WO2018056162A1 - Lipase activity measuremnet method and reagent, and substrate solution for use in measurement of activity of lipase - Google Patents

Lipase activity measuremnet method and reagent, and substrate solution for use in measurement of activity of lipase Download PDF

Info

Publication number
WO2018056162A1
WO2018056162A1 PCT/JP2017/033234 JP2017033234W WO2018056162A1 WO 2018056162 A1 WO2018056162 A1 WO 2018056162A1 JP 2017033234 W JP2017033234 W JP 2017033234W WO 2018056162 A1 WO2018056162 A1 WO 2018056162A1
Authority
WO
WIPO (PCT)
Prior art keywords
lipase activity
reagent
lipase
dggmr
mixing
Prior art date
Application number
PCT/JP2017/033234
Other languages
French (fr)
Japanese (ja)
Inventor
直美 飯塚
篤 引地
Original Assignee
株式会社シノテスト
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社シノテスト filed Critical 株式会社シノテスト
Priority to JP2018541010A priority Critical patent/JP6947409B2/en
Publication of WO2018056162A1 publication Critical patent/WO2018056162A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/34Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving hydrolase
    • C12Q1/44Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving hydrolase involving esterase

Definitions

  • the present invention relates to a lipase activity measurement substrate solution, a lipase activity measurement reagent, and a lipase activity measurement method that can suppress the influence of azide on the lipase activity measurement.
  • the present invention also relates to a method capable of suppressing the influence of azide on lipase activity measurement.
  • the present invention is useful in life science fields such as clinical tests and chemical fields such as analytical chemistry.
  • lipase activity in serum or plasma increases in pancreatic diseases such as acute pancreatitis, chronic pancreatitis or pancreatic cancer, it is useful as a marker for these pancreatitis and the like.
  • This lipase hydrolyzes the ester bond at the ⁇ -position (position 1 and position 3) of triglyceride (TG), in which three molecules of long-chain fatty acids are ester-bonded to glycerol, to thereby yield two molecules of fatty acid and one molecule of ⁇ -.
  • TG triglyceride
  • This molecule of ⁇ -monoglyceride is isomerized into ⁇ -form, which is hydrolyzed to glycerol and fatty acid by the action of lipase.
  • Non-Patent Document 1 and Non-Patent Document 2 The following methods have been known as methods for measuring lipase activity in serum or plasma (see Non-Patent Document 1 and Non-Patent Document 2).
  • an olive oil emulsion is used as a lipase substrate, this olive oil emulsion is brought into contact with a serum sample and the like, reacted at 37 ° C. for 24 hours, and then the fatty acid produced by the hydrolysis reaction with lipase is titrated with alkali. Crandall's method was known. However, this method is a method in which the reaction time is long and the inactivation of the lipase to be measured and the reaction inhibition are remarkable.
  • the emulsion of triolein or olive oil is used as a lipase substrate, and the emulsion of triolein or olive oil is brought into contact with a serum sample and reacted to cause turbidity of the reaction solution caused by the hydrolysis reaction of the emulsion micelle by lipase.
  • the Vogel-Zieve method for measuring lipase activity from a decrease in degree and this variant were known. However, these methods are disadvantageous in that it is difficult to produce a uniform and stable emulsion due to inhibition by serum proteins and interference of aggregates due to rheumatoid factors, and poor reproducibility.
  • BALB 2,3-dimercapto-1-propanol tributyric acid
  • BALB is used as a lipase substrate, and this BALB is brought into contact with a serum sample or the like and reacted to produce BAL (2,3 produced by a hydrolysis reaction with lipase).
  • a method for measuring lipase activity by reacting -dimercapto-1-propanol) with DTNB (5,5'-dithiobis-2-nitrobenzoic acid) and measuring the yellow color of the resulting TNB anion at 412 nm. It was known.
  • this method is subject to interference in the presence of a high concentration of liver esterase, it is affected by the liver esterase mixed in from the measurement reagent of other measurement items via the reaction cell or nozzle (probe).
  • This method has a disadvantage that an error occurs in the measured value.
  • 1,2-dilinoleoylglycerol which is a natural substrate, is used as a lipase substrate, and this 1,2-dilinoleoylglycerol is brought into contact with a serum sample and reacted to produce a lipase hydrolysis reaction.
  • Linoleic acid is a cofactor of acyl-CoA synthetase, acyl-CoA oxidase, enoyl-CoA hydratase-3-hydroxyacyl-CoA dehydrogenase-3-ketoacyl-CoA thiolase complex enzyme in the presence of coenzyme A, NAD + and ATP
  • a method for measuring lipase activity by measuring the rate of formation of NADH that occurs upon undergoing ⁇ -oxidation by action.
  • this method is also subject to interference in the presence of a high concentration of liver esterase, and is therefore affected by liver esterase mixed from the measurement reagent of other measurement items via the reaction cell or nozzle (probe).
  • This method has a disadvantage that an error occurs in the measured value.
  • 1,2-o-dilauryl-rac-glycero-3-glutaric acid- (6′-methylresorufin) -ester [hereinafter sometimes referred to as “DGGMR”] was added to lipase
  • DGGMR 1,2-o-dilauryl-rac-glycero-3-glutaric acid- (6′-methylresorufin) -ester
  • the catalyzed hydrolysis reaction produces 1,2-o-dilauryl-rac-glycerol and glutaric acid- (6′-methylresorufin) -ester.
  • This glutaric acid- (6′-methylresorufin) -ester is unstable and readily hydrolyzes to yield 6′-methylresorufin ( ⁇ max: 580 nm).
  • the increase in 6′-methylresorufin produced is measured by measuring the absorbance at a wavelength of 580 nm or in the vicinity thereof, and the activity value of lipase contained in the sample can be determined.
  • This method of measuring lipase activity using DGGMR as a lipase substrate is a simple method in which the measurement proceeds in a series of reactions, and the influence of esterase mixed in from other measurement reagents via a reaction cell or nozzle (probe) is considered. This method has the advantage of being difficult to receive.
  • lipase contained in serum or plasma acts most efficiently at the water / oil interface of the emulsified triglyceride substrate, and the reaction rate of this lipase is related to the surface area of the dispersed substrate.
  • Preparation of a substrate composed of stable and uniform micelle particles is considered to be important for activity measurement (see Non-Patent Document 2). Therefore, conventionally, when producing a substrate solution for use in measuring lipase activity (substrate solution for measuring lipase activity), it becomes an emulsified (emulsified) substrate solution composed of stable and uniform micelle particles.
  • the substrate is mixed with an aqueous solution containing a surfactant, the substrate is mixed with a solution containing an organic solvent such as alcohol, or the substrate-containing solution is dropped dropwise. It is cumbersome or skillful, such as mixing into a solution, spraying and injecting a substrate-containing solution into the solution, stirring the substrate solution at a high speed with a powerful mixer, or applying ultrasonic waves to the substrate solution. Special treatment such as, or the like, or a special device or instrument.
  • a solution containing a substrate for measuring lipase activity is generally unstable and has a problem in its storage stability. For this reason, various attempts have been made for the purpose of improving the storage stability of a solution containing a substrate for measuring lipase activity.
  • a non-water-soluble substance such as triglyceride as a lipase substrate
  • a non-ionic surfactant heat it with stirring, and once raise it to a temperature higher than the cloud point of the non-ionic surfactant.
  • a method for producing a transparent solubilized aqueous solution of a water-insoluble substance, which is cooled to below the cloud point while continuing to stir, enables the solubilization of a water-insoluble substance, which has been difficult in the past, and is obtained.
  • the solubilized aqueous solution was disclosed as having the effect of being extremely stable (see Patent Document 2).
  • a diglyceride solution for measuring lipase activity comprising a low-concentration pH buffer solution and a nonionic surfactant such as a polyoxyethylene alkylphenyl ether-based nonionic surfactant has long-term storage stability. It was disclosed as having an effect that it is possible to provide an aqueous solution of diglyceride having excellent properties (see Patent Document 3).
  • compositions for measuring plant-derived and / or microorganism-derived lipase activity comprising using, as a substrate, diglyceride dissolved in at least a nonionic surfactant such as a polyoxyethylene alkylphenyl ether-based nonionic surfactant
  • a nonionic surfactant such as a polyoxyethylene alkylphenyl ether-based nonionic surfactant
  • a lipase substrate solution for enzyme activity measurement, etc. solubilized with 1,2-diphthalanoyl-sn-glycero-3-phosphocholine, a novel lipase substrate solubilizing agent, with respect to the lipase substrate composed of the above DGGMR, It was disclosed that the storage stability is large and that the high transparency of the solution can be maintained over a long period of time (see Patent Document 5).
  • a mixture is prepared by mixing the lipase substrate composed of the above DGGMR and a side chain type non-reactive polyether-modified type modified silicone oil or polyoxyethylene / polyoxypropylene condensate. It was disclosed as a method for producing a solution for measuring lipase activity, comprising a step of mixing a part with water or an aqueous solution (see Patent Document 6).
  • Reagents are often unstable and often deteriorate during storage and become unusable.
  • the deterioration of the reagent is significant due to various factors caused by the opened state.
  • the present inventors have vaporized, as hydrogen azide, azide such as sodium azide contained as a preservative in other clinical test reagents in the vicinity of the reagent container of the automatic analyzer.
  • azide such as sodium azide contained as a preservative in other clinical test reagents in the vicinity of the reagent container of the automatic analyzer.
  • the DGGMR contained in the lipase activity measurement substrate solution deteriorates and the absorbance value obtained by measuring the lipase activity value in the sample. was found to decrease over time.
  • the inventors of the present invention use an autoanalyzer for measuring lipase activity in which azide contained in a reagent adheres to a reagent probe (reagent sampling port) of the autoanalyzer, and this reagent probe is the next reagent.
  • a substrate solution containing DGGMR as a lipase activity measurement substrate
  • the azide adhering to the reagent probe is mixed in the lipase activity measurement substrate solution, and the DGGMR contained in the lipase activity measurement substrate solution It was found that the absorbance value obtained by measuring the lipase activity value in the sample was lowered.
  • the conventional lipase activity measurement substrate solution containing DGGMR as a lipase activity measurement substrate deteriorates DGGMR by mixing with azide contained in other clinical laboratory reagents, and is obtained by measurement. As a result, the absorbance value was decreased.
  • the problem of the present invention is to prevent the degradation of DGGMR in a lipase activity measurement substrate solution containing DGGMR as a lipase activity measurement substrate, even if azide is mixed, and to obtain an absorbance value obtained by measurement. It is to provide a lipase activity measurement substrate solution capable of suppressing the decrease.
  • Another object of the present invention is to prevent degradation of DGGMR and suppress a decrease in absorbance value obtained by measurement even if azide is mixed in a lipase activity measurement reagent containing DGGMR as a lipase activity measurement substrate. It is to provide a reagent for measuring lipase activity capable of
  • Another object of the present invention is to provide a lipase activity measurement method using a lipase activity measurement substrate solution containing DGGMR as a lipase activity measurement substrate, even if azide is mixed therein, preventing deterioration of DGGMR and obtaining it by measurement. It is providing the lipase activity measuring method which can suppress the fall of the light absorbency value produced.
  • the object of the present invention is to prevent degradation of DGGMR and suppress a decrease in absorbance value obtained by measurement even when azide is mixed in lipase activity measurement using DGGMR as a substrate for lipase activity measurement. It is providing the suppression method of the influence of the azide which can be performed.
  • the inventors of the present invention have studied the lipase activity measurement substrate solution, the lipase activity measurement reagent, the lipase activity measurement method, and the method for suppressing the influence of azide, which contain DGGMR as a lipase activity measurement substrate. It has been found that the above problem can be solved by including a reducing agent together with DGGMR in the substrate solution, and the present invention has been completed.
  • the gist of the present invention is as follows. (1) Substrate solution for lipase activity measurement containing 1,2-o-dilauryl-rac-glycero-3-glutaric acid- (6′-methylresorufin) -ester as a lipase activity measurement substrate, containing a reducing agent A substrate solution for measuring a lipase activity. (2) A lipase activity measurement reagent comprising the lipase activity measurement substrate solution according to (1).
  • Lipase activity measurement using a lipase activity measurement substrate solution containing 1,2-o-dilauryl-rac-glycero-3-glutaric acid- (6′-methylresorufin) -ester as a lipase activity measurement substrate A method for measuring lipase activity, characterized in that a reducing agent is contained in a substrate solution for measuring lipase activity.
  • a reducing agent is contained in a lipase activity measurement substrate solution containing 1,2-o-dilauryl-rac-glycero-3-glutaric acid- (6′-methylresorufin) -ester as a lipase activity measurement substrate.
  • the substrate solution for measuring lipase activity of the present invention is a substrate solution for measuring lipase activity capable of preventing the degradation of DGGMR due to the mixed azide and suppressing the decrease in the absorbance value obtained by the measurement.
  • the reagent for measuring lipase activity of the present invention is a reagent for measuring lipase activity capable of preventing the degradation of DGGMR due to a mixed azide and suppressing the decrease in the absorbance value obtained by the measurement.
  • the lipase activity measuring method of the present invention is a lipase activity measuring method capable of preventing the degradation of DGGMR due to the mixed azide and suppressing the decrease in the absorbance value obtained by the measurement.
  • the method for suppressing the influence of an azide according to the present invention is a method for suppressing the influence of an azide that can prevent the degradation of DGGMR due to a mixed azide and suppress a decrease in the absorbance value obtained by the measurement.
  • Substrate solution for measuring lipase activity of the present invention General 1.
  • Substrate solution for lipase activity measurement The substrate solution for lipase activity measurement of the present invention comprises 1,2-o-dilauryl-rac-glycero-3-glutaric acid- (6′-methylresorufin) -ester [DGGMR] lipase activity.
  • the lipase activity measurement substrate solution contained as the measurement substrate contains a reducing agent.
  • the substrate solution for lipase activity measurement of the present invention can prevent the degradation of DGGMR due to the mixed azide and suppress the decrease in the absorbance value obtained by the measurement by the above-mentioned constitution.
  • the lipase is not particularly limited as long as it has an activity as a lipase, that is, a lipase activity.
  • the lipase for example, two molecules of fatty acid are obtained by hydrolyzing the ester bond at the ⁇ -position (position 1 and position 3) of triglyceride (TG) in which three molecules of long-chain fatty acid are ester-bonded to glycerol.
  • pancreatic lipase [EC 3.1.1.3], which catalyzes a reaction for producing one molecule of ⁇ -monoglyceride.
  • the present invention is suitable for measuring the activity of lipase present in body fluid, organ or tissue, more suitable for measuring the activity of lipase present in body fluid, and more suitable for measuring the activity of lipase present in blood, serum or plasma. And is particularly suitable for measuring the activity of lipase present in serum or plasma.
  • the present invention is also suitable for measuring pancreatic lipase activity.
  • the lipase activity measurement substrate solution of the present invention comprises 1,2-o-dilauryl-rac-glycero-3-glutaric acid- (6′-methylresorufin) -ester and a surfactant. It is preferable that the emulsion solution is composed of micelle particles and contains a reducing agent.
  • an emulsion solution composed of micelle particles composed of DGGMR and a surfactant and containing a reducing agent will be described below.
  • the emulsion solution in the present invention is a DGGMR, a surfactant, and a reducing agent as described later. It may contain things other than the agent.
  • a lipase substrate for use in measuring the activity of lipase contained in a sample that is, a substrate for measuring lipase activity is 1,2-o-dilauryl-rac- Glycero-3-glutaric acid- (6′-methylresorufin) -ester [DGGMR].
  • DGGMR which is a substrate for measuring lipase activity
  • DGGMR which is a substrate for measuring lipase activity
  • 1,2-o-dilauryl-- is obtained from DGGMR by a hydrolysis reaction catalyzed by the lipase.
  • rac-glycerol and glutaric acid- (6′-methylresorufin) -ester are formed.
  • This glutaric acid- (6′-methylresorufin) -ester is unstable and readily hydrolyzes to yield 6′-methylresorufin ( ⁇ max: 580 nm).
  • the increase in 6′-methylresorufin produced can be measured by measuring the absorbance at a wavelength of 580 nm or in the vicinity thereof, and the activity value of lipase contained in the sample can be determined.
  • DGGMR is commercially available from Roche Diagnostics Inc. [Japan] or Sigma Aldrich Japan LLC [Japan].
  • the concentration of DGGMR in the substrate solution for measuring lipase activity of the present invention, and the concentration of DGGMR in the substrate solution for measuring lipase activity of the present invention is 0.05 mM or more.
  • the emulsion solution is preferably composed of stable and uniform micelle particles.
  • the concentration of DGGMR in the lipase activity measurement substrate solution of the present invention is more preferably 0.1 mM or more, particularly preferably 0.2 mM or more, for the purpose described above.
  • the concentration of DGGMR contained in the lipase activity measurement substrate solution of the present invention is preferably 2 mM or less for the above purpose.
  • the concentration of DGGMR in the lipase activity measurement substrate solution of the present invention is more preferably 1 mM or less, and particularly preferably 0.8 mM or less, for the purpose described above.
  • the lipase activity measurement substrate solution of the present invention is characterized in that the lipase activity measurement substrate solution containing DGGMR as the lipase activity measurement substrate contains a reducing agent.
  • the substrate solution for lipase activity measurement of the present invention can prevent the degradation of DGGMR due to the mixed azide, and can suppress the decrease in the absorbance value obtained by the measurement.
  • the substrate solution for measuring lipase activity according to the present invention is an emulsion solution composed of micelle particles composed of DGGMR and a surfactant, and preferably contains a reducing agent.
  • the reducing agent in the present invention is not particularly limited as long as it has a reducing ability.
  • Examples of the reducing agent include hydroxylammonium salts and thiol compounds.
  • hydroxyl ammonium salt examples include hydroxyl ammonium chloride, hydroxyl ammonium nitrate, and hydroxyl ammonium sulfate.
  • examples of the thiol compound include dithiothreitol (DTT), N-acetyl-L-cysteine (NAC), thioglycerol, reduced glutathione, cysteine, dithioerythritol, bromide 2 -SH groups such as aminoethylisothiouronium, 2-thioglucose, thioglycolic acid, 2-mercaptoethanol, N-guanyl-L-cysteine, mercaptoacetic acid, mercaptosuccinic acid, 2-mercaptoethanesulfonic acid, or cysteamine
  • DTT dithiothreitol
  • NAC N-acetyl-L-cysteine
  • thioglycerol reduced glutathione
  • cysteine dithioerythritol
  • bromide 2 -SH groups such as aminoethylisothiouronium, 2-thioglucose, thioglycoli
  • concentration of the reducing agent in the lipase activity measurement substrate solution of the present invention is not particularly limited, but is preferably 0.01 mM or more.
  • the lower limit of the preferred concentration of the reducing agent is more preferably 0.1 mM or more, and particularly preferably 0.5 mM or more.
  • the concentration of the reducing agent is not particularly limited, but up to 100 mM is sufficient considering the cost and the like.
  • the lower limit of the preferred concentration of the reducing agent is more preferably 10 mM or less, and particularly preferably 5 mM or less.
  • the reducing agent may be one type or a plurality of types.
  • the reducing agent is preferably a hydroxylammonium salt, particularly preferably hydroxylammonium chloride.
  • the substrate solution for lipase activity measurement of the present invention is an emulsion solution composed of micelle particles composed of DGGMR and a surfactant, and contains a reducing agent. preferable.
  • this surfactant examples include nonionic surfactants, amphoteric surfactants, anionic surfactants, and cationic surfactants.
  • nonionic surfactant examples include a side chain type non-reactive polyether-modified type modified silicone oil or a polyoxyethylene / polyoxypropylene condensate.
  • the surfactant is preferably a nonionic surfactant.
  • a nonionic surfactant a side chain type non-reactive polyether-modified type modified silicone oil or a polyoxyethylene / polyoxypropylene condensate is preferable.
  • a type of modified silicone oil is particularly preferred.
  • a substrate solution for measuring lipase activity which is an emulsion solution composed of micelle particles composed of DGGMR and a surfactant, and contains a reducing agent, that is, an emulsion solution comprising DGGMR, a surfactant, and a reducing agent. It contains an agent.
  • the silicone compound is a polymer compound in which a siloxane bond [—Si—O—Si—] is a main chain and an organic group such as a methyl group [CH 3 —] is bonded to a silicon atom as a side chain.
  • the linear silicone compound is silicone oil.
  • the modified silicone oil is composed of a part of silicon atoms of a linear dimethyl silicone compound [Si (CH 3 ) 3 —O— [Si (CH 3 ) 2 —O—] m—Si (CH 3 ) 3 ]. It is a compound in which an organic group is introduced.
  • This modified silicone oil includes various kinds of organic compounds on a part of polysiloxane side chain, one end of polysiloxane, both ends of polysiloxane, or part of polysiloxane side chain and both ends. There are silicone oils with introduced groups.
  • a silicone oil in which various organic groups are introduced into a part of the side chain of polysiloxane is a side chain type modified silicone oil [Si (CH 3 ) 3 —O— [Si (CH 3 ) 2 —O—. ] M- [Si (CH 3 ) (organic group) -O-] n-Si (CH 3 ) 3 ].
  • the modified silicone oil is classified into a reactive silicone oil and a non-reactive silicone oil depending on the nature of the organic group to be introduced.
  • non-reactive modified silicone oil polyether modified type, aralkyl modified type, fluoroalkyl modified type, long chain alkyl modified type, higher fatty acid ester modified type, higher fatty acid amide modified type, depending on the introduced organic group
  • polyether / long-chain alkyl / aralkyl-modified type, long-chain alkyl / aralkyl-modified type, and phenyl-modified type as non-reactive modified silicone oil, polyether modified type, aralkyl modified type, fluoroalkyl modified type, long chain alkyl modified type, higher fatty acid ester modified type, higher fatty acid amide modified type, depending on the introduced organic group
  • polyether / long-chain alkyl / aralkyl-modified type, long-chain alkyl / aralkyl-modified type, and phenyl-modified type as non-reactive modified silicone oil.
  • a side-chain non-reactive modified silicone oil [Si (CH 3 ) 3 —O— [Si (CH 3 ) 2 —O—] m- [Si (CH 3 ) (organic group) —O—] n-Si (CH 3 ) 3 ] is, for example, a polyether-modified type [organic group: —R (C 2 H 4 O) a (C 3 H 6 O) b R ′] , Polyether, long chain alkyl, aralkyl-modified type [organic group: —R (C 2 H 4 O) a (C 3 H 6 O) b R ′, —C a H 2a + 1 , —CH 2 —CH ( CH 3 ) —C 6 H 5 ], aralkyl-modified type [organic group: —CH 2 —CH (CH 3 ) —C 6 H 5 ], fluoroalkyl-modified type [organic group: —CH 2 CH
  • this side-chain non-reactive polyether-modified type modified silicone oil [Si (CH 3 ) 3 —O— [Si (CH 3 ) 2 —O—] m- [Si (CH 3 ) (Organic group) -O-] n-Si (CH 3 ) 3 ] [organic group: —R (C 2 H 4 O) a (C 3 H 6 O) b R ′] is preferably used.
  • polyoxyethylene-polyoxypropylene condensate [HO (C 2 H 4 O) a- (C 3 H 6 O) b- (C 2 H 4 O) c H is used as a nonionic surfactant. Can be mentioned.
  • this polyoxyethylene-polyoxypropylene condensate (this POE / POP condensate), for example, polyoxyethylene (16) polyoxypropylene glycol (17) [quasi-drug raw material standard name: polyoxyethylene polyoxy Propylene glycol (16E.O.) (17P.O.)], or polyoxyethylene (20) polyoxypropylene glycol (20) [quasi-drug raw material standard name: polyoxyethylene polyoxypropylene glycol (20E.O.) .) (20P.O.)] and the like.
  • polyoxyethylene (16) polyoxypropylene glycol (17) [quasi-drug raw material standard name: polyoxyethylene polyoxy Propylene glycol (16E.O.) (17P.O.)
  • polyoxyethylene (20) polyoxypropylene glycol (20) [quasi-drug raw material standard name: polyoxyethylene polyoxypropylene glycol (20E.O.) .) (20P.O.)] and the like.
  • Examples of the POE / POP condensate include polyoxyethylene (16) polyoxypropylene glycol (17) [product name: “Pluronic L-34”, distributor: ADEKA (Japan)], or poly Oxyethylene (20) polyoxypropylene glycol (20) [Product name: “Pluronic L-44”, distributor: ADEKA Corporation (Japan)], etc. are commercially available.
  • the concentration of the surfactant is 0. It is preferable that it is 01% (w / v) or more for preparing an emulsion solution composed of stable and uniform micelle particles.
  • the concentration of the surfactant in the substrate solution for measuring lipase activity is more preferably 0.05% (w / v) or more, particularly preferably 0.1% (w / v) for the above purpose. v) Above.
  • the concentration of the surfactant contained in the lipase activity measurement substrate solution is preferably 20% (w / v) or less for the purpose described above.
  • the concentration of the surfactant in the substrate solution for measuring lipase activity is more preferably 10% (w / v) or less, particularly preferably 5% (w / v) or less, for the above purpose. is there.
  • Lipase Activator (1) Lipase Activator
  • the lipase activator substrate solution of the present invention may contain a lipase activator.
  • the lipase activator is not particularly limited as long as it is a substance capable of activating lipase, and examples thereof include bile acids or salts thereof.
  • bile acids examples include deoxycholic acid, taurodeoxycholic acid, glycodeoxycholic acid, cholic acid, lithocholic acid, glycocholic acid, taurocholic acid, chenodeoxycholic acid, ursodeoxycholic acid, 7-oxolithocholic acid, 12 -Oxolithocholic acid, 12-oxochenodeoxycholic acid, 7-oxodeoxycholic acid, hyocholic acid, hyodeoxycholic acid, dehydrocholic acid, or cholic acid derivatives.
  • Examples of the bile acid salt include salts of bile acids and alkali metals or alkaline earth metals, ammonium salts, and the like.
  • Examples of the alkali metal include potassium, sodium, and lithium, and examples of the alkaline earth metal include magnesium and calcium.
  • bile acid or a salt thereof is preferable from the viewpoint of the ability to activate the lipase, the ability to form an interface composed of a substrate for measuring lipase activity, water solubility, and cost.
  • taurodeoxycholic acid is preferable in that DGGMR as a lipase activity measurement substrate can be dissolved in a stable acidic region, and deoxycholic acid is preferable from the viewpoint of cost.
  • this bile acid taurodeoxycholic acid is particularly preferable.
  • the bile acid salt is preferably a bile acid and alkali metal salt, more preferably a bile acid potassium salt or sodium salt, and particularly preferably a bile acid sodium salt.
  • the salt of bile acid is preferably a salt of an alkali metal (such as potassium or sodium) of deoxycholic acid or taurodeoxycholic acid, more preferably a salt of an alkali metal (such as potassium or sodium) of taurodeoxycholic acid,
  • an alkali metal such as potassium or sodium
  • taurodeoxycholic acid is particularly preferred.
  • the lipase activator preferably has a concentration of 0.2% (w / v) or more.
  • the preferred concentration of the lipase activator is more preferably 0.4% (w / v) or more, particularly preferably 1% (w / v) or more. It is.
  • the concentration of the lipase activator is preferably 20% (w / v) or less in the lipase activity measurement substrate solution of the present invention.
  • the preferred concentration of the lipase activator is more preferably 10% (w / v) or less, particularly preferably 5% (w / v) or less. .
  • Lipase Activator (1) Lipase Activator
  • the lipase activity measuring substrate solution of the present invention may contain a lipase activator.
  • the lipase activator is not particularly limited as long as it is a substance capable of activating lipase, and examples thereof include alkaline earth metal ions or salts thereof.
  • alkaline earth metal ion or salt thereof examples include beryllium ion or beryllium salt, magnesium ion or magnesium salt, or calcium ion or calcium salt.
  • Examples of the calcium salt include a water-soluble calcium salt, and more specifically, a salt made of a monovalent or divalent anion and calcium ion and water-soluble. Can be mentioned.
  • anion examples include halogen ions, acid groups made of organic compounds, and acid groups made of other inorganic compounds.
  • halogen ion a fluorine ion, a chlorine ion, etc. can be mentioned, for example.
  • Examples of the acid group made of an organic compound include acetate ion, citrate ion, or gluconate ion.
  • Examples of acid groups made of other inorganic compounds include sulfate ions, phosphate ions, or carbonate ions.
  • the lipase activator is preferably an alkaline earth metal ion or a salt thereof.
  • a calcium ion or a calcium salt is preferable from the point of following (i) and (ii).
  • Fatty acid liberated from the lipase activity measurement substrate by being catalyzed by lipase breaks the interface comprising the lipase activity measurement substrate, but calcium ions or calcium salts capture the liberated fatty acid, and the interface Can be prevented from breaking.
  • the salt which consists of an anion and calcium ion and is water-soluble is preferable.
  • the acid group which consists of a halogen ion or an organic compound is preferable. More specifically, chlorine ion or acetate ion is particularly preferable.
  • the calcium salt a calcium salt of a halogen ion or an acid group consisting of an organic compound is preferable, and more specifically, calcium chloride or calcium acetate is particularly preferable.
  • the lipase activator preferably has a concentration of 0.1 mM or more.
  • the preferred concentration of the lipase activator is more preferably 1 mM or more, and particularly preferably 5 mM or more.
  • the concentration of the lipase activator is preferably 100 mM or less in the lipase activity measurement substrate solution of the present invention.
  • the preferred concentration of this lipase activator is more preferably 50 mM or less, and particularly preferably 25 mM or less.
  • Colipase (1) Colipase
  • the substrate solution for measuring lipase activity of the present invention may contain colipase.
  • the colipase is not particularly limited as long as it has the action, function, or activity of colipase.
  • human or a mammal-derived colipase such as pig or genetic engineering is used.
  • colipase prepared, modified or modified.
  • a colipase derived from a mammal such as a pig is preferable, and a colipase derived from a pancreas of a mammal such as a pig is more preferable.
  • the activity value of the colipase is preferably 15K units / L (15K Unit / L) or more.
  • the preferable activity value of this colipase is more preferably 150 K units / L or more, and particularly preferably 750 K units / L or more.
  • the activity value of this colipase is preferably 7,500 K units / L or less in the lipase activity measurement substrate solution of the present invention.
  • the preferred activity value of this colipase is more preferably 3,750 K units / L or less, and particularly preferably 2,250 K units / L or less.
  • Colipase is commercially available from Roche Diagnostics Inc. [Japan] or Sigma Aldrich Japan LLC [Japan].
  • the substrate solution for measuring lipase activity of the present invention may contain water. That is, the lipase activity measurement substrate solution of the present invention may be an aqueous solution or an aqueous suspension.
  • the water to be contained in the lipase activity measurement substrate solution of the present invention is not particularly limited, and examples thereof include pure water, distilled water, and purified water.
  • pH DGGMR as a substrate for measuring lipase activity in the present invention is stable at pH 4 or in the vicinity thereof. Therefore, in the substrate solution for measuring lipase activity of the present invention, the pH is preferably within a certain range centered on pH 4.
  • the substrate solution for measuring lipase activity of the present invention is preferably in the range of pH 2 to pH 7, more preferably in the range of pH 3 to pH 5, from the viewpoint of the stability of DGGMR.
  • the pH is in the range of 3.5 to 4.5. (The above pH values are all values at 20 ° C.)
  • Buffering agent (1) Buffering agent
  • the substrate solution for lipase activity measurement of the present invention may contain a buffering agent.
  • the buffer having a buffer capacity in the pH range described in 9 is used for measuring the lipase activity of the present invention. You may make it contain suitably in a substrate solution.
  • the buffer that can be contained in the lipase activity measurement substrate solution of the present invention is not particularly limited, and examples thereof include organic acids such as tartaric acid, succinic acid, malonic acid, and citric acid, or glycine or phosphoric acid. Or these salts etc. can be mentioned.
  • the concentration of the buffering agent contained in the lipase activity measurement substrate solution of the present invention is not particularly limited, and can exhibit a buffering ability within a set pH range. Any concentration is acceptable.
  • the concentration of this buffer is preferably 5 mM or more, more preferably 10 mM or more, and particularly preferably 30 mM or more.
  • the concentration of the buffer is preferably 500 mM or less, more preferably 100 mM or less, and particularly preferably 50 mM or less in the substrate solution for measuring lipase activity of the present invention.
  • the lipase activity measurement substrate solution containing the lipase activity measurement substrate [DGGMR] has a micelle diameter (micelle particle diameter) in the range of 60 to 1,500 nm
  • the reaction with the lipase The speed is high, the emulsion is stable, and the substrate solution for measuring lipase activity can be stored and used for a long period of time.
  • the lipase activity measurement substrate solution preferably has a micelle diameter (micelle particle diameter) of the emulsion in the range of 70 to 1,000 nm, more preferably in the range of 80 to 600 nm, and The range of 100 to 200 nm is particularly preferable.
  • the method for producing a lipase activity measurement substrate solution of the present invention is characterized in that the above-mentioned “lipase activity measurement substrate solution containing DGGMR as a lipase activity measurement substrate contains a reducing agent. There is no particular limitation as long as it is a method capable of producing the lipase activity measurement substrate solution of the present invention having the configuration of “measurement substrate solution”.
  • the method etc. which consist of the process of following (a) and (b) can be mentioned, for example.
  • the “method comprising the following steps (a) and (b)” means “including a method comprising the following steps (a) and (b)”. is there.
  • the method comprising the steps (a) and (b) is for measuring the lipase activity of the present invention without requiring special treatment such as complicated or skillful need, or special equipment or instruments. Since a substrate solution can be manufactured, it is preferable.
  • (B) A step of mixing all or part of the mixture of (a) with water or an aqueous solution.
  • step (a) in 1 above that is, “step of mixing DGGMR and surfactant to prepare a mixture” will be described in detail below.
  • step (a) of 1 above that is, “the step of preparing a mixture by mixing DGGMR and a surfactant”, DGGMR which is a substrate for measuring lipase activity and the interface Mix the active agent. That is, DGGMR and the surfactant are directly mixed.
  • one type of surfactant may be mixed with DGGMR, or a plurality of types of surfactants may be mixed with DGGMR.
  • the amount of mixing DGGMR is not particularly limited.
  • this DGGMR is the “DGGMR / surfactant mixture of the DGGMR / surfactant mixture” in the step (b) of “the step of mixing all or part of the DGGMR / surfactant mixture with water or an aqueous solution”.
  • the concentration is 0.05 mM or more from stable and uniform micelle particles. This is preferable for the purpose of producing an emulsion solution.
  • concentration of this DGGMR is more preferably 0.1 mM or more from the said objective, Especially preferably, it is 0.2 mM or more.
  • the concentration of DGGMR is preferably 2 mM or less after the second mixing for the above purpose.
  • the preferable concentration of DGGMR is more preferably 1 mM or less, and particularly preferably 0.8 mM or less, for the purpose described above.
  • the preferred concentration of DGGMR after the second mixing is as described above.
  • the mixing amount of each of the DGGMR and the surfactant at the time may be determined in consideration so that the concentration of DGGMR is as described above after the second mixing. Preferred from above.
  • the mixing amount of the lipase activity measurement substrate mixed during the first mixing is Ws [unit: grams]
  • the second mixing Sometimes the final volume after mixing water or aqueous solution (volume after volume up, etc.) is Vf [unit: mL] and the molecular weight of the lipase activity measurement substrate is MWs, the lipase after the second mixing
  • the concentration Cs [unit: mM] of the substrate for activity measurement can be expressed by the following formula.
  • the mixing amount Ws [unit: grams] of the lipase activity measurement substrate (DGGMR) to be mixed during the first mixing in this case can be expressed as follows.
  • the mixing amount of the lipase activity measurement substrate mixed at the first mixing is Ws [unit: grams]
  • the second The final volume after mixing water or aqueous solution at the time of mixing is Vf [unit: mL]
  • the molecular weight of the lipase activity measurement substrate is MWs
  • the concentration Cs [unit: mM] of the lipase activity measurement substrate after the second mixing can be expressed by the following formula.
  • the mixing amount Ws [unit: grams] of the lipase activity measurement substrate to be mixed in the first mixing in this case can be expressed as follows.
  • the surfactant is preferably at a concentration of 0.01% (w / v) or more after the second mixing for the purpose of producing an emulsion solution composed of stable and uniform micelle particles.
  • the preferable concentration of the surfactant is more preferably 0.05% (w / v) or more, and particularly preferably 0 for the above purpose. .1% (w / v) or more.
  • this concentration is preferably 20% (w / v) or less after the second mixing for the above purpose.
  • the preferable concentration of this surfactant is more preferably 10% (w / v) or less, and particularly preferably 5% (w / v) or less, for the above purpose. .
  • the preferable concentration of the surfactant after the second mixing is as described above.
  • the mixing amount of the DGGMR and the surfactant during the first mixing may be determined in consideration of the concentration of the surfactant as described above after the second mixing. It is preferable from the viewpoint of the manufacturing procedure.
  • the mixing amount Wp [unit: grams] of the surfactant to be mixed during the first mixing in this case can be expressed as follows.
  • the mixing amount Wp (unit: gram) of the surfactant to be mixed during the first mixing in this case can be expressed as follows.
  • the method of mixing DGGMR and surfactant is any method as long as this DGGMR and surfactant are mixed.
  • DGGMR is mixed with a solution containing an organic solvent such as alcohol and a surfactant, or a solution containing DGGMR is dropped and mixed with a solution containing a surfactant, or DGGMR is mixed.
  • Injecting the liquid containing the surfactant into the solution containing the surfactant stirring the solution containing the DGGMR and the surfactant at high speed with a powerful mixer, or ultrasonicating the solution containing the DGGMR and the surfactant
  • special processing or special equipment such as processing that requires a lot of time or skill, such as stirring at a general speed using a general mixer.
  • a mixture of DGGMR and a surfactant can be prepared.
  • the temperature at which the DGGMR and the surfactant are mixed is not particularly limited, but is near the cloud point of the surfactant used. It is preferable for the purpose of producing an emulsion solution composed of stable and uniform micelle particles to carry out this step at a temperature equal to or lower than the temperature near the cloud point.
  • the cloud point is a temperature at which micelles such as a surfactant cannot be formed when the temperature of an aqueous solution such as a nonionic surfactant is raised, and the aqueous solution becomes cloudy, It is different for each surfactant.
  • the temperature in the vicinity of the cloud point of the surfactant means a range of plus or minus ( ⁇ ) 25 ° C. of the cloud point temperature of the surfactant.
  • the temperature near the cloud point of this surfactant is preferably in the range of plus or minus ( ⁇ ) 15 ° C., more preferably in the range of plus or minus ( ⁇ ) 10 ° C., plus or minus.
  • a range of ( ⁇ ) 5 ° C. is particularly preferable.
  • the surfactant, KF-351A has a cloud point of 52 ° C. (self-measured value)
  • KF-355A has a cloud point of 67 ° C. (self-measured value)
  • KF-6011 The cloud point is 64 ° C. (self-measured value).
  • KF-354L did not reach the cloud point even at 77 ° C. which is the upper limit temperature of the constant temperature water tank used for cloud point measurement. Is above 77 ° C.
  • the step of mixing the DGGMR and the surfactant to prepare a mixture is performed for the purpose described above, in the range of plus or minus 25 ° C. of the cloud point temperature of the surfactant to be used, or below this range. It is preferable to carry out at a temperature in the range of plus or minus 15 ° C of the cloud point temperature of the surfactant to be used, or more preferably at a temperature below this range. More preferably, it is carried out at a temperature in the range of minus 10 ° C. or below this range, and the temperature of the cloud point of the surfactant used is plus or minus 5 ° C. or below this range. It is particularly preferable to carry out at a temperature in the range of plus or minus 25 ° C. of the cloud point temperature of the surfactant to be used, or below this range. It is preferable to carry out at a temperature in the range of plus or minus 15 ° C of the cloud point temperature of the surfactant to be used, or more preferably at a temperature below this
  • this is the temperature at which the DGGMR and the surfactant are mixed.
  • This step is the same as that for the DGGMR and the surfactant to be used. It is preferable to carry out at a temperature above the melting point for the purpose of producing an emulsion solution composed of stable and uniform micelle particles.
  • the step of mixing the DGGMR and the surfactant to prepare the mixture is preferably performed at 2 ° C. or higher, more preferably at 5 ° C. or higher for the above purpose, more preferably at 10 ° C. or higher. It is particularly preferred.
  • the time for mixing DGGMR and the surfactant is not particularly limited. For example, it may be mixed for several hours, but from the viewpoint that the time is also cost, even if it is performed carefully, it is usually performed. Within 10 minutes.
  • Step (b) in 1 above that is, all of the mixture prepared in “Step of mixing DGGMR and a surfactant to prepare a mixture” or
  • the “part of mixing with water or an aqueous solution” will be described in detail.
  • step (b) of 1 that is, “the step of mixing all or part of the mixture prepared in the step (a) of 1 with water or an aqueous solution”, There is no particular limitation on the aqueous solution.
  • the water is not particularly limited, and examples thereof include pure water, distilled water, and purified water.
  • the aqueous solution is not particularly limited as long as water is used as a solvent.
  • the aqueous solution is selected from the group consisting of a reducing agent, a lipase activator, a lipase activator, a colipase, and a buffer. Examples thereof include an aqueous solution containing at least one.
  • the reducing agent that can be contained in the aqueous solution is not particularly limited as long as it has a reducing ability, and examples thereof include hydroxylammonium salts and thiol compounds. be able to.
  • This reducing agent is as described in the section of “3. Reducing agent” in II above.
  • the concentration of the reducing agent is preferably 0.01 mM or more after the second mixing.
  • the preferable concentration of the reducing agent is more preferably 0.1 mM or more, and particularly preferably 0.5 mM or more.
  • the concentration of the reducing agent is preferably 100 mM or less after the second mixing.
  • the preferred concentration of the reducing agent is more preferably 10 mM or less, and particularly preferably 5 mM or less.
  • the preferable concentration of the reducing agent after the second mixing is as described above.
  • an appropriate reducing agent is added to the aqueous solution. It is preferable to contain by concentration.
  • the lipase activator that can be contained in the aqueous solution is not particularly limited as long as it is a substance that can activate lipase.
  • bile An acid or its salt can be mentioned.
  • the bile acid or salt thereof as the lipase activator is as described in the section “(1) Lipase activator” in 5 of II.
  • concentration of this lipase activator is 0.2% (w / v) or more after 2nd mixing.
  • the preferable concentration of the lipase activator is more preferably 0.4% (w / v) or more, and particularly preferably 1% (w / v) or more.
  • the concentration of the lipase activator is preferably 20% (w / v) or less after the second mixing.
  • the preferable concentration of the lipase activator is more preferably 10% (w / v) or less, and particularly preferably 5% (w / v) or less.
  • the preferred concentration of the lipase activator after the second mixing is as described above.
  • the aqueous solution is activated with lipase. It is preferable to contain the agent in an appropriate concentration.
  • the lipase activator that can be contained in the aqueous solution is not particularly limited as long as it is a substance that can activate lipase. Examples include earth metal ions or salts thereof.
  • the alkaline earth metal ion or salt thereof as the lipase activator is as described in the section “(1) Lipase activator” in 6 of II.
  • the lipase activator preferably has a concentration of 0.1 mM or more after the second mixing.
  • the preferable concentration of this lipase activator after the second mixing is more preferably 1 mM or more, and particularly preferably 5 mM or more.
  • the concentration of the lipase activator is preferably 100 mM or less after the second mixing.
  • the preferred concentration of the lipase activator is more preferably 50 mM or less, and particularly preferably 25 mM or less.
  • the preferable concentration of the lipase activator after the second mixing is as described above.
  • the aqueous solution is activated with lipase. It is preferable to contain the agent in an appropriate concentration.
  • the colipase that can be contained in the aqueous solution is not particularly limited as long as it has the action, function, or activity of colipase.
  • This colipase is as described in the section “(1) Colipase” in 7 of II above.
  • the activity value of this colipase is 15K unit / L (15K Unit / L) or more after the second mixing.
  • the preferable activity value of this colipase after the second mixing is more preferably 150 K units / L or more, and particularly preferably 750 K units / L or more.
  • the activity value of this colipase is preferably 7,500 K units / L or less after the second mixing.
  • the preferable activity value of this colipase after the second mixing is more preferably 3,750 K units / L or less, and particularly preferably 2,250 K units / L or less.
  • the preferable activity value of the colipase after the second mixing is as described above.
  • an appropriate amount of colipase is added to the aqueous solution. It is preferable to contain by activity value.
  • (E) pH In the present invention, DGGMR used as a substrate for measuring lipase activity is stable at pH 4 or in the vicinity thereof. Therefore, after the second mixing, the pH is preferably within a certain range centered on pH 4.
  • the pH after the second mixing is preferably in the range of pH 2 to pH 7, more preferably in the range of pH 3 to pH 5, from the viewpoint of the stability of DGGMR, and pH 3.
  • a range of 5 to 4.5 is particularly preferable. (The above pH values are all values at 20 ° C.)
  • the pH after the second mixing is as described above. It is preferable to adjust the pH of the aqueous solution to an appropriate pH so that the pH after the second mixing becomes the above pH.
  • (F) Buffering agent in order to maintain the pH after the second mixing in the pH range described in (e) above, a buffering agent having a buffering ability in the pH range of (e) is appropriately added to the aqueous solution. You may make it contain.
  • This buffering agent is as described in the section “(1) Buffering agent” in 10 of II above.
  • the concentration of the buffering agent in the aqueous solution containing this buffering agent is not particularly limited as long as the buffering ability can be exhibited in the set pH range.
  • the concentration of the buffer is preferably 5 mM or more, more preferably 10 mM or more, and particularly preferably 30 mM or more.
  • this buffering agent is preferably 500 mM or less, more preferably 100 mM or less, and particularly preferably 50 mM or less after the second mixing.
  • the preferable concentration of the buffering agent after the second mixing is as described above. It is preferable to contain the buffering agent at an appropriate concentration in the aqueous solution so that the concentration of the buffering agent after the second mixing becomes the above-mentioned concentration.
  • DGGMR and interface A mode in which all or part of the “mixture prepared by mixing the active agent” is added to “water or aqueous solution” and mixed, or “water or aqueous solution” is prepared by mixing “DGGMR and surfactant”.
  • the mixture may be added to all or a part of the “mixed mixture” and mixed, or other embodiments may be employed.
  • the mixing ratio of the “DGGMR / surfactant mixture” and the “water or aqueous solution” is not particularly limited and may be determined as appropriate.
  • the mixing of the “DGGMR / surfactant mixture” and “water or aqueous solution” can be considered, for example, as in the following (i) and (ii).
  • the preferable concentration of DGGMR is preferably 0 for the above purpose. 0.05 mM or more, more preferably 0.1 mM or more, and particularly preferably 0.2 mM or more. Also, as described in detail in the section “(2) DGGMR mixing amount” in 2 above, the preferable concentration of DGGMR after the second mixing is preferably 2 mM or less for the above purpose. It is preferably 1 mM or less, and particularly preferably 0.8 mM or less.
  • the relationship between the preferable concentration of DGGMR and the final volume after mixing water or an aqueous solution during the second mixing can be considered as, for example, the following (a) or (b).
  • the mixing amount of the lipase activity measurement substrate mixed during the first mixing is Ws [unit: grams]
  • the second mixing Sometimes the final volume after mixing water or aqueous solution (volume after volume up, etc.) is Vf [unit: mL] and the molecular weight of the lipase activity measurement substrate is MWs, the lipase after the second mixing
  • the concentration Cs [unit: mM] of the substrate for activity measurement can be expressed by the following formula.
  • the final volume Vf [unit: mL] after mixing water or an aqueous solution in the second mixing in this case can be expressed as follows.
  • Vf (Ws ⁇ 10 6 ) ⁇ (Cs ⁇ MWs)
  • Vf (Ws ⁇ 10 6 ) ⁇ (Cs ⁇ 752.05)
  • the lipase activity measurement substrate having the desired lipase activity measurement substrate (DGGMR) concentration is obtained.
  • a solution can be obtained.
  • the mixing amount of the lipase activity measurement substrate mixed at the first mixing is Ws [unit: grams]
  • the second The final volume after mixing water or aqueous solution at the time of mixing is Vf [unit: mL]
  • the molecular weight of the lipase activity measurement substrate is MWs
  • the concentration Cs [unit: mM] of the lipase activity measurement substrate after the second mixing can be expressed by the following formula.
  • the final volume Vf [unit: mL] after mixing water or an aqueous solution in the second mixing in this case can be expressed as follows.
  • Vf (Ws ⁇ A ⁇ 10 4 ) ⁇ (Cs ⁇ MWs)
  • Vf (Ws ⁇ A ⁇ 10 4 ) ⁇ (Cs ⁇ 752.05)
  • the lipase activity measurement substrate having the desired lipase activity measurement substrate (DGGMR) concentration is obtained.
  • a solution can be obtained.
  • the preferable concentration of the surfactant after the second mixing is the above-mentioned purpose. From the top, it is preferably 0.01% (w / v) or more, more preferably 0.05% (w / v) or more, and particularly preferably 0.1% (w / v) or more. is there.
  • the preferable concentration of the surfactant after the second mixing is preferably 20% for the above purpose. (W / v) or less, more preferably 10% (w / v) or less, and particularly preferably 5% (w / v) or less.
  • the relationship between the preferable concentration of the surfactant and the final volume after mixing water or an aqueous solution during the second mixing can be considered as, for example, (a) or (b) below. it can.
  • the final volume Vf [unit: mL] after mixing water or an aqueous solution in the second mixing in this case can be expressed as follows.
  • Vf (Wp ⁇ 100) ⁇ Cp
  • the final volume Vf [unit: mL] after mixing water or an aqueous solution in the second mixing in this case can be expressed as follows.
  • Vf (Wp ⁇ A) ⁇ Cp
  • steps The process of mixing all or part of the mixture prepared by mixing DGGMR as a lipase activity measurement substrate and a surfactant with water or an aqueous solution is performed in a plurality of stages (steps). May be. In this way, it is preferable to carry out this step in a plurality of steps for the purpose of producing an emulsion solution composed of stable and uniform micelle particles.
  • this method is a method of performing a plurality of steps, this is not particularly limited as long as the step is performed by a plurality of steps. For example, it is performed by the following steps [A] and [B]. The thing etc. can be mentioned.
  • Step of mixing all or part of the mixture prepared by mixing DGGMR and surfactant with a certain amount of water or aqueous solution [B] The mixture (DGGMR and surfactant in the step [A] A certain amount of water or aqueous solution is further mixed with the mixed solution of the mixture of water and aqueous solution.
  • the volume (constant amount) of “water or aqueous solution” to be mixed with “all or part of the mixture prepared by mixing DGGMR and surfactant” in the step [A] is Va [unit: mL]
  • the final volume after mixing “more fixed amount of water or aqueous solution” with the mixture in the step [B] [ie, after mixing water or aqueous solution in the second mixing described above]
  • Vf [unit: mL] is defined as (final volume) (volume after measuring up)
  • the ratio value (Vf / Va) obtained by dividing Vf by Va is an emulsion solution composed of stable and uniform micelle particles. In view of the purpose of manufacturing, it is preferably in the range of 1 to 500.
  • the ratio value (Vf / Va) obtained by dividing Vf by Va is more preferably in the range of 2 to 200, and particularly in the range of 5 to 100. preferable.
  • the values of Va and Vf (capacities) may be selected so that the ratio value (Vf / Va) obtained by dividing Vf by Va is in the range of 2 to 200. More preferably, the values (capacities) of Va and Vf are particularly preferably selected so as to be in the range of 5 to 100.
  • the above-mentioned [A] is a step of mixing all or part of a mixture prepared by mixing DGGMR and a surfactant with a certain amount of water or an aqueous solution, but is not particularly limited. All or part of the “mixture prepared by mixing DGGMR and surfactant” may be added to a certain amount of “water or aqueous solution” and mixed, or a certain amount of “water or aqueous solution” may be added to “DGGMR”. The mixture may be added to all or part of the “mixture prepared by mixing the surfactant and the surfactant” and mixed, or other embodiments may be employed.
  • a certain amount of water or an aqueous solution is further mixed with the mixed solution after mixing the mixture (mixture of DGGMR and a surfactant) and water or an aqueous solution in the step [A] of [B].
  • the lipase activity measurement substrate is mixed with a solution containing an organic solvent such as alcohol, the lipase activity measurement substrate-containing solution is dropped and mixed with the solution, or the lipase activity measurement Complicated or skillful, such as spray injection of the substrate-containing solution into the solution, stirring the lipase activity measurement substrate solution at high speed with a powerful mixer, or applying ultrasonic waves to the lipase activity measurement substrate solution
  • No special treatment or special equipment is required, such as stirring at a general speed using a general mixer, and mixing may be performed by a normal method, thereby making it a substrate for measuring lipase activity.
  • All or part of the DGGMR / surfactant mixture can be mixed with water or an aqueous solution.
  • the process which mixes all or one part of the mixture prepared by mixing this DGGMR and surfactant with water or aqueous solution is 10 degreeC lower than the cloud point of the surfactant used for the said objective. It is more preferable to carry out below, and it is especially preferable to carry out at 25 degrees C or less.
  • all or part of the mixture prepared by mixing DGGMR and surfactant with water or an aqueous solution all or part of the mixture of DGGMR and surfactant is mixed with water or aqueous solution.
  • this step is performed at a temperature equal to or higher than the melting points of DGGMR and the surfactant to be used.
  • the step of mixing all or part of the mixture prepared by mixing DGGMR and the surfactant with water or an aqueous solution is more preferably performed at 10 ° C. or more for the above purpose, and 15 ° C. It is particularly preferable to perform the above.
  • this mixing is preferably performed for 5 minutes or more for the purpose of producing an emulsified lipase activity measuring substrate solution composed of stable and uniform micelle particles. In general, 5 minutes is sufficient.
  • time for mixing the mixture of DGGMR and the surfactant with water or an aqueous solution is not particularly limited, and may be mixed for several hours, for example, but from the viewpoint that time is also cost. Even if you do it carefully, it usually takes less than 10 minutes.
  • the reagent for measuring lipase activity of the present invention comprises a lipase containing “1,2-o-dilauryl-rac-glycero-3-glutaric acid- (6′-methylresorufin) -ester [DGGMR] as a substrate for measuring lipase activity.
  • a reagent for measuring lipase activity comprising a substrate solution for measuring lipase activity characterized in that the substrate solution for measuring activity contains a reducing agent. (The details of the substrate solution for measuring lipase activity are as described in the above section [1] Substrate solution for measuring lipase activity of the present invention.)
  • the reagent for measuring lipase activity of the present invention can prevent the degradation of DGGMR due to the mixed azide and suppress the decrease in the absorbance value obtained by the measurement by the above-mentioned constitution.
  • the lipase activity measuring reagent of the present invention may consist only of the lipase activity measuring substrate solution of the present invention, or the lipase activity measuring substrate solution of the present invention and other constituent reagents. Or a reagent kit.
  • the lipase activity measuring reagent of the present invention is preferably a reagent kit comprising the lipase activity measuring substrate solution of the present invention and other constituent reagents.
  • the substrate for measuring lipase activity [DGGMR] in the present invention is stable at pH 4 or a pH around it, whereas lipase has an optimum activity at pH 8 or a pH near it, and each has a suitable pH. The area is different.
  • the lipase activity measuring reagent of the present invention is preferably a reagent kit comprising a lipase activity measuring substrate solution and other constituent reagents.
  • the pH of the reagent containing the lipase activity measuring substrate [DGGMR] is pH 4
  • the pH of at least one of the other constituent reagents combined therewith is preferably pH 8 or higher
  • the lipase activity measurement substrate [DGGMR], colipase, and lipase activation It is preferable that bile acid or a salt thereof as an agent does not coexist in one reagent.
  • the lipase activity measurement reagent of the present invention is preferably a two-reagent reagent kit comprising a lipase activity measurement substrate solution and one other component reagent.
  • the other constituent reagent as the first reagent and the lipase activity measurement substrate solution as the second reagent.
  • the pH of the other constituent reagent is more preferably pH 8 or higher, and the pH of the substrate solution for lipase activity measurement is more preferably pH 4 or the vicinity thereof.
  • the substrate solution for measuring lipase activity does not contain both “colipase” and “bile acid or its salt as lipase activator”, but “colipase” and “lipase activator as More preferably, at least one of “bile acid or salt thereof” is contained in the other constituent reagent.
  • the reagent for measuring lipase activity of the present invention may be one measured by the end point method (end point method), or one measured by the reaction rate method (rate method), and may be appropriately selected.
  • the reaction rate method (rate method) is preferred.
  • the substrate for measuring lipase activity [DGGMR] is brought into contact with the sample and reacted to cause 1,2-o-dilauryl-rac- by a hydrolysis reaction catalyzed by the lipase.
  • Glycerol and glutaric acid- (6′-methylresorufin) -ester are produced, but this glutaric acid- (6′-methylresorufin) -ester is unstable and easily hydrolyzed naturally.
  • '-Methylresorufin ( ⁇ max: 580 nm) is produced.
  • the increase in 6'-methylresorufin produced may be measured by measuring absorbance at a wavelength of 580 nm or in the vicinity thereof, and the activity value of lipase contained in the sample may be obtained.
  • a single wavelength method or a dual wavelength method may be used.
  • the temperature during the measurement reaction is a range in which the measurement reaction such as 30 ° C. or 37 ° C. proceeds and the reaction components such as enzymes involved in the measurement reaction are not inactivated, denatured or altered by heat
  • the temperature inside may be set.
  • the method for starting the measurement reaction is any method such as a method performed by adding a lipase activity measurement substrate [DGGMR] or the like in the present invention, or a method performed by adding a sample. It may be.
  • the measurement may be performed by a method, or may be performed using an apparatus such as an automatic analyzer.
  • all or part of the constituent reagents may be a liquid reagent.
  • the substrate solution for measuring lipase activity of the present invention can be sold alone or used for measuring lipase activity in a sample.
  • the substrate solution for measuring lipase activity of the present invention can be sold in combination with the above-mentioned other constituent reagents or other reagents or used for measuring lipase activity in a sample.
  • the other constituent reagents or other reagents include, for example, a buffer solution, a sample diluent, a reagent diluent, a reagent containing a substance for performing calibration (calibration), or for performing quality control.
  • examples include reagents containing substances.
  • lipase activity measuring reagent of the present invention Specific examples of the lipase activity measuring reagent of the present invention are given below.
  • Example 1 (A) First Reagent [Aqueous solution containing the following reagent components at the indicated concentrations; pH 8.3 (20 ° C.)] Sodium deoxycholate [Lipase activator] 2% (w / v) Calcium chloride [Lipase activator] 5 mM Colipase (derived from porcine pancreas; Roche Diagnostics Inc. [Japan]) 375K units / L (5mg / L) Bicine [Buffer] 40 mM
  • Second reagent (substrate solution for measuring lipase activity of the present invention) [Aqueous solution containing the following reagent components at the respective concentrations; pH 4.0 (20 ° C.)] 1,2-o-Dilauryl-rac-glycero-3-glutaric acid- (6′-methylresorufin) -ester [DGGMR] (Roche Diagnostics Inc. [Japan]) [Lipase activity measurement substrate ] 0.3 mM Side chain type non-reactive polyether-modified type modified silicone oil 0.3% (w / v) Hydroxyl ammonium chloride [Reducing agent] 0.5 mM L-tartaric acid [buffer] 40 mM
  • Example 2 (A) First Reagent [Aqueous solution containing the following reagent components at the indicated concentrations; pH 8.4 (20 ° C.)] Sodium taurodeoxycholate [lipase activator] 2% (w / v) Sodium deoxycholate [Lipase activator] 0.2% (w / v) Calcium chloride [Lipase activator] 5 mM Colipase (derived from porcine pancreas; Roche Diagnostics Inc. [Japan]) 150K units / L (2mg / L) Tris (hydroxymethyl) aminomethane [Tris] [Buffer] 40 mM
  • Second reagent (substrate solution for lipase activity measurement of the present invention) [Aqueous solution containing the following reagent components at the indicated concentrations] 1,2-o-Dilauryl-rac-glycero-3-glutaric acid- (6′-methylresorufin) -ester [DGGMR] (Roche Diagnostics Inc. [Japan]) [Lipase activity measurement substrate ] 0.6 mM Side chain type non-reactive polyether-modified type modified silicone oil 0.3% (w / v) Hydroxyl ammonium chloride [Reducing agent] 1 mM Sodium taurodeoxycholate [lipase activator] 2% (w / v)
  • the method for measuring lipase activity according to the present invention is a lipase comprising 1,2-o-dilauryl-rac-glycero-3-glutaric acid- (6′-methylresorufin) -ester [DGGMR] as a substrate for measuring lipase activity.
  • DGGMR (6′-methylresorufin) -ester
  • a reducing agent is contained in the substrate solution for lipase activity measurement.
  • the lipase activity measuring method of this invention can prevent the degradation of DGGMR by the mixed azide and suppress the fall of the light absorbency value obtained by a measurement by said structure.
  • the sample for measuring the activity of lipase may be any sample that may contain lipase, and is not particularly limited as long as it may contain lipase.
  • the sample include a sample derived from a human, an animal, or a plant.
  • the sample derived from a human or animal is not particularly limited, for example, body fluid such as blood, serum, plasma, semen, spinal fluid, saliva, sweat, tears, ascites, or amniotic fluid of human or animal; urine or stool Excrements such as: organs such as pancreas, liver or stomach; tissues such as hair, skin, nails, muscles or nerves; or cells.
  • body fluid such as blood, serum, plasma, semen, spinal fluid, saliva, sweat, tears, ascites, or amniotic fluid of human or animal
  • urine or stool Excrements such as: organs such as pancreas, liver or stomach; tissues such as hair, skin, nails, muscles or nerves; or cells.
  • the present invention is suitable when a sample derived from a human or an animal is used as a sample, and particularly suitable when a sample derived from a human is used as a sample.
  • the present invention is suitable when a body fluid, organ or tissue is used as a sample, more preferably when a body fluid is used as a sample, and more preferable when blood, serum or plasma is used as a sample. This is particularly suitable when plasma is used as a sample.
  • the sample since it is suitable when it is a liquid, if the sample is not a liquid, pretreatment such as extraction or solubilization may be performed according to a known method to obtain a liquid sample. Good. Further, the sample may be diluted or concentrated as necessary.
  • the measurement may be performed by the end point method (end point method), or the reaction rate. Measurement may be performed by a method (rate method) and may be appropriately selected, but a reaction rate method (rate method) is preferred.
  • the measurement is performed by a one-step method performed by one step, or by two or more multi-steps. Measurement may be performed by appropriately selecting a step method.
  • the lipase activity measurement reagent used for measuring the lipase activity is composed of the first reagent, the second reagent, and another reagent (one or two or more reagents), that is, when the reagent comprises three or more reagents.
  • the measurement reaction may be performed through the number of steps necessary to perform the measurement using these reagents (two steps or three or more steps as required), and the lipase activity in the sample may be measured. .
  • 1,2-o-dilauryl-rac- is obtained by a hydrolysis reaction catalyzed by lipase by bringing a sample into contact with a substrate for measuring lipase activity [DGGMR] and reacting it.
  • Glycerol and glutaric acid- (6′-methylresorufin) -ester are produced, but this glutaric acid- (6′-methylresorufin) -ester is unstable and easily hydrolyzed naturally.
  • '-Methylresorufin ( ⁇ max: 580 nm) is produced.
  • the increase in 6'-methylresorufin produced may be measured by measuring absorbance at a wavelength of 580 nm or in the vicinity thereof, and the activity value of lipase contained in the sample may be obtained.
  • a single wavelength method or a dual wavelength method may be used.
  • calculating the activity value of lipase contained in a sample from the measured absorbance (or transmittance) or the amount of change in absorbance (or transmittance) is the molar extinction coefficient of 6′-methylresorufin.
  • a method of calculating from the absorbance (or transmittance) measured based on the standard, or a method of calculating by comparing with the absorbance (or transmittance) of a standard substance (standard solution, standard serum, etc.) whose lipase activity value is known A method may be selected as appropriate.
  • the activity value of lipase contained in the sample by subtracting the reagent blind test (reagent blank) from the absorbance (or transmittance) obtained by measuring the sample.
  • the temperature during the measurement reaction is such that the measurement reaction such as 30 ° C. or 37 ° C. proceeds, and the reaction components such as enzymes involved in the measurement reaction are not deactivated, denatured or altered by heat. What is necessary is just to set the temperature within the range.
  • the measurement reaction may be initiated by any method such as a method performed by adding a lipase activity measurement substrate or the like, or a method performed by adding a sample.
  • the measurement may be carried out by a method, or may be carried out using an apparatus such as an automatic analyzer.
  • the amounts of the sample and the first reagent to be mixed may be appropriately determined according to the amount of the second reagent, the activity value of the lipase contained in the sample, and other conditions.
  • the amount of the sample is preferably 0.5 to 100 ⁇ L
  • the amount of the first reagent is preferably in the range of 20 to 1,000 ⁇ L.
  • the incubation time is not particularly limited, but is usually preferably within 20 minutes, more preferably within 10 minutes, and particularly preferably within 5 minutes.
  • the temperature at the time of incubation should just be the temperature above the temperature which the said liquid mixture freezes. In general, the higher the temperature during the measurement reaction, the higher the reaction rate. However, if the temperature is too high, components such as enzymes involved in the measurement reaction will be denatured and inactivated, so the temperature during incubation is below the temperature at which the components such as enzymes involved in the measurement reaction are denatured and deactivated. It is necessary to.
  • the incubation temperature is usually 2 to 70 ° C., preferably 20 to 37 ° C., more preferably 30 to 37 ° C.
  • the component such as an enzyme involved in the measurement reaction is a heat-resistant component such as a heat-resistant enzyme, the temperature may be higher.
  • the lipase contained in the sample comes into contact with the reagent components contained in the first reagent, and activation or activation of the lipase by these components is performed. Done.
  • the amount of the second reagent to be mixed may be appropriately determined according to the amount of the sample, the amount of the first reagent, the activity value of the lipase contained in the sample, the specifications of the analyzer to be used, and other conditions.
  • the amount of the second reagent is preferably in the range of 10 to 1,000 ⁇ L.
  • the incubation time is not particularly limited, but is usually preferably within 20 minutes, more preferably within 10 minutes, and particularly preferably within 5 minutes.
  • the temperature at the time of incubation should just be the temperature above the temperature which freezes the said last reaction liquid. In general, the higher the temperature during the measurement reaction, the higher the reaction rate. However, if the temperature is too high, components such as enzymes involved in the measurement reaction will be denatured and inactivated, so the temperature during incubation is below the temperature at which the components such as enzymes involved in the measurement reaction are denatured and deactivated. It is necessary to.
  • the incubation temperature is usually 2 to 70 ° C., preferably 20 to 37 ° C., more preferably 30 to 37 ° C.
  • the component such as an enzyme involved in the measurement reaction is a heat-resistant component such as a heat-resistant enzyme, the temperature may be higher.
  • the measurement reaction in the second stage is started following the activation and activation of the lipase in the first stage, and the activity measurement reaction of the lipase contained in the sample is started. It is advanced.
  • the second reagent (substrate solution for measuring lipase activity), which is an emulsified substrate solution composed of stable and uniform micelle particles, comes into contact with the lipase contained in the sample in this second stage,
  • the hydrolysis reaction catalyzed by lipase produces 1,2-o-dilauryl-rac-glycerol and glutaric acid- (6′-methylresorufin) -ester from the lipase activity measurement substrate [DGGMR]. Since this glutaric acid- (6′-methylresorufin) -ester is unstable, it is easily hydrolyzed naturally to produce 6′-methylresorufin ( ⁇ max: 580 nm).
  • the absorbance (or transmittance) of the final reaction solution derived from this 6′-methylresorufin is 580 nm or near it. It is measured by measuring the absorbance (or transmittance) at the wavelength of.
  • the activity value of the lipase contained in the sample is calculated from the measured absorbance (or transmittance) or the amount of change in absorbance (or transmittance).
  • This is a method of calculating from the absorbance (or transmittance) measured based on the molar extinction coefficient of 6′-methylresorufin, or a standard substance (standard solution, standard serum, etc.) whose lipase activity value is known.
  • a method such as a method of calculating by comparing with the absorbance (or transmittance) of is suitably selected.
  • the activity value of the lipase contained in the above sample was calculated by subtracting the reagent blindness (reagent blank) from the absorbance (or transmittance) of the final reaction solution obtained by measuring the sample. ( ⁇ Abs.) Is preferably used.
  • the method for suppressing the influence of azide on the measurement of lipase activity of the present invention comprises 1,2-o-dilauryl-rac-glycero-3-glutaric acid-
  • a reducing agent is contained in a lipase activity measurement substrate solution containing (6′-methylresorufin) -ester [DGGMR] as a lipase activity measurement substrate.
  • the details of the substrate solution for lipase activity measurement are as described in the above-mentioned section [1] Substrate solution for lipase activity measurement of the present invention.
  • the details of the lipase activity measurement reagent are as follows. As described in the above section “[2] Reagent activity measurement reagent of the present invention.” For details of the lipase activity measurement method, refer to the section “[3] Method for measuring lipase activity of the present invention”. As described in.)
  • the suppression method of the influence of the azide with respect to the lipase activity measurement of this invention is a method which can prevent deterioration of DGGMR by the azide mixed by the above-mentioned structure, and can suppress the fall of the absorbance value obtained by measurement. is there.
  • Reagent activity measuring reagent of the present invention The first reagent and the second reagent of the lipase activity measuring reagent of the present invention were prepared.
  • Second reagent substrate solution for measuring lipase activity
  • Azide-added second reagent the present invention
  • an “azide added second reagent (invention)” in which azide was added was prepared.
  • the beaker is placed on a multi-stirrer (model: M-3, distributor: As One Co., Ltd. [Japan]), and the rotor in the beaker is marked with a scale “3” of the multi-stirrer. This was done by rotating at
  • the beaker is placed on a multi-stirrer (model: M-3, distributor: As One Co., Ltd. [Japan]), and the rotor in the beaker is marked with a scale “3” of the multi-stirrer. This was done by rotating at
  • the “lipase activity measurement substrate solution (substrate for lipase activity measurement: DGGMR, surfactant: KF-355A, reducing agent: hydroxylammonium chloride) which is the substrate solution for lipase activity measurement of the present invention” was prepared.
  • the concentration of the lipase activity measurement substrate [DGGMR] is 0.3 mM, and the surface activity
  • the concentration of the agent (KF-355A) is 0.3% (w / v)
  • the concentration of the reducing agent (hydroxylammonium chloride) is 1 mM
  • the concentration of sodium azide is 0.0001% (w / v) ).
  • this “second azide-added second reagent (invention)” it was confirmed visually that no concentration gradient or strong turbidity was observed, and that the mixture was homogeneously mixed.
  • the beaker is placed on a multi-stirrer (model: M-3, distributor: As One Co., Ltd. [Japan]), and the rotor in the beaker is marked with a scale “3” of the multi-stirrer. This was done by rotating at
  • the beaker is placed on a multi-stirrer (model: M-3, distributor: As One Co., Ltd. [Japan]), and the rotor in the beaker is marked with a scale “3” of the multi-stirrer. This was done by rotating at
  • a “lipase activity measurement substrate solution (lipase activity measurement substrate: DGGMR, surfactant: KF-355A)”, which is a conventional lipase activity measurement substrate solution, was prepared.
  • the concentration of the lipase activity measurement substrate [DGGMR] is 0.3 mM, and the surface activity
  • the concentration of agent (KF-355A) is 0.3% (w / v) and the concentration of sodium azide is 0.0001% (w / v).
  • this “second azide-added second reagent (conventional invention)” it was visually confirmed that no concentration gradient or strong turbidity was observed, and that the mixture was homogeneously mixed.
  • Control Second Reagent A “control second reagent” that is a second reagent (substrate solution for lipase activity measurement) of the lipase activity measurement reagent as a control was prepared. In addition, azide was not added to this “control second reagent”.
  • the beaker is placed on a multi-stirrer (model: M-3, distributor: As One Co., Ltd. [Japan]), and the rotor in the beaker is marked with a scale “3” of the multi-stirrer. This was done by rotating at
  • the beaker is placed on a multi-stirrer (model: M-3, distributor: As One Co., Ltd. [Japan]), and the rotor in the beaker is marked with a scale “3” of the multi-stirrer. This was done by rotating at
  • a “lipase activity measurement substrate solution (lipase activity measurement substrate: DGGMR, surfactant: KF-355A)” was prepared. This was used as a “control second reagent” which is a substrate solution for lipase activity measurement as a control.
  • the concentration of the lipase activity measurement substrate [DGGMR] was 0.3 mM, and the surfactant (KF-355A) The concentration of is 0.3% (w / v). Further, in this “control second reagent”, no concentration gradient or strong turbidity was observed, and it was visually confirmed that the mixture was homogeneously mixed.
  • Standard substance “Common reference standard substance: JSCC regular enzyme JCCLS CRM-001c” (distributor: Japan Clinical Laboratory Standards Association [Japan]) was used as the “standard substance”.
  • Control Serum “CYGNUS AUTO LIP CONTROL” [manufacturing number: G501] (distributor: Sinotest Inc. [Japan]), which is a commercially available control serum for quality control, was used as “control serum”.
  • the physiological saline was used for the measurement of a reagent blind test (reagent blank). Except for using this physiological saline as a sample, the procedure described in the above (1) to (3) was performed, and the amount of change in absorbance when the physiological saline was measured was measured. (Measurement of absorbance change in reagent blind test)
  • Table 1 shows the lipase activity values (difference in the amount of change in absorbance of the samples) of the three samples measured and determined in 4 above.
  • the unit of the measured value (lipase activity value of each sample) shown in Table 1 is “absorbance difference ( ⁇ Abs.)”.
  • the values in parentheses are the measured values (lipase activity value [value of difference in absorbance change of sample]), and azide is not added as the second reagent.
  • the value divided by the measured value (lipase activity value [value of difference in absorbance change of sample]) of each sample when “2 Reagents” is used is expressed in percent.
  • the measured value (lipase activity value [value of difference in absorbance change of sample) when “second azide-added second reagent (present invention)” is used as the second reagent. ]) Is 105% in “(1) Standard substance” and “(2) Standard serum”, compared with the case where “control second reagent” not added with azide is used as the second reagent. Is 101%, and it is 101% in “(3) Control serum”, which shows that there is almost no difference.
  • Reagent activity measuring reagent of the present invention The first reagent and the second reagent of the lipase activity measuring reagent of the present invention were prepared.
  • this 1st reagent was prepared 3 times in total separately, and these were made into the 1st lot, the 2nd lot, and the 3rd lot of the 1st reagent of a lipase activity measuring reagent, respectively.
  • Second reagent substrate solution for measuring lipase activity
  • Azide-added second reagent the present invention
  • a total of 3 “azide addition second reagent (invention)” added with azide was added. A lot was prepared.
  • the beaker is placed on a multi-stirrer (model: M-3, distributor: As One Co., Ltd. [Japan]), and the rotor in the beaker is marked with a scale “3” of the multi-stirrer. This was done by rotating at
  • the beaker is placed on a multi-stirrer (model: M-3, distributor: As One Co., Ltd. [Japan]), and the rotor in the beaker is marked with a scale “3” of the multi-stirrer. This was done by rotating at
  • the “lipase activity measurement substrate solution (substrate for lipase activity measurement: DGGMR, surfactant: KF-355A, reducing agent: hydroxylammonium chloride) which is the substrate solution for lipase activity measurement of the present invention” was prepared. This was designated as the first lot of the “second reagent (present invention)” which is the lipase activity measurement substrate solution of the present invention.
  • the substrate solution for measuring lipase activity of the present invention which is the “lipase activity measuring substrate solution (lipase activity measuring)”, is further performed twice as described in the above (1) to (7).
  • Substrate for use DGGMR, surfactant: KF-355A, reducing agent: hydroxylammonium chloride) "and sodium azide added separately. These were designated as the second lot and the third lot of the “second azide-added second reagent (invention)”, respectively.
  • [2] Azide-added second reagent (conventional invention) In order to confirm the influence of azide contamination on the second reagent (lipase activity measurement substrate solution) of the lipase activity measurement reagent of the conventional invention, a total of 3 lots of “second reagent (conventional invention)” with azide added were prepared. .
  • the beaker is placed on a multi-stirrer (model: M-3, distributor: As One Co., Ltd. [Japan]), and the rotor in the beaker is marked with a scale “3” of the multi-stirrer. This was done by rotating at
  • the beaker is placed on a multi-stirrer (model: M-3, distributor: As One Co., Ltd. [Japan]), and the rotor in the beaker is marked with a scale “3” of the multi-stirrer. This was done by rotating at
  • a “lipase activity measurement substrate solution (lipase activity measurement substrate: DGGMR, surfactant: KF-355A)”, which is a conventional lipase activity measurement substrate solution, was prepared. This was designated as the first lot of the “second reagent (conventional invention)” which is a substrate solution for lipase activity measurement of the conventional invention.
  • the substrate solution for measuring lipase activity according to the conventional invention ie, “a substrate solution for measuring lipase activity (measurement of lipase activity)” is further performed twice as described in the above (1) to (7).
  • Control second reagent (the present invention) A total of 3 lots of “control second reagent (invention)” which is the second reagent (substrate solution for measuring lipase activity) of the lipase activity measurement reagent as a control were prepared. In addition, azide is not added to this “control second reagent (invention)”.
  • the beaker is placed on a multi-stirrer (model: M-3, distributor: As One Co., Ltd. [Japan]), and the rotor in the beaker is marked with a scale “3” of the multi-stirrer. This was done by rotating at
  • the beaker is placed on a multi-stirrer (model: M-3, distributor: As One Co., Ltd. [Japan]), and the rotor in the beaker is marked with a scale “3” of the multi-stirrer. This was done by rotating at
  • a “lipase activity measurement substrate solution (lipase activity measurement substrate: DGGMR, surfactant: KF-355A)” was prepared. This was designated as the first lot of “control second reagent (invention)” which is a lipase activity measurement substrate solution as a control.
  • a “lipase activity measurement substrate solution which is a lipase activity measurement substrate solution as a control.
  • Substrate for use: DGGMR, surfactant: KF-355A) was prepared twice separately. These were designated as the second lot and the third lot of the “control second reagent (invention)”, respectively.
  • the lipase activity measurement substrate in each of the first lot, the second lot, and the third lot of the “control second reagent (present invention)” prepared in the above (1) to (7) The concentration of [DGGMR] is 0.3 mM, the concentration of surfactant (KF-355A) is 0.3% (w / v), and the concentration of reducing agent (hydroxylammonium chloride) is 0.6 mM. It is. Further, in any of these “control second reagents (present invention)”, no concentration gradient or strong turbidity was observed, and it was visually confirmed that they were uniformly mixed.
  • Control second reagent A total of 3 lots of “control second reagent (conventional invention)” which is the second reagent (substrate solution for lipase activity measurement) of the lipase activity measurement reagent as a control were prepared. In addition, azide is not added to this “control second reagent (conventional invention)”.
  • the beaker is placed on a multi-stirrer (model: M-3, distributor: As One Co., Ltd. [Japan]), and the rotor in the beaker is marked with a scale “3” of the multi-stirrer. This was done by rotating at
  • the beaker is placed on a multi-stirrer (model: M-3, distributor: As One Co., Ltd. [Japan]), and the rotor in the beaker is marked with a scale “3” of the multi-stirrer. This was done by rotating at
  • a “lipase activity measurement substrate solution (lipase activity measurement substrate: DGGMR, surfactant: KF-355A)” was prepared. This was designated as the first lot of “control second reagent (conventional invention)” which is a substrate solution for measuring lipase activity as a control.
  • a “lipase activity measurement substrate solution which is a lipase activity measurement substrate solution as a control.
  • Substrate for use: DGGMR, surfactant: KF-355A) was prepared twice separately. These were designated as the second lot and the third lot of the “control second reagent (conventional invention)”, respectively.
  • Standard substance “Common reference standard substance: JSCC regular enzyme JCCLS CRM-001c” (distributor: Japan Clinical Laboratory Standards Association [Japan]) was used as the “standard substance”.
  • Control serum-1 “Liquid control serum I Wako C & C” [manufacturing number: 1515I] (distributor: Wako Pure Chemical Industries, Ltd. [Japan]), which is a commercially available control serum for quality control, was used as “control serum-1”.
  • Control serum-2 “Liquid control serum II Wako C & C” [manufacturing number: 1515II] (distributor: Wako Pure Chemical Industries, Ltd. [Japan]), which is a commercially available control serum for quality control, was used as “control serum-2”.
  • Control serum-3 “Aalto Control IR” (distributor: Sinotest Inc. [Japan]), which is a commercially available control serum for quality control, was used as “control serum-3”.
  • Control serum-4 “Aalto Control II S” (distributor: Sinotest Co., Ltd. [Japan]), which is a commercially available control serum for quality control, was used as “control serum-4”.
  • Standard Serum Commercially available standard serum “Cygnus Auto LIP Standard Serum” [manufacturing number: G501] (distributor: Sinotest Inc. [Japan]) was used as “standard serum”.
  • Control serum-5 “CYGNUS AUTO LIP CONTROL” [manufacturing number: G501] (distributor: Sinotest [Japan]), which is a commercially available control serum for quality control, was used as “control serum-5”.
  • the physiological saline was used for the measurement of a reagent blind test (reagent blank). Except for using this physiological saline as a sample, the procedure described in the above (1) to (3) was performed, and the amount of change in absorbance when the physiological saline was measured was measured. (Measurement of absorbance change in reagent blind test)
  • the second reagent in (2) above was prepared as “control second reagent (conventional invention)” prepared in [1] [2] [4] from “azide added second reagent (present invention)”.
  • the lipase activity value of each sample (sample 3) when the first lot to the third lot were used as the second reagent by performing the operations as described in the above (1) to (7) except that Value of difference in absorbance change).
  • Table 2 shows the lipase activity values (values of the difference in absorbance change of the samples) of the three samples measured and determined in 4 above.
  • the unit of the measured value (lipase activity value of each sample) shown in Table 2 is “absorbance difference ( ⁇ Abs.)”.
  • the values in parentheses are measured values (lipase activity value [difference in change in absorbance of sample] when “second azide added reagent (invention)”) is used as the second reagent. Value)) is the measured value (lipase activity [value of difference in absorbance change of sample]) when using “control second reagent (invention)” to which no azide is added as the second reagent.
  • the value obtained by dividing the value by percentage, or the measured value when the “second reagent added with azide (conventional invention)” is used as the second reagent (lipase activity value [value of difference in absorbance change of sample]) Divided by the measured value (lipase activity value [value of difference in absorbance change of the sample]) when “control second reagent (conventional invention)” to which azide is not added as the second reagent is used. It is expressed as a percentage.
  • the measured value (lipase activity value [value of the difference in absorbance change of the sample) when “second azide added second reagent (present invention)” is used as the second reagent. ]) Is 96% to 100% in the first lot, compared with the case where the “control second reagent (invention)” to which no azide is added as the second reagent, and in the second lot, It is 96% to 99%, and it is 96% to 100% in the third lot, and it can be seen that there is almost no difference.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

[Problem] To provide: a substrate solution for use in the measurement of the activity of a lipase, which contains 1,2-o-dilauryl-rac-glycero-3-glutaric acid-(6'-methylresorufin)-ester [DGGMR] as a lipase activity measurement substrate, and in which the deterioration of DGGMR can be prevented and the decrease in an absorbance value obtained by the measurement can be prevented even when the solution is contaminated by an azide; a lipase activity measurement reagent; a lipase activity measurement method; and a method for reducing the influence of an azide. [Solution] A substrate solution for use in the measurement of the activity of a lipase, said substrate solution containing 1,2-o-dilauryl-rac-glycero-3-glutaric acid-(6'-methylresorufin)-ester [DGGMR] as a lipase activity measurement substrate, wherein a reducing agent is further contained in the substrate solution.

Description

リパーゼ活性の測定方法及び測定試薬並びにリパーゼ活性測定用基質溶液Lipase activity measurement method and reagent, and lipase activity measurement substrate solution
 本発明は、リパーゼ活性測定に対するアジ化物の影響を抑制できる、リパーゼ活性測定用基質溶液、リパーゼ活性の測定試薬、及びリパーゼ活性の測定方法に関するものである。
 また、本発明は、リパーゼ活性測定に対するアジ化物の影響を抑制できる方法に関するものである。
The present invention relates to a lipase activity measurement substrate solution, a lipase activity measurement reagent, and a lipase activity measurement method that can suppress the influence of azide on the lipase activity measurement.
The present invention also relates to a method capable of suppressing the influence of azide on lipase activity measurement.
 本発明は、臨床検査などの生命科学分野、及び分析化学などの化学分野等において有用なものである。 The present invention is useful in life science fields such as clinical tests and chemical fields such as analytical chemistry.
 血清又は血漿中のリパーゼ活性は、急性膵炎、慢性膵炎又は膵臓癌等の膵疾患において上昇することから、これらの膵炎等のマーカーとして有用なものである。
 このリパーゼは、長鎖脂肪酸の3分子がそれぞれグリセロールにエステル結合したトリグリセライド(TG)のα位(1位、3位)のエステル結合を加水分解して、2分子の脂肪酸及び1分子のβ-モノグリセライドを生成する反応を触媒する酵素である。
 この1分子のβ-モノグリセライドは、α型に異性化され、これがリパーゼの作用を受けて加水分解されてグリセロールと脂肪酸とになる。
Since lipase activity in serum or plasma increases in pancreatic diseases such as acute pancreatitis, chronic pancreatitis or pancreatic cancer, it is useful as a marker for these pancreatitis and the like.
This lipase hydrolyzes the ester bond at the α-position (position 1 and position 3) of triglyceride (TG), in which three molecules of long-chain fatty acids are ester-bonded to glycerol, to thereby yield two molecules of fatty acid and one molecule of β-. It is an enzyme that catalyzes a reaction that produces monoglyceride.
This molecule of β-monoglyceride is isomerized into α-form, which is hydrolyzed to glycerol and fatty acid by the action of lipase.
 血清又は血漿中のリパーゼ活性の測定方法としては、次のような方法が知られていた(非特許文献1及び非特許文献2参照。)。
 例えば、オリーブ油のエマルジョンをリパーゼの基質として用い、このオリーブ油のエマルジョンを血清試料等と接触させ、37℃で24時間反応させた後、リパーゼによる加水分解反応により生成した脂肪酸をアルカリで滴定するCherry-Crandallの方法が知られていた。
 しかし、この方法は反応時間が長く、測定しようとするリパーゼの不活性化や反応阻害が著しい方法であった。
The following methods have been known as methods for measuring lipase activity in serum or plasma (see Non-Patent Document 1 and Non-Patent Document 2).
For example, an olive oil emulsion is used as a lipase substrate, this olive oil emulsion is brought into contact with a serum sample and the like, reacted at 37 ° C. for 24 hours, and then the fatty acid produced by the hydrolysis reaction with lipase is titrated with alkali. Crandall's method was known.
However, this method is a method in which the reaction time is long and the inactivation of the lipase to be measured and the reaction inhibition are remarkable.
 また、トリオレイン又はオリーブ油のエマルジョンをリパーゼの基質として用い、このトリオレイン又はオリーブ油のエマルジョンを血清試料等と接触させ、反応させて、リパーゼによる乳化ミセルの加水分解反応にともなって起こる反応液の濁度の減少からリパーゼ活性を測定するVogel-Zieve法及びこの変法が知られていた。
 しかし、これらの方法は、血清蛋白による阻害やリウマチ因子による凝集塊の干渉を受け、均一かつ安定なエマルジョンを作るのが難しく、再現性に乏しいという短所を有する方法であった。
In addition, the emulsion of triolein or olive oil is used as a lipase substrate, and the emulsion of triolein or olive oil is brought into contact with a serum sample and reacted to cause turbidity of the reaction solution caused by the hydrolysis reaction of the emulsion micelle by lipase. The Vogel-Zieve method for measuring lipase activity from a decrease in degree and this variant were known.
However, these methods are disadvantageous in that it is difficult to produce a uniform and stable emulsion due to inhibition by serum proteins and interference of aggregates due to rheumatoid factors, and poor reproducibility.
 また、BALB(2,3-ジメルカプト-1-プロパノール 三酪酸)をリパーゼの基質として用い、このBALBを血清試料等と接触させ、反応させて、リパーゼによる加水分解反応により生成したBAL(2,3-ジメルカプト-1-プロパノール)をDTNB(5,5’-ジチオビス-2-ニトロ安息香酸)と反応させて、生じたTNBアニオンの黄色の発色を412nmで測定することによってリパーゼ活性を測定する方法が知られていた。
 しかし、この方法は、高濃度の肝エステラーゼの存在下でその干渉を受けてしまうため、他の測定項目の測定試薬から反応セル又はノズル(プローブ)を介して混入する肝エステラーゼの影響を受けて測定値に誤差が生じるという短所を有する方法であった。
Further, BALB (2,3-dimercapto-1-propanol tributyric acid) is used as a lipase substrate, and this BALB is brought into contact with a serum sample or the like and reacted to produce BAL (2,3 produced by a hydrolysis reaction with lipase). A method for measuring lipase activity by reacting -dimercapto-1-propanol) with DTNB (5,5'-dithiobis-2-nitrobenzoic acid) and measuring the yellow color of the resulting TNB anion at 412 nm. It was known.
However, since this method is subject to interference in the presence of a high concentration of liver esterase, it is affected by the liver esterase mixed in from the measurement reagent of other measurement items via the reaction cell or nozzle (probe). This method has a disadvantage that an error occurs in the measured value.
 また、天然型基質である1,2-ジリノレオイルグリセロールをリパーゼの基質として用い、この1,2-ジリノレオイルグリセロールを血清試料等と接触させ、反応させて、リパーゼによる加水分解反応により生成したリノール酸が、コエンザイムA、NAD及びATPの存在下で、アシル-CoAシンセターゼ、アシル-CoAオキシダーゼ、エノイル-CoAヒドラターゼ-3-ヒドロキシアシル-CoAデヒドロゲナーゼ-3-ケトアシル-CoAチオラーゼ複合酵素の共同作用によってβ-酸化を受ける際に起こるNADHの生成速度を測定することによってリパーゼ活性を測定する方法が知られていた。
 しかし、この方法も、高濃度の肝エステラーゼの存在下でその干渉を受けてしまうため、他の測定項目の測定試薬から反応セル又はノズル(プローブ)を介して混入する肝エステラーゼの影響を受けて測定値に誤差が生じるという短所を有する方法であった。
In addition, 1,2-dilinoleoylglycerol, which is a natural substrate, is used as a lipase substrate, and this 1,2-dilinoleoylglycerol is brought into contact with a serum sample and reacted to produce a lipase hydrolysis reaction. Linoleic acid is a cofactor of acyl-CoA synthetase, acyl-CoA oxidase, enoyl-CoA hydratase-3-hydroxyacyl-CoA dehydrogenase-3-ketoacyl-CoA thiolase complex enzyme in the presence of coenzyme A, NAD + and ATP There has been known a method for measuring lipase activity by measuring the rate of formation of NADH that occurs upon undergoing β-oxidation by action.
However, this method is also subject to interference in the presence of a high concentration of liver esterase, and is therefore affected by liver esterase mixed from the measurement reagent of other measurement items via the reaction cell or nozzle (probe). This method has a disadvantage that an error occurs in the measured value.
 前記の各測定方法に加えて、1,2-o-ジラウリル-rac-グリセロ-3-グルタル酸-(6’-メチルレゾルフィン)-エステル[以下、「DGGMR」ということがある]をリパーゼの基質として用いる血清又は血漿中のリパーゼ活性の測定方法が開発された(特許文献1及び非特許文献2参照。)。
 この方法では、この1,2-o-ジラウリル-rac-グリセロ-3-グルタル酸-(6’-メチルレゾルフィン)-エステル[DGGMR]を血清試料等と接触させ、反応させることにより、リパーゼが触媒する加水分解反応によって、1,2-o-ジラウリル-rac-グリセロール及びグルタル酸-(6’-メチルレゾルフィン)-エステルが生成する。
 このグルタル酸-(6’-メチルレゾルフィン)-エステルは不安定であって、容易に自然に加水分解されて6’-メチルレゾルフィン(λmax:580nm)を生成する。
 この生成する6’-メチルレゾルフィンの増加を580nm又はその近辺の波長の吸光度を測ることによって測定し、試料中に含まれていたリパーゼの活性値を求めることができる。
 このDGGMRをリパーゼの基質として用いるリパーゼ活性の測定方法は、測定が一連の反応で進むシンプルなものであり、かつ他の測定試薬から反応セル又はノズル(プローブ)を介して混入するエステラーゼの影響を受けにくいという長所を有する方法である。
In addition to the above measurement methods, 1,2-o-dilauryl-rac-glycero-3-glutaric acid- (6′-methylresorufin) -ester [hereinafter sometimes referred to as “DGGMR”] was added to lipase A method for measuring lipase activity in serum or plasma used as a substrate has been developed (see Patent Document 1 and Non-Patent Document 2).
In this method, the 1,2-o-dilauryl-rac-glycero-3-glutaric acid- (6′-methylresorufin) -ester [DGGMR] is brought into contact with a serum sample and reacted, whereby lipase is reacted. The catalyzed hydrolysis reaction produces 1,2-o-dilauryl-rac-glycerol and glutaric acid- (6′-methylresorufin) -ester.
This glutaric acid- (6′-methylresorufin) -ester is unstable and readily hydrolyzes to yield 6′-methylresorufin (λmax: 580 nm).
The increase in 6′-methylresorufin produced is measured by measuring the absorbance at a wavelength of 580 nm or in the vicinity thereof, and the activity value of lipase contained in the sample can be determined.
This method of measuring lipase activity using DGGMR as a lipase substrate is a simple method in which the measurement proceeds in a series of reactions, and the influence of esterase mixed in from other measurement reagents via a reaction cell or nozzle (probe) is considered. This method has the advantage of being difficult to receive.
 また、血清又は血漿等に含まれるリパーゼは、エマルジョン化したトリグリセライド基質の水と油との界面で最も効率よく作用し、このリパーゼの反応速度は分散した基質の表面積に関係するので、このリパーゼの活性測定には安定で均一なミセル粒子からなる基質の調製が重要であるとされている(非特許文献2参照。)。
 このため、従来、リパーゼ活性の測定に使用するための基質溶液(リパーゼ活性測定用基質溶液)を製造するに当っては、安定で均一なミセル粒子からなるエマルジョン化(乳化)した基質溶液となるよう、種々の方法が考えられてきたが、基質を界面活性剤を含む水溶液に混合したり、基質をアルコールなどの有機溶媒を含む溶液に混合したり、基質含有液を滴々と滴下して溶液に混合したり、基質含有液を溶液に噴射注入したり、基質溶液を強力なミキサーで高速に撹拌したり、又は基質溶液に超音波を掛ける処理を行ったり等の煩雑な若しくは熟練を要する等の特別な処理が必要であったり、又は特別な装置若しくは器具などの物等が必要であった。
In addition, lipase contained in serum or plasma acts most efficiently at the water / oil interface of the emulsified triglyceride substrate, and the reaction rate of this lipase is related to the surface area of the dispersed substrate. Preparation of a substrate composed of stable and uniform micelle particles is considered to be important for activity measurement (see Non-Patent Document 2).
Therefore, conventionally, when producing a substrate solution for use in measuring lipase activity (substrate solution for measuring lipase activity), it becomes an emulsified (emulsified) substrate solution composed of stable and uniform micelle particles. Various methods have been considered, but the substrate is mixed with an aqueous solution containing a surfactant, the substrate is mixed with a solution containing an organic solvent such as alcohol, or the substrate-containing solution is dropped dropwise. It is cumbersome or skillful, such as mixing into a solution, spraying and injecting a substrate-containing solution into the solution, stirring the substrate solution at a high speed with a powerful mixer, or applying ultrasonic waves to the substrate solution. Special treatment such as, or the like, or a special device or instrument.
 ところで、リパーゼ活性測定用基質を含有する溶液は一般に不安定であり、その保存安定性に問題があった。
 このため、リパーゼ活性測定用基質を含有する溶液の保存安定性の改善を目的として種々の試みが行われた。
By the way, a solution containing a substrate for measuring lipase activity is generally unstable and has a problem in its storage stability.
For this reason, various attempts have been made for the purpose of improving the storage stability of a solution containing a substrate for measuring lipase activity.
 例えば、リパーゼの基質となるトリグリセライド等の非水溶性物質を非イオン性界面活性剤を含む水溶液に加え、撹拌しながら加熱し、一度非イオン性界面活性剤の曇点より高い温度に上げ、更に撹拌を続けながら曇点以下に冷却することを特徴とする、非水溶性物質の透明な可溶化水溶液の製造方法が、従来困難であった非水溶性物質の可溶化を可能にし、しかも得られる可溶化水溶液は極めて安定であるとの効果を奏するものとして開示された(特許文献2参照。)。 For example, add a non-water-soluble substance such as triglyceride as a lipase substrate to an aqueous solution containing a non-ionic surfactant, heat it with stirring, and once raise it to a temperature higher than the cloud point of the non-ionic surfactant. A method for producing a transparent solubilized aqueous solution of a water-insoluble substance, which is cooled to below the cloud point while continuing to stir, enables the solubilization of a water-insoluble substance, which has been difficult in the past, and is obtained. The solubilized aqueous solution was disclosed as having the effect of being extremely stable (see Patent Document 2).
 また、低濃度のpH緩衝液、及びポリオキシエチレンアルキルフェニルエーテル系非イオン性界面活性剤等の非イオン性界面活性剤を含有することを特徴とするリパーゼ活性測定用ジグリセリド溶液が、長期保存安定性に優れたジグリセリドの水溶液を提供すること等が可能であるとの効果を奏するものとして開示された(特許文献3参照。)。 In addition, a diglyceride solution for measuring lipase activity comprising a low-concentration pH buffer solution and a nonionic surfactant such as a polyoxyethylene alkylphenyl ether-based nonionic surfactant has long-term storage stability. It was disclosed as having an effect that it is possible to provide an aqueous solution of diglyceride having excellent properties (see Patent Document 3).
 また、少なくともポリオキシエチレンアルキルフェニルエーテル系非イオン性界面活性剤等の非イオン性界面活性剤に溶解したジグリセリドを基質として用いることを特徴とする植物由来及び/又は微生物由来リパーゼ活性測定用組成物が、長期保存安定性に優れたジグリセリドの水溶液を含有するキット、組成物の提供が可能になる等の効果を奏するものとして開示された(特許文献4参照。)。 Also, a composition for measuring plant-derived and / or microorganism-derived lipase activity, comprising using, as a substrate, diglyceride dissolved in at least a nonionic surfactant such as a polyoxyethylene alkylphenyl ether-based nonionic surfactant However, it has been disclosed that the kit and composition containing an aqueous solution of diglyceride excellent in long-term storage stability can be provided (see Patent Document 4).
 また、前記のDGGMRよりなるリパーゼ基質等に対して、新規なリパーゼ基質可溶化剤である1,2-ジフタノイル-sn-グリセロ-3-ホスホコリンにより可溶化した酵素活性測定用リパーゼ基質溶液等が、保存安定性が大きく、溶液の高い透明度を長期間にわたって保持することも可能であるとの効果を奏するものとして開示された(特許文献5参照。)。 Further, a lipase substrate solution for enzyme activity measurement, etc. solubilized with 1,2-diphthalanoyl-sn-glycero-3-phosphocholine, a novel lipase substrate solubilizing agent, with respect to the lipase substrate composed of the above DGGMR, It was disclosed that the storage stability is large and that the high transparency of the solution can be maintained over a long period of time (see Patent Document 5).
 また、前記のDGGMRよりなるリパーゼ基質と側鎖型の非反応性のポリエーテル変性タイプの変性シリコーンオイル又はポリオキシエチレン・ポリオキシプロピレン縮合物を混合し混合物を調製し、当該混合物の全部又は一部を水又は水溶液と混合する工程を含むことを特徴とするリパーゼ活性測定溶液の製造方法として開示された(特許文献6参照。)。 Further, a mixture is prepared by mixing the lipase substrate composed of the above DGGMR and a side chain type non-reactive polyether-modified type modified silicone oil or polyoxyethylene / polyoxypropylene condensate. It was disclosed as a method for producing a solution for measuring lipase activity, comprising a step of mixing a part with water or an aqueous solution (see Patent Document 6).
特開昭61-254197号公報Japanese Patent Laid-Open No. 61-254197 特開昭58-156330号公報JP 58-156330 A 国際公開第06/054681号パンフレットInternational Publication No. 06/054681 pamphlet 特開2007-306821号公報JP 2007-306721 A 特開平11-318494号公報JP 11-318494 A 国際公開第2016/024549号パンフレットInternational Publication No. 2016/024549 Pamphlet
 試薬には、不安定なものが多く、保存中に劣化して使用できなくなってしまうことが多々ある。
 特に、臨床検査試薬を自動分析装置で使用するといった、試薬を開封状態で使用せざるを得ない場合には、開封状態とすることにより生じる種々の要因により、試薬の劣化は著しい。
Reagents are often unstable and often deteriorate during storage and become unusable.
In particular, when a clinical test reagent is used in an automatic analyzer and the reagent must be used in an opened state, the deterioration of the reagent is significant due to various factors caused by the opened state.
 例えば、空気中の酸素が試薬に溶け込むことにより、試薬中の成分が酸化され、劣化してしまうことがある。
 また、空気中の二酸化炭素が試薬中に溶け込むことにより、試薬のpHが低下し、本来の機能が果たせなくなってしまうことがある。
 更に、試薬中に二酸化炭素が溶け込むことにより、被検物質(測定しようとする物質)が二酸化炭素により阻害を受けてしまい、正確な測定が出来なくなってしまう場合もある。
For example, when oxygen in the air dissolves in the reagent, components in the reagent may be oxidized and deteriorated.
Further, when carbon dioxide in the air dissolves in the reagent, the pH of the reagent may be lowered and the original function may not be performed.
Furthermore, when carbon dioxide dissolves in the reagent, the test substance (substance to be measured) is inhibited by carbon dioxide, and accurate measurement may not be possible.
 本発明者らは、DGGMRをリパーゼ活性測定用基質として含むリパーゼ活性測定試薬を自動分析装置にセットして試料中のリパーゼ活性値の測定を行なってゆく際に、測定により得られる吸光度値が経時的に低下してゆくことに気付いた。 When the present inventors set a lipase activity measurement reagent containing DGGMR as a lipase activity measurement substrate in an automatic analyzer and measure the lipase activity value in a sample, the absorbance value obtained by the measurement is changed over time. I noticed that it gradually declined.
 本発明者らは、検討の結果、自動分析装置の試薬庫における近傍の他の臨床検査用試薬中に防腐剤として含有させたアジ化ナトリウム等のアジ化物がアジ化水素として気化し、その気化したアジ化物が同じ試薬庫中のリパーゼ活性測定用基質溶液に溶け込むことにより、当該リパーゼ活性測定用基質溶液に含まれるDGGMRが劣化してしまい、試料中のリパーゼ活性値の測定により得られる吸光度値が経時的に低下してゆくことを見い出した。 As a result of the study, the present inventors have vaporized, as hydrogen azide, azide such as sodium azide contained as a preservative in other clinical test reagents in the vicinity of the reagent container of the automatic analyzer. As a result, the DGGMR contained in the lipase activity measurement substrate solution deteriorates and the absorbance value obtained by measuring the lipase activity value in the sample. Was found to decrease over time.
 更に、本発明者らは、自動分析装置において、試薬に含まれるアジ化物が自動分析装置の試薬プローブ(試薬採取口)に付着することにより、この試薬プローブが次の試薬であるリパーゼ活性測定用基質溶液(DGGMRをリパーゼ活性測定用基質として含むもの)を採取した際に、試薬プローブに付着したアジ化物がそのリパーゼ活性測定用基質溶液に混入し、当該リパーゼ活性測定用基質溶液に含まれるDGGMRを劣化させ、試料中のリパーゼ活性値の測定により得られる吸光度値が低下することを見い出した。 Furthermore, the inventors of the present invention use an autoanalyzer for measuring lipase activity in which azide contained in a reagent adheres to a reagent probe (reagent sampling port) of the autoanalyzer, and this reagent probe is the next reagent. When a substrate solution (containing DGGMR as a lipase activity measurement substrate) is collected, the azide adhering to the reagent probe is mixed in the lipase activity measurement substrate solution, and the DGGMR contained in the lipase activity measurement substrate solution It was found that the absorbance value obtained by measuring the lipase activity value in the sample was lowered.
 このようにDGGMRをリパーゼ活性測定用基質として含む従来のリパーゼ活性測定用基質溶液は、他の臨床検査用試薬中に含まれるアジ化物が混入することにより、DGGMRが劣化してしまい、測定により得られる吸光度値が低下してしまうものであった。 As described above, the conventional lipase activity measurement substrate solution containing DGGMR as a lipase activity measurement substrate deteriorates DGGMR by mixing with azide contained in other clinical laboratory reagents, and is obtained by measurement. As a result, the absorbance value was decreased.
 これに対して、本発明の課題は、DGGMRをリパーゼ活性測定用基質として含むリパーゼ活性測定用基質溶液において、例えアジ化物が混入しても、DGGMRの劣化を防ぎ、測定により得られる吸光度値の低下を抑制することができるリパーゼ活性測定用基質溶液を提供することである。 On the other hand, the problem of the present invention is to prevent the degradation of DGGMR in a lipase activity measurement substrate solution containing DGGMR as a lipase activity measurement substrate, even if azide is mixed, and to obtain an absorbance value obtained by measurement. It is to provide a lipase activity measurement substrate solution capable of suppressing the decrease.
 また、本発明の課題は、DGGMRをリパーゼ活性測定用基質として含むリパーゼ活性測定試薬において、例えアジ化物が混入しても、DGGMRの劣化を防ぎ、測定により得られる吸光度値の低下を抑制することができるリパーゼ活性測定試薬を提供することである。 Another object of the present invention is to prevent degradation of DGGMR and suppress a decrease in absorbance value obtained by measurement even if azide is mixed in a lipase activity measurement reagent containing DGGMR as a lipase activity measurement substrate. It is to provide a reagent for measuring lipase activity capable of
 また、本発明の課題は、DGGMRをリパーゼ活性測定用基質として含むリパーゼ活性測定用基質溶液を使用するリパーゼ活性測定方法において、例えアジ化物が混入しても、DGGMRの劣化を防ぎ、測定により得られる吸光度値の低下を抑制することができるリパーゼ活性測定方法を提供することである。 Another object of the present invention is to provide a lipase activity measurement method using a lipase activity measurement substrate solution containing DGGMR as a lipase activity measurement substrate, even if azide is mixed therein, preventing deterioration of DGGMR and obtaining it by measurement. It is providing the lipase activity measuring method which can suppress the fall of the light absorbency value produced.
 更に、本発明の課題は、DGGMRをリパーゼ活性測定用基質として使用するリパーゼ活性測定において、例えアジ化物が混入しても、DGGMRの劣化を防ぎ、測定により得られる吸光度値の低下を抑制することができるアジ化物の影響の抑制方法を提供することである。 Furthermore, the object of the present invention is to prevent degradation of DGGMR and suppress a decrease in absorbance value obtained by measurement even when azide is mixed in lipase activity measurement using DGGMR as a substrate for lipase activity measurement. It is providing the suppression method of the influence of the azide which can be performed.
 本発明者らは、DGGMRをリパーゼ活性測定用基質として含むリパーゼ活性測定用基質溶液及びリパーゼ活性測定試薬、リパーゼ活性測定方法並びにアジ化物の影響の抑制方法について検討を重ねたところ、リパーゼ活性測定用基質溶液において、DGGMRと共に還元剤を含有させることにより、上記課題を解決できることを見出し、本発明を完成するに至った。 The inventors of the present invention have studied the lipase activity measurement substrate solution, the lipase activity measurement reagent, the lipase activity measurement method, and the method for suppressing the influence of azide, which contain DGGMR as a lipase activity measurement substrate. It has been found that the above problem can be solved by including a reducing agent together with DGGMR in the substrate solution, and the present invention has been completed.
 本発明の要旨は以下の通りである。
(1)1,2-o-ジラウリル-rac-グリセロ-3-グルタル酸-(6’-メチルレゾルフィン)-エステルをリパーゼ活性測定用基質として含むリパーゼ活性測定用基質溶液において、還元剤を含有することを特徴とするリパーゼ活性測定用基質溶液。
(2)前記(1)に記載のリパーゼ活性測定用基質溶液を含むことを特徴とするリパーゼ活性測定試薬。
(3)1,2-o-ジラウリル-rac-グリセロ-3-グルタル酸-(6’-メチルレゾルフィン)-エステルをリパーゼ活性測定用基質として含むリパーゼ活性測定用基質溶液を使用するリパーゼ活性測定方法において、リパーゼ活性測定用基質溶液に還元剤を含有させることを特徴とするリパーゼ活性測定方法。
(4)1,2-o-ジラウリル-rac-グリセロ-3-グルタル酸-(6’-メチルレゾルフィン)-エステルをリパーゼ活性測定用基質として含むリパーゼ活性測定用基質溶液に還元剤を含有させることを特徴とするリパーゼ活性測定に対するアジ化物の影響の抑制方法。
The gist of the present invention is as follows.
(1) Substrate solution for lipase activity measurement containing 1,2-o-dilauryl-rac-glycero-3-glutaric acid- (6′-methylresorufin) -ester as a lipase activity measurement substrate, containing a reducing agent A substrate solution for measuring a lipase activity.
(2) A lipase activity measurement reagent comprising the lipase activity measurement substrate solution according to (1).
(3) Lipase activity measurement using a lipase activity measurement substrate solution containing 1,2-o-dilauryl-rac-glycero-3-glutaric acid- (6′-methylresorufin) -ester as a lipase activity measurement substrate A method for measuring lipase activity, characterized in that a reducing agent is contained in a substrate solution for measuring lipase activity.
(4) A reducing agent is contained in a lipase activity measurement substrate solution containing 1,2-o-dilauryl-rac-glycero-3-glutaric acid- (6′-methylresorufin) -ester as a lipase activity measurement substrate. A method for suppressing the influence of azide on lipase activity measurement.
 本発明のリパーゼ活性測定用基質溶液は、混入したアジ化物によるDGGMRの劣化を防ぎ、測定により得られる吸光度値の低下を抑制することができるリパーゼ活性測定用基質溶液である。
 また、本発明のリパーゼ活性測定試薬は、混入したアジ化物によるDGGMRの劣化を防ぎ、測定により得られる吸光度値の低下を抑制することができるリパーゼ活性測定試薬である。
 また、本発明のリパーゼ活性測定方法は、混入したアジ化物によるDGGMRの劣化を防ぎ、測定により得られる吸光度値の低下を抑制することができるリパーゼ活性測定方法である。
 また、本発明のアジ化物の影響の抑制方法は、混入したアジ化物によるDGGMRの劣化を防ぎ、測定により得られる吸光度値の低下を抑制することができるアジ化物の影響の抑制方法である。
The substrate solution for measuring lipase activity of the present invention is a substrate solution for measuring lipase activity capable of preventing the degradation of DGGMR due to the mixed azide and suppressing the decrease in the absorbance value obtained by the measurement.
The reagent for measuring lipase activity of the present invention is a reagent for measuring lipase activity capable of preventing the degradation of DGGMR due to a mixed azide and suppressing the decrease in the absorbance value obtained by the measurement.
Moreover, the lipase activity measuring method of the present invention is a lipase activity measuring method capable of preventing the degradation of DGGMR due to the mixed azide and suppressing the decrease in the absorbance value obtained by the measurement.
In addition, the method for suppressing the influence of an azide according to the present invention is a method for suppressing the influence of an azide that can prevent the degradation of DGGMR due to a mixed azide and suppress a decrease in the absorbance value obtained by the measurement.
〔1〕本発明のリパーゼ活性測定用基質溶液
I.総論
1.リパーゼ活性測定用基質溶液
 本発明のリパーゼ活性測定用基質溶液は、1,2-o-ジラウリル-rac-グリセロ-3-グルタル酸-(6’-メチルレゾルフィン)-エステル[DGGMR]をリパーゼ活性測定用基質として含むリパーゼ活性測定用基質溶液において、還元剤を含有することを特徴とするものである。
[1] Substrate solution for measuring lipase activity of the present invention General 1. Substrate solution for lipase activity measurement The substrate solution for lipase activity measurement of the present invention comprises 1,2-o-dilauryl-rac-glycero-3-glutaric acid- (6′-methylresorufin) -ester [DGGMR] lipase activity. The lipase activity measurement substrate solution contained as the measurement substrate contains a reducing agent.
 そして、本発明のリパーゼ活性測定用基質溶液は、上記の構成により、混入したアジ化物によるDGGMRの劣化を防ぎ、測定により得られる吸光度値の低下を抑制することができるものである。 And the substrate solution for lipase activity measurement of the present invention can prevent the degradation of DGGMR due to the mixed azide and suppress the decrease in the absorbance value obtained by the measurement by the above-mentioned constitution.
2.リパーゼ
 本発明において、リパーゼは、リパーゼとしての活性、すなわちリパーゼ活性を有するものであればよく、このリパーゼ活性を有するものであれば特に限定はない。
2. Lipase In the present invention, the lipase is not particularly limited as long as it has an activity as a lipase, that is, a lipase activity.
 本発明において、リパーゼとしては、例えば、長鎖脂肪酸の3分子がそれぞれグリセロールにエステル結合したトリグリセライド(TG)のα位(1位、3位)のエステル結合を加水分解して、2分子の脂肪酸及び1分子のβ-モノグリセライドを生成する反応を触媒する膵リパーゼ[EC 3.1.1.3]等を挙げることができる。 In the present invention, as the lipase, for example, two molecules of fatty acid are obtained by hydrolyzing the ester bond at the α-position (position 1 and position 3) of triglyceride (TG) in which three molecules of long-chain fatty acid are ester-bonded to glycerol. And pancreatic lipase [EC 3.1.1.3], which catalyzes a reaction for producing one molecule of β-monoglyceride.
 本発明は、体液、臓器又は組織に存在するリパーゼの活性測定にとって好適であり、体液に存在するリパーゼの活性測定にとってより好適であり、血液、血清又は血漿に存在するリパーゼの活性測定にとって更に好適であり、血清又は血漿に存在するリパーゼの活性測定にとって特に好適である。 The present invention is suitable for measuring the activity of lipase present in body fluid, organ or tissue, more suitable for measuring the activity of lipase present in body fluid, and more suitable for measuring the activity of lipase present in blood, serum or plasma. And is particularly suitable for measuring the activity of lipase present in serum or plasma.
 また、本発明は、膵リパーゼの活性測定にとって好適である。 The present invention is also suitable for measuring pancreatic lipase activity.
II.リパーゼ活性測定用基質溶液
1.総論
 前記の通り、本発明のリパーゼ活性測定用基質溶液は、1,2-o-ジラウリル-rac-グリセロ-3-グルタル酸-(6’-メチルレゾルフィン)-エステル、及び界面活性剤よりなるミセル粒子からなるエマルジョン溶液であって、還元剤を含有するものであることが好ましい。
II. Substrate solution for lipase activity measurement General As described above, the lipase activity measurement substrate solution of the present invention comprises 1,2-o-dilauryl-rac-glycero-3-glutaric acid- (6′-methylresorufin) -ester and a surfactant. It is preferable that the emulsion solution is composed of micelle particles and contains a reducing agent.
 本発明における、このDGGMR、及び界面活性剤よりなるミセル粒子からなるエマルジョン溶液であって、還元剤を含有するものについて、以下説明する。 In the present invention, an emulsion solution composed of micelle particles composed of DGGMR and a surfactant and containing a reducing agent will be described below.
 なお、この本発明におけるエマルジョン溶液[すなわち、DGGMR、及び界面活性剤よりなるミセル粒子からなるエマルジョン溶液であって、還元剤を含有するもの]は、後述の通り、DGGMR、界面活性剤、及び還元剤以外の物を含んでよいものである。 The emulsion solution in the present invention [that is, an emulsion solution composed of micelle particles composed of DGGMR and a surfactant and containing a reducing agent] is a DGGMR, a surfactant, and a reducing agent as described later. It may contain things other than the agent.
2.リパーゼ活性測定用基質
(1)総論
 本発明において、試料中に含まれるリパーゼの活性の測定に使用するためのリパーゼの基質、すなわちリパーゼ活性測定用基質は、1,2-o-ジラウリル-rac-グリセロ-3-グルタル酸-(6’-メチルレゾルフィン)-エステル[DGGMR]である。
2. Substrate for Measuring Lipase Activity (1) General In the present invention, a lipase substrate for use in measuring the activity of lipase contained in a sample, that is, a substrate for measuring lipase activity is 1,2-o-dilauryl-rac- Glycero-3-glutaric acid- (6′-methylresorufin) -ester [DGGMR].
 本発明においては、リパーゼ活性測定用基質であるDGGMRを試料と接触させ、試料中に含まれるリパーゼと反応させることにより、リパーゼが触媒する加水分解反応によって、DGGMRより1,2-o-ジラウリル-rac-グリセロール及びグルタル酸-(6’-メチルレゾルフィン)-エステルが生成する。
 このグルタル酸-(6’-メチルレゾルフィン)-エステルは不安定であって、容易に自然に加水分解されて6’-メチルレゾルフィン(λmax:580nm)を生成する。
 本発明においては、この生成する6’-メチルレゾルフィンの増加を580nm又はその近辺の波長の吸光度を測ることによって測定し、試料中に含まれていたリパーゼの活性値を求めることができる。
In the present invention, DGGMR, which is a substrate for measuring lipase activity, is brought into contact with a sample and reacted with the lipase contained in the sample, whereby 1,2-o-dilauryl-- is obtained from DGGMR by a hydrolysis reaction catalyzed by the lipase. rac-glycerol and glutaric acid- (6′-methylresorufin) -ester are formed.
This glutaric acid- (6′-methylresorufin) -ester is unstable and readily hydrolyzes to yield 6′-methylresorufin (λmax: 580 nm).
In the present invention, the increase in 6′-methylresorufin produced can be measured by measuring the absorbance at a wavelength of 580 nm or in the vicinity thereof, and the activity value of lipase contained in the sample can be determined.
 なお、DGGMRは、ロシュ・ダイアグノスティックス株式会社[日本国]、又はシグマ アルドリッチ ジャパン合同会社[日本国]等より市販されている。 DGGMR is commercially available from Roche Diagnostics Inc. [Japan] or Sigma Aldrich Japan LLC [Japan].
(2)リパーゼ活性測定用基質の濃度
 本発明のリパーゼ活性測定用基質溶液におけるDGGMRの濃度であるが、この本発明のリパーゼ活性測定用基質溶液におけるDGGMRの濃度が0.05mM以上であることが、安定で均一なミセル粒子からなるエマルジョン溶液とする上で好ましい。
(2) Concentration of the substrate for measuring lipase activity The concentration of DGGMR in the substrate solution for measuring lipase activity of the present invention, and the concentration of DGGMR in the substrate solution for measuring lipase activity of the present invention is 0.05 mM or more. The emulsion solution is preferably composed of stable and uniform micelle particles.
 なお、この本発明のリパーゼ活性測定用基質溶液におけるDGGMRの濃度は、前記の目的の上から、より好ましくは0.1mM以上であり、特に好ましくは0.2mM以上である。 The concentration of DGGMR in the lipase activity measurement substrate solution of the present invention is more preferably 0.1 mM or more, particularly preferably 0.2 mM or more, for the purpose described above.
 また、この本発明のリパーゼ活性測定用基質溶液に含有させるDGGMRの濃度であるが、前記の目的の上から、2mM以下であることが好ましい。 The concentration of DGGMR contained in the lipase activity measurement substrate solution of the present invention is preferably 2 mM or less for the above purpose.
 なお、この本発明のリパーゼ活性測定用基質溶液におけるDGGMRの濃度は、前記の目的の上から、より好ましくは1mM以下であり、特に好ましくは0.8mM以下である。 Note that the concentration of DGGMR in the lipase activity measurement substrate solution of the present invention is more preferably 1 mM or less, and particularly preferably 0.8 mM or less, for the purpose described above.
3.還元剤
(1)総論
 本発明のリパーゼ活性測定用基質溶液は、DGGMRをリパーゼ活性測定用基質として含むリパーゼ活性測定用基質溶液において、還元剤を含有することを特徴とするものである。
3. Reductant (1) General The lipase activity measurement substrate solution of the present invention is characterized in that the lipase activity measurement substrate solution containing DGGMR as the lipase activity measurement substrate contains a reducing agent.
 これにより、本発明のリパーゼ活性測定用基質溶液は、混入したアジ化物によるDGGMRの劣化を防ぎ、測定により得られる吸光度値の低下を抑制することができるものである。
 そして、本発明のリパーゼ活性測定用基質溶液は、DGGMR、及び界面活性剤よりなるミセル粒子からなるエマルジョン溶液であって、還元剤を含有するものであることが好ましい。
Thereby, the substrate solution for lipase activity measurement of the present invention can prevent the degradation of DGGMR due to the mixed azide, and can suppress the decrease in the absorbance value obtained by the measurement.
The substrate solution for measuring lipase activity according to the present invention is an emulsion solution composed of micelle particles composed of DGGMR and a surfactant, and preferably contains a reducing agent.
(2)本発明における還元剤
 本発明における還元剤としては、特に限定はなく、還元能力を有するものであればよい。
(2) Reducing agent in the present invention The reducing agent in the present invention is not particularly limited as long as it has a reducing ability.
 この還元剤としては、例えば、ヒドロキシルアンモニウム塩、又はチオール化合物等を挙げることができる。 Examples of the reducing agent include hydroxylammonium salts and thiol compounds.
(a)ヒドロキシルアンモニウム塩
 本発明において、このヒドロキシルアンモニウム塩としては、例えば、塩化ヒドロキシルアンモニウム、硝酸ヒドロキシルアンモニウム、又は硫酸ヒドロキシルアンモニウム等を挙げることができる。
(A) Hydroxyl ammonium salt In the present invention, examples of the hydroxyl ammonium salt include hydroxyl ammonium chloride, hydroxyl ammonium nitrate, and hydroxyl ammonium sulfate.
(b)チオール化合物
 本発明において、このチオール化合物としては、例えば、ジチオスレイトール(DTT)、N-アセチル-L-システイン(NAC)、チオグリセロール、還元型グルタチオン、システイン、ジチオエリスリトール、臭化2-アミノエチルイソチオウロニウム、2-チオグルコース、チオグリコール酸、2-メルカプトエタノール、N-グアニル-L-システイン、メルカプト酢酸、メルカプトコハク酸、2-メルカプトエタンスルホン酸、又はシステアミン等のSH基を有する化合物を挙げることができる。
(B) Thiol Compound In the present invention, examples of the thiol compound include dithiothreitol (DTT), N-acetyl-L-cysteine (NAC), thioglycerol, reduced glutathione, cysteine, dithioerythritol, bromide 2 -SH groups such as aminoethylisothiouronium, 2-thioglucose, thioglycolic acid, 2-mercaptoethanol, N-guanyl-L-cysteine, mercaptoacetic acid, mercaptosuccinic acid, 2-mercaptoethanesulfonic acid, or cysteamine The compound which has can be mentioned.
(3)濃度
 本発明のリパーゼ活性測定用基質溶液における還元剤の濃度は、特に限定されないが、0.01mM以上であることが好ましい。
(3) Concentration The concentration of the reducing agent in the lipase activity measurement substrate solution of the present invention is not particularly limited, but is preferably 0.01 mM or more.
 なお、この還元剤の好ましい濃度の下限は、より好ましくは0.1mM以上であり、特に好ましくは0.5mM以上である。 The lower limit of the preferred concentration of the reducing agent is more preferably 0.1 mM or more, and particularly preferably 0.5 mM or more.
 また、この還元剤の濃度であるが、上限は特にはないが、コスト等のことを考えると100mM迄で十分である。 The concentration of the reducing agent is not particularly limited, but up to 100 mM is sufficient considering the cost and the like.
 なお、この還元剤の好ましい濃度の下限は、より好ましくは10mM以下であり、特に好ましくは5mM以下である。 The lower limit of the preferred concentration of the reducing agent is more preferably 10 mM or less, and particularly preferably 5 mM or less.
(4)還元剤の使用等
 本発明において、還元剤は、1種類のものを使用してもよく、又は複数種類のものを使用してもよい。
(4) Use of reducing agent, etc. In the present invention, the reducing agent may be one type or a plurality of types.
 本発明において、混入したアジ化物によるDGGMRの劣化を防ぎ、測定により得られる吸光度値の低下を抑制する目的のためには、還元剤としては、ヒドロキシルアンモニウム塩が好ましく、特に塩化ヒドロキシルアンモニウムが好ましい。 In the present invention, for the purpose of preventing the degradation of DGGMR due to the mixed azide and suppressing the decrease in the absorbance value obtained by measurement, the reducing agent is preferably a hydroxylammonium salt, particularly preferably hydroxylammonium chloride.
4.界面活性剤
(1)総論
 前記の通り、本発明のリパーゼ活性測定用基質溶液は、DGGMR、及び界面活性剤よりなるミセル粒子からなるエマルジョン溶液であって、還元剤を含有するものであることが好ましい。
4). Surfactant (1) General As described above, the substrate solution for lipase activity measurement of the present invention is an emulsion solution composed of micelle particles composed of DGGMR and a surfactant, and contains a reducing agent. preferable.
 この界面活性剤としては、例えば、非イオン性界面活性剤、両イオン性界面活性剤、陰イオン性界面活性剤、及び陽イオン性界面活性剤等を挙げることができる。 Examples of this surfactant include nonionic surfactants, amphoteric surfactants, anionic surfactants, and cationic surfactants.
 この、非イオン性界面活性剤としては、例えば、側鎖型の非反応性のポリエーテル変性タイプの変性シリコーンオイル又はポリオキシエチレン・ポリオキシプロピレン縮合物等を挙げることができる。 Examples of the nonionic surfactant include a side chain type non-reactive polyether-modified type modified silicone oil or a polyoxyethylene / polyoxypropylene condensate.
 本発明のリパーゼ活性測定用基質溶液において、界面活性剤としては、非イオン性界面活性剤が好ましい。
 非イオン性界面活性剤としては、側鎖型の非反応性のポリエーテル変性タイプの変性シリコーンオイル、又はポリオキシエチレン・ポリオキシプロピレン縮合物が好ましく、側鎖型の非反応性のポリエーテル変性タイプの変性シリコーンオイルが特に好ましい。
In the substrate solution for measuring lipase activity of the present invention, the surfactant is preferably a nonionic surfactant.
As the nonionic surfactant, a side chain type non-reactive polyether-modified type modified silicone oil or a polyoxyethylene / polyoxypropylene condensate is preferable. A type of modified silicone oil is particularly preferred.
 DGGMR、及び界面活性剤よりなるミセル粒子からなるエマルジョン溶液であって、還元剤を含有するものであるリパーゼ活性測定用基質溶液は、すなわち、エマルジョン溶液であって、DGGMR、界面活性剤、及び還元剤を含有するものである。 A substrate solution for measuring lipase activity, which is an emulsion solution composed of micelle particles composed of DGGMR and a surfactant, and contains a reducing agent, that is, an emulsion solution comprising DGGMR, a surfactant, and a reducing agent. It contains an agent.
(2)側鎖型の非反応性のポリエーテル変性タイプの変性シリコーンオイル
 側鎖型の非反応性のポリエーテル変性タイプの変性シリコーンオイル[以下、「本変性シリコーンオイル」ということがある]について、以下説明する。
(2) Side-chain non-reactive polyether-modified type modified silicone oil Side-chain non-reactive polyether-modified type modified silicone oil [hereinafter sometimes referred to as “this modified silicone oil”] This will be described below.
 シリコーン化合物は、シロキサン結合〔-Si-O-Si-〕が主鎖であって、側鎖としてメチル基〔CH-〕等の有機基がケイ素原子に結合した重合体化合物である。
 そして、直鎖状のシリコーン化合物がシリコーンオイルである。
The silicone compound is a polymer compound in which a siloxane bond [—Si—O—Si—] is a main chain and an organic group such as a methyl group [CH 3 —] is bonded to a silicon atom as a side chain.
The linear silicone compound is silicone oil.
 なお、変性シリコーンオイルは、直鎖状のジメチルシリコーン化合物〔Si(CH-O-[Si(CH-O-]m-Si(CH〕の一部のケイ素原子に有機基を導入した化合物である。
 この変性シリコーンオイルとしては、ポリシロキサンの側鎖の一部、ポリシロキサンのどちらか片方の末端、ポリシロキサンの両方の末端、又はポリシロキサンの側鎖の一部と両方の末端に、各種の有機基を導入したシリコーンオイルが存在する。
The modified silicone oil is composed of a part of silicon atoms of a linear dimethyl silicone compound [Si (CH 3 ) 3 —O— [Si (CH 3 ) 2 —O—] m—Si (CH 3 ) 3 ]. It is a compound in which an organic group is introduced.
This modified silicone oil includes various kinds of organic compounds on a part of polysiloxane side chain, one end of polysiloxane, both ends of polysiloxane, or part of polysiloxane side chain and both ends. There are silicone oils with introduced groups.
 この内、ポリシロキサンの側鎖の一部に各種の有機基を導入したシリコーンオイルが、側鎖型の変性シリコーンオイル〔Si(CH-O-[Si(CH-O-]m-[Si(CH)(有機基)-O-]n-Si(CH〕である。 Among these, a silicone oil in which various organic groups are introduced into a part of the side chain of polysiloxane is a side chain type modified silicone oil [Si (CH 3 ) 3 —O— [Si (CH 3 ) 2 —O—. ] M- [Si (CH 3 ) (organic group) -O-] n-Si (CH 3 ) 3 ].
 なお、この導入する有機基の性質によって、変性シリコーンオイルは、反応性シリコーンオイルと非反応性シリコーンオイルに分類される。 The modified silicone oil is classified into a reactive silicone oil and a non-reactive silicone oil depending on the nature of the organic group to be introduced.
 この内、非反応性の変性シリコーンオイルとしては、その導入有機基により、ポリエーテル変性タイプ、アラルキル変性タイプ、フロロアルキル変性タイプ、長鎖アルキル変性タイプ、高級脂肪酸エステル変性タイプ、高級脂肪酸アミド変性タイプ、ポリエーテル・長鎖アルキル・アラルキル変性タイプ、長鎖アルキル・アラルキル変性タイプ、又はフェニル変性タイプ等を挙げることができる。 Among these, as non-reactive modified silicone oil, polyether modified type, aralkyl modified type, fluoroalkyl modified type, long chain alkyl modified type, higher fatty acid ester modified type, higher fatty acid amide modified type, depending on the introduced organic group And polyether / long-chain alkyl / aralkyl-modified type, long-chain alkyl / aralkyl-modified type, and phenyl-modified type.
 そして、側鎖型の非反応性の変性シリコーンオイル〔Si(CH-O-[Si(CH-O-]m-[Si(CH)(有機基)-O-]n-Si(CH〕としては、その変性タイプが、例えば、ポリエーテル変性タイプのもの〔有機基:-R(CO)(CO)R’〕、ポリエーテル・長鎖アルキル・アラルキル変性タイプのもの〔有機基:-R(CO)(CO)R’、-C2a+1、-CH-CH(CH)-C〕、アラルキル変性タイプのもの〔有機基:-CH-CH(CH)-C〕、フロロアルキル変性タイプのもの〔有機基:-CHCHCF〕、長鎖アルキル変性タイプのもの〔有機基:-C2a+1〕、長鎖アルキル・アラルキル変性タイプのもの〔有機基:-C2a+1、-CH-CH(CH)-C〕、高級脂肪酸エステル変性タイプのもの〔有機基:-OCOR〕、高級脂肪酸アミド変性タイプのもの〔有機基:-RNHCOR’〕、又はフェニル変性タイプのもの〔有機基:-C〕等を挙げることができる。 Then, a side-chain non-reactive modified silicone oil [Si (CH 3 ) 3 —O— [Si (CH 3 ) 2 —O—] m- [Si (CH 3 ) (organic group) —O—] n-Si (CH 3 ) 3 ] is, for example, a polyether-modified type [organic group: —R (C 2 H 4 O) a (C 3 H 6 O) b R ′] , Polyether, long chain alkyl, aralkyl-modified type [organic group: —R (C 2 H 4 O) a (C 3 H 6 O) b R ′, —C a H 2a + 1 , —CH 2 —CH ( CH 3 ) —C 6 H 5 ], aralkyl-modified type [organic group: —CH 2 —CH (CH 3 ) —C 6 H 5 ], fluoroalkyl-modified type [organic group: —CH 2 CH 2 CF 3], a long-chain alkyl-modified type ones [organic group: -C a H 2a 1], long-chain alkyl-aralkyl-modified type ones [organic group: -C a H 2a + 1, -CH 2 -CH (CH 3) -C 6 H 5 ], higher fatty acid ester-modified type ones [Organic groups: - OCOR], higher fatty acid amide modified type [organic group: —RNHCOR ′], phenyl modified type [organic group: —C 6 H 5 ], and the like.
 本発明においては、この側鎖型の非反応性のポリエーテル変性タイプの変性シリコーンオイル〔Si(CH-O-[Si(CH-O-]m-[Si(CH)(有機基)-O-]n-Si(CH〕[有機基:-R(CO)(CO)R’]を用いることが好ましい。 In the present invention, this side-chain non-reactive polyether-modified type modified silicone oil [Si (CH 3 ) 3 —O— [Si (CH 3 ) 2 —O—] m- [Si (CH 3 ) (Organic group) -O-] n-Si (CH 3 ) 3 ] [organic group: —R (C 2 H 4 O) a (C 3 H 6 O) b R ′] is preferably used.
 この側鎖型の非反応性のポリエーテル変性タイプの変性シリコーンオイルとしては、例えば、「KF-351A」、「KF-354L」、「KF-355A」、又は「KF-6011」[販売元はいずれの製品も信越化学工業株式会社(日本国)]等が市販されている。 As this side chain type non-reactive polyether-modified type modified silicone oil, for example, “KF-351A”, “KF-354L”, “KF-355A”, or “KF-6011” [distributor is Both products are commercially available from Shin-Etsu Chemical Co., Ltd. (Japan).
(3)ポリオキシエチレン・ポリオキシプロピレン縮合物
 ポリオキシエチレン・ポリオキシプロピレン縮合物[以下、「本POE・POP縮合物」ということがある]について、以下説明する。
(3) Polyoxyethylene / polyoxypropylene condensate The polyoxyethylene / polyoxypropylene condensate [hereinafter sometimes referred to as “the present POE / POP condensate”] will be described below.
 前記の通り、非イオン性界面活性剤として、ポリオキシエチレン-ポリオキシプロピレン縮合物〔HO(CO)-(CO)-(CO)H〕を挙げることができる。 As described above, polyoxyethylene-polyoxypropylene condensate [HO (C 2 H 4 O) a- (C 3 H 6 O) b- (C 2 H 4 O) c H is used as a nonionic surfactant. Can be mentioned.
 このポリオキシエチレン-ポリオキシプロピレン縮合物(本POE・POP縮合物)としては、例えば、ポリオキシエチレン(16)ポリオキシプロピレングリコール(17)〔医薬部外品原料規格名:ポリオキシエチレンポリオキシプロピレングリコール(16E.O.)(17P.O.)〕、又はポリオキシエチレン(20)ポリオキシプロピレングリコール(20)〔医薬部外品原料規格名:ポリオキシエチレンポリオキシプロピレングリコール(20E.O.)(20P.O.)〕等を挙げることができる。 As this polyoxyethylene-polyoxypropylene condensate (this POE / POP condensate), for example, polyoxyethylene (16) polyoxypropylene glycol (17) [quasi-drug raw material standard name: polyoxyethylene polyoxy Propylene glycol (16E.O.) (17P.O.)], or polyoxyethylene (20) polyoxypropylene glycol (20) [quasi-drug raw material standard name: polyoxyethylene polyoxypropylene glycol (20E.O.) .) (20P.O.)] and the like.
 この本POE・POP縮合物としては、例えば、ポリオキシエチレン(16)ポリオキシプロピレングリコール(17)[製品名:「プルロニック L-34」、販売元:株式会社ADEKA(日本国)]、又はポリオキシエチレン(20)ポリオキシプロピレングリコール(20)[製品名:「プルロニック L-44」、販売元:株式会社ADEKA(日本国)]等が市販されている。 Examples of the POE / POP condensate include polyoxyethylene (16) polyoxypropylene glycol (17) [product name: “Pluronic L-34”, distributor: ADEKA (Japan)], or poly Oxyethylene (20) polyoxypropylene glycol (20) [Product name: “Pluronic L-44”, distributor: ADEKA Corporation (Japan)], etc. are commercially available.
(4)界面活性剤の濃度
 DGGMR、及び界面活性剤よりなるミセル粒子からなるエマルジョン溶液であって、還元剤を含有するものであるリパーゼ活性測定用基質溶液において、界面活性剤の濃度は0.01%(w/v)以上であることが、安定で均一なミセル粒子からなるエマルジョン溶液とする上で好ましい。
(4) Concentration of surfactant In the substrate solution for measuring lipase activity, which is an emulsion solution composed of DGGMR and micelle particles made of a surfactant, and containing a reducing agent, the concentration of the surfactant is 0. It is preferable that it is 01% (w / v) or more for preparing an emulsion solution composed of stable and uniform micelle particles.
 なお、このリパーゼ活性測定用基質溶液における界面活性剤の濃度は、前記の目的の上から、より好ましくは0.05%(w/v)以上であり、特に好ましくは0.1%(w/v)以上である。 The concentration of the surfactant in the substrate solution for measuring lipase activity is more preferably 0.05% (w / v) or more, particularly preferably 0.1% (w / v) for the above purpose. v) Above.
 また、このリパーゼ活性測定用基質溶液に含有させる界面活性剤の濃度であるが、前記の目的の上から、20%(w/v)以下であることが好ましい。 The concentration of the surfactant contained in the lipase activity measurement substrate solution is preferably 20% (w / v) or less for the purpose described above.
 なお、このリパーゼ活性測定用基質溶液における界面活性剤の濃度は、前記の目的の上から、より好ましくは10%(w/v)以下であり、特に好ましくは5%(w/v)以下である。 The concentration of the surfactant in the substrate solution for measuring lipase activity is more preferably 10% (w / v) or less, particularly preferably 5% (w / v) or less, for the above purpose. is there.
5.リパーゼ賦活化剤
(1)リパーゼ賦活化剤
 本発明のリパーゼ活性測定用基質溶液には、リパーゼ賦活化剤を含有させてもよい。
5). Lipase Activator (1) Lipase Activator The lipase activator substrate solution of the present invention may contain a lipase activator.
 本発明において、リパーゼ賦活化剤としては、リパーゼを賦活化することができる物質であればよく、特に限定はないが、例えば、胆汁酸又はその塩等を挙げることができる。 In the present invention, the lipase activator is not particularly limited as long as it is a substance capable of activating lipase, and examples thereof include bile acids or salts thereof.
 この胆汁酸としては、例えば、デオキシコール酸、タウロデオキシコール酸、グリコデオキシコール酸、コール酸、リトコール酸、グリココール酸、タウロコール酸、ケノデオキシコール酸、ウルソデオキシコール酸、7-オキソリトコール酸、12-オキソリトコール酸、12-オキソケノデオキシコール酸、7-オキソデオキシコール酸、ヒオコール酸、ヒオデオキシコール酸、デヒドロコール酸、又はコール酸誘導体等を挙げることができる。 Examples of the bile acids include deoxycholic acid, taurodeoxycholic acid, glycodeoxycholic acid, cholic acid, lithocholic acid, glycocholic acid, taurocholic acid, chenodeoxycholic acid, ursodeoxycholic acid, 7-oxolithocholic acid, 12 -Oxolithocholic acid, 12-oxochenodeoxycholic acid, 7-oxodeoxycholic acid, hyocholic acid, hyodeoxycholic acid, dehydrocholic acid, or cholic acid derivatives.
 また、この胆汁酸の塩としては、例えば、胆汁酸とアルカリ金属若しくはアルカリ土類金属との塩又はアンモニウム塩等を挙げることができる。
 このアルカリ金属としては、例えば、カリウム、ナトリウム又はリチウム等を挙げることができ、また、このアルカリ土類金属としては、例えば、マグネシウム又はカルシウム等を挙げることができる。
Examples of the bile acid salt include salts of bile acids and alkali metals or alkaline earth metals, ammonium salts, and the like.
Examples of the alkali metal include potassium, sodium, and lithium, and examples of the alkaline earth metal include magnesium and calcium.
 リパーゼ賦活化剤としては、そのリパーゼ賦活化能、リパーゼ活性測定用基質よりなる界面の形成能力、水溶性、及びコスト等の点から、胆汁酸又はその塩が好ましい。 As the lipase activator, bile acid or a salt thereof is preferable from the viewpoint of the ability to activate the lipase, the ability to form an interface composed of a substrate for measuring lipase activity, water solubility, and cost.
 そして、胆汁酸としては、リパーゼ活性測定用基質としてのDGGMRが安定な酸性域において溶解可能な点でタウロデオキシコール酸が好ましく、また、コストの点からデオキシコール酸が好ましい。
 この胆汁酸としては、タウロデオキシコール酸が特に好ましい。
As the bile acid, taurodeoxycholic acid is preferable in that DGGMR as a lipase activity measurement substrate can be dissolved in a stable acidic region, and deoxycholic acid is preferable from the viewpoint of cost.
As this bile acid, taurodeoxycholic acid is particularly preferable.
 そして、胆汁酸の塩としては、胆汁酸とアルカリ金属の塩が好ましく、胆汁酸のカリウム塩又はナトリウム塩がより好ましく、胆汁酸のナトリウム塩が特に好ましい。 The bile acid salt is preferably a bile acid and alkali metal salt, more preferably a bile acid potassium salt or sodium salt, and particularly preferably a bile acid sodium salt.
 よって、胆汁酸の塩としては、デオキシコール酸又はタウロデオキシコール酸のアルカリ金属(カリウム若しくはナトリウム等)の塩が好ましく、タウロデオキシコール酸のアルカリ金属(カリウム又はナトリウム等)の塩がより好ましく、タウロデオキシコール酸のナトリウム塩が特に好ましい。 Therefore, the salt of bile acid is preferably a salt of an alkali metal (such as potassium or sodium) of deoxycholic acid or taurodeoxycholic acid, more preferably a salt of an alkali metal (such as potassium or sodium) of taurodeoxycholic acid, The sodium salt of taurodeoxycholic acid is particularly preferred.
(2)リパーゼ賦活化剤の濃度
 本発明のリパーゼ活性測定用基質溶液において、リパーゼ賦活化剤は、その濃度が0.2%(w/v)以上の濃度であることが好ましい。
(2) Concentration of lipase activator In the lipase activity measurement substrate solution of the present invention, the lipase activator preferably has a concentration of 0.2% (w / v) or more.
 なお、本発明のリパーゼ活性測定用基質溶液において、このリパーゼ賦活化剤の好ましい濃度は、より好ましくは0.4%(w/v)以上であり、特に好ましくは1%(w/v)以上である。 In the lipase activity measuring substrate solution of the present invention, the preferred concentration of the lipase activator is more preferably 0.4% (w / v) or more, particularly preferably 1% (w / v) or more. It is.
 また、このリパーゼ賦活化剤の濃度であるが、本発明のリパーゼ活性測定用基質溶液において、20%(w/v)以下であることが好ましい。 The concentration of the lipase activator is preferably 20% (w / v) or less in the lipase activity measurement substrate solution of the present invention.
 なお、本発明のリパーゼ活性測定用基質溶液において、このリパーゼ賦活化剤の好ましい濃度は、より好ましくは10%(w/v)以下であり、特に好ましくは5%(w/v)以下である。 In the lipase activity measurement substrate solution of the present invention, the preferred concentration of the lipase activator is more preferably 10% (w / v) or less, particularly preferably 5% (w / v) or less. .
6.リパーゼ活性化剤
(1)リパーゼ活性化剤
 本発明のリパーゼ活性測定用基質溶液には、リパーゼ活性化剤を含有させてもよい。
6). Lipase Activator (1) Lipase Activator The lipase activity measuring substrate solution of the present invention may contain a lipase activator.
 本発明において、リパーゼ活性化剤としては、リパーゼを活性化することができる物質であればよく、特に限定はないが、例えば、アルカリ土類金属イオン又はその塩等を挙げることができる。 In the present invention, the lipase activator is not particularly limited as long as it is a substance capable of activating lipase, and examples thereof include alkaline earth metal ions or salts thereof.
 このアルカリ土類金属イオン又はその塩としては、例えば、ベリリウムイオン若しくはベリリウム塩、マグネシウムイオン若しくはマグネシウム塩、又はカルシウムイオン若しくはカルシウム塩等を挙げることができる。 Examples of the alkaline earth metal ion or salt thereof include beryllium ion or beryllium salt, magnesium ion or magnesium salt, or calcium ion or calcium salt.
 このカルシウム塩としては、例えば、水溶性のカルシウム塩等を挙げることができ、より具体的には、1価又は2価以上の陰イオンとカルシウムイオンよりなる塩であって水溶性であるもの等を挙げることができる。 Examples of the calcium salt include a water-soluble calcium salt, and more specifically, a salt made of a monovalent or divalent anion and calcium ion and water-soluble. Can be mentioned.
 なお、この陰イオンとしては、例えば、ハロゲンイオン、有機化合物よりなる酸基、又はその他の無機化合物よりなる酸基等を挙げることができる。 Examples of the anion include halogen ions, acid groups made of organic compounds, and acid groups made of other inorganic compounds.
 そして、ハロゲンイオンとしては、例えば、フッ素イオン、又は塩素イオン等を挙げることができる。 And as a halogen ion, a fluorine ion, a chlorine ion, etc. can be mentioned, for example.
 有機化合物よりなる酸基としては、例えば、酢酸イオン、クエン酸イオン、又はグルコン酸イオン等を挙げることができる。 Examples of the acid group made of an organic compound include acetate ion, citrate ion, or gluconate ion.
 その他の無機化合物よりなる酸基としては、例えば、硫酸イオン、リン酸イオン、又は炭酸イオン等を挙げることができる。 Examples of acid groups made of other inorganic compounds include sulfate ions, phosphate ions, or carbonate ions.
 このリパーゼ活性化剤としては、アルカリ土類金属イオン又はその塩が好ましい。 The lipase activator is preferably an alkaline earth metal ion or a salt thereof.
 なお、アルカリ土類金属イオン又はその塩としては、次の(i)及び(ii)の点から、カルシウムイオン又はカルシウム塩が好ましい。
 (i) リパーゼの活性化能。
 (ii) リパーゼの触媒作用を受けることによりリパーゼ活性測定用基質から遊離した脂肪酸は、リパーゼ活性測定用基質よりなる界面を壊すが、カルシウムイオン又はカルシウム塩はこの遊離した脂肪酸を捕捉し、当該界面が壊れるのを抑制することができる。
In addition, as an alkaline-earth metal ion or its salt, a calcium ion or a calcium salt is preferable from the point of following (i) and (ii).
(I) The ability to activate lipase.
(Ii) Fatty acid liberated from the lipase activity measurement substrate by being catalyzed by lipase breaks the interface comprising the lipase activity measurement substrate, but calcium ions or calcium salts capture the liberated fatty acid, and the interface Can be prevented from breaking.
 そして、このカルシウム塩としては、陰イオンとカルシウムイオンよりなる塩であって水溶性であるものが好ましい。 And as this calcium salt, the salt which consists of an anion and calcium ion and is water-soluble is preferable.
 そして、この陰イオンとしては、ハロゲンイオン又は有機化合物よりなる酸基が好ましい。より具体的には、塩素イオン又は酢酸イオンが特に好ましい。 And as this anion, the acid group which consists of a halogen ion or an organic compound is preferable. More specifically, chlorine ion or acetate ion is particularly preferable.
 よって、カルシウム塩としては、ハロゲンイオンのカルシウム塩又は有機化合物よりなる酸基のカルシウム塩が好ましく、より具体的には、塩化カルシウム又は酢酸カルシウムが特に好ましい。 Therefore, as the calcium salt, a calcium salt of a halogen ion or an acid group consisting of an organic compound is preferable, and more specifically, calcium chloride or calcium acetate is particularly preferable.
(2)リパーゼ活性化剤の濃度
 本発明のリパーゼ活性測定用基質溶液において、リパーゼ活性化剤は、その濃度が0.1mM以上の濃度であることが好ましい。
(2) Concentration of lipase activator In the lipase activity measurement substrate solution of the present invention, the lipase activator preferably has a concentration of 0.1 mM or more.
 なお、本発明のリパーゼ活性測定用基質溶液において、このリパーゼ活性化剤の好ましい濃度は、より好ましくは1mM以上であり、特に好ましくは5mM以上である。 In the lipase activity measurement substrate solution of the present invention, the preferred concentration of the lipase activator is more preferably 1 mM or more, and particularly preferably 5 mM or more.
 また、このリパーゼ活性化剤の濃度であるが、本発明のリパーゼ活性測定用基質溶液において、100mM以下であることが好ましい。 The concentration of the lipase activator is preferably 100 mM or less in the lipase activity measurement substrate solution of the present invention.
 なお、本発明のリパーゼ活性測定用基質溶液において、このリパーゼ活性化剤の好ましい濃度は、より好ましくは50mM以下であり、特に好ましくは25mM以下である。 In the lipase activity measurement substrate solution of the present invention, the preferred concentration of this lipase activator is more preferably 50 mM or less, and particularly preferably 25 mM or less.
7.コリパーゼ
(1)コリパーゼ
 本発明のリパーゼ活性測定用基質溶液には、コリパーゼを含有させてもよい。
7). Colipase (1) Colipase The substrate solution for measuring lipase activity of the present invention may contain colipase.
 本発明において、コリパーゼとしては、コリパーゼの作用、機能又は活性を有しているものであればよく、特に限定はないが、例えば、ヒト、若しくはブタなどの哺乳類由来のコリパーゼ又は遺伝子工学等を用いて調製、修飾若しくは改変されたコリパーゼ等を挙げることができる。 In the present invention, the colipase is not particularly limited as long as it has the action, function, or activity of colipase. For example, human or a mammal-derived colipase such as pig or genetic engineering is used. And colipase prepared, modified or modified.
 このコリパーゼとしては、ブタなどの哺乳類由来のコリパーゼが好ましく、ブタなどの哺乳類の膵臓由来のコリパーゼがより好ましい。 As this colipase, a colipase derived from a mammal such as a pig is preferable, and a colipase derived from a pancreas of a mammal such as a pig is more preferable.
(2)コリパーゼの活性値
 本発明のリパーゼ活性測定用基質溶液において、コリパーゼは、その活性値が15K単位/L(15K Unit/L)以上であることが好ましい。
(2) Activity value of colipase In the lipase activity measurement substrate solution of the present invention, the activity value of the colipase is preferably 15K units / L (15K Unit / L) or more.
 なお、本発明のリパーゼ活性測定用基質溶液において、このコリパーゼの好ましい活性値は、より好ましくは150K単位/L以上であり、特に好ましくは750K単位/L以上である。 In the lipase activity measurement substrate solution of the present invention, the preferable activity value of this colipase is more preferably 150 K units / L or more, and particularly preferably 750 K units / L or more.
 また、このコリパーゼの活性値であるが、本発明のリパーゼ活性測定用基質溶液において、7,500K単位/L以下であることが好ましい。 The activity value of this colipase is preferably 7,500 K units / L or less in the lipase activity measurement substrate solution of the present invention.
 なお、本発明のリパーゼ活性測定用基質溶液において、このコリパーゼの好ましい活性値は、より好ましくは3,750K単位/L以下であり、特に好ましくは2,250K単位/L以下である。 In the lipase activity measurement substrate solution of the present invention, the preferred activity value of this colipase is more preferably 3,750 K units / L or less, and particularly preferably 2,250 K units / L or less.
 なお、本明細書におけるコリパーゼの各活性値(単位/L)は、ロシュ・ダイアグノスティックス株式会社[日本国]のブタ膵臓由来のコリパーゼの活性値の表示に基づくものである。[1mg/L=75K単位/L] In addition, each activity value (unit / L) of colipase in this specification is based on the display of the activity value of colipase derived from porcine pancreas of Roche Diagnostics Inc. [Japan]. [1 mg / L = 75K units / L]
 なお、コリパーゼは、ロシュ・ダイアグノスティックス株式会社[日本国]、又はシグマ アルドリッチ ジャパン合同会社[日本国]等より市販されている。 Colipase is commercially available from Roche Diagnostics Inc. [Japan] or Sigma Aldrich Japan LLC [Japan].
8.水
 本発明のリパーゼ活性測定用基質溶液には、水を含有させてもよい。
 すなわち、本発明のリパーゼ活性測定用基質溶液は、水溶液又は水性懸濁液であってよい。
8). Water The substrate solution for measuring lipase activity of the present invention may contain water.
That is, the lipase activity measurement substrate solution of the present invention may be an aqueous solution or an aqueous suspension.
 この本発明のリパーゼ活性測定用基質溶液に含有させる水は、特に限定はないが、例えば、純水、蒸留水又は精製水等を挙げることができる。 The water to be contained in the lipase activity measurement substrate solution of the present invention is not particularly limited, and examples thereof include pure water, distilled water, and purified water.
9.pH
 本発明におけるリパーゼ活性測定用基質としてのDGGMRは、pH4又はその付近のpHにおいて安定である。
 よって、本発明のリパーゼ活性測定用基質溶液において、そのpHはpH4を中心とする一定の範囲内のものであることが好ましい。
9. pH
DGGMR as a substrate for measuring lipase activity in the present invention is stable at pH 4 or in the vicinity thereof.
Therefore, in the substrate solution for measuring lipase activity of the present invention, the pH is preferably within a certain range centered on pH 4.
 具体的には、本発明のリパーゼ活性測定用基質溶液は、DGGMRの安定性の点から、pH2~pH7の範囲内にあることが好ましく、pH3~pH5の範囲内にあることがより好ましく、そして、pH3.5~pH4.5の範囲内にあることが特に好ましい。(前記のpH値はいずれも20℃での値である。) Specifically, the substrate solution for measuring lipase activity of the present invention is preferably in the range of pH 2 to pH 7, more preferably in the range of pH 3 to pH 5, from the viewpoint of the stability of DGGMR. Particularly preferably, the pH is in the range of 3.5 to 4.5. (The above pH values are all values at 20 ° C.)
10.緩衝剤
(1)緩衝剤
 本発明のリパーゼ活性測定用基質溶液には、緩衝剤を含有させてもよい。
10. Buffering agent (1) Buffering agent The substrate solution for lipase activity measurement of the present invention may contain a buffering agent.
 本発明においては、本発明のリパーゼ活性測定用基質溶液のpHを、前記9に記載のpH範囲に保つため、前記9記載のpH範囲に緩衝能を有する緩衝剤を本発明のリパーゼ活性測定用基質溶液に適宜含有させてもよい。 In the present invention, in order to maintain the pH of the substrate solution for measuring lipase activity of the present invention within the pH range described in 9, the buffer having a buffer capacity in the pH range described in 9 is used for measuring the lipase activity of the present invention. You may make it contain suitably in a substrate solution.
 本発明のリパーゼ活性測定用基質溶液に含有させることができる緩衝剤としては、特に限定はないが、例えば、酒石酸、コハク酸、マロン酸、若しくはクエン酸などの有機酸、又はグリシン、若しくはリン酸、或いはこれらの塩等を挙げることができる。 The buffer that can be contained in the lipase activity measurement substrate solution of the present invention is not particularly limited, and examples thereof include organic acids such as tartaric acid, succinic acid, malonic acid, and citric acid, or glycine or phosphoric acid. Or these salts etc. can be mentioned.
(2)緩衝剤の濃度
 本発明において、緩衝剤を本発明のリパーゼ活性測定用基質溶液に含有させる場合の濃度は、特に限定はなく、設定するpHの範囲において緩衝能を発揮することができる濃度であればよい。
(2) Concentration of buffering agent In the present invention, the concentration of the buffering agent contained in the lipase activity measurement substrate solution of the present invention is not particularly limited, and can exhibit a buffering ability within a set pH range. Any concentration is acceptable.
 例えば、本発明のリパーゼ活性測定用基質溶液において、この緩衝剤の濃度は、好ましくは5mM以上であり、より好ましくは10mM以上であり、特に好ましくは30mM以上である。 For example, in the lipase activity measurement substrate solution of the present invention, the concentration of this buffer is preferably 5 mM or more, more preferably 10 mM or more, and particularly preferably 30 mM or more.
 また、この緩衝剤の濃度は、本発明のリパーゼ活性測定用基質溶液において、好ましくは500mM以下であり、より好ましくは100mM以下であり、特に好ましくは50mM以下である。 Further, the concentration of the buffer is preferably 500 mM or less, more preferably 100 mM or less, and particularly preferably 50 mM or less in the substrate solution for measuring lipase activity of the present invention.
11.リパーゼ活性測定用基質溶液のエマルジョンのミセル径
 先に記載した通り、リパーゼは、エマルジョン化したトリグリセライド基質の水と油との界面で最も効率よく作用し、このリパーゼの反応速度は分散した基質の表面積に関係するので、このリパーゼの活性測定には安定で均一なミセル粒子からなる基質の調製が重要であるとされている(非特許文献2参照。)。
11. Micelle size of emulsion of substrate solution for measuring lipase activity As described above, lipase works most efficiently at the water-oil interface of the emulsified triglyceride substrate, and the reaction rate of this lipase is determined by the surface area of the dispersed substrate. Therefore, it is said that the preparation of a substrate composed of stable and uniform micelle particles is important for measuring the activity of lipase (see Non-Patent Document 2).
 本発明において、リパーゼ活性測定用基質[DGGMR]を含有するリパーゼ活性測定用基質溶液は、そのエマルジョンのミセル径(ミセル粒子径)が60~1,500nmの範囲にあると、リパーゼとの反応の速度が高く、また、このエマルジョンが安定であり、リパーゼ活性測定用基質溶液を長期間保存・使用できるので好ましい。 In the present invention, when the lipase activity measurement substrate solution containing the lipase activity measurement substrate [DGGMR] has a micelle diameter (micelle particle diameter) in the range of 60 to 1,500 nm, the reaction with the lipase The speed is high, the emulsion is stable, and the substrate solution for measuring lipase activity can be stored and used for a long period of time.
 この理由により、リパーゼ活性測定用基質溶液は、そのエマルジョンのミセル径(ミセル粒子径)が70~1,000nmの範囲にあることがより好ましく、80~600nmの範囲にあることが更に好ましく、そして、100~200nmの範囲にあることが特に好ましい。 For this reason, the lipase activity measurement substrate solution preferably has a micelle diameter (micelle particle diameter) of the emulsion in the range of 70 to 1,000 nm, more preferably in the range of 80 to 600 nm, and The range of 100 to 200 nm is particularly preferable.
III.リパーゼ活性測定用基質溶液の製造方法
1.総論
 本発明のリパーゼ活性測定用基質溶液を製造する方法であるが、上記の「DGGMRをリパーゼ活性測定用基質として含むリパーゼ活性測定用基質溶液において、還元剤を含有することを特徴とするリパーゼ活性測定用基質溶液」という構成の本発明のリパーゼ活性測定用基質溶液を製造することができる方法であればよく、特に限定はない。
III. 1. Method for producing lipase activity measurement substrate solution General description The method for producing a lipase activity measurement substrate solution of the present invention is characterized in that the above-mentioned “lipase activity measurement substrate solution containing DGGMR as a lipase activity measurement substrate contains a reducing agent. There is no particular limitation as long as it is a method capable of producing the lipase activity measurement substrate solution of the present invention having the configuration of “measurement substrate solution”.
 なお、本発明のリパーゼ活性測定用基質溶液を製造する方法としては、例えば、次の(a)及び(b)の工程よりなる方法等を挙げることができる。なお、本発明において、この「次の(a)及び(b)の工程よりなる方法」は、「次の(a)及び(b)の工程を含む方法」をも含むことを意味するものである。
 この(a)及び(b)の工程よりなる方法は、煩雑な若しくは熟練を要する等の特別な処理、又は特別な装置若しくは器具などの物等を必要とせずに、本発明のリパーゼ活性測定用基質溶液を製造することができるので、好ましい。
In addition, as a method of manufacturing the lipase activity measurement substrate solution of this invention, the method etc. which consist of the process of following (a) and (b) can be mentioned, for example. In the present invention, the “method comprising the following steps (a) and (b)” means “including a method comprising the following steps (a) and (b)”. is there.
The method comprising the steps (a) and (b) is for measuring the lipase activity of the present invention without requiring special treatment such as complicated or skillful need, or special equipment or instruments. Since a substrate solution can be manufactured, it is preferable.
 (a) DGGMRと、界面活性剤を混合し混合物を調製する工程 (A) Step of preparing a mixture by mixing DGGMR and surfactant
 (b) 前記(a)の混合物の全部又は一部を、水又は水溶液と混合する工程 (B) A step of mixing all or part of the mixture of (a) with water or an aqueous solution.
2.DGGMRと界面活性剤を混合し混合物を調製する工程
 前記1における(a)の工程、すなわち、「DGGMRと、界面活性剤を混合し混合物を調製する工程」について、以下、詳細に説明する。
2. Step of Mixing DGGMR and Surfactant to Prepare Mixture The step (a) in 1 above, that is, “step of mixing DGGMR and surfactant to prepare a mixture” will be described in detail below.
(1)DGGMRと界面活性剤の混合
 前記1の(a)の工程、すなわち、「DGGMRと、界面活性剤を混合し混合物を調製する工程」においては、リパーゼ活性測定用基質であるDGGMRと界面活性剤を混合する。
 すなわち、DGGMRと界面活性剤とを直接混合する。
(1) Mixing of DGGMR and Surfactant In the step (a) of 1 above, that is, “the step of preparing a mixture by mixing DGGMR and a surfactant”, DGGMR which is a substrate for measuring lipase activity and the interface Mix the active agent.
That is, DGGMR and the surfactant are directly mixed.
 なお、界面活性剤は、1種類のものをDGGMRと混合してもよく、又は複数種類のものをDGGMRと混合してもよい。 Note that one type of surfactant may be mixed with DGGMR, or a plurality of types of surfactants may be mixed with DGGMR.
(2)DGGMRの混合量
 リパーゼ活性測定用基質としてのDGGMRと、界面活性剤を混合し混合物を調製する工程において、このDGGMRを混合する量は、特に限定されない。
(2) Mixing amount of DGGMR In the step of preparing a mixture by mixing DGGMR as a substrate for measuring lipase activity and a surfactant, the amount of mixing DGGMR is not particularly limited.
 なお、このDGGMRは、前記1の(b)の工程である「DGGMRと界面活性剤の混合物の全部又は一部を、水又は水溶液と混合する工程」における当該「DGGMRと界面活性剤の混合物の全部又は一部」と当該「水又は水溶液」との混合(以下、「第2混合」ということがある)の後に、その濃度が0.05mM以上であることが、安定で均一なミセル粒子からなるエマルジョン溶液を製造する目的の上から好ましい。 In addition, this DGGMR is the “DGGMR / surfactant mixture of the DGGMR / surfactant mixture” in the step (b) of “the step of mixing all or part of the DGGMR / surfactant mixture with water or an aqueous solution”. After mixing with “all or part” and the “water or aqueous solution” (hereinafter sometimes referred to as “second mixing”), the concentration is 0.05 mM or more from stable and uniform micelle particles. This is preferable for the purpose of producing an emulsion solution.
 なお、この第2混合の後(第2混合後)、このDGGMRの好ましい濃度は、前記の目的の上から、より好ましくは0.1mM以上であり、特に好ましくは0.2mM以上である。 In addition, after this 2nd mixing (after 2nd mixing), the preferable density | concentration of this DGGMR is more preferably 0.1 mM or more from the said objective, Especially preferably, it is 0.2 mM or more.
 また、このDGGMRの濃度であるが、第2混合後、前記の目的の上から、2mM以下であることが好ましい。 Further, the concentration of DGGMR is preferably 2 mM or less after the second mixing for the above purpose.
 なお、第2混合後、このDGGMRの好ましい濃度は、前記の目的の上から、より好ましくは1mM以下であり、特に好ましくは0.8mM以下である。 In addition, after the second mixing, the preferable concentration of DGGMR is more preferably 1 mM or less, and particularly preferably 0.8 mM or less, for the purpose described above.
 第2混合後のDGGMRの好ましい濃度は、以上述べた通りである。
 なお、前記1の(a)の「DGGMRと、界面活性剤を混合し混合物を調製する工程」における当該DGGMRと当該界面活性剤との混合(以下、「第1混合」ということがある)の時の当該DGGMR及び当該界面活性剤それぞれの混合量を、第2混合後にDGGMRの濃度が上記の通りになるように、考慮の上決めてもよく、このようにすることが、その製造手順の上から好ましい。
The preferred concentration of DGGMR after the second mixing is as described above.
The mixing of the DGGMR and the surfactant in the “step of preparing a mixture by mixing DGGMR and a surfactant” in 1) (a) (hereinafter sometimes referred to as “first mixing”) The mixing amount of each of the DGGMR and the surfactant at the time may be determined in consideration so that the concentration of DGGMR is as described above after the second mixing. Preferred from above.
 なお、このDGGMRの混合量及び濃度であるが、例えば、次の(a)又は(b)などのように考えることができる。 In addition, although it is the mixing amount and density | concentration of this DGGMR, it can be considered like the following (a) or (b), for example.
(a)リパーゼ活性測定用基質と界面活性剤の混合物の全部を水又は水溶液と混合する場合
 第1混合時に混合させるリパーゼ活性測定用基質の混合量をWs[単位:グラム]とし、第2混合時に水又は水溶液を混合した後の最終的な容量(メスアップ後の容量等)をVf[単位:mL]とし、そしてリパーゼ活性測定用基質の分子量をMWsとした場合、第2混合後のリパーゼ活性測定用基質の濃度Cs[単位:mM]は次の式で表すことができる。
(A) When all of the mixture of the lipase activity measurement substrate and the surfactant is mixed with water or an aqueous solution, the mixing amount of the lipase activity measurement substrate mixed during the first mixing is Ws [unit: grams], and the second mixing Sometimes the final volume after mixing water or aqueous solution (volume after volume up, etc.) is Vf [unit: mL] and the molecular weight of the lipase activity measurement substrate is MWs, the lipase after the second mixing The concentration Cs [unit: mM] of the substrate for activity measurement can be expressed by the following formula.
  Cs=(Ws×10)÷(Vf×MWs) Cs = (Ws × 10 6 ) ÷ (Vf × MWs)
 なお、リパーゼ活性測定用基質であるDGGMRの分子量MWsは752.05であるので、上記の式は次のようになる。 Since the molecular weight MWs of DGGMR, which is a substrate for measuring lipase activity, is 752.05, the above formula is as follows.
  Cs=(Ws×10)÷(Vf×752.05) Cs = (Ws × 10 6 ) ÷ (Vf × 752.05)
 よって、この場合の第1混合時に混合させるリパーゼ活性測定用基質(DGGMR)の混合量Ws[単位:グラム]は次のように表すことができる。 Therefore, the mixing amount Ws [unit: grams] of the lipase activity measurement substrate (DGGMR) to be mixed during the first mixing in this case can be expressed as follows.
  Ws=(Cs×Vf×MWs)÷10 Ws = (Cs × Vf × MWs) ÷ 10 6
  すなわち、Ws=(Cs×Vf×752.05)÷10 That is, Ws = (Cs × Vf × 752.05) ÷ 10 6
(b)リパーゼ活性測定用基質と界面活性剤の混合物の一部を水又は水溶液と混合する場合
 第1混合時に混合させるリパーゼ活性測定用基質の混合量をWs[単位:グラム]とし、第2混合時に水又は水溶液を混合した後の最終的な容量(メスアップ後の容量等)をVf[単位:mL]とし、リパーゼ活性測定用基質の分子量をMWsとし、そして第1混合時の混合物のA%(重量又は容量)を第2混合時に水又は水溶液と混合した場合、第2混合後のリパーゼ活性測定用基質の濃度Cs[単位:mM]は次の式で表すことができる。
(B) When a part of the mixture of the lipase activity measurement substrate and the surfactant is mixed with water or an aqueous solution, the mixing amount of the lipase activity measurement substrate mixed at the first mixing is Ws [unit: grams], and the second The final volume after mixing water or aqueous solution at the time of mixing (volume after volume-up, etc.) is Vf [unit: mL], the molecular weight of the lipase activity measurement substrate is MWs, and the mixture of the mixture at the first mixing When A% (weight or volume) is mixed with water or an aqueous solution during the second mixing, the concentration Cs [unit: mM] of the lipase activity measurement substrate after the second mixing can be expressed by the following formula.
  Cs=(Ws×10)×(A÷100)÷(Vf×MWs)=(Ws×A×10)÷(Vf×MWs) Cs = (Ws × 10 6 ) × (A ÷ 100) ÷ (Vf × MWs) = (Ws × A × 10 4 ) ÷ (Vf × MWs)
 なお、リパーゼ活性測定用基質であるDGGMRの分子量MWsは752.05であるので、上記の式は次のようになる。 Since the molecular weight MWs of DGGMR, which is a substrate for measuring lipase activity, is 752.05, the above formula is as follows.
  Cs=(Ws×A×10)÷(Vf×752.05) Cs = (Ws × A × 10 4 ) ÷ (Vf × 752.05)
 よって、この場合の第1混合時に混合させるリパーゼ活性測定用基質の混合量Ws[単位:グラム]は次のように表すことができる。 Therefore, the mixing amount Ws [unit: grams] of the lipase activity measurement substrate to be mixed in the first mixing in this case can be expressed as follows.
  Ws=(Cs×Vf×MWs)÷(A×10Ws = (Cs × Vf × MWs) ÷ (A × 10 4 )
  すなわち、Ws=(Cs×Vf×752.05)÷(A×10That is, Ws = (Cs × Vf × 752.05) ÷ (A × 10 4 )
(3)界面活性剤の混合量
 リパーゼ活性測定用基質としてのDGGMRと界面活性剤を混合し混合物を調製する工程において、この界面活性剤を混合する量は、特に限定されない。
(3) Mixing amount of surfactant In the step of preparing a mixture by mixing DGGMR as a lipase activity measurement substrate and a surfactant, the amount of mixing the surfactant is not particularly limited.
 なお、界面活性剤は、第2混合の後に、その濃度が0.01%(w/v)以上であることが、安定で均一なミセル粒子からなるエマルジョン溶液を製造する目的の上から好ましい。 The surfactant is preferably at a concentration of 0.01% (w / v) or more after the second mixing for the purpose of producing an emulsion solution composed of stable and uniform micelle particles.
 なお、第2混合の後(第2混合後)、この界面活性剤の好ましい濃度は、前記の目的の上から、より好ましくは0.05%(w/v)以上であり、特に好ましくは0.1%(w/v)以上である。 In addition, after the second mixing (after the second mixing), the preferable concentration of the surfactant is more preferably 0.05% (w / v) or more, and particularly preferably 0 for the above purpose. .1% (w / v) or more.
 また、この濃度であるが、第2混合後、前記の目的の上から、20%(w/v)以下であることが好ましい。 Also, this concentration is preferably 20% (w / v) or less after the second mixing for the above purpose.
 なお、第2混合後、この界面活性剤の好ましい濃度は、前記の目的の上から、より好ましくは10%(w/v)以下であり、特に好ましくは5%(w/v)以下である。 In addition, after the second mixing, the preferable concentration of this surfactant is more preferably 10% (w / v) or less, and particularly preferably 5% (w / v) or less, for the above purpose. .
 第2混合後の界面活性剤の好ましい濃度は、以上述べた通りである。 The preferable concentration of the surfactant after the second mixing is as described above.
 なお、第1混合時の当該DGGMR及び当該界面活性剤それぞれの混合量を、第2混合後に界面活性剤の濃度が上記の通りになるように、考慮の上決めてもよく、このようにすることが、その製造手順の上から好ましい。 The mixing amount of the DGGMR and the surfactant during the first mixing may be determined in consideration of the concentration of the surfactant as described above after the second mixing. It is preferable from the viewpoint of the manufacturing procedure.
 なお、この界面活性剤の混合量及び濃度であるが、例えば、次の(a)又は(b)などのように考えることができる。 In addition, although it is the mixing amount and density | concentration of this surfactant, it can be considered like the following (a) or (b), for example.
(a)リパーゼ活性測定用基質と界面活性剤の混合物の全部を水又は水溶液と混合する場合
 第1混合時に混合させる界面活性剤の混合量をWp[単位:グラム]とし、第2混合時に水又は水溶液を混合した後の最終的な容量(メスアップ後の容量等)をVf[単位:mL]とした場合、第2混合後の界面活性剤の濃度Cp[単位:%(w/v)]は次の式で表すことができる。
(A) In the case where the entire mixture of the lipase activity measurement substrate and the surfactant is mixed with water or an aqueous solution, the amount of the surfactant to be mixed during the first mixing is Wp [unit: grams], and the water is mixed during the second mixing. Alternatively, when the final volume after mixing the aqueous solution (volume after volume-up, etc.) is Vf [unit: mL], the concentration Cp [unit:% (w / v) of the surfactant after the second mixing ] Can be expressed by the following equation.
  Cp=(Wp×100)÷Vf Cp = (Wp × 100) ÷ Vf
 よって、この場合の第1混合時に混合させる界面活性剤の混合量Wp[単位:グラム]は次のように表すことができる。 Therefore, the mixing amount Wp [unit: grams] of the surfactant to be mixed during the first mixing in this case can be expressed as follows.
  Wp=(Cp×Vf)÷100 Wp = (Cp × Vf) ÷ 100
(b)リパーゼ活性測定用基質と界面活性剤の混合物の一部を水又は水溶液と混合する場合
 第1混合時に混合させる界面活性剤の混合量をWp[単位:グラム]とし、第2混合時に水又は水溶液を混合した後の最終的な容量(メスアップ後の容量等)をVf[単位:mL]とし、そして第1混合時の混合物のA%(重量又は容量)を第2混合時に水又は水溶液と混合した場合、第2混合後の界面活性剤の濃度Cp[単位:%(w/v)]は次の式で表すことができる。
(B) When a part of the mixture of the lipase activity measurement substrate and the surfactant is mixed with water or an aqueous solution, the amount of the surfactant to be mixed at the first mixing is Wp [unit: grams], and at the second mixing The final volume after mixing water or aqueous solution (volume after measuring up, etc.) is Vf [unit: mL], and A% (weight or volume) of the mixture at the first mixing is water at the second mixing. Alternatively, when mixed with an aqueous solution, the concentration Cp [unit:% (w / v)] of the surfactant after the second mixing can be expressed by the following formula.
  Cp=(Wp×100)×(A÷100)÷Vf=(Wp×A)÷Vf Cp = (Wp × 100) × (A ÷ 100) ÷ Vf = (Wp × A) ÷ Vf
 よって、この場合の第1混合時に混合させる界面活性剤の混合量Wp(単位:グラム)は次のように表すことができる。 Therefore, the mixing amount Wp (unit: gram) of the surfactant to be mixed during the first mixing in this case can be expressed as follows.
  Wp=(Cp×Vf)÷A Wp = (Cp × Vf) ÷ A
(4)混合の方法
 DGGMRと界面活性剤を混合し混合物を調製する工程において、このDGGMRと界面活性剤とを混合する方法は、このDGGMRと界面活性剤が混合するのであればいずれの方法でもよく、特に限定はない。
(4) Method of mixing In the step of preparing a mixture by mixing DGGMR and surfactant, the method of mixing DGGMR and surfactant is any method as long as this DGGMR and surfactant are mixed. Well, there is no particular limitation.
 なお、当該混合においては、DGGMRをアルコールなどの有機溶媒及び界面活性剤を含む溶液に混合したり、DGGMRを含有する液を滴々と滴下して界面活性剤を含む溶液に混合したり、DGGMRを含有する液を界面活性剤を含む溶液に噴射注入したり、DGGMR及び界面活性剤を含有する溶液を強力なミキサーで高速に撹拌したり、又はDGGMR及び界面活性剤を含有する溶液に超音波を掛ける処理を行ったり等の煩雑な若しくは熟練を要する等の特別な処理や特別な装置等は必要なく、一般的なミキサーを用いて一般的な速度で撹拌する等、通常の方法で混合すればよく、これによりDGGMRと界面活性剤の混合物を調製することができる。 In this mixing, DGGMR is mixed with a solution containing an organic solvent such as alcohol and a surfactant, or a solution containing DGGMR is dropped and mixed with a solution containing a surfactant, or DGGMR is mixed. Injecting the liquid containing the surfactant into the solution containing the surfactant, stirring the solution containing the DGGMR and the surfactant at high speed with a powerful mixer, or ultrasonicating the solution containing the DGGMR and the surfactant There is no need for special processing or special equipment, such as processing that requires a lot of time or skill, such as stirring at a general speed using a general mixer. Thus, a mixture of DGGMR and a surfactant can be prepared.
(5)混合時の温度
 DGGMRと界面活性剤を混合し混合物を調製する工程において、このDGGMRと界面活性剤とを混合する時の温度は、特に限定されないが、用いる界面活性剤の曇点付近の温度又はこの曇点付近の温度以下の温度においてこの工程を行うことが、安定で均一なミセル粒子からなるエマルジョン溶液を製造する目的の上から好ましい。
(5) Temperature at the time of mixing In the step of preparing a mixture by mixing DGGMR and a surfactant, the temperature at which the DGGMR and the surfactant are mixed is not particularly limited, but is near the cloud point of the surfactant used. It is preferable for the purpose of producing an emulsion solution composed of stable and uniform micelle particles to carry out this step at a temperature equal to or lower than the temperature near the cloud point.
 なお、曇点は、非イオン性の界面活性剤等の水溶液の温度を上げていった場合にその界面活性剤等のミセルが形成できなくなる温度であり、その水溶液が白濁する温度であって、その界面活性剤等毎に異なるものである。 The cloud point is a temperature at which micelles such as a surfactant cannot be formed when the temperature of an aqueous solution such as a nonionic surfactant is raised, and the aqueous solution becomes cloudy, It is different for each surfactant.
 また、本発明において、界面活性剤の曇点付近の温度としては、その界面活性剤の曇点の温度のプラスマイナス(±)25℃の範囲を意味する。
 この界面活性剤の曇点付近の温度としては、その界面活性剤の曇点の温度のプラスマイナス(±)15℃の範囲が好ましく、プラスマイナス(±)10℃の範囲がより好ましく、プラスマイナス(±)5℃の範囲が特に好ましい。
In the present invention, the temperature in the vicinity of the cloud point of the surfactant means a range of plus or minus (±) 25 ° C. of the cloud point temperature of the surfactant.
The temperature near the cloud point of this surfactant is preferably in the range of plus or minus (±) 15 ° C., more preferably in the range of plus or minus (±) 10 ° C., plus or minus. A range of (±) 5 ° C. is particularly preferable.
 そして、本発明においては、上記の界面活性剤の曇点付近の温度以下の温度において、DGGMRと界面活性剤を混合し混合物を調製する工程を行うことも好ましい。 And in this invention, it is also preferable to perform the process of mixing DGGMR and surfactant and preparing a mixture at the temperature below the cloud point of said surfactant.
 なお、例えば、界面活性剤である、KF-351Aの曇点は52℃(自己実測値)であり、KF-355Aの曇点は67℃(自己実測値)であり、そして、KF-6011の曇点は64℃(自己実測値)である
 なお、KF-354Lは、曇点の測定に使用した恒温水槽の設定温度の上限の77℃においても曇点に至らなかったので、これの曇点は77℃超である。
For example, the surfactant, KF-351A, has a cloud point of 52 ° C. (self-measured value), KF-355A has a cloud point of 67 ° C. (self-measured value), and KF-6011 The cloud point is 64 ° C. (self-measured value). KF-354L did not reach the cloud point even at 77 ° C. which is the upper limit temperature of the constant temperature water tank used for cloud point measurement. Is above 77 ° C.
 前記のDGGMRと界面活性剤を混合し混合物を調製する工程は、前記の目的の上から、用いる界面活性剤の曇点の温度のプラスマイナス25℃の範囲の温度若しくはこの範囲の温度以下の温度で行うことが好ましく、用いる界面活性剤の曇点の温度のプラスマイナス15℃の範囲の温度若しくはこの範囲の温度以下の温度で行うことがより好ましく、用いる界面活性剤の曇点の温度のプラスマイナス10℃の範囲の温度若しくはこの範囲の温度以下の温度で行うことが更に好ましく、そして、用いる界面活性剤の曇点の温度のプラスマイナス5℃の範囲の温度若しくはこの範囲の温度以下の温度で行うことが特に好ましい。 The step of mixing the DGGMR and the surfactant to prepare a mixture is performed for the purpose described above, in the range of plus or minus 25 ° C. of the cloud point temperature of the surfactant to be used, or below this range. It is preferable to carry out at a temperature in the range of plus or minus 15 ° C of the cloud point temperature of the surfactant to be used, or more preferably at a temperature below this range. More preferably, it is carried out at a temperature in the range of minus 10 ° C. or below this range, and the temperature of the cloud point of the surfactant used is plus or minus 5 ° C. or below this range. It is particularly preferable to carry out at
 また、本発明におけるDGGMRと界面活性剤を混合し混合物を調製する工程において、このDGGMRと界面活性剤とを混合する時の温度であるが、この工程を、DGGMR、及び用いる界面活性剤それぞれの融点以上の温度において行うことが、安定で均一なミセル粒子からなるエマルジョン溶液を製造する目的の上から好ましい。 Further, in the step of mixing the DGGMR and the surfactant in the present invention to prepare a mixture, this is the temperature at which the DGGMR and the surfactant are mixed. This step is the same as that for the DGGMR and the surfactant to be used. It is preferable to carry out at a temperature above the melting point for the purpose of producing an emulsion solution composed of stable and uniform micelle particles.
 そして、このDGGMRと界面活性剤を混合し混合物を調製する工程は、前記の目的の上から、2℃以上で行うことがより好ましく、5℃以上で行うことが更に好ましく、10℃以上で行うことが特に好ましい。 The step of mixing the DGGMR and the surfactant to prepare the mixture is preferably performed at 2 ° C. or higher, more preferably at 5 ° C. or higher for the above purpose, more preferably at 10 ° C. or higher. It is particularly preferred.
(6)混合の時間
 DGGMRと界面活性剤を混合し混合物を調製する工程において、このDGGMRと界面活性剤とを混合する時間であるが、このDGGMRと界面活性剤とが均質に混合されればよく、特に限定されない。
 通常は、安定で均一なミセル粒子からなるエマルジョン溶液を製造する目的の上から、この混合を5分間又はそれ以上行うことが好ましい。なお、一般的には、5分間で十分である。
(6) Mixing time In the step of preparing a mixture by mixing DGGMR and a surfactant, this DGGMR and the surfactant are mixed. If the DGGMR and the surfactant are mixed homogeneously, Well, not particularly limited.
Usually, for the purpose of producing an emulsion solution composed of stable and uniform micelle particles, it is preferable to perform this mixing for 5 minutes or longer. In general, 5 minutes is sufficient.
 また、このDGGMRと界面活性剤とを混合する時間は、特に上限はなく、例えば数時間混合しても構わないのであるが、時間もコストであるという観点から考えると、念入りに行うとしても通常は10分間以内でよい。 The time for mixing DGGMR and the surfactant is not particularly limited. For example, it may be mixed for several hours, but from the viewpoint that the time is also cost, even if it is performed carefully, it is usually performed. Within 10 minutes.
3.DGGMRと界面活性剤の混合物を水又は水溶液と混合する工程
 前記1における(b)の工程、すなわち、『「DGGMRと、界面活性剤を混合し混合物を調製する工程」において調製した混合物の全部又は一部を、水又は水溶液と混合する工程』について、以下、詳細に説明する。
3. Step of mixing a mixture of DGGMR and a surfactant with water or an aqueous solution Step (b) in 1 above, that is, all of the mixture prepared in “Step of mixing DGGMR and a surfactant to prepare a mixture” or Hereinafter, the “part of mixing with water or an aqueous solution” will be described in detail.
(1)水又は水溶液
 前記1の(b)の工程、すなわち、「前記1の(a)の工程において調製した混合物の全部又は一部を、水又は水溶液と混合する工程」において、この水又は水溶液については、特に限定はない。
(1) Water or aqueous solution In the step (b) of 1 above, that is, “the step of mixing all or part of the mixture prepared in the step (a) of 1 with water or an aqueous solution”, There is no particular limitation on the aqueous solution.
 この水としては、特に限定はないが、例えば、純水、蒸留水又は精製水等を挙げることができる。 The water is not particularly limited, and examples thereof include pure water, distilled water, and purified water.
 また、この水溶液としては、水を溶媒とするものであればよく、特に限定はないが、例えば、還元剤、リパーゼ賦活化剤、リパーゼ活性化剤、コリパーゼ、及び緩衝剤からなる群から選ばれる少なくとも一つのもの等を含有する水溶液等を挙げることができる。 The aqueous solution is not particularly limited as long as water is used as a solvent. For example, the aqueous solution is selected from the group consisting of a reducing agent, a lipase activator, a lipase activator, a colipase, and a buffer. Examples thereof include an aqueous solution containing at least one.
(a)還元剤
 本発明において、前記の水溶液に含有させることができる還元剤としては、還元能力を有するものであればよく、特に限定はないが、例えば、ヒドロキシルアンモニウム塩、チオール化合物等を挙げることができる。
(A) Reducing agent In the present invention, the reducing agent that can be contained in the aqueous solution is not particularly limited as long as it has a reducing ability, and examples thereof include hydroxylammonium salts and thiol compounds. be able to.
 この還元剤については、前記IIの「3.還元剤」の項に記載した通りである。 This reducing agent is as described in the section of “3. Reducing agent” in II above.
 なお、この還元剤は、第2混合後、その濃度が0.01mM以上であることが好ましい。 The concentration of the reducing agent is preferably 0.01 mM or more after the second mixing.
 なお、第2混合後、この還元剤の好ましい濃度は、より好ましくは0.1mM以上であり、特に好ましくは0.5mM以上である。 In addition, after the second mixing, the preferable concentration of the reducing agent is more preferably 0.1 mM or more, and particularly preferably 0.5 mM or more.
 また、この還元剤の濃度であるが、第2混合後、100mM以下であることが好ましい。 The concentration of the reducing agent is preferably 100 mM or less after the second mixing.
 なお、第2混合後、この還元剤の好ましい濃度は、より好ましくは10mM以下であり、特に好ましくは5mM以下である。 Note that after the second mixing, the preferred concentration of the reducing agent is more preferably 10 mM or less, and particularly preferably 5 mM or less.
 この第2混合後の還元剤の好ましい濃度は、以上述べた通りである。
 第2混合後の還元剤の濃度が上記の濃度となるよう、前記の「DGGMR及び界面活性剤の混合物」と前記水溶液との混合比率等を勘案した上で、当該水溶液に還元剤を適当な濃度で含有させることが好ましい。
The preferable concentration of the reducing agent after the second mixing is as described above.
In consideration of the mixing ratio of the above-mentioned “mixture of DGGMR and surfactant” and the aqueous solution so that the concentration of the reducing agent after the second mixing becomes the above concentration, an appropriate reducing agent is added to the aqueous solution. It is preferable to contain by concentration.
(b)リパーゼ賦活化剤
 本発明において、前記の水溶液に含有させることができるリパーゼ賦活化剤としては、リパーゼを賦活化することができる物質であればよく、特に限定はないが、例えば、胆汁酸又はその塩等を挙げることができる。
(B) Lipase activator In the present invention, the lipase activator that can be contained in the aqueous solution is not particularly limited as long as it is a substance that can activate lipase. For example, bile An acid or its salt can be mentioned.
 このリパーゼ賦活化剤としての胆汁酸又はその塩については、前記IIの5の「(1)リパーゼ賦活化剤」の項に記載した通りである。 The bile acid or salt thereof as the lipase activator is as described in the section “(1) Lipase activator” in 5 of II.
 なお、このリパーゼ賦活化剤は、第2混合後、その濃度が0.2%(w/v)以上であることが好ましい。 In addition, it is preferable that the density | concentration of this lipase activator is 0.2% (w / v) or more after 2nd mixing.
 なお、第2混合後、このリパーゼ賦活化剤の好ましい濃度は、より好ましくは0.4%(w/v)以上であり、特に好ましくは1%(w/v)以上である。 In addition, after the second mixing, the preferable concentration of the lipase activator is more preferably 0.4% (w / v) or more, and particularly preferably 1% (w / v) or more.
 また、このリパーゼ賦活化剤の濃度であるが、第2混合後、20%(w/v)以下であることが好ましい。 The concentration of the lipase activator is preferably 20% (w / v) or less after the second mixing.
 なお、第2混合後、このリパーゼ賦活化剤の好ましい濃度は、より好ましくは10%(w/v)以下であり、特に好ましくは5%(w/v)以下である。 Note that, after the second mixing, the preferable concentration of the lipase activator is more preferably 10% (w / v) or less, and particularly preferably 5% (w / v) or less.
 この第2混合後のリパーゼ賦活化剤の好ましい濃度は、以上述べた通りである。
 第2混合後のリパーゼ賦活化剤の濃度が上記の濃度となるよう、前記の「DGGMR及び界面活性剤の混合物」と前記水溶液との混合比率等を勘案した上で、当該水溶液にリパーゼ賦活化剤を適当な濃度で含有させることが好ましい。
The preferred concentration of the lipase activator after the second mixing is as described above.
In consideration of the mixing ratio of the above-mentioned “DGGMR and surfactant mixture” and the aqueous solution so that the concentration of the lipase activator after the second mixing is the above-mentioned concentration, the aqueous solution is activated with lipase. It is preferable to contain the agent in an appropriate concentration.
(c)リパーゼ活性化剤
 本発明において、前記の水溶液に含有させることができるリパーゼ活性化剤としては、リパーゼを活性化することができる物質であればよく、特に限定はないが、例えば、アルカリ土類金属イオン又はその塩等を挙げることができる。
(C) Lipase activator In the present invention, the lipase activator that can be contained in the aqueous solution is not particularly limited as long as it is a substance that can activate lipase. Examples include earth metal ions or salts thereof.
 このリパーゼ活性化剤としてのアルカリ土類金属イオン又はその塩については、前記IIの6の「(1)リパーゼ活性化剤」の項に記載した通りである。 The alkaline earth metal ion or salt thereof as the lipase activator is as described in the section “(1) Lipase activator” in 6 of II.
 なお、このリパーゼ活性化剤は、第2混合後、その濃度が0.1mM以上であることが好ましい。 The lipase activator preferably has a concentration of 0.1 mM or more after the second mixing.
 なお、第2混合後、このリパーゼ活性化剤の好ましい濃度は、より好ましくは1mM以上であり、特に好ましくは5mM以上である。 In addition, the preferable concentration of this lipase activator after the second mixing is more preferably 1 mM or more, and particularly preferably 5 mM or more.
 また、このリパーゼ活性化剤の濃度であるが、第2混合後、100mM以下であることが好ましい。 The concentration of the lipase activator is preferably 100 mM or less after the second mixing.
 なお、第2混合後、このリパーゼ活性化剤の好ましい濃度は、より好ましくは50mM以下であり、特に好ましくは25mM以下である。 Note that, after the second mixing, the preferred concentration of the lipase activator is more preferably 50 mM or less, and particularly preferably 25 mM or less.
 この第2混合後のリパーゼ活性化剤の好ましい濃度は、以上述べた通りである。
 第2混合後のリパーゼ活性化剤の濃度が上記の濃度となるよう、前記の「DGGMR及び界面活性剤の混合物」と前記水溶液との混合比率等を勘案した上で、当該水溶液にリパーゼ活性化剤を適当な濃度で含有させることが好ましい。
The preferable concentration of the lipase activator after the second mixing is as described above.
In consideration of the mixing ratio of the above-mentioned “DGGMR and surfactant mixture” and the aqueous solution so that the concentration of the lipase activator after the second mixing becomes the above-mentioned concentration, the aqueous solution is activated with lipase. It is preferable to contain the agent in an appropriate concentration.
(d)コリパーゼ
 本発明において、水溶液に含有させることができるコリパーゼとしては、コリパーゼの作用、機能又は活性を有しているものであればよく、特に限定はない。
(D) Colipase In the present invention, the colipase that can be contained in the aqueous solution is not particularly limited as long as it has the action, function, or activity of colipase.
 このコリパーゼについては、前記IIの7の「(1)コリパーゼ」の項に記載した通りである。 This colipase is as described in the section “(1) Colipase” in 7 of II above.
 なお、このコリパーゼは、第2混合後、その活性値が15K単位/L(15K Unit/L)以上であることが好ましい。 In addition, it is preferable that the activity value of this colipase is 15K unit / L (15K Unit / L) or more after the second mixing.
 なお、第2混合後、このコリパーゼの好ましい活性値は、より好ましくは150K単位/L以上であり、特に好ましくは750K単位/L以上である。 In addition, the preferable activity value of this colipase after the second mixing is more preferably 150 K units / L or more, and particularly preferably 750 K units / L or more.
 また、このコリパーゼの活性値であるが、第2混合後、7,500K単位/L以下であることが好ましい。 The activity value of this colipase is preferably 7,500 K units / L or less after the second mixing.
 なお、第2混合後、このコリパーゼの好ましい活性値は、より好ましくは3,750K単位/L以下であり、特に好ましくは2,250K単位/L以下である。 In addition, the preferable activity value of this colipase after the second mixing is more preferably 3,750 K units / L or less, and particularly preferably 2,250 K units / L or less.
 この第2混合後のコリパーゼの好ましい活性値は、以上述べた通りである。
 第2混合後のコリパーゼの活性値が上記の活性値となるよう、前記の「DGGMR及び界面活性剤の混合物」と前記水溶液との混合比率等を勘案した上で、当該水溶液にコリパーゼを適当な活性値で含有させることが好ましい。
The preferable activity value of the colipase after the second mixing is as described above.
In consideration of the mixing ratio of the above-mentioned “mixture of DGGMR and surfactant” and the aqueous solution so that the activity value of the colipase after the second mixing becomes the above-mentioned activity value, an appropriate amount of colipase is added to the aqueous solution. It is preferable to contain by activity value.
(e)pH
 本発明においてリパーゼ活性測定用基質として用いるDGGMRは、pH4又はその付近のpHにおいて安定である。
 よって、第2混合後、そのpHはpH4を中心とする一定の範囲内のものであることが好ましい。
(E) pH
In the present invention, DGGMR used as a substrate for measuring lipase activity is stable at pH 4 or in the vicinity thereof.
Therefore, after the second mixing, the pH is preferably within a certain range centered on pH 4.
 具体的には、第2混合後のpHは、DGGMRの安定性の点から、pH2~pH7の範囲内にあることが好ましく、pH3~pH5の範囲内にあることがより好ましく、そして、pH3.5~pH4.5の範囲内にあることが特に好ましい。(前記のpH値はいずれも20℃での値である。) Specifically, the pH after the second mixing is preferably in the range of pH 2 to pH 7, more preferably in the range of pH 3 to pH 5, from the viewpoint of the stability of DGGMR, and pH 3. A range of 5 to 4.5 is particularly preferable. (The above pH values are all values at 20 ° C.)
 この第2混合後のpHは、以上述べた通りである。
 第2混合後のpHが上記のpHとなるよう、前記水溶液のpHを適当なpHにすることが好ましい。
The pH after the second mixing is as described above.
It is preferable to adjust the pH of the aqueous solution to an appropriate pH so that the pH after the second mixing becomes the above pH.
(f)緩衝剤
 本発明においては、第2混合後のpHを、前記(e)に記載のpH範囲に保つため、前記(e)のpH範囲に緩衝能を有する緩衝剤を前記水溶液に適宜含有させてもよい。
(F) Buffering agent In the present invention, in order to maintain the pH after the second mixing in the pH range described in (e) above, a buffering agent having a buffering ability in the pH range of (e) is appropriately added to the aqueous solution. You may make it contain.
 この緩衝剤については、前記IIの10の「(1)緩衝剤」の項に記載した通りである。 This buffering agent is as described in the section “(1) Buffering agent” in 10 of II above.
 この緩衝剤を含有する水溶液(すなわち、緩衝液)における緩衝剤の濃度は、特に限定はなく、設定するpHの範囲において緩衝能を発揮することができる濃度であればよい。 The concentration of the buffering agent in the aqueous solution containing this buffering agent (that is, the buffering solution) is not particularly limited as long as the buffering ability can be exhibited in the set pH range.
 例えば、第2混合後、この緩衝剤の濃度は、好ましくは5mM以上であり、より好ましくは10mM以上であり、特に好ましくは30mM以上である。 For example, after the second mixing, the concentration of the buffer is preferably 5 mM or more, more preferably 10 mM or more, and particularly preferably 30 mM or more.
 また、この緩衝剤の濃度は、第2混合後、好ましくは500mM以下であり、より好ましくは100mM以下であり、特に好ましくは50mM以下である。 Further, the concentration of this buffering agent is preferably 500 mM or less, more preferably 100 mM or less, and particularly preferably 50 mM or less after the second mixing.
 この第2混合後の緩衝剤の好ましい濃度は、以上述べた通りである。
 第2混合後の緩衝剤の濃度が上記の濃度となるよう、前記の水溶液に緩衝剤を適当な濃度で含有させることが好ましい。
The preferable concentration of the buffering agent after the second mixing is as described above.
It is preferable to contain the buffering agent at an appropriate concentration in the aqueous solution so that the concentration of the buffering agent after the second mixing becomes the above-mentioned concentration.
(2)DGGMR及び界面活性剤の混合物の水又は水溶液との混合
 前記1における(b)の工程、すなわち、『「DGGMRと、界面活性剤を混合し混合物を調製する工程」において調製した混合物の全部又は一部を、水又は水溶液と混合する工程』においては、当該「DGGMRと界面活性剤の混合物」の全部又は一部を、当該「水又は水溶液」と混合する。
(2) Mixing of DGGMR and Surfactant Mixture with Water or Aqueous Solution Step (b) in 1 above, ie, the “prepared mixture of DGGMR and surfactant to prepare mixture” In the step of mixing all or a part with water or an aqueous solution, all or a part of the “mixture of DGGMR and surfactant” is mixed with the “water or aqueous solution”.
 ところで、リパーゼ活性測定用基質としてのDGGMRと界面活性剤を混合して調製した混合物の全部又は一部を、水又は水溶液と混合する工程であるが、特に限定はなく、例えば、「DGGMRと界面活性剤を混合して調製した混合物」の全部又は一部を「水又は水溶液」へ添加し、混合するという態様でもよく、又は「水又は水溶液」を「DGGMRと界面活性剤を混合して調製した混合物」の全部又は一部へ添加し、混合するという態様でもよく、或いはその他の態様でもよい。 By the way, it is a step of mixing all or part of a mixture prepared by mixing DGGMR as a lipase activity measurement substrate and a surfactant with water or an aqueous solution, but there is no particular limitation. For example, “DGGMR and interface A mode in which all or part of the “mixture prepared by mixing the active agent” is added to “water or aqueous solution” and mixed, or “water or aqueous solution” is prepared by mixing “DGGMR and surfactant”. The mixture may be added to all or a part of the “mixed mixture” and mixed, or other embodiments may be employed.
 なお、前記の「DGGMRと界面活性剤の混合物」と、前記の「水又は水溶液」との混合の比率は、特に限定はなく適宜定めればよい。 The mixing ratio of the “DGGMR / surfactant mixture” and the “water or aqueous solution” is not particularly limited and may be determined as appropriate.
 なお、この「DGGMRと界面活性剤の混合物」と「水又は水溶液」との混合については、例えば、次の(i)及び(ii)のように考えることができる。 The mixing of the “DGGMR / surfactant mixture” and “water or aqueous solution” can be considered, for example, as in the following (i) and (ii).
(i)DGGMRの濃度の面から
 前記2の「(2)DGGMRの混合量」の項に詳述した通り、第2混合後、DGGMRの好ましい濃度は、前記の目的の上から、好ましくは0.05mM以上であり、より好ましくは0.1mM以上であり、そして、特に好ましくは0.2mM以上である。
 また、これも前記2の「(2)DGGMRの混合量」の項に詳述した通り、第2混合後、DGGMRの好ましい濃度は、前記の目的の上から、好ましくは2mM以下であり、より好ましくは1mM以下であり、そして、特に好ましくは0.8mM以下である。
(I) From the aspect of DGGMR concentration As described in detail in section 2 “(2) Mixing amount of DGGMR”, after the second mixing, the preferable concentration of DGGMR is preferably 0 for the above purpose. 0.05 mM or more, more preferably 0.1 mM or more, and particularly preferably 0.2 mM or more.
Also, as described in detail in the section “(2) DGGMR mixing amount” in 2 above, the preferable concentration of DGGMR after the second mixing is preferably 2 mM or less for the above purpose. It is preferably 1 mM or less, and particularly preferably 0.8 mM or less.
 そして、このDGGMRの好ましい濃度と、第2混合時に水又は水溶液を混合した後の最終的な容量との関係は、例えば、次の(a)又は(b)などのように考えることができる。 The relationship between the preferable concentration of DGGMR and the final volume after mixing water or an aqueous solution during the second mixing can be considered as, for example, the following (a) or (b).
(a)リパーゼ活性測定用基質と界面活性剤の混合物の全部を水又は水溶液と混合する場合
 第1混合時に混合させるリパーゼ活性測定用基質の混合量をWs[単位:グラム]とし、第2混合時に水又は水溶液を混合した後の最終的な容量(メスアップ後の容量等)をVf[単位:mL]とし、そしてリパーゼ活性測定用基質の分子量をMWsとした場合、第2混合後のリパーゼ活性測定用基質の濃度Cs[単位:mM]は次の式で表すことができる。
(A) When all of the mixture of the lipase activity measurement substrate and the surfactant is mixed with water or an aqueous solution, the mixing amount of the lipase activity measurement substrate mixed during the first mixing is Ws [unit: grams], and the second mixing Sometimes the final volume after mixing water or aqueous solution (volume after volume up, etc.) is Vf [unit: mL] and the molecular weight of the lipase activity measurement substrate is MWs, the lipase after the second mixing The concentration Cs [unit: mM] of the substrate for activity measurement can be expressed by the following formula.
  Cs=(Ws×10)÷(Vf×MWs) Cs = (Ws × 10 6 ) ÷ (Vf × MWs)
 なお、リパーゼ活性測定用基質であるDGGMRの分子量MWsは752.05であるので、上記の式は次のようになる。 Since the molecular weight MWs of DGGMR, which is a substrate for measuring lipase activity, is 752.05, the above formula is as follows.
  Cs=(Ws×10)÷(Vf×752.05) Cs = (Ws × 10 6 ) ÷ (Vf × 752.05)
 よって、この場合の第2混合時に水又は水溶液を混合した後の最終的な容量Vf[単位:mL]は、次のように表すことができる。 Therefore, the final volume Vf [unit: mL] after mixing water or an aqueous solution in the second mixing in this case can be expressed as follows.
  Vf=(Ws×10)÷(Cs×MWs) Vf = (Ws × 10 6 ) ÷ (Cs × MWs)
  すなわち、Vf=(Ws×10)÷(Cs×752.05) That is, Vf = (Ws × 10 6 ) ÷ (Cs × 752.05)
 従って、上記の式により求めた容量Vf[単位:mL]になるよう、第2混合時に水又は水溶液を混合することにより、希望するリパーゼ活性測定用基質(DGGMR)の濃度のリパーゼ活性測定用基質溶液を得ることができる。 Therefore, by mixing water or an aqueous solution during the second mixing so that the volume Vf [unit: mL] obtained by the above formula is obtained, the lipase activity measurement substrate having the desired lipase activity measurement substrate (DGGMR) concentration is obtained. A solution can be obtained.
(b)リパーゼ活性測定用基質と界面活性剤の混合物の一部を水又は水溶液と混合する場合
 第1混合時に混合させるリパーゼ活性測定用基質の混合量をWs[単位:グラム]とし、第2混合時に水又は水溶液を混合した後の最終的な容量(メスアップ後の容量等)をVf[単位:mL]とし、リパーゼ活性測定用基質の分子量をMWsとし、そして第1混合時の混合物のA%(重量又は容量)を第2混合時に水又は水溶液と混合した場合、第2混合後のリパーゼ活性測定用基質の濃度Cs[単位:mM]は次の式で表すことができる。
(B) When a part of the mixture of the lipase activity measurement substrate and the surfactant is mixed with water or an aqueous solution, the mixing amount of the lipase activity measurement substrate mixed at the first mixing is Ws [unit: grams], and the second The final volume after mixing water or aqueous solution at the time of mixing (volume after volume-up, etc.) is Vf [unit: mL], the molecular weight of the lipase activity measurement substrate is MWs, and the mixture of the mixture at the first mixing When A% (weight or volume) is mixed with water or an aqueous solution during the second mixing, the concentration Cs [unit: mM] of the lipase activity measurement substrate after the second mixing can be expressed by the following formula.
  Cs=(Ws×10)×(A÷100)÷(Vf×MWs)=(Ws×A×10)÷(Vf×MWs) Cs = (Ws × 10 6 ) × (A ÷ 100) ÷ (Vf × MWs) = (Ws × A × 10 4 ) ÷ (Vf × MWs)
 なお、リパーゼ活性測定用基質であるDGGMRの分子量MWsは752.05であるので、上記の式は次のようになる。 Since the molecular weight MWs of DGGMR, which is a substrate for measuring lipase activity, is 752.05, the above formula is as follows.
  Cs=(Ws×A×10)÷(Vf×752.05) Cs = (Ws × A × 10 4 ) ÷ (Vf × 752.05)
 よって、この場合の第2混合時に水又は水溶液を混合した後の最終的な容量Vf[単位:mL]は、次のように表すことができる。 Therefore, the final volume Vf [unit: mL] after mixing water or an aqueous solution in the second mixing in this case can be expressed as follows.
  Vf=(Ws×A×10)÷(Cs×MWs) Vf = (Ws × A × 10 4 ) ÷ (Cs × MWs)
  すなわち、Vf=(Ws×A×10)÷(Cs×752.05) That is, Vf = (Ws × A × 10 4 ) ÷ (Cs × 752.05)
 従って、上記の式により求めた容量Vf[単位:mL]になるよう、第2混合時に水又は水溶液を混合することにより、希望するリパーゼ活性測定用基質(DGGMR)の濃度のリパーゼ活性測定用基質溶液を得ることができる。 Therefore, by mixing water or an aqueous solution during the second mixing so that the volume Vf [unit: mL] obtained by the above formula is obtained, the lipase activity measurement substrate having the desired lipase activity measurement substrate (DGGMR) concentration is obtained. A solution can be obtained.
(ii)界面活性剤の濃度の面から
 前記2の「(3)界面活性剤の混合量」の項に詳述した通り、第2混合後、界面活性剤の好ましい濃度は、前記の目的の上から、好ましくは0.01%(w/v)以上であり、より好ましくは0.05%(w/v)以上であり、そして、特に好ましくは0.1%(w/v)以上である。
(Ii) From the viewpoint of the surfactant concentration As described in detail in the section “(3) Mixing amount of surfactant” in 2 above, the preferable concentration of the surfactant after the second mixing is the above-mentioned purpose. From the top, it is preferably 0.01% (w / v) or more, more preferably 0.05% (w / v) or more, and particularly preferably 0.1% (w / v) or more. is there.
 また、これも前記2の「(3)界面活性剤の混合量」の項に詳述した通り、第2混合後、界面活性剤の好ましい濃度は、前記の目的の上から、好ましくは20%(w/v)以下であり、より好ましくは10%(w/v)以下であり、そして、特に好ましくは5%(w/v)以下である。 Also, as described in detail in the section “(3) Amount of surfactant” in 2 above, the preferable concentration of the surfactant after the second mixing is preferably 20% for the above purpose. (W / v) or less, more preferably 10% (w / v) or less, and particularly preferably 5% (w / v) or less.
 そして、この界面活性剤の好ましい濃度と、第2混合時に水又は水溶液を混合した後の最終的な容量との関係は、例えば、次の(a)又は(b)などのように考えることができる。 The relationship between the preferable concentration of the surfactant and the final volume after mixing water or an aqueous solution during the second mixing can be considered as, for example, (a) or (b) below. it can.
(a)リパーゼ活性測定用基質と界面活性剤の混合物の全部を水又は水溶液と混合する場合
 第1混合時に混合させる界面活性剤の混合量をWp[単位:グラム]とし、第2混合時に水又は水溶液を混合した後の最終的な容量(メスアップ後の容量等)をVf[単位:mL]とした場合、第2混合後の界面活性剤の濃度Cp[単位:%(w/v)]は次の式で表すことができる。
(A) In the case where the entire mixture of the lipase activity measurement substrate and the surfactant is mixed with water or an aqueous solution, the amount of the surfactant to be mixed during the first mixing is Wp [unit: grams], and the water is mixed during the second mixing. Alternatively, when the final volume after mixing the aqueous solution (volume after volume-up, etc.) is Vf [unit: mL], the concentration Cp [unit:% (w / v) of the surfactant after the second mixing ] Can be expressed by the following equation.
  Cp=(Wp×100)÷Vf Cp = (Wp × 100) ÷ Vf
 よって、この場合の第2混合時に水又は水溶液を混合した後の最終的な容量Vf[単位:mL]は、次のように表すことができる。 Therefore, the final volume Vf [unit: mL] after mixing water or an aqueous solution in the second mixing in this case can be expressed as follows.
  Vf=(Wp×100)÷Cp Vf = (Wp × 100) ÷ Cp
 従って、上記の式により求めた容量Vf[単位:mL]になるよう、第2混合時に水又は水溶液を混合することにより、希望する界面活性剤の濃度のリパーゼ活性測定用基質溶液を得ることができる。 Therefore, by mixing water or an aqueous solution at the time of the second mixing so that the volume Vf [unit: mL] obtained by the above formula is obtained, a substrate solution for lipase activity measurement having a desired surfactant concentration can be obtained. it can.
(b)リパーゼ活性測定用基質と界面活性剤の混合物の一部を水又は水溶液と混合する場合
 第1混合時に混合させる界面活性剤の混合量をWp[単位:グラム]とし、第2混合時に水又は水溶液を混合した後の最終的な容量(メスアップ後の容量等)をVf[単位:mL]とし、そして第1混合時の混合物のA%(重量又は容量)を第2混合時に水又は水溶液と混合した場合、第2混合後の界面活性剤の濃度Cp[単位:%(w/v)]は次の式で表すことができる。
(B) When a part of the mixture of the lipase activity measurement substrate and the surfactant is mixed with water or an aqueous solution, the amount of the surfactant to be mixed at the first mixing is Wp [unit: grams], and at the second mixing The final volume after mixing water or aqueous solution (volume after measuring up, etc.) is Vf [unit: mL], and A% (weight or volume) of the mixture at the first mixing is water at the second mixing. Alternatively, when mixed with an aqueous solution, the concentration Cp [unit:% (w / v)] of the surfactant after the second mixing can be expressed by the following formula.
  Cp=(Wp×100)×(A÷100)÷Vf=(Wp×A)÷Vf Cp = (Wp × 100) × (A ÷ 100) ÷ Vf = (Wp × A) ÷ Vf
 よって、この場合の第2混合時に水又は水溶液を混合した後の最終的な容量Vf[単位:mL]は、次のように表すことができる。 Therefore, the final volume Vf [unit: mL] after mixing water or an aqueous solution in the second mixing in this case can be expressed as follows.
  Vf=(Wp×A)÷Cp Vf = (Wp × A) ÷ Cp
 従って、上記の式により求めた容量Vf[単位:mL]になるよう、第2混合時に水又は水溶液を混合することにより、希望する界面活性剤の濃度のリパーゼ活性測定用基質溶液を得ることができる。 Therefore, by mixing water or an aqueous solution at the time of the second mixing so that the volume Vf [unit: mL] obtained by the above formula is obtained, a substrate solution for lipase activity measurement having a desired surfactant concentration can be obtained. it can.
 なお、このリパーゼ活性測定用基質としてのDGGMRと界面活性剤を混合して調製した混合物の全部又は一部を、水又は水溶液と混合する工程は、二段階以上の複数の段階(ステップ)によって行ってもよい。
 なお、このように、この工程を複数の段階(ステップ)によって行うことが、安定で均一なミセル粒子からなるエマルジョン溶液を製造する目的の上から好ましい。
The process of mixing all or part of the mixture prepared by mixing DGGMR as a lipase activity measurement substrate and a surfactant with water or an aqueous solution is performed in a plurality of stages (steps). May be.
In this way, it is preferable to carry out this step in a plurality of steps for the purpose of producing an emulsion solution composed of stable and uniform micelle particles.
 この工程を複数の段階によって行う方法であるが、これは当該工程を複数の段階によって行うものであればよく、特に限定はないが、例えば、次の[A]及び[B]の段階によって行うもの等を挙げることができる。 Although this method is a method of performing a plurality of steps, this is not particularly limited as long as the step is performed by a plurality of steps. For example, it is performed by the following steps [A] and [B]. The thing etc. can be mentioned.
[A] DGGMRと界面活性剤を混合して調製した混合物の全部又は一部を、一定量の水又は水溶液と混合する段階
[B] 前記[A]の段階における当該混合物(DGGMRと界面活性剤との混合物)と水又は水溶液との混合後の混合液に、更に一定量の水又は水溶液を混合する段階
[A] Step of mixing all or part of the mixture prepared by mixing DGGMR and surfactant with a certain amount of water or aqueous solution [B] The mixture (DGGMR and surfactant in the step [A] A certain amount of water or aqueous solution is further mixed with the mixed solution of the mixture of water and aqueous solution.
 なお、この場合、前記[A]の段階において「DGGMRと界面活性剤を混合して調製した混合物の全部又は一部」と混合する「水又は水溶液」の容量(一定量)をVa[単位:mL]とし、前記[B]の段階において当該混合液に「更に一定量の水又は水溶液」を混合した後の最終的な容量[すなわち、前記の第2混合時に水又は水溶液を混合した後の最終的な容量](メスアップ後の容量等)をVf[単位:mL]としたとき、VaによりVfを除した比の値(Vf/Va)は、安定で均一なミセル粒子からなるエマルジョン溶液を製造する目的の上から、1~500の範囲にあることが好ましい。 In this case, the volume (constant amount) of “water or aqueous solution” to be mixed with “all or part of the mixture prepared by mixing DGGMR and surfactant” in the step [A] is Va [unit: mL], and the final volume after mixing “more fixed amount of water or aqueous solution” with the mixture in the step [B] [ie, after mixing water or aqueous solution in the second mixing described above] When Vf [unit: mL] is defined as (final volume) (volume after measuring up), the ratio value (Vf / Va) obtained by dividing Vf by Va is an emulsion solution composed of stable and uniform micelle particles. In view of the purpose of manufacturing, it is preferably in the range of 1 to 500.
 すなわち、VaによりVfを除した比の値(Vf/Va)が1~500の範囲内になるように、前記のVa及びVfの値(容量)を選択することが、前記の目的の上から好ましい。 That is, it is possible to select the values (capacities) of Va and Vf so that the ratio value (Vf / Va) obtained by dividing Vf by Va is in the range of 1 to 500 from the above purpose. preferable.
 なお、同様に、前記の目的の上から、VaによりVfを除した比の値(Vf/Va)は、2~200の範囲にあることがより好ましく、5~100の範囲にあることが特に好ましい。 Similarly, for the above purpose, the ratio value (Vf / Va) obtained by dividing Vf by Va is more preferably in the range of 2 to 200, and particularly in the range of 5 to 100. preferable.
 すなわち、前記の目的の上から、VaによりVfを除した比の値(Vf/Va)が、2~200の範囲内になるように前記のVa及びVfの値(容量)を選択することがより好ましく、5~100の範囲内になるように前記のVa及びVfの値(容量)を選択することが特に好ましい。 That is, for the above purpose, the values of Va and Vf (capacities) may be selected so that the ratio value (Vf / Va) obtained by dividing Vf by Va is in the range of 2 to 200. More preferably, the values (capacities) of Va and Vf are particularly preferably selected so as to be in the range of 5 to 100.
 なお、前記[A]の「DGGMRと界面活性剤を混合して調製した混合物の全部又は一部を、一定量の水又は水溶液と混合する段階」であるが、特に限定はなく、例えば、「DGGMRと界面活性剤を混合して調製した混合物」の全部又は一部を一定量の「水又は水溶液」へ添加し、混合するという態様でもよく、又は一定量の「水又は水溶液」を「DGGMRと界面活性剤を混合して調製した混合物」の全部又は一部へ添加し、混合するという態様でもよく、或いはその他の態様でもよい。 The above-mentioned [A] is a step of mixing all or part of a mixture prepared by mixing DGGMR and a surfactant with a certain amount of water or an aqueous solution, but is not particularly limited. All or part of the “mixture prepared by mixing DGGMR and surfactant” may be added to a certain amount of “water or aqueous solution” and mixed, or a certain amount of “water or aqueous solution” may be added to “DGGMR”. The mixture may be added to all or part of the “mixture prepared by mixing the surfactant and the surfactant” and mixed, or other embodiments may be employed.
 また、前記[B]の「前記[A]の段階における当該混合物(DGGMRと界面活性剤との混合物)と水又は水溶液との混合後の混合液に、更に一定量の水又は水溶液を混合する段階」であるが、特に限定はなく、例えば、「前記[A]の段階における当該混合物(DGGMRと界面活性剤との混合物)と水又は水溶液との混合後の混合液」を一定量の「水又は水溶液」へ添加し、混合するという態様でもよく、又は一定量の「水又は水溶液」を「前記[A]の段階における当該混合物(DGGMRと界面活性剤との混合物)と水又は水溶液との混合後の混合液」へ添加し、混合するという態様でもよく、或いはその他の態様でもよい。 In addition, a certain amount of water or an aqueous solution is further mixed with the mixed solution after mixing the mixture (mixture of DGGMR and a surfactant) and water or an aqueous solution in the step [A] of [B]. Stage ", but there is no particular limitation. For example," a mixture after mixing the mixture (DGGMR and surfactant) in the stage [A] and water or an aqueous solution "with a certain amount of" It may be added to and mixed with "water or aqueous solution", or a certain amount of "water or aqueous solution" may be added to "the mixture (DGGMR and surfactant mixture) in step [A]" and water or an aqueous solution. The mixture may be added to the mixed solution after mixing and mixed, or other embodiments may be employed.
(3)混合の方法
 リパーゼ活性測定用基質としてのDGGMRと界面活性剤を混合して調製した混合物の全部又は一部を、水又は水溶液と混合する工程において、当該混合物の全部又は一部を、水又は水溶液と混合する方法は、当該混合物と、当該水又は水溶液が混合するのであればいずれの方法でもよく、特に限定はない。
(3) Method of mixing In the step of mixing all or part of a mixture prepared by mixing DGGMR as a lipase activity measurement substrate and a surfactant with water or an aqueous solution, all or part of the mixture is The method of mixing with water or an aqueous solution is not particularly limited as long as the mixture and the water or aqueous solution are mixed.
 なお、当該混合においては、リパーゼ活性測定用基質をアルコールなどの有機溶媒を含む溶液に混合したり、リパーゼ活性測定用基質含有液を滴々と滴下して溶液に混合したり、リパーゼ活性測定用基質含有液を溶液に噴射注入したり、リパーゼ活性測定用基質溶液を強力なミキサーで高速に撹拌したり、又はリパーゼ活性測定用基質溶液に超音波を掛ける処理を行ったり等の煩雑な若しくは熟練を要する等の特別な処理や特別な装置等は必要なく、一般的なミキサーを用いて一般的な速度で撹拌する等、通常の方法で混合すればよく、これにより、リパーゼ活性測定用基質としてのDGGMRと界面活性剤の混合物の全部又は一部を、水又は水溶液と混合することができる。 In this mixing, the lipase activity measurement substrate is mixed with a solution containing an organic solvent such as alcohol, the lipase activity measurement substrate-containing solution is dropped and mixed with the solution, or the lipase activity measurement Complicated or skillful, such as spray injection of the substrate-containing solution into the solution, stirring the lipase activity measurement substrate solution at high speed with a powerful mixer, or applying ultrasonic waves to the lipase activity measurement substrate solution No special treatment or special equipment is required, such as stirring at a general speed using a general mixer, and mixing may be performed by a normal method, thereby making it a substrate for measuring lipase activity. All or part of the DGGMR / surfactant mixture can be mixed with water or an aqueous solution.
(4)混合時の温度
 リパーゼ活性測定用基質としてのDGGMRと界面活性剤を混合して調製した混合物の全部又は一部を、水又は水溶液と混合する工程において、当該混合物の全部又は一部を、水又は水溶液と混合する時の温度は、特に限定されないが、用いる界面活性剤の曇点以下の温度においてこの工程を行うことが、安定で均一なミセル粒子からなるエマルジョン溶液を製造する目的の上から好ましい。
(4) Temperature at the time of mixing In the step of mixing all or part of the mixture prepared by mixing DGGMR as a lipase activity measurement substrate and a surfactant with water or an aqueous solution, all or part of the mixture is mixed. The temperature at the time of mixing with water or an aqueous solution is not particularly limited, but performing this step at a temperature below the cloud point of the surfactant used is intended to produce an emulsion solution consisting of stable and uniform micelle particles. Preferred from above.
 そして、このDGGMRと界面活性剤を混合して調製した混合物の全部又は一部を、水又は水溶液と混合する工程は、前記の目的の上から、用いる界面活性剤の曇点より10℃低い温度以下で行うことがより好ましく、25℃以下で行うことが特に好ましい。 And the process which mixes all or one part of the mixture prepared by mixing this DGGMR and surfactant with water or aqueous solution is 10 degreeC lower than the cloud point of the surfactant used for the said objective. It is more preferable to carry out below, and it is especially preferable to carry out at 25 degrees C or less.
 また、このDGGMRと界面活性剤を混合して調製した混合物の全部又は一部を、水又は水溶液と混合する工程において、このDGGMRと界面活性剤の混合物の全部又は一部を、水又は水溶液とを混合する時の温度であるが、この工程を、DGGMR、及び用いる界面活性剤それぞれの融点以上の温度において行うことが、安定で均一なミセル粒子からなるエマルジョン溶液を製造する目的の上から好ましい。 In the step of mixing all or part of the mixture prepared by mixing DGGMR and surfactant with water or an aqueous solution, all or part of the mixture of DGGMR and surfactant is mixed with water or aqueous solution. However, it is preferable for the purpose of producing an emulsion solution composed of stable and uniform micelle particles that this step is performed at a temperature equal to or higher than the melting points of DGGMR and the surfactant to be used. .
 そして、このDGGMRと界面活性剤を混合して調製した混合物の全部又は一部を、水又は水溶液と混合する工程は、前記の目的の上から、10℃以上で行うことがより好ましく、15℃以上で行うことが特に好ましい。 Then, the step of mixing all or part of the mixture prepared by mixing DGGMR and the surfactant with water or an aqueous solution is more preferably performed at 10 ° C. or more for the above purpose, and 15 ° C. It is particularly preferable to perform the above.
(5)混合の時間
 リパーゼ活性測定用基質としてのDGGMRと界面活性剤を混合して調製した混合物の全部又は一部を、水又は水溶液と混合する工程において、当該混合物の全部又は一部を、水又は水溶液と混合する時間であるが、このDGGMRと界面活性剤の混合物と、この水又は水溶液とが、均質に混合されればよく、特に限定されない。
(5) Mixing time In the step of mixing all or part of the mixture prepared by mixing DGGMR as a lipase activity measurement substrate and a surfactant with water or an aqueous solution, all or part of the mixture is The time for mixing with water or an aqueous solution is not particularly limited as long as the mixture of DGGMR and surfactant and the water or aqueous solution are mixed homogeneously.
 通常は、安定で均一なミセル粒子からなるエマルジョン化したリパーゼ活性測定用基質の溶液を製造する目的の上から、この混合を5分間又はそれ以上行うことが好ましい。なお、一般的には、5分間で十分である。 Usually, this mixing is preferably performed for 5 minutes or more for the purpose of producing an emulsified lipase activity measuring substrate solution composed of stable and uniform micelle particles. In general, 5 minutes is sufficient.
 また、このDGGMRと界面活性剤の混合物と、水又は水溶液とを混合する時間は、特に上限はなく、例えば数時間混合しても構わないのであるが、時間もコストであるという観点から考えると、念入りに行うとしても通常は10分間以内でよい。 Further, the time for mixing the mixture of DGGMR and the surfactant with water or an aqueous solution is not particularly limited, and may be mixed for several hours, for example, but from the viewpoint that time is also cost. Even if you do it carefully, it usually takes less than 10 minutes.
〔2〕本発明のリパーゼ活性測定試薬
I.総論
 本発明のリパーゼ活性測定試薬は、「1,2-o-ジラウリル-rac-グリセロ-3-グルタル酸-(6’-メチルレゾルフィン)-エステル[DGGMR]をリパーゼ活性測定用基質として含むリパーゼ活性測定用基質溶液において、還元剤を含有することを特徴とするリパーゼ活性測定用基質溶液」を含むことを特徴とするリパーゼ活性測定試薬である。(なお、リパーゼ活性測定用基質溶液の詳細については、前記の「〔1〕本発明のリパーゼ活性測定用基質溶液」の項に記載した通りである。)
[2] Reagent activity measuring reagent of the present invention General The reagent for measuring lipase activity of the present invention comprises a lipase containing “1,2-o-dilauryl-rac-glycero-3-glutaric acid- (6′-methylresorufin) -ester [DGGMR] as a substrate for measuring lipase activity. A reagent for measuring lipase activity comprising a substrate solution for measuring lipase activity characterized in that the substrate solution for measuring activity contains a reducing agent. (The details of the substrate solution for measuring lipase activity are as described in the above section [1] Substrate solution for measuring lipase activity of the present invention.)
 そして、本発明のリパーゼ活性測定試薬は、上記の構成により、混入したアジ化物によるDGGMRの劣化を防ぎ、測定により得られる吸光度値の低下を抑制することができるものである。 And the reagent for measuring lipase activity of the present invention can prevent the degradation of DGGMR due to the mixed azide and suppress the decrease in the absorbance value obtained by the measurement by the above-mentioned constitution.
II.リパーゼ活性測定試薬
1.リパーゼ活性測定試薬の構成等
 本発明のリパーゼ活性測定試薬は、本発明のリパーゼ活性測定用基質溶液のみからなるものであってもよく、又は本発明のリパーゼ活性測定用基質溶液と他の構成試薬からなるもの、すなわち試薬キットであってもよい。
II. Lipase activity measuring reagent Configuration of Lipase Activity Measuring Reagent, etc. The lipase activity measuring reagent of the present invention may consist only of the lipase activity measuring substrate solution of the present invention, or the lipase activity measuring substrate solution of the present invention and other constituent reagents. Or a reagent kit.
 なお、次の(a)及び(b)の理由から、本発明のリパーゼ活性測定試薬としては、本発明のリパーゼ活性測定用基質溶液と他の構成試薬からなる試薬キットであることが好ましい。
(a) 本発明におけるリパーゼ活性測定用基質[DGGMR]はpH4又はその付近のpHにおいて安定であるのに対して、リパーゼはpH8又はその付近のpHにおいてその活性は至適であり、それぞれ適するpH域が異なっている。
(b) 本発明におけるリパーゼ活性測定用基質[DGGMR]、コリパーゼ、及びリパーゼ賦活化剤としての胆汁酸又はその塩を、一つの試薬に共存させると、本発明におけるリパーゼ活性測定用基質[DGGMR]の安定性が良くなくなる。
For the following reasons (a) and (b), the lipase activity measuring reagent of the present invention is preferably a reagent kit comprising the lipase activity measuring substrate solution of the present invention and other constituent reagents.
(A) The substrate for measuring lipase activity [DGGMR] in the present invention is stable at pH 4 or a pH around it, whereas lipase has an optimum activity at pH 8 or a pH near it, and each has a suitable pH. The area is different.
(B) When the lipase activity measurement substrate [DGGMR], colipase, and bile acid or a salt thereof as a lipase activator in the present invention coexist in one reagent, the lipase activity measurement substrate [DGGMR] in the present invention. The stability of is not good.
 よって、本発明のリパーゼ活性測定試薬は、リパーゼ活性測定用基質溶液と他の構成試薬からなる試薬キットであることが好ましく、この場合、リパーゼ活性測定用基質[DGGMR]を含む試薬のpHはpH4又はその付近のpHとし、これと組み合わせる他の構成試薬のうち少なくとも一つの試薬のpHはpH8又はそれ以上とすることが好ましく、また、リパーゼ活性測定用基質[DGGMR]、コリパーゼ、及びリパーゼ賦活化剤としての胆汁酸又はその塩を、一つの試薬に共存させないことが好ましい。 Therefore, the lipase activity measuring reagent of the present invention is preferably a reagent kit comprising a lipase activity measuring substrate solution and other constituent reagents. In this case, the pH of the reagent containing the lipase activity measuring substrate [DGGMR] is pH 4 Alternatively, the pH of at least one of the other constituent reagents combined therewith is preferably pH 8 or higher, and the lipase activity measurement substrate [DGGMR], colipase, and lipase activation It is preferable that bile acid or a salt thereof as an agent does not coexist in one reagent.
 この本発明のリパーゼ活性測定試薬としては、リパーゼ活性測定用基質溶液と一つの他の構成試薬からなる2試薬系の試薬キットであることが好ましい。 The lipase activity measurement reagent of the present invention is preferably a two-reagent reagent kit comprising a lipase activity measurement substrate solution and one other component reagent.
 この場合、当該他の構成試薬を第1試薬とし、リパーゼ活性測定用基質溶液を第2試薬として用いるものであることがより好ましい。 In this case, it is more preferable to use the other constituent reagent as the first reagent and the lipase activity measurement substrate solution as the second reagent.
 そして、この場合に、当該他の構成試薬のpHはpH8又はそれ以上とし、リパーゼ活性測定用基質溶液のpHはpH4又はその付近のpHとすることが更に好ましい。 In this case, the pH of the other constituent reagent is more preferably pH 8 or higher, and the pH of the substrate solution for lipase activity measurement is more preferably pH 4 or the vicinity thereof.
 また、リパーゼ活性測定用基質溶液に、「コリパーゼ」、及び「リパーゼ賦活化剤としての胆汁酸又はその塩」の両方を含有させることはせず、「コリパーゼ」、及び「リパーゼ賦活化剤としての胆汁酸又はその塩」の少なくとも一方は当該他の構成試薬に含有させることが更に好ましい。 In addition, the substrate solution for measuring lipase activity does not contain both “colipase” and “bile acid or its salt as lipase activator”, but “colipase” and “lipase activator as More preferably, at least one of “bile acid or salt thereof” is contained in the other constituent reagent.
 本発明のリパーゼ活性測定試薬は、終点法(エンドポイント法)により測定を行うものであってもよく、又は反応速度法(レート法)により測定を行うものであってもよく、適宜選択すればよいが、反応速度法(レート法)によるものが好ましい。 The reagent for measuring lipase activity of the present invention may be one measured by the end point method (end point method), or one measured by the reaction rate method (rate method), and may be appropriately selected. The reaction rate method (rate method) is preferred.
 また、本発明のリパーゼ活性測定試薬においては、リパーゼ活性測定用基質[DGGMR]と試料を接触させ、反応させることにより、リパーゼが触媒する加水分解反応によって、1,2-o-ジラウリル-rac-グリセロール及びグルタル酸-(6’-メチルレゾルフィン)-エステルが生成するが、このグルタル酸-(6’-メチルレゾルフィン)-エステルは不安定であって、容易に自然に加水分解されて6’-メチルレゾルフィン(λmax:580nm)を生成する。 In the lipase activity measuring reagent of the present invention, the substrate for measuring lipase activity [DGGMR] is brought into contact with the sample and reacted to cause 1,2-o-dilauryl-rac- by a hydrolysis reaction catalyzed by the lipase. Glycerol and glutaric acid- (6′-methylresorufin) -ester are produced, but this glutaric acid- (6′-methylresorufin) -ester is unstable and easily hydrolyzed naturally. '-Methylresorufin (λmax: 580 nm) is produced.
 よって、この生成する6’-メチルレゾルフィンの増加を580nm又はその近辺の波長の吸光度等を測ることによって測定し、試料中に含まれていたリパーゼの活性値を求めればよい。なお、この場合、一波長法でもよく、又は二波長法でもよい。 Therefore, the increase in 6'-methylresorufin produced may be measured by measuring absorbance at a wavelength of 580 nm or in the vicinity thereof, and the activity value of lipase contained in the sample may be obtained. In this case, a single wavelength method or a dual wavelength method may be used.
 また、本発明のリパーゼ活性測定試薬において、測定反応時の温度は、30℃又は37℃等測定反応が進行しかつ測定反応に係わる酵素等の反応成分が熱により失活、変性又は変質しない範囲内の温度を設定すればよい。 Further, in the lipase activity measurement reagent of the present invention, the temperature during the measurement reaction is a range in which the measurement reaction such as 30 ° C. or 37 ° C. proceeds and the reaction components such as enzymes involved in the measurement reaction are not inactivated, denatured or altered by heat The temperature inside may be set.
 また、本発明のリパーゼ活性測定試薬において、測定反応の開始方法は、本発明におけるリパーゼ活性測定用基質[DGGMR]等を加えることにより行う方法、又は試料を加えることにより行う方法等のいずれの方法のものでもよい。 In the lipase activity measurement reagent of the present invention, the method for starting the measurement reaction is any method such as a method performed by adding a lipase activity measurement substrate [DGGMR] or the like in the present invention, or a method performed by adding a sample. It may be.
 また、本発明のリパーゼ活性測定試薬において、その測定は、用手法により行うものであってもよく、又は自動分析装置等の装置を用いて行うものであってもよい。 Further, in the lipase activity measurement reagent of the present invention, the measurement may be performed by a method, or may be performed using an apparatus such as an automatic analyzer.
 また、本発明のリパーゼ活性測定試薬は、その構成試薬の全て又は一部が液状試薬であってよい。 In the lipase activity measuring reagent of the present invention, all or part of the constituent reagents may be a liquid reagent.
 なお、本発明のリパーゼ活性測定用基質溶液は、そのもの単独にて、販売し、又は試料中のリパーゼ活性の測定に使用することができる。 The substrate solution for measuring lipase activity of the present invention can be sold alone or used for measuring lipase activity in a sample.
 また、本発明のリパーゼ活性測定用基質溶液は、前記の他の構成試薬又はそれ以外の試薬と組み合わせて、販売し、又は試料中のリパーゼ活性の測定に使用することもできる。
 前記の他の構成試薬、又はそれ以外の試薬としては、例えば、緩衝液、試料希釈液、試薬希釈液、校正(キャリブレーション)を行うための物質を含有する試薬、又は精度管理を行うための物質を含有する試薬等を挙げることができる。
Moreover, the substrate solution for measuring lipase activity of the present invention can be sold in combination with the above-mentioned other constituent reagents or other reagents or used for measuring lipase activity in a sample.
Examples of the other constituent reagents or other reagents include, for example, a buffer solution, a sample diluent, a reagent diluent, a reagent containing a substance for performing calibration (calibration), or for performing quality control. Examples include reagents containing substances.
2.本発明のリパーゼ活性の測定試薬の具体例
 本発明のリパーゼ活性測定試薬の具体例を以下挙げる。
2. Specific examples of the lipase activity measuring reagent of the present invention Specific examples of the lipase activity measuring reagent of the present invention are given below.
(1)例1
(a)第1試薬 [下記の試薬成分をそれぞれ記載の濃度で含む水溶液;pH8.3(20℃)]
 デオキシコール酸ナトリウム [リパーゼ賦活化剤] 2%(w/v)
 塩化カルシウム [リパーゼ活性化剤] 5mM
 コリパーゼ (ブタ膵臓由来;ロシュ・ダイアグノスティックス株式会社[日本国]) 375K単位/L(5mg/L)
 Bicine [緩衝剤] 40mM
(1) Example 1
(A) First Reagent [Aqueous solution containing the following reagent components at the indicated concentrations; pH 8.3 (20 ° C.)]
Sodium deoxycholate [Lipase activator] 2% (w / v)
Calcium chloride [Lipase activator] 5 mM
Colipase (derived from porcine pancreas; Roche Diagnostics Inc. [Japan]) 375K units / L (5mg / L)
Bicine [Buffer] 40 mM
(b)第2試薬(本発明のリパーゼ活性測定用基質溶液) [下記の試薬成分をそれぞれ記載の濃度で含む水溶液;pH4.0(20℃)]
 1,2-o-ジラウリル-rac-グリセロ-3-グルタル酸-(6’-メチルレゾルフィン)-エステル 〔DGGMR〕 (ロシュ・ダイアグノスティックス株式会社[日本国]) [リパーゼ活性測定用基質] 0.3mM
 側鎖型の非反応性のポリエーテル変性タイプの変性シリコーンオイル 0.3%(w/v)
 塩化ヒドロキシルアンモニウム [還元剤] 0.5mM
 L-酒石酸 [緩衝剤] 40mM
(B) Second reagent (substrate solution for measuring lipase activity of the present invention) [Aqueous solution containing the following reagent components at the respective concentrations; pH 4.0 (20 ° C.)]
1,2-o-Dilauryl-rac-glycero-3-glutaric acid- (6′-methylresorufin) -ester [DGGMR] (Roche Diagnostics Inc. [Japan]) [Lipase activity measurement substrate ] 0.3 mM
Side chain type non-reactive polyether-modified type modified silicone oil 0.3% (w / v)
Hydroxyl ammonium chloride [Reducing agent] 0.5 mM
L-tartaric acid [buffer] 40 mM
(2)例2
(a)第1試薬 [下記の試薬成分をそれぞれ記載の濃度で含む水溶液;pH8.4(20℃)]
 タウロデオキシコール酸ナトリウム [リパーゼ賦活化剤] 2%(w/v)
 デオキシコール酸ナトリウム [リパーゼ賦活化剤] 0.2%(w/v)
 塩化カルシウム [リパーゼ活性化剤] 5mM
 コリパーゼ (ブタ膵臓由来;ロシュ・ダイアグノスティックス株式会社[日本国]) 150K単位/L(2mg/L)
 トリス(ヒドロキシメチル)アミノメタン 〔Tris〕 [緩衝剤] 40mM
(2) Example 2
(A) First Reagent [Aqueous solution containing the following reagent components at the indicated concentrations; pH 8.4 (20 ° C.)]
Sodium taurodeoxycholate [lipase activator] 2% (w / v)
Sodium deoxycholate [Lipase activator] 0.2% (w / v)
Calcium chloride [Lipase activator] 5 mM
Colipase (derived from porcine pancreas; Roche Diagnostics Inc. [Japan]) 150K units / L (2mg / L)
Tris (hydroxymethyl) aminomethane [Tris] [Buffer] 40 mM
(b)第2試薬(本発明のリパーゼ活性測定用基質溶液) [下記の試薬成分をそれぞれ記載の濃度で含む水溶液]
 1,2-o-ジラウリル-rac-グリセロ-3-グルタル酸-(6’-メチルレゾルフィン)-エステル 〔DGGMR〕 (ロシュ・ダイアグノスティックス株式会社[日本国]) [リパーゼ活性測定用基質] 0.6mM
 側鎖型の非反応性のポリエーテル変性タイプの変性シリコーンオイル 0.3%(w/v)
 塩化ヒドロキシルアンモニウム [還元剤] 1mM
 タウロデオキシコール酸ナトリウム [リパーゼ賦活化剤] 2%(w/v)
(B) Second reagent (substrate solution for lipase activity measurement of the present invention) [Aqueous solution containing the following reagent components at the indicated concentrations]
1,2-o-Dilauryl-rac-glycero-3-glutaric acid- (6′-methylresorufin) -ester [DGGMR] (Roche Diagnostics Inc. [Japan]) [Lipase activity measurement substrate ] 0.6 mM
Side chain type non-reactive polyether-modified type modified silicone oil 0.3% (w / v)
Hydroxyl ammonium chloride [Reducing agent] 1 mM
Sodium taurodeoxycholate [lipase activator] 2% (w / v)
〔3〕本発明のリパーゼ活性測定方法
I.総論
 本発明のリパーゼ活性の測定方法は、1,2-o-ジラウリル-rac-グリセロ-3-グルタル酸-(6’-メチルレゾルフィン)-エステル[DGGMR]をリパーゼ活性測定用基質として含むリパーゼ活性測定用基質溶液を使用するリパーゼ活性測定方法において、リパーゼ活性測定用基質溶液に還元剤を含有させることを特徴とするものである。(なお、リパーゼ活性測定用基質溶液の詳細については、前記の「〔1〕本発明のリパーゼ活性測定用基質溶液」の項に記載した通りである。また、リパーゼ活性測定試薬の詳細については、前記の「〔2〕本発明のリパーゼ活性測定試薬」の項に記載した通りである。)
[3] Method for measuring lipase activity of the present invention General The method for measuring lipase activity according to the present invention is a lipase comprising 1,2-o-dilauryl-rac-glycero-3-glutaric acid- (6′-methylresorufin) -ester [DGGMR] as a substrate for measuring lipase activity. In the method for measuring lipase activity using a substrate solution for activity measurement, a reducing agent is contained in the substrate solution for lipase activity measurement. (The details of the substrate solution for lipase activity measurement are as described in the above-mentioned section [1] Substrate solution for lipase activity measurement of the present invention.) The details of the lipase activity measurement reagent are as follows. (As described in the above section [2] Reagent activity measurement reagent of the present invention].)
 そして、本発明のリパーゼ活性測定方法は、上記の構成により、混入したアジ化物によるDGGMRの劣化を防ぎ、測定により得られる吸光度値の低下を抑制することができるものである。 And the lipase activity measuring method of this invention can prevent the degradation of DGGMR by the mixed azide and suppress the fall of the light absorbency value obtained by a measurement by said structure.
II.リパーゼ活性の測定方法
1.リパーゼ活性測定方法
II. Method for measuring lipase activity Lipase activity measurement method
(1).試料
 本発明において、リパーゼの活性を測定する試料は、リパーゼを含む可能性がある試料であればよく、リパーゼを含む可能性があるものであれば特に限定されない。
 この試料としては、例えば、ヒト若しくは動物又は植物に由来する試料等を挙げることができる。
(1). Sample In the present invention, the sample for measuring the activity of lipase may be any sample that may contain lipase, and is not particularly limited as long as it may contain lipase.
Examples of the sample include a sample derived from a human, an animal, or a plant.
 ヒト若しくは動物に由来する試料としては、特に限定されず、例えば、ヒト或いは動物の、血液、血清、血漿、精液、髄液、唾液、汗、涙、腹水、若しくは羊水などの体液;尿若しくは大便などの排泄物;膵臓、肝臓、若しくは胃などの臓器;毛髪、皮膚、爪、筋肉、若しくは神経などの組織;又は細胞等を挙げることができる。 The sample derived from a human or animal is not particularly limited, for example, body fluid such as blood, serum, plasma, semen, spinal fluid, saliva, sweat, tears, ascites, or amniotic fluid of human or animal; urine or stool Excrements such as: organs such as pancreas, liver or stomach; tissues such as hair, skin, nails, muscles or nerves; or cells.
 本発明は、ヒト又は動物に由来する試料を試料とする場合に好適であり、ヒトに由来する試料を試料とする場合に特に好適である。 The present invention is suitable when a sample derived from a human or an animal is used as a sample, and particularly suitable when a sample derived from a human is used as a sample.
 また、本発明は、体液、臓器又は組織を試料とする場合に好適であり、体液を試料とする場合により好適であり、血液、血清又は血漿を試料とする場合に更に好適であり、血清又は血漿を試料とする場合に特に好適である。 In addition, the present invention is suitable when a body fluid, organ or tissue is used as a sample, more preferably when a body fluid is used as a sample, and more preferable when blood, serum or plasma is used as a sample. This is particularly suitable when plasma is used as a sample.
 なお、本発明において、試料は、液体である場合に好適であるので、もし試料が液体でない場合には、抽出処理又は可溶化処理等の前処理を既知の方法に従って行い、液体試料とすればよい。
 また、試料は、必要に応じて、希釈又は濃縮処理等を行ってもよい。
In the present invention, since the sample is suitable when it is a liquid, if the sample is not a liquid, pretreatment such as extraction or solubilization may be performed according to a known method to obtain a liquid sample. Good.
Further, the sample may be diluted or concentrated as necessary.
(2)測定の詳細
 本発明のリパーゼ活性測定方法により、試料中のリパーゼ活性の測定を行う場合、その測定は終点法(エンドポイント法)により測定を行うものであってもよく、又は反応速度法(レート法)により測定を行うものであってもよく、適宜選択すればよいが、反応速度法(レート法)によるものが好ましい。
(2) Details of measurement When the lipase activity measurement method of the present invention is used to measure lipase activity in a sample, the measurement may be performed by the end point method (end point method), or the reaction rate. Measurement may be performed by a method (rate method) and may be appropriately selected, but a reaction rate method (rate method) is preferred.
 また、本発明のリパーゼ活性測定方法により、試料中のリパーゼ活性の測定を行う場合、その測定は、一段階のステップにより行う1ステップ法、又は二段階若しくはそれ以上の多段階のステップにより行う多ステップ法を適宜選択して測定を行えばよい。 In addition, when measuring the lipase activity in a sample by the lipase activity measuring method of the present invention, the measurement is performed by a one-step method performed by one step, or by two or more multi-steps. Measurement may be performed by appropriately selecting a step method.
 なお、リパーゼ活性の測定に使用するリパーゼ活性測定試薬が、第1試薬、第2試薬、及び他の試薬(一つ又は二つ以上の試薬)よりなる場合、すなわち3以上の試薬よりなる場合は、これらの試薬を使用して測定を行うのに必要な数の段階(必要に応じ二段階又は三段階以上の段階)を経て測定反応を行わせ、試料中のリパーゼ活性の測定を行えばよい。 When the lipase activity measurement reagent used for measuring the lipase activity is composed of the first reagent, the second reagent, and another reagent (one or two or more reagents), that is, when the reagent comprises three or more reagents. The measurement reaction may be performed through the number of steps necessary to perform the measurement using these reagents (two steps or three or more steps as required), and the lipase activity in the sample may be measured. .
 また、本発明のリパーゼ活性測定方法においては、リパーゼ活性測定用基質[DGGMR]と試料を接触させ、反応させることにより、リパーゼが触媒する加水分解反応によって、1,2-o-ジラウリル-rac-グリセロール及びグルタル酸-(6’-メチルレゾルフィン)-エステルが生成するが、このグルタル酸-(6’-メチルレゾルフィン)-エステルは不安定であって、容易に自然に加水分解されて6’-メチルレゾルフィン(λmax:580nm)を生成する。 In the method for measuring lipase activity of the present invention, 1,2-o-dilauryl-rac- is obtained by a hydrolysis reaction catalyzed by lipase by bringing a sample into contact with a substrate for measuring lipase activity [DGGMR] and reacting it. Glycerol and glutaric acid- (6′-methylresorufin) -ester are produced, but this glutaric acid- (6′-methylresorufin) -ester is unstable and easily hydrolyzed naturally. '-Methylresorufin (λmax: 580 nm) is produced.
 よって、この生成する6’-メチルレゾルフィンの増加を580nm又はその近辺の波長の吸光度等を測ることによって測定し、試料中に含まれていたリパーゼの活性値を求めればよい。なお、この場合、一波長法でもよく、又は二波長法でもよい。 Therefore, the increase in 6'-methylresorufin produced may be measured by measuring absorbance at a wavelength of 580 nm or in the vicinity thereof, and the activity value of lipase contained in the sample may be obtained. In this case, a single wavelength method or a dual wavelength method may be used.
 なお、測定した吸光度(若しくは透過率)、又は吸光度(若しくは透過率)の変化量より、試料に含まれていたリパーゼの活性値を算出することは、6’-メチルレゾルフィンのモル吸光係数を基に測定した吸光度(若しくは透過率)より算出する方法、又はリパーゼ活性値が分かっている標準物質(標準液、若しくは標準血清等)の吸光度(若しくは透過率)と対比して算出する方法等の方法を適宜選択して行えばよい。 Note that calculating the activity value of lipase contained in a sample from the measured absorbance (or transmittance) or the amount of change in absorbance (or transmittance) is the molar extinction coefficient of 6′-methylresorufin. Such as a method of calculating from the absorbance (or transmittance) measured based on the standard, or a method of calculating by comparing with the absorbance (or transmittance) of a standard substance (standard solution, standard serum, etc.) whose lipase activity value is known A method may be selected as appropriate.
 また、試料を測定して得た吸光度(若しくは透過率)より試薬盲検(試薬ブランク)を差し引いて、試料に含まれていたリパーゼの活性値を算出することが好ましい。 Further, it is preferable to calculate the activity value of lipase contained in the sample by subtracting the reagent blind test (reagent blank) from the absorbance (or transmittance) obtained by measuring the sample.
 また、本発明のリパーゼ活性測定方法において、その測定反応時の温度は、30℃又は37℃等測定反応が進行しかつ測定反応に係わる酵素等の反応成分が熱により失活、変性又は変質しない範囲内の温度を設定すればよい。 In the lipase activity measurement method of the present invention, the temperature during the measurement reaction is such that the measurement reaction such as 30 ° C. or 37 ° C. proceeds, and the reaction components such as enzymes involved in the measurement reaction are not deactivated, denatured or altered by heat. What is necessary is just to set the temperature within the range.
 また、本発明のリパーゼ活性測定方法において、その測定反応の開始方法は、リパーゼ活性測定用基質等を加えることにより行う方法、又は試料を加えることにより行う方法等のいずれの方法のものでもよい。 In the lipase activity measurement method of the present invention, the measurement reaction may be initiated by any method such as a method performed by adding a lipase activity measurement substrate or the like, or a method performed by adding a sample.
 また、本発明のリパーゼ活性測定方法において、その測定は、用手法により行うものであってもよく、又は自動分析装置等の装置を用いて行うものであってもよい。 Further, in the lipase activity measurement method of the present invention, the measurement may be carried out by a method, or may be carried out using an apparatus such as an automatic analyzer.
2.リパーゼ活性測定方法の具体例
 本発明のリパーゼ活性測定方法の具体例を以下挙げる。
2. Specific examples of the method for measuring lipase activity Specific examples of the method for measuring lipase activity of the present invention are given below.
(1)リパーゼ活性測定試薬
(a)第1試薬
 前記の〔2〕のIIの2の(1)の(a)の第1試薬を、この測定方法の具体例における第1試薬として用いた。
(1) Lipase activity measuring reagent (a) First reagent The above-mentioned [2] II-2 (1) (a) first reagent was used as the first reagent in a specific example of this measuring method.
(b)第2試薬
 前記の〔2〕のIIの2の(1)の(b)の第2試薬を、この測定方法の具体例における第2試薬として用いた。
(B) Second Reagent The second reagent of (2) II (1) (b) of [2] above was used as the second reagent in the specific example of this measurement method.
(2)試料
 ヒトの血清を試料として用いた。
(2) Sample Human serum was used as a sample.
(3)測定
(a)第1段階
 前記(2)の試料と前記(1)の(a)の第1試薬を混合して、混合液を調製する。
(3) Measurement (a) 1st stage The sample of said (2) and the 1st reagent of (a) of said (1) are mixed, and a liquid mixture is prepared.
 この混合する試料及び第1試薬それぞれの量は、第2試薬の量、試料に含まれるリパーゼの活性値、及び他の条件に応じて適宜決めればよい。
 なお、一般的には、例えば、試料の量は0.5~100μL、第1試薬の量は20~1,000μLの範囲のもの等とすることが好ましい。
The amounts of the sample and the first reagent to be mixed may be appropriately determined according to the amount of the second reagent, the activity value of the lipase contained in the sample, and other conditions.
In general, for example, the amount of the sample is preferably 0.5 to 100 μL, and the amount of the first reagent is preferably in the range of 20 to 1,000 μL.
 この混合液の調製後、インキュベートを行う。
 このインキュベートの時間は、特に制限はないのであるが、通常は20分以内であることが好ましく、10分以内であることがより好ましく、5分以内であることが特に好ましい。
Incubation is performed after preparation of this mixture.
The incubation time is not particularly limited, but is usually preferably within 20 minutes, more preferably within 10 minutes, and particularly preferably within 5 minutes.
 また、インキュベートする際の温度は、前記の混合液が凍結する温度より上の温度であればよい。
 なお、一般的に測定反応時の温度は、高い程、反応速度が高くなるので好ましい。
 しかし、温度が高すぎると測定反応に係わる酵素等の成分が変性、失活してしまうので、インキュベートする際の温度は、測定反応に係わる酵素等の成分が変性、失活する温度未満の温度とする必要がある。
 このインキュベートする際の温度は、通常は2~70℃であるが、20~37℃が好ましく、30~37℃がより好ましい。
 なお、測定反応に係わる酵素等の成分が耐熱性酵素など耐熱性の成分であれば更に高温でもよい。
Moreover, the temperature at the time of incubation should just be the temperature above the temperature which the said liquid mixture freezes.
In general, the higher the temperature during the measurement reaction, the higher the reaction rate.
However, if the temperature is too high, components such as enzymes involved in the measurement reaction will be denatured and inactivated, so the temperature during incubation is below the temperature at which the components such as enzymes involved in the measurement reaction are denatured and deactivated. It is necessary to.
The incubation temperature is usually 2 to 70 ° C., preferably 20 to 37 ° C., more preferably 30 to 37 ° C.
In addition, if the component such as an enzyme involved in the measurement reaction is a heat-resistant component such as a heat-resistant enzyme, the temperature may be higher.
 この試料と第1試薬の混合液の調製及びインキュベートにより、試料に含まれていたリパーゼと、第1試薬に含まれる試薬成分とが接触し、これらの成分によるリパーゼの賦活化や活性化等が行われる。 By preparing and incubating the mixed solution of the sample and the first reagent, the lipase contained in the sample comes into contact with the reagent components contained in the first reagent, and activation or activation of the lipase by these components is performed. Done.
(b)第2段階
 前記の第1段階で調製した「試料と第1試薬の混合液」に、前記(1)の(b)の第2試薬を混合する。これを最終反応液とする。
(B) Second Stage The second reagent (b) of (1) is mixed with the “mixture of sample and first reagent” prepared in the first stage. This is the final reaction solution.
 この混合する第2試薬の量は、試料の量、第1試薬の量、試料に含まれるリパーゼの活性値、使用する分析装置の仕様等、及び他の条件に応じて適宜決めればよい。
 なお、一般的には、例えば、第2試薬の量は10~1,000μLの範囲のもの等とすることが好ましい。
The amount of the second reagent to be mixed may be appropriately determined according to the amount of the sample, the amount of the first reagent, the activity value of the lipase contained in the sample, the specifications of the analyzer to be used, and other conditions.
In general, for example, the amount of the second reagent is preferably in the range of 10 to 1,000 μL.
 この最終反応液の調製後、インキュベートを行う。
 このインキュベートの時間は、特に制限はないのであるが、通常は20分以内であることが好ましく、10分以内であることがより好ましく、5分以内であることが特に好ましい。
Incubation is performed after preparation of this final reaction solution.
The incubation time is not particularly limited, but is usually preferably within 20 minutes, more preferably within 10 minutes, and particularly preferably within 5 minutes.
 また、インキュベートする際の温度は、前記の最終反応液が凍結する温度より上の温度であればよい。
 なお、一般的に測定反応時の温度は、高い程、反応速度が高くなるので好ましい。
 しかし、温度が高すぎると測定反応に係わる酵素等の成分が変性、失活してしまうので、インキュベートする際の温度は、測定反応に係わる酵素等の成分が変性、失活する温度未満の温度とする必要がある。
 このインキュベートする際の温度は、通常は2~70℃であるが、20~37℃が好ましく、30~37℃がより好ましい。
 なお、測定反応に係わる酵素等の成分が耐熱性酵素など耐熱性の成分であれば更に高温でもよい。
Moreover, the temperature at the time of incubation should just be the temperature above the temperature which freezes the said last reaction liquid.
In general, the higher the temperature during the measurement reaction, the higher the reaction rate.
However, if the temperature is too high, components such as enzymes involved in the measurement reaction will be denatured and inactivated, so the temperature during incubation is below the temperature at which the components such as enzymes involved in the measurement reaction are denatured and deactivated. It is necessary to.
The incubation temperature is usually 2 to 70 ° C., preferably 20 to 37 ° C., more preferably 30 to 37 ° C.
In addition, if the component such as an enzyme involved in the measurement reaction is a heat-resistant component such as a heat-resistant enzyme, the temperature may be higher.
 この最終反応液の調製及びインキュベートにより、前記の第1段階におけるリパーゼの賦活化や活性化等に引き続き、この第2段階における測定反応が開始し、試料に含まれていたリパーゼの活性測定反応が進められる。 By the preparation and incubation of the final reaction solution, the measurement reaction in the second stage is started following the activation and activation of the lipase in the first stage, and the activity measurement reaction of the lipase contained in the sample is started. It is advanced.
 すなわち、安定で均一なミセル粒子からなるエマルジョン化した基質溶液となっている第2試薬(リパーゼ活性測定用基質溶液)が、この第2段階において試料に含まれていたリパーゼと接触することにより、リパーゼが触媒する加水分解反応によって、リパーゼ活性測定用基質[DGGMR]より1,2-o-ジラウリル-rac-グリセロール及びグルタル酸-(6’-メチルレゾルフィン)-エステルが生成する。
 そして、このグルタル酸-(6’-メチルレゾルフィン)-エステルは不安定であるので、容易に自然に加水分解されて、6’-メチルレゾルフィン(λmax:580nm)を生成する。
That is, the second reagent (substrate solution for measuring lipase activity), which is an emulsified substrate solution composed of stable and uniform micelle particles, comes into contact with the lipase contained in the sample in this second stage, The hydrolysis reaction catalyzed by lipase produces 1,2-o-dilauryl-rac-glycerol and glutaric acid- (6′-methylresorufin) -ester from the lipase activity measurement substrate [DGGMR].
Since this glutaric acid- (6′-methylresorufin) -ester is unstable, it is easily hydrolyzed naturally to produce 6′-methylresorufin (λmax: 580 nm).
 この生成した6’-メチルレゾルフィンは、その極大吸収波長(λmax)が580nmであるので、この6’-メチルレゾルフィンに由来する最終反応液の吸光度(又は透過率)を、580nm又はその近辺の波長の吸光度(又は透過率)を測ることによって測定する。 Since the generated 6′-methylresorufin has a maximum absorption wavelength (λmax) of 580 nm, the absorbance (or transmittance) of the final reaction solution derived from this 6′-methylresorufin is 580 nm or near it. It is measured by measuring the absorbance (or transmittance) at the wavelength of.
 次に、測定した吸光度(若しくは透過率)、又は吸光度(若しくは透過率)の変化量より、試料に含まれていたリパーゼの活性値を算出する。 Next, the activity value of the lipase contained in the sample is calculated from the measured absorbance (or transmittance) or the amount of change in absorbance (or transmittance).
 なお、これは、6’-メチルレゾルフィンのモル吸光係数を基に測定した吸光度(若しくは透過率)より算出する方法、又はリパーゼ活性値が分かっている標準物質(標準液、若しくは標準血清等)の吸光度(若しくは透過率)と対比して算出する方法等の方法を適宜選択して行う。 This is a method of calculating from the absorbance (or transmittance) measured based on the molar extinction coefficient of 6′-methylresorufin, or a standard substance (standard solution, standard serum, etc.) whose lipase activity value is known. A method such as a method of calculating by comparing with the absorbance (or transmittance) of is suitably selected.
 なお、上記の試料に含まれていたリパーゼの活性値の算出は、試料を測定して得た最終反応液の吸光度(若しくは透過率)より試薬盲検(試薬ブランク)を差し引いて求めた吸光度差(ΔAbs.)を用いて行うことが好ましい。 The activity value of the lipase contained in the above sample was calculated by subtracting the reagent blindness (reagent blank) from the absorbance (or transmittance) of the final reaction solution obtained by measuring the sample. (ΔAbs.) Is preferably used.
〔4〕本発明のリパーゼ活性測定に対するアジ化物の影響の抑制方法
 本発明のリパーゼ活性測定に対するアジ化物の影響の抑制方法は、1,2-o-ジラウリル-rac-グリセロ-3-グルタル酸-(6’-メチルレゾルフィン)-エステル[DGGMR]をリパーゼ活性測定用基質として含むリパーゼ活性測定用基質溶液に還元剤を含有させることを特徴とするものである。(なお、リパーゼ活性測定用基質溶液の詳細については、前記の「〔1〕本発明のリパーゼ活性測定用基質溶液」の項に記載した通りである。また、リパーゼ活性測定試薬の詳細については、前記の「〔2〕本発明のリパーゼ活性測定試薬」の項に記載した通りである。また、リパーゼ活性測定方法の詳細については、前記の「〔3〕本発明のリパーゼ活性測定方法」の項に記載した通りである。)
[4] Method for suppressing influence of azide on measurement of lipase activity of the present invention The method for suppressing the influence of azide on the measurement of lipase activity of the present invention comprises 1,2-o-dilauryl-rac-glycero-3-glutaric acid- A reducing agent is contained in a lipase activity measurement substrate solution containing (6′-methylresorufin) -ester [DGGMR] as a lipase activity measurement substrate. (The details of the substrate solution for lipase activity measurement are as described in the above-mentioned section [1] Substrate solution for lipase activity measurement of the present invention.) The details of the lipase activity measurement reagent are as follows. As described in the above section “[2] Reagent activity measurement reagent of the present invention.” For details of the lipase activity measurement method, refer to the section “[3] Method for measuring lipase activity of the present invention”. As described in.)
 そして、本発明のリパーゼ活性測定に対するアジ化物の影響の抑制方法は、上記の構成により、混入したアジ化物によるDGGMRの劣化を防ぎ、測定により得られる吸光度値の低下を抑制することができる方法である。 And the suppression method of the influence of the azide with respect to the lipase activity measurement of this invention is a method which can prevent deterioration of DGGMR by the azide mixed by the above-mentioned structure, and can suppress the fall of the absorbance value obtained by measurement. is there.
 以下、実施例により本発明をより具体的に詳述するが、本発明はこれらの実施例によって限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
〔実施例1〕(本発明のアジ化物の影響の抑制効果の確認-1)
 本発明におけるアジ化物の影響の抑制効果を確認した。
[Example 1] (Confirmation of effect of suppressing influence of azide of the present invention-1)
The suppression effect of the influence of the azide in this invention was confirmed.
1.本発明のリパーゼ活性測定試薬
 本発明のリパーゼ活性測定試薬の第1試薬及び第2試薬をそれぞれ調製した。
1. Reagent activity measuring reagent of the present invention The first reagent and the second reagent of the lipase activity measuring reagent of the present invention were prepared.
〔1〕第1試薬
 下記の試薬成分をそれぞれ記載の濃度になるように純水に溶解し、pHをpH8.4(20℃)に調整して、リパーゼ活性測定試薬の第1試薬を調製した。
[1] First Reagent The following reagent components were dissolved in pure water to the respective concentrations described above, and the pH was adjusted to pH 8.4 (20 ° C.) to prepare a first reagent for measuring lipase activity. .
 デオキシコール酸ナトリウム [リパーゼ賦活化剤] 2%(w/v)
 塩化カルシウム [リパーゼ活性化剤] 20mM
 コリパーゼ (ブタ膵臓由来、販売元:ロシュ・ダイアグノスティックス株式会社[日本国]) 750K単位/L(10mg/L)
 Bicine [緩衝剤] 80mM
Sodium deoxycholate [Lipase activator] 2% (w / v)
Calcium chloride [Lipase activator] 20 mM
Colipase (derived from porcine pancreas, distributor: Roche Diagnostics Inc. [Japan]) 750K units / L (10mg / L)
Bicine [Buffer] 80 mM
〔2〕第2試薬(リパーゼ活性測定用基質溶液)
[1]アジ化物添加第2試薬(本発明)
 本発明のリパーゼ活性測定試薬の第2試薬(リパーゼ活性測定用基質溶液)に、アジ化物混入の影響を確かめるため、アジ化物を添加した「アジ化物添加第2試薬(本発明)」を調製した。
[2] Second reagent (substrate solution for measuring lipase activity)
[1] Azide-added second reagent (the present invention)
In order to confirm the influence of azide contamination on the second reagent (lipase activity measurement substrate solution) of the lipase activity measuring reagent of the present invention, an “azide added second reagent (invention)” in which azide was added was prepared. .
(1) リパーゼ活性測定用基質である、1,2-o-ジラウリル-rac-グリセロ-3-グルタル酸-(6’-メチルレゾルフィン)-エステル〔DGGMR〕(販売元:ロシュ・ダイアグノスティックス株式会社[日本国])の0.045グラム[g]を、ビーカー(容量:10mL)に量り取った。 (1) 1,2-o-dilauryl-rac-glycero-3-glutaric acid- (6′-methylresorufin) -ester [DGGMR], a substrate for measuring lipase activity (Distributor: Roche Diagnostics) 0.045 grams [g] of Su Co., Ltd. [Japan]) was weighed into a beaker (capacity: 10 mL).
(2) 次に、側鎖型の非反応性の変性シリコーンオイル(ポリエーテル変性タイプ)である、KF-355A(販売元:信越化学工業株式会社[日本国])の0.6グラム[g]を量り取り、これを前記(1)のビーカーに添加した。 (2) Next, 0.6 g [g of KF-355A (distributor: Shin-Etsu Chemical Co., Ltd. [Japan]), which is a non-reactive modified silicone oil (polyether-modified type) of a side chain type. ] Was weighed and added to the beaker of (1) above.
(3) 前記(2)の添加後、このビーカーを67℃において撹拌して、ビーカー内のリパーゼ活性測定用基質〔DGGMR〕と界面活性剤であるKF-355Aとを混合した。 (3) After the addition of (2), the beaker was stirred at 67 ° C., and the lipase activity measurement substrate [DGGMR] in the beaker and the surfactant KF-355A were mixed.
 この混合(撹拌)を5分間行い、「リパーゼ活性測定用基質〔DGGMR〕と界面活性剤の混合物」を調製した。 This mixing (stirring) was carried out for 5 minutes to prepare a “lipase activity measurement substrate [DGGMR] and surfactant mixture”.
 なお、当該撹拌は、前記のビーカーをマルチスターラー(型式:M-3、販売元:アズワン株式会社[日本国])の上に載せ、このビーカー内の回転子をこのマルチスターラーの目盛り「3」で回転させることにより行った。 In this stirring, the beaker is placed on a multi-stirrer (model: M-3, distributor: As One Co., Ltd. [Japan]), and the rotor in the beaker is marked with a scale “3” of the multi-stirrer. This was done by rotating at
(4) 次に、前記(3)のビーカー内の「リパーゼ活性測定用基質〔DGGMR〕と界面活性剤の混合物」(全部)に、撹拌しながら「一定量(4.0mL)の1mMの塩化ヒドロキシルアンモニウム(還元剤)を含む40mMのL-酒石酸ナトリウム緩衝液[pH4.0(20℃)]」を室温(25℃)においてマイクロピペットより添加した。 (4) Next, “a certain amount (4.0 mL) of 1 mM chloride was added to the“ mixture of lipase activity measurement substrate [DGGMR] and surfactant ”(all) in the beaker of (3) above while stirring. 40 mM L-sodium tartrate buffer [pH 4.0 (20 ° C.)] containing hydroxylammonium (reducing agent) was added from a micropipette at room temperature (25 ° C.).
 そして、当該添加後、この撹拌を室温(25℃)にて5分間継続して行うことにより、前記の「リパーゼ活性測定用基質〔DGGMR〕と界面活性剤を混合して調製した混合物」(全部)と、前記の「一定量(4.0mL)の1mMの塩化ヒドロキシルアンモニウムを含む40mMのL-酒石酸ナトリウム緩衝液[pH4.0(20℃)]」との混合を行った。 Then, after the addition, this stirring is continued for 5 minutes at room temperature (25 ° C.), whereby the above-mentioned “mixture prepared by mixing the lipase activity measurement substrate [DGGMR] and the surfactant” (all ) And the above-mentioned “a constant amount (4.0 mL) of 40 mM L-sodium tartrate buffer solution containing 1 mM hydroxylammonium chloride [pH 4.0 (20 ° C.)]”.
 なお、当該撹拌は、前記のビーカーをマルチスターラー(型式:M-3、販売元:アズワン株式会社[日本国])の上に載せ、このビーカー内の回転子をこのマルチスターラーの目盛り「3」で回転させることにより行った。 In this stirring, the beaker is placed on a multi-stirrer (model: M-3, distributor: As One Co., Ltd. [Japan]), and the rotor in the beaker is marked with a scale “3” of the multi-stirrer. This was done by rotating at
(5) 次に、前記(4)の「当該混合物(リパーゼ活性測定用基質〔DGGMR〕と界面活性剤の混合物)と一定量の1mMの塩化ヒドロキシルアンモニウムを含む40mMのL-酒石酸ナトリウム緩衝液[pH4.0(20℃)]との混合後の混合液」に、更に一定量の1mMの塩化ヒドロキシルアンモニウムを含む40mMのL-酒石酸ナトリウム緩衝液[pH4.0(20℃)]を混合して、最終的な容量を200mLとした。 (5) Next, 40 mM L-sodium tartrate buffer containing “the mixture (mixture of lipase activity measurement substrate [DGGMR] and surfactant)” and a fixed amount of 1 mM hydroxylammonium chloride [4) above. 40 mM L-sodium tartrate buffer solution [pH 4.0 (20 ° C.)] containing a certain amount of 1 mM hydroxylammonium chloride was further mixed with “the mixture after mixing with pH 4.0 (20 ° C.)”. The final volume was 200 mL.
(6) 以上の操作により、本発明のリパーゼ活性測定用基質溶液である「リパーゼ活性測定用基質溶液(リパーゼ活性測定用基質:DGGMR、界面活性剤:KF-355A、還元剤:塩化ヒドロキシルアンモニウム)」を調製した。
 これを本発明のリパーゼ活性測定用基質溶液である「第2試薬(本発明)」とした。
(6) By the above operation, the “lipase activity measurement substrate solution (substrate for lipase activity measurement: DGGMR, surfactant: KF-355A, reducing agent: hydroxylammonium chloride) which is the substrate solution for lipase activity measurement of the present invention” Was prepared.
This was designated as “second reagent (present invention)” which is the substrate solution for lipase activity measurement of the present invention.
(7) 
 前記(6)の「第2試薬(本発明)」の10mLに0.1%(w/v)のアジ化ナトリウム水溶液の10μLを添加し、「アジ化物添加第2試薬(本発明)」とした。
(7)
10 μL of 0.1% (w / v) aqueous sodium azide solution was added to 10 mL of the “second reagent (invention)” of (6), and “azide-added second reagent (invention)” did.
(8) なお、前記(1)~(7)において調製した、「アジ化物添加第2試薬(本発明)」において、リパーゼ活性測定用基質〔DGGMR〕の濃度は0.3mMであり、界面活性剤(KF-355A)の濃度は0.3%(w/v)であり、還元剤(塩化ヒドロキシルアンモニウム)の濃度は1mMであり、そして アジ化ナトリウムの濃度は0.0001%(w/v)である。
 また、この「アジ化物添加第2試薬(本発明)」において、濃度勾配や強い濁り等は見られず、均質に混合されていることを目視にて確認した。
(8) In the “azide-added second reagent (present invention)” prepared in (1) to (7) above, the concentration of the lipase activity measurement substrate [DGGMR] is 0.3 mM, and the surface activity The concentration of the agent (KF-355A) is 0.3% (w / v), the concentration of the reducing agent (hydroxylammonium chloride) is 1 mM, and the concentration of sodium azide is 0.0001% (w / v) ).
In addition, in this “second azide-added second reagent (invention)”, it was confirmed visually that no concentration gradient or strong turbidity was observed, and that the mixture was homogeneously mixed.
[2]アジ化物添加第2試薬(従来発明)
 従来発明のリパーゼ活性測定試薬の第2試薬(リパーゼ活性測定用基質溶液)に、アジ化物混入の影響を確かめるため、アジ化物を添加した「第2試薬(従来発明)」を調製した。
[2] Azide-added second reagent (conventional invention)
In order to confirm the influence of azide contamination on the second reagent (substrate solution for lipase activity measurement) of the lipase activity measurement reagent of the conventional invention, a “second reagent (conventional invention)” in which azide was added was prepared.
(1) リパーゼ活性測定用基質である、1,2-o-ジラウリル-rac-グリセロ-3-グルタル酸-(6’-メチルレゾルフィン)-エステル〔DGGMR〕(販売元:ロシュ・ダイアグノスティックス株式会社[日本国])の0.045グラム[g]を、ビーカー(容量:10mL)に量り取った。 (1) 1,2-o-dilauryl-rac-glycero-3-glutaric acid- (6′-methylresorufin) -ester [DGGMR], a substrate for measuring lipase activity (Distributor: Roche Diagnostics) 0.045 grams [g] of Su Co., Ltd. [Japan]) was weighed into a beaker (capacity: 10 mL).
(2) 次に、側鎖型の非反応性の変性シリコーンオイル(ポリエーテル変性タイプ)である、KF-355A(販売元:信越化学工業株式会社[日本国])の0.6グラム[g]を量り取り、これを前記(1)のビーカーに添加した。 (2) Next, 0.6 g [g of KF-355A (distributor: Shin-Etsu Chemical Co., Ltd. [Japan]), which is a non-reactive modified silicone oil (polyether-modified type) of a side chain type. ] Was weighed and added to the beaker of (1) above.
(3) 前記(2)の添加後、このビーカーを67℃において撹拌して、ビーカー内のリパーゼ活性測定用基質〔DGGMR〕と界面活性剤であるKF-355Aとを混合した。 (3) After the addition of (2), the beaker was stirred at 67 ° C., and the lipase activity measurement substrate [DGGMR] in the beaker and the surfactant KF-355A were mixed.
 この混合(撹拌)を5分間行い、「リパーゼ活性測定用基質〔DGGMR〕と界面活性剤の混合物」を調製した。 This mixing (stirring) was carried out for 5 minutes to prepare a “lipase activity measurement substrate [DGGMR] and surfactant mixture”.
 なお、当該撹拌は、前記のビーカーをマルチスターラー(型式:M-3、販売元:アズワン株式会社[日本国])の上に載せ、このビーカー内の回転子をこのマルチスターラーの目盛り「3」で回転させることにより行った。 In this stirring, the beaker is placed on a multi-stirrer (model: M-3, distributor: As One Co., Ltd. [Japan]), and the rotor in the beaker is marked with a scale “3” of the multi-stirrer. This was done by rotating at
(4) 次に、前記(3)のビーカー内の「リパーゼ活性測定用基質〔DGGMR〕と界面活性剤の混合物」(全部)に、撹拌しながら「一定量(4.0mL)の40mMのL-酒石酸ナトリウム緩衝液[pH4.0(20℃)]」を室温(25℃)においてマイクロピペットより添加した。 (4) Next, the “mixture of lipase activity measurement substrate [DGGMR] and surfactant” (all) in the beaker of (3) above (all) was stirred with “a certain amount (4.0 mL) of 40 mM L -Sodium tartrate buffer [pH 4.0 (20 ° C)] "was added from a micropipette at room temperature (25 ° C).
 そして、当該添加後、この撹拌を室温(25℃)にて5分間継続して行うことにより、前記の「リパーゼ活性測定用基質〔DGGMR〕と界面活性剤を混合して調製した混合物」(全部)と、前記の「一定量(4.0mL)の40mMのL-酒石酸ナトリウム緩衝液[pH4.0(20℃)]」との混合を行った。 Then, after the addition, this stirring is continued for 5 minutes at room temperature (25 ° C.), whereby the above-mentioned “mixture prepared by mixing the lipase activity measurement substrate [DGGMR] and the surfactant” (all ) And the above-mentioned “constant amount (4.0 mL) of 40 mM L-sodium tartrate buffer [pH 4.0 (20 ° C.)]”.
 なお、当該撹拌は、前記のビーカーをマルチスターラー(型式:M-3、販売元:アズワン株式会社[日本国])の上に載せ、このビーカー内の回転子をこのマルチスターラーの目盛り「3」で回転させることにより行った。 In this stirring, the beaker is placed on a multi-stirrer (model: M-3, distributor: As One Co., Ltd. [Japan]), and the rotor in the beaker is marked with a scale “3” of the multi-stirrer. This was done by rotating at
(5) 次に、前記(4)の「当該混合物(リパーゼ活性測定用基質〔DGGMR〕と界面活性剤の混合物)と一定量の40mMのL-酒石酸ナトリウム緩衝液[pH4.0(20℃)]との混合後の混合液」に、更に一定量の40mMのL-酒石酸ナトリウム緩衝液[pH4.0(20℃)]を混合して、最終的な容量を200mLとした。 (5) Next, “the mixture (mixture of lipase activity measurement substrate [DGGMR] and surfactant)” and a fixed amount of 40 mM L-sodium tartrate buffer [pH 4.0 (20 ° C.)] ] Was further mixed with a certain amount of 40 mM L-sodium tartrate buffer [pH 4.0 (20 ° C.)] to a final volume of 200 mL.
(6) 以上の操作により、従来発明のリパーゼ活性測定用基質溶液である「リパーゼ活性測定用基質溶液(リパーゼ活性測定用基質:DGGMR、界面活性剤:KF-355A)」を調製した。
 これを従来発明のリパーゼ活性測定用基質溶液である「第2試薬(従来発明)」とした。
(6) According to the above operation, a “lipase activity measurement substrate solution (lipase activity measurement substrate: DGGMR, surfactant: KF-355A)”, which is a conventional lipase activity measurement substrate solution, was prepared.
This was designated as “second reagent (conventional invention)” which is a substrate solution for lipase activity measurement of the conventional invention.
(7) 
 前記(6)の「第2試薬(従来発明)」の10mLに0.1%(w/v)のアジ化ナトリウム水溶液の10μLを添加し、「アジ化物添加第2試薬(従来発明)」とした。
(7)
10 μL of 0.1% (w / v) sodium azide aqueous solution was added to 10 mL of the “second reagent (conventional invention)” of (6), and “azide-added second reagent (conventional invention)” was obtained. did.
(8) なお、前記(1)~(7)において調製した、「アジ化物添加第2試薬(従来発明)」において、リパーゼ活性測定用基質〔DGGMR〕の濃度は0.3mMであり、界面活性剤(KF-355A)の濃度は0.3%(w/v)であり、そして アジ化ナトリウムの濃度は0.0001%(w/v)である。
 また、この「アジ化物添加第2試薬(従来発明)」において、濃度勾配や強い濁り等は見られず、均質に混合されていることを目視にて確認した。
(8) In the “second azide-added second reagent (conventional invention)” prepared in (1) to (7) above, the concentration of the lipase activity measurement substrate [DGGMR] is 0.3 mM, and the surface activity The concentration of agent (KF-355A) is 0.3% (w / v) and the concentration of sodium azide is 0.0001% (w / v).
Further, in this “second azide-added second reagent (conventional invention)”, it was visually confirmed that no concentration gradient or strong turbidity was observed, and that the mixture was homogeneously mixed.
[3]対照第2試薬
 対照としてのリパーゼ活性測定試薬の第2試薬(リパーゼ活性測定用基質溶液)である「対照第2試薬」を調製した。なお、この「対照第2試薬」にはアジ化物を添加していない。
[3] Control Second Reagent A “control second reagent” that is a second reagent (substrate solution for lipase activity measurement) of the lipase activity measurement reagent as a control was prepared. In addition, azide was not added to this “control second reagent”.
(1) リパーゼ活性測定用基質である、1,2-o-ジラウリル-rac-グリセロ-3-グルタル酸-(6’-メチルレゾルフィン)-エステル〔DGGMR〕(販売元:ロシュ・ダイアグノスティックス株式会社[日本国])の0.045グラム[g]を、ビーカー(容量:10mL)に量り取った。 (1) 1,2-o-dilauryl-rac-glycero-3-glutaric acid- (6′-methylresorufin) -ester [DGGMR], a substrate for measuring lipase activity (Distributor: Roche Diagnostics) 0.045 grams [g] of Su Co., Ltd. [Japan]) was weighed into a beaker (capacity: 10 mL).
(2) 次に、側鎖型の非反応性の変性シリコーンオイル(ポリエーテル変性タイプ)である、KF-355A(販売元:信越化学工業株式会社[日本国])の0.6グラム[g]を量り取り、これを前記(1)のビーカーに添加した。 (2) Next, 0.6 g [g of KF-355A (distributor: Shin-Etsu Chemical Co., Ltd. [Japan]), which is a non-reactive modified silicone oil (polyether-modified type) of a side chain type. ] Was weighed and added to the beaker of (1) above.
(3) 前記(2)の添加後、このビーカーを67℃において撹拌して、ビーカー内のリパーゼ活性測定用基質〔DGGMR〕と界面活性剤であるKF-355Aとを混合した。 (3) After the addition of (2), the beaker was stirred at 67 ° C., and the lipase activity measurement substrate [DGGMR] in the beaker and the surfactant KF-355A were mixed.
 この混合(撹拌)を5分間行い、「リパーゼ活性測定用基質〔DGGMR〕と界面活性剤の混合物」を調製した。 This mixing (stirring) was carried out for 5 minutes to prepare a “lipase activity measurement substrate [DGGMR] and surfactant mixture”.
 なお、当該撹拌は、前記のビーカーをマルチスターラー(型式:M-3、販売元:アズワン株式会社[日本国])の上に載せ、このビーカー内の回転子をこのマルチスターラーの目盛り「3」で回転させることにより行った。 In this stirring, the beaker is placed on a multi-stirrer (model: M-3, distributor: As One Co., Ltd. [Japan]), and the rotor in the beaker is marked with a scale “3” of the multi-stirrer. This was done by rotating at
(4) 次に、前記(3)のビーカー内の「リパーゼ活性測定用基質〔DGGMR〕と界面活性剤の混合物」(全部)に、撹拌しながら「一定量(4.0mL)の40mMのL-酒石酸ナトリウム緩衝液[pH4.0(20℃)]」を室温(25℃)においてマイクロピペットより添加した。 (4) Next, the “mixture of lipase activity measurement substrate [DGGMR] and surfactant” (all) in the beaker of (3) above (all) was stirred with “a certain amount (4.0 mL) of 40 mM L -Sodium tartrate buffer [pH 4.0 (20 ° C)] "was added from a micropipette at room temperature (25 ° C).
 そして、当該添加後、この撹拌を室温(25℃)にて5分間継続して行うことにより、前記の「リパーゼ活性測定用基質〔DGGMR〕と界面活性剤を混合して調製した混合物」(全部)と、前記の「一定量(4.0mL)の40mMのL-酒石酸ナトリウム緩衝液[pH4.0(20℃)]」との混合を行った。 Then, after the addition, this stirring is continued for 5 minutes at room temperature (25 ° C.), whereby the above-mentioned “mixture prepared by mixing the lipase activity measurement substrate [DGGMR] and the surfactant” (all ) And the above-mentioned “constant amount (4.0 mL) of 40 mM L-sodium tartrate buffer [pH 4.0 (20 ° C.)]”.
 なお、当該撹拌は、前記のビーカーをマルチスターラー(型式:M-3、販売元:アズワン株式会社[日本国])の上に載せ、このビーカー内の回転子をこのマルチスターラーの目盛り「3」で回転させることにより行った。 In this stirring, the beaker is placed on a multi-stirrer (model: M-3, distributor: As One Co., Ltd. [Japan]), and the rotor in the beaker is marked with a scale “3” of the multi-stirrer. This was done by rotating at
(5) 次に、前記(4)の「当該混合物(リパーゼ活性測定用基質〔DGGMR〕と界面活性剤の混合物)と一定量の40mMのL-酒石酸ナトリウム緩衝液[pH4.0(20℃)]との混合後の混合液」に、更に一定量の40mMのL-酒石酸ナトリウム緩衝液[pH4.0(20℃)]を混合して、最終的な容量を200mLとした。 (5) Next, “the mixture (mixture of lipase activity measurement substrate [DGGMR] and surfactant)” and a fixed amount of 40 mM L-sodium tartrate buffer [pH 4.0 (20 ° C.)] ] Was further mixed with a certain amount of 40 mM L-sodium tartrate buffer [pH 4.0 (20 ° C.)] to a final volume of 200 mL.
(6) 以上の操作により、「リパーゼ活性測定用基質溶液(リパーゼ活性測定用基質:DGGMR、界面活性剤:KF-355A)」を調製した。
 これを対照としてのリパーゼ活性測定用基質溶液である「対照第2試薬」とした。
(6) By the above operation, a “lipase activity measurement substrate solution (lipase activity measurement substrate: DGGMR, surfactant: KF-355A)” was prepared.
This was used as a “control second reagent” which is a substrate solution for lipase activity measurement as a control.
(7) なお、前記(1)~(6)において調製した、「対照第2試薬」において、リパーゼ活性測定用基質〔DGGMR〕の濃度は0.3mMであり、界面活性剤(KF-355A)の濃度は0.3%(w/v)である。
 また、この「対照第2試薬」において、濃度勾配や強い濁り等は見られず、均質に混合されていることを目視にて確認した。
(7) In the “control second reagent” prepared in (1) to (6) above, the concentration of the lipase activity measurement substrate [DGGMR] was 0.3 mM, and the surfactant (KF-355A) The concentration of is 0.3% (w / v).
Further, in this “control second reagent”, no concentration gradient or strong turbidity was observed, and it was visually confirmed that the mixture was homogeneously mixed.
2.試薬の保存
前記1の〔2〕の[1]において調製した「アジ化物添加第2試薬(本発明)」、及び前記1の〔2〕の[2]において調製した「アジ化物添加第2試薬(従来発明)」のそれぞれを、5℃で暗所に7日間保存した。
2. Reagent storage “Azide-added second reagent (invention)” prepared in [1] of [2] above and “Azide-added second reagent” prepared in [2] of [2] above (Conventional invention) ”was stored at 5 ° C. in the dark for 7 days.
3.試料
 下の「(1)標準物質」、「(2)標準血清」、及び「(3)管理血清」をそれぞれ試料として用いた。
3. “(1) Standard substance”, “(2) Standard serum”, and “(3) Control serum” below the samples were used as samples.
(1)標準物質
 「常用参照標準物質:JSCC常用酵素 JCCLS CRM-001c」(販売元:特定非営利活動法人日本臨床検査標準協議会[日本国])を、「標準物質」として用いた。
(1) Standard substance “Common reference standard substance: JSCC regular enzyme JCCLS CRM-001c” (distributor: Japan Clinical Laboratory Standards Association [Japan]) was used as the “standard substance”.
(2)標準血清
市販の標準血清である「シグナスオート LIP 標準血清」[製造番号:G501](販売元:株式会社シノテスト[日本国])を、「標準血清」として用いた。
(2) Standard Serum Commercially available standard serum “Cygnus Auto LIP Standard Serum” [manufacturing number: G501] (distributor: Sinotest Inc. [Japan]) was used as “standard serum”.
(3)管理血清
市販の精度管理用管理血清である「シグナスオート LIP コントロール」[製造番号:G501](販売元:株式会社シノテスト[日本国])を、「管理血清」として用いた。
(3) Control Serum “CYGNUS AUTO LIP CONTROL” [manufacturing number: G501] (distributor: Sinotest Inc. [Japan]), which is a commercially available control serum for quality control, was used as “control serum”.
4.試料中のリパーゼ活性の測定
 「第1試薬」及び「対照第2試薬」、並びに前記2において5℃(暗所)にて7日間保存した「アジ化物添加第2試薬(本発明)」及び「アジ化物添加第2試薬(従来発明)を使用して、7180形汎用自動分析装置(販売元:株式会社日立ハイテクノロジーズ[日本国])により、前記3の各試料の測定を行った。
4). Measurement of lipase activity in sample “First Reagent” and “Control Second Reagent” and “Second Azide Added Reagent (Invention)” stored in 5 above at 5 ° C. (dark place) for 7 days and “ Using the azide-added second reagent (conventional invention), each sample of the above 3 was measured with a 7180 type general-purpose automatic analyzer (distributor: Hitachi High-Technologies Corporation [Japan]).
(1) 前記の7180形汎用自動分析装置において、前記3のそれぞれの試料(「(1)標準物質」、「(2)標準血清」、及び「(3)管理血清」)について、これらの試料の2.6μLに、それぞれ前記1の〔1〕で調製した「第1試薬」の160μLを第1試薬として添加し、37℃で反応させた。 (1) In the 7180 general-purpose automatic analyzer, for each of the three samples (“(1) standard substance”, “(2) standard serum”, and “(3) control serum”), these samples In addition, 160 μL of the “first reagent” prepared in [1] of 1 above was added as a first reagent, and reacted at 37 ° C.
(2) 次に、16ポイント(第1試薬添加後270.093秒)から17ポイント(第1試薬添加後286.977秒)の間に、前記2で保存した「アジ化物添加第2試薬(本発明)」の96μLを第2試薬として添加し、37℃で反応させた。 (2) Next, between 16 points (270.093 seconds after the addition of the first reagent) and 17 points (286.977 seconds after the addition of the first reagent), the “azide addition second reagent ( 96 μL of the “invention” ”was added as a second reagent and reacted at 37 ° C.
(3) 次に、20ポイント(第1試薬添加後340.510秒)から24ポイント(第1試薬添加後411.887秒)に掛けての吸光度変化量を主波長570nm、副波長700nmにて測定した。(試料中に含まれていたリパーゼの活性値に応じて生成する6’-メチルレゾルフィンの濃度増加に基づく吸光度変化量の測定) (3) Next, the change in absorbance from 20 points (340.510 seconds after addition of the first reagent) to 24 points (411.887 seconds after addition of the first reagent) is measured at the main wavelength of 570 nm and the sub wavelength of 700 nm. It was measured. (Measurement of change in absorbance based on increased concentration of 6'-methylresorufin produced according to the activity value of lipase contained in the sample)
(4) また、試薬盲検(試薬ブランク)の測定のため、生理食塩水を用いた。
 この生理食塩水を試料とすること以外は、前記(1)~(3)の記載の通りに操作を行い、生理食塩水を測定したときの吸光度変化量を測定した。(試薬盲検の吸光度変化量の測定)
(4) Moreover, the physiological saline was used for the measurement of a reagent blind test (reagent blank).
Except for using this physiological saline as a sample, the procedure described in the above (1) to (3) was performed, and the amount of change in absorbance when the physiological saline was measured was measured. (Measurement of absorbance change in reagent blind test)
(5) 次に、前記(3)において求めた前記3のそれぞれの試料についての当該ポイント間の吸光度変化量から、前記(4)において求めた当該ポイント間の試薬盲検の吸光度変化量を差し引いて、「試料の吸光度変化量差の値」を求めた。 (5) Next, subtract the absorbance change amount of the reagent between the points obtained in (4) from the absorbance change amount between the points for each of the three samples obtained in (3). Then, “the value of the difference in absorbance change of the sample” was determined.
(6) また、前記(2)における第2試薬を「アジ化物添加第2試薬(本発明)」から前記2で保存した「アジ化物添加第2試薬(従来発明)」に替えること以外は、前記(1)~(5)の記載の通りに操作を行い、前記3の各試料のリパーゼ活性値(試料の吸光度変化量差の値)を求めた。 (6) In addition, except that the second reagent in (2) is changed from “second azide-added second reagent (present invention)” to “azide-added second reagent (conventional invention)” stored in 2 above, The operation was carried out as described in the above (1) to (5), and the lipase activity value (value of difference in absorbance change of the sample) of each of the three samples was determined.
(7) また、前記(2)における第2試薬を「アジ化物添加第2試薬(本発明)」から前記1の〔2〕の[3]で調製した「対照第2試薬」に替えること以外は、前記(1)~(5)の記載の通りに操作を行い、前記3の各試料のリパーゼ活性値(試料の吸光度変化量差の値)を求めた。 (7) Also, the second reagent in (2) above is changed from “second azide added second reagent (present invention)” to “control second reagent” prepared in [1] [2] [3]. Were operated as described in (1) to (5) above, and the lipase activity value (value of difference in absorbance change of the sample) of each sample in 3 was obtained.
5.測定結果
 前記4において測定し、求めた前記3の各試料のリパーゼ活性値(試料の吸光度変化量差の値)を表1に示した。
5). Measurement Results Table 1 shows the lipase activity values (difference in the amount of change in absorbance of the samples) of the three samples measured and determined in 4 above.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 なお、この表1において示した測定値(各試料のリパーゼ活性値)の単位は、「吸光度差(ΔAbs.)」である。 The unit of the measured value (lipase activity value of each sample) shown in Table 1 is “absorbance difference (ΔAbs.)”.
 また、この表1において、(カッコ)の中の数値は、各測定値(リパーゼ活性値[試料の吸光度変化量差の値])を、第2試薬としてアジ化物を添加していない「対照第2試薬」を使用したときの各試料の測定値(リパーゼ活性値[試料の吸光度変化量差の値])で除した値をパーセント表示で表したものである。 In Table 1, the values in parentheses are the measured values (lipase activity value [value of difference in absorbance change of sample]), and azide is not added as the second reagent. The value divided by the measured value (lipase activity value [value of difference in absorbance change of sample]) of each sample when “2 Reagents” is used is expressed in percent.
6.考察
(1) この表1より、第2試薬として「アジ化物添加第2試薬(従来発明)」を使用したときの測定値(リパーゼ活性値[試料の吸光度変化量差の値])は、第2試薬としてアジ化物を添加していない「対照第2試薬」を使用したときに比べ、「(1)標準物質」においては67%であり、「(2)標準血清」においては67%であり、そして、「(3)管理血清」においては70%であり、測定により得られた吸光度が大幅に低下していることが分かる。
6). Discussion (1) From Table 1, the measured value (lipase activity [value of difference in absorbance change of sample]) when using “second azide-added second reagent (conventional invention)” as the second reagent is Compared to the case of using “control second reagent” with no azide added as two reagents, “(1) standard substance” is 67%, and “(2) standard serum” is 67%. And in "(3) control serum", it is 70%, and it can be seen that the absorbance obtained by the measurement is greatly reduced.
(2) これに対して、同じくこの表1より、第2試薬として「アジ化物添加第2試薬(本発明)」を使用したときの測定値(リパーゼ活性値[試料の吸光度変化量差の値])は、第2試薬としてアジ化物を添加していない「対照第2試薬」を使用したときに比べ、「(1)標準物質」においては105%であり、「(2)標準血清」においては101%であり、そして、「(3)管理血清」においては101%であり、ほぼ差がないことが分かる。 (2) On the other hand, from Table 1 as well, the measured value (lipase activity value [value of difference in absorbance change of sample) when “second azide-added second reagent (present invention)” is used as the second reagent. ]) Is 105% in “(1) Standard substance” and “(2) Standard serum”, compared with the case where “control second reagent” not added with azide is used as the second reagent. Is 101%, and it is 101% in “(3) Control serum”, which shows that there is almost no difference.
(3) すなわち、本発明においては、混入したアジ化物によるDGGMRの劣化を防ぎ、測定により得られる吸光度値の低下を抑制することができることが確かめられた。 (3) That is, in the present invention, it was confirmed that the degradation of DGGMR due to the mixed azide can be prevented and the decrease in the absorbance value obtained by the measurement can be suppressed.
〔実施例2〕(本発明のアジ化物の影響の抑制効果の確認-2)
 本発明におけるアジ化物の影響の抑制効果を再度確認した。
[Example 2] (Confirmation of the effect of suppressing the influence of the azide of the present invention-2)
The suppression effect of the influence of the azide in this invention was confirmed again.
1.本発明のリパーゼ活性測定試薬
 本発明のリパーゼ活性測定試薬の第1試薬及び第2試薬をそれぞれ調製した。
1. Reagent activity measuring reagent of the present invention The first reagent and the second reagent of the lipase activity measuring reagent of the present invention were prepared.
〔1〕第1試薬
 下記の試薬成分をそれぞれ記載の濃度になるように純水に溶解し、pHをpH8.4(20℃)に調整して、リパーゼ活性測定試薬の第1試薬を調製した。
[1] First Reagent The following reagent components were dissolved in pure water to the respective concentrations described above, and the pH was adjusted to pH 8.4 (20 ° C.) to prepare a first reagent for measuring lipase activity. .
 デオキシコール酸ナトリウム [リパーゼ賦活化剤] 2%(w/v)
 塩化カルシウム [リパーゼ活性化剤] 20mM
 コリパーゼ (ブタ膵臓由来、販売元:ロシュ・ダイアグノスティックス株式会社[日本国]) 750K単位/L(10mg/L)
 Bicine [緩衝剤] 80mM
Sodium deoxycholate [Lipase activator] 2% (w / v)
Calcium chloride [Lipase activator] 20 mM
Colipase (derived from porcine pancreas, distributor: Roche Diagnostics Inc. [Japan]) 750K units / L (10mg / L)
Bicine [Buffer] 80 mM
 なお、この第1試薬を個別に計3回調製し、これらをそれぞれリパーゼ活性測定試薬の第1試薬の第1ロット、第2ロット及び第3ロットとした。 In addition, this 1st reagent was prepared 3 times in total separately, and these were made into the 1st lot, the 2nd lot, and the 3rd lot of the 1st reagent of a lipase activity measuring reagent, respectively.
〔2〕第2試薬(リパーゼ活性測定用基質溶液)
[1]アジ化物添加第2試薬(本発明)
 本発明のリパーゼ活性測定試薬の第2試薬(リパーゼ活性測定用基質溶液)に、アジ化物混入の影響を確かめるため、アジ化物を添加した「アジ化物添加第2試薬(本発明)」を計3ロット調製した。
[2] Second reagent (substrate solution for measuring lipase activity)
[1] Azide-added second reagent (the present invention)
In order to confirm the influence of azide contamination on the second reagent (lipase activity measurement substrate solution) of the lipase activity measurement reagent of the present invention, a total of 3 “azide addition second reagent (invention)” added with azide was added. A lot was prepared.
(1) リパーゼ活性測定用基質である、1,2-o-ジラウリル-rac-グリセロ-3-グルタル酸-(6’-メチルレゾルフィン)-エステル〔DGGMR〕(販売元:ロシュ・ダイアグノスティックス株式会社[日本国])の0.045グラム[g]を、ビーカー(容量:10mL)に量り取った。 (1) 1,2-o-dilauryl-rac-glycero-3-glutaric acid- (6′-methylresorufin) -ester [DGGMR], a substrate for measuring lipase activity (Distributor: Roche Diagnostics) 0.045 grams [g] of Su Co., Ltd. [Japan]) was weighed into a beaker (capacity: 10 mL).
(2) 次に、側鎖型の非反応性の変性シリコーンオイル(ポリエーテル変性タイプ)である、KF-355A(販売元:信越化学工業株式会社[日本国])の0.6グラム[g]を量り取り、これを前記(1)のビーカーに添加した。 (2) Next, 0.6 g [g of KF-355A (distributor: Shin-Etsu Chemical Co., Ltd. [Japan]), which is a non-reactive modified silicone oil (polyether-modified type) of a side chain type. ] Was weighed and added to the beaker of (1) above.
(3) 前記(2)の添加後、このビーカーを67℃において撹拌して、ビーカー内のリパーゼ活性測定用基質〔DGGMR〕と界面活性剤であるKF-355Aとを混合した。 (3) After the addition of (2), the beaker was stirred at 67 ° C., and the lipase activity measurement substrate [DGGMR] in the beaker and the surfactant KF-355A were mixed.
 この混合(撹拌)を5分間行い、「リパーゼ活性測定用基質〔DGGMR〕と界面活性剤の混合物」を調製した。 This mixing (stirring) was carried out for 5 minutes to prepare a “lipase activity measurement substrate [DGGMR] and surfactant mixture”.
 なお、当該撹拌は、前記のビーカーをマルチスターラー(型式:M-3、販売元:アズワン株式会社[日本国])の上に載せ、このビーカー内の回転子をこのマルチスターラーの目盛り「3」で回転させることにより行った。 In this stirring, the beaker is placed on a multi-stirrer (model: M-3, distributor: As One Co., Ltd. [Japan]), and the rotor in the beaker is marked with a scale “3” of the multi-stirrer. This was done by rotating at
(4) 次に、前記(3)のビーカー内の「リパーゼ活性測定用基質〔DGGMR〕と界面活性剤の混合物」(全部)に、撹拌しながら「一定量(4.0mL)の0.6mMの塩化ヒドロキシルアンモニウム(還元剤)を含む40mMのL-酒石酸ナトリウム緩衝液[pH4.0(20℃)]」を室温(25℃)においてマイクロピペットより添加した。 (4) Next, “a certain amount (4.0 mL) of 0.6 mM” was added to the “mixture of lipase activity measurement substrate [DGGMR] and surfactant” (all) in the beaker of (3) above while stirring. Of 40 mM L-sodium tartrate buffer [pH 4.0 (20 ° C.)] containing hydroxylammonium chloride (reducing agent) was added from a micropipette at room temperature (25 ° C.).
 そして、当該添加後、この撹拌を室温(25℃)にて5分間継続して行うことにより、前記の「リパーゼ活性測定用基質〔DGGMR〕と界面活性剤を混合して調製した混合物」(全部)と、前記の「一定量(4.0mL)の0.6mMの塩化ヒドロキシルアンモニウムを含む40mMのL-酒石酸ナトリウム緩衝液[pH4.0(20℃)]」との混合を行った。 Then, after the addition, this stirring is continued for 5 minutes at room temperature (25 ° C.), whereby the above-mentioned “mixture prepared by mixing the lipase activity measurement substrate [DGGMR] and the surfactant” (all ) And the above-mentioned “a fixed amount (4.0 mL) of 40 mM L-sodium tartrate buffer solution containing 0.6 mM hydroxylammonium chloride [pH 4.0 (20 ° C.)]”.
 なお、当該撹拌は、前記のビーカーをマルチスターラー(型式:M-3、販売元:アズワン株式会社[日本国])の上に載せ、このビーカー内の回転子をこのマルチスターラーの目盛り「3」で回転させることにより行った。 In this stirring, the beaker is placed on a multi-stirrer (model: M-3, distributor: As One Co., Ltd. [Japan]), and the rotor in the beaker is marked with a scale “3” of the multi-stirrer. This was done by rotating at
(5) 次に、前記(4)の「当該混合物(リパーゼ活性測定用基質〔DGGMR〕と界面活性剤の混合物)と一定量の0.6mMの塩化ヒドロキシルアンモニウムを含む40mMのL-酒石酸ナトリウム緩衝液[pH4.0(20℃)]との混合後の混合液」に、更に一定量の0.6mMの塩化ヒドロキシルアンモニウムを含む40mMのL-酒石酸ナトリウム緩衝液[pH4.0(20℃)]を混合して、最終的な容量を200mLとした。 (5) Next, 40 mM L-sodium tartrate buffer containing “the mixture (mixture of lipase activity measurement substrate [DGGMR] and surfactant)” and a fixed amount of 0.6 mM hydroxylammonium chloride in the above (4). In addition, a 40 mM L-sodium tartrate buffer solution [pH 4.0 (20 ° C.)] containing a certain amount of 0.6 mM hydroxylammonium chloride was added to the solution [mixture after mixing with the solution [pH 4.0 (20 ° C.)]. To a final volume of 200 mL.
(6) 以上の操作により、本発明のリパーゼ活性測定用基質溶液である「リパーゼ活性測定用基質溶液(リパーゼ活性測定用基質:DGGMR、界面活性剤:KF-355A、還元剤:塩化ヒドロキシルアンモニウム)」を調製した。
 これを本発明のリパーゼ活性測定用基質溶液である「第2試薬(本発明)」の第1ロットとした。
(6) By the above operation, the “lipase activity measurement substrate solution (substrate for lipase activity measurement: DGGMR, surfactant: KF-355A, reducing agent: hydroxylammonium chloride) which is the substrate solution for lipase activity measurement of the present invention” Was prepared.
This was designated as the first lot of the “second reagent (present invention)” which is the lipase activity measurement substrate solution of the present invention.
(7) 
 前記(6)の「第2試薬(本発明)」の10mLに0.1%(w/v)のアジ化ナトリウム水溶液の10μLを添加し、「アジ化物添加第2試薬(本発明)」の第1ロットとした。
(7)
10 μL of 0.1% (w / v) aqueous sodium azide solution was added to 10 mL of the “second reagent (invention)” in the above (6), and the “azide-added second reagent (invention)” was added. The first lot was used.
(8) また、更に2回ずつ前記(1)~(7)の記載の通りに操作を行うことにより、本発明のリパーゼ活性測定用基質溶液である「リパーゼ活性測定用基質溶液(リパーゼ活性測定用基質:DGGMR、界面活性剤:KF-355A、還元剤:塩化ヒドロキシルアンモニウム)」にアジ化ナトリウムを添加したものを個別に2回調製した。
 これらをそれぞれ「アジ化物添加第2試薬(本発明)」の第2ロット及び第3ロットとした。
(8) Further, the substrate solution for measuring lipase activity of the present invention, which is the “lipase activity measuring substrate solution (lipase activity measuring)”, is further performed twice as described in the above (1) to (7). Substrate for use: DGGMR, surfactant: KF-355A, reducing agent: hydroxylammonium chloride) "and sodium azide added separately.
These were designated as the second lot and the third lot of the “second azide-added second reagent (invention)”, respectively.
(9) なお、前記(1)~(8)において調製した、「アジ化物添加第2試薬(本発明)」の第1ロット、第2ロット、及び第3ロットそれぞれにおいて、いずれもリパーゼ活性測定用基質〔DGGMR〕の濃度は0.3mMであり、界面活性剤(KF-355A)の濃度は0.3%(w/v)であり、還元剤(塩化ヒドロキシルアンモニウム)の濃度は0.6mMであり、そして アジ化ナトリウムの濃度は0.0001%(w/v)である。
 また、これらのいずれの「アジ化物添加第2試薬(本発明)」においても、濃度勾配や強い濁り等は見られず、均質に混合されていることを目視にて確認した。
(9) Lipase activity measurement in each of the first lot, the second lot, and the third lot of the “second azide-added second reagent (present invention)” prepared in the above (1) to (8) The substrate [DGGMR] concentration is 0.3 mM, the surfactant (KF-355A) concentration is 0.3% (w / v), and the reducing agent (hydroxylammonium chloride) concentration is 0.6 mM. And the concentration of sodium azide is 0.0001% (w / v).
Further, in any of these “second azide-added second reagents (the present invention)”, no concentration gradient or strong turbidity was observed, and it was visually confirmed that they were uniformly mixed.
[2]アジ化物添加第2試薬(従来発明)
 従来発明のリパーゼ活性測定試薬の第2試薬(リパーゼ活性測定用基質溶液)に、アジ化物混入の影響を確かめるため、アジ化物を添加した「第2試薬(従来発明)」を計3ロット調製した。
[2] Azide-added second reagent (conventional invention)
In order to confirm the influence of azide contamination on the second reagent (lipase activity measurement substrate solution) of the lipase activity measurement reagent of the conventional invention, a total of 3 lots of “second reagent (conventional invention)” with azide added were prepared. .
(1) リパーゼ活性測定用基質である、1,2-o-ジラウリル-rac-グリセロ-3-グルタル酸-(6’-メチルレゾルフィン)-エステル〔DGGMR〕(販売元:ロシュ・ダイアグノスティックス株式会社[日本国])の0.045グラム[g]を、ビーカー(容量:10mL)に量り取った。 (1) 1,2-o-dilauryl-rac-glycero-3-glutaric acid- (6′-methylresorufin) -ester [DGGMR], a substrate for measuring lipase activity (Distributor: Roche Diagnostics) 0.045 grams [g] of Su Co., Ltd. [Japan]) was weighed into a beaker (capacity: 10 mL).
(2) 次に、側鎖型の非反応性の変性シリコーンオイル(ポリエーテル変性タイプ)である、KF-355A(販売元:信越化学工業株式会社[日本国])の0.6グラム[g]を量り取り、これを前記(1)のビーカーに添加した。 (2) Next, 0.6 g [g of KF-355A (distributor: Shin-Etsu Chemical Co., Ltd. [Japan]), which is a non-reactive modified silicone oil (polyether-modified type) of a side chain type. ] Was weighed and added to the beaker of (1) above.
(3) 前記(2)の添加後、このビーカーを67℃において撹拌して、ビーカー内のリパーゼ活性測定用基質〔DGGMR〕と界面活性剤であるKF-355Aとを混合した。 (3) After the addition of (2), the beaker was stirred at 67 ° C., and the lipase activity measurement substrate [DGGMR] in the beaker and the surfactant KF-355A were mixed.
 この混合(撹拌)を5分間行い、「リパーゼ活性測定用基質〔DGGMR〕と界面活性剤の混合物」を調製した。 This mixing (stirring) was carried out for 5 minutes to prepare a “lipase activity measurement substrate [DGGMR] and surfactant mixture”.
 なお、当該撹拌は、前記のビーカーをマルチスターラー(型式:M-3、販売元:アズワン株式会社[日本国])の上に載せ、このビーカー内の回転子をこのマルチスターラーの目盛り「3」で回転させることにより行った。 In this stirring, the beaker is placed on a multi-stirrer (model: M-3, distributor: As One Co., Ltd. [Japan]), and the rotor in the beaker is marked with a scale “3” of the multi-stirrer. This was done by rotating at
(4) 次に、前記(3)のビーカー内の「リパーゼ活性測定用基質〔DGGMR〕と界面活性剤の混合物」(全部)に、撹拌しながら「一定量(4.0mL)の40mMのL-酒石酸ナトリウム緩衝液[pH4.0(20℃)]」を室温(25℃)においてマイクロピペットより添加した。 (4) Next, the “mixture of lipase activity measurement substrate [DGGMR] and surfactant” (all) in the beaker of (3) above (all) was stirred with “a certain amount (4.0 mL) of 40 mM L -Sodium tartrate buffer [pH 4.0 (20 ° C)] "was added from a micropipette at room temperature (25 ° C).
 そして、当該添加後、この撹拌を室温(25℃)にて5分間継続して行うことにより、前記の「リパーゼ活性測定用基質〔DGGMR〕と界面活性剤を混合して調製した混合物」(全部)と、前記の「一定量(4.0mL)の40mMのL-酒石酸ナトリウム緩衝液[pH4.0(20℃)]」との混合を行った。 Then, after the addition, this stirring is continued for 5 minutes at room temperature (25 ° C.), whereby the above-mentioned “mixture prepared by mixing the lipase activity measurement substrate [DGGMR] and the surfactant” (all ) And the above-mentioned “constant amount (4.0 mL) of 40 mM L-sodium tartrate buffer [pH 4.0 (20 ° C.)]”.
 なお、当該撹拌は、前記のビーカーをマルチスターラー(型式:M-3、販売元:アズワン株式会社[日本国])の上に載せ、このビーカー内の回転子をこのマルチスターラーの目盛り「3」で回転させることにより行った。 In this stirring, the beaker is placed on a multi-stirrer (model: M-3, distributor: As One Co., Ltd. [Japan]), and the rotor in the beaker is marked with a scale “3” of the multi-stirrer. This was done by rotating at
(5) 次に、前記(4)の「当該混合物(リパーゼ活性測定用基質〔DGGMR〕と界面活性剤の混合物)と一定量の40mMのL-酒石酸ナトリウム緩衝液[pH4.0(20℃)]との混合後の混合液」に、更に一定量の40mMのL-酒石酸ナトリウム緩衝液[pH4.0(20℃)]を混合して、最終的な容量を200mLとした。 (5) Next, “the mixture (mixture of lipase activity measurement substrate [DGGMR] and surfactant)” and a fixed amount of 40 mM L-sodium tartrate buffer [pH 4.0 (20 ° C.)] ] Was further mixed with a certain amount of 40 mM L-sodium tartrate buffer [pH 4.0 (20 ° C.)] to a final volume of 200 mL.
(6) 以上の操作により、従来発明のリパーゼ活性測定用基質溶液である「リパーゼ活性測定用基質溶液(リパーゼ活性測定用基質:DGGMR、界面活性剤:KF-355A)」を調製した。
 これを従来発明のリパーゼ活性測定用基質溶液である「第2試薬(従来発明)」の第1ロットとした。
(6) According to the above operation, a “lipase activity measurement substrate solution (lipase activity measurement substrate: DGGMR, surfactant: KF-355A)”, which is a conventional lipase activity measurement substrate solution, was prepared.
This was designated as the first lot of the “second reagent (conventional invention)” which is a substrate solution for lipase activity measurement of the conventional invention.
(7) 
 前記(6)の「第2試薬(従来発明)」の10mLに0.1%(w/v)のアジ化ナトリウム水溶液の10μLを添加し、「アジ化物添加第2試薬(従来発明)」の第1ロットとした。
(7)
10 μL of 0.1% (w / v) aqueous sodium azide solution was added to 10 mL of the “second reagent (conventional invention)” of (6), and the “azide-added second reagent (conventional invention)” was added. The first lot was used.
(8) また、更に2回ずつ前記(1)~(7)の記載の通りに操作を行うことにより、従来発明のリパーゼ活性測定用基質溶液である「リパーゼ活性測定用基質溶液(リパーゼ活性測定用基質:DGGMR、界面活性剤:KF-355A)」にアジ化ナトリウムを添加したものを個別に2回調製した。
 これらをそれぞれ「アジ化物添加第2試薬(従来発明)」の第2ロット及び第3ロットとした。
(8) Further, the substrate solution for measuring lipase activity according to the conventional invention, ie, “a substrate solution for measuring lipase activity (measurement of lipase activity)” is further performed twice as described in the above (1) to (7). Substrate for use: DGGMR, surfactant: KF-355A) ”with sodium azide added separately.
These were designated as the second lot and the third lot of the “second azide-added second reagent (conventional invention)”, respectively.
(9) なお、前記(1)~(8)において調製した、「アジ化物添加第2試薬(従来発明)」の第1ロット、第2ロット、及び第3ロットそれぞれにおいて、いずれもリパーゼ活性測定用基質〔DGGMR〕の濃度は0.3mMであり、界面活性剤(KF-355A)の濃度は0.3%(w/v)であり、そして アジ化ナトリウムの濃度は0.0001%(w/v)である。
 また、これらのいずれの「アジ化物添加第2試薬(従来発明)」においても、濃度勾配や強い濁り等は見られず、均質に混合されていることを目視にて確認した。
(9) In each of the first lot, the second lot, and the third lot of the “azide-added second reagent (conventional invention)” prepared in the above (1) to (8), the lipase activity was measured. The concentration of the substrate for use [DGGMR] is 0.3 mM, the concentration of the surfactant (KF-355A) is 0.3% (w / v), and the concentration of sodium azide is 0.0001% (w / V).
Further, in any of these “second azide-added second reagents (conventional invention)”, no concentration gradient or strong turbidity was observed, and it was visually confirmed that they were uniformly mixed.
[3]対照第2試薬(本発明)
 対照としてのリパーゼ活性測定試薬の第2試薬(リパーゼ活性測定用基質溶液)である「対照第2試薬(本発明)」を計3ロット調製した。なお、この「対照第2試薬(本発明)」にはアジ化物を添加していない。
[3] Control second reagent (the present invention)
A total of 3 lots of “control second reagent (invention)” which is the second reagent (substrate solution for measuring lipase activity) of the lipase activity measurement reagent as a control were prepared. In addition, azide is not added to this “control second reagent (invention)”.
(1) リパーゼ活性測定用基質である、1,2-o-ジラウリル-rac-グリセロ-3-グルタル酸-(6’-メチルレゾルフィン)-エステル〔DGGMR〕(販売元:ロシュ・ダイアグノスティックス株式会社[日本国])の0.045グラム[g]を、ビーカー(容量:10mL)に量り取った。 (1) 1,2-o-dilauryl-rac-glycero-3-glutaric acid- (6′-methylresorufin) -ester [DGGMR], a substrate for measuring lipase activity (Distributor: Roche Diagnostics) 0.045 grams [g] of Su Co., Ltd. [Japan]) was weighed into a beaker (capacity: 10 mL).
(2) 次に、側鎖型の非反応性の変性シリコーンオイル(ポリエーテル変性タイプ)である、KF-355A(販売元:信越化学工業株式会社[日本国])の0.6グラム[g]を量り取り、これを前記(1)のビーカーに添加した。 (2) Next, 0.6 g [g of KF-355A (distributor: Shin-Etsu Chemical Co., Ltd. [Japan]), which is a non-reactive modified silicone oil (polyether-modified type) of a side chain type. ] Was weighed and added to the beaker of (1) above.
(3) 前記(2)の添加後、このビーカーを67℃において撹拌して、ビーカー内のリパーゼ活性測定用基質〔DGGMR〕と界面活性剤であるKF-355Aとを混合した。 (3) After the addition of (2), the beaker was stirred at 67 ° C., and the lipase activity measurement substrate [DGGMR] in the beaker and the surfactant KF-355A were mixed.
 この混合(撹拌)を5分間行い、「リパーゼ活性測定用基質〔DGGMR〕と界面活性剤の混合物」を調製した。 This mixing (stirring) was carried out for 5 minutes to prepare a “lipase activity measurement substrate [DGGMR] and surfactant mixture”.
 なお、当該撹拌は、前記のビーカーをマルチスターラー(型式:M-3、販売元:アズワン株式会社[日本国])の上に載せ、このビーカー内の回転子をこのマルチスターラーの目盛り「3」で回転させることにより行った。 In this stirring, the beaker is placed on a multi-stirrer (model: M-3, distributor: As One Co., Ltd. [Japan]), and the rotor in the beaker is marked with a scale “3” of the multi-stirrer. This was done by rotating at
(4) 次に、前記(3)のビーカー内の「リパーゼ活性測定用基質〔DGGMR〕と界面活性剤の混合物」(全部)に、撹拌しながら「一定量(4.0mL)の0.6mMの塩化ヒドロキシルアンモニウムを含む40mMのL-酒石酸ナトリウム緩衝液[pH4.0(20℃)]」を室温(25℃)においてマイクロピペットより添加した。 (4) Next, “a certain amount (4.0 mL) of 0.6 mM” was added to the “mixture of lipase activity measurement substrate [DGGMR] and surfactant” (all) in the beaker of (3) above while stirring. 40 mM L-sodium tartrate buffer solution [pH 4.0 (20 ° C.)] containing hydroxylammonium chloride was added from a micropipette at room temperature (25 ° C.).
 そして、当該添加後、この撹拌を室温(25℃)にて5分間継続して行うことにより、前記の「リパーゼ活性測定用基質〔DGGMR〕と界面活性剤を混合して調製した混合物」(全部)と、前記の「一定量(4.0mL)の0.6mMの塩化ヒドロキシルアンモニウムを含む40mMのL-酒石酸ナトリウム緩衝液[pH4.0(20℃)]」との混合を行った。 Then, after the addition, this stirring is continued for 5 minutes at room temperature (25 ° C.), whereby the above-mentioned “mixture prepared by mixing the lipase activity measurement substrate [DGGMR] and the surfactant” (all ) And the above-mentioned “a fixed amount (4.0 mL) of 40 mM L-sodium tartrate buffer solution containing 0.6 mM hydroxylammonium chloride [pH 4.0 (20 ° C.)]”.
 なお、当該撹拌は、前記のビーカーをマルチスターラー(型式:M-3、販売元:アズワン株式会社[日本国])の上に載せ、このビーカー内の回転子をこのマルチスターラーの目盛り「3」で回転させることにより行った。 In this stirring, the beaker is placed on a multi-stirrer (model: M-3, distributor: As One Co., Ltd. [Japan]), and the rotor in the beaker is marked with a scale “3” of the multi-stirrer. This was done by rotating at
(5) 次に、前記(4)の「当該混合物(リパーゼ活性測定用基質〔DGGMR〕と界面活性剤の混合物)と一定量の0.6mMの塩化ヒドロキシルアンモニウムを含む40mMのL-酒石酸ナトリウム緩衝液[pH4.0(20℃)]との混合後の混合液」に、更に一定量の0.6mMの塩化ヒドロキシルアンモニウムを含む40mMのL-酒石酸ナトリウム緩衝液[pH4.0(20℃)]を混合して、最終的な容量を200mLとした。 (5) Next, 40 mM L-sodium tartrate buffer containing “the mixture (mixture of lipase activity measurement substrate [DGGMR] and surfactant)” and a fixed amount of 0.6 mM hydroxylammonium chloride in the above (4). In addition, a 40 mM L-sodium tartrate buffer solution [pH 4.0 (20 ° C.)] containing a certain amount of 0.6 mM hydroxylammonium chloride was added to the solution [mixture after mixing with the solution [pH 4.0 (20 ° C.)]. To a final volume of 200 mL.
(6) 以上の操作により、「リパーゼ活性測定用基質溶液(リパーゼ活性測定用基質:DGGMR、界面活性剤:KF-355A)」を調製した。
 これを対照としてのリパーゼ活性測定用基質溶液である「対照第2試薬(本発明)」の第1ロットとした。
(6) By the above operation, a “lipase activity measurement substrate solution (lipase activity measurement substrate: DGGMR, surfactant: KF-355A)” was prepared.
This was designated as the first lot of “control second reagent (invention)” which is a lipase activity measurement substrate solution as a control.
(7) また、更に2回ずつ前記(1)~(6)の記載の通りに操作を行うことにより、対照としてのリパーゼ活性測定用基質溶液である「リパーゼ活性測定用基質溶液(リパーゼ活性測定用基質:DGGMR、界面活性剤:KF-355A)」を個別に2回調製した。
 これらをそれぞれ「対照第2試薬(本発明)」の第2ロット及び第3ロットとした。
(7) Further, by performing the operation twice more as described in the above (1) to (6), a “lipase activity measurement substrate solution (lipase activity measurement) which is a lipase activity measurement substrate solution as a control. Substrate for use: DGGMR, surfactant: KF-355A) ”was prepared twice separately.
These were designated as the second lot and the third lot of the “control second reagent (invention)”, respectively.
(8) なお、前記(1)~(7)において調製した、「対照第2試薬(本発明)」の第1ロット、第2ロット、及び第3ロットそれぞれにおいて、いずれもリパーゼ活性測定用基質〔DGGMR〕の濃度は0.3mMであり、界面活性剤(KF-355A)の濃度は0.3%(w/v)であり、そして、還元剤(塩化ヒドロキシルアンモニウム)の濃度は0.6mMである。
 また、これらのいずれの「対照第2試薬(本発明)」においても、濃度勾配や強い濁り等は見られず、均質に混合されていることを目視にて確認した。
(8) The lipase activity measurement substrate in each of the first lot, the second lot, and the third lot of the “control second reagent (present invention)” prepared in the above (1) to (7) The concentration of [DGGMR] is 0.3 mM, the concentration of surfactant (KF-355A) is 0.3% (w / v), and the concentration of reducing agent (hydroxylammonium chloride) is 0.6 mM. It is.
Further, in any of these “control second reagents (present invention)”, no concentration gradient or strong turbidity was observed, and it was visually confirmed that they were uniformly mixed.
[4]対照第2試薬(従来発明)
 対照としてのリパーゼ活性測定試薬の第2試薬(リパーゼ活性測定用基質溶液)である「対照第2試薬(従来発明)」を計3ロット調製した。なお、この「対照第2試薬(従来発明)」にはアジ化物を添加していない。
[4] Control second reagent (conventional invention)
A total of 3 lots of “control second reagent (conventional invention)” which is the second reagent (substrate solution for lipase activity measurement) of the lipase activity measurement reagent as a control were prepared. In addition, azide is not added to this “control second reagent (conventional invention)”.
(1) リパーゼ活性測定用基質である、1,2-o-ジラウリル-rac-グリセロ-3-グルタル酸-(6’-メチルレゾルフィン)-エステル〔DGGMR〕(販売元:ロシュ・ダイアグノスティックス株式会社[日本国])の0.045グラム[g]を、ビーカー(容量:10mL)に量り取った。 (1) 1,2-o-dilauryl-rac-glycero-3-glutaric acid- (6′-methylresorufin) -ester [DGGMR], a substrate for measuring lipase activity (Distributor: Roche Diagnostics) 0.045 grams [g] of Su Co., Ltd. [Japan]) was weighed into a beaker (capacity: 10 mL).
(2) 次に、側鎖型の非反応性の変性シリコーンオイル(ポリエーテル変性タイプ)である、KF-355A(販売元:信越化学工業株式会社[日本国])の0.6グラム[g]を量り取り、これを前記(1)のビーカーに添加した。 (2) Next, 0.6 g [g of KF-355A (distributor: Shin-Etsu Chemical Co., Ltd. [Japan]), which is a non-reactive modified silicone oil (polyether-modified type) of a side chain type. ] Was weighed and added to the beaker of (1) above.
(3) 前記(2)の添加後、このビーカーを67℃において撹拌して、ビーカー内のリパーゼ活性測定用基質〔DGGMR〕と界面活性剤であるKF-355Aとを混合した。 (3) After the addition of (2), the beaker was stirred at 67 ° C., and the lipase activity measurement substrate [DGGMR] in the beaker and the surfactant KF-355A were mixed.
 この混合(撹拌)を5分間行い、「リパーゼ活性測定用基質〔DGGMR〕と界面活性剤の混合物」を調製した。 This mixing (stirring) was carried out for 5 minutes to prepare a “lipase activity measurement substrate [DGGMR] and surfactant mixture”.
 なお、当該撹拌は、前記のビーカーをマルチスターラー(型式:M-3、販売元:アズワン株式会社[日本国])の上に載せ、このビーカー内の回転子をこのマルチスターラーの目盛り「3」で回転させることにより行った。 In this stirring, the beaker is placed on a multi-stirrer (model: M-3, distributor: As One Co., Ltd. [Japan]), and the rotor in the beaker is marked with a scale “3” of the multi-stirrer. This was done by rotating at
(4) 次に、前記(3)のビーカー内の「リパーゼ活性測定用基質〔DGGMR〕と界面活性剤の混合物」(全部)に、撹拌しながら「一定量(4.0mL)の40mMのL-酒石酸ナトリウム緩衝液[pH4.0(20℃)]」を室温(25℃)においてマイクロピペットより添加した。 (4) Next, the “mixture of lipase activity measurement substrate [DGGMR] and surfactant” (all) in the beaker of (3) above (all) was stirred with “a certain amount (4.0 mL) of 40 mM L -Sodium tartrate buffer [pH 4.0 (20 ° C)] "was added from a micropipette at room temperature (25 ° C).
 そして、当該添加後、この撹拌を室温(25℃)にて5分間継続して行うことにより、前記の「リパーゼ活性測定用基質〔DGGMR〕と界面活性剤を混合して調製した混合物」(全部)と、前記の「一定量(4.0mL)の40mMのL-酒石酸ナトリウム緩衝液[pH4.0(20℃)]」との混合を行った。 Then, after the addition, this stirring is continued for 5 minutes at room temperature (25 ° C.), whereby the above-mentioned “mixture prepared by mixing the lipase activity measurement substrate [DGGMR] and the surfactant” (all ) And the above-mentioned “constant amount (4.0 mL) of 40 mM L-sodium tartrate buffer [pH 4.0 (20 ° C.)]”.
 なお、当該撹拌は、前記のビーカーをマルチスターラー(型式:M-3、販売元:アズワン株式会社[日本国])の上に載せ、このビーカー内の回転子をこのマルチスターラーの目盛り「3」で回転させることにより行った。 In this stirring, the beaker is placed on a multi-stirrer (model: M-3, distributor: As One Co., Ltd. [Japan]), and the rotor in the beaker is marked with a scale “3” of the multi-stirrer. This was done by rotating at
(5) 次に、前記(4)の「当該混合物(リパーゼ活性測定用基質〔DGGMR〕と界面活性剤の混合物)と一定量の40mMのL-酒石酸ナトリウム緩衝液[pH4.0(20℃)]との混合後の混合液」に、更に一定量の40mMのL-酒石酸ナトリウム緩衝液[pH4.0(20℃)]を混合して、最終的な容量を200mLとした。 (5) Next, “the mixture (mixture of lipase activity measurement substrate [DGGMR] and surfactant)” and a fixed amount of 40 mM L-sodium tartrate buffer [pH 4.0 (20 ° C.)] ] Was further mixed with a certain amount of 40 mM L-sodium tartrate buffer [pH 4.0 (20 ° C.)] to a final volume of 200 mL.
(6) 以上の操作により、「リパーゼ活性測定用基質溶液(リパーゼ活性測定用基質:DGGMR、界面活性剤:KF-355A)」を調製した。
 これを対照としてのリパーゼ活性測定用基質溶液である「対照第2試薬(従来発明)」の第1ロットとした。
(6) By the above operation, a “lipase activity measurement substrate solution (lipase activity measurement substrate: DGGMR, surfactant: KF-355A)” was prepared.
This was designated as the first lot of “control second reagent (conventional invention)” which is a substrate solution for measuring lipase activity as a control.
(7) また、更に2回ずつ前記(1)~(6)の記載の通りに操作を行うことにより、対照としてのリパーゼ活性測定用基質溶液である「リパーゼ活性測定用基質溶液(リパーゼ活性測定用基質:DGGMR、界面活性剤:KF-355A)」を個別に2回調製した。
 これらをそれぞれ「対照第2試薬(従来発明)」の第2ロット及び第3ロットとした。
(7) Further, by performing the operation twice more as described in the above (1) to (6), a “lipase activity measurement substrate solution (lipase activity measurement) which is a lipase activity measurement substrate solution as a control. Substrate for use: DGGMR, surfactant: KF-355A) ”was prepared twice separately.
These were designated as the second lot and the third lot of the “control second reagent (conventional invention)”, respectively.
(8) なお、前記(1)~(7)において調製した、「対照第2試薬(従来発明)」の第1ロット、第2ロット、及び第3ロットそれぞれにおいて、いずれもリパーゼ活性測定用基質〔DGGMR〕の濃度は0.3mMであり、界面活性剤(KF-355A)の濃度は0.3%(w/v)である。
 また、これらのいずれの「対照第2試薬(従来発明)」においても、濃度勾配や強い濁り等は見られず、均質に混合されていることを目視にて確認した。
(8) The substrate for measuring lipase activity in each of the first lot, the second lot and the third lot of the “control second reagent (conventional invention)” prepared in the above (1) to (7) The concentration of [DGGMR] is 0.3 mM, and the concentration of surfactant (KF-355A) is 0.3% (w / v).
Further, in any of these “control second reagents (conventional invention)”, no concentration gradient or strong turbidity was observed, and it was visually confirmed that they were uniformly mixed.
2.試薬の保存
前記1の〔2〕の[1]において調製した「アジ化物添加第2試薬(本発明)」の第1ロット、第2ロット及び第3ロット、並びに前記1の〔2〕の[2]において調製した「アジ化物添加第2試薬(従来発明)」の第1ロット、第2ロット及び第3ロットのそれぞれを、5℃で暗所に7日間保存した。
2. Reagent storage The first lot, the second lot and the third lot of the “second azide-added second reagent (invention)” prepared in [1] of [1] in [1] above, and the [2] in [1] above. The first lot, the second lot, and the third lot of the “second azide-added second reagent (conventional invention)” prepared in 2) were stored at 5 ° C. in the dark for 7 days.
3.試料
 下の「(1)標準物質」、「(2)管理血清-1」、「(3)管理血清-2」、「(4)管理血清-3」、「(5)管理血清-4」、「(6)標準血清」、「(7)管理血清-5」、及び「(8)プール血清」をそれぞれ試料として用いた。
3. “(1) Standard substance”, “(2) Controlled serum-1”, “(3) Controlled serum-2”, “(4) Controlled serum-3”, “(5) Controlled serum-4” below the sample , “(6) Standard serum”, “(7) Control serum-5”, and “(8) Pooled serum” were used as samples, respectively.
(1)標準物質
 「常用参照標準物質:JSCC常用酵素 JCCLS CRM-001c」(販売元:特定非営利活動法人日本臨床検査標準協議会[日本国])を、「標準物質」として用いた。
(1) Standard substance “Common reference standard substance: JSCC regular enzyme JCCLS CRM-001c” (distributor: Japan Clinical Laboratory Standards Association [Japan]) was used as the “standard substance”.
(2)管理血清-1
市販の精度管理用管理血清である「液状コントロール血清Iワコー C&C」[製造番号:1515I](販売元:和光純薬工業株式会社[日本国])を、「管理血清-1」として用いた。
(2) Control serum-1
“Liquid control serum I Wako C & C” [manufacturing number: 1515I] (distributor: Wako Pure Chemical Industries, Ltd. [Japan]), which is a commercially available control serum for quality control, was used as “control serum-1”.
(3)管理血清-2
市販の精度管理用管理血清である「液状コントロール血清IIワコー C&C」[製造番号:1515II](販売元:和光純薬工業株式会社[日本国])を、「管理血清-2」として用いた。
(3) Control serum-2
“Liquid control serum II Wako C & C” [manufacturing number: 1515II] (distributor: Wako Pure Chemical Industries, Ltd. [Japan]), which is a commercially available control serum for quality control, was used as “control serum-2”.
(4)管理血清-3
市販の精度管理用管理血清である「Aalto Control I R」(販売元:株式会社シノテスト[日本国])を、「管理血清-3」として用いた。
(4) Control serum-3
“Aalto Control IR” (distributor: Sinotest Inc. [Japan]), which is a commercially available control serum for quality control, was used as “control serum-3”.
(5)管理血清-4
市販の精度管理用管理血清である「Aalto Control II S」(販売元:株式会社シノテスト[日本国])を、「管理血清-4」として用いた。
(5) Control serum-4
“Aalto Control II S” (distributor: Sinotest Co., Ltd. [Japan]), which is a commercially available control serum for quality control, was used as “control serum-4”.
(6)標準血清
市販の標準血清である「シグナスオート LIP 標準血清」[製造番号:G501](販売元:株式会社シノテスト[日本国])を、「標準血清」として用いた。
(6) Standard Serum Commercially available standard serum “Cygnus Auto LIP Standard Serum” [manufacturing number: G501] (distributor: Sinotest Inc. [Japan]) was used as “standard serum”.
(7)管理血清-5
市販の精度管理用管理血清である「シグナスオート LIP コントロール」[製造番号:G501](販売元:株式会社シノテスト[日本国])を、「管理血清-5」として用いた。
(7) Control serum-5
“CYGNUS AUTO LIP CONTROL” [manufacturing number: G501] (distributor: Sinotest [Japan]), which is a commercially available control serum for quality control, was used as “control serum-5”.
(8)プール血清
ヒト血清を集めたものを、「プール血清」として用いた。
(8) A collection of pooled serum human serum was used as “pooled serum”.
4.試料中のリパーゼ活性の測定
 「第1試薬」、「対照第2試薬(本発明)」及び「対照第2試薬(従来発明)」、並びに前記2において5℃(暗所)にて7日間保存した「アジ化物添加第2試薬(本発明)」(第1ロット~第3ロット)及び「アジ化物添加第2試薬(従来発明)」(第1ロット~第3ロット)を使用して、7180形汎用自動分析装置(販売元:株式会社日立ハイテクノロジーズ[日本国])により、前記3の各試料の測定を行った。
4). Measurement of lipase activity in a sample “First Reagent”, “Control Second Reagent (Invention)” and “Control Second Reagent (Conventional Invention)” and the above 2 stored at 5 ° C. (dark place) for 7 days 7180 using the azide-added second reagent (invention) (first lot to third lot) and the azide-added second reagent (conventional invention) (first lot to third lot) Each of the three samples was measured with a general-purpose automatic analyzer (distributor: Hitachi High-Technologies Corporation [Japan]).
(1) 前記の7180形汎用自動分析装置において、前記3のそれぞれの試料について、これらの試料の2.6μLに、それぞれ前記1の〔1〕で調製した「第1試薬」の第1ロットの160μLを第1試薬として添加し、37℃で反応させた。 (1) In the above-mentioned 7180 general-purpose automatic analyzer, for each of the three samples, 2.6 μL of these samples is added to the first lot of the “first reagent” prepared in [1] of 1 above. 160 μL was added as a first reagent and allowed to react at 37 ° C.
(2) 次に、16ポイント(第1試薬添加後270.093秒)から17ポイント(第1試薬添加後286.977秒)の間に、前記2で保存した「アジ化物添加第2試薬(本発明)」の96μLを第2試薬として添加し、37℃で反応させた。 (2) Next, between 16 points (270.093 seconds after the addition of the first reagent) and 17 points (286.977 seconds after the addition of the first reagent), the “azide addition second reagent ( 96 μL of the “invention” ”was added as a second reagent and reacted at 37 ° C.
(3) 次に、20ポイント(第1試薬添加後340.510秒)から24ポイント(第1試薬添加後411.887秒)に掛けての吸光度変化量を主波長570nm、副波長700nmにて測定した。(試料中に含まれていたリパーゼの活性値に応じて生成する6’-メチルレゾルフィンの濃度増加に基づく吸光度変化量の測定) (3) Next, the change in absorbance from 20 points (340.510 seconds after addition of the first reagent) to 24 points (411.887 seconds after addition of the first reagent) is measured at the main wavelength of 570 nm and the sub wavelength of 700 nm. It was measured. (Measurement of change in absorbance based on increased concentration of 6'-methylresorufin produced according to the activity value of lipase contained in the sample)
(4) また、試薬盲検(試薬ブランク)の測定のため、生理食塩水を用いた。
 この生理食塩水を試料とすること以外は、前記(1)~(3)の記載の通りに操作を行い、生理食塩水を測定したときの吸光度変化量を測定した。(試薬盲検の吸光度変化量の測定)
(4) Moreover, the physiological saline was used for the measurement of a reagent blind test (reagent blank).
Except for using this physiological saline as a sample, the procedure described in the above (1) to (3) was performed, and the amount of change in absorbance when the physiological saline was measured was measured. (Measurement of absorbance change in reagent blind test)
(5) 次に、前記(3)において求めた前記3のそれぞれの試料についての当該ポイント間の吸光度変化量から、前記(4)において求めた当該ポイント間の試薬盲検の吸光度変化量を差し引いて、「試料の吸光度変化量差の値」を求めた。 (5) Next, subtract the absorbance change amount of the reagent between the points obtained in (4) from the absorbance change amount between the points for each of the three samples obtained in (3). Then, “the value of the difference in absorbance change of the sample” was determined.
(6) また、前記(2)における第2試薬を前記2で保存した「アジ化物添加第2試薬(本発明)」の第1ロットから第2ロットに替えること以外は、前記(1)~(5)の記載の通りに操作を行い、第2試薬として第2ロットを用いた場合の前記3の各試料のリパーゼ活性値(試料の吸光度変化量差の値)を求めた。 (6) In addition, except that the second reagent in the above (2) is changed from the first lot to the second lot of the “second azide-added second reagent (present invention)” stored in the above 2, the above (1) to The operation was performed as described in (5), and the lipase activity value (the value of the difference in absorbance change of the sample) of each of the three samples when the second lot was used as the second reagent was determined.
(7) また、前記(2)における第2試薬を前記2で保存した「アジ化物添加第2試薬(本発明)」の第1ロットから第3ロットに替えること以外は、前記(1)~(5)の記載の通りに操作を行い、第2試薬として第3ロットを用いた場合の前記3の各試料のリパーゼ活性値(試料の吸光度変化量差の値)を求めた。 (7) In addition, except that the second reagent in (2) is changed from the first lot to the third lot of the “second azide-added second reagent (invention)” stored in 2 above, the above (1) to The operation was performed as described in (5), and the lipase activity value (value of the difference in absorbance change of the sample) of each of the three samples when the third lot was used as the second reagent was determined.
(8) また、前記(2)における第2試薬を「アジ化物添加第2試薬(本発明)」から前記2で保存した「アジ化物添加第2試薬(従来発明)」に替えること以外は、前記(1)~(7)の記載の通りに操作を行い、第2試薬として第1ロット~第3ロットを用いた場合の前記3の各試料のリパーゼ活性値(試料の吸光度変化量差の値)を求めた。 (8) In addition, except that the second reagent in (2) is changed from “second azide-added second reagent (present invention)” to “azide-added second reagent (conventional invention)” stored in 2 above, Operate as described in (1) to (7) above, and use the first lot to the third lot as the second reagent. The lipase activity value of each of the three samples (the difference in the change in absorbance of the sample) Value).
(9) また、前記(2)における第2試薬を「アジ化物添加第2試薬(本発明)」から前記1の〔2〕の[3]で調製した「対照第2試薬(本発明)」に替えること以外は、前記(1)~(7)の記載の通りに操作を行い、第2試薬として第1ロット~第3ロットを用いた場合の前記3の各試料のリパーゼ活性値(試料の吸光度変化量差の値)を求めた。 (9) In addition, the second reagent in (2) above was prepared as “control second reagent (invention)” prepared in [3] of [1] in [2] above from “azide-added second reagent (invention)”. The lipase activity value of each sample (sample 3) when the first lot to the third lot were used as the second reagent by performing the operations as described in the above (1) to (7) except that Value of difference in absorbance change).
(10) また、前記(2)における第2試薬を「アジ化物添加第2試薬(本発明)」から前記1の〔2〕の[4]で調製した「対照第2試薬(従来発明)」に替えること以外は、前記(1)~(7)の記載の通りに操作を行い、第2試薬として第1ロット~第3ロットを用いた場合の前記3の各試料のリパーゼ活性値(試料の吸光度変化量差の値)を求めた。 (10) In addition, the second reagent in (2) above was prepared as “control second reagent (conventional invention)” prepared in [1] [2] [4] from “azide added second reagent (present invention)”. The lipase activity value of each sample (sample 3) when the first lot to the third lot were used as the second reagent by performing the operations as described in the above (1) to (7) except that Value of difference in absorbance change).
5.測定結果
 前記4において測定し、求めた前記3の各試料のリパーゼ活性値(試料の吸光度変化量差の値)を表2に示した。
5). Measurement Results Table 2 shows the lipase activity values (values of the difference in absorbance change of the samples) of the three samples measured and determined in 4 above.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 なお、この表2において示した測定値(各試料のリパーゼ活性値)の単位は、「吸光度差(ΔAbs.)」である。 The unit of the measured value (lipase activity value of each sample) shown in Table 2 is “absorbance difference (ΔAbs.)”.
 また、この表2において、(カッコ)の中の数値は、第2試薬として「アジ化物添加第2試薬(本発明)」を使用したときの測定値(リパーゼ活性値[試料の吸光度変化量差の値])を、第2試薬としてアジ化物を添加していない「対照第2試薬(本発明)」を使用したときの測定値(リパーゼ活性値[試料の吸光度変化量差の値])で除した値をパーセント表示で表したもの、又は第2試薬として「アジ化物添加第2試薬(従来発明)」を使用したときの測定値(リパーゼ活性値[試料の吸光度変化量差の値])を、第2試薬としてアジ化物を添加していない「対照第2試薬(従来発明)」を使用したときの測定値(リパーゼ活性値[試料の吸光度変化量差の値])で除した値をパーセント表示で表したものである。 In Table 2, the values in parentheses are measured values (lipase activity value [difference in change in absorbance of sample] when “second azide added reagent (invention)”) is used as the second reagent. Value)) is the measured value (lipase activity [value of difference in absorbance change of sample]) when using “control second reagent (invention)” to which no azide is added as the second reagent. The value obtained by dividing the value by percentage, or the measured value when the “second reagent added with azide (conventional invention)” is used as the second reagent (lipase activity value [value of difference in absorbance change of sample]) Divided by the measured value (lipase activity value [value of difference in absorbance change of the sample]) when “control second reagent (conventional invention)” to which azide is not added as the second reagent is used. It is expressed as a percentage.
6.考察
(1) この表2より、第2試薬として「アジ化物添加第2試薬(従来発明)」を使用したときの測定値(リパーゼ活性値[試料の吸光度変化量差の値])は、第2試薬としてアジ化物を添加していない「対照第2試薬(従来発明)」を使用したときに比べ、第1ロットにおいては67%~76%であり、第2ロットにおいては65%~76%であり、そして、第3ロットにおいては65%~79%であり、測定により得られた吸光度がいずれも大幅に低下していることが分かる。
6). Discussion (1) From Table 2, the measured value (lipase activity value [value of difference in absorbance change of sample]) when “second azide added reagent (conventional invention)” is used as the second reagent is Compared with the use of “control second reagent (conventional invention)” with no azide added as two reagents, 67% to 76% in the first lot and 65% to 76% in the second lot In the third lot, it is 65% to 79%, and it can be seen that the absorbance obtained by the measurement is greatly reduced.
(2) これに対して、同じくこの表2より、第2試薬として「アジ化物添加第2試薬(本発明)」を使用したときの測定値(リパーゼ活性値[試料の吸光度変化量差の値])は、第2試薬としてアジ化物を添加していない「対照第2試薬(本発明)」を使用したときに比べ、第1ロットにおいては96%~100%であり、第2ロットにおいては96%~99%であり、そして、第3ロットにおいては96%~100%であり、いずれもほぼ差がないことが分かる。 (2) On the other hand, from Table 2, the measured value (lipase activity value [value of the difference in absorbance change of the sample) when “second azide added second reagent (present invention)” is used as the second reagent. ]) Is 96% to 100% in the first lot, compared with the case where the “control second reagent (invention)” to which no azide is added as the second reagent, and in the second lot, It is 96% to 99%, and it is 96% to 100% in the third lot, and it can be seen that there is almost no difference.
(3) すなわち、本発明において、混入したアジ化物によるDGGMRの劣化を防ぎ、測定により得られる吸光度値の低下を抑制することができることが再度確かめられた。 (3) That is, in the present invention, it was confirmed again that the degradation of DGGMR due to the mixed azide can be prevented and the decrease in the absorbance value obtained by the measurement can be suppressed.

Claims (4)

  1.  1,2-o-ジラウリル-rac-グリセロ-3-グルタル酸-(6’-メチルレゾルフィン)-エステルをリパーゼ活性測定用基質として含むリパーゼ活性測定用基質溶液において、還元剤を含有することを特徴とするリパーゼ活性測定用基質溶液。 A lipase activity measurement substrate solution containing 1,2-o-dilauryl-rac-glycero-3-glutaric acid- (6′-methylresorufin) -ester as a lipase activity measurement substrate contains a reducing agent. A substrate solution for measuring lipase activity.
  2. 請求項1に記載のリパーゼ活性測定用基質溶液を含むことを特徴とするリパーゼ活性測定試薬。 A lipase activity measuring reagent comprising the lipase activity measuring substrate solution according to claim 1.
  3. 1,2-o-ジラウリル-rac-グリセロ-3-グルタル酸-(6’-メチルレゾルフィン)-エステルをリパーゼ活性測定用基質として含むリパーゼ活性測定用基質溶液を使用するリパーゼ活性測定方法において、リパーゼ活性測定用基質溶液に還元剤を含有させることを特徴とするリパーゼ活性測定方法。 In a lipase activity measurement method using a lipase activity measurement substrate solution comprising 1,2-o-dilauryl-rac-glycero-3-glutaric acid- (6′-methylresorufin) -ester as a lipase activity measurement substrate, A method for measuring lipase activity, comprising adding a reducing agent to a substrate solution for measuring lipase activity.
  4. 1,2-o-ジラウリル-rac-グリセロ-3-グルタル酸-(6’-メチルレゾルフィン)-エステルをリパーゼ活性測定用基質として含むリパーゼ活性測定用基質溶液に還元剤を含有させることを特徴とするリパーゼ活性測定に対するアジ化物の影響の抑制方法。 A lipase activity measurement substrate solution containing 1,2-o-dilauryl-rac-glycero-3-glutaric acid- (6′-methylresorufin) -ester as a lipase activity measurement substrate contains a reducing agent. A method for suppressing the influence of azide on lipase activity measurement.
PCT/JP2017/033234 2016-09-20 2017-09-14 Lipase activity measuremnet method and reagent, and substrate solution for use in measurement of activity of lipase WO2018056162A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018541010A JP6947409B2 (en) 2016-09-20 2017-09-14 Lipase activity measurement method, measurement reagent, and substrate solution for lipase activity measurement

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016183143 2016-09-20
JP2016-183143 2016-09-20

Publications (1)

Publication Number Publication Date
WO2018056162A1 true WO2018056162A1 (en) 2018-03-29

Family

ID=61690852

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/033234 WO2018056162A1 (en) 2016-09-20 2017-09-14 Lipase activity measuremnet method and reagent, and substrate solution for use in measurement of activity of lipase

Country Status (2)

Country Link
JP (1) JP6947409B2 (en)
WO (1) WO2018056162A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110923292A (en) * 2019-11-15 2020-03-27 中山市创艺生化工程有限公司 Serum lipase detection kit and preparation method and application thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61254197A (en) * 1985-05-03 1986-11-11 ベ−リンガ−・マンハイム・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Visual measuring method and reagent for lipase substrate andlipase
JPH11318494A (en) * 1998-05-11 1999-11-24 Towns:Kk Lipase substrate solution for measuring enzymatic activity and reagent kit for measuring lipase activity
WO2016024549A1 (en) * 2014-08-12 2016-02-18 株式会社シノテスト Method for producing substrate solution for lipase activity assay, and method for simplifying production

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61254197A (en) * 1985-05-03 1986-11-11 ベ−リンガ−・マンハイム・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Visual measuring method and reagent for lipase substrate andlipase
JPH11318494A (en) * 1998-05-11 1999-11-24 Towns:Kk Lipase substrate solution for measuring enzymatic activity and reagent kit for measuring lipase activity
WO2016024549A1 (en) * 2014-08-12 2016-02-18 株式会社シノテスト Method for producing substrate solution for lipase activity assay, and method for simplifying production

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PANTEGHINI M. ET AL.: "Measurement of pancreatic lipase activity in serum by a kinetic colorimetric assay using a new chromogenic substrate", ANN. CLIN. BIOCHEM., vol. 38, no. 4, 2001, pages 365 - 370, XP008073430, DOI: doi:10.1258/0004563011900876 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110923292A (en) * 2019-11-15 2020-03-27 中山市创艺生化工程有限公司 Serum lipase detection kit and preparation method and application thereof
CN110923292B (en) * 2019-11-15 2024-03-29 中山市创艺生化工程有限公司 Serum lipase detection kit and preparation method and application thereof

Also Published As

Publication number Publication date
JPWO2018056162A1 (en) 2019-06-27
JP6947409B2 (en) 2021-10-13

Similar Documents

Publication Publication Date Title
EP1813680B1 (en) Compositions for lipase activity determination and method of determining activity
TWI379904B (en) A method for quantifying cholesterol of remnant-like particles lipoprotein, reagent and kit
WO2007052646A1 (en) Method for measuring triglyceride in low-density lipoprotein and kit for measurement
JP6947409B2 (en) Lipase activity measurement method, measurement reagent, and substrate solution for lipase activity measurement
JP2005287378A (en) Multiple quantitative determination of cholesterol in low density lipoprotein
JP6603961B2 (en) Method for producing substrate solution for measuring lipase activity and method for simplifying production
CA1338589C (en) Aqueous solution of triglyceride substrate for determination of lipase
ES2299704T3 (en) QUANTIFICATION PROCEDURE OF CHOLESTEROL IN HIGH DENSITY LIPOPROTEIN AND REAGENT COMPOSITIONS.
WO2016204276A1 (en) Substrate solution for lipase activity measurement, and method and measurement reagent for measurement of lipase activity in sample
JP6582369B2 (en) Method and reagent for stabilizing cholesterol esterase
JPH01304898A (en) Reagent for removing turbidity of biological specimen
JP2000287700A (en) Measurement of lipase activity value, cholesterol concentration and neutral lipid concentration
JP3073076B2 (en) Composition for measuring lipase activity and method for measuring lipase activity using the composition
CN105164273B (en) The assay method of mankind's pancreatic lipase activity
JPH09215500A (en) Substrate solution for lipase analysis and reagent solution kid for lipase analysis
JP3658691B2 (en) Methods for eliminating endogenous dehydrogenase interference in enzyme assays
CN107190050B (en) HRP activity determination and H2O2Concentration detection kit and application thereof
JP3138889B2 (en) Terminating agent for isocitrate dehydrogenase reaction and method for terminating
JP6582388B2 (en) Method for measuring high density lipoprotein cholesterol
JP3511211B2 (en) Amylase activity measurement reagent
JP2021073933A (en) Method for preventing deterioration after opening activity-measuring reagent of lactic acid dehydrogenase
JPH07115997A (en) Reagent for gpt determination
JPH03139278A (en) Stabilizing method for glucose oxidase enzyme pharmacy
JPH082317B2 (en) Method for measuring human pancreatic lipase activity
JPH082318B2 (en) Transparent triglyceride substrate solution for measuring colipase and method for measuring colipase activity using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17852939

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018541010

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17852939

Country of ref document: EP

Kind code of ref document: A1