WO2018056114A1 - Method for producing semiconductor quantum dots - Google Patents

Method for producing semiconductor quantum dots Download PDF

Info

Publication number
WO2018056114A1
WO2018056114A1 PCT/JP2017/032833 JP2017032833W WO2018056114A1 WO 2018056114 A1 WO2018056114 A1 WO 2018056114A1 JP 2017032833 W JP2017032833 W JP 2017032833W WO 2018056114 A1 WO2018056114 A1 WO 2018056114A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction
group iii
compound
quantum dot
semiconductor quantum
Prior art date
Application number
PCT/JP2017/032833
Other languages
French (fr)
Japanese (ja)
Inventor
有次 吉田
和田 健二
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2018540984A priority Critical patent/JP6651024B2/en
Publication of WO2018056114A1 publication Critical patent/WO2018056114A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/08Other phosphides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G15/00Compounds of gallium, indium or thallium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/70Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing phosphorus

Definitions

  • the present invention relates to a method for producing semiconductor quantum dots.
  • Semiconductor quantum dots are nanoscale (several nanometers to several tens of nanometers) semiconductor crystals that exhibit characteristic light absorption and emission characteristics based on the quantum size effect.
  • the application range expected for semiconductor quantum dots is wide. For example, application research to displays, illumination, biological imaging, solar cells, and the like is underway based on strong light emission characteristics corresponding to the particle size. In addition, applied research as a quantum dot laser, a single electron transistor, and the like that realize high brightness and low power consumption by utilizing the unique electronic characteristics of semiconductor quantum dots is also underway.
  • III-V semiconductor quantum dots quantum dots using III-V semiconductor nanocrystals having indium or the like as a cation.
  • III-V semiconductor quantum dots still have many problems in terms of performance.
  • Patent Document 1 prepares an InP core as a nanostructure, and then reacts with indium laurate in the presence of a C5-C8 carboxylic acid ligand to reinforce the InP core, and then ZnSeS shell and ZnS shell Are sequentially formed to obtain InP / ZnSeS / ZnS dots, and that this InP / ZnSeS / ZnS dot exhibits a high quantum yield (high luminance).
  • Patent Document 2 discloses that an in-ligand complex is formed by reacting indium acetate with a ligand such as a fatty acid and octadecene, which is a non-coordinating solvent, and then reacting with tris (trimethylsilyl) phosphine. To obtain InP nanocrystals.
  • a ligand such as a fatty acid and octadecene, which is a non-coordinating solvent
  • the conventional III-V group semiconductor quantum dots including the techniques described in Patent Documents 1 and 2 have improved the light emission characteristics (quantum yield and half-value width of the light emission peak) to some extent. It has not yet achieved sufficient characteristics.
  • the present invention realizes a high luminance due to an excellent quantum yield and also provides a group III-V semiconductor quantum dot capable of obtaining a group III-V semiconductor quantum dot having a narrow half-value width of the emission peak and exhibiting sharp emission characteristics. It is an object to provide a method for manufacturing dots.
  • the present inventors have made a reaction between a compound containing a Group III element and a compound containing a Group V element at a high temperature in the production of III-V semiconductor quantum dots.
  • III-V semiconductor nanoparticles When the III-V semiconductor nanoparticles are formed and then the high temperature reaction liquid is cooled to stop the growth of the nanoparticles, rapid cooling (cooling) is performed until the high temperature reaction liquid is cooled to a specific temperature. ) Without controlling the cooling rate, the quantum yield of the obtained group III-V semiconductor quantum dots can be effectively increased, and higher brightness can be realized. It was found that quantum dots have a narrow emission peak half-value width and show sharp emission characteristics. The present invention has been completed through further studies based on these findings.
  • a method for producing a group III-V semiconductor quantum dot comprising the following steps (a) and (b): (A) A liquid containing a compound a1 containing a Group III element, a compound a2 containing a Group V element, and a solvent is maintained at 270 to 400 ° C. to react the compound a1 with the compound a2, and react Forming III-V semiconductor nanoparticles in the liquid; (B) A step of cooling the reaction liquid in which the nanoparticles are formed to 250 ° C. at a cooling rate of 0.3 to 3 ° C./min.
  • [2] The method for producing a group III-V semiconductor quantum dot according to [1], wherein the reaction time at 270 to 400 ° C. in the step (a) is 10 seconds to 120 minutes.
  • [3] The method for producing a group III-V semiconductor quantum dot according to [1] or [2], wherein the group III element contained in the compound a1 is In.
  • [4] The method for producing a III-V semiconductor quantum dot according to any one of [1] to [3], wherein the group V element contained in the compound a2 is P or As.
  • [5] The method for producing a group III-V semiconductor quantum dot according to any one of [1] to [4], wherein the group III-V semiconductor quantum dot is an InP quantum dot.
  • [6] The method for producing a group III-V semiconductor quantum dot according to any one of [1] to [5], wherein the solvent is a non-coordinating solvent.
  • [7] The method for producing a group III-V semiconductor quantum dot according to any one of [1] to [6], wherein the water content of the solvent is 10 ppm or less.
  • [8] The method for producing a group III-V semiconductor quantum dot according to any one of [1] to [7], wherein the reaction temperature in the step (a) is 280 to 350 ° C.
  • the step (b) includes holding the reaction liquid cooled to 250 ° C. at a temperature of 150 to 250 ° C.
  • a method for producing a group V semiconductor quantum dot [10] The method for producing a group III-V semiconductor quantum dot according to any one of [1] to [9], further comprising a step (c) of introducing Ga into the surface layer of the nanoparticles after the step (b). [11] [10] The method for producing a group III-V semiconductor quantum dot according to [10], comprising a step (d) of forming a shell layer on the surface of the nanoparticles having Ga introduced into the surface layer obtained in the step (c).
  • the “III-V semiconductor quantum dot” means a nanoparticle (nanocrystal) composed of a compound semiconductor composed of a group III element and a group V element, and in the crystal structure of the nanoparticle. It is also used to mean that the surface layer is doped or introduced with an element other than a crystal component (for example, Zn, Ga, etc.), and that a shell layer (for example, ZnS shell layer) is formed on the surface of these nanoparticles. .
  • the “III-V group semiconductor quantum dot” has a III-V group semiconductor nanoparticle in its structure, and can exhibit the functions or characteristics of the group III-V semiconductor nanoparticle. It is used to include all nanoparticles in the state.
  • III-V group semiconductor quantum dots in addition to nanoparticles of InP, for example, nanoparticles of In (Zn) P alloy doped with Zn, atoms other than In on the surface of these nanoparticles It is meant to include all of the forms in which (Zn, Ga, etc.) are introduced and the shell layer (ZnS, etc.) formed on the surface of these nanoparticles.
  • the “nanoparticle” means a particle having an average particle diameter of less than 20 nm, preferably 15 nm or less, more preferably 10 nm or less.
  • the average particle size of the “nanoparticles” is usually 1 nm or more, preferably 2 nm or more.
  • a group III-V semiconductor quantum dot that achieves high luminance with an excellent quantum yield and has a narrow emission peak half-value width and sharp emission characteristics. Dots can be obtained.
  • the method for producing a group III-V semiconductor quantum dot of the present invention includes the following steps (a) and (b).
  • a step of forming III-V group semiconductor nanoparticles in the reaction solution hereinafter, the reaction between compound a1 and compound a2 at 270 to 400 ° C.
  • nanoparticle formation reaction is also referred to as “nanoparticle formation reaction”);
  • B A step of cooling the reaction liquid in which the nanoparticles are formed to 250 ° C. at a cooling rate of 0.3 to 3 ° C./min.
  • a liquid containing a compound a1 containing a Group III element, a compound a2 containing a Group V element, and a solvent is subjected to a high temperature reaction at 270 to 400 ° C.
  • This is a step of forming III-V semiconductor nanoparticles.
  • the formed nanoparticles are usually in a state of being dispersed in the liquid by the selection of the solvent species and the action of a dispersant or the like.
  • the compound a1 one type of compound is usually used, but two or more types of compounds may be used. When using 2 or more types of compounds as compound a1, it is preferable that the group III element which each of these 2 or more types compound has is the same.
  • one compound is usually used as the compound a2, but two or more compounds may be used.
  • the group V element which each of these 2 or more types compound has is the same. That is, in the production method of the present invention, it is preferable that all the III-V group semiconductor quantum dots obtained have the same chemical structure.
  • the compound a1 serves as a supply source of the cation component constituting the nanocrystal of the III-V semiconductor quantum dot.
  • the group III element contained in the compound a1 is preferably aluminum (Al), gallium (Ga) or indium (In), more preferably In.
  • the compound a1 is usually a metal salt containing Al, Ga or In.
  • an organic acid salt of Al, Ga or In for example, a monocarboxylate such as acetate or propionic acid, a hydroxycarboxylate such as glycolate or lactate, etc.
  • Dicarboxylates such as succinate and oxalate
  • polycarboxylates such as citric acid, aliphatic or aromatic sulfonates such as methanesulfonate and toluenesulfonate, carbonates, bicarbonates, Sulfamate, metal alkoxide, metal acetylacetonate, etc.
  • inorganic acid salts of Al, Ga or In eg nitrate, sulfate, hydroiodide, hydrochloride, hydrobromide, fluoride
  • the metal salt containing Al, Ga or In is preferably an organic acid salt.
  • Al salts include aluminum nitrate, aluminum sulfate, aluminum carbonate, aluminum phosphate, aluminum perchlorate, aluminum cyanide, aluminum fluoride, aluminum chloride, aluminum bromide, and iodide.
  • Inorganic acid salts of Al such as aluminum; and aluminum acetate, aluminum oxalate, aluminum tartrate, aluminum alkoxide (eg, aluminum isopropoxide, aluminum butoxide, aluminum ethoxide, aluminum methoxyethoxide), aluminum sulfamate, acetylacetone aluminum, etc.
  • the organic acid salt of Al can be mentioned.
  • These Al salts may be used alone or in combination.
  • Ga salt examples include gallium nitrate, gallium sulfate, gallium carbonate, gallium phosphate, gallium perchlorate, gallium cyanide, gallium fluoride, gallium chloride, gallium bromide, and iodide.
  • Inorganic acid salts of Ga such as gallium; and gallium acetate, gallium oxalate, gallium tartrate, gallium alkoxide (eg, gallium isopropoxide, gallium butoxide, gallium ethoxide, gallium methoxyethoxide), gallium sulfamate, acetylacetone gallium, etc.
  • An organic acid salt of Ga may be used alone or in combination.
  • In salts include indium nitrate, indium sulfate, indium carbonate, indium phosphate, indium perchlorate, indium cyanide, indium fluoride, indium chloride, indium bromide, and iodide.
  • Inorganic acid salts of In such as indium; and indium acetate, indium oxalate, indium tartrate, indium alkoxide (for example, indium isopropoxide, indium butoxide, indium ethoxide, indium methoxyethoxide), indium sulfamate, indium acetylacetone, etc.
  • organic acid salts of In may be used alone or in combination.
  • the compound a2 serves as a supply source of the anion component constituting the nanocrystal of the III-V semiconductor quantum dot.
  • the group V element contained in the compound a2 is preferably nitrogen (N), phosphorus (P), arsenic (As) or antimony (Sb), more preferably P or As, and still more preferably P.
  • N nitrogen
  • P phosphorus
  • As arsenic
  • Sb antimony
  • P preferably P
  • examples of the nitrogen-containing compound include ammonia, ammonium nitrosophenylhydroxylamine, ammonium fluoride, ammonium chloride, ammonium bromide, ammonium iodide, and the like.
  • examples of the phosphorus-containing compound include tris (trimethylsilyl) phosphine, tris (triethylsilyl) phosphine, tris (tri-n-propylsilyl) phosphine, and tris (triisopropylsilyl).
  • Phosphine tris (dimethylphenylsilyl) phosphine, tris (dimethylbenzylsilyl) phosphine, bis (trimethylsilyl) phosphine, tris (diethylamino) phosphine and tris (dimethylamino) phosphine.
  • the compound a2 is an arsenic compound containing As, examples of the arsenic compound include trimethylarsine, triphenylarsine, triphenoxyarsine, tris (trimethylsilyl) arsine, dimethylarsine chloride, dimethylarsine and the like.
  • examples of the antimony-containing compound include tris (trimethylsilyl) antimony and triphenylantimony.
  • the said solvent used for nanoparticle formation reaction it is an organic solvent.
  • the nonpolar solvent that may be contained in the dispersion may be only one type or two or more types. It is preferable to use a solvent selected from alkane, alkene, benzene and toluene as the nonpolar solvent.
  • the nonpolar solvent preferably has a boiling point of 170 ° C. or higher.
  • nonpolar solvents include aliphatic saturated hydrocarbons such as n-decane, n-dodecane, n-hexadecane, and n-octadecane, 1-undecene, 1-dodecene, 1-hexadecene, and 1-octadecene.
  • Aliphatic unsaturated hydrocarbons and trioctylphosphine are exemplified.
  • the nonpolar solvent is preferably an aliphatic unsaturated hydrocarbon having 12 or more carbon atoms, and more preferably 1-octadecene.
  • the proportion of the nonpolar solvent in the solvent is preferably 80% by volume or more, more preferably 90% by volume or more, more preferably 95% by volume or more, further preferably 99% by volume or more, and all of the solvents are nonpolar solvents. It is particularly preferred.
  • one or more of the following solvents may be used in addition to or in place of the above solvent.
  • Amide compounds such as N-methyl-2-pyrrolidone (NMP), N, N-dimethylacetamide (DMAC), N, N-dimethylformamide, N, N-dimethylethyleneurea, N, N-dimethylpropyleneurea, tetramethyl Urea compounds such as urea, lactone compounds such as ⁇ -butyrolactone and ⁇ -caprolactone, carbonate compounds such as propylene carbonate, ketone compounds such as methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone, ethyl acetate, n-butyl acetate, butyl cellosolve acetate, butyl carb Ester compounds such as tall acetate, ethyl cellosolve acetate, ethyl carbitol acetate, diglyme,
  • the solvent used for the nanoparticle formation reaction is preferably a non-coordinating solvent.
  • the “non-coordinating solvent” is a solvent that does not have a structure capable of coordinating to a metal atom. More specifically, it means a solvent that does not have a hetero atom selected from an oxygen atom, a sulfur atom, a nitrogen atom, and a phosphorus atom in the molecule.
  • the water content of the solvent used for the nanoparticle formation reaction is preferably 10 ppm or less on a mass basis from the viewpoint of preventing hydrolysis of the compound a2, and is usually 0 to 8 ppm.
  • the water content is preferably as low as possible.
  • the content of the solvent in the reaction solution is preferably 90 to 99.8% by mass, and more preferably 95 to 99.5% by mass.
  • a compound capable of coordinating to the nanoparticles (hereinafter referred to as “coordinating compound”) in the reaction solution.
  • coordinating compound a compound capable of coordinating to the nanoparticles
  • the coordination compound preferably has a hydrocarbon chain having 6 or more carbon atoms and more preferably has a hydrocarbon chain having 10 or more carbon atoms from the viewpoint of improving the dispersibility of the particles.
  • coordination compounds include, for example, decanoic acid, lauric acid, myristic acid, palmitic acid, stearic acid, behenic acid, oleic acid, erucic acid, oleylamine, dodecylamine, dodecanethiol, 1,2-hexadecanethiol. , Trioctylphosphine oxide, and cetrimonium bromide.
  • the content of the coordinating compound in the reaction solution is preferably 0.1 to 5% by mass at the start of the reaction. It is more preferably 3 to 5% by mass, further preferably 0.5 to 5% by mass, and particularly preferably 1 to 3% by mass.
  • a liquid containing a reaction component may contain a compound containing a metal atom other than the Group III element.
  • a metal atom other than the Group III element For example, in the synthesis of InP nanoparticles, it is known that optical properties are improved by doping In into an InP crystal lattice to form an In (Zn) P alloy.
  • the group III-V semiconductor quantum dots in the present invention also include an alloy form doped with metal atoms other than group III elements.
  • the reaction temperature is 270 to 400 ° C.
  • a reaction occurs instantaneously and a III-V semiconductor cluster nucleus is generated.
  • a high temperature reaction at 270 to 400 ° C. is required. The reason why such a high temperature reaction is required is not clear, but it is presumed that there is a thermal equilibrium accompanied by size convergence between the cluster nucleus and the nanoparticle.
  • the reaction temperature of this nanoparticle formation reaction is preferably 280 to 350 ° C., more preferably 290 to 320 ° C., from the viewpoint of particle size uniformity.
  • reaction conditions can be modified as needed according to the purpose, except that the reaction temperature is 270 to 400 ° C.
  • a coordinating compound dispersing agent
  • a method solvothermal method
  • a method of heating a reaction vessel containing a solvent and a coordinating compound as necessary using an oil bath or the like while passing an inert gas, and injecting a raw material using a syringe to cause a reaction Hot soap method
  • the content of the compound a1 in the reaction solution is preferably 0.05 to 5% by mass, more preferably 0.1 to 2% by mass at the start of the reaction.
  • the content of the compound a2 in the reaction solution is preferably 0.05 to 5% by mass, and more preferably 0.1 to 2% by mass.
  • the reaction time of the above nanoparticle formation reaction is not particularly limited as long as desired nanoparticles can be formed.
  • the reaction time of the nanoparticle formation reaction is preferably 10 seconds or more, more preferably 5 minutes or more, and more preferably 10 minutes or more. Is more preferable, and it is particularly preferable that the time be 20 minutes or longer.
  • the reaction time of the nanoparticle formation reaction is preferably 120 minutes or less, more preferably 90 minutes or less. 60 minutes or less is more preferable, 50 minutes or less is further preferable, and 40 minutes or less is particularly preferable.
  • III-V group semiconductor nanoparticles formed in the nanoparticle formation reaction examples include AlN, AlP, AlAs, AlSb, InN, InP, InAs, InSb, GaN, GaP, GaAs, and GaSb.
  • a group III-V semiconductor selected from InN, InP, InAs, InSb, GaN, GaP, GaAs and GaSb is preferable, a group III-V semiconductor selected from InN, InP, InAs and InSb is more preferable, and InP or InAs is used.
  • InP is particularly preferable.
  • Each of the nanoparticles mentioned here is meant to include the above-described alloy form (a form having doped atoms).
  • step (b) the liquid (reaction solution) subjected to the nanoparticle formation reaction in step (a) at a temperature state of 270 to 400 ° C. is reduced to 250 ° C. at a cooling rate of 0.3 to 3 ° C./min.
  • This is a cooling step (hereinafter also referred to as “slow cooling step”).
  • “Cooling to 250 ° C.” means cooling a high temperature reaction solution of 270 to 400 ° C. to a temperature of 250 ° C.
  • the reaction solution subjected to a high temperature reaction for particle growth is subsequently cooled to stop the particle growth.
  • the reaction solution is usually cooled by simply releasing the reaction solution from the heat source and allowing it to cool, so that the reaction solution is in a virtually quenched state.
  • the reaction liquid in which nanoparticles are formed by the reaction at 270 to 400 ° C. is gradually cooled from this reaction temperature to 250 ° C. at a slow rate of 0.3 to 3 ° C./min. It is characterized by. This slow cooling can effectively increase the quantum yield of the obtained group III-V semiconductor quantum dots. The reason for this is not clear yet, but is estimated as follows. Nanoparticles formed by a high temperature reaction at 270 to 400 ° C.
  • the obtained group III-V semiconductor quantum dots can be in a state where the crystal structure is formed in a wider range, and the quantum yield is increased. Conceivable.
  • the slow cooling means in a process (b). it can be gradually cooled at a desired cooling rate by manually operating the external temperature of the oil bath or appropriately setting the temperature program of the heating device.
  • the oil bath and heating device There are no particular restrictions on the oil bath and heating device.
  • a thermostatic oil tank T-300 manufactured by Thomas Scientific Instruments
  • a synthesis / reaction apparatus Chemist Plaza CP-300 manufactured by Shibata Kagaku
  • Chemist Plaza CP-300 manufactured by Shibata Kagaku
  • the cooling rate of the reaction solution is preferably 0.5 to 2 ° C./min, more preferably 1 to 1.5 ° C./min. If the cooling rate is too slow, the time until the temperature reaches 250 ° C. is too long, and the nanoparticles tend to aggregate. On the other hand, if the cooling rate is too high, it becomes difficult to sufficiently change the amorphous phase to the crystalline phase.
  • the cooling rate does not have to be constant as long as it is within the range defined by the present invention.
  • the length of the slow cooling step in step (b) (the time required for slow cooling the reaction solution to 250 ° C. in step (b)) is preferably 10 to 180 minutes, and preferably 20 to 120 minutes. More preferably, it is more preferably 20 to 90 minutes, and particularly preferably 30 to 60 minutes.
  • the step (b) preferably includes a step of holding the reaction liquid cooled to 250 ° C. at a temperature of 150 to 250 ° C. for 0.5 to 4 hours (hereinafter also referred to as “ripening step”).
  • the amorphous structure present in the nanoparticles can be changed more reliably into a crystalline state, and the quantum yield of the resulting III-V semiconductor quantum dots can be increased more effectively. it can.
  • the aging step is set to a constant temperature.
  • the temperature of the aging step is preferably 200 to 250 ° C, more preferably 220 to 240 ° C.
  • the length of the ripening step is preferably 1 to 3 hours, more preferably 1.5 to 2.5 hours.
  • the group III-V semiconductor nanoparticles have an average particle size of preferably 1 to 10 nm, and more preferably 2 to 10 nm.
  • the group III-V semiconductor nanoparticles obtained through the step (b) are usually obtained in the form of a dispersion, and the content of group III-V semiconductor nanoparticles in the dispersion is 0.05 to 3 mass. % Is preferred.
  • the nanoparticles in the dispersion are usually used for the intended reaction or application in the state of the dispersion without being separated and recovered.
  • the average particle diameter of the nanoparticles is a value measured by a transmission electron microscope.
  • the occupied area of the particles is obtained from the projected area by an image processing apparatus, and the total occupied area of 100 particles is determined by the number of selected particles. Dividing by (100), it can be calculated as the average value of the diameter of the circle corresponding to the obtained value (average circle equivalent diameter).
  • the average particle size does not include the particle size of secondary particles formed by aggregation of primary particles.
  • the production method of the present invention may include a step of introducing gallium (Ga) into the surface of the III-V semiconductor nanoparticles obtained in the above step (b) (hereinafter referred to as “step (c)”). preferable.
  • step (c) first, the group III-V semiconductor nanoparticles obtained in the step (b) are reacted with at least one metal c1 salt selected from the following metal group [c] (this reaction is performed). Then, the obtained particles are reacted with a Ga salt (this reaction is also referred to as “Ga introduction reaction”).
  • the step (c) can also be performed when the group III-V semiconductor nanoparticles obtained in the step (b) are in a form containing Ga as a group III element.
  • the metal c1 is one or more metals selected from the above metal group [c], and is preferably one metal.
  • Metal c1 can be introduced into the nanoparticle surface layer by a metal c1 introduction reaction.
  • the metal c1 introduction reaction may be performed in the presence of the compound a2 described above as an anion supply source, or may be performed in the absence of the compound a2.
  • the compound a1 used in the nanoparticle formation reaction may coexist.
  • the metal c1 introduction reaction when the metal c1 introduction reaction is performed in the presence of the compound a2, a crystal structure composed of a cation and an anion of the metal c1 grows on the surface of the nanoparticle and the metal c1 is introduced into the surface of the nanoparticle, or the surface of the nanoparticle It is considered that the metal c1 is introduced into the nanoparticle surface layer by cation exchange between the group III element present in the metal and the metal c1 or by doping the metal c1 into the crystal lattice of the nanoparticle surface layer. .
  • the metal c1 introduction reaction when the metal c1 introduction reaction is performed in the absence of the compound a2, cation exchange occurs between the group III element present in the nanoparticle surface layer and the metal c1, or a metal is present in the crystal lattice of the nanoparticle surface layer. It is considered that the metal c1 is introduced into the surface of the nanoparticle by being doped with c1.
  • the metal c1 introduction reaction may be carried out by mixing the reaction solution after completion of the step (b) and the salt of metal c1. Further, after the completion of the step (b), the obtained nanoparticles may be redispersed in another solvent, the redispersed liquid and the metal c1 salt may be mixed, and the metal c1 introduction reaction may be performed.
  • the solvent species that can be used in the reaction and the solvent content in the reaction solution are respectively the solvent species that can be used in the nanoparticle formation reaction in the step (a) and the solvent content in the reaction solution.
  • the same and preferred forms are also the same.
  • the content of the coordinating compound in the reaction solution in the metal c1 introduction reaction is preferably 0.1 to 5% by mass, more preferably 0.3 to 5% by mass, More preferably, it is set to ⁇ 5% by mass, and particularly preferably 1 to 3% by mass.
  • a salt of the metal c1 and a coordination compound are mixed and heated in advance, the coordination compound is coordinated with the metal c1, and this is added to the reaction liquid of the metal c1 introduction reaction. It is also preferable to react with the group III-V semiconductor nanoparticles obtained in b).
  • a salt of the metal c1 is an organic acid salt of the metal c1 (for example, a monocarboxylate such as acetate or propionic acid, a hydroxycarboxylate such as glycolate or lactate, a succinate, Dicarboxylates such as oxalate, polycarboxylates such as citric acid, aliphatic or aromatic sulfonates such as methanesulfonate, toluenesulfonate, carbonate, bicarbonate, sulfamate, metal Alkoxides, metal acetylacetonates, etc.) and inorganic acid salts of metal c1 (eg nitrates, sulfates, hydroiodides, hydrochlorides, hydrobromides, hydrofluorates, perchlorates) , Phosphates, hydrocyanates, etc.).
  • a monocarboxylate such as acetate or propionic acid
  • a hydroxycarboxylate such
  • the organic acid salt of Ca is, for example, aliphatic such as calcium acetate, calcium propionate, calcium stearate, calcium glycolate, calcium oxalate, calcium methanesulfonate, calcium toluenesulfonate, or the like.
  • Examples of Ca inorganic acid salts include calcium sulfate, calcium chloride, calcium bromide, and calcium phosphate.
  • examples of the Sc organic acid salt include scandium acetate, scandium stearate, scandium methanesulfonate, scandium carbonate, scandium sulfamate, scandium ethoxide, and acetylacetone scandium.
  • examples of the inorganic acid salt of Sc include scandium nitrate, scandium chloride, scandium bromide, and scandium phosphate.
  • examples of the organic acid salt of Ti include aliphatic or aromatic sulfones such as titanium acetate, titanium stearate, titanium glycolate, titanium oxalate, titanium methanesulfonate, titanium toluenesulfonate, and the like. Acid salts, titanium carbonate, titanium isopropoxide, titanium t-butoxide, and titanium acetylacetone.
  • An example of the Ti inorganic acid salt is titanium chloride.
  • examples of the organic acid salt of V include vanadium acetate, vanadium stearate, vanadium carbonate, triisopropoxy vanadium oxide, and acetylacetonato vanadium.
  • examples of the inorganic acid salt of V include vanadium oxide sulfate, vanadium chloride, vanadium bromide, and vanadium fluoride.
  • examples of the organic acid salt of Cr include chromium acetate, chromium pstearate, and acetylacetone chromium.
  • examples of the inorganic acid salt of Cr include chromium nitrate, chromium chloride, and chromium phosphate.
  • examples of the organic acid salt of Mn include manganese acetate, manganese stearate, manganese 2-ethylhexanoate, manganese oxalate, manganese carbonate, manganese formate, acetylacetone manganese, tris (2, 2,6,6-tetramethyl-3,5-heptanedionato) manganese, bis (trifluoromethanesulfonyl) imidomanganese, N, N′-ethylenebis (salicylideneiminato) manganese.
  • examples of the inorganic acid salt of Mn include manganese nitrate, manganese sulfate, manganese chloride, and manganese phosphate.
  • examples of the organic acid salt of Fe include iron acetate, iron stearate, iron 2-ethylhexanoate, iron oxalate, iron citrate, iron methanesulfonate, iron diethyldithiocarbamate, Examples thereof include iron methoxide, acetylacetone iron, ferrocene, N, N′-ethylenebis (salicylideneiminato) iron and the like.
  • examples of the inorganic acid salt of Fe include iron nitrate, iron sulfate, iron chloride, iron bromide, iron iodide, and iron phosphate.
  • examples of the organic acid salt of Co include cobalt acetate, cobalt stearate, cobalt oxalate, cobalt citrate, cobalt carbonate, cobalt sulfamate, tris (2,2,6,6- Tetramethyl-3,5-heptanedionato) cobalt, acetylacetonecobalt, N, N′-ethylenebis (salicylideneiminato) cobalt and the like.
  • examples of the inorganic acid salt of Co include cobalt nitrate, cobalt sulfate, cobalt chloride, cobalt bromide, cobalt iodide, and cobalt phosphate.
  • examples of the organic acid salt of Ni include aliphatic groups such as nickel acetate, nickel stearate, nickel 2-ethylhexanoate, nickel lactate, nickel trifluoromethanesulfonate, nickel toluenesulfonate, and the like.
  • examples include '-ethylenebis (salicylideneiminato) nickel.
  • examples of the inorganic acid salt of Ni include nickel nitrate, nickel sulfate, nickel chloride, nickel bromide, nickel iodide and the like.
  • examples of the organic acid salt of Cu include copper acetate, copper stearate, copper 2-ethylhexanoate, copper citrate, copper oxalate, copper trifluoromethanesulfonate, copper toluenesulfonate Aliphatic or aromatic sulfonates such as copper carbonate, copper formate, copper ethoxide, copper diethyldithiocarbamate, acetylacetone copper, trifluoroacetylacetonatocopper, bis (1,3-propanediamine) copper dichloride, bis (Trifluoromethanesulfonyl) imide copper, N, N′-ethylenebis (salicylideneiminato) copper and the like.
  • Examples of Cu inorganic acid salts include copper nitrate, copper sulfate, copper chloride, copper bromide, and copper iodide.
  • examples of the organic acid salt of Zn include zinc acetate, zinc propionate, zinc stearate, zinc laurate, zinc 2-ethylhexanoate, copper citrate, copper oxalate, and trifluoro Aliphatic or aromatic sulfonates such as zinc acetate, zinc pt-butylbenzoate, zinc trifluoromethanesulfonate, zinc toluenesulfonate, zinc carbonate, zinc formate, zinc tert-butoxide, zinc diethyldithiocarbamate, Zinc acetylacetone, bis (2,2,6,6-tetramethyl-3,5-heptanedionato) zinc, trifluoroacetylacetonatozinc, dichloro (N, N, N ′, N′-tetramethylethane-1,2) -Diamine) zinc, bis (trifluoromethanesulfonyl) imidozinc
  • the content of the metal c1 salt in the reaction solution is preferably 0.1 to 5% by mass, more preferably 0.2 to 4% by mass, and 0.5 to 2% by mass. Is more preferable.
  • the content of III-V group semiconductor nanoparticles in the reaction solution is preferably 0.05 to 5% by mass, more preferably 0.05 to 2% by mass, More preferably, the content is 0.1 to 2% by mass.
  • the content of the salt of the metal c1 in the reaction solution is such that when the metal c1 is added to the reaction solution with the coordination compound coordinated as described above, the metal c1 is added to the coordination compound. It is set as the value converted into the salt state before coordinating.
  • the reaction temperature of the metal c1 introduction reaction is usually 100 ° C. or higher, preferably 150 ° C. or higher, more preferably 180 ° C. or higher from the viewpoint of the reaction rate. Further, from the viewpoint of solvent boiling point and operational safety, the reaction temperature of the metal c1 introduction reaction is usually 400 ° C or lower, preferably 350 ° C or lower, more preferably 300 ° C or lower, further preferably 250 ° C or lower, 220 More preferably, it is not higher than ° C.
  • the reaction time of the metal c1 introduction reaction is appropriately adjusted according to the purpose, and is usually 1 to 240 minutes, preferably 5 to 180 minutes, more preferably 8 to 120 minutes, and particularly preferably 10 to 60 minutes.
  • the group III-V semiconductor nanoparticles obtained through the metal c1 introduction reaction are usually obtained in the form of a dispersion, and the content of group III-V semiconductor nanoparticles in the dispersion is 0.05-3 mass%. % Is preferred.
  • the nanoparticles in the dispersion are usually used for the next Ga introduction reaction in the state of dispersion without being separated and recovered.
  • Ga introduction reaction nanoparticles obtained by the metal c1 introduction reaction and having the metal c1 introduced into the surface layer are reacted with a Ga salt.
  • Ga can be introduced into the surface of the nanoparticle obtained by the metal c1 introduction reaction, in which the metal c1 is introduced into the surface layer.
  • the Ga introduction reaction may be performed in the presence of the compound a2 described above as an anion supply source, or may be performed in the absence of the compound a2. Although it is not sufficiently clear how Ga is introduced by the Ga introduction reaction, it is presumed that at least one of the following reactions proceeds.
  • Ga introduction reaction when the Ga introduction reaction is performed in the presence of the compound a2, a crystal layer or an amorphous layer made of Ga ions and anions grows on the nanoparticle surface layer in which the metal c1 is introduced into the surface layer, and Ga is present on the nanoparticle surface layer. Introduced or separated from this reaction, it is considered that Ga is also introduced into the nanoparticle surface layer by cation exchange between Ga and metal c1 existing on the nanoparticle surface layer. In addition, when the Ga introduction reaction is performed in the absence of the compound a2, it is considered that Ga is introduced into the nanoparticle surface layer by cation exchange between the metal c1 and Ga existing in the nanoparticle surface layer.
  • the Ga introduction reaction may be performed by mixing a Ga salt into the reaction solution of the metal c1 introduction reaction after the metal c1 introduction reaction. Further, after the completion of the metal c1 introduction reaction, the obtained nanoparticles in which the metal c1 is introduced into the surface layer are redispersed in another solvent, and the redispersed liquid and a Ga salt are mixed to obtain a Ga introduction reaction. May be performed.
  • the solvent species that can be used in the reaction and the content of the solvent in the reaction solution are the same as the solvent species that can be used in the nanoparticle formation reaction and the content of the solvent in the reaction solution, respectively. Is the same.
  • the content of the coordinating compound in the reaction solution in the Ga introduction reaction is preferably 0.1 to 5% by mass, more preferably 0.3 to 5% by mass, The content is more preferably 5% by mass, and particularly preferably 1 to 3% by mass.
  • Ga is obtained by the metal c1 introduction reaction by mixing and heating a Ga salt and a coordination compound in advance, and coordinating the coordination compound to Ga, and adding this to the reaction solution for Ga introduction reaction. It is also preferable to react with the nanoparticles having the metal c1 introduced into the surface layer.
  • the Ga salt used is an organic acid salt of Ga (for example, monocarboxylate such as acetate or propionic acid, hydroxycarboxylate such as glycolate or lactate, succinate or oxalic acid.
  • Dicarboxylates such as salts, polycarboxylates such as citric acid, aliphatic or aromatic sulfonates such as methanesulfonate and toluenesulfonate, carbonates, bicarbonates, sulfamates, metal alkoxides, Metal acetylacetonate etc.), and inorganic salts of Ga (eg nitrate, sulfate, hydroiodide, hydrochloride, hydrobromide, hydrofluoride, perchlorate, phosphoric acid) Salt, hydrocyanate, etc.).
  • Examples of the organic acid salt of Ga include aliphatic or aromatic sulfonates such as gallium acetate, gallium stearate, gallium 2-ethylhexanoate, gallium trifluoromethanesulfonate, gallium toluenesulfonate, gallium ethoxide, and gallium. Examples include isopropoxide, acetylacetone gallium, and trifluoroacetylacetonatogallium. Examples of Ga inorganic acid salts include gallium nitrate, gallium sulfate, gallium chloride, gallium bromide, gallium iodide, and gallium phosphate.
  • the Ga salt content in the reaction solution is preferably 0.1 to 5% by mass, more preferably 0.2 to 4% by mass, and further 0.5 to 2% by mass. preferable. Further, at the start of the Ga introduction reaction, the content of the nanoparticles in which the metal c1 is introduced into the surface layer in the reaction solution is preferably 0.05 to 5% by mass, more preferably 0.05 to 2% by mass. Preferably, 0.1 to 2% by mass is more preferable. Note that the Ga salt content in the reaction solution is such that when Ga is added to the reaction solution with the coordination compound coordinated as described above, Ga is coordinated with the coordination compound. The value converted to the previous salt state.
  • the reaction temperature of the Ga introduction reaction is usually 100 ° C. or higher, preferably 150 ° C. or higher, and more preferably 180 ° C. or higher.
  • the reaction temperature of the Ga introduction reaction is usually 400 ° C. or lower, preferably 350 ° C. or lower, more preferably 300 ° C. or lower, further preferably 250 ° C. or lower, and further preferably 220 ° C. or lower.
  • the reaction time of the Ga introduction reaction is appropriately adjusted according to the purpose, and is usually 1 to 240 minutes, preferably 10 to 180 minutes, more preferably 15 to 120 minutes, and particularly preferably 30 to 90 minutes. For minutes.
  • the group III-V semiconductor nanoparticles obtained through the Ga introduction reaction are usually obtained in the form of a dispersion, and the content of group III-V semiconductor nanoparticles in the dispersion is 0.05 to 3% by mass. It is preferable that The nanoparticles in the dispersion are usually used for the intended reaction or application in the state of the dispersion without being separated and recovered.
  • the production method of the present invention preferably includes a step of forming a shell layer on the surface of the nanoparticles into which Ga has been introduced (hereinafter referred to as “step (d)”) after the step (c) is completed.
  • This shell layer can adopt a form that can be usually adopted as a shell layer of quantum dots.
  • Preferred examples include ZnS, ZnO, ZnSe, ZnSe X S 1-X (0 ⁇ X ⁇ 1), Examples thereof include a shell layer formed of ZnTe, In 2 O 3 or CuO.
  • the shell layer can be formed by a conventional method.
  • a shell layer made of ZnS after completion of the reaction in step (c), Zn acetate, 1-dodecanethiol, and a coordinating compound are added to the reaction solution as necessary, and the reaction is performed at a temperature of, for example, 200 ° C. Can be formed.
  • Other shell layers can also be formed in accordance with this method by changing the raw materials used according to the purpose. It can also be formed by a reaction under a high temperature condition using an organic metal such as dimethylzinc or diethylzinc as a Zn supply source, or a thermal decomposition reaction of zinc dialkyldithiocarbamate.
  • the shell layer is preferably ZnS, ZnO, ZnSe or ZnSe X S 1-X , more preferably ZnS.
  • the group III-V semiconductor quantum dots obtained by the production method of the present invention preferably have an average particle diameter of 1 to 10 nm, more preferably 1 to 6 nm, in a form in which no shell layer is provided.
  • the average particle diameter of the quantum dots including the shell layer is preferably 2 to 10 nm. It is more preferable that
  • Example 1 According to the following reaction scheme, InP quantum dots formed by introducing Ga into the surface layer of InP nanoparticles were prepared.
  • octadecene 22 mL
  • indium acetate 140 mg
  • palmitic acid 369 mg
  • the 1-octadecene used in this experiment was distilled from calcium hydride under reduced pressure and the water content calculated by Karl Fischer method was 6 ppm.
  • the reaction vessel was heated to 300 ° C., and 4 ml of a solution (P (TMS) 3 concentration: 45 mM) in which tris (trimethylsilyl) phosphine [P (TMS) 3 ] was dissolved in octadecene [ODE] was quickly added.
  • InP nanoparticles were formed in the reaction solution by holding for a minute (InP nanoparticle formation reaction).
  • the reaction solution was cooled from 300 ° C. to 250 ° C. at a cooling rate of 1.4 ° C./min (slow cooling step). Subsequently, the reaction solution was kept at 230 ° C. and aged for 2 hours to obtain a dispersion of InP nanoparticles.
  • This InP quantum dot dispersion is diluted 5-fold with toluene, and a fluorescence spectrum (F-7000, manufactured by Hitachi High-Tech Science Co., Ltd., excitation wavelength: 450 nm) is measured to measure the maximum emission, the half width of the emission peak, and the quantum yield. did.
  • F-7000 manufactured by Hitachi High-Tech Science Co., Ltd., excitation wavelength: 450 nm
  • Example 2 In Example 1, the slow cooling process “cooling from 300 ° C. to 250 ° C. at a cooling rate of 1.4 ° C./min” was changed to “cooling from 300 ° C. to 250 ° C. at a cooling rate of 1.0 ° C./min”. Except for this, an InP quantum dot having an average particle diameter of 4 nm was obtained in the same manner as in Example 1, and the fluorescence spectrum, emission maximum, half width of emission peak, and quantum yield were measured. The results are shown in Table 1 below.
  • Example 3 InP quantum dots having an average particle diameter of 4 nm were obtained in the same manner as in Example 1 except that the conditions of InP nanoparticle formation reaction “300 ° C. for 30 minutes” were changed to “300 ° C. for 10 seconds” in Example 1.
  • the fluorescence spectrum, the emission maximum, the half-value width of the emission peak, and the quantum yield were measured. The results are shown in Table 1 below.
  • Example 4 In Example 1, the slow cooling process “cooling from 300 ° C. to 250 ° C. at a cooling rate of 1.4 ° C./min” was changed to “cooling from 300 ° C. to 250 ° C. at a cooling rate of 2.8 ° C./min”. Except for this, an InP quantum dot having an average particle diameter of 4 nm was obtained in the same manner as in Example 1, and the fluorescence spectrum, emission maximum, half width of emission peak, and quantum yield were measured. The results are shown in Table 1 below.
  • Example 5 InP quantum dots having an average particle diameter of 4 nm were obtained in the same manner as in Example 4 except that the conditions of InP nanoparticle formation reaction “300 ° C. for 30 minutes” were changed to “300 ° C. for 3 seconds” in Example 4. The fluorescence spectrum, the emission maximum, the half-value width of the emission peak, and the quantum yield were measured. The results are shown in Table 1 below.
  • Example 6 InP quantum dots having an average particle diameter of 4 nm were obtained in the same manner as in Example 1 except that the conditions of InP nanoparticle formation reaction “300 ° C. for 30 minutes” were changed to “300 ° C. for 180 minutes” in Example 1.
  • the fluorescence spectrum, the emission maximum, the half-value width of the emission peak, and the quantum yield were measured. The results are shown in Table 1 below.
  • Example 7 In Example 1, the InP nanoparticle formation reaction condition “300 ° C. for 30 minutes” was changed to “270 ° C. for 30 minutes”, and the cooling step “cooling rate of 1.4 ° C./min from 300 ° C. to 250 ° C.” InP quantum dots having an average particle diameter of 4 nm were obtained in the same manner as in Example 1 except that “cooling at 270 ° C. was changed from 270 ° C. to 250 ° C. at a cooling rate of 0.8 ° C./min”. The spectrum, emission maximum, half width of emission peak, and quantum yield were measured. The results are shown in Table 1 below.
  • Example 8 In Example 7, the slow cooling process “cooling from 270 ° C. to 250 ° C. at a cooling rate of 0.8 ° C./min” was changed to “cooling from 270 ° C. to 250 ° C. at a cooling rate of 1.4 ° C./min”. Except for this, an InP quantum dot having an average particle diameter of 4 nm was obtained in the same manner as in Example 7, and the fluorescence spectrum, emission maximum, half width of emission peak, and quantum yield were measured. The results are shown in Table 1 below.
  • Example 9 In Example 1, in place of 1-octadecene having a water content of 14 ppm instead of 1-octadecene having a water content of 6 ppm used in the InP nanoparticle formation reaction, an average particle diameter of 4 nm was obtained in the same manner as in Example 1. InP quantum dots were obtained, and the fluorescence spectrum, emission maximum, half width of emission peak, and quantum yield were measured. The results are shown in Table 1 below.
  • Example 10 A ZnS layer was further formed on the InP quantum dots obtained in Example 1. More specifically, after adding a gallium solution and reacting at 200 ° C. for 1 hour in Example 1, the reaction solution was heated to 240 ° C., and a zinc solution (zinc acetate (66 mg), palmitic acid (185 mg), 1- 10 ml of a mixture of octadecene (15 ml) obtained by vacuum degassing at 130 ° C. for 30 minutes and 182 mg of 1-dodecanethiol was added, reacted at 240 ° C. for 6 hours, and allowed to cool to room temperature.
  • a zinc solution zinc acetate (66 mg), palmitic acid (185 mg)
  • a dispersion liquid of InP quantum dots having an average particle diameter of 5 nm in which Ga was introduced into the surface layer of InP nanoparticles and a ZnS shell layer was formed was obtained.
  • the content of InP quantum dots (with a shell layer) was 0.3% by mass.
  • This InP quantum dot dispersion was diluted 5-fold with toluene, and the emission maximum, the half width of the emission peak, and the quantum yield were measured in the same manner as in Example 1. The results are shown in Table 1 below.
  • Example 1 In Example 1, except that the slow cooling process “cooling from 300 ° C. to 250 ° C. at a cooling rate of 1.4 ° C./min” was changed to “cooling from 300 ° C. to 250 ° C. at a cooling rate of 7 ° C./min”. Obtained InP quantum dots having an average particle diameter of 4 nm in the same manner as in Example 1, and the fluorescence spectrum, emission maximum, half width of emission peak, and quantum yield were measured. The results are shown in Table 1 below.
  • Comparative Example 2 InP quantum dots having an average particle diameter of 4 nm were formed in the same manner as in Comparative Example 1, except that the conditions of InP nanoparticle formation reaction “300 ° C. for 30 minutes” were changed to “300 ° C. for 10 seconds”. The fluorescence spectrum, the emission maximum, the half-value width of the emission peak, and the quantum yield were measured. The results are shown in Table 1 below.
  • Example 3 In Example 1, the slow cooling process “cooling from 300 ° C. to 250 ° C. at a cooling rate of 1.4 ° C./min” was changed to “cooling from 300 ° C. to 250 ° C. at a cooling rate of 0.1 ° C./min”. Except for this, an InP quantum dot having an average particle diameter of 4 nm was obtained in the same manner as in Example 1, and the fluorescence spectrum, emission maximum, half width of emission peak, and quantum yield were measured. The results are shown in Table 1 below.

Abstract

[Problem] To provide a method for producing group III-V semiconductor quantum dots, said method making it possible to obtain group III-V semiconductor quantum dots exhibiting sharp light emitting properties and a narrow emission peak half width, and achieving high luminance as a result of excellent quantum yield. [Solution] This method for producing group III-V semiconductor quantum dots includes the following steps (a) and (b): (a) a step wherein a solution, which contains a solvent, a compound a1 including a group III element, and a compound a2 including a group V element, is maintained between 270 to 400°C, and the compound a1 and the compound a2 are reacted to form group III-V semiconductor nanoparticles in said solution; and (b) a step wherein the solution having said nanoparticles formed therein is cooled to 250°C at a cooling speed of 0.3 to 3°C/min.

Description

半導体量子ドットの製造方法Manufacturing method of semiconductor quantum dots
 本発明は、半導体量子ドットの製造方法に関する。 The present invention relates to a method for producing semiconductor quantum dots.
 半導体量子ドットはナノスケール(数ナノメートル~数十ナノメートル)の半導体結晶であり、量子サイズ効果に基づく特徴的な光の吸収と発光特性を示す。半導体量子ドットに期待される応用範囲は広く、例えば、その粒径に対応した強い発光特性に基づきディスプレイ、照明、生体イメージング、太陽電池等への応用研究が進められている。また、半導体量子ドットの特異な電子特性を利用して高輝度と低消費電力を実現する量子ドットレーザー、単一電子トランジスタ等としての応用研究も進められている。 Semiconductor quantum dots are nanoscale (several nanometers to several tens of nanometers) semiconductor crystals that exhibit characteristic light absorption and emission characteristics based on the quantum size effect. The application range expected for semiconductor quantum dots is wide. For example, application research to displays, illumination, biological imaging, solar cells, and the like is underway based on strong light emission characteristics corresponding to the particle size. In addition, applied research as a quantum dot laser, a single electron transistor, and the like that realize high brightness and low power consumption by utilizing the unique electronic characteristics of semiconductor quantum dots is also underway.
 現在、半導体量子ドットの主流はカドミウムをカチオンとして有するナノ結晶(CdSe、CdS等のナノ結晶)を用いたカドミウム系量子ドットである。しかし、カドミウムはその毒性が懸念され、非カドミウム系量子ドットのニーズが高まっている。かかる非カドミウム系量子ドットとして、インジウム等をカチオンとして有するIII-V族半導体のナノ結晶を用いた量子ドット(以下、「III-V族半導体量子ドット」という。)が知られている。しかし、III-V族半導体量子ドットにはまだ性能面で課題が多い。 Currently, the mainstream of semiconductor quantum dots is cadmium-based quantum dots using nanocrystals (nanocrystals such as CdSe and CdS) having cadmium as a cation. However, cadmium is concerned about its toxicity, and the need for non-cadmium quantum dots is increasing. As such non-cadmium quantum dots, quantum dots using III-V semiconductor nanocrystals having indium or the like as a cation (hereinafter referred to as “III-V semiconductor quantum dots”) are known. However, III-V semiconductor quantum dots still have many problems in terms of performance.
 かかる状況下、III-V族半導体量子ドットの性能を高めるべく技術開発が進められている。例えば特許文献1には、ナノ構造体としてInPコアを準備し、次いでC5~C8カルボン酸配位子の存在下でラウリン酸インジウムを反応させてInPコアを強化し、その後、ZnSeSシェルとZnSシェルを順次形成し、InP/ZnSeS/ZnSドットを得ること、このInP/ZnSeS/ZnSドットが高い量子収率(高輝度)を示すことが記載されている。また特許文献2には、酢酸インジウムと、脂肪酸等の配位子と、非配位性溶媒であるオクタデセンとを反応させてIn-配位子錯体を形成し、次いでトリス(トリメチルシリル)ホスフィンを反応させることによりInPナノ結晶を得ることが記載されている。 Under such circumstances, technological development is underway to improve the performance of III-V semiconductor quantum dots. For example, Patent Document 1 prepares an InP core as a nanostructure, and then reacts with indium laurate in the presence of a C5-C8 carboxylic acid ligand to reinforce the InP core, and then ZnSeS shell and ZnS shell Are sequentially formed to obtain InP / ZnSeS / ZnS dots, and that this InP / ZnSeS / ZnS dot exhibits a high quantum yield (high luminance). Patent Document 2 discloses that an in-ligand complex is formed by reacting indium acetate with a ligand such as a fatty acid and octadecene, which is a non-coordinating solvent, and then reacting with tris (trimethylsilyl) phosphine. To obtain InP nanocrystals.
特開2015-529698号公報JP2015-529698A 特許第4344613号公報Japanese Patent No. 4344613
 しかし、上記特許文献1及び2記載の技術をはじめ、これまでのIII-V族半導体量子ドットは、発光特性(量子収率及び発光ピークの半値幅)等がある程度改善されてきているものの、未だ十分な特性を実現するには至っていない。
 本発明は、優れた量子収率により高い輝度を実現し、また、発光ピークの半値幅が狭くシャープな発光特性を示すIII-V族半導体量子ドットを得ることができる、III-V族半導体量子ドットの製造方法を提供することを課題とする。
However, the conventional III-V group semiconductor quantum dots including the techniques described in Patent Documents 1 and 2 have improved the light emission characteristics (quantum yield and half-value width of the light emission peak) to some extent. It has not yet achieved sufficient characteristics.
The present invention realizes a high luminance due to an excellent quantum yield and also provides a group III-V semiconductor quantum dot capable of obtaining a group III-V semiconductor quantum dot having a narrow half-value width of the emission peak and exhibiting sharp emission characteristics. It is an object to provide a method for manufacturing dots.
 本発明者らは上記課題に鑑み鋭意検討を重ねた結果、III-V族半導体量子ドットの製造において、第III族元素を含む化合物と、第V族元素を含む化合物とを高温下で反応させてIII-V族半導体のナノ粒子を形成し、その後、ナノ粒子の成長を停止すべく高温反応液を冷却するに当たり、この高温反応液が特定温度に冷却されるまでの間は急冷(放冷)せずに、冷却速度をコントロールしてゆっくりと冷却することにより、得られるIII-V族半導体量子ドットの量子収率を効果的に高めることができ、より高い輝度を実現できること、また、この量子ドットは発光ピークの半値幅が狭く、シャープな発光特性を示すことを見い出した。
 本発明はこれらの知見に基づきさらに検討を重ねて完成されるに至ったものである。
As a result of intensive studies in view of the above problems, the present inventors have made a reaction between a compound containing a Group III element and a compound containing a Group V element at a high temperature in the production of III-V semiconductor quantum dots. When the III-V semiconductor nanoparticles are formed and then the high temperature reaction liquid is cooled to stop the growth of the nanoparticles, rapid cooling (cooling) is performed until the high temperature reaction liquid is cooled to a specific temperature. ) Without controlling the cooling rate, the quantum yield of the obtained group III-V semiconductor quantum dots can be effectively increased, and higher brightness can be realized. It was found that quantum dots have a narrow emission peak half-value width and show sharp emission characteristics.
The present invention has been completed through further studies based on these findings.
 すなわち、本発明の課題は下記の手段により解決された。
〔1〕
 下記工程(a)及び(b)を含む、III-V族半導体量子ドットの製造方法。
(a)第III族元素を含む化合物a1と、第V族元素を含む化合物a2と、溶媒とを含有する液を、270~400℃に保持して化合物a1と化合物a2とを反応させ、反応液中にIII-V族半導体のナノ粒子を形成させる工程;
(b)上記のナノ粒子を形成させた反応液を、0.3~3℃/分の冷却速度で250℃まで冷却する工程。
〔2〕
 上記工程(a)における270~400℃の反応時間を10秒間~120分間とする、〔1〕記載のIII-V族半導体量子ドットの製造方法。
〔3〕
 上記化合物a1に含まれる第III族元素がInである、〔1〕又は〔2〕記載のIII-V族半導体量子ドットの製造方法。
〔4〕
 上記化合物a2に含まれる第V族元素がP又はAsである、〔1〕~〔3〕のいずれか記載のIII-V族半導体量子ドットの製造方法。
〔5〕
 上記III-V族半導体量子ドットがInP量子ドットである、〔1〕~〔4〕のいずれか記載のIII-V族半導体量子ドットの製造方法。
〔6〕
 上記溶媒が非配位性溶媒である、〔1〕~〔5〕のいずれか記載のIII-V族半導体量子ドットの製造方法。
〔7〕
 上記溶媒の含水率が10ppm以下である、〔1〕~〔6〕のいずれか記載のIII-V族半導体量子ドットの製造方法。
〔8〕
 上記工程(a)における反応温度が、280~350℃である、〔1〕~〔7〕のいずれか記載のIII-V族半導体量子ドットの製造方法。
〔9〕
 上記工程(b)が、上記の250℃まで冷却した反応液を、150~250℃の温度で0.5~4時間保持することを含む、〔1〕~〔8〕のいずれか記載のIII-V族半導体量子ドットの製造方法。
〔10〕
 上記工程(b)の後、上記ナノ粒子の表層にGaを導入する工程(c)を含む、〔1〕~〔9〕のいずれか記載のIII-V族半導体量子ドットの製造方法。
〔11〕
 上記工程(c)で得られた、表層にGaが導入されたナノ粒子表面に、シェル層を形成する工程(d)を含む、〔10〕記載のIII-V族半導体量子ドットの製造方法。
〔12〕
 上記シェル層がZnS、ZnO、ZnSe、ZnSe1-X、ZnTe又はCuOである、〔11〕に記載のIII-V族半導体量子ドットの製造方法。但し、0<X<1である。
That is, the subject of this invention was solved by the following means.
[1]
A method for producing a group III-V semiconductor quantum dot, comprising the following steps (a) and (b):
(A) A liquid containing a compound a1 containing a Group III element, a compound a2 containing a Group V element, and a solvent is maintained at 270 to 400 ° C. to react the compound a1 with the compound a2, and react Forming III-V semiconductor nanoparticles in the liquid;
(B) A step of cooling the reaction liquid in which the nanoparticles are formed to 250 ° C. at a cooling rate of 0.3 to 3 ° C./min.
[2]
The method for producing a group III-V semiconductor quantum dot according to [1], wherein the reaction time at 270 to 400 ° C. in the step (a) is 10 seconds to 120 minutes.
[3]
The method for producing a group III-V semiconductor quantum dot according to [1] or [2], wherein the group III element contained in the compound a1 is In.
[4]
The method for producing a III-V semiconductor quantum dot according to any one of [1] to [3], wherein the group V element contained in the compound a2 is P or As.
[5]
The method for producing a group III-V semiconductor quantum dot according to any one of [1] to [4], wherein the group III-V semiconductor quantum dot is an InP quantum dot.
[6]
The method for producing a group III-V semiconductor quantum dot according to any one of [1] to [5], wherein the solvent is a non-coordinating solvent.
[7]
The method for producing a group III-V semiconductor quantum dot according to any one of [1] to [6], wherein the water content of the solvent is 10 ppm or less.
[8]
The method for producing a group III-V semiconductor quantum dot according to any one of [1] to [7], wherein the reaction temperature in the step (a) is 280 to 350 ° C.
[9]
The step (b) includes holding the reaction liquid cooled to 250 ° C. at a temperature of 150 to 250 ° C. for 0.5 to 4 hours, III according to any one of [1] to [8] A method for producing a group V semiconductor quantum dot.
[10]
The method for producing a group III-V semiconductor quantum dot according to any one of [1] to [9], further comprising a step (c) of introducing Ga into the surface layer of the nanoparticles after the step (b).
[11]
[10] The method for producing a group III-V semiconductor quantum dot according to [10], comprising a step (d) of forming a shell layer on the surface of the nanoparticles having Ga introduced into the surface layer obtained in the step (c).
[12]
The method for producing a group III-V semiconductor quantum dot according to [11], wherein the shell layer is ZnS, ZnO, ZnSe, ZnSe X S 1-X , ZnTe, or CuO. However, 0 <X <1.
 本明細書において「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
 本発明において「III-V族半導体量子ドット」という場合、第III族元素と第V族元素から構成される化合物半導体からなるナノ粒子(ナノ結晶)を意味する他、このナノ粒子の結晶構造中ないしは表層に、結晶構成成分以外の元素(例えばZn、Ga等)がドープないしは導入された形態、及びこれらのナノ粒子表面にシェル層(例えばZnSシェル層)が形成された形態を含む意味に用いる。つまり、本発明において「III-V族半導体量子ドット」とは、その構造中にIII-V族半導体のナノ粒子を有し、このIII-V族半導体ナノ粒子が有する機能ないし特性を発現しうる状態にあるナノ粒子をすべて包含する意味に用いている。例を挙げると、「InP量子ドット」という場合には、InPからなるナノ粒子の他、例えばZnがドープされたIn(Zn)Pアロイからなるナノ粒子、これらのナノ粒子表層にIn以外の原子(Zn、Ga等)が導入された形態、これらのナノ粒子の表面にシェル層(ZnS等)が形成された形態のすべてを包含する意味である。
 本明細書において「ナノ粒子」とは、平均粒径が20nm未満の粒子を意味し、好ましくは15nm以下、より好ましくは10nm以下である。また「ナノ粒子」の平均粒径は、通常は1nm以上であり、2nm以上が好ましい。
In the present specification, a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
In the present invention, the “III-V semiconductor quantum dot” means a nanoparticle (nanocrystal) composed of a compound semiconductor composed of a group III element and a group V element, and in the crystal structure of the nanoparticle. It is also used to mean that the surface layer is doped or introduced with an element other than a crystal component (for example, Zn, Ga, etc.), and that a shell layer (for example, ZnS shell layer) is formed on the surface of these nanoparticles. . In other words, in the present invention, the “III-V group semiconductor quantum dot” has a III-V group semiconductor nanoparticle in its structure, and can exhibit the functions or characteristics of the group III-V semiconductor nanoparticle. It is used to include all nanoparticles in the state. For example, in the case of “InP quantum dots”, in addition to nanoparticles of InP, for example, nanoparticles of In (Zn) P alloy doped with Zn, atoms other than In on the surface of these nanoparticles It is meant to include all of the forms in which (Zn, Ga, etc.) are introduced and the shell layer (ZnS, etc.) formed on the surface of these nanoparticles.
In the present specification, the “nanoparticle” means a particle having an average particle diameter of less than 20 nm, preferably 15 nm or less, more preferably 10 nm or less. The average particle size of the “nanoparticles” is usually 1 nm or more, preferably 2 nm or more.
 本発明のIII-V族半導体量子ドットの製造方法によれば、優れた量子収率により高い輝度を実現し、また、発光ピークの半値幅が狭くシャープな発光特性を示すIII-V族半導体量子ドットを得ることができる。
 本発明の上記および他の特徴および利点は、下記の記載からより明らかになるであろう。
According to the method for producing a group III-V semiconductor quantum dot of the present invention, a group III-V semiconductor quantum dot that achieves high luminance with an excellent quantum yield and has a narrow emission peak half-value width and sharp emission characteristics. Dots can be obtained.
The above and other features and advantages of the present invention will become more apparent from the following description.
 本発明の好ましい実施形態について以下に説明するが、本発明はこれらの実施形態に限定されるものではない。 Preferred embodiments of the present invention will be described below, but the present invention is not limited to these embodiments.
[III-V族半導体量子ドットの製造方法]
 本発明のIII-V族半導体量子ドットの製造方法(以下、単に「本発明の製造方法」という。)は、下記工程(a)及び(b)を含む。
(a)第III族元素を含む化合物a1と、第V族元素を含む化合物a2と、溶媒とを含有する液を、270~400℃に保持して化合物a1と化合物a2とを反応させ、この反応液中にIII-V族半導体のナノ粒子を形成させる工程(以下、270~400℃における化合物a1と化合物a2との反応を「ナノ粒子形成反応」ともいう。);
(b)上記のナノ粒子を形成させた反応液を、0.3~3℃/分の冷却速度で250℃まで冷却する工程。
 本発明の製造方法における各工程について順に説明する。
[Method for Producing III-V Semiconductor Quantum Dots]
The method for producing a group III-V semiconductor quantum dot of the present invention (hereinafter simply referred to as “the production method of the present invention”) includes the following steps (a) and (b).
(A) A liquid containing a compound a1 containing a Group III element, a compound a2 containing a Group V element, and a solvent is maintained at 270 to 400 ° C. to react the compound a1 with the compound a2, A step of forming III-V group semiconductor nanoparticles in the reaction solution (hereinafter, the reaction between compound a1 and compound a2 at 270 to 400 ° C. is also referred to as “nanoparticle formation reaction”);
(B) A step of cooling the reaction liquid in which the nanoparticles are formed to 250 ° C. at a cooling rate of 0.3 to 3 ° C./min.
Each step in the production method of the present invention will be described in order.
<工程(a)>
 上記工程(a)は、第III族元素を含む化合物a1と、第V族元素を含む化合物a2と、溶媒とを含有する液を270~400℃の高温反応に付して、この液中にIII-V族半導体のナノ粒子を形成させる工程である。形成されたナノ粒子は通常、溶媒種の選択、分散剤等の作用により液中に分散した状態にある。
 化合物a1としては、通常は1種の化合物を用いるが、2種以上の化合物を用いてもよい。化合物a1として2種以上の化合物を用いる場合には、これら2種以上の各化合物が有する第III族元素は同一であることが好ましい。同様に、化合物a2として通常は1種の化合物を用いるが、2種以上の化合物を用いてもよい。化合物a2として2種以上の化合物を用いる場合には、これら2種以上の各化合物が有する第V族元素は同一であることが好ましい。つまり、本発明の製造方法において、得られるIII-V族半導体量子ドットはすべて同じ化学構造であることが好ましい。
 化合物a1は、III-V族半導体量子ドットのナノ結晶を構成するカチオン成分の供給源となる。化合物a1に含まれる第III族元素はアルミニウム(Al)、ガリウム(Ga)又はインジウム(In)が好ましく、より好ましくはInである。化合物a1は通常はAl、Ga又はInを含む金属塩である。
 Al、Ga又はInを含む金属塩の形態としては、Al、Ga又はInの有機酸塩(例えば、酢酸塩、プロピオン酸等のモノカルボン酸塩、グリコール酸塩、乳酸塩等のヒドロキシカルボン酸塩、コハク酸塩、シュウ酸塩等のジカルボン酸塩、クエン酸等のポリカルボン酸塩、メタンスルホン酸塩、トルエンスルホン酸塩等の脂肪族又は芳香族スルホン酸塩、炭酸塩、炭酸水素塩、スルファミン酸塩、金属アルコキシド、金属アセチルアセトナート等)、並びに、Al、Ga又はInの無機酸塩(例えば、硝酸塩、硫酸塩、ヨウ化水素酸塩、塩酸塩、臭化水素酸塩、フッ化水素酸塩、過塩素酸塩、リン酸塩、シアン化水素酸塩等)が挙げられる。有機溶媒中への溶解性を考慮すると、Al、Ga又はInを含む金属塩は有機酸塩が好ましい。
<Process (a)>
In the step (a), a liquid containing a compound a1 containing a Group III element, a compound a2 containing a Group V element, and a solvent is subjected to a high temperature reaction at 270 to 400 ° C. This is a step of forming III-V semiconductor nanoparticles. The formed nanoparticles are usually in a state of being dispersed in the liquid by the selection of the solvent species and the action of a dispersant or the like.
As the compound a1, one type of compound is usually used, but two or more types of compounds may be used. When using 2 or more types of compounds as compound a1, it is preferable that the group III element which each of these 2 or more types compound has is the same. Similarly, one compound is usually used as the compound a2, but two or more compounds may be used. When using 2 or more types of compounds as compound a2, it is preferable that the group V element which each of these 2 or more types compound has is the same. That is, in the production method of the present invention, it is preferable that all the III-V group semiconductor quantum dots obtained have the same chemical structure.
The compound a1 serves as a supply source of the cation component constituting the nanocrystal of the III-V semiconductor quantum dot. The group III element contained in the compound a1 is preferably aluminum (Al), gallium (Ga) or indium (In), more preferably In. The compound a1 is usually a metal salt containing Al, Ga or In.
As a form of the metal salt containing Al, Ga or In, an organic acid salt of Al, Ga or In (for example, a monocarboxylate such as acetate or propionic acid, a hydroxycarboxylate such as glycolate or lactate, etc. , Dicarboxylates such as succinate and oxalate, polycarboxylates such as citric acid, aliphatic or aromatic sulfonates such as methanesulfonate and toluenesulfonate, carbonates, bicarbonates, Sulfamate, metal alkoxide, metal acetylacetonate, etc.) and inorganic acid salts of Al, Ga or In (eg nitrate, sulfate, hydroiodide, hydrochloride, hydrobromide, fluoride) Hydrogenates, perchlorates, phosphates, hydrocyanates, etc.). In consideration of solubility in an organic solvent, the metal salt containing Al, Ga or In is preferably an organic acid salt.
 上記金属塩のうち、Al塩の好ましい具体例としては、硝酸アルミニウム、硫酸アルミニウム、炭酸アルミニウム、リン酸アルミニウム、過塩素酸アルミニウム、シアン化アルミニウム、フッ化アルミニウム、塩化アルミニウム、臭化アルミニウム、ヨウ化アルミニウム等のAlの無機酸塩;並びに、酢酸アルミニウム、シュウ酸アルミニウム、酒石酸アルミニウム、アルミニウムアルコキシド(例えばアルミニウムイソプロポキシド、アルミニウムブトキシド、アルミニウムエトキシド、アルミニウムメトキシエトキシド)、スルファミン酸アルミニウム、アセチルアセトンアルミニウム等のAlの有機酸塩を挙げることができる。これらのAl塩は、単独で使用しても良く、混合して使用しても良い。 Among the above metal salts, preferred specific examples of the Al salt include aluminum nitrate, aluminum sulfate, aluminum carbonate, aluminum phosphate, aluminum perchlorate, aluminum cyanide, aluminum fluoride, aluminum chloride, aluminum bromide, and iodide. Inorganic acid salts of Al such as aluminum; and aluminum acetate, aluminum oxalate, aluminum tartrate, aluminum alkoxide (eg, aluminum isopropoxide, aluminum butoxide, aluminum ethoxide, aluminum methoxyethoxide), aluminum sulfamate, acetylacetone aluminum, etc. The organic acid salt of Al can be mentioned. These Al salts may be used alone or in combination.
 上記金属塩のうち、Ga塩の好ましい具体例としては、硝酸ガリウム、硫酸ガリウム、炭酸ガリウム、リン酸ガリウム、過塩素酸ガリウム、シアン化ガリウム、フッ化ガリウム、塩化ガリウム、臭化ガリウム、ヨウ化ガリウム等のGaの無機酸塩;並びに、酢酸ガリウム、シュウ酸ガリウム、酒石酸ガリウム、ガリウムアルコキシド(例えばガリウムイソプロポキシド、ガリウムブトキシド、ガリウムエトキシド、ガリウムメトキシエトキシド)、スルファミン酸ガリウム、アセチルアセトンガリウム等のGaの有機酸塩を挙げることができる。これらのGa塩は、単独で使用しても良く、混合して使用しても良い。 Among the above metal salts, preferable specific examples of the Ga salt include gallium nitrate, gallium sulfate, gallium carbonate, gallium phosphate, gallium perchlorate, gallium cyanide, gallium fluoride, gallium chloride, gallium bromide, and iodide. Inorganic acid salts of Ga such as gallium; and gallium acetate, gallium oxalate, gallium tartrate, gallium alkoxide (eg, gallium isopropoxide, gallium butoxide, gallium ethoxide, gallium methoxyethoxide), gallium sulfamate, acetylacetone gallium, etc. An organic acid salt of Ga. These Ga salts may be used alone or in combination.
 上記金属塩のうち、In塩の好ましい具体例としては、硝酸インジウム、硫酸インジウム、炭酸インジウム、リン酸インジウム、過塩素酸インジウム、シアン化インジウム、フッ化インジウム、塩化インジウム、臭化インジウム、ヨウ化インジウム等のInの無機酸塩;並びに、酢酸インジウム、シュウ酸インジウム、酒石酸インジウム、インジウムアルコキシド(例えばインジウムイソプロポキシド、インジウムブトキシド、インジウムエトキシド、インジウムメトキシエトキシド)、スルファミン酸インジウム、アセチルアセトンインジウム等のInの有機酸塩を挙げることができる。これらの金属塩は、単独で使用しても良く、混合して使用しても良い。 Among the above metal salts, preferred specific examples of the In salt include indium nitrate, indium sulfate, indium carbonate, indium phosphate, indium perchlorate, indium cyanide, indium fluoride, indium chloride, indium bromide, and iodide. Inorganic acid salts of In such as indium; and indium acetate, indium oxalate, indium tartrate, indium alkoxide (for example, indium isopropoxide, indium butoxide, indium ethoxide, indium methoxyethoxide), indium sulfamate, indium acetylacetone, etc. In organic acid salts of In. These metal salts may be used alone or in combination.
 化合物a2は、III-V族半導体量子ドットのナノ結晶を構成するアニオン成分の供給源となる。化合物a2に含まれる第V族元素としては、窒素(N)、リン(P)、ヒ素(As)又はアンチモン(Sb)が好ましく、より好ましくはP又はAsであり、さらに好ましくはPである。
 化合物a2がNを含む含窒素化合物の場合、この含窒素化合物としては、例えば、アンモニア、アンモニウムニトロソフェニルヒドロキシルアミン、フッ化アンモニウム、塩化アンモニウム、臭化アンモニウム、ヨウ化アンモニウムなどが挙げられる。
 化合物a2がPを含む含リン化合物の場合、この含リン化合物としては、例えば、トリス(トリメチルシリル)ホスフィン、トリス(トリエチルシリル)ホスフィン、トリス(トリ-n-プロピルシリル)ホスフィン、トリス(トリイソプロピルシリル)ホスフィン、トリス(ジメチルフェニルシリル)ホスフィン、トリス(ジメチルベンジルシリル)ホスフィン、ビス(トリメチルシリル)ホスフィン、トリス(ジエチルアミノ)ホスフィン及びトリス(ジメチルアミノ)ホスフィンが挙げられる。
 化合物a2がAsを含む含ヒ素化合物の場合、この含ヒ素化合物としては、例えば、トリメチルアルシン、トリフェニルアルシン、トリフェノキシアルシン、トリス(トリメチルシリル)アルシン、塩化ジメチルアルシン、ジメチルアルシン等が挙げられる。
 化合物a2がSbを含む含アンチモン化合物の場合、この含アンチモン化合物としては、例えば、トリス(トリメチルシリル)アンチモン、トリフェニルアンチモン等が挙げられる。
The compound a2 serves as a supply source of the anion component constituting the nanocrystal of the III-V semiconductor quantum dot. The group V element contained in the compound a2 is preferably nitrogen (N), phosphorus (P), arsenic (As) or antimony (Sb), more preferably P or As, and still more preferably P.
When the compound a2 is a nitrogen-containing compound containing N, examples of the nitrogen-containing compound include ammonia, ammonium nitrosophenylhydroxylamine, ammonium fluoride, ammonium chloride, ammonium bromide, ammonium iodide, and the like.
When the compound a2 is a phosphorus-containing compound containing P, examples of the phosphorus-containing compound include tris (trimethylsilyl) phosphine, tris (triethylsilyl) phosphine, tris (tri-n-propylsilyl) phosphine, and tris (triisopropylsilyl). ) Phosphine, tris (dimethylphenylsilyl) phosphine, tris (dimethylbenzylsilyl) phosphine, bis (trimethylsilyl) phosphine, tris (diethylamino) phosphine and tris (dimethylamino) phosphine.
When the compound a2 is an arsenic compound containing As, examples of the arsenic compound include trimethylarsine, triphenylarsine, triphenoxyarsine, tris (trimethylsilyl) arsine, dimethylarsine chloride, dimethylarsine and the like.
When the compound a2 is an antimony-containing compound containing Sb, examples of the antimony-containing compound include tris (trimethylsilyl) antimony and triphenylantimony.
 ナノ粒子形成反応に用いる上記溶媒に特に制限はなく、通常は有機溶媒である。形成される粒子の分散性等の観点からは非極性溶媒を含有することが好ましい。分散液中に含まれ得る非極性溶媒は、1種のみであっても2種以上であってもよい。上記非極性溶媒としてアルカン、アルケン、ベンゼン及びトルエンから選ばれる溶媒を用いることが好ましい。
 上記非極性溶媒は、170℃以上の沸点を有することが好ましい。かかる非極性溶媒の好ましい具体例として、n-デカン、n-ドデカン、n-ヘキサデカン、n-オクタデカンなどの脂肪族飽和炭化水素、1-ウンデセン、1-ドデセン、1-ヘキサデセン、1-オクタデセンなどの脂肪族不飽和炭化水素、トリオクチルホスフィンが挙げられる。なかでも上記非極性溶媒は炭素数が12以上の脂肪族不飽和炭化水素が好ましく、1-オクタデセンがさらに好ましい。沸点が170℃以上の有機溶媒を用いることにより、粒子形成中に粒子がより凝集しにくくなり、ナノ粒子の溶液分散性がより良好なものとなる。
 溶媒中に占める非極性溶媒の割合は80体積%以上が好ましく、90体積%以上がより好ましく、95体積%以上がさらに好ましく、99体積%以上がさらに好ましく、溶媒のすべてが非極性溶媒であることが特に好ましい。
There is no restriction | limiting in particular in the said solvent used for nanoparticle formation reaction, Usually, it is an organic solvent. From the viewpoint of the dispersibility of the formed particles, it is preferable to contain a nonpolar solvent. The nonpolar solvent that may be contained in the dispersion may be only one type or two or more types. It is preferable to use a solvent selected from alkane, alkene, benzene and toluene as the nonpolar solvent.
The nonpolar solvent preferably has a boiling point of 170 ° C. or higher. Preferred specific examples of such nonpolar solvents include aliphatic saturated hydrocarbons such as n-decane, n-dodecane, n-hexadecane, and n-octadecane, 1-undecene, 1-dodecene, 1-hexadecene, and 1-octadecene. Aliphatic unsaturated hydrocarbons and trioctylphosphine are exemplified. Among these, the nonpolar solvent is preferably an aliphatic unsaturated hydrocarbon having 12 or more carbon atoms, and more preferably 1-octadecene. By using an organic solvent having a boiling point of 170 ° C. or higher, the particles are less likely to aggregate during particle formation, and the solution dispersibility of the nanoparticles becomes better.
The proportion of the nonpolar solvent in the solvent is preferably 80% by volume or more, more preferably 90% by volume or more, more preferably 95% by volume or more, further preferably 99% by volume or more, and all of the solvents are nonpolar solvents. It is particularly preferred.
 ナノ粒子形成反応においては、上記溶媒に加え、又は上記溶媒に代えて、下記溶媒の1種又は2種以上を用いることもできる。
 N-メチル-2-ピロリドン(NMP)、N,N-ジメチルアセトアミド(DMAC)、N,N-ジメチルホルムアミド等のアミド化合物、N,N-ジメチルエチレンウレア、N,N-ジメチルプロピレンウレア、テトラメチル尿素等の尿素化合物、γ-ブチロラクトン、γ-カプロラクトン等のラクトン化合物、プロピレンカーボネート等のカーボネート化合物、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン化合物、酢酸エチル、酢酸n-ブチル、ブチルセロソルブアセテート、ブチルカルビトールアセテート、エチルセロソルブアセテート、エチルカルビトールアセテート等のエステル化合物、ジグライム、トリグライム、テトラグライム、ジエチレングリコール、ジエチレングリコールエチルメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールモノメチルエーテル、トリエチレングリコールブチルメチルエーテル、トリエチレングリコールモノエチルエーテル、トリエチレングリコールモノメチルエーテル、ジフェニルエーテル等のエーテル化合物、スルホラン等のスルホン化合物などが挙げられる。
 ナノ粒子形成反応に用いる上記溶媒は、非配位性溶媒であることが好ましい。本明細書において「非配位性溶媒」とは、金属原子に配位可能な構造を有しない溶媒である。より詳細には、分子中に酸素原子、硫黄原子、窒素原子、及びリン原子から選ばれるヘテロ原子を有しない溶媒を意味する。非配位性溶媒を用いることにより粒子形成反応をより高速化することができ、組成、サイズ分布がより均一なナノ粒子を合成することができる。
 また、ナノ粒子形成反応に用いる上記溶媒の含水率は、化合物a2の加水分解等を防ぐ観点から、質量基準で10ppm以下とすることが好ましく、通常は0~8ppmとする。特に化合物a2としてアルキルシリル基を有する化合物を用いる場合、含水率は極力低くすることが好ましい。
In the nanoparticle formation reaction, one or more of the following solvents may be used in addition to or in place of the above solvent.
Amide compounds such as N-methyl-2-pyrrolidone (NMP), N, N-dimethylacetamide (DMAC), N, N-dimethylformamide, N, N-dimethylethyleneurea, N, N-dimethylpropyleneurea, tetramethyl Urea compounds such as urea, lactone compounds such as γ-butyrolactone and γ-caprolactone, carbonate compounds such as propylene carbonate, ketone compounds such as methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone, ethyl acetate, n-butyl acetate, butyl cellosolve acetate, butyl carb Ester compounds such as tall acetate, ethyl cellosolve acetate, ethyl carbitol acetate, diglyme, triglyme, tetraglyme, diethylene glycol, diethylene glycol ethyl methyl acetate And ether compounds such as tellurium, diethylene glycol diethyl ether, diethylene glycol monomethyl ether, triethylene glycol butyl methyl ether, triethylene glycol monoethyl ether, triethylene glycol monomethyl ether and diphenyl ether, and sulfone compounds such as sulfolane.
The solvent used for the nanoparticle formation reaction is preferably a non-coordinating solvent. In this specification, the “non-coordinating solvent” is a solvent that does not have a structure capable of coordinating to a metal atom. More specifically, it means a solvent that does not have a hetero atom selected from an oxygen atom, a sulfur atom, a nitrogen atom, and a phosphorus atom in the molecule. By using a non-coordinating solvent, the particle formation reaction can be further accelerated, and nanoparticles having a more uniform composition and size distribution can be synthesized.
In addition, the water content of the solvent used for the nanoparticle formation reaction is preferably 10 ppm or less on a mass basis from the viewpoint of preventing hydrolysis of the compound a2, and is usually 0 to 8 ppm. In particular, when a compound having an alkylsilyl group is used as the compound a2, the water content is preferably as low as possible.
 ナノ粒子形成反応において、反応液中の溶媒の含有量は90~99.8質量%とすることが好ましく、95~99.5質量とすることがより好ましい。 In the nanoparticle formation reaction, the content of the solvent in the reaction solution is preferably 90 to 99.8% by mass, and more preferably 95 to 99.5% by mass.
 上記ナノ粒子形成反応においては、反応液中にナノ粒子に対して配位可能な化合物(以下、「配位性化合物」という。)を添加することも好ましい。配位性化合物の存在下で粒子形成反応を行うことにより、形成された粒子表層にこの配位性化合物が配位して粒子の凝集を効果的に抑え、ナノ粒子の分散状態を安定的に作り出すことができる。
 配位性化合物は、粒子の分散性向上の観点から炭素数が6以上の炭化水素鎖を有することが好ましく、炭素数10以上の炭化水素鎖を有することがより好ましい。かかる配位性化合物の具体例として、例えば、デカン酸、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、ベヘン酸、オレイン酸、エルカ酸、オレイルアミン、ドデシルアミン、ドデカンチオール、1,2-ヘキサデカンチオール、トリオクチルホスフィンオキシド、臭化セトリモニウムを挙げることができる。
 上記ナノ粒子形成反応を上記配位性化合物の共存下で行う場合、反応開始時点において、反応液中の配位性化合物の含有量は0.1~5質量%とすることが好ましく、0.3~5質量%とすることがより好ましく、0.5~5質量%とすることがさらに好ましく、1~3質量%とすることが特に好ましい。
In the nanoparticle formation reaction, it is also preferable to add a compound capable of coordinating to the nanoparticles (hereinafter referred to as “coordinating compound”) in the reaction solution. By carrying out the particle formation reaction in the presence of the coordinating compound, the coordinating compound coordinates to the formed particle surface layer, effectively suppressing particle aggregation and stabilizing the dispersion state of the nanoparticles. Can be produced.
The coordination compound preferably has a hydrocarbon chain having 6 or more carbon atoms and more preferably has a hydrocarbon chain having 10 or more carbon atoms from the viewpoint of improving the dispersibility of the particles. Specific examples of such coordination compounds include, for example, decanoic acid, lauric acid, myristic acid, palmitic acid, stearic acid, behenic acid, oleic acid, erucic acid, oleylamine, dodecylamine, dodecanethiol, 1,2-hexadecanethiol. , Trioctylphosphine oxide, and cetrimonium bromide.
When the nanoparticle forming reaction is performed in the presence of the coordinating compound, the content of the coordinating compound in the reaction solution is preferably 0.1 to 5% by mass at the start of the reaction. It is more preferably 3 to 5% by mass, further preferably 0.5 to 5% by mass, and particularly preferably 1 to 3% by mass.
 上記ナノ粒子形成反応において、反応成分を含む液中に第III族元素以外の金属原子を含む化合物を含有させてもよい。例えばInPナノ粒子の合成においては、InP結晶格子中にZnをドープさせてIn(Zn)Pアロイを形成することにより光学特性が向上することが知られている。本発明におけるIII-V族半導体量子ドットには、このようにIII族元素以外の金属原子をドープさせたアロイの形態も含まれる。 In the above nanoparticle formation reaction, a liquid containing a reaction component may contain a compound containing a metal atom other than the Group III element. For example, in the synthesis of InP nanoparticles, it is known that optical properties are improved by doping In into an InP crystal lattice to form an In (Zn) P alloy. The group III-V semiconductor quantum dots in the present invention also include an alloy form doped with metal atoms other than group III elements.
 上記ナノ粒子形成反応は、その反応温度を270~400℃とする。化合物a1と化合物a2を混合すると瞬時に反応が生じてIII-V族半導体のクラスター核が生成する。このクラスター核を所望の粒径のIII-V族半導体ナノ粒子へと成長させるためには、270~400℃の高温反応が必要となる。このような高温反応を要する理由は定かではないが、クラスター核とナノ粒子との間にサイズ収束を伴う熱平衡が存在するためと推定される。このナノ粒子形成反応の反応温度は、粒子サイズの均一性の観点から280~350℃とすることが好ましく、290~320℃とすることがより好ましい。 In the above nanoparticle formation reaction, the reaction temperature is 270 to 400 ° C. When compound a1 and compound a2 are mixed, a reaction occurs instantaneously and a III-V semiconductor cluster nucleus is generated. In order to grow the cluster nuclei into III-V semiconductor nanoparticles having a desired particle size, a high temperature reaction at 270 to 400 ° C. is required. The reason why such a high temperature reaction is required is not clear, but it is presumed that there is a thermal equilibrium accompanied by size convergence between the cluster nucleus and the nanoparticle. The reaction temperature of this nanoparticle formation reaction is preferably 280 to 350 ° C., more preferably 290 to 320 ° C., from the viewpoint of particle size uniformity.
 上記ナノ粒子形成反応において、反応温度を270~400℃とすること以外は、公知の反応条件を、目的に応じて必要により変形して適宜に適用することができる。例えば、不活性雰囲気中で、原料と、溶媒と、必要により配位性化合物(分散剤)とを、反応容器中に入れて密閉し、ヒーター等を用いて加熱し、高温高圧下で反応させる方法(ソルボサーマル法)を採用することができる。また、溶媒と必要に応じて配位性化合物を入れた反応容器を、不活性ガスを通気しながらオイルバス等を用いて加熱し、ここにシリンジを用いて原料を注入して反応させる方法(ホットソープ法)が知られている。これらの方法は、例えば、特開2006-265022号公報、特開2008-44827号公報、国際公開第2007/138851号、特開2009-19067号公報、特開2009-40633号公報、特開2008-279591号公報、特開2010-106119号公報、及び特開2010-138367号公報に記載され、本発明におけるナノ粒子形成反応において参照することができる。
 上記ナノ粒子形成反応は、反応開始時点において、反応液中の上記化合物a1の含有量は0.05~5質量%とすることが好ましく、0.1~2質量%とすることがより好ましい。また、このナノ粒子形成反応の反応開始時点において、反応液中の上記化合物a2の含有量は0.05~5質量%とすることが好ましく、0.1~2質量%とすることがより好ましい。
In the above nanoparticle formation reaction, known reaction conditions can be modified as needed according to the purpose, except that the reaction temperature is 270 to 400 ° C. For example, in an inert atmosphere, raw materials, a solvent, and if necessary, a coordinating compound (dispersing agent) are placed in a reaction vessel, sealed, heated using a heater or the like, and reacted at high temperature and high pressure. A method (solvothermal method) can be employed. In addition, a method of heating a reaction vessel containing a solvent and a coordinating compound as necessary using an oil bath or the like while passing an inert gas, and injecting a raw material using a syringe to cause a reaction ( Hot soap method) is known. These methods are disclosed in, for example, JP-A-2006-265022, JP-A-2008-44827, WO2007 / 138851, JP-A-2009-19067, JP-A-2009-40633, JP-A-2008. -2799591, JP-A 2010-106119, and JP-A 2010-138367, which can be referred to in the nanoparticle formation reaction in the present invention.
In the nanoparticle formation reaction, the content of the compound a1 in the reaction solution is preferably 0.05 to 5% by mass, more preferably 0.1 to 2% by mass at the start of the reaction. Further, at the start of the reaction of the nanoparticle formation reaction, the content of the compound a2 in the reaction solution is preferably 0.05 to 5% by mass, and more preferably 0.1 to 2% by mass. .
 上記ナノ粒子形成反応の反応時間は、所望のナノ粒子を形成できれば特に制限はない。得られるナノ粒子のサイズをより均一なものとする観点から、ナノ粒子形成反応の反応時時間は10秒以上とすることが好ましく、5分以上とすることがより好ましく、10分以上とすることがさらに好ましく、20分以上とすることが特に好ましい。また形成されたナノ粒子の凝集を防ぎ、ナノ粒子サイズの均一性を高める観点からは、ナノ粒子形成反応の反応時時間を120分以下とすることが好ましく、90分以下とすることがより好ましく、60分以下とすることがさらに好ましく、50分以下とすることがさらに好ましく、40分以下とすることが特に好ましい。ナノ粒子サイズを均一化することにより、発光ピークの半値幅をより狭めることができ、よりシャープな発光特性を示す半導体量子ドットを得ることができる。 The reaction time of the above nanoparticle formation reaction is not particularly limited as long as desired nanoparticles can be formed. From the viewpoint of making the size of the obtained nanoparticles more uniform, the reaction time of the nanoparticle formation reaction is preferably 10 seconds or more, more preferably 5 minutes or more, and more preferably 10 minutes or more. Is more preferable, and it is particularly preferable that the time be 20 minutes or longer. Further, from the viewpoint of preventing aggregation of the formed nanoparticles and increasing the uniformity of the nanoparticle size, the reaction time of the nanoparticle formation reaction is preferably 120 minutes or less, more preferably 90 minutes or less. 60 minutes or less is more preferable, 50 minutes or less is further preferable, and 40 minutes or less is particularly preferable. By making the nanoparticle size uniform, the half-value width of the emission peak can be further narrowed, and a semiconductor quantum dot exhibiting sharper emission characteristics can be obtained.
 ナノ粒子形成反応において形成されるIII-V族半導体のナノ粒子としては、例えば、AlN、AlP、AlAs、AlSb、InN、InP、InAs、InSb、GaN、GaP、GaAs、及びGaSbが挙げられる。中でもInN、InP、InAs、InSb、GaN、GaP、GaAs及びGaSbから選ばれるIII-V族半導体が好ましく、InN、InP、InAs及びInSbから選ばれるIII-V族半導体がより好ましく、InP又はInAsがさらに好ましく、とりわけInPが好ましい。ここで挙げた各ナノ粒子は上述したアロイの形態(ドープされた原子を有する形態)を含む意味である。 Examples of the III-V group semiconductor nanoparticles formed in the nanoparticle formation reaction include AlN, AlP, AlAs, AlSb, InN, InP, InAs, InSb, GaN, GaP, GaAs, and GaSb. Among them, a group III-V semiconductor selected from InN, InP, InAs, InSb, GaN, GaP, GaAs and GaSb is preferable, a group III-V semiconductor selected from InN, InP, InAs and InSb is more preferable, and InP or InAs is used. Further, InP is particularly preferable. Each of the nanoparticles mentioned here is meant to include the above-described alloy form (a form having doped atoms).
<工程(b)>
 工程(b)は、工程(a)においてナノ粒子形成反応に付された270~400℃の温度状態にある液(反応液)を、0.3~3℃/分の冷却速度で250℃まで冷却する工程(以下、「徐冷工程」ともいう。)である。「250℃まで冷却する」とは、270~400℃の高温反応液を250℃の温度に冷却することを意味する。
 III-V族半導体ナノ粒子の形成において、粒子成長のために高温反応に付された反応液は、続いて、粒子成長を停止するために冷却される。従来の技術では、反応液の冷却は通常、反応液を単に熱源から解放して放冷することにより行っていたため、事実上の急冷状態にあった。これに対し本発明では、270~400℃の反応によりナノ粒子を形成させた反応液を、この反応温度から250℃まで、0.3~3℃/分というゆっくりとした速度で徐冷することを特徴とする。この徐冷により、得られるIII-V族半導体量子ドットの量子収率を効果的に高めることが可能になる。この理由は未だ定かではないが、次のように推定される。
 270~400℃の高温反応により形成されたナノ粒子は、粒子内部に構造的な欠陥を有するアモルファス状態にあると考えられ、このアモルファス状態のナノ粒子を急冷した場合には、内部の欠陥はそのまま残存するものと考えられる。一方、高温反応により形成されたナノ粒子を、250℃まで、所定の冷却速度で時間をかけて冷却した場合には、やや高温状態にあるこの徐冷工程の間に、粒子内部のアモルファス状態にある構造を結晶状へと変化させることができ、結果、得られるIII-V族半導体量子ドットを、結晶構造がより広い範囲に形成された状態とすることができ、量子収率が高められると考えられる。
<Step (b)>
In step (b), the liquid (reaction solution) subjected to the nanoparticle formation reaction in step (a) at a temperature state of 270 to 400 ° C. is reduced to 250 ° C. at a cooling rate of 0.3 to 3 ° C./min. This is a cooling step (hereinafter also referred to as “slow cooling step”). “Cooling to 250 ° C.” means cooling a high temperature reaction solution of 270 to 400 ° C. to a temperature of 250 ° C.
In the formation of group III-V semiconductor nanoparticles, the reaction solution subjected to a high temperature reaction for particle growth is subsequently cooled to stop the particle growth. In the prior art, the reaction solution is usually cooled by simply releasing the reaction solution from the heat source and allowing it to cool, so that the reaction solution is in a virtually quenched state. In contrast, in the present invention, the reaction liquid in which nanoparticles are formed by the reaction at 270 to 400 ° C. is gradually cooled from this reaction temperature to 250 ° C. at a slow rate of 0.3 to 3 ° C./min. It is characterized by. This slow cooling can effectively increase the quantum yield of the obtained group III-V semiconductor quantum dots. The reason for this is not clear yet, but is estimated as follows.
Nanoparticles formed by a high temperature reaction at 270 to 400 ° C. are considered to be in an amorphous state having structural defects inside the particles, and when the amorphous nanoparticles are rapidly cooled, the internal defects remain as they are. It is thought that it remains. On the other hand, when the nanoparticles formed by the high temperature reaction are cooled to 250 ° C. over time at a predetermined cooling rate, the amorphous state inside the particles is changed during the slow cooling process at a slightly high temperature. A certain structure can be changed into a crystalline state. As a result, the obtained group III-V semiconductor quantum dots can be in a state where the crystal structure is formed in a wider range, and the quantum yield is increased. Conceivable.
 工程(b)における徐冷手段に特に制限はない。例えば、オイルバスの外温を手動で操作する、あるいは加熱装置の温度プログラムを適切に設定する等により、所望の冷却速度で徐冷することができる。オイルバス及び加熱装置に特に制限はない。例えば、上記「オイルバス」として、恒温油槽T-300(トーマス科学器械社製)等を、上記「加熱装置」として、合成・反応装置ケミストプラザCP-300型(柴田科学社製)等を用いることができる。
 工程(b)において、反応液の冷却速度は0.5~2℃/分が好ましく、1~1.5℃/分とすることがより好ましい。冷却速度が遅すぎると、250℃に到達するまでの時間が長くなりすぎ、ナノ粒子の凝集が生じやすくなる傾向がある。他方、冷却速度が速すぎると、アモルファス相を結晶相へと十分に変化させることが難しくなる。なお、この冷却速度は本発明で規定する範囲内にあれば、一定である必要はない。
 工程(b)における徐冷工程の長さ(工程(b)において、反応液を250℃まで徐冷するのにかかる時間)は、10~180分間とすることが好ましく、20~120分間とすることがより好ましく、20~90分間とすることがさらに好ましく、30~60分間とすることが特に好ましい。
There is no restriction | limiting in particular in the slow cooling means in a process (b). For example, it can be gradually cooled at a desired cooling rate by manually operating the external temperature of the oil bath or appropriately setting the temperature program of the heating device. There are no particular restrictions on the oil bath and heating device. For example, a thermostatic oil tank T-300 (manufactured by Thomas Scientific Instruments) or the like is used as the “oil bath”, and a synthesis / reaction apparatus Chemist Plaza CP-300 (manufactured by Shibata Kagaku) or the like is used as the “heating device”. be able to.
In the step (b), the cooling rate of the reaction solution is preferably 0.5 to 2 ° C./min, more preferably 1 to 1.5 ° C./min. If the cooling rate is too slow, the time until the temperature reaches 250 ° C. is too long, and the nanoparticles tend to aggregate. On the other hand, if the cooling rate is too high, it becomes difficult to sufficiently change the amorphous phase to the crystalline phase. The cooling rate does not have to be constant as long as it is within the range defined by the present invention.
The length of the slow cooling step in step (b) (the time required for slow cooling the reaction solution to 250 ° C. in step (b)) is preferably 10 to 180 minutes, and preferably 20 to 120 minutes. More preferably, it is more preferably 20 to 90 minutes, and particularly preferably 30 to 60 minutes.
 上記工程(b)は、250℃まで冷却した反応液を、さらに150~250℃の温度で0.5~4時間保持する工程(以下、「熟成工程」ともいう。」を含むことが好ましい。この工程により、ナノ粒子中に存在するアモルファス状の構造を結晶状へと、より確実に変化させることができ、得られるIII-V族半導体量子ドットの量子収率をより効果的に高めることができる。
 なお、この熟成工程の間には、反応液の温度を上昇させるような過程がないことが好ましい。つまり、熟成工程における温度は一定であるか、あるいは150℃までの間で下降させることが好ましい。(すなわち、工程(b)の全過程において、反応液の温度は上昇させないことが好ましい。)より好ましくは、熟成工程は一定温度とする。熟成工程の温度は200~250℃が好ましく、220~240℃がより好ましい。また、熟成工程の長さは1~3時間が好ましく、1.5~2.5時間がより好ましい。
The step (b) preferably includes a step of holding the reaction liquid cooled to 250 ° C. at a temperature of 150 to 250 ° C. for 0.5 to 4 hours (hereinafter also referred to as “ripening step”). By this step, the amorphous structure present in the nanoparticles can be changed more reliably into a crystalline state, and the quantum yield of the resulting III-V semiconductor quantum dots can be increased more effectively. it can.
In addition, it is preferable that there is no process which raises the temperature of a reaction liquid between this aging process. That is, it is preferable that the temperature in the aging step is constant or lowered to 150 ° C. (That is, it is preferable not to raise the temperature of the reaction solution in the whole process of step (b).) More preferably, the aging step is set to a constant temperature. The temperature of the aging step is preferably 200 to 250 ° C, more preferably 220 to 240 ° C. The length of the ripening step is preferably 1 to 3 hours, more preferably 1.5 to 2.5 hours.
 上記工程(b)終了時点において、III-V族半導体ナノ粒子は、その平均粒径が1~10nmであることが好ましく、2~10nmであることがより好ましい。上記工程(b)を経て得られるIII-V族半導体ナノ粒子は、通常は分散液の状態で得られ、この分散液中のIII-V族半導体ナノ粒子の含有量は0.05~3質量%であることが好ましい。分散液中のナノ粒子は、通常は分離回収することなく、分散液の状態で目的の反応ないし用途に用いられる。
 本発明においてナノ粒子の平均粒径は、透過電子顕微鏡により測定された値である。より詳細には、透過電子顕微鏡で無作為に選択した100個の粒子について、投影面積から粒子の占有面積を画像処理装置によって求め、100個の粒子の占有面積の合計を、選択した粒子の個数(100個)で除し、得られた値に相当する円の直径の平均値(平均円相当直径)として算出することができる。上記平均粒径は、一次粒子が凝集してなる二次粒子の粒径は含まない。
At the end of the step (b), the group III-V semiconductor nanoparticles have an average particle size of preferably 1 to 10 nm, and more preferably 2 to 10 nm. The group III-V semiconductor nanoparticles obtained through the step (b) are usually obtained in the form of a dispersion, and the content of group III-V semiconductor nanoparticles in the dispersion is 0.05 to 3 mass. % Is preferred. The nanoparticles in the dispersion are usually used for the intended reaction or application in the state of the dispersion without being separated and recovered.
In the present invention, the average particle diameter of the nanoparticles is a value measured by a transmission electron microscope. More specifically, for 100 particles randomly selected with a transmission electron microscope, the occupied area of the particles is obtained from the projected area by an image processing apparatus, and the total occupied area of 100 particles is determined by the number of selected particles. Dividing by (100), it can be calculated as the average value of the diameter of the circle corresponding to the obtained value (average circle equivalent diameter). The average particle size does not include the particle size of secondary particles formed by aggregation of primary particles.
 本発明の製造方法は、上記工程(b)で得られたIII-V族半導体のナノ粒子表面にガリウム(Ga)を導入する工程(以下、「工程(c)」という。)を含むことも好ましい。
 工程(c)では、まず、工程(b)で得られたIII-V族半導体ナノ粒子と、下記金属群[c]から選ばれる少なくとも1種の金属c1の塩とを反応させ(この反応を、「金属c1導入反応」とも称す)、次いで、得られた粒子とGaの塩とを反応させる(この反応を、「Ga導入反応」とも称す)。なお、工程(b)により得られるIII-V族半導体ナノ粒子が、III族元素としてGaを含む形態である場合も、工程(c)を行うことができる。
The production method of the present invention may include a step of introducing gallium (Ga) into the surface of the III-V semiconductor nanoparticles obtained in the above step (b) (hereinafter referred to as “step (c)”). preferable.
In the step (c), first, the group III-V semiconductor nanoparticles obtained in the step (b) are reacted with at least one metal c1 salt selected from the following metal group [c] (this reaction is performed). Then, the obtained particles are reacted with a Ga salt (this reaction is also referred to as “Ga introduction reaction”). Note that the step (c) can also be performed when the group III-V semiconductor nanoparticles obtained in the step (b) are in a form containing Ga as a group III element.
金属群[c]:
 Ca、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu及びZn
Metal group [c]:
Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu and Zn
 金属c1は、上記金属群[c]から選ばれる1種又は2種以上の金属であり、1種の金属であることが好ましい。金属c1導入反応によりナノ粒子表層に金属c1を導入することができる。金属c1導入反応は、アニオン供給源として上述した化合物a2の存在下で行ってもよいし、化合物a2の非存在下で行ってもよい。また、ナノ粒子形成反応において用いた化合物a1が共存していてもよい。金属c1導入反応によってどのように金属c1が導入されるのかについて十分に明らかではないが、少なくとも下記の反応の少なくとも1つが進行しているものと推定される。
 すなわち、金属c1導入反応を化合物a2の存在下で行う場合には、ナノ粒子表層において金属c1のカチオンとアニオンからなる結晶構造が成長してナノ粒子表層に金属c1が導入されたり、ナノ粒子表層に存在する第III族元素と金属c1とのカチオン交換が生じたり、あるいはナノ粒子表層の結晶格子中に金属c1がドープされたりすることにより、金属c1がナノ粒子表層に導入されると考えられる。
 また、金属c1導入反応を化合物a2の非存在下で行う場合には、ナノ粒子表層に存在する第III族元素と金属c1とのカチオン交換が生じたり、あるいはナノ粒子表層の結晶格子中に金属c1がドープされたりすることにより、金属c1がナノ粒子表層に導入されるものと考えられる。
The metal c1 is one or more metals selected from the above metal group [c], and is preferably one metal. Metal c1 can be introduced into the nanoparticle surface layer by a metal c1 introduction reaction. The metal c1 introduction reaction may be performed in the presence of the compound a2 described above as an anion supply source, or may be performed in the absence of the compound a2. Moreover, the compound a1 used in the nanoparticle formation reaction may coexist. Although it is not sufficiently clear how the metal c1 is introduced by the metal c1 introduction reaction, it is presumed that at least one of the following reactions proceeds.
That is, when the metal c1 introduction reaction is performed in the presence of the compound a2, a crystal structure composed of a cation and an anion of the metal c1 grows on the surface of the nanoparticle and the metal c1 is introduced into the surface of the nanoparticle, or the surface of the nanoparticle It is considered that the metal c1 is introduced into the nanoparticle surface layer by cation exchange between the group III element present in the metal and the metal c1 or by doping the metal c1 into the crystal lattice of the nanoparticle surface layer. .
In addition, when the metal c1 introduction reaction is performed in the absence of the compound a2, cation exchange occurs between the group III element present in the nanoparticle surface layer and the metal c1, or a metal is present in the crystal lattice of the nanoparticle surface layer. It is considered that the metal c1 is introduced into the surface of the nanoparticle by being doped with c1.
 上記金属c1導入反応は、工程(b)終了後の反応液と金属c1の塩とを混合することにより行ってもよい。また、工程(b)の終了後、得られたナノ粒子を別の溶媒中に再分散させ、この再分散液と金属c1の塩とを混合し、金属c1導入反応を行ってもよい。 The metal c1 introduction reaction may be carried out by mixing the reaction solution after completion of the step (b) and the salt of metal c1. Further, after the completion of the step (b), the obtained nanoparticles may be redispersed in another solvent, the redispersed liquid and the metal c1 salt may be mixed, and the metal c1 introduction reaction may be performed.
 金属c1導入反応において、反応に用いうる溶媒種及び反応液中の溶媒の含有量は、それぞれ、上記工程(a)におけるナノ粒子形成反応に用いうる溶媒種及び反応液中の溶媒の含有量と同じであり、好ましい形態も同じである。
 また、金属c1導入反応を行う際に、反応液中に、上述した配位性化合物(分散剤)を含有させてもよい。この場合、金属c1導入反応における反応液中の配位性化合物の含有量は0.1~5質量%とすることが好ましく、0.3~5質量%とすることがより好ましく、0.5~5質量%とすることがさらに好ましく、1~3質量%とすることが特に好ましい。
 金属c1は、金属c1の塩と配位性化合物とを予め混合して加熱し、金属c1に配位性化合物を配位させ、これを金属c1導入反応の反応液に添加して、工程(b)で得られたIII-V族半導体ナノ粒子と反応させることも好ましい。
In the metal c1 introduction reaction, the solvent species that can be used in the reaction and the solvent content in the reaction solution are respectively the solvent species that can be used in the nanoparticle formation reaction in the step (a) and the solvent content in the reaction solution. The same and preferred forms are also the same.
Moreover, when performing metal c1 introduction | transduction reaction, you may contain the coordinating compound (dispersant) mentioned above in the reaction liquid. In this case, the content of the coordinating compound in the reaction solution in the metal c1 introduction reaction is preferably 0.1 to 5% by mass, more preferably 0.3 to 5% by mass, More preferably, it is set to ˜5% by mass, and particularly preferably 1 to 3% by mass.
For the metal c1, a salt of the metal c1 and a coordination compound are mixed and heated in advance, the coordination compound is coordinated with the metal c1, and this is added to the reaction liquid of the metal c1 introduction reaction. It is also preferable to react with the group III-V semiconductor nanoparticles obtained in b).
 金属c1導入反応において、金属c1の塩は、金属c1の有機酸塩(例えば、酢酸塩、プロピオン酸等のモノカルボン酸塩、グリコール酸塩、乳酸塩等のヒドロキシカルボン酸塩、コハク酸塩、シュウ酸塩等のジカルボン酸塩、クエン酸等のポリカルボン酸塩、メタンスルホン酸塩、トルエンスルホン酸塩等の脂肪族又は芳香族スルホン酸塩、炭酸塩、炭酸水素塩、スルファミン酸塩、金属アルコキシド、金属アセチルアセトナート等)、並びに、金属c1の無機酸塩(例えば、硝酸塩、硫酸塩、ヨウ化水素酸塩、塩酸塩、臭化水素酸塩、フッ化水素酸塩、過塩素酸塩、リン酸塩、シアン化水素酸塩等)が挙げられる。 In the metal c1 introduction reaction, a salt of the metal c1 is an organic acid salt of the metal c1 (for example, a monocarboxylate such as acetate or propionic acid, a hydroxycarboxylate such as glycolate or lactate, a succinate, Dicarboxylates such as oxalate, polycarboxylates such as citric acid, aliphatic or aromatic sulfonates such as methanesulfonate, toluenesulfonate, carbonate, bicarbonate, sulfamate, metal Alkoxides, metal acetylacetonates, etc.) and inorganic acid salts of metal c1 (eg nitrates, sulfates, hydroiodides, hydrochlorides, hydrobromides, hydrofluorates, perchlorates) , Phosphates, hydrocyanates, etc.).
 金属c1がCaの場合において、Caの有機酸塩としては、例えば、酢酸カルシウム、プロピオン酸カルシウム、ステアリン酸カルシウム、グリコール酸カルシウム、シュウ酸カルシウム、メタンスルホン酸カルシウム、トルエンスルホン酸カルシウム等の脂肪族又は芳香族スルホン酸塩、炭酸カルシウム、炭酸水素カルシウム、スルファミン酸カルシウム、カルシウムエトキシド、アセチルアセトンカルシウムが挙げられる。また、Caの無機酸塩としては、例えば、硫酸カルシウム、塩化カルシウム、臭化カルシウム、リン酸カルシウムが挙げられる。 In the case where the metal c1 is Ca, the organic acid salt of Ca is, for example, aliphatic such as calcium acetate, calcium propionate, calcium stearate, calcium glycolate, calcium oxalate, calcium methanesulfonate, calcium toluenesulfonate, or the like. Aromatic sulfonates, calcium carbonate, calcium hydrogen carbonate, calcium sulfamate, calcium ethoxide, and calcium acetylacetone. Examples of Ca inorganic acid salts include calcium sulfate, calcium chloride, calcium bromide, and calcium phosphate.
 金属c1がScの場合において、Scの有機酸塩としては、例えば、酢酸スカンジウム、ステアリン酸スカンジウム、メタンスルホン酸スカンジウム、炭酸スカンジウム、スルファミン酸スカンジウム、スカンジウムエトキシド、アセチルアセトンスカンジウム が挙げられる。また、Scの無機酸塩としては、例えば、硝酸スカンジウム、塩化スカンジウム、臭化スカンジウム、リン酸スカンジウムが挙げられる。 When the metal c1 is Sc, examples of the Sc organic acid salt include scandium acetate, scandium stearate, scandium methanesulfonate, scandium carbonate, scandium sulfamate, scandium ethoxide, and acetylacetone scandium. Examples of the inorganic acid salt of Sc include scandium nitrate, scandium chloride, scandium bromide, and scandium phosphate.
 金属c1がTiの場合において、Tiの有機酸塩としては、例えば、酢酸チタン、ステアリン酸チタン、グリコール酸チタン、シュウ酸チタン、メタンスルホン酸チタン、トルエンスルホン酸チタン等の脂肪族又は芳香族スルホン酸塩、炭酸チタン、チタンイソプロポキシド、チタンt-ブトキシド、アセチルアセトンチタンが挙げられる。また、Tiの無機酸塩としては、例えば、塩化チタンが挙げられる。 When the metal c1 is Ti, examples of the organic acid salt of Ti include aliphatic or aromatic sulfones such as titanium acetate, titanium stearate, titanium glycolate, titanium oxalate, titanium methanesulfonate, titanium toluenesulfonate, and the like. Acid salts, titanium carbonate, titanium isopropoxide, titanium t-butoxide, and titanium acetylacetone. An example of the Ti inorganic acid salt is titanium chloride.
 金属c1がVの場合において、Vの有機酸塩としては、例えば、酢酸バナジウム、ステアリン酸バナジウム、炭酸バナジウム、トリイソプロポキシバナジウムオキシド、アセチルアセトナトバナジウム等が挙げられる。また、Vの無機酸塩としては、例えば、酸化硫酸バナジウム、塩化バナジウム、臭化バナジウム、フッ化バナジウムが挙げられる。 When the metal c1 is V, examples of the organic acid salt of V include vanadium acetate, vanadium stearate, vanadium carbonate, triisopropoxy vanadium oxide, and acetylacetonato vanadium. Examples of the inorganic acid salt of V include vanadium oxide sulfate, vanadium chloride, vanadium bromide, and vanadium fluoride.
 金属c1がCrの場合において、Crの有機酸塩としては、例えば、酢酸クロム、プステアリン酸クロム、アセチルアセトンクロムが挙げられる。また、Crの無機酸塩としては、例えば、硝酸クロム、塩化クロム、リン酸クロムが挙げられる。 When the metal c1 is Cr, examples of the organic acid salt of Cr include chromium acetate, chromium pstearate, and acetylacetone chromium. Examples of the inorganic acid salt of Cr include chromium nitrate, chromium chloride, and chromium phosphate.
 金属c1がMnの場合において、Mnの有機酸塩としては、例えば、酢酸マンガン、ステアリン酸マンガン、2-エチルヘキサン酸マンガン、シュウ酸マンガン、炭酸マンガン、ぎ酸マンガン、アセチルアセトンマンガン、トリス(2,2,6,6-テトラメチル-3,5-ヘプタンジオナト)マンガン、ビス(トリフルオロメタンスルホニル)イミドマンガン、N,N’-エチレンビス(サリチリデンイミナト)マンガンが挙げられる。また、Mnの無機酸塩としては、例えば、硝酸マンガン、硫酸マンガン、塩化マンガン、リン酸マンガン等が挙げられる。 When the metal c1 is Mn, examples of the organic acid salt of Mn include manganese acetate, manganese stearate, manganese 2-ethylhexanoate, manganese oxalate, manganese carbonate, manganese formate, acetylacetone manganese, tris (2, 2,6,6-tetramethyl-3,5-heptanedionato) manganese, bis (trifluoromethanesulfonyl) imidomanganese, N, N′-ethylenebis (salicylideneiminato) manganese. Examples of the inorganic acid salt of Mn include manganese nitrate, manganese sulfate, manganese chloride, and manganese phosphate.
 金属c1がFeの場合において、Feの有機酸塩としては、例えば、酢酸鉄、ステアリン酸鉄、2-エチルヘキサン酸鉄、シュウ酸鉄、クエン酸鉄、メタンスルホン酸鉄、ジエチルジチオカルバミン酸鉄、鉄メトキシド、アセチルアセトン鉄、フェロセン、N,N’-エチレンビス(サリチリデンイミナト)鉄等が挙げられる。また、Feの無機酸塩としては、例えば、硝酸鉄、硫酸鉄、塩化鉄、臭化鉄、ヨウ化鉄、リン酸鉄等が挙げられる。 In the case where the metal c1 is Fe, examples of the organic acid salt of Fe include iron acetate, iron stearate, iron 2-ethylhexanoate, iron oxalate, iron citrate, iron methanesulfonate, iron diethyldithiocarbamate, Examples thereof include iron methoxide, acetylacetone iron, ferrocene, N, N′-ethylenebis (salicylideneiminato) iron and the like. Examples of the inorganic acid salt of Fe include iron nitrate, iron sulfate, iron chloride, iron bromide, iron iodide, and iron phosphate.
 金属c1がCoの場合において、Coの有機酸塩としては、例えば、酢酸コバルト、ステアリン酸コバルト、シュウ酸コバルト、クエン酸コバルト、炭酸コバルト、スルファミン酸コバルト、トリス(2,2,6,6-テトラメチル-3,5-ヘプタンジオナト)コバルト、アセチルアセトンコバルト、N,N’-エチレンビス(サリチリデンイミナト)コバルト等が挙げられる。また、Coの無機酸塩としては、例えば、硝酸コバルト、硫酸コバルト、塩化コバルト、臭化コバルト、ヨウ化コバルト、リン酸コバルト等が挙げられる。 In the case where the metal c1 is Co, examples of the organic acid salt of Co include cobalt acetate, cobalt stearate, cobalt oxalate, cobalt citrate, cobalt carbonate, cobalt sulfamate, tris (2,2,6,6- Tetramethyl-3,5-heptanedionato) cobalt, acetylacetonecobalt, N, N′-ethylenebis (salicylideneiminato) cobalt and the like. Examples of the inorganic acid salt of Co include cobalt nitrate, cobalt sulfate, cobalt chloride, cobalt bromide, cobalt iodide, and cobalt phosphate.
 金属c1がNiの場合において、Niの有機酸塩としては、例えば、酢酸ニッケル、ステアリン酸ニッケル、2-エチルヘキサン酸ニッケル、乳酸ニッケル、トリフルオロメタンスルホン酸ニッケル、トルエンスルホン酸ニッケル等の脂肪族又は芳香族スルホン酸塩、炭酸ニッケル、ニッケル2-メトキシエトキシド、ジエチルジチオカルバミン酸ニッケル、アセチルアセトンニッケル、トリフルオロアセチルアセトナトニッケル、[1,2-ビス(ジフェニルホスフィノ)エタン]ニッケルジクロリド、N,N’-エチレンビス(サリチリデンイミナト)ニッケル等が挙げられる。また、Niの無機酸塩としては、例えば、硝酸ニッケル、硫酸ニッケル、塩化ニッケル、臭化ニッケル、ヨウ化ニッケル等が挙げられる。 When the metal c1 is Ni, examples of the organic acid salt of Ni include aliphatic groups such as nickel acetate, nickel stearate, nickel 2-ethylhexanoate, nickel lactate, nickel trifluoromethanesulfonate, nickel toluenesulfonate, and the like. Aromatic sulfonate, nickel carbonate, nickel 2-methoxyethoxide, nickel diethyldithiocarbamate, acetylacetone nickel, trifluoroacetylacetonatonickel, [1,2-bis (diphenylphosphino) ethane] nickel dichloride, N, N Examples include '-ethylenebis (salicylideneiminato) nickel. Examples of the inorganic acid salt of Ni include nickel nitrate, nickel sulfate, nickel chloride, nickel bromide, nickel iodide and the like.
 金属c1がCuの場合において、Cuの有機酸塩としては、例えば、酢酸銅、ステアリン酸銅、2-エチルヘキサン酸銅、クエン酸銅、シュウ酸銅、トリフルオロメタンスルホン酸銅、トルエンスルホン酸銅等の脂肪族又は芳香族スルホン酸塩、炭酸銅、ぎ酸銅、銅エトキシド、ジエチルジチオカルバミン酸銅、アセチルアセトン銅、トリフルオロアセチルアセトナト銅、ビス(1,3-プロパンジアミン)銅ジクロリド、ビス(トリフルオロメタンスルホニル)イミド銅、N,N’-エチレンビス(サリチリデンイミナト) 銅等が挙げられる。また、Cuの無機酸塩としては、例えば、硝酸銅、硫酸銅、塩化銅、臭化銅、ヨウ化銅等が挙げられる。 In the case where the metal c1 is Cu, examples of the organic acid salt of Cu include copper acetate, copper stearate, copper 2-ethylhexanoate, copper citrate, copper oxalate, copper trifluoromethanesulfonate, copper toluenesulfonate Aliphatic or aromatic sulfonates such as copper carbonate, copper formate, copper ethoxide, copper diethyldithiocarbamate, acetylacetone copper, trifluoroacetylacetonatocopper, bis (1,3-propanediamine) copper dichloride, bis ( (Trifluoromethanesulfonyl) imide copper, N, N′-ethylenebis (salicylideneiminato) copper and the like. Examples of Cu inorganic acid salts include copper nitrate, copper sulfate, copper chloride, copper bromide, and copper iodide.
 金属c1がZnの場合において、Znの有機酸塩としては、例えば、酢酸亜鉛、プロピオン酸亜鉛、ステアリン酸亜鉛、ラウリン酸亜鉛、2-エチルヘキサン酸亜鉛、クエン酸銅、シュウ酸銅、トリフルオロ酢酸亜鉛、p-t-ブチル安息香酸亜鉛、トリフルオロメタンスルホン酸亜鉛、トルエンスルホン酸亜鉛等の脂肪族又は芳香族スルホン酸塩、炭酸亜鉛、ぎ酸亜鉛、亜鉛tert-ブトキシド、ジエチルジチオカルバミン酸亜鉛、アセチルアセトン亜鉛、ビス(2,2,6,6-テトラメチル-3,5-ヘプタンジオナト)亜鉛、トリフルオロアセチルアセトナト亜鉛、ジクロロ(N,N,N’,N’-テトラメチルエタン-1,2-ジアミン)亜鉛、ビス(トリフルオロメタンスルホニル)イミド亜鉛、N,N’-エチレンビス(サリチリデンイミナト) 亜鉛が挙げられる。また、Znの無機酸塩としては、例えば、硝酸亜鉛、硫酸亜鉛、塩化亜鉛、臭化亜鉛、ヨウ化亜鉛、リン酸亜鉛等が挙げられる。 When the metal c1 is Zn, examples of the organic acid salt of Zn include zinc acetate, zinc propionate, zinc stearate, zinc laurate, zinc 2-ethylhexanoate, copper citrate, copper oxalate, and trifluoro Aliphatic or aromatic sulfonates such as zinc acetate, zinc pt-butylbenzoate, zinc trifluoromethanesulfonate, zinc toluenesulfonate, zinc carbonate, zinc formate, zinc tert-butoxide, zinc diethyldithiocarbamate, Zinc acetylacetone, bis (2,2,6,6-tetramethyl-3,5-heptanedionato) zinc, trifluoroacetylacetonatozinc, dichloro (N, N, N ′, N′-tetramethylethane-1,2) -Diamine) zinc, bis (trifluoromethanesulfonyl) imidozinc, N, N'-ethylenebis ( Li Chile potential Minato) zinc, and the like. Examples of the inorganic acid salt of Zn include zinc nitrate, zinc sulfate, zinc chloride, zinc bromide, zinc iodide, and zinc phosphate.
 金属c1導入反応の開始時点において、反応液中の、金属c1の塩の含有量は0.1~5質量%が好ましく、0.2~4質量%がさらに好ましく、0.5~2質量%がさらに好ましい。
 また、上記金属c1導入反応の開始時点において、反応液中の、III-V族半導体ナノ粒子の含有量は、0.05~5質量%が好ましく、0.05~2質量%がより好ましく、0.1~2質量%がさらに好ましい。なお、反応液中の金属c1の塩の含有量は、金属c1を上述したように配位性化合物を配位させた状態で反応液に添加する場合には、金属c1を、配位性化合物を配位させる前の塩の状態に換算した値とする。
At the start of the metal c1 introduction reaction, the content of the metal c1 salt in the reaction solution is preferably 0.1 to 5% by mass, more preferably 0.2 to 4% by mass, and 0.5 to 2% by mass. Is more preferable.
Further, at the start of the metal c1 introduction reaction, the content of III-V group semiconductor nanoparticles in the reaction solution is preferably 0.05 to 5% by mass, more preferably 0.05 to 2% by mass, More preferably, the content is 0.1 to 2% by mass. In addition, the content of the salt of the metal c1 in the reaction solution is such that when the metal c1 is added to the reaction solution with the coordination compound coordinated as described above, the metal c1 is added to the coordination compound. It is set as the value converted into the salt state before coordinating.
 上記金属c1導入反応の反応温度は、反応速度の観点から通常は100℃以上であり、150℃以上が好ましく、180℃以上がより好ましい。また、溶媒沸点、操作安全性の観点から、上記金属c1導入反応の反応温度は通常は400℃以下であり、350℃以下が好ましく、300℃以下がより好ましく、250℃以下がさらに好ましく、220℃以下がさらに好ましい。 The reaction temperature of the metal c1 introduction reaction is usually 100 ° C. or higher, preferably 150 ° C. or higher, more preferably 180 ° C. or higher from the viewpoint of the reaction rate. Further, from the viewpoint of solvent boiling point and operational safety, the reaction temperature of the metal c1 introduction reaction is usually 400 ° C or lower, preferably 350 ° C or lower, more preferably 300 ° C or lower, further preferably 250 ° C or lower, 220 More preferably, it is not higher than ° C.
 上記金属c1導入反応の反応時間は、目的に応じて適宜に調節されるものであり、通常は1~240分間、好ましくは5~180分間、さらに好ましくは8~120分間、特に好ましくは10~60分間である。 The reaction time of the metal c1 introduction reaction is appropriately adjusted according to the purpose, and is usually 1 to 240 minutes, preferably 5 to 180 minutes, more preferably 8 to 120 minutes, and particularly preferably 10 to 60 minutes.
 上記金属c1導入反応を経て得られるIII-V族半導体ナノ粒子は、通常は分散液の状態で得られ、この分散液中のIII-V族半導体ナノ粒子の含有量は0.05~3質量%であることが好ましい。分散液中のナノ粒子は、通常は分離回収することなく、分散液の状態で次のGa導入反応に用いられる。 The group III-V semiconductor nanoparticles obtained through the metal c1 introduction reaction are usually obtained in the form of a dispersion, and the content of group III-V semiconductor nanoparticles in the dispersion is 0.05-3 mass%. % Is preferred. The nanoparticles in the dispersion are usually used for the next Ga introduction reaction in the state of dispersion without being separated and recovered.
 上記Ga導入反応では、上記金属c1導入反応で得られた、表層に金属c1が導入されたナノ粒子と、Gaの塩とを反応させる。この反応により、金属c1導入反応で得られた、表層に金属c1が導入されたナノ粒子表層にGaを導入することができる。Ga導入反応は、アニオン供給源として上述した化合物a2の存在下で行ってもよいし、化合物a2の非存在下で行ってもよい。Ga導入反応によってどのようにGaが導入されるのかについて十分に明らかではないが、少なくとも下記の反応の少なくとも1つが進行しているものと推定される。
 すなわち、Ga導入反応を化合物a2の存在下で行う場合には、表層に金属c1が導入されたナノ粒子表層においてGaイオンとアニオンからなる結晶層またはアモルファス層が成長してナノ粒子表層にGaが導入され、あるいはこの反応とは別に、ナノ粒子表層に存在する金属c1とGaとのカチオン交換によっても、Gaがナノ粒子表層に導入されると考えられる。
 また、Ga導入反応を化合物a2の非存在下で行う場合には、ナノ粒子表層に存在する金属c1とGaとのカチオン交換により、Gaがナノ粒子表層に導入されるものと考えられる。
In the Ga introduction reaction, nanoparticles obtained by the metal c1 introduction reaction and having the metal c1 introduced into the surface layer are reacted with a Ga salt. By this reaction, Ga can be introduced into the surface of the nanoparticle obtained by the metal c1 introduction reaction, in which the metal c1 is introduced into the surface layer. The Ga introduction reaction may be performed in the presence of the compound a2 described above as an anion supply source, or may be performed in the absence of the compound a2. Although it is not sufficiently clear how Ga is introduced by the Ga introduction reaction, it is presumed that at least one of the following reactions proceeds.
That is, when the Ga introduction reaction is performed in the presence of the compound a2, a crystal layer or an amorphous layer made of Ga ions and anions grows on the nanoparticle surface layer in which the metal c1 is introduced into the surface layer, and Ga is present on the nanoparticle surface layer. Introduced or separated from this reaction, it is considered that Ga is also introduced into the nanoparticle surface layer by cation exchange between Ga and metal c1 existing on the nanoparticle surface layer.
In addition, when the Ga introduction reaction is performed in the absence of the compound a2, it is considered that Ga is introduced into the nanoparticle surface layer by cation exchange between the metal c1 and Ga existing in the nanoparticle surface layer.
 上記Ga導入反応は、上記金属c1導入反応後、金属c1導入反応の反応液にGaの塩を混合することにより行ってもよい。また、金属c1導入反応の終了後、得られた、金属c1が表層に導入されたナノ粒子を別の溶媒中に再分散させ、この再分散液とGaの塩とを混合し、Ga導入反応を行ってもよい。 The Ga introduction reaction may be performed by mixing a Ga salt into the reaction solution of the metal c1 introduction reaction after the metal c1 introduction reaction. Further, after the completion of the metal c1 introduction reaction, the obtained nanoparticles in which the metal c1 is introduced into the surface layer are redispersed in another solvent, and the redispersed liquid and a Ga salt are mixed to obtain a Ga introduction reaction. May be performed.
 Ga導入反応において、反応に用いうる溶媒種及び反応液中の溶媒の含有量は、それぞれ、上記ナノ粒子形成反応に用いうる溶媒種及び反応液中の溶媒の含有量と同じであり、好ましい形態も同じである。
 また、Ga導入反応を行う際に、反応液中に、上述した配位性化合物を含有させてもよい。この場合、Ga導入反応における反応液中の配位性化合物の含有量は0.1~5質量%とすることが好ましく、0.3~5質量%とすることがより好ましく、0.5~5質量%とすることがさらに好ましく、1~3質量%とすることが特に好ましい。
 Gaは、Ga塩と配位性化合物とを予め混合して加熱し、Gaに配位性化合物を配位させ、これをGa導入反応の反応液に添加して、上記金属c1導入反応で得られた、表層に金属c1が導入されたナノ粒子と反応させることも好ましい。
In the Ga introduction reaction, the solvent species that can be used in the reaction and the content of the solvent in the reaction solution are the same as the solvent species that can be used in the nanoparticle formation reaction and the content of the solvent in the reaction solution, respectively. Is the same.
Moreover, when performing Ga introduction | transduction reaction, you may contain the coordinating compound mentioned above in the reaction liquid. In this case, the content of the coordinating compound in the reaction solution in the Ga introduction reaction is preferably 0.1 to 5% by mass, more preferably 0.3 to 5% by mass, The content is more preferably 5% by mass, and particularly preferably 1 to 3% by mass.
Ga is obtained by the metal c1 introduction reaction by mixing and heating a Ga salt and a coordination compound in advance, and coordinating the coordination compound to Ga, and adding this to the reaction solution for Ga introduction reaction. It is also preferable to react with the nanoparticles having the metal c1 introduced into the surface layer.
 Ga導入反応において、用いるGaの塩は、Gaの有機酸塩(例えば、酢酸塩、プロピオン酸等のモノカルボン酸塩、グリコール酸塩、乳酸塩等のヒドロキシカルボン酸塩、コハク酸塩、シュウ酸塩等のジカルボン酸塩、クエン酸等のポリカルボン酸塩、メタンスルホン酸塩、トルエンスルホン酸塩等の脂肪族又は芳香族スルホン酸塩、炭酸塩、炭酸水素塩、スルファミン酸塩、金属アルコキシド、金属アセチルアセトナート等)、並びに、Gaの無機酸塩(例えば、硝酸塩、硫酸塩、ヨウ化水素酸塩、塩酸塩、臭化水素酸塩、フッ化水素酸塩、過塩素酸塩、リン酸塩、シアン化水素酸塩等)が挙げられる。
 Gaの有機酸塩としては、例えば、酢酸ガリウム、ステアリン酸ガリウム、2-エチルヘキサン酸ガリウム、トリフルオロメタンスルホン酸ガリウム、トルエンスルホン酸ガリウム等の脂肪族又は芳香族スルホン酸塩、ガリウムエトキシド、ガリウムイソプロポキシド、アセチルアセトンガリウム、トリフルオロアセチルアセトナトガリウムが挙げられる。また、Gaの無機酸塩としては、例えば、硝酸ガリウム、硫酸ガリウム、塩化ガリウム、臭化ガリウム、ヨウ化ガリウム、リン酸ガリウム等が挙げられる。
In the Ga introduction reaction, the Ga salt used is an organic acid salt of Ga (for example, monocarboxylate such as acetate or propionic acid, hydroxycarboxylate such as glycolate or lactate, succinate or oxalic acid. Dicarboxylates such as salts, polycarboxylates such as citric acid, aliphatic or aromatic sulfonates such as methanesulfonate and toluenesulfonate, carbonates, bicarbonates, sulfamates, metal alkoxides, Metal acetylacetonate etc.), and inorganic salts of Ga (eg nitrate, sulfate, hydroiodide, hydrochloride, hydrobromide, hydrofluoride, perchlorate, phosphoric acid) Salt, hydrocyanate, etc.).
Examples of the organic acid salt of Ga include aliphatic or aromatic sulfonates such as gallium acetate, gallium stearate, gallium 2-ethylhexanoate, gallium trifluoromethanesulfonate, gallium toluenesulfonate, gallium ethoxide, and gallium. Examples include isopropoxide, acetylacetone gallium, and trifluoroacetylacetonatogallium. Examples of Ga inorganic acid salts include gallium nitrate, gallium sulfate, gallium chloride, gallium bromide, gallium iodide, and gallium phosphate.
 上記Ga導入反応の開始時点において、反応液中の、Ga塩の含有量は0.1~5質量%が好ましく、0.2~4質量%がさらに好ましく、0.5~2質量%がさらに好ましい。
 また、上記Ga導入反応の開始時点において、反応液中の、表層に金属c1が導入されたナノ粒子の含有量は、0.05~5質量%が好ましく、0.05~2質量%がより好ましく、0.1~2質量%がさらに好ましい。なお、反応液中のGa塩の含有量は、Gaを上述したように配位性化合物を配位させた状態で反応液に添加する場合には、Gaを、配位性化合物を配位させる前の塩の状態に換算した値とする。
At the start of the Ga introduction reaction, the Ga salt content in the reaction solution is preferably 0.1 to 5% by mass, more preferably 0.2 to 4% by mass, and further 0.5 to 2% by mass. preferable.
Further, at the start of the Ga introduction reaction, the content of the nanoparticles in which the metal c1 is introduced into the surface layer in the reaction solution is preferably 0.05 to 5% by mass, more preferably 0.05 to 2% by mass. Preferably, 0.1 to 2% by mass is more preferable. Note that the Ga salt content in the reaction solution is such that when Ga is added to the reaction solution with the coordination compound coordinated as described above, Ga is coordinated with the coordination compound. The value converted to the previous salt state.
 上記Ga導入反応の反応温度は、通常は100℃以上であり、150℃以上が好ましく、180℃以上がより好ましい。また、上記Ga導入反応の反応温度は通常は400℃以下であり、350℃以下が好ましく、300℃以下がより好ましく、250℃以下がさらに好ましく、220℃以下がさらに好ましい。 The reaction temperature of the Ga introduction reaction is usually 100 ° C. or higher, preferably 150 ° C. or higher, and more preferably 180 ° C. or higher. The reaction temperature of the Ga introduction reaction is usually 400 ° C. or lower, preferably 350 ° C. or lower, more preferably 300 ° C. or lower, further preferably 250 ° C. or lower, and further preferably 220 ° C. or lower.
 上記Ga導入反応の反応時間は、目的に応じて適宜に調節されるものであり、通常は1~240分間、好ましくは10~180分間、さらに好ましくは15~120分間、特に好ましくは30~90分間である。 The reaction time of the Ga introduction reaction is appropriately adjusted according to the purpose, and is usually 1 to 240 minutes, preferably 10 to 180 minutes, more preferably 15 to 120 minutes, and particularly preferably 30 to 90 minutes. For minutes.
 上記Ga導入反応を経て得られるIII-V族半導体ナノ粒子は、通常は分散液の状態で得られ、この分散液中のIII-V族半導体ナノ粒子の含有量は0.05~3質量%であることが好ましい。分散液中のナノ粒子は、通常は分離回収することなく、分散液の状態で目的の反応ないし用途に用いられる。 The group III-V semiconductor nanoparticles obtained through the Ga introduction reaction are usually obtained in the form of a dispersion, and the content of group III-V semiconductor nanoparticles in the dispersion is 0.05 to 3% by mass. It is preferable that The nanoparticles in the dispersion are usually used for the intended reaction or application in the state of the dispersion without being separated and recovered.
 本発明の製造方法は、上記工程(c)の終了後、Gaが導入されたナノ粒子表面にシェル層を形成する工程(以下、「工程(d)」という。)を含むことも好ましい。このシェル層は、量子ドットのシェル層として通常採用されうる形態のものを採用することができ、好ましい例としては、ZnS、ZnO、ZnSe、ZnSe1-X(0<X<1)、ZnTe、In又はCuOで形成されたシェル層が挙げられる。
 シェル層の形成は常法により行うことができ、例えば、特表2012-525467号公報、特表2015-529698号公報、特表2014-523634号公報、特開2015-127362号公報、特許第4565152号公報、特許第4344613号公報、米国特許第7105051号明細書、米国特許第848111号明細書、APPLIED PHYSICS LETTERS 97,193104,2010    、ACS Appl. Mater. Interfaces 2014,6,p.18233-18242の記載を参照することができる。
The production method of the present invention preferably includes a step of forming a shell layer on the surface of the nanoparticles into which Ga has been introduced (hereinafter referred to as “step (d)”) after the step (c) is completed. This shell layer can adopt a form that can be usually adopted as a shell layer of quantum dots. Preferred examples include ZnS, ZnO, ZnSe, ZnSe X S 1-X (0 <X <1), Examples thereof include a shell layer formed of ZnTe, In 2 O 3 or CuO.
The shell layer can be formed by a conventional method. For example, JP-A-2012-525467, JP-A-2015-529698, JP-A-2014-523634, JP-A-2015-127362, JP-A-4565152. Publication, Japanese Patent No. 4344613, US Pat. No. 7,1050,051, US Pat. No. 8,848,111, APPLIED PHYSICS LETTERS 97, 193104, 2010, ACS Appl. Mater. Interfaces 2014, 6, p. Reference can be made to the description of 18233-18242.
 例えばZnSによるシェル層は、工程(c)の反応終了後、反応液にZnの酢酸塩と1-ドデカンチオールと必要により配位性化合物を添加し、例えば200℃以上の温度で数時間反応させることにより形成することができる。他のシェル層もこの方法に準じ、使用する原料を目的に応じて変更し、形成することができる。またZnの供給源としてジメチル亜鉛、ジエチル亜鉛等の有機金属を用いた高温条件下での反応、あるいはジアルキルジチオカルバミン酸亜鉛の熱分解反応によっても形成することができる。
 シェル層はZnS、ZnO、ZnSe又はZnSe1-Xが好ましく、ZnSであることがより好ましい。
For example, in the case of a shell layer made of ZnS, after completion of the reaction in step (c), Zn acetate, 1-dodecanethiol, and a coordinating compound are added to the reaction solution as necessary, and the reaction is performed at a temperature of, for example, 200 ° C. Can be formed. Other shell layers can also be formed in accordance with this method by changing the raw materials used according to the purpose. It can also be formed by a reaction under a high temperature condition using an organic metal such as dimethylzinc or diethylzinc as a Zn supply source, or a thermal decomposition reaction of zinc dialkyldithiocarbamate.
The shell layer is preferably ZnS, ZnO, ZnSe or ZnSe X S 1-X , more preferably ZnS.
 本発明の製造方法で得られるIII-V族半導体量子ドットは、シェル層を設けない形態においては、平均粒径が1~10nmであることが好ましく、1~6nmであることがより好ましい。また、本発明の製造方法で得られるIII-V族半導体量子ドットがシェル層有する形態である場合、シェル層を含めた量子ドットの平均粒径は2~10nmであることが好ましく、2~8nmであることがより好ましい。 The group III-V semiconductor quantum dots obtained by the production method of the present invention preferably have an average particle diameter of 1 to 10 nm, more preferably 1 to 6 nm, in a form in which no shell layer is provided. When the group III-V semiconductor quantum dots obtained by the production method of the present invention have a shell layer, the average particle diameter of the quantum dots including the shell layer is preferably 2 to 10 nm. It is more preferable that
 以下に実施例に基づき本発明を更に詳細に説明するが、本発明はこれらの実施例により限定されるものではない。 Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited to these examples.
[実施例1]
 下記反応スキームに従い、InPナノ粒子の表層にGaを導入してなるInP量子ドットを調製した。
[Example 1]
According to the following reaction scheme, InP quantum dots formed by introducing Ga into the surface layer of InP nanoparticles were prepared.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 乾燥窒素で充填されたグローブボックス中で、200ml三口フラスコに、オクタデセン(22mL)、酢酸インジウム(140mg)、パルミチン酸(369mg)を加え、130℃で30分間真空脱気を行った。本実験で使用する1-オクタデセンとして、水素化カルシウムから減圧蒸留し、カールフィッシャー法で算出した水分量が6ppmであるものを用いた。反応容器を300℃に加熱し、トリス(トリメチルシリル)ホスフィン[P(TMS)]をオクタデセン[ODE]に溶解した溶液(P(TMS)濃度:45mM)4mlを素早く添加し、300℃で30分間保持して反応液中にInPのナノ粒子を形成させた(InPナノ粒子形成反応)。次いでこの反応液を300℃から250℃まで1.4℃/分の冷却速度で冷却した(徐冷工程)。続いて、反応液を230℃に保持して2時間熟成させて、InPナノ粒子の分散液を得た。この分散液中、InPナノ粒子の含有量は0.3質量%であった。
 この分散液をサンプリングし、HR-TEM(高分解能透過電子顕微鏡)を用いて粒径を測定した結果、InP粒子の平均粒径は3nmであった。続いて200℃に放冷後、亜鉛溶液(酢酸亜鉛(66mg)、パルミチン酸(185mg)、オクタデセン(15ml)の混合物を130℃で30分間真空脱気した溶液[スキーム中、Zn(C1531COで示した])10mLを加え、200℃で15分間反応させてInP粒子表層にZnを導入した。続いてガリウム溶液(塩化ガリウム(19mg)、オレイン酸(119μl)、オクタデセン(5ml)の混合物を90℃で1時間加熱した溶液[スキーム中、Ga(C1733COで示した])8mLを加え、200℃で1時間反応させてInP粒子表層にGaを導入し、室温まで放冷してInP量子ドット分散液とした。得られた分散液中のInP量子ドットの平均粒径は4nmであった。また、このInP量子ドットの分散液中、InP量子ドット(Ga導入)の含有量は0.3質量%であった。このInP量子ドット分散液をトルエンで5倍に希釈し、蛍光スペクトル(日立ハイテクサイエンス社製F-7000、励起波長450nm)を測定し、発光極大、発光ピークの半値幅、及び量子収率を測定した。結果を下記表1に示す。
In a glove box filled with dry nitrogen, octadecene (22 mL), indium acetate (140 mg) and palmitic acid (369 mg) were added to a 200 ml three-necked flask, and vacuum deaeration was performed at 130 ° C. for 30 minutes. The 1-octadecene used in this experiment was distilled from calcium hydride under reduced pressure and the water content calculated by Karl Fischer method was 6 ppm. The reaction vessel was heated to 300 ° C., and 4 ml of a solution (P (TMS) 3 concentration: 45 mM) in which tris (trimethylsilyl) phosphine [P (TMS) 3 ] was dissolved in octadecene [ODE] was quickly added. InP nanoparticles were formed in the reaction solution by holding for a minute (InP nanoparticle formation reaction). Next, the reaction solution was cooled from 300 ° C. to 250 ° C. at a cooling rate of 1.4 ° C./min (slow cooling step). Subsequently, the reaction solution was kept at 230 ° C. and aged for 2 hours to obtain a dispersion of InP nanoparticles. In this dispersion, the content of InP nanoparticles was 0.3% by mass.
This dispersion was sampled and the particle size was measured using HR-TEM (high resolution transmission electron microscope). As a result, the average particle size of InP particles was 3 nm. Subsequently, after cooling to 200 ° C., a solution obtained by vacuum degassing a mixture of zinc solution (zinc acetate (66 mg), palmitic acid (185 mg), octadecene (15 ml) at 130 ° C. for 30 minutes [in the scheme, Zn (C 15 H 31 CO 2 ) 2 ]) 10 mL was added and reacted at 200 ° C. for 15 minutes to introduce Zn into the surface layer of the InP particles. Subsequently, a solution in which a mixture of gallium solution (gallium chloride (19 mg), oleic acid (119 μl), and octadecene (5 ml) was heated at 90 ° C. for 1 hour [shown as Ga (C 17 H 33 CO 2 ) 3 in the scheme] 8 mL was added, reacted at 200 ° C. for 1 hour, Ga was introduced into the surface layer of the InP particles, and allowed to cool to room temperature to obtain an InP quantum dot dispersion. The average particle diameter of InP quantum dots in the obtained dispersion was 4 nm. Moreover, in this InP quantum dot dispersion, the content of InP quantum dots (Ga introduced) was 0.3% by mass. This InP quantum dot dispersion is diluted 5-fold with toluene, and a fluorescence spectrum (F-7000, manufactured by Hitachi High-Tech Science Co., Ltd., excitation wavelength: 450 nm) is measured to measure the maximum emission, the half width of the emission peak, and the quantum yield. did. The results are shown in Table 1 below.
[実施例2]
 実施例1において、徐冷工程「300℃から250℃まで1.4℃/分の冷却速度で冷却」を「300℃から250℃まで1.0℃/分の冷却速度で冷却」に変更したこと以外は、実施例1と同様にして平均粒径4nmのInP量子ドットを得、その蛍光スペクトル、発光極大、発光ピークの半値幅、及び量子収率を測定した。結果を下記表1に示す。
[Example 2]
In Example 1, the slow cooling process “cooling from 300 ° C. to 250 ° C. at a cooling rate of 1.4 ° C./min” was changed to “cooling from 300 ° C. to 250 ° C. at a cooling rate of 1.0 ° C./min”. Except for this, an InP quantum dot having an average particle diameter of 4 nm was obtained in the same manner as in Example 1, and the fluorescence spectrum, emission maximum, half width of emission peak, and quantum yield were measured. The results are shown in Table 1 below.
[実施例3]
 実施例1において、InPナノ粒子形成反応の条件「300℃で30分間」を「300℃で10秒間」に変更したこと以外は、実施例1と同様にして平均粒径4nmのInP量子ドットを得、その蛍光スペクトル、発光極大、発光ピークの半値幅、及び量子収率を測定した。結果を下記表1に示す。
[Example 3]
InP quantum dots having an average particle diameter of 4 nm were obtained in the same manner as in Example 1 except that the conditions of InP nanoparticle formation reaction “300 ° C. for 30 minutes” were changed to “300 ° C. for 10 seconds” in Example 1. The fluorescence spectrum, the emission maximum, the half-value width of the emission peak, and the quantum yield were measured. The results are shown in Table 1 below.
[実施例4]
 実施例1において、徐冷工程「300℃から250℃まで1.4℃/分の冷却速度で冷却」を「300℃から250℃まで2.8℃/分の冷却速度で冷却」に変更したこと以外は、実施例1と同様にして平均粒径4nmのInP量子ドットを得、その蛍光スペクトル、発光極大、発光ピークの半値幅、及び量子収率を測定した。結果を下記表1に示す。
[Example 4]
In Example 1, the slow cooling process “cooling from 300 ° C. to 250 ° C. at a cooling rate of 1.4 ° C./min” was changed to “cooling from 300 ° C. to 250 ° C. at a cooling rate of 2.8 ° C./min”. Except for this, an InP quantum dot having an average particle diameter of 4 nm was obtained in the same manner as in Example 1, and the fluorescence spectrum, emission maximum, half width of emission peak, and quantum yield were measured. The results are shown in Table 1 below.
[実施例5]
 実施例4において、InPナノ粒子形成反応の条件「300℃で30分間」を「300℃で3秒間」に変更したこと以外は、実施例4と同様にして平均粒径4nmのInP量子ドットを得、その蛍光スペクトル、発光極大、発光ピークの半値幅、及び量子収率を測定した。結果を下記表1に示す。
[Example 5]
InP quantum dots having an average particle diameter of 4 nm were obtained in the same manner as in Example 4 except that the conditions of InP nanoparticle formation reaction “300 ° C. for 30 minutes” were changed to “300 ° C. for 3 seconds” in Example 4. The fluorescence spectrum, the emission maximum, the half-value width of the emission peak, and the quantum yield were measured. The results are shown in Table 1 below.
[実施例6]
 実施例1において、InPナノ粒子形成反応の条件「300℃で30分間」を「300℃で180分間」に変更したこと以外は、実施例1と同様にして平均粒径4nmのInP量子ドットを得、その蛍光スペクトル、発光極大、発光ピークの半値幅、及び量子収率を測定した。結果を下記表1に示す。
[Example 6]
InP quantum dots having an average particle diameter of 4 nm were obtained in the same manner as in Example 1 except that the conditions of InP nanoparticle formation reaction “300 ° C. for 30 minutes” were changed to “300 ° C. for 180 minutes” in Example 1. The fluorescence spectrum, the emission maximum, the half-value width of the emission peak, and the quantum yield were measured. The results are shown in Table 1 below.
[実施例7]
 実施例1において、InPナノ粒子形成反応の条件「300℃で30分間」を「270℃で30分間」に変更し、また冷却工程「300℃から250℃まで1.4℃/分の冷却速度で冷却」を「270℃から250℃まで0.8℃/分の冷却速度で冷却」に変更したこと以外は、実施例1と同様にして平均粒径4nmのInP量子ドットを得、その蛍光スペクトル、発光極大、発光ピークの半値幅、及び量子収率を測定した。結果を下記表1に示す。
[Example 7]
In Example 1, the InP nanoparticle formation reaction condition “300 ° C. for 30 minutes” was changed to “270 ° C. for 30 minutes”, and the cooling step “cooling rate of 1.4 ° C./min from 300 ° C. to 250 ° C.” InP quantum dots having an average particle diameter of 4 nm were obtained in the same manner as in Example 1 except that “cooling at 270 ° C. was changed from 270 ° C. to 250 ° C. at a cooling rate of 0.8 ° C./min”. The spectrum, emission maximum, half width of emission peak, and quantum yield were measured. The results are shown in Table 1 below.
[実施例8]
 実施例7において、徐冷工程「270℃から250℃まで0.8℃/分の冷却速度で冷却」を「270℃から250℃まで1.4℃/分の冷却速度で冷却」に変更したこと以外は、実施例7と同様にして平均粒径4nmのInP量子ドットを得、その蛍光スペクトル、発光極大、発光ピークの半値幅、及び量子収率を測定した。結果を下記表1に示す。
[Example 8]
In Example 7, the slow cooling process “cooling from 270 ° C. to 250 ° C. at a cooling rate of 0.8 ° C./min” was changed to “cooling from 270 ° C. to 250 ° C. at a cooling rate of 1.4 ° C./min”. Except for this, an InP quantum dot having an average particle diameter of 4 nm was obtained in the same manner as in Example 7, and the fluorescence spectrum, emission maximum, half width of emission peak, and quantum yield were measured. The results are shown in Table 1 below.
[実施例9]
 実施例1において、InPナノ粒子形成反応に用いた含水率6ppmの1-オクタデセンに代えて、含水率14ppmの1-オクタデセンを用いたこと以外は、実施例1と同様にして平均粒径4nmのInP量子ドットを得、その蛍光スペクトル、発光極大、発光ピークの半値幅、及び量子収率を測定した。結果を下記表1に示す。
[Example 9]
In Example 1, in place of 1-octadecene having a water content of 14 ppm instead of 1-octadecene having a water content of 6 ppm used in the InP nanoparticle formation reaction, an average particle diameter of 4 nm was obtained in the same manner as in Example 1. InP quantum dots were obtained, and the fluorescence spectrum, emission maximum, half width of emission peak, and quantum yield were measured. The results are shown in Table 1 below.
[実施例10]
 実施例1で得られたInP量子ドットにさらにZnS層を形成させた。より詳細には、実施例1においてガリウム溶液を加えて200℃で1時間反応させた後、反応液を240℃に加熱し、亜鉛溶液(酢酸亜鉛(66mg)、パルミチン酸(185mg)、1-オクタデセン(15ml)の混合物を130℃で30分間真空脱気した溶液)と1-ドデカンチオール182mgとの混合物を10ml加え、240℃で6時間反応させ、室温まで放冷した。こうして、InPナノ粒子の表層にGaが導入され、さらにZnSのシェル層が形成された平均粒径5nmのInP量子ドットの分散液を得た。このInP量子ドット分散液中、InP量子ドット(シェル層有)の含有量は0.3質量%であった。このInP量子ドット分散液をトルエンで5倍に希釈し、実施例1と同様に発光極大、発光ピークの半値幅、及び量子収率を測定した。結果を下記表1に示す。
[Example 10]
A ZnS layer was further formed on the InP quantum dots obtained in Example 1. More specifically, after adding a gallium solution and reacting at 200 ° C. for 1 hour in Example 1, the reaction solution was heated to 240 ° C., and a zinc solution (zinc acetate (66 mg), palmitic acid (185 mg), 1- 10 ml of a mixture of octadecene (15 ml) obtained by vacuum degassing at 130 ° C. for 30 minutes and 182 mg of 1-dodecanethiol was added, reacted at 240 ° C. for 6 hours, and allowed to cool to room temperature. Thus, a dispersion liquid of InP quantum dots having an average particle diameter of 5 nm in which Ga was introduced into the surface layer of InP nanoparticles and a ZnS shell layer was formed was obtained. In this InP quantum dot dispersion, the content of InP quantum dots (with a shell layer) was 0.3% by mass. This InP quantum dot dispersion was diluted 5-fold with toluene, and the emission maximum, the half width of the emission peak, and the quantum yield were measured in the same manner as in Example 1. The results are shown in Table 1 below.
[比較例1]
 実施例1において、徐冷工程「300℃から250℃まで1.4℃/分の冷却速度で冷却」を「300℃から250℃まで7℃/分の冷却速度で冷却」に変更したこと以外は、実施例1と同様にして平均粒径4nmのInP量子ドットを得、その蛍光スペクトル、発光極大、発光ピークの半値幅、及び量子収率を測定した。結果を下記表1に示す。
[Comparative Example 1]
In Example 1, except that the slow cooling process “cooling from 300 ° C. to 250 ° C. at a cooling rate of 1.4 ° C./min” was changed to “cooling from 300 ° C. to 250 ° C. at a cooling rate of 7 ° C./min”. Obtained InP quantum dots having an average particle diameter of 4 nm in the same manner as in Example 1, and the fluorescence spectrum, emission maximum, half width of emission peak, and quantum yield were measured. The results are shown in Table 1 below.
[比較例2]
 比較例1において、InPナノ粒子形成反応の条件「300℃で30分間」を「300℃で10秒間」に変更したこと以外は、比較例1と同様にして平均粒径4nmのInP量子ドットを得、その蛍光スペクトル、発光極大、発光ピークの半値幅、及び量子収率を測定した。結果を下記表1に示す。
[Comparative Example 2]
In Comparative Example 1, InP quantum dots having an average particle diameter of 4 nm were formed in the same manner as in Comparative Example 1, except that the conditions of InP nanoparticle formation reaction “300 ° C. for 30 minutes” were changed to “300 ° C. for 10 seconds”. The fluorescence spectrum, the emission maximum, the half-value width of the emission peak, and the quantum yield were measured. The results are shown in Table 1 below.
[比較例3]
 実施例1において、徐冷工程「300℃から250℃まで1.4℃/分の冷却速度で冷却」を「300℃から250℃まで0.1℃/分の冷却速度で冷却」に変更したこと以外は、実施例1と同様にして平均粒径4nmのInP量子ドットを得、その蛍光スペクトル、発光極大、発光ピークの半値幅、及び量子収率を測定した。結果を下記表1に示す。
[Comparative Example 3]
In Example 1, the slow cooling process “cooling from 300 ° C. to 250 ° C. at a cooling rate of 1.4 ° C./min” was changed to “cooling from 300 ° C. to 250 ° C. at a cooling rate of 0.1 ° C./min”. Except for this, an InP quantum dot having an average particle diameter of 4 nm was obtained in the same manner as in Example 1, and the fluorescence spectrum, emission maximum, half width of emission peak, and quantum yield were measured. The results are shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1に示される通り、ナノ粒子形成反応後、250℃までの冷却工程において、冷却速度を本発明で規定するよりも速くした比較例1及び2、及び遅くした比較例3では、得られた量子ドットの量子収率が低かった。
 これに対し、ナノ粒子形成反応後、250℃までの冷却工程において、冷却速度を本発明で規定する範囲内とした実施例1~10では、得られる量子ドットは量子収率に優れ、また、半値幅も狭くシャープな発光特性を示すこともわかった。
 また、上記実施例1~10の間で比較すると、ナノ粒子形成反応における反応温度を270℃とやや低く設定した実施例7及び8は、得られる量子ドットの量子収率がやや低下するが、比較例に比べれば格段に高い量子収率を示している。また、ナノ粒子形成反応における反応時間や溶媒中の含水率も、半値幅ないし量子収率に影響を与え得ることも示されているが、やはり比較例に比べればその性能は大きく向上している。
As shown in Table 1, in the cooling step up to 250 ° C. after the nanoparticle formation reaction, Comparative Examples 1 and 2 in which the cooling rate was faster than that defined in the present invention and Comparative Example 3 in which the cooling rate was slow were obtained. The quantum yield of quantum dots was low.
In contrast, in Examples 1 to 10 in which the cooling rate was within the range specified in the present invention in the cooling step up to 250 ° C. after the nanoparticle formation reaction, the obtained quantum dots had excellent quantum yields, It was also found that the half-value width was narrow and sharp emission characteristics were exhibited.
In addition, when compared between Examples 1 to 10 above, Examples 7 and 8 in which the reaction temperature in the nanoparticle formation reaction was set to be as low as 270 ° C., the quantum yield of the obtained quantum dots was slightly reduced, Compared with the comparative example, the quantum yield is much higher. In addition, it has been shown that the reaction time in the nanoparticle formation reaction and the water content in the solvent can also affect the half-value width or quantum yield, but its performance is greatly improved compared to the comparative example. .
 本発明をその実施態様とともに説明したが、我々は特に指定しない限り我々の発明を説明のどの細部においても限定しようとするものではなく、添付の請求の範囲に示した発明の精神と範囲に反することなく幅広く解釈されるべきであると考える。 While this invention has been described in conjunction with its embodiments, we do not intend to limit our invention in any detail of the description unless otherwise specified and are contrary to the spirit and scope of the invention as set forth in the appended claims. I think it should be interpreted widely.
 本願は、2016年9月23日に日本国で特許出願された特願2016-185860に基づく優先権を主張するものであり、これはここに参照してその内容を本明細書の記載の一部として取り込む。 This application claims priority based on Japanese Patent Application No. 2016-185860 filed in Japan on September 23, 2016, which is hereby incorporated herein by reference. Capture as part.

Claims (12)

  1.  下記工程(a)及び(b)を含む、III-V族半導体量子ドットの製造方法。
    (a)第III族元素を含む化合物a1と、第V族元素を含む化合物a2と、溶媒とを含有する液を、270~400℃に保持して化合物a1と化合物a2とを反応させ、反応液中にIII-V族半導体のナノ粒子を形成させる工程;
    (b)前記のナノ粒子を形成させた反応液を、0.3~3℃/分の冷却速度で250℃まで冷却する工程。
    A method for producing a group III-V semiconductor quantum dot, comprising the following steps (a) and (b):
    (A) A liquid containing a compound a1 containing a Group III element, a compound a2 containing a Group V element, and a solvent is maintained at 270 to 400 ° C. to react the compound a1 with the compound a2, and react Forming III-V semiconductor nanoparticles in the liquid;
    (B) A step of cooling the reaction liquid in which the nanoparticles are formed to 250 ° C. at a cooling rate of 0.3 to 3 ° C./min.
  2.  前記工程(a)における270~400℃の反応時間を10秒間~120分間とする、請求項1記載のIII-V族半導体量子ドットの製造方法。 The method for producing a group III-V semiconductor quantum dot according to claim 1, wherein a reaction time of 270 to 400 ° C in the step (a) is 10 seconds to 120 minutes.
  3.  前記化合物a1に含まれる第III族元素がInである、請求項1又は2記載のIII-V族半導体量子ドットの製造方法。 The method for producing a group III-V semiconductor quantum dot according to claim 1 or 2, wherein the group III element contained in the compound a1 is In.
  4.  前記化合物a2に含まれる第V族元素がP又はAsである、請求項1~3のいずれか1項記載のIII-V族半導体量子ドットの製造方法。 The method for producing a group III-V semiconductor quantum dot according to any one of claims 1 to 3, wherein the group V element contained in the compound a2 is P or As.
  5.  前記III-V族半導体量子ドットがInP量子ドットである、請求項1~4のいずれか1項記載のIII-V族半導体量子ドットの製造方法。 The method for producing a group III-V semiconductor quantum dot according to any one of claims 1 to 4, wherein the group III-V semiconductor quantum dot is an InP quantum dot.
  6.  前記溶媒が非配位性溶媒である、請求項1~5のいずれか1項記載のIII-V族半導体量子ドットの製造方法。 The method for producing a group III-V semiconductor quantum dot according to any one of claims 1 to 5, wherein the solvent is a non-coordinating solvent.
  7.  前記溶媒の含水率が10ppm以下である、請求項1~6のいずれか1項記載のIII-V族半導体量子ドットの製造方法。 The method for producing a group III-V semiconductor quantum dot according to any one of claims 1 to 6, wherein the water content of the solvent is 10 ppm or less.
  8.  前記工程(a)における反応温度が、280~350℃である、請求項1~7のいずれか1項記載のIII-V族半導体量子ドットの製造方法。 The method for producing a group III-V semiconductor quantum dot according to any one of claims 1 to 7, wherein a reaction temperature in the step (a) is 280 to 350 ° C.
  9.  前記工程(b)が、前記の250℃まで冷却した反応液を、150~250℃の温度で0.5~4時間保持することを含む、請求項1~8のいずれか1項記載のIII-V族半導体量子ドットの製造方法。 The III of any one of claims 1 to 8, wherein the step (b) comprises maintaining the reaction liquid cooled to 250 ° C at a temperature of 150 to 250 ° C for 0.5 to 4 hours. A method for producing a group V semiconductor quantum dot.
  10.  前記工程(b)の後、前記ナノ粒子の表層にGaを導入する工程(c)を含む、請求項1~9のいずれか1項記載のIII-V族半導体量子ドットの製造方法。 The method for producing a group III-V semiconductor quantum dot according to any one of claims 1 to 9, further comprising a step (c) of introducing Ga into a surface layer of the nanoparticles after the step (b).
  11.  前記工程(c)で得られた、表層にGaが導入されたナノ粒子表面に、シェル層を形成する工程(d)を含む、請求項10記載のIII-V族半導体量子ドットの製造方法。 The method for producing a group III-V semiconductor quantum dot according to claim 10, comprising a step (d) of forming a shell layer on the surface of the nanoparticles having Ga introduced into the surface layer obtained in the step (c).
  12.  前記シェル層がZnS、ZnO、ZnSe、ZnSe1-X、ZnTe又はCuOである、請求項11に記載のIII-V族半導体量子ドットの製造方法。但し、0<X<1である。 The method for producing a group III-V semiconductor quantum dot according to claim 11, wherein the shell layer is ZnS, ZnO, ZnSe, ZnSe X S 1-X , ZnTe, or CuO. However, 0 <X <1.
PCT/JP2017/032833 2016-09-23 2017-09-12 Method for producing semiconductor quantum dots WO2018056114A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018540984A JP6651024B2 (en) 2016-09-23 2017-09-12 Method for manufacturing semiconductor quantum dots

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-185860 2016-09-23
JP2016185860 2016-09-23

Publications (1)

Publication Number Publication Date
WO2018056114A1 true WO2018056114A1 (en) 2018-03-29

Family

ID=61690386

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/032833 WO2018056114A1 (en) 2016-09-23 2017-09-12 Method for producing semiconductor quantum dots

Country Status (2)

Country Link
JP (1) JP6651024B2 (en)
WO (1) WO2018056114A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114014277A (en) * 2021-12-09 2022-02-08 广东省科学院半导体研究所 Copper indium selenium nanocrystal, nano film, preparation method of copper indium selenium nanocrystal and preparation method of nano film and electronic device
CN115135605A (en) * 2020-02-21 2022-09-30 昭荣化学工业株式会社 Method for producing core/shell type semiconductor nanoparticles

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09510947A (en) * 1994-01-31 1997-11-04 デューク ユニバーシティ [III-V] Method for synthesizing semiconductor nanocrystal
JP2006265022A (en) * 2005-03-23 2006-10-05 Hoya Corp METHOD FOR PRODUCTION OF InP PARTICULATE, AND InP PARTICULATE-DISPERSION LIQUID OBTAINED BY THE METHOD
JP2010138367A (en) * 2008-04-23 2010-06-24 National Institute Of Advanced Industrial Science & Technology Water-dispersible nanoparticles having high luminous efficiency and method of producing the same
JP2010270139A (en) * 2006-07-31 2010-12-02 Hoya Corp Method for producing fine particle and method for producing indium organic carboxylate
JP2011520002A (en) * 2008-05-05 2011-07-14 コミッサリア ア ロンネルジー アトミック エ オ ゾンネルジー ザルテルナティーフ Method for the preparation of luminescent nanocrystals, the obtained nanocrystals and their use
WO2012026149A1 (en) * 2010-08-27 2012-03-01 コニカミノルタエムジー株式会社 Semiconductor nanoparticle assembly
JP2013189367A (en) * 2011-05-30 2013-09-26 Fujifilm Corp SYNTHETIC METHOD FOR InP NANOPARTICLE, AND NANOPARTICLE
JP2015127362A (en) * 2013-12-27 2015-07-09 コニカミノルタ株式会社 Light emission body particle, method of producing light emission body particle, and optical film and optical device using light emission body particle

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09510947A (en) * 1994-01-31 1997-11-04 デューク ユニバーシティ [III-V] Method for synthesizing semiconductor nanocrystal
JP2006265022A (en) * 2005-03-23 2006-10-05 Hoya Corp METHOD FOR PRODUCTION OF InP PARTICULATE, AND InP PARTICULATE-DISPERSION LIQUID OBTAINED BY THE METHOD
JP2010270139A (en) * 2006-07-31 2010-12-02 Hoya Corp Method for producing fine particle and method for producing indium organic carboxylate
JP2010138367A (en) * 2008-04-23 2010-06-24 National Institute Of Advanced Industrial Science & Technology Water-dispersible nanoparticles having high luminous efficiency and method of producing the same
JP2011520002A (en) * 2008-05-05 2011-07-14 コミッサリア ア ロンネルジー アトミック エ オ ゾンネルジー ザルテルナティーフ Method for the preparation of luminescent nanocrystals, the obtained nanocrystals and their use
WO2012026149A1 (en) * 2010-08-27 2012-03-01 コニカミノルタエムジー株式会社 Semiconductor nanoparticle assembly
JP2013189367A (en) * 2011-05-30 2013-09-26 Fujifilm Corp SYNTHETIC METHOD FOR InP NANOPARTICLE, AND NANOPARTICLE
JP2015127362A (en) * 2013-12-27 2015-07-09 コニカミノルタ株式会社 Light emission body particle, method of producing light emission body particle, and optical film and optical device using light emission body particle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115135605A (en) * 2020-02-21 2022-09-30 昭荣化学工业株式会社 Method for producing core/shell type semiconductor nanoparticles
CN114014277A (en) * 2021-12-09 2022-02-08 广东省科学院半导体研究所 Copper indium selenium nanocrystal, nano film, preparation method of copper indium selenium nanocrystal and preparation method of nano film and electronic device

Also Published As

Publication number Publication date
JP6651024B2 (en) 2020-02-19
JPWO2018056114A1 (en) 2019-03-22

Similar Documents

Publication Publication Date Title
TWI547540B (en) Group iii-v/zinc chalcogenide alloyed semiconductor quantum dots
JP6941281B2 (en) Quantum dot material and manufacturing method of quantum dot material
US10519038B2 (en) Nanocrystal preparation method, nanocrystals, and apparatus for preparing and storing dissolved gas
CN108239535B (en) Ga-doped InP quantum dot with core-shell structure and preparation method thereof
JP6529582B2 (en) Core-shell particle, method of producing core-shell particle and film
US10947112B2 (en) Method of manufacturing semiconductor quantum dot and semiconductor quantum dot
US7704413B2 (en) Method for the preparation of a composition of nanoparticles of at least one crystalline metal oxide
JP6651024B2 (en) Method for manufacturing semiconductor quantum dots
US20200140284A1 (en) Core shell particle, method of producing core shell particle, and film
JP6433586B2 (en) Core-shell particle, method for producing core-shell particle, and film
JP2020176044A (en) PRODUCTION METHOD OF InP QUANTUM DOT PRECURSOR AND PRODUCTION METHOD OF InP-BASED QUANTUM DOT
JP6630446B2 (en) Core-shell particles, method for producing core-shell particles, and film
JP6630447B2 (en) Core-shell particles, method for producing core-shell particles, and film
US11492252B2 (en) Method for producing group III-V semiconductor nanoparticle, method for producing group III-V semiconductor quantum dot, and flow reaction system
US10868222B2 (en) Method of manufacturing gallium nitride quantum dots
JP2019151832A (en) Production method of core-shell type quantum dot dispersion, and production method of quantum dot dispersion
CN108929690A (en) A kind of preparation method of alloy nanometer crystals

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018540984

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17852891

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17852891

Country of ref document: EP

Kind code of ref document: A1