイッチ(検出側の切替スイッチ)
31…第2の切替スイッチ(励磁側の切替スイッチ)
DESCRIPTION OF SYMBOLS 1A, 1B ... Normal use RD converter 1C ... Monitoring RD converter 4 ... Motor 20 ... Two-shaft type inverter device 21 ... Motor control circuit 22 ... Drive circuit 25 ... Resolver 28 ... First changeover switch (switch on detection side) switch)
31 ... Second changeover switch (excitation side changeover switch)

Claims (6)

  1.  2つの駆動回路であって、それぞれインバータを有し、2つのモータのうち対応するモータを駆動する2つの駆動回路と、
     これら駆動回路を制御するモータ制御回路と、
     2つのレゾルバであって、それぞれ、励磁信号が入力されると、前記2つのモータのうち対応するモータの回転を検出する2つのレゾルバと、
     2つの通常使用のRDコンバータであって、それぞれ、前記2つのレゾルバのうち対応するレゾルバに励磁信号を出力してこのレゾルバの検出信号をディジタル化して出力データとして前記モータ制御回路に入力する2つの通常使用のRDコンバータと、
     前記2つの通常使用のRDコンバータを監視する監視用のRDコンバータであって、前記2つのレゾルバのうち励磁側において接続されたレゾルバに励磁信号を出力し、前記2つのレゾルバのうち検出側において接続されたレゾルバの検出信号をディジタル化して出力データとして前記モータ制御回路に入力する監視用のRDコンバータと、
     前記監視用のRDコンバータの検出側に前記2つのレゾルバを切り替えて接続して、接続されたレゾルバの検出信号を前記監視用のRDコンバータに入力させる第1の切替スイッチと、
     2つの第2の切替スイッチであって、それぞれ、前記監視用のRDコンバータの励磁側を前記2つのレゾルバのうち対応するレゾルバに接続して、接続されたレゾルバに入力される励磁信号を、前記2つの通常使用のRDコンバータのうち対応する通常使用のRDコンバータが出力する励磁信号から前記監視用のRDコンバータが出力する励磁信号に切り替える2つの第2の切替スイッチとを備える2軸型インバータ装置。
    Two drive circuits, each having an inverter, and two drive circuits for driving the corresponding motors of the two motors;
    A motor control circuit for controlling these drive circuits;
    Two resolvers, each of which receives an excitation signal, two resolvers for detecting the rotation of the corresponding motor among the two motors;
    Two normally used RD converters, each of which outputs an excitation signal to a corresponding resolver among the two resolvers, digitizes the detection signal of the resolver, and inputs it to the motor control circuit as output data A normal use RD converter;
    A monitoring RD converter that monitors the two normally used RD converters, and outputs an excitation signal to a resolver connected on an excitation side of the two resolvers, and connected on a detection side of the two resolvers. A monitoring RD converter that digitizes the detected signal of the resolver and inputs it as output data to the motor control circuit;
    A first changeover switch for switching and connecting the two resolvers to the detection side of the monitoring RD converter and inputting a detection signal of the connected resolver to the monitoring RD converter;
    Two second change-over switches, each of which connects an excitation side of the monitoring RD converter to a corresponding resolver of the two resolvers, and an excitation signal input to the connected resolver, A two-axis inverter device comprising two second changeover switches for switching from an excitation signal output from a corresponding normal use RD converter to an excitation signal output from the monitoring RD converter among two normal use RD converters .
  2.  請求項1に記載の2軸型インバータ装置において、前記2つの通常使用のRDコンバータおよび前記監視用のRDコンバータは、それぞれ、前記励磁信号を生成して出力する励磁回路と、検出側において接続されたレゾルバの検出信号をディジタル化する検出回路と、この検出信号から当該RDコンバータが異常であるか否かを診断する自己診断手段とを有する2軸型インバータ装置。 2. The two-axis inverter device according to claim 1, wherein the two normally used RD converters and the monitoring RD converter are respectively connected to an excitation circuit that generates and outputs the excitation signal on a detection side. A two-shaft inverter device having a detection circuit for digitizing the detection signal of the resolver and self-diagnosis means for diagnosing whether or not the RD converter is abnormal from the detection signal.
  3.  請求項2に記載の2軸型インバータ装置において、前記モータ制御回路が、スイッチ切替部、異常判断部、および使用RDコンバータ切替部を有する逐次監視切替手段を備え、
     前記スイッチ切替部は、前記第1および第2の切替スイッチを定められた規則に従って交互に切り替え、この切り替えの組み合わせとして、前記第2の切替スイッチの一方につき、前記2つの通常使用のRDコンバータのうち対応する通常使用のRDコンバータの励磁信号が対応するレゾルバに入力される切替状態であり、かつ前記第1の切替スイッチにつき、前記通常使用のRDコンバータの励磁信号が入力されるレゾルバの検出信号が前記監視用のRDコンバータに入力される切替状態である組み合わせと、前記第2の切替スイッチの一方につき、監視用のRDコンバータの励磁信号が前記2つのレゾルバのうち対応するレゾルバに入力される切替状態であり、かつこのレゾルバの検出信号が前記2つの通常使用のRDコンバータのうち対応する通常使用のRDコンバータに入力される切替状態である組み合わせとを含み、
     前記異常判断部は、前記第1および第2の切替スイッチの各組み合わせにおいて、前記各RDコンバータの前記自己診断手段による診断の結果を用いて、前記通常使用および監視用のRDコンバータのうちのいずれのRDコンバータにおける、前記検出回路および前記励磁回路のいずれが異常であるかを判断し、
     前記使用RDコンバータ切替部は、前記異常判断部の判断に応じて、定められた規則に基づき、前記RDコンバータの診断時を除く通常の前記モータの運転時に、前記監視用のRDコンバータの前記検出回路および/または前記励磁回路を前記2つの通常使用のRDコンバータの一方の検出回路および一方または両方の前記励磁回路の代わりに使用されるように、前記スイッチ切替部による前記第1および第2の切替スイッチの切替状態の組み合わせの選択、および前記モータの運転に用いる前記検出回路の選択を行う、2軸型インバータ装置。
    The two-axis inverter device according to claim 2, wherein the motor control circuit includes a sequential monitoring switching unit having a switch switching unit, an abnormality determination unit, and a used RD converter switching unit,
    The switch changeover unit alternately switches the first and second changeover switches in accordance with a predetermined rule. As a combination of the changeovers, one of the second changeover switches has the two normally used RD converters. The detection signal of the resolver in which the excitation signal of the corresponding normal use RD converter is input to the corresponding resolver and the excitation signal of the normal use RD converter is input to the first changeover switch. Are input to the monitoring RD converter and the excitation signal of the monitoring RD converter is input to the corresponding resolver of the two resolvers for one of the second changeover switches. The resolver detection signal is in the switching state, and the resolver detection signal is one of the two normally used RD converters. And a combination is a switching state that is input to the normal use of the RD converter response,
    The abnormality determination unit uses any of the RD converters for normal use and monitoring by using a result of diagnosis by the self-diagnosis unit of each RD converter in each combination of the first and second changeover switches. In the RD converter, it is determined which of the detection circuit and the excitation circuit is abnormal,
    The used RD converter switching unit is configured to detect the monitoring RD converter during normal operation of the motor except for diagnosis of the RD converter based on a predetermined rule according to the determination of the abnormality determination unit. The first and second switches by the switch switching unit so that the circuit and / or the excitation circuit is used in place of one of the two normally used RD converters and one or both of the excitation circuits. A two-axis inverter device that selects a combination of switching states of the changeover switch and selects the detection circuit used for operating the motor.
  4.  請求項1ないし請求項3のいずれか1項に記載の2軸型インバータ装置において、前記モータ制御回路が、RDコンバータが1個内蔵されたマイコンを備え、前記内蔵されたRDコンバータが前記監視用のRDコンバータである2軸型インバータ装置。 4. The two-shaft inverter device according to claim 1, wherein the motor control circuit includes a microcomputer in which one RD converter is incorporated, and the built-in RD converter is used for the monitoring. A two-axis inverter device that is an RD converter.
  5.  請求項1ないし請求項3のいずれか1項に記載の2軸型インバータ装置において、前記モータ制御回路が、RDコンバータが2個内蔵されたマイコンを備え、これら内蔵された2つのRDコンバータが前記2つの通常使用のRDコンバータであり、前記監視用のRDコンバータが前記マイコンの外部に設けられている2軸型インバータ装置。 4. The two-shaft inverter device according to claim 1, wherein the motor control circuit includes a microcomputer in which two RD converters are built, and the two built-in RD converters are A two-axis inverter device, which is two normally used RD converters, wherein the monitoring RD converter is provided outside the microcomputer.
  6.  請求項1ないし請求項5のいずれか1項に記載の2軸型インバータ装置において、前記2台のモータが電気自動車における左右の車輪をそれぞれ駆動するモータである2軸型インバータ装置。 6. The two-shaft inverter device according to claim 1, wherein the two motors are motors respectively driving left and right wheels of an electric vehicle.
PCT/JP2017/034172 2016-09-23 2017-09-21 Biaxial inverter device WO2018056381A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016185808A JP6755763B2 (en) 2016-09-23 2016-09-23 2-axis inverter device
JP2016-185808 2016-09-23

Publications (1)

Publication Number Publication Date
WO2018056381A1 true WO2018056381A1 (en) 2018-03-29

Family

ID=61689936

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/034172 WO2018056381A1 (en) 2016-09-23 2017-09-21 Biaxial inverter device

Country Status (2)

Country Link
JP (1) JP6755763B2 (en)
WO (1) WO2018056381A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6927053B2 (en) * 2018-01-15 2021-08-25 トヨタ自動車株式会社 Rotation angle detector

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0972758A (en) * 1995-09-08 1997-03-18 Toyota Motor Corp Abnormality detector and detection method for resolver
JP2003032805A (en) * 2001-07-06 2003-01-31 Toyota Motor Corp Controlling device and power outputting device, hybrid vehicle provided therewith, controlling device controlling method, and power outputting device controlling method
JP2009248707A (en) * 2008-04-04 2009-10-29 Toyota Motor Corp Rotary electrical machine control system
JP2011205823A (en) * 2010-03-26 2011-10-13 Ntn Corp Controller apparatus for electric vehicle
JP2013255358A (en) * 2012-06-07 2013-12-19 Jtekt Corp Traveling device for vehicle
JP2016052164A (en) * 2014-08-29 2016-04-11 Ntn株式会社 Drive control device of wheel independent drive type vehicle

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0972758A (en) * 1995-09-08 1997-03-18 Toyota Motor Corp Abnormality detector and detection method for resolver
JP2003032805A (en) * 2001-07-06 2003-01-31 Toyota Motor Corp Controlling device and power outputting device, hybrid vehicle provided therewith, controlling device controlling method, and power outputting device controlling method
JP2009248707A (en) * 2008-04-04 2009-10-29 Toyota Motor Corp Rotary electrical machine control system
JP2011205823A (en) * 2010-03-26 2011-10-13 Ntn Corp Controller apparatus for electric vehicle
JP2013255358A (en) * 2012-06-07 2013-12-19 Jtekt Corp Traveling device for vehicle
JP2016052164A (en) * 2014-08-29 2016-04-11 Ntn株式会社 Drive control device of wheel independent drive type vehicle

Also Published As

Publication number Publication date
JP2018050431A (en) 2018-03-29
JP6755763B2 (en) 2020-09-16

Similar Documents

Publication Publication Date Title
US9759582B2 (en) Motor rotational angle detection device and electric power steering device using motor rotational angle detection device
JP6926504B2 (en) Rotation detector
EP2684731B1 (en) Diagnostic method for motor
JP6683152B2 (en) Abnormality diagnosis device
US9020704B2 (en) Electronic control apparatus
JP6979767B2 (en) Motor drive and electric power steering
CN108886336B (en) Motor actuator and power steering apparatus using the same
US11136064B2 (en) Rotation detection device and steering system
CN110417314B (en) Motor control device and electric power steering device
CN111746637B (en) Detection unit
JP2004064844A (en) Steering control system for vehicle
US20230093616A1 (en) Rotation angle detection device
US9932067B2 (en) Electric power steering apparatus
US11183963B2 (en) Abnormality detection device
JP2017017910A (en) Driver of three-phase synchronous motor
WO2018056381A1 (en) Biaxial inverter device
EP3957961A1 (en) Redundant sensor device and method for determining abnormality in redundant sensor device
WO2018056380A1 (en) Biaxial inverter device, and sequential monitoring change-over method
WO2019131609A1 (en) Inverter abnormality diagnosis device, inverter device, and electric vehicle including inverter device mounted thereon
JP7100976B2 (en) Inverter abnormality diagnosis device, inverter device and electric vehicle equipped with this inverter device
JP6816329B1 (en) Detection device, steering device
JPH06305429A (en) Motor-driven power steering
JP2019170155A (en) Three-phase synchronous motor control device and drive device, and electric power steering device
JP2005041278A (en) Electric power steering device
JP2022077287A (en) Electronic control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17853149

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17853149

Country of ref document: EP

Kind code of ref document: A1