WO2018056138A1 - 無線機器、無線機器の処理方法およびプログラム - Google Patents

無線機器、無線機器の処理方法およびプログラム Download PDF

Info

Publication number
WO2018056138A1
WO2018056138A1 PCT/JP2017/033039 JP2017033039W WO2018056138A1 WO 2018056138 A1 WO2018056138 A1 WO 2018056138A1 JP 2017033039 W JP2017033039 W JP 2017033039W WO 2018056138 A1 WO2018056138 A1 WO 2018056138A1
Authority
WO
WIPO (PCT)
Prior art keywords
control unit
clock
time
wireless
wireless device
Prior art date
Application number
PCT/JP2017/033039
Other languages
English (en)
French (fr)
Inventor
竹識 板垣
淳二 加藤
鈴木 英之
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to EP17852915.2A priority Critical patent/EP3518456A4/en
Priority to JP2018540997A priority patent/JP7056570B2/ja
Priority to US16/313,902 priority patent/US11064452B2/en
Priority to BR112019004977A priority patent/BR112019004977A2/pt
Publication of WO2018056138A1 publication Critical patent/WO2018056138A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • H04W56/0015Synchronization between nodes one node acting as a reference for the others
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements
    • H04J3/0635Clock or time synchronisation in a network
    • H04J3/0638Clock or time synchronisation among nodes; Internode synchronisation
    • H04J3/0658Clock or time synchronisation among packet nodes
    • H04J3/0661Clock or time synchronisation among packet nodes using timestamps
    • H04J3/0667Bidirectional timestamps, e.g. NTP or PTP for compensation of clock drift and for compensation of propagation delays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/43Processing of content or additional data, e.g. demultiplexing additional data from a digital video stream; Elementary client operations, e.g. monitoring of home network or synchronising decoder's clock; Client middleware
    • H04N21/4302Content synchronisation processes, e.g. decoder synchronisation
    • H04N21/4305Synchronising client clock from received content stream, e.g. locking decoder clock with encoder clock, extraction of the PCR packets
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/43Processing of content or additional data, e.g. demultiplexing additional data from a digital video stream; Elementary client operations, e.g. monitoring of home network or synchronising decoder's clock; Client middleware
    • H04N21/4302Content synchronisation processes, e.g. decoder synchronisation
    • H04N21/4307Synchronising the rendering of multiple content streams or additional data on devices, e.g. synchronisation of audio on a mobile phone with the video output on the TV screen
    • H04N21/43076Synchronising the rendering of multiple content streams or additional data on devices, e.g. synchronisation of audio on a mobile phone with the video output on the TV screen of the same content streams on multiple devices, e.g. when family members are watching the same movie on different devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/43Processing of content or additional data, e.g. demultiplexing additional data from a digital video stream; Elementary client operations, e.g. monitoring of home network or synchronising decoder's clock; Client middleware
    • H04N21/4302Content synchronisation processes, e.g. decoder synchronisation
    • H04N21/4307Synchronising the rendering of multiple content streams or additional data on devices, e.g. synchronisation of audio on a mobile phone with the video output on the TV screen
    • H04N21/43079Synchronising the rendering of multiple content streams or additional data on devices, e.g. synchronisation of audio on a mobile phone with the video output on the TV screen of additional data with content streams on multiple devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R27/00Public address systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R5/00Stereophonic arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2227/00Details of public address [PA] systems covered by H04R27/00 but not provided for in any of its subgroups
    • H04R2227/003Digital PA systems using, e.g. LAN or internet
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2420/00Details of connection covered by H04R, not provided for in its groups
    • H04R2420/07Applications of wireless loudspeakers or wireless microphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]

Definitions

  • This technology relates to wireless devices, wireless device processing methods and programs.
  • each device uses a clock (system clock) used by the main control unit and a clock (NIC clock: Network Interface Card) of the wireless control unit.
  • system clock used by the main control unit
  • NIC clock Network Interface Card
  • the following (A) and (B) are conceivable as methods for synchronizing system clocks between devices via a wireless control unit when they have clock counters of different granularity and bit width.
  • the format of the field that represents the time of the NIC clock in the FTM Action frame used for the FTM protocol may not be able to represent the entire system clock due to the difference in bit width and granularity.
  • the system clock is represented by a 64-bit signed integer in nano (n) sec units
  • the NIC clock is represented by a 48-bit signed integer in pico (p) sec units.
  • the system clock can express an arbitrary time up to about 300 billion years, whereas the NIC clock can express only a value for about 140 seconds. Therefore, although it is possible to detect the deviation of NIC clocks between devices by the FTM protocol and synchronize the counts, when trying to synchronize the system clocks between devices, they are lost due to the digit and granularity. Time information is generated.
  • Non-Patent Document 3 the system clock value to be written here corresponds to the timing of ToD (or ToA) which is the value of the NIC clock. There is a need. Otherwise, the original purpose, that is, the NIC clock cannot be associated with the system clock.
  • the radio control unit checks the value of the clock of the main control unit while checking the field. Implementation is difficult because it needs to be created.
  • the purpose of this technology is to synchronize the system clock, media clock, etc. between devices with high accuracy.
  • the concept of this technology is A main control unit; With a wireless control unit, The wireless control unit wirelessly transmits association information of a clock for managing the time of the main control unit and a clock for managing the time of the wireless control unit to another wireless device, The association information is in the wireless device including the difference information of the two clocks.
  • the wireless device includes a main control unit and a wireless control unit.
  • the wireless control unit wirelessly transmits, to another wireless device, association information between the clock that manages the time of the main control unit and the clock that manages the time of the wireless control unit.
  • This association information includes difference information of two clocks.
  • the association information may further include granularity ratio information of two clocks.
  • the radio control unit may transmit the association information as a part of a frame for measuring the time of the radio control unit with another radio device.
  • the wireless control unit may transmit the association information as a part of a frame for performing connection with another wireless device.
  • the association information of the clock (system clock) that manages the time of the main control unit and the clock that manages the time of the wireless control unit is wirelessly transmitted to another wireless device. Therefore, in other wireless devices, the clock for managing the time of the wireless control unit of the own device can be converted into the system clock of the own device based on the association information, and the system clock of the own device can be corrected. It becomes possible to synchronize the clock between devices with high accuracy.
  • an audio reproduction processing unit that wirelessly receives audio data from an external device, performs reproduction processing based on a clock that manages the time of the main control unit, and drives a speaker is further provided. May be.
  • the reproduction process in the audio reproduction processing unit can be performed with high accuracy in synchronization between devices.
  • an audio reproduction processing unit that wirelessly transmits audio data to an external device and that also performs reproduction processing based on a clock that manages the time of the main control unit and drives a speaker is further provided , May be.
  • the reproduction process in the audio reproduction processing unit can be performed with high accuracy in synchronization between devices.
  • a main control unit With a wireless control unit, The wireless control unit receives, from another wireless device, association information of a clock that manages the time of the main control unit in the other wireless device and a clock that manages the time of the wireless control unit,
  • the association information includes difference information of the two clocks,
  • a clock for managing the time of the main control unit of the own device by converting the clock for managing the time of the radio control unit of the own device into a clock for managing the time of the main control unit of the own device based on the association information
  • the wireless device further includes a correction unit that corrects.
  • the wireless device includes a main control unit and a wireless control unit.
  • the wireless control unit receives, from another wireless device, association information of a clock that manages the time of the main control unit in this other wireless device and a clock that manages the time of the wireless control unit.
  • the association information includes difference information between two clocks.
  • the association information may further include granularity ratio information of two clocks.
  • the clock for managing the time of the wireless control unit of the own device is converted into the clock for managing the time of the main control unit of the own device based on the association information by the correction unit, and the time of the main control unit of the own device is converted to the clock.
  • the clock to be managed is corrected.
  • the clock for managing the time of the main control unit of the own device based on the association information received from the other wireless device (the clock for managing the time of the radio control unit of the own device) System clock) to correct the system clock of the device itself. Therefore, the system clock can be synchronized with high accuracy between devices.
  • an audio reproduction processing unit that wirelessly receives audio data from an external device, performs reproduction processing based on a clock that manages the time of the main control unit, and drives a speaker is further provided. May be.
  • the reproduction process in the audio reproduction processing unit can be performed with high accuracy in synchronization between devices.
  • an audio reproduction processing unit that wirelessly transmits audio data to an external device and that also performs reproduction processing based on a clock that manages the time of the main control unit and drives a speaker is further provided , May be.
  • the reproduction process in the audio reproduction processing unit can be performed with high accuracy in synchronization between devices.
  • a media processing unit With a wireless control unit, The wireless control unit wirelessly transmits association information of a clock that manages the time of the media processing unit and a clock that manages the time of the wireless control unit to another wireless device, The association information is in the wireless device including the difference information of the two clocks.
  • the wireless device includes a media processing unit and a wireless control unit.
  • the wireless control unit wirelessly transmits, to another wireless device, association information between the clock that manages the time of the media processing unit and the clock that manages the time of the wireless control unit.
  • This association information includes difference information of two clocks.
  • the association information may further include granularity ratio information of two clocks.
  • the association information of the clock (media clock) that manages the time of the media processing unit and the clock that manages the time of the wireless control unit is wirelessly transmitted to another wireless device. Therefore, in other wireless devices, the clock that manages the time of the wireless control unit of the own device can be converted into the media clock of the own device based on the association information, and the media clock of the own device can be corrected. It becomes possible to synchronize the clock between devices with high accuracy.
  • the media processing unit wirelessly receives audio data from an external device, performs playback processing based on a clock that manages the time of the media processing unit, and drives the speaker. Also good. In this case, the reproduction processing of audio data in the media processing unit can be performed with high accuracy in synchronization between devices.
  • the media processing unit wirelessly transmits audio data to an external device, and also performs playback processing based on a clock that manages the time of the media processing unit to drive the speaker. It may be made like. In this case, the reproduction processing of audio data in the media processing unit can be performed with high accuracy in synchronization between devices.
  • a media processing unit With a wireless control unit, The wireless control unit receives, from another wireless device, association information of a clock that manages the time of the media processing unit in the other wireless device and a clock that manages the time of the wireless control unit,
  • the association information includes difference information of the two clocks,
  • a clock for managing the time of the media processing unit of the own device by converting the clock for managing the time of the radio control unit of the own device into a clock for managing the time of the media processing unit of the own device based on the association information
  • the wireless device further includes a correction unit that corrects.
  • the wireless device includes a media processing unit and a wireless control unit.
  • the wireless control unit receives from the other wireless device association information of a clock that manages the time of the media processing unit in this other wireless device and a clock that manages the time of the wireless control unit.
  • the association information includes difference information between two clocks.
  • the association information may further include granularity ratio information of two clocks.
  • the correction unit converts the clock for managing the time of the wireless control unit of the own device into a clock for managing the time of the media processing unit of the own device, and corrects the media clock of the own device. Is done.
  • the clock that manages the time of the wireless control unit of the own device is based on the clock that manages the time of the media processing unit of the own device based on the association information received from other wireless devices ( Media clock) to correct the media clock of the device itself. For this reason, it is possible to synchronize the media clock with high accuracy between devices.
  • the media processing unit wirelessly receives audio data from an external device, performs playback processing based on a clock that manages the time of the media processing unit, and drives the speaker. Also good. In this case, the reproduction processing of audio data in the media processing unit can be performed with high accuracy in synchronization between devices.
  • the media processing unit wirelessly transmits audio data to an external device, and also performs playback processing based on a clock that manages the time of the media processing unit to drive the speaker. It may be made like. In this case, the reproduction processing of audio data in the media processing unit can be performed with high accuracy in synchronization between devices.
  • FIG. 12 is a block diagram illustrating another configuration example of a wireless system.
  • FIG. 12 is a block diagram illustrating another configuration example of a wireless system.
  • Embodiment> “Description of Reference Standards” The standard to be referred will be described.
  • the IEEE 1588 standard “1588-2008-IEEE Standard for a Precision Clock Synchronization Protocol for Networked Measurement and Control Systems” is defined as a correction method for performing high-accuracy time synchronization between devices.
  • the protocol of this standard is also called PTP (Precision Time Protocol).
  • FIG. 1 shows an outline of PTP operation. Although detailed explanation is omitted, using the time in FIG. 1, the time lag between the master and the slave is expressed by the following formula (1).
  • the PTP method is the 802.1AS standard "802.1AS-2011--IEEE-Standard-for-Local-and-Metropolitan-Area-Networks--Timing-and-Synchronization-for-Time-Sensitive" Applications in Bridged Local Area Networks ”is defined.
  • the master clock selection algorithm and the clock relay method that do not depend on the lower-layer communication method, and some lower-layer communication methods, the time lag can be further improved.
  • Each interface is defined to provide a dedicated measurement mechanism for calculation.
  • An FTM based on the concept of PTP as a protocol for performing high-precision synchronization (time shift detection) between wireless devices when an IEEE 802.11 wireless LAN is used as a lower-layer communication method combined with the 802.1AS standard.
  • (Fine Timing Measurement) protocol is defined in the P802.11 REVmc-D8.0 standard.
  • FIG. 2 shows an outline of the operation of the FTM protocol.
  • the time lag between the master (Responder in the figure) and the slave (Slave, the initiator in FIG. 2) can be similarly obtained by replacing t1 to t4 with t1_1 to t1_4 in the above equation (1).
  • FIG. 3 shows a format of an FTM action frame which is a measurement frame for measuring the time of the wireless control unit in FIG. 2 with other wireless devices.
  • the portion corresponding to the payload of the FTM action frame is after the “Dialog Token” field.
  • the “Dialog Token” field and the “Follow Up Dialog Token” field are indexes for associating FTM action frames transmitted a plurality of times.
  • the “Follow Up Dialog Token” field indicates to which FTM action frame the previously transmitted “ToD” field and “ToA” field correspond to.
  • time information (time stamp) corresponding to t1_1 and t4_1 in FIG. 2 is described as a value of 48 bits in units of picoseconds.
  • time stamp time stamp
  • ToD Error information indicating the maximum error between the time stamp of “ToD” and the time stamp of “ToA” is entered.
  • FIG. 3 shows a format when the FTM protocol is used alone, but an extended FTM action frame is used when the 802.1AS standard and the 802.11 FTM protocol are used in combination.
  • FIG. 4 shows the format. There is a newly added vendor specific element (Vendor Specific Element). The purpose of this element is to carry information necessary for relay transmission of the time of another Grand Master clock.
  • Vendor Specific Element The purpose of this element is to carry information necessary for relay transmission of the time of another Grand Master clock.
  • FIG. 5 shows a configuration example of the wireless system 10 as an embodiment.
  • the wireless system 10 includes a wireless device 100A and a wireless device 100B.
  • the wireless device 100A is a clock master (Clock Master) wireless device A and the wireless device 100B is a clock slave (Clock Slave) wireless device B.
  • the wireless devices 100A and 100B have a main control unit 101 and a wireless control unit 102, respectively.
  • the main control unit 101 corresponds to a host processor of the device, and executes application programs, controls user interface input / output signals, and mainly performs communication protocol processing at the network layer or higher. Examples of input / output of the user interface include timing control of audio and video output in addition to input of operation signals.
  • the radio control unit 102 mainly adds and analyzes data link layer headers for higher layer packets generated by the main control unit 101, modulation / demodulation, error correction coding and decoding, amplification, and the like in communication layers below the data link layer. It is a functional block responsible for all functions of the wireless protocol. In general, the wireless control unit 102 is a device independent of the main control unit 101, and is connected to the main control unit 101 via some I / O port.
  • the main control unit 101 has a system clock.
  • the system clock is a clock for managing the time of the main control unit 101 and is managed and referred to by the main control unit 101.
  • the wireless control unit 102 has a NIC clock.
  • the NIC clock is a clock for managing the time of the wireless control unit 102 and is managed and referred to by the wireless control unit 102.
  • the NIC clock Is used.
  • FIG. 5 an example in which there is one clock slave radio device is shown, but an example in which there are two or more clock slave radio devices is also conceivable.
  • the system clocks of the two wireless devices 100A and 100B constituting the communication system 10 are synchronized according to the following procedure. It is assumed that the connection operation between the wireless device 100A and the wireless device 100B and the determination of the clock roll (ClockCRole) indicating the clock master or the clock slave have been completed.
  • FIG. 6 shows a synchronization procedure of the system clocks of the two wireless devices 100A and 100B.
  • description will be divided into three processes (a) to (c). Note that these processes may be performed in parallel.
  • the main control unit 101 reads the NIC clock count on the wireless control unit 102 side. (2) Next, the main control unit 101 reads the count of the system clock. (3) Next, the main control unit 101 calculates the system clock-NIC clock difference after aligning the granularity of the NIC clock and the system clock.
  • the main control unit 101 performs a process for improving accuracy on the difference value. For example, the delay of the interface between the main control unit 101 and the wireless control unit 102 and the processing delay are estimated by prior measurement, and the difference value excluding this influence is set as the time to be corrected. Note that the processing for improving the accuracy is performed as necessary and may not be performed.
  • the main control unit 101 corrects the NIC clock count of the wireless control unit 102 based on the calculated system clock-NIC clock difference. (6) Finally, the main control unit 101 cannot express all system clock information in the NIC clock, and therefore supplemental information for generating a system clock value from the NIC clock (hereinafter referred to as “conversion parameter”). Is stored in the wireless control unit 102. This conversion parameter constitutes correspondence information between the system clock and the NIC clock.
  • the conversion parameters are information on the granularity ratio and information on the count difference between the system clock and the NIC clock.
  • the granularity ratio is determined by the format of the clock counter of the main control unit 101 and the clock counter of the wireless control unit 102, and is a value determined by a combination of OS (Operating System) and devices. In order to obtain this value, the name or version of the OS may be used.
  • the count difference is a target difference value to compensate for the lack of digits on the NIC clock counter side, which cannot be transmitted to the counterpart device in the FTM action frame.
  • the difference value is D
  • the time of the system clock to be written is Tsys
  • the maximum time value that can be represented by the NIC clock is TNICMAX
  • D is expressed by the following equation (2).
  • Tsys and TNICMAX are not the raw values of the counters, but are absolute time values in which the differences in granularity are aligned (the epoch time is 0).
  • mod refers to a process for obtaining the remainder of division.
  • the NIC clock reflects a value corresponding to Tsys mod TNICMAX.
  • the way to reflect is overwriting the clock count value directly, dividing it several times while applying some kind of filter, or gradually adjusting it by adjusting how the clock count advances, Etc.
  • FIG. 8 shows a processing flow. This processing basically conforms to the FTM protocol of FIG.
  • This processing basically conforms to the FTM protocol of FIG. 2, but differs in that the format with the extension field shown in FIG. 9 is adopted as the format of the FTM action frame.
  • the wireless control unit 102 of the wireless device A accesses the conversion parameter and stores the content in the format shown in FIG.
  • a value other than “0” is set in the “Type” field. In the example of FIG. 9, “1” is entered.
  • clock granularity ratio information on the above-mentioned granularity ratio is stored.
  • the numerical value of the exponent part when the particle size ratio is expressed in the form of a power with 2 or 10 as the base is stored.
  • Information indicating the count difference between the system clock and the NIC clock is stored in the “clock difference” field.
  • a difference value count to be added after the ratio of the granularity of the system clock and the NIC clock is aligned on the system clock side is stored.
  • the FTM protocol is executed by adopting the format with the extension field shown in FIG. 9 as the format of the FTM action frame.
  • the wireless control unit 102 of the wireless device B saves the conversion parameter described in the extension field and updates it every time it is received.
  • the method for calculating the offset between the NIC clocks is the same as that of the FTM protocol (in FIG. 8, there is access to the NIC clock to obtain the time from t1_1 to t1_4, but it is omitted in the figure). ing). After the offset calculation, the wireless control unit 102 of the wireless device B corrects the NIC clock count according to the calculated offset.
  • FIG. 10 shows a processing flow. Basically, an equivalent operation in the opposite direction to the above-described “(a) System clock ⁇ NIC clock synchronization processing” is performed.
  • the main control unit 101 reads the count of the system clock. (2) Next, the main control unit 101 reads the conversion parameters obtained from the wireless device A side and held on the wireless control unit 102 side in the above-described NIC clock synchronization processing of (b). (3) Next, the main control unit 101 reads the count of the NIC clock.
  • the main control unit 101 applies the read conversion parameter to the read NIC clock count, and calculates the count of the system clock to be reflected.
  • the system clock difference from the clock master device is calculated from this and the count value of the system clock read by the own device.
  • the main control unit 101 performs processing for improving the accuracy of the system clock difference. For example, the delay of the interface between the main control unit and the radio control unit and the processing delay are estimated by a prior measurement, and the difference value excluding this influence in advance is set as the time to be corrected. Note that the processing for improving the accuracy is performed as necessary and may not be performed.
  • the main control unit 101 corrects the count of the system clock using the calculated system clock difference.
  • the system clocks of the main control units 101 of the wireless device A and the wireless device B are synchronized with high accuracy.
  • the process of reflecting the system clock time on the NIC clock on the wireless device 100A side, the process of synchronizing the NIC clocks of the wireless device 100A and the wireless device 100B, and the wireless Processing for reflecting the time of the NIC clock in the system clock is performed on the device 100B side. Therefore, the system clock can be synchronized with high accuracy between devices.
  • the synchronization protocol in the wireless layer is the FTM (Fine Timing Measurement) protocol.
  • the synchronization protocol in the wireless layer is not limited to the FTM protocol, and may be a TM (Timing Measurement) protocol.
  • the FTM action frame is equivalent to only the TM (Timing Management) action frame.
  • FIG. 11 shows the format of the TM action frame.
  • the present technology can be applied in the same manner as the FTM action frame, except that the IDs of some fields are different.
  • the place for storing the conversion parameter is on the wireless control unit 102 side.
  • the location for storing the conversion parameters is not necessarily the wireless control unit 102 but may be on the main control unit 101 side.
  • the “VendorSpecific” element in the process (b) of the synchronization procedure may be included only when the conversion parameter changes.
  • the wireless device 100B as the slave device applies the conversion parameter of the “VendorSpecific” element received most recently.
  • the conversion parameter placed on the FTM action frame transmitted from the wireless device 100A to the wireless device 100B includes the granularity ratio information and the information on the count difference between the system clock and the NIC clock. .
  • transmission of information regarding the granularity ratio may be omitted, and only information on the count difference may be transmitted.
  • the granularity ratio basically does not change, it may be transmitted only once separately using a management frame at the time of association (Association) that is a frame for connection with other wireless devices.
  • the wireless control unit 102 directly updates the clock counter for “NIC clock correction” in the process (b) of the synchronization procedure described above. However, only the offset value is retained. Conversion and conversion may be performed by the main control unit 101.
  • the system clock of the wireless device 100A which is the master device, is used as the master clock for all the systems.
  • the NIC clock of the wireless device 100A is used as the master clock.
  • the wireless device 100A only the initial value of the conversion parameter of the wireless device 100A is given once at the beginning, and the wireless device 100A also performs the process (c) instead of the process (a) of the synchronization procedure described above. It is good.
  • the format of the 802.1AS-compliant extended FTM action frame and the extended field of the present technology may be used together.
  • the “VendorSpecific” elements are arranged in order.
  • the clock that should be synchronized between the two wireless devices via the NIC clock is the system clock.
  • the clock that manages the time of the media processing unit such as audio or video may be used. Good.
  • the synchronization procedure is the same as that in the above-described embodiment only by replacing the system clock of the main control unit 101 with the clock of the media processing unit.
  • FIG. 12 shows a configuration example of the wireless system 20 in that case.
  • the wireless system 20 includes a wireless device 200A and a wireless device 200B.
  • Each of the wireless devices 200A and 200B has a media processing unit, here, an audio processing unit 201 and a wireless control unit 202.
  • the clock of the media processing unit here, the audio clock
  • the audio clock can be synchronized between devices with high accuracy.
  • FIG. 13 shows a configuration example of a wireless system (speaker system) 30 that synchronizes the system clock with high accuracy between devices as described above.
  • a wireless system signal generator system
  • FIG. 13 portions corresponding to those in FIG. 5 are denoted by the same reference numerals, and detailed description thereof is omitted as appropriate.
  • the wireless system 30 includes a speaker device 300A that forms a wireless device (master device), a speaker device 300B that forms a wireless device (slave device), and a smartphone 300C that is a supply source of audio data. .
  • the speaker devices 300A and 300B have a main control unit 101, a radio control unit 102, an audio reproduction processing unit 303, and a speaker 304, respectively.
  • the main control unit 101 and the radio control unit 102 are configured in the same manner as the main control unit 101 and the radio control unit 102 in the radio system 10 in FIG. 5, and the processing of the synchronization procedures (a) to (c) is performed.
  • the system clock of the main control unit 101 in the devices 300A and 300B is synchronized with high accuracy.
  • the audio reproduction processing unit 303 of the speaker device 300A wirelessly receives the stereo left audio data AL from the smartphone 300C, performs reproduction processing based on the system clock of the main control unit 101, and drives the speaker 304.
  • the left audio is output.
  • the audio reproduction processing unit 303 of the speaker device 300B wirelessly receives stereo right audio data AR from the smartphone 300C, performs reproduction processing based on the system clock of the main control unit 101, and drives the speaker 304.
  • the right audio is output from 304.
  • all the audio data AL and AR are once sent from the smartphone 300C to the speaker device 300A as the master device, and the slave device 300B is the audio data AR wirelessly transmitted from the master device 300A. Data may be received wirelessly.
  • the playback processing in the master device and slave device is the same.
  • the system clock of the main control unit 101 of the speaker devices 300A and 300B is synchronized with high accuracy by the processing of the synchronization procedures (a) to (c). Then, the audio reproduction processing unit 303 of each of the speaker devices 300A and 300B performs reproduction processing based on the system clock of the main control unit 101. Therefore, the left audio and the right audio output from the speakers 304 of the speaker devices 300A and 300B are synchronized with high accuracy, and a good stereo reproduction sound can be obtained.
  • wireless system 30 in FIG. 13 shows an example in which stereo reproduction is performed
  • a wireless system that performs multi-channel reproduction can be similarly configured.
  • the wireless system 30 in FIG. 13 is an example of audio reproduction, but it goes without saying that the same configuration can be applied to video reproduction to be displayed in synchronization.
  • a wireless system that involves wirelessly transmitting or receiving audio data may be configured for a device having the configuration of the wireless device in the wireless system 20 of FIG. Also in that case, the same transmission / reception processing and reproduction processing as those of the wireless system 30 in FIG. 13 can be applied except that the clock used for reproduction is not the system clock but the audio clock.
  • this technique can also take the following structures.
  • a main control unit With a wireless control unit, The wireless control unit wirelessly transmits association information of a clock for managing the time of the main control unit and a clock for managing the time of the wireless control unit to another wireless device,
  • the association information includes a wireless device including difference information of the two clocks.
  • the radio control unit The wireless device according to (1) or (2), wherein the association information is transmitted as a part of a frame for measuring the time of the wireless control unit with the other wireless device.
  • the radio control unit The wireless device according to (1) or (2), wherein the association information is transmitted as a part of a frame for performing connection with the other wireless device.
  • An audio reproduction processing unit that wirelessly receives audio data from an external device, performs reproduction processing based on a clock that manages the time of the main control unit, and drives a speaker, and further includes (1) to (4) A wireless device according to any one of the above.
  • An audio reproduction processing unit that wirelessly transmits audio data to an external device and that also performs reproduction processing based on a clock that manages the time of the main control unit to drive a speaker is provided (1) To (4).
  • a processing method of a wireless device including a main control unit and a wireless control unit has a step of wirelessly transmitting, to another wireless device, association information of a clock that manages the time of the main control unit and a clock that manages the time of the wireless control unit, The wireless device processing method, wherein the association information includes difference information of the two clocks.
  • the wireless control unit executes a processing method including a step of wirelessly transmitting, to another wireless device, association information of a clock that manages the time of the main control unit and a clock that manages the time of the wireless control unit, The association information includes the difference information of the two clocks.
  • the wireless control unit receives, from another wireless device, association information of a clock that manages the time of the main control unit in the other wireless device and a clock that manages the time of the wireless control unit,
  • the association information includes difference information of the two clocks,
  • a wireless device further comprising a correction unit for correcting (10)
  • the apparatus further includes an audio playback processing unit that wirelessly receives audio data from an external device, performs playback processing based on a clock that manages the time of the main control unit, and drives a speaker. (9) or (10) The wireless device described in 1. (12) An audio reproduction processing unit that wirelessly transmits audio data to an external device and that also performs reproduction processing based on a clock that manages the time of the main control unit to drive a speaker is provided (9) Or the radio
  • a processing method of a wireless device including a main control unit and a wireless control unit, A reception step in which the wireless control unit receives association information between a clock for managing the time of the main control unit in the other wireless device and a clock for managing the time of the wireless control unit from the other wireless device;
  • the correction unit converts the clock for managing the time of the wireless control unit of the own device into a clock for managing the time of the main control unit of the own device based on the association information, and the time of the main control unit of the own device
  • a computer that controls the operation of a wireless device including a main control unit and a wireless control unit; A reception step in which the wireless control unit receives association information between a clock for managing the time of the main control unit in the other wireless device and a clock for managing the time of the wireless control unit from the other wireless device;
  • the correction unit converts the clock for managing the time of the wireless control unit of the own device into a clock for managing the time of the main control unit of the own device based on the association information, and the time of the main control unit of the own device
  • a program having a correction step for correcting a clock for managing the program is executed, wherein the association information includes difference information of the two clocks.
  • a media processing unit With a wireless control unit, The wireless control unit wirelessly transmits association information of a clock that manages the time of the media processing unit and a clock that manages the time of the wireless control unit to another wireless device, The association information includes a wireless device including difference information of the two clocks.
  • the media processing unit The wireless device according to (15), wherein audio data is wirelessly received from an external device, and reproduction processing is performed based on a clock for managing the time of the media processing unit to drive a speaker.
  • the media processing unit The wireless device according to (15), wherein the wireless device wirelessly transmits audio data to an external device, and also performs playback processing based on a clock that manages the time of the media processing unit to drive a speaker.
  • the wireless control unit receives, from another wireless device, association information of a clock that manages the time of the media processing unit in the other wireless device and a clock that manages the time of the wireless control unit,
  • the association information includes difference information of the two clocks,
  • a wireless device further comprising a correction unit for correcting
  • the media processing unit The wireless device according to (18), wherein the wireless device receives audio data from an external device and performs a reproduction process based on a clock for managing the time of the media processing unit to drive a speaker.
  • the media processing unit The wireless device according to (18), wherein the wireless device wirelessly transmits audio data to an external device, and also performs reproduction processing based on a clock that manages the time of the media processing unit to drive a speaker.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)
  • Electric Clocks (AREA)
  • Two-Way Televisions, Distribution Of Moving Picture Or The Like (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

システムクロック、メディアクロックなどを機器間で高精度に同期させる。 無線機器は、メイン制御部と、無線制御部を備える。無線制御部により、メイン制御部の時刻を管理するクロックと無線制御部の時刻を管理するクロックの対応付け情報が他の無線機器に無線送信される。この対応付け情報には、2つのクロックの差分情報や粒度比情報などが含まれる。例えば、無線制御部は、対応付け情報を、無線制御部の時刻を他の無線機器との間で計測するためのフレームの一部として、あるいは他の無線機器との接続を行うためのフレームの一部として送信する。

Description

無線機器、無線機器の処理方法およびプログラム
 本技術は、無線機器、無線機器の処理方法およびプログラムに関する。
 無線LANによって接続された2つの無線機器間において時刻の同期を行う際に、それぞれの機器が、メイン制御部が使用するクロック(システムクロック)と、無線制御部のクロック(NICクロック:Network Interface Cardクロック)という異なる粒度とビット幅のクロックカウンタを持っている場合に、無線制御部を介してシステムクロックを機器間で同期させる方法として、例えば、以下の(A)、(B)が考えられる。
 (A)IP層レベルのPTPを使用する方法
 IEEE1588 PTP(Precision Time Protocol)に準拠したフォーマットのフレーム、即ちSYNCフレームやFOLLOW_UPフレーム、PDELAY_Reqフレーム、PDELAY_Respフレームを使用して、無線メディアを通してそのフレーム交換を行い、システムクロックを同期する(非特許文献1参照)。この場合、フォーマット的にはシステムクロック値を余すところなく伝えられるが、上位層でタイムスタンプを付与することを想定したフォーマットになるため、同期精度が悪くなる欠点がある。
 (B)無線層レベルのクロック同期を利用する方法
 P802.11REVmc-D8.0規格にて規定されているFTM(Fine Timing Measurement)プロトコルを使用し、まず機器間のNICクロックのずれを求めて同期させる(非特許文献2参照)。その後、NIC(Network Interface Card)クロックの時刻値をシステムクロックに反映させる。
 しかし、FTMプロトコルに使用されるFTM ActionフレームにおいてNICクロックの時刻を表現するフィールドのフォーマットは、ビット幅ならびに粒度の違いから、システムクロック全体を表現できないことがある。例えば、システムクロックがナノ(n)sec単位での64ビット符号付整数で表現され、NICクロックがピコ(p)sec単位での48ビット符号付整数で表現されるとする。
 この場合、システムクロックはおよそ西暦3000億年までの任意の時刻を表現ができるのに対し、NICクロックは約140秒間の間の値しか表現することができない。そのため、FTMプロトコルにより機器間のNICクロック同士のずれを検出してカウントを同期させることは可能であるものの、機器間のシステムクロック同士を同期させようとした場合、桁と粒度により欠落してしまう時刻情報が発生する。
 なお、FTMフレームフォーマットには、拡張フォーマットを用いることで、「preciseOriginTimestamp」という、システムクロック相当のフォーマットの時刻(64ビットでナノsec単位の値)を書き込むことができるフィールドを追加することができる(非特許文献3参照)。このフィールドにシステムクロックの値を書くことで欠落情報を補うこともできるが、ここに書かれるべきシステムクロックの値は、NICクロックの値であるToD(またはToA)のタイミングに対応した値である必要がある。そうでないと本来の目的である、NICクロックとシステムクロックの対応付けができないためである。しかし、ToD(またはToA)の時刻の源泉となるNICクロックは無線制御部側にあり、システムクロックはメイン制御部にあるため、無線制御部がメイン制御部のクロックの値を把握しながらフィールドを作成する必要があるため、実装が困難である。
1588-2008 - IEEE Standard for a Precision Clock Synchronization Protocol for Networked Measurement and Control Systems IEEE P802.11-REVmcTM/D8.0, Aug 2016 Draft Standard for Information technology?Telecommunications and information exchange between systems Local and metropolitan area networks?Specific requirements Part 11: Wireless LAN Medium Access Control(MAC) and Physical Layer (PHY) Specifications Timing and Synchronization for Time-Sensitive Applications in Bridged Local Area Networks IEEE Std 802.1AS?-2011, IEEE Standard for Local and metropolitan area networks?Timing and Synchronization for Time-Sensitive Applications in Bridged Local Area Networks
 本技術の目的は、システムクロック、メディアクロックなどを機器間で高精度に同期させることにある。
 本技術の概念は、
 メイン制御部と、
 無線制御部を備え、
 上記無線制御部は、上記メイン制御部の時刻を管理するクロックと上記無線制御部の時刻を管理するクロックの対応付け情報を他の無線機器に無線送信し、
 上記対応付け情報には、上記2つのクロックの差分情報が含まれる
 無線機器にある。
 本技術において、無線機器は、メイン制御部と、無線制御部を備えるものである。無線制御部により、メイン制御部の時刻を管理するクロックと無線制御部の時刻を管理するクロックの対応付け情報が他の無線機器に無線送信される。この対応付け情報には、2つのクロックの差分情報が含まれる。
 例えば、対応付け情報には、2つのクロックの粒度比情報がさらに含まれる、ようにされてもよい。また、例えば、無線制御部は、対応付け情報を、無線制御部の時刻を他の無線機器との間で計測するためのフレームの一部として送信する、ようにされてよい。また、例えば、無線制御部は、対応付け情報を、他の無線機器との接続を行うためのフレームの一部として送信する、ようにされてもよい。
 このように本技術においては、メイン制御部の時刻を管理するクロック(システムクロック)と無線制御部の時刻を管理するクロックの対応付け情報を他の無線機器に無線送信するものである。そのため、他の無線機器では、自機器の無線制御部の時刻を管理するクロックを、対応付け情報に基づいて、自機器のシステムクロックに変換して、当該自機器のシステムクロックを補正でき、システムクロックを機器間で高精度に同期させることが可能となる。
 なお、本技術において、例えば、外部機器からオーディオデータを無線受信し、メイン制御部の時刻を管理するクロックに基づいて再生処理を行ってスピーカを駆動するオーディオ再生処理部をさらに備える、ようにされてもよい。この場合、オーディオ再生処理部における再生処理を機器間で高精度に同期させて行わせることが可能となる。
 また、本技術において、例えば、外部機器に対してオーディオデータを無線送信し、自身もメイン制御部の時刻を管理するクロックに基づいて再生処理を行ってスピーカを駆動するオーディオ再生処理部をさらに備える、ようにされてもよい。この場合、オーディオ再生処理部における再生処理を機器間で高精度に同期させて行わせることが可能となる。
 また、本技術の他の概念は、
 メイン制御部と、
 無線制御部を備え、
 上記無線制御部は、他の無線機器から、該他の無線機器におけるメイン制御部の時刻を管理するクロックと無線制御部の時刻を管理するクロックの対応付け情報を受信し、
 上記対応付け情報には、上記2つのクロックの差分情報が含まれており、
 自機器の無線制御部の時刻を管理するクロックを上記対応付け情報に基づいて自機器のメイン制御部の時刻を管理するクロックに変換して、該自機器のメイン制御部の時刻を管理するクロックを補正する補正部をさらに備える
 無線機器にある。
 本技術において、無線機器は、メイン制御部と、無線制御部を備えるものである。無線制御部により、他の無線機器から、この他の無線機器におけるメイン制御部の時刻を管理するクロックと無線制御部の時刻を管理するクロックの対応付け情報が受信される。対応付け情報には、2つのクロックの差分情報が含まれている。例えば、対応付け情報には、2つのクロックの粒度比情報がさらに含まれる、ようにされてもよい。
 補正部により、自機器の無線制御部の時刻を管理するクロックが対応付け情報に基づいて自機器のメイン制御部の時刻を管理するクロックに変換されて、該自機器のメイン制御部の時刻を管理するクロックが補正される。
 このように本技術においては、自機器の無線制御部の時刻を管理するクロックを、他の無線機器から受信される対応付け情報に基づいて、自機器のメイン制御部の時刻を管理するクロック(システムクロック)に変換して、該自機器のシステムクロックを補正するものである。そのため、システムクロックを機器間で高精度に同期させることが可能となる。
 なお、本技術において、例えば、外部機器からオーディオデータを無線受信し、メイン制御部の時刻を管理するクロックに基づいて再生処理を行ってスピーカを駆動するオーディオ再生処理部をさらに備える、ようにされてもよい。この場合、オーディオ再生処理部における再生処理を機器間で高精度に同期させて行わせることが可能となる。
 また、本技術において、例えば、外部機器に対してオーディオデータを無線送信し、自身もメイン制御部の時刻を管理するクロックに基づいて再生処理を行ってスピーカを駆動するオーディオ再生処理部をさらに備える、ようにされてもよい。この場合、オーディオ再生処理部における再生処理を機器間で高精度に同期させて行わせることが可能となる。
 また、本技術の他の概念は、
 メディア処理部と、
 無線制御部を備え、
 上記無線制御部は、上記メディア処理部の時刻を管理するクロックと上記無線制御部の時刻を管理するクロックの対応付け情報を他の無線機器に無線送信し、
 上記対応付け情報には、上記2つのクロックの差分情報が含まれる
 無線機器にある。
 本技術において、無線機器は、メディア処理部と、無線制御部を備えるものである。無線制御部により、メディア処理部の時刻を管理するクロックと無線制御部の時刻を管理するクロックの対応付け情報が他の無線機器に無線送信される。この対応付け情報には、2つのクロックの差分情報が含まれる。例えば、対応付け情報には、2つのクロックの粒度比情報がさらに含まれる、ようにされてもよい。
 このように本技術においては、メディア処理部の時刻を管理するクロック(メディアクロック)と無線制御部の時刻を管理するクロックの対応付け情報を他の無線機器に無線送信するものである。そのため、他の無線機器では、自機器の無線制御部の時刻を管理するクロックを、対応付け情報に基づいて、自機器のメディアクロックに変換して、当該自機器のメディアクロックを補正でき、メディアクロックを機器間で高精度に同期させることが可能となる。
 なお、本技術において、例えば、メディア処理部は、外部機器からオーディオデータを無線受信し、このメディア処理部の時刻を管理するクロックに基づいて再生処理を行ってスピーカを駆動する、ようにされてもよい。この場合、メディア処理部におけるオーディオデータの再生処理を機器間で高精度に同期させて行わせることが可能となる。
 また、本技術において、例えば、メディア処理部は、外部機器に対してオーディオデータを無線送信し、自身もこのメディア処理部の時刻を管理するクロックに基づいて再生処理を行ってスピーカを駆動する、ようにされてもよい。この場合、メディア処理部におけるオーディオデータの再生処理を機器間で高精度に同期させて行わせることが可能となる。
 また、本技術の他の概念は、
 メディア処理部と、
 無線制御部を備え、
 上記無線制御部は、他の無線機器から、該他の無線機器におけるメディア処理部の時刻を管理するクロックと無線制御部の時刻を管理するクロックの対応付け情報を受信し、
 上記対応付け情報には、上記2つのクロックの差分情報が含まれており、
 自機器の無線制御部の時刻を管理するクロックを上記対応付け情報に基づいて自機器のメディア処理部の時刻を管理するクロックに変換して、該自機器のメディア処理部の時刻を管理するクロックを補正する補正部をさらに備える
 無線機器にある。
 本技術において、無線機器は、メディア処理部と、無線制御部を備えるものである。無線制御部により、他の無線機器から、この他の無線機器におけるメディア処理部の時刻を管理するクロックと無線制御部の時刻を管理するクロックの対応付け情報が受信される。対応付け情報には、2つのクロックの差分情報が含まれている。例えば、対応付け情報には、2つのクロックの粒度比情報がさらに含まれる、ようにされてもよい。補正部により、自機器の無線制御部の時刻を管理するクロックが、対応付け情報に基づいて、自機器のメディア処理部の時刻を管理するクロックに変換されて、該自機器のメディアクロックが補正される。
 このように本技術においては、自機器の無線制御部の時刻を管理するクロックを、他の無線機器から受信される対応付け情報に基づいて、自機器のメディア処理部の時刻を管理するクロック(メディアクロック)に変換して、該自機器のメディアクロックを補正するものである。そのため、メディアクロックを機器間で高精度に同期させることが可能となる。
 なお、本技術において、例えば、メディア処理部は、外部機器からオーディオデータを無線受信し、このメディア処理部の時刻を管理するクロックに基づいて再生処理を行ってスピーカを駆動する、ようにされてもよい。この場合、メディア処理部におけるオーディオデータの再生処理を機器間で高精度に同期させて行わせることが可能となる。
 また、本技術において、例えば、メディア処理部は、外部機器に対してオーディオデータを無線送信し、自身もこのメディア処理部の時刻を管理するクロックに基づいて再生処理を行ってスピーカを駆動する、ようにされてもよい。この場合、メディア処理部におけるオーディオデータの再生処理を機器間で高精度に同期させて行わせることが可能となる。
 本技術によれば、システムクロック、メディアクロックなどを機器間で高精度に同期させることが可能となる。なお、ここに記載された効果は必ずしも限定されるものではなく、本開示中に記載されたいずれかの効果であってもよい。
PTPの動作概要を示す図である。 FTMプロトコルの動作概要を示す図である。 FTMアクションフレームのフォーマットを示す図である。 802.1AS規格と802.11 FTMプロトコルを組み合わせて使用する場合の拡張されたFTMアクションフレームのフォーマットを示す図である。 実施の形態としての無線システムの構成例を示すブロック図である。 2つの無線機器のシステムクロックの同期手順を示す図である。 マスター機器である無線機器A側においてシステムクロックの時刻をNICクロックに反映させる処理のフローを示す図である。 マスター機器である無線機器Aとスレーブ機器である無線機器BのNICクロックを同期させる処理のフローを示す図である。 実施の形態で採用する拡張されたFTMアクションフレームのフォーマットの一例を示す図である。 スレーブ機器である無線機器B側においてNICクロックの時刻をシステムクロックに反映させる処理のフローを示す図である。 本技術をTMプロトコルに適用する場合におけるTMアクションフレームのフォーマットの一例を示す図である。 無線システムの他の構成例を示すブロック図である。 無線システムの他の構成例を示すブロック図である。
 以下、発明を実施するための形態(以下、「実施の形態」とする)について説明する。なお、説明は以下の順序で行う。
 1.実施の形態
 2.変形例
 <1.実施の形態>
 「参照規格の説明」
 参照する規格を説明する。機器間で高精度な時刻同期を行う補正手法として、IEEE1588規格「1588-2008 - IEEE Standard for a Precision Clock Synchronization Protocol for Networked Measurement and Control Systems」が規定されている。この規格のプロトコルはPTP(Precision Time Protocol)とも呼ばれる。
 図1は、PTPの動作概要を示している。詳細説明は省略するが、図1中の時刻を用いると、マスター(Master)-スレーブ(Slave)間の時刻のずれは、以下の数式(1)で表される。
Figure JPOXMLDOC01-appb-M000001
 また、PTPの手法を、LAN(Local Area Network)用途に機能を規定した上位層規格として、802.1AS規格「802.1AS-2011 - IEEE Standard for Local and Metropolitan Area Networks - Timing and Synchronization for Time-Sensitive Applications in Bridged Local Area Networks」が定められている。この規格では、IEEE1588規格を参照しつつ、下位層の通信方式に依存しないマスタークロック選択のアルゴリズムならびにクロック中継の方法と、いくつかの下位層通信方式に対しては、さらに高精度に時刻ずれを算出するための専用の計測機構を提供するためのインターフェースをそれぞれ規定している。
 そして、802.1AS規格と組み合わせる下位層の通信方式としてIEEE802.11無線LANを使用する場合の、無線機器間の高精度同期(時刻ずれ検出)を行うプロトコルとして、PTPの考え方をベースにしたFTM(Fine Timing Measurement)プロトコルが、P802.11REVmc-D8.0規格にて規定されている。
 図2は、FTMプロトコルの動作概要を示している。マスター(Master、図中ではResponder)-スレーブ(Slave、図2中ではInitiator)間の時刻ずれは、上述の数式(1)において、t1~t4をt1_1~t1_4に読み替えることで同様に得られる。
 図3は、図2中における、無線制御部の時刻を他の無線機器との間で計測する計測用フレームであるFTMアクション(action)フレームのフォーマットを示している。このフォーマットにおいて、FTMアクションフレームのペイロード(Payload)に当たる部分は、「Dialog Token」フィールド以降である。「Dialog Token」フィールドならびに「Follow Up Dialog Token」フィールドは、複数回送信されるFTMアクションフレームを対応付けるためのインデックスである。
 「Follow Up Dialog Token」フィールドは、この後ろに記載される「ToD」フィールドならびに「ToA」フィールドが、以前に送信されたどのFTMアクションフレームのものに対応するかを示すものである。
 「ToD」フィールドと「ToA」フィールドは、それぞれ、図2のt1_1とt4_1に相当する時刻情報(タイムスタンプ)が48ビットでピコsec単位の値として記載される。「ToD Error」フィールドならびに「ToA Error」フィールドには、それぞれ、「ToD」のタイムスタンプと「ToA」のタイムスタンプの最大誤差を示す情報が入る。
 図3は、FTMプロトコルを単体で使用する場合のフォーマットであるが、802.1AS規格と802.11 FTMプロトコルを組み合わせて使用する場合には、拡張されたFTMアクションフレームが使用される。図4は、そのフォーマットを示している。新たに付加されたベンダー・スペシフィック・エレメント(Vendor Specific Element)が存在する。このエレメントの用途は、別のグランド・マスター(Grand Master)クロックの時刻を中継送信する際に必要な情報を載せることにある。
 図5は、実施の形態としての無線システム10の構成例を示している。この無線システム10は、無線機器100Aと無線機器100Bを有する構成となっている。この実施の形態では、無線機器100Aがクロックマスター(Clock Master)の無線機器Aであり、無線機器100Bがクロックスレーブ(Clock Slave)の無線機器Bであるとする。
 無線機器100A,100Bは、それぞれ、メイン制御部101と、無線制御部102を有している。メイン制御部101は、機器のホストプロセッサに相当する部分であり、アプリケーションプラグラムの実行、ユーザインターフェースの入出力信号の制御、主にネットワーク層以上の通信プロトコル処理を行う。ユーザインターフェースの入出力の例としては、操作信号の入力の他、オーディオや映像の出力のタイミング制御も含まれる。
 無線制御部102は、メイン制御部101にて生成された上位層パケットに対するデータリンク層ヘッダの付加と解析、変復調、誤り訂正符号化と復号、増幅など、主にデータリンク層以下の通信レイヤの無線プロトコルの全ての機能を担う機能ブロックである。一般的に、無線制御部102は、メイン制御部101とは独立したデバイスであり、何らかのI/Oポートを介してメイン制御部101と接続される。
 メイン制御部101は、システムクロックを持っている。システムクロックは、メイン制御部101の時刻を管理するクロックであり、メイン制御部101で管理、参照される。無線制御部102は、NICクロックを持っている。NICクロックは、無線制御部102の時刻を管理するクロックであり、無線制御部102で管理・参照される。
 上述のt1_1(ToD)とt4_1(ToA)の時刻としてはフレームの無線送出時刻、受信開始時刻をできる限り正確に載せる必要があり、送出タイミング、受信タイミングをずれなく検出するためには、NICクロックを使用する。なお、図5の構成例では、クロックスレーブの無線機器が1台の例を示したが、クロックスレーブの無線機器が2台以上の例も考えらえる。
 この実施の形態では、通信システム10を構成する2つの無線機器100A,100Bのシステムクロックの同期を、以下の手順で行う。なお、無線機器100Aと無線機器100Bの接続動作と、クロックマスターかクロックスレーブかを示すクロックロール(Clock Role)の決定は済んでいるものとする。
 図6は、2つの無線機器100A,100Bのシステムクロックの同期手順を示している。以降では、(a)~(c)の3つの処理に分けて説明する。なお、これらの処理は、並列に行われることもある。
 「(a)システムクロック→NICクロックの同期処理(無線機器A内)」
 この処理は、マスター(Master)機器である無線機器A(無線機器100A)側において、システムクロックの時刻をNICクロックに反映させる処理である。図7は、処理フローを示している。
 (1)まず、メイン制御部101は、無線制御部102側のNICクロックのカウントを読み出す。
 (2)次に、メイン制御部101は、システムクロックのカウントを読み出す。
 (3)次に、メイン制御部101は、NICクロックとシステムクロックの粒度を揃えた上で、システムクロック‐NICクロック差分を算出する。
 (4)次に、メイン制御部101は、差分値に対して精度向上のための処理を行う。例えば、メイン制御部101と無線制御部102の間のインターフェースの遅延や、処理遅延を事前の測定により見積もっておき、この影響を予め排除した差分値を補正すべき時刻とする。なお、この精度向上のための処理は、必要に応じて行うものであり、行わなくてもよい。
 (5)次に、メイン制御部101は、算出されたシステムクロック‐NICクロック差分に基づいて、無線制御部102のNICクロックのカウントを補正する。
 (6)最後に、メイン制御部101は、NICクロックはシステムクロックの情報を全て表現することができないことから、NICクロックからシステムクロック値を生成するための補足情報(以下、「変換用パラメータ」と呼ぶ)を、無線制御部102に保存させる。この変換用パラメータは、システムクロックとNICクロックの対応付け情報を構成している。
 変換用パラメータは、具体的には、粒度比の情報と、システムクロックとNICクロックのカウント差分の情報である。粒度比は、メイン制御部101のクロックカウンタと無線制御部102のクロックカウンタのフォーマットで決まるものであって、OS(Operating System)やデバイスの組み合わせにより決まる値である。この値を得るために、OSの名称やバージョンを利用することとしてもよい。
 カウント差分は、FTMアクションフレームで相手機器に伝達できない分の、NICクロックカウンタ側の桁不足を補うのが目的の差分値である。この差分値をD、書き込もうとしたシステムクロックの時刻をTsys、NICクロックで表せる時刻最大値をTNICMAXとすると、Dは以下の数式(2)で表される。なお、ここで、TsysとTNICMAX はカウンタの生値ではなく、粒度の差を揃えた時刻絶対値であるとする(エポック時刻は0とする)。また、modとは除算の余りを求める処理を指す。
Figure JPOXMLDOC01-appb-M000002
 前記の(5)において、NICクロックには、Tsys mod TNICMAX に相当する値を反映させる。反映のさせ方は、クロックカウント値を直接上書きするか、何らかのフィルタをかけながら何度かに分けて近づけていくか、あるいは、クロックカウントの進み方を調整することで徐々に合わせていくか、などである。
 「(b)NICクロック間同期処理(無線機器A-無線機器B間)」
 この処理は、マスター機器である無線機器A(無線機器100A)とスレーブ機器である無線機器B(無線機器100B)のNICクロックを同期させる処理である。図8は、処理フローを示している。この処理は、基本的に、図2のFTMプロトコルに準拠する。
 この処理は、基本的に、図2のFTMプロトコルに準拠するが、FTMアクションフレームのフォーマットに図9に示される拡張フィールドのついたフォーマットを採用する点が異なる。無線機器Aの無線制御部102は、FTMアクションフレームの生成時に、上述の変換用パラメータにアクセスし、その内容を図9のフォーマットになるように格納する。なお、図4のフォーマットと区別して互換性を確保するため、「Type」のフィールドには、“0”以外の値を入れることとする。図9の例においては、“1”を入れている。
 「clock granularity ratio」のフィールドには、上述の粒度比の情報を格納する。フォーマットの例として、粒度比を2や10を底としてべき乗の形で表した時の、指数部の数値を格納する。「clock difference」のフィールドには、システムクロックとNICクロックのカウント差分を示す情報を格納する。フォーマットの例として、システムクロックとNICクロックの粒度の比をシステムクロック側に揃えた後に足しこむべき差分値のカウントを格納する。
 この処理では、上述したようにFTMアクションフレームのフォーマットに図9に示される拡張フィールドのついたフォーマットを採用してFTMプロトコルを実行する。無線機器Bの無線制御部102は、FTMアクションフレームを受信したら拡張フィールドに記載されている変換用パラメータを保存し、受信するごとに更新する。
 詳細説明は省略するがNICクロック間のオフセットの算出方法は、FTMプロトコルと同じである(図8中では、t1_1~t1_4の時刻取得にもNICクロックへのアクセスは存在するが図中では省略している)。オフセット算出後、算出されたオフセットに応じて、無線機器Bの無線制御部102は、NICクロックのカウントを補正する。
 「(c)NICクロック→システムクロックの同期処理(無線機器B内)」
 この処理は、スレーブ(Slave)機器である無線機器B(無線機器100B)側において、NICクロックの時刻をシステムクロックに反映させる処理である。図10は、処理フローを示している。基本的に、上述の「(a)システムクロック→NICクロックの同期処理」とは逆方向の同等の操作を行うことになる。
 (1)メイン制御部101は、システムクロックのカウントを読み出す。
 (2)次に、メイン制御部101は、上述の(b)のNICクロック間同期処理において、無線機器A側より得られ、無線制御部102側に保持されている変換用パラメータを読み出す。
 (3)次に、メイン制御部101は、NICクロックのカウントを読み出す。
 (4)次に、メイン制御部101は、読み出したNICクロックカウントに、読み出した変換用パラメータを適用し、反映すべきシステムクロックのカウントを算出する。これと、自機で読み出したシステムクロックのカウント値から、クロックマスター機器とのシステムクロック差分を算出する。
 (5)次に、メイン制御部101は、システムクロック差分の精度向上のための処理をする。例えば、メイン制御部と無線制御部の間のインターフェースの遅延や、処理遅延を事前の測定により見積もっておき、この影響を予め排除した差分値を補正すべき時刻とする。なお、この精度向上のための処理は、必要に応じて行うものであり、行わなくてもよい。
 (6)最後に、メイン制御部101は、算出されたシステムクロック差分を用いて、システムクロックのカウントを補正する。これにより、結果的に、無線機器Aと無線機器Bのメイン制御部101のシステムクロックは、高精度に同期したものとなる。
 以上説明したように、図1に示す無線システム10においては、無線機器100A側でシステムクロックの時刻をNICクロックに反映させる処理、無線機器100Aと無線機器100BのNICクロックを同期させる処理、さらに無線機器100B側でNICクロックの時刻をシステムクロックに反映させる処理を行う。そのため、システムクロックを機器間で高精度に同期させることが可能となる。
 <2.変形例>
 なお、上述実施の形態においては、無線層における同期プロトコルがFTM(Fine Timing Measurement)プロトコルである例を示した。しかし、本技術は、無線層における同期プロトコルは、FTMプロトコルに限定されるものではなく、TM(Timing Measurement)プロトコルであってもよい。
 その場合も、上述の図8のNICクロック間同期処理において、FTMアクションフレームをTM(Timing Management)アクションフレームに読み替えるだけで同等である。図11は、TMアクションフレームのフォーマット示している。一部フィールドのIDが異なるだけで、基本的な内容はFTMアクションフレームと同等に、本技術を適用できる。
 また、上述実施の形態においては、変換用パラメータを保持する場所が無線制御部102側であるように説明した。しかし、変換用パラメータを保持する場所は、必ずしも無線制御部102でなくてもよく、メイン制御部101側であってもよい。
 また、上述実施の形態においては、同期手順の(b)の処理における「VendorSpecific」エレメントは、変換用パラメータが変化したときのみ載せることとしてもよい。その場合、スレーブ側機器としての無線機器100Bは、FTMアクションフレームに「VendorSpecific」エレメントが存在しない場合には、直近に受信した「VendorSpecific」エレメントの変換用パラメータを適用することとする。
 また、上述実施の形態においては、無線機器100Aから無線機器100Bに伝達するFTMアクションフレームに載せる変換用パラメータに、粒度比の情報と、システムクロックとNICクロックのカウント差分の情報が含まれている。しかし、粒度比に情報に関しては伝達を省略し、カウント差分の情報だけを伝達してもよい。また、粒度比は基本的に変化しないため、他の無線機器との接続を行うためのフレームであるアソシエーション(Association)時のマネジメントフレームなどを用いて、別途一度だけ伝えることにしてもよい。
 また、上述実施の形態においては、上述の同期手順の(b)の処理の「NICクロックの補正」については、無線制御部102がクロックカウンタを直接更新していたが、オフセット値の保持だけを行い、換算はメイン制御部101が行うこととしてもよい。
 また、上述実施の形態においては、マスター機器である無線機器100Aのシステムクロックを全てのシステム全体のマスタークロックとしている。しかし、マスター機器である無線機器100AのNICクロックをマスタークロックとすることも考えられる。その場合は、無線機器100Aの変換用パラメータの初期値のみ、初めに一度与えた後、無線機器100Aにおいても、上述の同期手順の(a)の処理の代わりに(c)の処理を行うこととしてもよい。
 また、上述していないが、802.1AS準拠の拡張FTMアクションフレームのフォーマットと本技術の拡張フィールドが併用されてもよい。その場合は、それぞれの「VendorSpecific」エレメントが順に並ぶ形になる。
 また、上述実施の形態においては、NICクロックを経由して2つの無線機器間で同期させるべきクロックをシステムクロックとしたが、オーディオやビデオなどのメディア処理部の時刻を管理するクロックであってもよい。なお、詳細説明は省略するが、同期手順は、メイン制御部101のシステムクロックをメディア処理部のクロックに読み替えるだけで、上述実施の形態の場合と同等である。
 図12は、その場合の無線システム20の構成例を示している。この無線システム20は、無線機器200Aと無線機器200Bを有する構成となっている。無線機器200A,200Bは、それぞれ、メディア処理部、ここではオーディオ処理部201と、無線制御部202を有している。この無線システム20においては、メディア処理部のクロック(ここでは、オーディオ用クロック)を機器間で高精度に同期させることが可能となる。
 また、図13は、上述したようにシステムクロックを機器間で高精度に同期させることを行う無線システム(スピーカシステム)30の構成例を示している。この図13において、図5と対応する部分には、同一符号を付し、適宜、その詳細説明は省略する。
 この無線システム30は、無線機器(マスター機器)を構成するスピーカ装置300Aと、無線機器(スレーブ機器)を構成するスピーカ装置300Bと、オーディオデータの供給源であるスマートフォン300Cを有する構成となっている。
 スピーカ装置300A,300Bは、それぞれ、メイン制御部101と、無線制御部102と、オーディオ再生処理部303と、スピーカ304を有している。メイン制御部101および無線制御部102は、図5の無線システム10におけるメイン制御部101および無線制御部102と同様に構成され、(a)~(c)の同期手順の処理が行われ、スピーカ装置300A,300Bにおけるメイン制御部101のシステムクロックは高精度に同期されたものとなる。
 スピーカ装置300Aのオーディオ再生処理部303は、スマートフォン300Cからステレオの左側オーディオデータALを無線受信し、メイン制御部101のシステムクロックに基づいて再生処理を行ってスピーカ304を駆動し、このスピーカ304から左側音声を出力させる。一方、スピーカ装置300Bのオーディオ再生処理部303は、スマートフォン300Cからステレオの右側オーディオデータARを無線受信し、メイン制御部101のシステムクロックに基づいて再生処理を行ってスピーカ304を駆動し、このスピーカ304から右側音声を出力させる。
 ここで、オーディオデータAL、ARは、一度全てのデータがスマートフォン300Cからマスター機器であるスピーカ装置300Aに送られ、スレーブ機器である300BはオーディオデータARをマスター機器である300Aから無線送信されたオーディオデータを無線受信するものとしてもよい。マスター機器とスレーブ機器における再生処理については同様である。
 この無線システム30においては、スピーカ装置300A,300Bのメイン制御部101のシステムクロックが(a)~(c)の同期手順の処理により高精度に同期したものとなる。そして、スピーカ装置300A,300Bのそれぞれのオーディオ再生処理部303はメイン制御部101のシステムクロックに基づいて再生処理を行う。そのため、スピーカ装置300A,300Bのそれぞれのスピーカ304から出力される左側音声、右側音声は高精度に同期したものとなり、良好なステレオ再生音を得ることが可能となる。
 なお、図13の無線システム30はステレオ再生を行う例を示したが、マルチチャネル再生を行う無線システムを同様に構成することが可能である。また、図13の無線システム30は、オーディオ再生の例であるが、同期して表示すべきビデオ再生についても、同様の構成を適用できることは勿論である。
 また、図12の無線システム20内の無線機器の構成を持つ機器に対して、無線によるオーディオデータの送信または受信をともなう無線システム(スピーカシステム)が構成されてもよい。その場合も、再生に使用されるクロックがシステムクロックではなくオーディオクロックである点を除き、図13の無線システム30の場合と同様な送受信処理、再生処理を適用することができる。
 また、本技術は、以下のような構成を取ることもできる。
 (1)メイン制御部と、
 無線制御部を備え、
 上記無線制御部は、上記メイン制御部の時刻を管理するクロックと上記無線制御部の時刻を管理するクロックの対応付け情報を他の無線機器に無線送信し、
 上記対応付け情報には、上記2つのクロックの差分情報が含まれる
 無線機器。
 (2)上記対応付け情報には、上記2つのクロックの粒度比情報がさらに含まれる
 前記(1)に記載の無線機器。
 (3)上記無線制御部は、
 上記対応付け情報を、上記無線制御部の時刻を上記他の無線機器との間で計測するためのフレームの一部として送信する
 前記(1)または(2)に記載の無線機器。
 (4)上記無線制御部は、
 上記対応付け情報を、上記他の無線機器との接続を行うためのフレームの一部として送信する
 前記(1)または(2)に記載の無線機器。
 (5)外部機器からオーディオデータを無線受信し、上記メイン制御部の時刻を管理するクロックに基づいて再生処理を行ってスピーカを駆動するオーディオ再生処理部をさらに備える
 前記(1)から(4)のいずれかに記載の無線機器。
 (6)外部機器に対してオーディオデータを無線送信し、自身も上記メイン制御部の時刻を管理するクロックに基づいて再生処理を行ってスピーカを駆動するオーディオ再生処理部をさらに備える
 前記(1)から(4)のいずれかに記載の無線機器。
 (7)メイン制御部と無線制御部を備える無線機器の処理方法であって、
 上記無線制御部が上記メイン制御部の時刻を管理するクロックと上記無線制御部の時刻を管理するクロックの対応付け情報を他の無線機器に無線送信するステップを有し、
 上記対応付け情報には、上記2つのクロックの差分情報が含まれる
 無線機器の処理方法。
 (8)メイン制御部と無線制御部を備える無線機器の動作を制御するコンピュータに、
 上記無線制御部が上記メイン制御部の時刻を管理するクロックと上記無線制御部の時刻を管理するクロックの対応付け情報を他の無線機器に無線送信するステップを有する処理方法を実行させ、
 上記対応付け情報には、上記2つのクロックの差分情報が含まれる
 プログラム。
 (9)メイン制御部と、
 無線制御部を備え、
 上記無線制御部は、他の無線機器から、該他の無線機器におけるメイン制御部の時刻を管理するクロックと無線制御部の時刻を管理するクロックの対応付け情報を受信し、
 上記対応付け情報には、上記2つのクロックの差分情報が含まれており、
 自機器の無線制御部の時刻を管理するクロックを上記対応付け情報に基づいて自機器のメイン制御部の時刻を管理するクロックに変換して、該自機器のメイン制御部の時刻を管理するクロックを補正する補正部をさらに備える
 無線機器。
 (10)上記対応付け情報には、上記2つのクロックの粒度比情報がさらに含まれる
 前記(9)に記載の無線機器。
 (11)外部機器からオーディオデータを無線受信し、上記メイン制御部の時刻を管理するクロックに基づいて再生処理を行ってスピーカを駆動するオーディオ再生処理部をさらに備える
 前記(9)または(10)に記載の無線機器。
 (12)外部機器に対してオーディオデータを無線送信し、自身も上記メイン制御部の時刻を管理するクロックに基づいて再生処理を行ってスピーカを駆動するオーディオ再生処理部をさらに備える
 前記(9)または(10)に記載の無線機器。
 (13)メイン制御部と無線制御部を備える無線機器の処理方法であって、
 上記無線制御部が、他の無線機器から該他の無線機器におけるメイン制御部の時刻を管理するクロックと無線制御部の時刻を管理するクロックの対応付け情報を受信する受信ステップと、
 補正部が、自機器の無線制御部の時刻を管理するクロックを上記対応付け情報に基づいて自機器のメイン制御部の時刻を管理するクロックに変換して、該自機器のメイン制御部の時刻を管理するクロックを補正する補正ステップを有し、
 上記対応付け情報には、上記2つのクロックの差分情報が含まれる
 無線機器の処理方法。
 (14)メイン制御部と無線制御部を備える無線機器の動作を制御するコンピュータに、
 上記無線制御部が、他の無線機器から該他の無線機器におけるメイン制御部の時刻を管理するクロックと無線制御部の時刻を管理するクロックの対応付け情報を受信する受信ステップと、
 補正部が、自機器の無線制御部の時刻を管理するクロックを上記対応付け情報に基づいて自機器のメイン制御部の時刻を管理するクロックに変換して、該自機器のメイン制御部の時刻を管理するクロックを補正する補正ステップを有する処理方法を実行させ
 上記対応付け情報には、上記2つのクロックの差分情報が含まれる
 プログラム。
 (15)メディア処理部と、
 無線制御部を備え、
 上記無線制御部は、上記メディア処理部の時刻を管理するクロックと上記無線制御部の時刻を管理するクロックの対応付け情報を他の無線機器に無線送信し、
 上記対応付け情報には、上記2つのクロックの差分情報が含まれる
 無線機器。
 (16)上記メディア処理部は、
 外部機器からオーディオデータを無線受信し、上記メディア処理部の時刻を管理するクロックに基づいて再生処理を行ってスピーカを駆動する
 前記(15)に記載の無線機器。
 (17)上記メディア処理部は、
 外部機器に対してオーディオデータを無線送信し、自身も上記メディア処理部の時刻を管理するクロックに基づいて再生処理を行ってスピーカを駆動する
 前記(15)に記載の無線機器。
 (18)メディア処理部と、
 無線制御部を備え、
 上記無線制御部は、他の無線機器から、該他の無線機器におけるメディア処理部の時刻を管理するクロックと無線制御部の時刻を管理するクロックの対応付け情報を受信し、
 上記対応付け情報には、上記2つのクロックの差分情報が含まれており、
 自機器の無線制御部の時刻を管理するクロックを上記対応付け情報に基づいて自機器のメディア処理部の時刻を管理するクロックに変換して、該自機器のメディア処理部の時刻を管理するクロックを補正する補正部をさらに備える
 無線機器。
 (19)上記メディア処理部は、
 外部機器からオーディオデータを無線受信し、上記メディア処理部の時刻を管理するクロックに基づいて再生処理を行ってスピーカを駆動する
 前記(18)に記載の無線機器。
 (20)上記メディア処理部は、
 外部機器に対してオーディオデータを無線送信し、自身も上記メディア処理部の時刻を管理するクロックに基づいて再生処理を行ってスピーカを駆動する
 前記(18)に記載の無線機器。
 10,20,30・・・無線システム
 100A,100B・・・無線機器
 101・・・メイン制御部
 102・・・無線制御部
 200A,200B・・・無線機器
 201・・・オーディオ処理部
 202・・・無線制御部
 300A,300B・・・スピーカ装置
 300C・・・スマートフォン
 303・・・オーディオ再生処理部
 304・・・スピーカ

Claims (20)

  1.  メイン制御部と、
     無線制御部を備え、
     上記無線制御部は、上記メイン制御部の時刻を管理するクロックと上記無線制御部の時刻を管理するクロックの対応付け情報を他の無線機器に無線送信し、
     上記対応付け情報には、上記2つのクロックの差分情報が含まれる
     無線機器。
  2.  上記対応付け情報には、上記2つのクロックの粒度比情報がさらに含まれる
     請求項1に記載の無線機器。
  3.  上記無線制御部は、
     上記対応付け情報を、上記無線制御部の時刻を上記他の無線機器との間で計測するためのフレームの一部として送信する
     請求項1に記載の無線機器。
  4.  上記無線制御部は、
     上記対応付け情報を、上記他の無線機器との接続を行うためのフレームの一部として送信する
     請求項1に記載の無線機器。
  5.  外部機器からオーディオデータを無線受信し、上記メイン制御部の時刻を管理するクロックに基づいて再生処理を行ってスピーカを駆動するオーディオ再生処理部をさらに備える
     請求項1に記載の無線機器。
  6.  外部機器に対してオーディオデータを無線送信し、自身も上記メイン制御部の時刻を管理するクロックに基づいて再生処理を行ってスピーカを駆動するオーディオ再生処理部をさらに備える
     請求項1に記載の無線機器。
  7.  メイン制御部と無線制御部を備える無線機器の処理方法であって、
     上記無線制御部が上記メイン制御部の時刻を管理するクロックと上記無線制御部の時刻を管理するクロックの対応付け情報を他の無線機器に無線送信するステップを有し、
     上記対応付け情報には、上記2つのクロックの差分情報が含まれる
     無線機器の処理方法。
  8.  メイン制御部と無線制御部を備える無線機器の動作を制御するコンピュータに、
     上記無線制御部が上記メイン制御部の時刻を管理するクロックと上記無線制御部の時刻を管理するクロックの対応付け情報を他の無線機器に無線送信するステップを有する処理方法を実行させ、
     上記対応付け情報には、上記2つのクロックの差分情報が含まれる
     プログラム。
  9.  メイン制御部と、
     無線制御部を備え、
     上記無線制御部は、他の無線機器から、該他の無線機器におけるメイン制御部の時刻を管理するクロックと無線制御部の時刻を管理するクロックの対応付け情報を受信し、
     上記対応付け情報には、上記2つのクロックの差分情報が含まれており、
     自機器の無線制御部の時刻を管理するクロックを上記対応付け情報に基づいて自機器のメイン制御部の時刻を管理するクロックに変換して、該自機器のメイン制御部の時刻を管理するクロックを補正する補正部をさらに備える
     無線機器。
  10.  上記対応付け情報には、上記2つのクロックの粒度比情報がさらに含まれる
     請求項9に記載の無線機器。
  11.  外部機器からオーディオデータを無線受信し、上記メイン制御部の時刻を管理するクロックに基づいて再生処理を行ってスピーカを駆動するオーディオ再生処理部をさらに備える
     請求項9に記載の無線機器。
  12.  外部機器に対してオーディオデータを無線送信し、自身も上記メイン制御部の時刻を管理するクロックに基づいて再生処理を行ってスピーカを駆動するオーディオ再生処理部をさらに備える
     請求項9に記載の無線機器。
  13.  メイン制御部と無線制御部を備える無線機器の処理方法であって、
     上記無線制御部が、他の無線機器から該他の無線機器におけるメイン制御部の時刻を管理するクロックと無線制御部の時刻を管理するクロックの対応付け情報を受信する受信ステップと、
     補正部が、自機器の無線制御部の時刻を管理するクロックを上記対応付け情報に基づいて自機器のメイン制御部の時刻を管理するクロックに変換して、該自機器のメイン制御部の時刻を管理するクロックを補正する補正ステップを有し、
     上記対応付け情報には、上記2つのクロックの差分情報が含まれる
     無線機器の処理方法。
  14.  メイン制御部と無線制御部を備える無線機器の動作を制御するコンピュータに、
     上記無線制御部が、他の無線機器から該他の無線機器におけるメイン制御部の時刻を管理するクロックと無線制御部の時刻を管理するクロックの対応付け情報を受信する受信ステップと、
     補正部が、自機器の無線制御部の時刻を管理するクロックを上記対応付け情報に基づいて自機器のメイン制御部の時刻を管理するクロックに変換して、該自機器のメイン制御部の時刻を管理するクロックを補正する補正ステップを有する処理方法を実行させ
     上記対応付け情報には、上記2つのクロックの差分情報が含まれる
     プログラム。
  15.  メディア処理部と、
     無線制御部を備え、
     上記無線制御部は、上記メディア処理部の時刻を管理するクロックと上記無線制御部の時刻を管理するクロックの対応付け情報を他の無線機器に無線送信し、
     上記対応付け情報には、上記2つのクロックの差分情報が含まれる
     無線機器。
  16.  上記メディア処理部は、
     外部機器からオーディオデータを無線受信し、上記メディア処理部の時刻を管理するクロックに基づいて再生処理を行ってスピーカを駆動する
     請求項15に記載の無線機器。
  17.  上記メディア処理部は、
     外部機器に対してオーディオデータを無線送信し、自身も上記メディア処理部の時刻を管理するクロックに基づいて再生処理を行ってスピーカを駆動する
     請求項15に記載の無線機器。
  18.  メディア処理部と、
     無線制御部を備え、
     上記無線制御部は、他の無線機器から、該他の無線機器におけるメディア処理部の時刻を管理するクロックと無線制御部の時刻を管理するクロックの対応付け情報を受信し、
     上記対応付け情報には、上記2つのクロックの差分情報が含まれており、
     自機器の無線制御部の時刻を管理するクロックを上記対応付け情報に基づいて自機器のメディア処理部の時刻を管理するクロックに変換して、該自機器のメディア処理部の時刻を管理するクロックを補正する補正部をさらに備える
     無線機器。
  19.  上記メディア処理部は、
     外部機器からオーディオデータを無線受信し、上記メディア処理部の時刻を管理するクロックに基づいて再生処理を行ってスピーカを駆動する
     請求項18に記載の無線機器。
  20.  上記メディア処理部は、
     外部機器に対してオーディオデータを無線送信し、自身も上記メディア処理部の時刻を管理するクロックに基づいて再生処理を行ってスピーカを駆動する
     請求項18に記載の無線機器。
PCT/JP2017/033039 2016-09-23 2017-09-13 無線機器、無線機器の処理方法およびプログラム WO2018056138A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP17852915.2A EP3518456A4 (en) 2016-09-23 2017-09-13 WIRELESS DEVICE, PROCESSING METHOD FOR WIRELESS DEVICE AND PROGRAM
JP2018540997A JP7056570B2 (ja) 2016-09-23 2017-09-13 無線機器、無線機器の処理方法およびプログラム
US16/313,902 US11064452B2 (en) 2016-09-23 2017-09-13 Wireless apparatus, processing method for a wireless apparatus, and program
BR112019004977A BR112019004977A2 (pt) 2016-09-23 2017-09-13 aparelho sem fio, método de processamento para um aparelho sem fio, e, programa.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016185329 2016-09-23
JP2016-185329 2016-09-23

Publications (1)

Publication Number Publication Date
WO2018056138A1 true WO2018056138A1 (ja) 2018-03-29

Family

ID=61689489

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/033039 WO2018056138A1 (ja) 2016-09-23 2017-09-13 無線機器、無線機器の処理方法およびプログラム

Country Status (5)

Country Link
US (1) US11064452B2 (ja)
EP (1) EP3518456A4 (ja)
JP (1) JP7056570B2 (ja)
BR (1) BR112019004977A2 (ja)
WO (1) WO2018056138A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021078119A (ja) * 2019-11-05 2021-05-20 瑞▲いく▼半導體股▲ふん▼有限公司 異なるブルートゥース回路によるオーディオ再生を同期させ続けることが可能なマルチ構成要員型ブルートゥース装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022084136A (ja) * 2020-11-26 2022-06-07 株式会社東海理化電機製作所 無線通信装置、システムおよびプログラム

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006110960A1 (en) * 2005-04-22 2006-10-26 National Ict Australia Limited Method for transporting digital media
JP2008064474A (ja) * 2006-09-04 2008-03-21 Sharp Corp 時計装置、時計システム、同期方法、時計装置制御プログラム、および通信装置
JP2015117941A (ja) * 2013-12-16 2015-06-25 株式会社リコー 通信システム、及び時刻同期方法
WO2015125439A1 (ja) * 2014-02-20 2015-08-27 日本電気株式会社 通信システム、無線通信装置及び無線通信方法
WO2015171435A1 (en) * 2014-05-05 2015-11-12 Qualcomm Incorporated Methods and systems for enhanced round trip time (rtt) exchange

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7539889B2 (en) * 2005-12-30 2009-05-26 Avega Systems Pty Ltd Media data synchronization in a wireless network
US9319054B2 (en) * 2011-09-27 2016-04-19 Anue Systems, Inc. Systems and methods utilizing randomized clock rates to reduce systematic time-stamp granularity errors in network packet communications
US9232493B2 (en) * 2013-01-31 2016-01-05 Marvell World Trade Ltd. Frequency offset compensation for WiFi ranging
CN104347122B (zh) * 2013-07-31 2017-08-04 华为技术有限公司 一种消息式内存模组的访存方法和装置
US9736806B2 (en) * 2014-02-28 2017-08-15 Qualcomm Incorporated Apparatuses and methods for wireless synchronization of multiple multimedia devices using a common timing framework
US10349367B2 (en) * 2015-03-03 2019-07-09 Qualcomm Incorporated Methods and systems for synchronizing devices

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006110960A1 (en) * 2005-04-22 2006-10-26 National Ict Australia Limited Method for transporting digital media
JP2008064474A (ja) * 2006-09-04 2008-03-21 Sharp Corp 時計装置、時計システム、同期方法、時計装置制御プログラム、および通信装置
JP2015117941A (ja) * 2013-12-16 2015-06-25 株式会社リコー 通信システム、及び時刻同期方法
WO2015125439A1 (ja) * 2014-02-20 2015-08-27 日本電気株式会社 通信システム、無線通信装置及び無線通信方法
WO2015171435A1 (en) * 2014-05-05 2015-11-12 Qualcomm Incorporated Methods and systems for enhanced round trip time (rtt) exchange

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3518456A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021078119A (ja) * 2019-11-05 2021-05-20 瑞▲いく▼半導體股▲ふん▼有限公司 異なるブルートゥース回路によるオーディオ再生を同期させ続けることが可能なマルチ構成要員型ブルートゥース装置
JP7087042B2 (ja) 2019-11-05 2022-06-20 瑞▲いく▼半導體股▲ふん▼有限公司 異なるブルートゥース回路によるオーディオ再生を同期させ続けることが可能なマルチ構成要員型ブルートゥース装置

Also Published As

Publication number Publication date
JP7056570B2 (ja) 2022-04-19
US11064452B2 (en) 2021-07-13
BR112019004977A2 (pt) 2019-06-04
EP3518456A1 (en) 2019-07-31
JPWO2018056138A1 (ja) 2019-07-04
US20190174445A1 (en) 2019-06-06
EP3518456A4 (en) 2019-09-18

Similar Documents

Publication Publication Date Title
US11082141B2 (en) Wireless apparatus and wireless apparatus processing method
JP5518191B2 (ja) 光伝送網が時刻同期プロトコルをキャリングする方法及びシステム
US10644867B2 (en) Method, device, and system for synchronizing clocks of processors
US8817823B2 (en) Method and device for time synchronization
JP6214008B2 (ja) 時間認識デバイス間で時間情報を通信する方法および装置
TWI552558B (zh) 用於WiFi串列匯流排之基於媒體時間之USB訊框計數器同步
EP3664375B1 (en) Packet processing method and network device
WO2016112666A1 (zh) Otn网络中实现时间同步的方法、设备、系统及存储介质
CN103929293B (zh) 非对称延迟的时间同步方法及系统
JP2018505576A (ja) 複数のシンクデバイスへのワイヤレスストリーミング伝送のタイミングを同期する技法
CN106254021B (zh) 实现物联网设备间时间同步的系统及其方法
CN105027489B (zh) 精确时钟协议同步方法和节点
WO2018056138A1 (ja) 無線機器、無線機器の処理方法およびプログラム
JP2017512414A5 (ja)
JP2013098788A (ja) 時刻同期システムおよび時刻同期方法
US12022411B2 (en) Communication apparatus and communication system
WO2020172766A1 (zh) 一种时间同步方法、装置及系统
JP6879750B2 (ja) データ伝送装置及びプログラム
KR20190072745A (ko) 안정적인 네트워크 기반 시간동기화 방법
JP2013153312A (ja) 送信装置、送信方法及び通信システム
WO2013091240A1 (zh) 外时钟数据同步处理方法、设备和系统
JP2021190849A (ja) 情報通信システム及び情報通信装置
KR20110014909A (ko) 네트워크 장치간 시각 보정 방법 및 그 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17852915

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018540997

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019004977

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2017852915

Country of ref document: EP

Effective date: 20190423

ENP Entry into the national phase

Ref document number: 112019004977

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20190314