WO2018056077A1 - Electric power steering apparatus - Google Patents

Electric power steering apparatus Download PDF

Info

Publication number
WO2018056077A1
WO2018056077A1 PCT/JP2017/032425 JP2017032425W WO2018056077A1 WO 2018056077 A1 WO2018056077 A1 WO 2018056077A1 JP 2017032425 W JP2017032425 W JP 2017032425W WO 2018056077 A1 WO2018056077 A1 WO 2018056077A1
Authority
WO
WIPO (PCT)
Prior art keywords
steering
target value
electric power
steering angle
torque
Prior art date
Application number
PCT/JP2017/032425
Other languages
French (fr)
Japanese (ja)
Inventor
久純 石川
智哉 安原
輝之 菊池
Original Assignee
Kyb株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyb株式会社 filed Critical Kyb株式会社
Publication of WO2018056077A1 publication Critical patent/WO2018056077A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits

Definitions

  • the present invention relates to an electric power steering apparatus.
  • JP6-336170A describes a steering device that automatically steers a running vehicle along a white line of a road without operating a steering wheel by controlling a motor based on image data, vehicle speed, and actual steering angle signals in front of the vehicle. Has been.
  • the steering device when the steering operation by the driver is determined in the automatic steering mode, the steering device is switched to the manual steering mode. Specifically, when a predetermined steering torque continues for a predetermined time, it is determined that the driver is operating the steering wheel, and the automatic steering mode is switched to the manual operation mode.
  • the present invention has been made in view of the above problems, and an object thereof is to reduce a driver's uncomfortable feeling when a manual operation is performed during automatic steering.
  • an electric power steering apparatus includes a steering shaft that is coupled to a steering member that is operated by a driver and that rotates in response to the operation of the steering member by the driver, and a part of the steering shaft.
  • a torsion bar that detects torque acting on the torsion bar, an electric motor that applies rotational torque to the steering shaft, steering assistance that controls the electric motor based on the torque detected by the torque sensor, and the outside of the vehicle
  • a control unit that selectively performs automatic steering for controlling the electric motor based on the information of the steering wheel, and a steering angle detection unit that detects the steering angle of the steering member. The control unit moves the vehicle during automatic steering.
  • a signal based on the rudder angle target value set based on the target position and the rudder angle detector detects it.
  • the automatic steering control unit controls the electric motor according to the deviation from the signal based on the steering angle, and the automatic steering control unit operates during integration and an integrator for performing integral control based on the deviation.
  • a limiting unit that limits the integration control based on the integrator is provided.
  • FIG. 1 is a configuration diagram of an electric power steering apparatus according to a first embodiment of the present invention.
  • FIG. 2 is a block diagram of the electric power steering apparatus according to the first embodiment of the present invention.
  • FIG. 3 is a block diagram of the automatic steering control unit of the electric power steering apparatus according to the first embodiment of the present invention.
  • FIG. 4 is a graph showing the operation of the limiting unit according to the first embodiment of the present invention.
  • FIG. 5 is a graph showing the operation of a modified example of the limiting unit according to the first embodiment of the present invention.
  • FIG. 6 is a block diagram of an automatic steering control unit of an electric power steering apparatus according to a modification of the first embodiment of the present invention.
  • FIG. 7 is a block diagram of an automatic steering control unit of an electric power steering apparatus according to a modification of the first embodiment of the present invention.
  • FIG. 8 is a block diagram of an automatic steering control unit of the electric power steering apparatus according to the second embodiment of the present invention.
  • an electric power steering apparatus 100 is connected to a steering wheel 1 as a steering member operated by a driver and is operated by the driver (hereinafter referred to as “steering operation”).
  • the input shaft 2 which rotates with it, the output shaft 3 linked with the rack shaft 5 which steers the wheel 6, and the torsion bar 4 which connects the input shaft 2 and the output shaft 3 are provided.
  • a steering shaft 7 is configured by the input shaft 2, the output shaft 3, and the torsion bar 4.
  • a pinion gear 3a that meshes with a rack gear 5a formed on the rack shaft 5 is formed below the output shaft 3.
  • the electric power steering apparatus 100 includes an electric motor 10 that is a power source for assisting the driver in steering the steering wheel 1, a speed reducer 11 that decelerates and transmits the rotation of the electric motor 10 to the output shaft 3, and driving.
  • a torque sensor 12 that detects torque acting on the torsion bar 4 by relative rotation between the input shaft 2 and the output shaft 3 in response to a steering operation by a person, a controller 30 as a control unit that controls the electric motor 10, and the electric motor 10
  • a current sensor 10b (FIG. 2) for detecting a current value flowing through
  • the electric motor 10 is provided with a motor rotation angle sensor 10 a that acquires the rotation angle of the electric motor 10.
  • the motor rotation angle sensor 10a is configured by a resolver.
  • the reducer 11 includes a worm shaft 11a connected to the output shaft of the electric motor 10 and a worm wheel 11b connected to the output shaft 3 and meshing with the worm shaft 11a.
  • the rotational torque output from the electric motor 10 is transmitted from the worm shaft 11 a to the worm wheel 11 b and applied to the output shaft 3.
  • the steering torque applied to the input shaft 2 in accordance with the steering operation by the driver is detected by the torque sensor 12, and the torque sensor 12 outputs a voltage signal corresponding to the steering torque to the controller 30.
  • the controller 30 calculates the torque output from the electric motor 10 based on the voltage signal from the torque sensor 12, and controls the driving of the electric motor 10 so that the torque is generated.
  • the electric power steering apparatus 100 detects the steering torque applied to the input shaft 2 by the torque sensor 12, and controls the driving of the electric motor 10 by the controller 30 based on the detection result, thereby steering the driver. Assist the operation.
  • the input shaft 2 is provided with a steering angle sensor 15 as a steering angle detector that detects a steering angle that is a rotation angle of the steering wheel 1. Since the rotation angle of the input shaft 2 and the steering angle of the steering wheel 1 are equal, the steering angle of the steering wheel 1 can be obtained by detecting the rotation angle of the input shaft 2 by the steering angle sensor 15. The detection result of the steering angle sensor 15 is output to the controller 30.
  • the rudder angle sensor 15 includes, for example, a center gear that rotates integrally with the input shaft 2 and two outer gears that mesh with the center gear, and is based on changes in magnetic flux accompanying rotation of the two outer gears.
  • the rotation angle of the center gear that is, the rotation angle of the input shaft 2 is calculated.
  • the controller 30 is detected by a CPU that controls the operation of the electric motor 10, a ROM that stores control programs and setting values necessary for the processing operation of the CPU, and various sensors such as the torque sensor 12 and the steering angle sensor 15. And a RAM for temporarily storing information.
  • the electric power steering device 100 automatically assists the steering operation by the driver based on the detection result of the torque sensor 12, and automatically based on information outside the vehicle without depending on the steering operation of the driver. Can be steered.
  • the controller 30 selectively performs steering assistance for controlling the electric motor 10 based on the steering torque detected by the torque sensor 12 and automatic steering for controlling the electric motor 10 based on information outside the vehicle.
  • Switching from manual steering to automatic steering by the driver is performed by selecting the automatic driving mode by the driver's operation.
  • switching from automatic steering to manual steering is automatically performed when an intervention determination unit 33 (see FIG. 2) of the controller 30 described later determines that the steering operation by the driver is being performed, or by the driver's operation. This is executed by releasing the operation mode.
  • the controller 30 is set based on an assist control unit 50 that performs assist control by the electric motor 10 based on detection values from various sensors during a steering operation by the driver, and a movement target position of the vehicle. And an automatic steering control unit 60 that controls the electric motor 10 in accordance with a deviation between the signal based on the steering angle target value to be performed and the signal based on the steering angle detected by the steering angle sensor 15.
  • the assist control unit 50 is based on the torque detected by the torque sensor 12, the vehicle speed detected by the vehicle speed sensor 16 provided in the vehicle, and the steering angle of the steering wheel 1 detected by the steering angle sensor 15. Calculate the assist force target value.
  • Automatic steering is performed based on a command signal (steering angle target value) from the automatic driving system 40 of the vehicle.
  • the automatic driving system 40 detects a boundary line (white line) of a running lane as information outside the vehicle, and calculates a steering angle target value necessary for the host vehicle to keep running in the lane. Then, the steering angle target value is output to the automatic steering control unit 60.
  • the steering angle target value is set based on the movement target position of the vehicle.
  • the automatic steering control unit 60 calculates an automatic steering target value based on the steering angle of the steering wheel 1 detected by the steering angle sensor 15 and the steering angle target value input from the automatic driving system 40. Details will be described later.
  • the controller 30 includes a current control unit 31 that controls a current applied to the electric motor 10 based on the assist force target value and the automatic steering target value, a drive circuit 32 that controls driving of the electric motor 10, and the torque sensor 12.
  • An intervention determination unit 33 that determines a steering intervention operation by the driver based on the torque detected by the driver.
  • the current value of the electric motor 10 detected by the current sensor 10b is fed back to the current control unit 31 to perform feedback control.
  • the intervention determination unit 33 determines whether a steering operation by the driver is performed based on the torque detected by the torque sensor 12 during automatic steering (hereinafter, the steering operation by the driver during automatic steering is referred to as “driving”). This is also referred to as “steering intervention by the user”.) Specifically, the intervention determination unit 33 determines that a steering intervention operation by the driver has been performed when the torque detected by the torque sensor 12 exceeds a predetermined value for a predetermined time. The intervention determination unit 33 controls the electric motor 10 only by assist control by invalidating or stopping the control by the automatic steering control unit 60 based on the determination result.
  • FIG. 3 is a block diagram of the automatic steering control unit 60.
  • the automatic steering control unit 60 controls the electric motor 10 based on the steering angle target value input from the automatic driving system 40 and the steering angle of the steering wheel 1 detected by the steering angle sensor 15.
  • An angular velocity target value calculation unit 61 is provided.
  • the angular velocity target value calculation unit 61 converts the steering wheel 1 to the steering angle target value based on the difference between the steering angle target value output from the automatic driving system 40 and the steering angle of the steering wheel 1 detected by the steering angle sensor 15.
  • a position control unit 62 that calculates a position control target value for controlling the electric motor 10 so that the steering angles coincide with each other, and a target based on a change per unit time of the steering angle target value output from the automatic driving system 40.
  • a target change compensator 63 for calculating a change compensation signal.
  • the steering angle of the steering wheel 1 detected by the steering angle sensor 15 is used.
  • the detection period of the steering angle sensor 15 is relatively long, and when the steering wheel 1 is quickly steered, the steering angle of the steering wheel 1 cannot be detected with high accuracy only by the steering angle sensor 15.
  • the position control unit 62 uses the steering angle detected by the steering angle sensor 15 as the motor rotation angle detected by the motor rotation angle sensor 10a.
  • a high precision rudder angle is calculated by using and correcting. More specifically, the motor rotation angle sensor 10 a detects the motor rotation angle that is the rotation angle change amount of the electric motor 10 at a cycle shorter than the detection cycle of the rudder angle sensor 15. The amount of change in the rotation angle of the output shaft 3 can be obtained from the motor rotation angle detected by the motor rotation angle sensor 10a and the reduction ratio of the reduction gear 11 (the reduction ratio of the output shaft 3 and the electric motor 10).
  • the motor rotation angle sensor 10a functions as a part of the steering angle detector.
  • the steering angle of the steering wheel 1 is determined by the motor rotation angle of the electric motor 10 detected by the motor rotation angle sensor 10a and the rotation of the steering wheel 1 detected by the steering angle sensor 15. Calculation is performed based on the angle. Thereby, a highly accurate rudder angle can be obtained.
  • the detection cycle of the rudder angle sensor 15 is about 10 msec and the detection cycle of the motor rotation angle sensor 10a is 1 msec or less, but if the detection cycle of the rudder angle sensor 15 is short, it is detected by the rudder angle sensor 15. Only the rudder angle may be used.
  • the position control unit 62 calculates the difference between the steering angle target value and the steering angle of the steering wheel 1, performs PD control on this difference, and multiplies a predetermined gain to obtain the target angular velocity of the steering wheel 1.
  • the corresponding position control target value is calculated.
  • the position control unit 62 determines the steering wheel 1 based on the difference between the steering angle target value output from the automatic driving system 40 and the actual steering angle of the steering wheel 1 detected by the steering angle sensor 15.
  • the position control target value for making the rudder angle equal to the rudder angle target value is calculated. That is, the position control unit 62 performs position feedback control based on the difference between the steering angle target value and the actual steering angle of the steering wheel 1.
  • the gain corresponds to, for example, the reciprocal of unit time.
  • the target change compensation unit 63 divides the difference between the previous steering angle target value output from the automatic driving system 40 and the current steering angle target value by a unit time (interval at which the steering angle target value is output), and PID. By executing the control, the target change compensation signal is calculated.
  • the angular velocity target value calculation unit 61 adds the target change compensation signal calculated by the target change compensation unit 63 to the position control target value calculated by the position control unit 62. This is intended to improve the followability to changes in the steering angle target value. This will be described in detail below.
  • the control by the position control unit 62 may not be able to follow the control of the electric motor 10 with respect to the change in the steering angle target value (a delay occurs).
  • a case will be described as an example where the steering angle target value changes suddenly from a state where it is larger than the actual steering angle to a state where it is smaller than the actual steering angle.
  • the position control unit 62 Since the steering angle target value is larger than the actual steering angle when the steering angle target value starts to change, the position control unit 62 outputs a position control target value that increases the steering angle of the steering wheel 1. . For this reason, the electric motor 10 is driven so that the steering angle of the steering wheel 1 is increased. Even if the steering angle target value is decreased, the position control unit 62 is configured to steer the steering wheel 1 so that the actual steering angle matches the steering angle target value if the actual steering angle is smaller than the steering angle target value. A position control target value that increases the angle is output.
  • the position control unit 62 starts the position where the rudder angle of the steering wheel 1 becomes smaller from this point in order to follow the rudder angle target value. Outputs the control target value.
  • the steering angle of the steering wheel 1 is increased until the actual steering angle matches the steering angle target value even if the steering angle target value suddenly decreases. Since the output of such a position control target value is continued, a delay is likely to occur.
  • the angular velocity target value calculator 61 calculates a target change compensation signal corresponding to the change speed of the steering angle target value, and the target change compensator 63 calculates the position control target value calculated by the position controller 62.
  • the target change compensation signal is added to generate an angular velocity target value.
  • the automatic steering control unit 60 calculates the twist angle of the torsion bar 4 based on the torque detected by the torque sensor 12, and controls the electric motor 10 in a direction to suppress the twist of the torsion bar 4 based on the twist angle.
  • the vibration compensation unit 70 for calculating the vibration compensation signal is further provided.
  • the vibration compensation unit 70 includes a torsion angle calculation unit 71 that calculates the torsion angle of the torsion bar 4 from the torque detected by the torque sensor 12.
  • the vibration compensation unit 70 performs PD control on the twist angle calculated by the twist angle calculation unit 71 and calculates a vibration compensation signal.
  • the vibration compensation signal is a signal for suppressing the vibration of the steering wheel 1 generated due to the inertia of the steering wheel 1 and the spring property of the torsion bar 4.
  • the vibration of the steering wheel 1 caused by the inertia of the steering wheel 1 and the spring property of the torsion bar 4 will be specifically described.
  • the rotation of the electric motor 10 is transmitted to the output shaft 3 via the speed reducer 11.
  • the steering wheel 1 rotates via the torsion bar 4 and the input shaft 2.
  • the torsion bar 4 has a spring property, and the inertia that tries to stay in place acts on the steering wheel 1, so that the torsion bar 4 is twisted when the output shaft 3 starts to rotate. Then, the steering wheel 1 starts rotating with a delay from the output shaft 3 by the amount of twisting of the torsion bar 4.
  • the steering wheel 1 continues to rotate due to the spring force of the torsion bar 4 and the inertia of the steering wheel, and the torsion bar 4 is moved in the reverse direction beyond the position where the twist of the torsion bar 4 has been eliminated. Twist into.
  • the electric motor 10 operates to rotate the output shaft 3 in the reverse direction in order to eliminate this difference.
  • the torsion bar 4 rotates in the opposite direction by the spring force so as to eliminate the twist of the torsion bar 4 itself.
  • the electric motor 10 stops when the steering angle target value is reached, but the steering wheel 1 continues to rotate due to its inertia even when the twist of the torsion bar 4 is eliminated, and the torsion bar 4 is further reversed. It will twist. By repeating such an operation, the steering wheel 1 vibrates.
  • the vibration compensation unit 70 outputs a vibration compensation signal to the electric motor 10 in order to suppress such vibration. Specifically, when the output shaft 3 rotates to the left and the torsion bar 4 is twisted, the vibration compensator 70 twists the torsion bar 4 according to the torsion angle of the torsion bar 4. A vibration compensation signal that suppresses the rotation direction, that is, the leftward rotation of the output shaft 3, is output to the electric motor 10. Thereby, since the torque to the left rotation direction of the electric motor 10 is suppressed, the twist of the torsion bar 4 is suppressed. Therefore, vibration of the steering wheel 1 caused by the inertia of the steering wheel 1 and the torsion of the torsion bar 4 is suppressed.
  • the vibration compensation unit 70 suppresses the twist of the torsion bar 4 according to the twist angle of the torsion bar 4, that is, Then, a vibration compensation signal that suppresses the rightward rotation of the output shaft 3 is output to the electric motor 10.
  • the twist of the torsion bar 4 is suppressed. Therefore, vibration of the steering wheel 1 caused by the inertia of the steering wheel 1 and the torsion of the torsion bar 4 is suppressed.
  • the vibration compensation signal is calculated so as to suppress the rotation (torque) of the electric motor 10 in the direction in which the torsion bar 4 is twisted. Is done. That is, the vibration compensation signal is calculated to a value corresponding to the magnitude of the torsion angle, and acts on the electric motor 10 in a direction to cancel the torsion, so that the torsion bar 4 can be accurately prevented from being twisted.
  • the automatic steering control unit 60 is a corrected angular velocity target value calculation unit that calculates a corrected angular velocity target value based on the angular velocity target value calculated by the angular velocity target value calculation unit 61 and the vibration compensation signal calculated by the vibration compensation unit 70.
  • a subtractor 66 serving as a deviation calculating unit that calculates a deviation d (difference) from the calculated angular velocity of the steering wheel 1, and automatic steering for controlling the electric motor 10 based on the deviation d calculated by the subtractor 66.
  • an angular velocity control unit 67 that generates a target value.
  • the adder 64 adds a vibration compensation signal to the angular velocity target value and calculates a corrected angular velocity target value.
  • the angular velocity calculation unit 65 calculates the angular velocity of the rotating shaft of the electric motor 10 from the motor rotation number per unit time detected by the motor rotation angle sensor 10a. Furthermore, the angular velocity calculation unit 65 calculates the angular velocity of the steering wheel 1 by dividing the reduction ratio of the reduction gear 11 by the angular velocity of the rotating shaft of the electric motor 10. Thus, the angular velocity of the steering wheel 1 calculated by the angular velocity calculating unit 65 corresponds to the actual angular velocity of the steering wheel 1. Note that the angular velocity of the steering wheel 1 may be calculated based on the steering angle detected by the steering angle sensor 15 as long as the detection cycle of the steering angle sensor 15 is short.
  • the angular velocity control unit 67 includes a proportional unit 67a for performing proportional control based on the deviation d, an integrator 67b for performing integral control based on the deviation d, and a differential for performing differential control based on the deviation d. And a device 67c.
  • the angular velocity control unit 67 performs PID control based on the deviation d by the proportional unit 67a, the integrator 67b, and the differentiator 67c to generate an automatic steering target value.
  • the angular velocity control unit 67 generates an automatic steering target value for controlling the electric motor 10 based on the deviation d so that the actual angular velocity of the steering wheel 1 matches the corrected angular velocity target value. That is, the angular velocity control unit 67 performs speed feedback control based on a deviation d (difference) between the target value of the angular velocity of the steering wheel 1 and the actual angular velocity of the steering wheel 1.
  • the adder 64 adds the vibration compensation signal calculated by the vibration compensator 70 to the angular velocity target value to calculate the corrected angular velocity target value. Since the deviation d between the corrected angular velocity target value calculated by the adder 64 and the angular velocity fed back by the angular velocity calculator 65 is a difference between the signals to which the vibration compensation signal is added, the deviation d is a relatively small value. Become. Thereby, the control in the angular velocity control part 67 can be stabilized.
  • the automatic steering control unit 60 is calculated by the subtractor 66 when the torque value detected by the torque sensor 12 reaches the first threshold value ⁇ .
  • a deviation limiting unit 80 is further provided as a limiting unit that limits the input of the deviation d to the angular velocity control unit 67.
  • the deviation limiting unit 80 determines the deviation between the signal based on the steering angle target value and the signal based on the steering angle. Specifically, the deviation d between the angular velocity calculated by the subtractor 66 and the corrected angular velocity target value is output as zero. The deviation limiting unit 80 outputs the deviation d as it is when the torque acting on the torsion bar 4 decreases to a second threshold value ⁇ that is smaller than the first threshold value ⁇ . As described above, since the dead zone is provided between the first threshold value ⁇ and the second threshold value ⁇ in the deviation limiting unit 80, for example, the torque changes in small increments across the first threshold value ⁇ . Occasional hunting can be prevented.
  • the angular velocity target value calculation unit 61 makes the steering angle detected by the steering angle sensor 15 coincide with the steering angle target value.
  • An angular velocity target value for controlling the electric motor 10 is calculated.
  • the corrected angular velocity target value is calculated by adding the vibration compensation signal calculated by the vibration compensation unit 70 to the target angular velocity value.
  • the angular velocity calculator 65 calculates the actual angular velocity of the steering wheel 1 from the rotation angle of the motor detected by the motor rotation angle sensor 10a.
  • the angular velocity control unit 67 Based on the difference (deviation d) between the corrected angular velocity target value calculated by the adder 64 and the angular velocity of the steering wheel 1 calculated by the angular velocity calculator 65, the angular velocity control unit 67 converts the steering wheel 1 into the corrected angular velocity target value.
  • the automatic steering target value for controlling the electric motor 10 is calculated so that the actual angular velocities match.
  • the automatic steering target value calculated in this way is input to the current control unit 31, and the current control unit 31 controls the electric motor 10 via the drive circuit 32.
  • the electric motor 10 rotates the steering shaft 7 via the speed reducer 11 so that the angular velocity of the steering wheel 1 becomes the steering angle target value.
  • the torsion bar 4 When the electric motor 10 starts rotating, the torsion bar 4 is twisted due to the inertia of the steering wheel 1 and the spring property of the torsion bar 4 as described above.
  • torque is detected by the torque sensor 12, and this torque is input to the torsion angle calculation unit 71 of the vibration compensation unit 70.
  • the torsion angle calculation unit 71 calculates the torsion angle of the torsion bar 4.
  • the vibration compensation unit 70 calculates a vibration compensation signal for controlling the electric motor 10 in a direction to suppress the twist of the torsion bar 4 based on the twist angle.
  • the vibration compensation signal calculated by the vibration compensator 70 is added to the angular velocity target value calculated by the angular velocity target value calculator 61 in the adder 64.
  • a subtractor 66 calculates a difference (deviation d) between the corrected angular velocity target value and the angular velocity of the steering wheel 1, and the deviation d is input to the angular velocity controller 67.
  • the angular velocity control unit 67 performs PID control based on the deviation d, and calculates an automatic steering target value for controlling the electric motor 10.
  • the electric motor 10 suppresses the twist of the torsion bar 4 according to the torsion angle of the torsion bar 4 by the automatic steering target value to which the vibration compensation signal calculated by the vibration compensator 70 is added.
  • the angular velocity of the steering wheel 1 is controlled to be the steering angle target value while being controlled in the direction.
  • the electric motor 10 is controlled so that the angular velocity of the steering wheel 1 becomes the steering angle target value while the torque in the rotational direction is suppressed by an amount corresponding to the magnitude of the torsion angle of the torsion bar 4.
  • the vibration of the steering wheel 1 generated due to the inertia of the steering wheel 1 and the spring property of the torsion bar 4 can be suppressed.
  • Torque acting on the torsion bar 4 is detected by the torque sensor 12 and input to the deviation limiting unit 80.
  • the deviation limiting unit 80 outputs the deviation d calculated by the subtractor 66 as 0 when the input torque becomes equal to or greater than the first threshold value ⁇ . As a result, the deviation d is input to the angular velocity control unit 67 as zero.
  • the intervention determination unit 33 determines whether a steering intervention operation by the driver is being performed. Specifically, when the detected torque is equal to or greater than the first threshold value ⁇ for a certain period of time, the intervention determination unit 33 determines that the driver is performing a steering intervention operation and performs the electric drive by the automatic steering control unit 60. The control of the motor 10 is invalidated or stopped. Even if the detected torque is a value equal to or greater than the first threshold value ⁇ , the steering intervention operation by the driver is not performed if the torque does not continue the value equal to or greater than the first threshold value ⁇ for a certain period of time. Alternatively, it is assumed that the steering intervention operation is interrupted, and the control of the electric motor 10 by the automatic steering control unit 60 is continued. Note that the first threshold value ⁇ and the determination time are set to values that can prevent erroneous determination when a driver's hand or the like hits the steering wheel 1 or when vibration occurs in the steering wheel 1 as described above. The
  • the deviation speed limiter 80 controls the angular velocity control unit regardless of whether the determination by the intervention determination unit 33 is completed.
  • the deviation d input to 67 is set to zero. Accordingly, even if there is a deviation d between the angular velocity and the corrected angular velocity target value, 0 is input to the angular velocity control unit 67 as the deviation d.
  • the automatic steering target value output from the angular velocity control unit 67 is constant, and the torque generated by the electric motor 10 based on the signal from the automatic steering control unit 60 (automatic steering target value) is also constant. Therefore, an increase in torque generated by the electric motor 10 based on the automatic steering target value is suppressed.
  • the intervention determination unit 33 limits the control by the angular velocity control unit 67. Thereby, the raise of the torque which the electric motor 10 generate
  • the angular velocity control unit 67 makes the steering angle closer to the steering angle target value even while the intervention determination unit 33 determines the steering intervention operation.
  • the automatic steering target value is generated (such that the deviation is reduced). Even if the electric motor 10 is controlled based on the automatic steering target value generated in this way, the difference from the steering angle target value cannot be resolved because the driver operates the steering wheel 1. Therefore, the angular velocity control unit 67 integrates the deviation d by the integrator 67b to eliminate the deviation d, and generates an automatic steering target value that is larger than the previous automatic steering target value. As a result, the current value for driving the electric motor 10 increases, and the torque acting in the direction in which the steering angle approaches the steering angle target value, that is, the direction opposite to the driver's steering operation, increases.
  • the intervention determination unit 33 determines the manual operation, such feedback control is repeated, and the angular velocity control unit 67 sequentially integrates the deviation d by the integrator 67b, so that the automatic steering target value also increases sequentially. Become. As a result, the torque generated by the electric motor 10 based on the automatic steering target value in the direction opposite to the driver's steering operation gradually increases.
  • the value of the torque detected by the torque sensor 12 is the first value regardless of the determination by the intervention determination unit 33.
  • the deviation limiting unit 80 limits the control by the angular velocity control unit 67, particularly the integration control by the integrator 67b.
  • an increase in torque acting in the direction opposite to the driver's steering operation can be suppressed. Therefore, when the driver operates the steering wheel 1 during automatic steering, it is possible to reduce a sense of discomfort due to an increase in torque that the driver learns from the steering wheel 1.
  • the sudden decrease in the torque when the automatic steering control is invalidated or stopped by the intervention determination unit 33 is suppressed, it is possible to reduce a sense of incongruity due to a rapid change in the torque.
  • the deviation limiting unit 80 is configured to be switched by the first threshold value ⁇ or the second threshold value ⁇ .
  • the deviation d may be reduced as the torque increases. With this configuration, the torque change can be smoothed.
  • the threshold value of the intervention determination part 33 was made into the 1st threshold value (alpha), it is not restricted to this,
  • the threshold value of the intervention determination part 33 is made into the 3rd threshold value (gamma), and 1st threshold value (alpha) is set to 3rd.
  • a value smaller than the threshold value ⁇ may be set. That is, the threshold for intervention determination by the intervention determination unit 33 and the threshold for limiting control by the angular velocity control unit 67 may be set to different torques. For example, when the speed of the steering intervention operation by the driver is slow, it takes time for the torque to reach the first threshold value ⁇ , so that the integration of the deviation d by the integrator 67b further progresses.
  • the integration control based on the integrator 67b is limited when the integration of the deviation d by the integrator 67b is small.
  • the automatic steering control unit 60 when the steering wheel 1 is operated by the driver during automatic steering, when the torque value detected by the torque sensor 12 reaches the first threshold value ⁇ .
  • the deviation limiting unit 80 limits the control by the proportional unit 67a, the integrator 67b, and the differentiator 67c. This suppresses an increase in torque generated by the electric motor 10 based on the automatic steering target value generated by the automatic steering control unit 60 when the driver operates the steering wheel 1 during automatic steering. it can. Therefore, it is possible to reduce a sense of incongruity due to an increase in torque that the driver learns from the steering wheel 1 during the steering intervention operation. Further, since the sudden decrease in torque when the automatic steering control is invalidated or stopped by the intervention determination unit 33, the uncomfortable feeling due to the rapid change in torque that the driver learns from the steering wheel 1 can be reduced.
  • the automatic steering control unit 60 sets the deviation d to 0 by the deviation limiting unit 80 when the torque acting on the torsion bar 4 is equal to or greater than the first threshold value ⁇ .
  • the control by the proportional unit 67a, the integrator 67b and the differentiator 67c can be more reliably limited. Therefore, an increase in torque generated by the electric motor 10 can be further suppressed based on the automatic steering target value generated by the automatic steering control unit 60.
  • the automatic steering control unit 60 further includes an angular velocity calculation unit 65 that calculates the angular velocity of the steering wheel 1.
  • the automatic steering control unit 60 suppresses the twist of the torsion bar 4 based on the angular velocity target value calculated by the angular velocity target value calculation unit 61 and the torsion angle calculated by the vibration compensation unit 70.
  • the electric motor 10 is controlled based on the vibration compensation signal for controlling the electric motor 10.
  • the electric motor 10 is controlled so that the angular velocity of the steering wheel 1 becomes the steering angle target value while the torque in the rotational direction is suppressed based on the twist angle of the torsion bar 4. Therefore, vibration of the steering wheel 1 caused by the inertia of the steering wheel 1 and the spring property of the torsion bar 4 can be suppressed.
  • the deviation d is set to 0 by the deviation limiting unit 80.
  • the deviation d can be set to 0 by using the changeover switch 180 shown in the modification shown in FIG.
  • modified examples will be described.
  • the automatic steering control unit 60 replaces the deviation limiting unit 80, and when the torque acting on the torsion bar 4 reaches the first threshold value ⁇ , the angular velocity calculation unit 65 serves as the angular velocity target value.
  • the selector switch 180 is provided as a limiting unit that outputs the angular velocity calculated by the above.
  • the changeover switch 180 is provided between the adder 64 and the subtractor 66.
  • the selector switch 180 is switched so as to output the angular velocity calculated by the angular velocity calculator 65 as the angular velocity target value. Thereby, the deviation calculated by the subtractor 66 can be made zero.
  • the threshold values ⁇ , ⁇ , ⁇ may be changed according to the vehicle speed.
  • the first threshold value ⁇ may be decreased as the vehicle speed increases.
  • the driver rarely operates the steering wheel 1 abruptly.
  • a large torque is hardly generated in the torsion bar 4.
  • the control by the angular velocity control unit 67 is limited even if the torque generated by the steering operation is small.
  • the uncomfortable feeling due to the increase in torque that the driver learns from the steering wheel 1 can be appropriately reduced according to the vehicle speed.
  • an electric power steering apparatus 200 according to a second embodiment of the present invention will be described. Below, it demonstrates centering on a different point from the said 1st Embodiment, the same code
  • the basic configuration of the electric power steering apparatus 200 is the same as that of the electric power steering apparatus 100 according to the first embodiment.
  • the deviation d input to the proportional unit 67a, the integrator 67b, and the differentiator 67c is limited, whereas in the electric power steering apparatus 200, the integrator 67b is used.
  • the difference is that only the input deviation d is limited.
  • the automatic steering control unit 60 is provided between the subtractor 66 and the integrator 67b, and when the torque acting on the torsion bar 4 reaches the first threshold value ⁇ , the integrator 67b.
  • An integration limiting unit 280 is provided as a limiting unit that limits only the integration control based on.
  • the integration limiting unit 280 sets the deviation input to the integrator 67b to 0 when the torque acting on the torsion bar 4 reaches the first threshold value ⁇ . That is, in the electric power steering apparatus 200, when the torque acting on the torsion bar 4 reaches the first threshold value ⁇ , only the integration control based on the integrator 67b is limited.
  • the angular velocity control unit 67 performs the proportional control by the proportional device 67a and the differential control by the differentiator 67c.
  • the proportional control and the differential control even if the deviation d exists, the deviation d is not integrated unlike the integral control.
  • the automatic steering target value does not gradually increase as in the case where the integral control is performed. Therefore, an increase in torque generated by the electric motor 10 based on the automatic steering target value can be suppressed when the driver operates the steering wheel 1 during automatic steering. Therefore, also in the electric power steering apparatus 200, it is possible to reduce a sense of incongruity due to an increase in torque that the driver learns from the steering wheel 1.
  • the integration limiting unit 280 may be provided on the output side of the integrator 67b.
  • the integration limiting unit 280 can be configured by, for example, an ON / OFF switch.
  • the electric power steering apparatus 200 of the second embodiment described above can achieve the same effects as those of the first embodiment.
  • the electric power steering devices 100 and 200 are connected to a steering member (steering wheel 1) operated by a driver, and rotate according to the operation of the steering member (steering wheel 1) by the driver, and the steering shaft. 7, a torque sensor 12 that detects torque acting on the torsion bar 4, an electric motor 10 that applies rotational torque to the steering shaft 7, and torque detected by the torque sensor 12.
  • a control unit (controller 30) that selectively performs steering assistance for controlling the electric motor 10 based on the above and automatic steering for controlling the electric motor 10 based on information outside the vehicle, and a steering angle of the steering member (steering wheel 1).
  • Rudder angle detector A rotation angle sensor 10a and a rudder angle sensor 15), and a control unit (controller 30) includes a signal and a rudder angle detection unit based on a rudder angle target value set based on a moving target position of the vehicle during automatic steering.
  • An automatic steering control unit 60 that controls the electric motor 10 in accordance with a deviation (deviation d) from a signal based on the steering angle detected by the (motor rotation angle sensor 10a and the steering angle sensor 15) includes an automatic steering control unit.
  • 60 is detected by the torque sensor 12 when the steering member (steering wheel 1) is operated by the driver during the automatic steering, and the integrator 67b for performing integral control based on the deviation (deviation d).
  • a limiting unit deviceiation limiting unit 80, changeover switch 180, integration limiting unit 280
  • the electric motor 10 is generated based on a signal (automatic steering target value) from the automatic steering control unit 60.
  • An increase in torque can be suppressed. Therefore, when the driver operates the steering member (steering wheel 1) during automatic steering, it is possible to reduce a sense of discomfort due to an increase in torque that the driver learns from the steering member (steering wheel 1).
  • the limiting unit (deviation limiting unit 80) is based on the signal based on the steering angle target value and the steering angle when the torque acting on the torsion bar 4 reaches the first threshold value ⁇ .
  • the integration control based on the integrator 67b is limited by outputting the deviation (deviation d) from the signal as zero.
  • the limiter (changeover switch 180) outputs a signal based on the steering angle as a signal based on the steering angle target value when the torque acting on the torsion bar 4 reaches the first threshold value ⁇ . By doing so, the integration control based on the integrator 67b is limited.
  • the limiting unit (changeover switch 180) outputs a signal based on the steering angle target value as a signal based on the steering angle.
  • the integration control based on the integrator 67b is limited.
  • the deviation d input to the angular velocity control unit 67 can be set to zero. Thereby, since the deviation d is not integrated by the integrator 67b and a signal (automatic steering target value) is not generated, it is ensured that the torque acting in the direction opposite to the steering operation of the driver increases. Can be suppressed.
  • the automatic steering control unit 60 further includes a proportional unit 67a for performing proportional control based on the deviation d and a differentiator 67c for performing differential control based on the deviation d.
  • the limiting unit (integration limiting unit 280) limits only the integration control based on the integrator 67b when the torque acting on the torsion bar 4 reaches the first threshold value ⁇ .
  • the integration control based on the integrator 67b is limited, the deviation d is not integrated and the signal (automatic steering target value) generated by the automatic steering control unit 60 does not increase. Therefore, when the driver operates the steering member (steering wheel 1) during automatic steering, an increase in torque generated by the electric motor 10 is suppressed based on a signal (automatic steering target value) from the automatic steering control unit 60. can do.
  • the limiting unit (deviation limiting unit 80) is configured such that when the torque acting on the torsion bar 4 reaches the first threshold value ⁇ , the signal and the steering angle based on the steering angle target value.
  • the torque acting on the torsion bar 4 decreases to a second threshold value ⁇ smaller than the first threshold value ⁇ , a signal based on the steering angle target value is output.
  • the deviation (deviation d) from the signal based on the steering angle are output as they are.
  • the control is not switched even if the torque acting on the torsion bar 4 changes in small increments across the first threshold value ⁇ , so that the control is stable.
  • the limiting unit (deviation limiting unit 80) is configured such that the torque acting on the torsion bar 4 is within the range from the first threshold value ⁇ to the second threshold value ⁇ . As the torque acting on 4 increases, the deviation (deviation d) between the signal based on the steering angle target value and the signal based on the steering angle is reduced.
  • the deviation (deviation d) between the signal based on the steering angle target value and the signal based on the steering angle is reduced, so that the change in torque is smoothed. Can do. Therefore, it is possible to reduce a sense of incongruity due to a change in torque that the driver learns from the steering member (steering wheel 1).
  • the automatic steering control unit 60 includes an angular velocity calculation unit 65 that calculates an angular velocity of the steering member (steering wheel 1) based on the steering angle, a steering angle target value, and a steering angle.
  • An angular velocity target value calculation unit 61 for calculating an angular velocity target value for controlling the electric motor 10 based on the difference, and the deviation (deviation d) between the signal based on the steering angle target value and the signal based on the steering angle is an angular velocity.
  • the angular velocity target value d is an angular velocity.
  • the electric power steering devices 100 and 200 further include an intervention determination unit 33 that stops the control by the automatic steering control unit 60 when the torque acting on the torsion bar 4 is equal to or greater than the third threshold value ⁇ for a certain period of time.
  • the first threshold value ⁇ is set to a value smaller than the third threshold value ⁇ .
  • the integration control based on the integrator 67b can be limited when the integration of the deviation d by the integrator 67b is small. .
  • the increase in the signal (automatic steering target value) generated by the angular velocity control unit 67 can be suppressed early, so that the driver's uncomfortable feeling associated with the increase in torque can be further reduced when the steering operation speed is slow.
  • the automatic steering control unit 60 decreases the first threshold value ⁇ as the vehicle speed increases.
  • the uncomfortable feeling due to the increase in torque that the driver learns from the steering member (steering wheel 1) can be appropriately reduced according to the vehicle speed.
  • the vibration compensation unit 70 and the intervention determination unit 33 may not be provided.
  • the automatic steering target value is generated by the angular velocity target value and the angular velocity, but the signal based on the steering angle target value, the signal based on the steering angle detected by the steering angle sensor 15 and the motor rotation angle sensor 10a, Anything may be used as long as it is based on the deviation.

Abstract

This electric power steering apparatus (100) comprises an automatic steering control unit (60) which, during automatic steering, controls an electric motor (10) according to the deviation between a signal based on the steering angle target value set on the basis of the movement target position of a vehicle and a signal based on the steering angle detected by a motor rotational angle sensor (10a) and a steering angle sensor (15). The automatic steering control unit (60) has a deviation restriction unit (80) which restricts integrating control based on an integrator (67b) when the steering wheel (1) is operated by a driver during automatic steering and the value of torque detected by a torque sensor (12) reaches a first threshold value α.

Description

電動パワーステアリング装置Electric power steering device
 本発明は、電動パワーステアリング装置に関するものである。 The present invention relates to an electric power steering apparatus.
 JP6-336170Aには、車両前方の画像データ、車速、実舵角の信号によりモータを制御して、走行中の車両をハンドル操作なしで道路の白線等に沿うように自動操舵するステアリング装置が記載されている。 JP6-336170A describes a steering device that automatically steers a running vehicle along a white line of a road without operating a steering wheel by controlling a motor based on image data, vehicle speed, and actual steering angle signals in front of the vehicle. Has been.
 JP6-336170Aに記載のステアリング装置では、自動操舵モードの際に運転者によるハンドル操作を判定すると手動操舵モードに切り換える。具体的には、所定の操舵トルクが所定時間継続した場合に、運転者がハンドル操作を行っていると判定し、自動操舵モードから手動操作モードに切り換えるように構成されている。 In the steering device described in JP6-336170A, when the steering operation by the driver is determined in the automatic steering mode, the steering device is switched to the manual steering mode. Specifically, when a predetermined steering torque continues for a predetermined time, it is determined that the driver is operating the steering wheel, and the automatic steering mode is switched to the manual operation mode.
 JP6-336170Aに記載のステアリング装置では、自動操舵モード中、運転者が手動操舵を行っても判定を行っている間は自動操舵制御が継続される。このため、運転者が手動操舵を開始しても、運転者による手動操作を判定するまでは、自動操舵制御によってステアリングの舵角を操舵目標値に一致させるような制御信号がモータに印加される。これにより、運転者が感じる操舵トルクが上昇してしまうため、運転者は違和感を覚えてしまう。 In the steering device described in JP6-336170A, during the automatic steering mode, the automatic steering control is continued while the determination is made even if the driver performs manual steering. For this reason, even if the driver starts manual steering, a control signal is applied to the motor so that the steering angle of the steering matches the steering target value by automatic steering control until manual operation by the driver is determined. . As a result, the steering torque felt by the driver increases, and the driver feels uncomfortable.
 本発明は、上記の問題点に鑑みてなされたものであり、自動操舵時に手動操作を行った際の運転者の違和感を低減することを目的とする。 The present invention has been made in view of the above problems, and an object thereof is to reduce a driver's uncomfortable feeling when a manual operation is performed during automatic steering.
 本発明のある態様によれば、電動パワーステアリング装置は、運転者によって操作されるステアリング部材に連結され、運転者によるステアリング部材の操作に伴って回転するステアリングシャフトと、ステアリングシャフトの一部を構成するトーションバーと、トーションバーに作用するトルクを検出するトルクセンサと、ステアリングシャフトに回転トルクを付与する電動モータと、トルクセンサによって検出されたトルクに基づいて電動モータを制御する操舵補助と車両外の情報に基づいて電動モータを制御する自動操舵とを選択的に行う制御部と、ステアリング部材の舵角を検出する舵角検出部と、を備え、制御部は、自動操舵時に、車両の移動目標位置に基づいて設定される舵角目標値に基づく信号と舵角検出部によって検出された舵角に基づく信号との偏差に応じて電動モータを制御する自動操舵制御部を有し、自動操舵制御部は、偏差に基づいて積分制御を行うための積分器と、自動操舵中に運転者によってステアリング部材が操作されたときに、トルクセンサによって検出されたトルクの値が第1の閾値に達すると、積分器に基づく積分制御を制限する制限部と、を有する。 According to an aspect of the present invention, an electric power steering apparatus includes a steering shaft that is coupled to a steering member that is operated by a driver and that rotates in response to the operation of the steering member by the driver, and a part of the steering shaft. A torsion bar that detects torque acting on the torsion bar, an electric motor that applies rotational torque to the steering shaft, steering assistance that controls the electric motor based on the torque detected by the torque sensor, and the outside of the vehicle A control unit that selectively performs automatic steering for controlling the electric motor based on the information of the steering wheel, and a steering angle detection unit that detects the steering angle of the steering member. The control unit moves the vehicle during automatic steering. A signal based on the rudder angle target value set based on the target position and the rudder angle detector detects it. The automatic steering control unit controls the electric motor according to the deviation from the signal based on the steering angle, and the automatic steering control unit operates during integration and an integrator for performing integral control based on the deviation. When the steering member is operated by a person, when the value of the torque detected by the torque sensor reaches the first threshold value, a limiting unit that limits the integration control based on the integrator is provided.
図1は、本発明の第1実施形態に係る電動パワーステアリング装置の構成図である。FIG. 1 is a configuration diagram of an electric power steering apparatus according to a first embodiment of the present invention. 図2は、本発明の第1実施形態に係る電動パワーステアリング装置のブロック図である。FIG. 2 is a block diagram of the electric power steering apparatus according to the first embodiment of the present invention. 図3は、本発明の第1実施形態に係る電動パワーステアリング装置の自動操舵制御部のブロック図である。FIG. 3 is a block diagram of the automatic steering control unit of the electric power steering apparatus according to the first embodiment of the present invention. 図4は、本発明の第1実施形態に係る制限部の動作を示すグラフである。FIG. 4 is a graph showing the operation of the limiting unit according to the first embodiment of the present invention. 図5は、本発明の第1実施形態に係る制限部の変形例の動作を示すグラフである。FIG. 5 is a graph showing the operation of a modified example of the limiting unit according to the first embodiment of the present invention. 図6は、本発明の第1実施形態の変形例に係る電動パワーステアリング装置の自動操舵制御部のブロック図である。FIG. 6 is a block diagram of an automatic steering control unit of an electric power steering apparatus according to a modification of the first embodiment of the present invention. 図7は、本発明の第1実施形態の変形例に係る電動パワーステアリング装置の自動操舵制御部のブロック図である。FIG. 7 is a block diagram of an automatic steering control unit of an electric power steering apparatus according to a modification of the first embodiment of the present invention. 図8は、本発明の第2実施形態に係る電動パワーステアリング装置の自動操舵制御部のブロック図である。FIG. 8 is a block diagram of an automatic steering control unit of the electric power steering apparatus according to the second embodiment of the present invention.
 <第1実施形態>
 以下、図1~図4を参照して、本発明の第1実施形態に係る電動パワーステアリング装置100について説明する。
<First Embodiment>
Hereinafter, an electric power steering apparatus 100 according to a first embodiment of the present invention will be described with reference to FIGS.
 図1に示すように、電動パワーステアリング装置100は、運転者によって操作されるステアリング部材としてのステアリングホイール1に連結され運転者によるステアリングホイール1の操作(以下、「ステアリング操作」と称する。)に伴って回転する入力シャフト2と、車輪6を転舵するラック軸5に連係する出力シャフト3と、入力シャフト2と出力シャフト3を連結するトーションバー4と、を備える。入力シャフト2、出力シャフト3、及びトーションバー4によってステアリングシャフト7が構成される。 As shown in FIG. 1, an electric power steering apparatus 100 is connected to a steering wheel 1 as a steering member operated by a driver and is operated by the driver (hereinafter referred to as “steering operation”). The input shaft 2 which rotates with it, the output shaft 3 linked with the rack shaft 5 which steers the wheel 6, and the torsion bar 4 which connects the input shaft 2 and the output shaft 3 are provided. A steering shaft 7 is configured by the input shaft 2, the output shaft 3, and the torsion bar 4.
 出力シャフト3の下部には、ラック軸5に形成されたラックギヤ5aと噛み合うピニオンギヤ3aが形成される。ステアリングホイール1が操舵されると、ステアリングシャフト7が回転し、その回転がピニオンギヤ3a及びラックギヤ5aによってラック軸5の直線運動に変換され、ナックルアーム14を介して車輪6が転舵される。 A pinion gear 3a that meshes with a rack gear 5a formed on the rack shaft 5 is formed below the output shaft 3. When the steering wheel 1 is steered, the steering shaft 7 rotates, and the rotation is converted into a linear motion of the rack shaft 5 by the pinion gear 3a and the rack gear 5a, and the wheel 6 is steered via the knuckle arm 14.
 電動パワーステアリング装置100は、運転者によるステアリングホイール1の操舵を補助するための動力源である電動モータ10と、電動モータ10の回転を出力シャフト3に減速して伝達する減速機11と、運転者によるステアリング操作に伴う入力シャフト2と出力シャフト3との相対回転によってトーションバー4に作用するトルクを検出するトルクセンサ12と、電動モータ10を制御する制御部としてのコントローラ30と、電動モータ10に流れる電流値を検出する電流センサ10b(図2)と、をさらに備える。 The electric power steering apparatus 100 includes an electric motor 10 that is a power source for assisting the driver in steering the steering wheel 1, a speed reducer 11 that decelerates and transmits the rotation of the electric motor 10 to the output shaft 3, and driving. A torque sensor 12 that detects torque acting on the torsion bar 4 by relative rotation between the input shaft 2 and the output shaft 3 in response to a steering operation by a person, a controller 30 as a control unit that controls the electric motor 10, and the electric motor 10 And a current sensor 10b (FIG. 2) for detecting a current value flowing through
 電動モータ10には、電動モータ10の回転角度を取得するモータ回転角センサ10aが設けられる。モータ回転角センサ10aは、レゾルバによって構成される。 The electric motor 10 is provided with a motor rotation angle sensor 10 a that acquires the rotation angle of the electric motor 10. The motor rotation angle sensor 10a is configured by a resolver.
 減速機11は、電動モータ10の出力軸に連結されるウォームシャフト11aと、出力シャフト3に連結されウォームシャフト11aに噛み合うウォームホイール11bと、からなる。電動モータ10が出力する回転トルクは、ウォームシャフト11aからウォームホイール11bに伝達されて出力シャフト3に付与される。 The reducer 11 includes a worm shaft 11a connected to the output shaft of the electric motor 10 and a worm wheel 11b connected to the output shaft 3 and meshing with the worm shaft 11a. The rotational torque output from the electric motor 10 is transmitted from the worm shaft 11 a to the worm wheel 11 b and applied to the output shaft 3.
 運転者によるステアリング操作に伴って入力シャフト2に付与される操舵トルクはトルクセンサ12によって検出され、トルクセンサ12はその操舵トルクに対応する電圧信号をコントローラ30に出力する。コントローラ30は、トルクセンサ12からの電圧信号に基づいて、電動モータ10が出力するトルクを演算し、そのトルクが発生するように電動モータ10の駆動を制御する。このように、電動パワーステアリング装置100は、入力シャフト2に付与される操舵トルクをトルクセンサ12によって検出し、その検出結果に基づいて電動モータ10の駆動をコントローラ30によって制御して運転者のステアリング操作を補助する。 The steering torque applied to the input shaft 2 in accordance with the steering operation by the driver is detected by the torque sensor 12, and the torque sensor 12 outputs a voltage signal corresponding to the steering torque to the controller 30. The controller 30 calculates the torque output from the electric motor 10 based on the voltage signal from the torque sensor 12, and controls the driving of the electric motor 10 so that the torque is generated. As described above, the electric power steering apparatus 100 detects the steering torque applied to the input shaft 2 by the torque sensor 12, and controls the driving of the electric motor 10 by the controller 30 based on the detection result, thereby steering the driver. Assist the operation.
 入力シャフト2には、ステアリングホイール1の回転角度である舵角を検出する舵角検出部としての舵角センサ15が設けられる。入力シャフト2の回転角度とステアリングホイール1の舵角とは等しいため、舵角センサ15にて入力シャフト2の回転角度を検出することによってステアリングホイール1の舵角が得られる。舵角センサ15の検出結果はコントローラ30に出力される。 The input shaft 2 is provided with a steering angle sensor 15 as a steering angle detector that detects a steering angle that is a rotation angle of the steering wheel 1. Since the rotation angle of the input shaft 2 and the steering angle of the steering wheel 1 are equal, the steering angle of the steering wheel 1 can be obtained by detecting the rotation angle of the input shaft 2 by the steering angle sensor 15. The detection result of the steering angle sensor 15 is output to the controller 30.
 舵角センサ15は、図示しないが、例えば、入力シャフト2と一体に回転するセンターギヤと、センターギヤに噛み合う2つのアウターギヤと、を備え、2つのアウターギヤの回転に伴う磁束の変化に基づいて、センターギヤの回転角度、すなわち入力シャフト2の回転角度を演算するものである。 Although not shown, the rudder angle sensor 15 includes, for example, a center gear that rotates integrally with the input shaft 2 and two outer gears that mesh with the center gear, and is based on changes in magnetic flux accompanying rotation of the two outer gears. Thus, the rotation angle of the center gear, that is, the rotation angle of the input shaft 2 is calculated.
 コントローラ30は、電動モータ10の動作を制御するCPUと、CPUの処理動作に必要な制御プログラムや設定値等が記憶されたROMと、トルクセンサ12や舵角センサ15等の各種センサが検出した情報を一時的に記憶するRAMと、を備える。 The controller 30 is detected by a CPU that controls the operation of the electric motor 10, a ROM that stores control programs and setting values necessary for the processing operation of the CPU, and various sensors such as the torque sensor 12 and the steering angle sensor 15. And a RAM for temporarily storing information.
 電動パワーステアリング装置100は、上述したように、トルクセンサ12の検出結果に基づいて運転者によるステアリング操作を補助する他に、運転者のステアリング操作によることなく車両外の情報に基づいて自動的に操舵することができる。コントローラ30は、トルクセンサ12によって検出された操舵トルクに基づいて電動モータ10を制御する操舵補助と車両外の情報に基づいて電動モータ10を制御する自動操舵とを選択的に行う。 As described above, the electric power steering device 100 automatically assists the steering operation by the driver based on the detection result of the torque sensor 12, and automatically based on information outside the vehicle without depending on the steering operation of the driver. Can be steered. The controller 30 selectively performs steering assistance for controlling the electric motor 10 based on the steering torque detected by the torque sensor 12 and automatic steering for controlling the electric motor 10 based on information outside the vehicle.
 運転者による手動操舵から自動操舵への切り換えは、運転者の操作によって自動運転モードが選択されることによって実行される。一方、自動操舵から手動操舵への切り換えは、後述するコントローラ30の介入判定部33(図2参照)が運転者によるステアリング操作が行われていると判定した場合、あるいは、運転者の操作によって自動運転モードが解除されることによって実行される。 Switching from manual steering to automatic steering by the driver is performed by selecting the automatic driving mode by the driver's operation. On the other hand, switching from automatic steering to manual steering is automatically performed when an intervention determination unit 33 (see FIG. 2) of the controller 30 described later determines that the steering operation by the driver is being performed, or by the driver's operation. This is executed by releasing the operation mode.
 図2に示すように、コントローラ30は、運転者によるステアリング操作時に、各種センサからの検出値に基づいて電動モータ10によるアシスト制御を行うアシスト制御部50と、車両の移動目標位置に基づいて設定される舵角目標値に基づく信号と舵角センサ15によって検出された舵角に基づく信号との偏差に応じて電動モータ10を制御する自動操舵制御部60と、を備える。 As shown in FIG. 2, the controller 30 is set based on an assist control unit 50 that performs assist control by the electric motor 10 based on detection values from various sensors during a steering operation by the driver, and a movement target position of the vehicle. And an automatic steering control unit 60 that controls the electric motor 10 in accordance with a deviation between the signal based on the steering angle target value to be performed and the signal based on the steering angle detected by the steering angle sensor 15.
 アシスト制御部50は、トルクセンサ12によって検出されたトルクと、車両に設けられた車速センサ16によって検出された車速と、舵角センサ15によって検出されたステアリングホイール1の舵角と、に基づいてアシスト力目標値を演算する。 The assist control unit 50 is based on the torque detected by the torque sensor 12, the vehicle speed detected by the vehicle speed sensor 16 provided in the vehicle, and the steering angle of the steering wheel 1 detected by the steering angle sensor 15. Calculate the assist force target value.
 自動操舵は、車両の自動運転システム40からの指令信号(舵角目標値)に基づいて行われる。具体的には、自動運転システム40は、車両外の情報として走行中の車線の境界線(白線)を検出し、自車両が車線内の走行を維持するために必要な舵角目標値を演算し、その舵角目標値を自動操舵制御部60に出力する。舵角目標値は、言い換えると、車両の移動目標位置に基づいて設定される。自動操舵制御部60は、舵角センサ15によって検出されたステアリングホイール1の舵角と、自動運転システム40から入力された舵角目標値と、に基づいて、自動操舵目標値を演算する。詳細については、後述する。 Automatic steering is performed based on a command signal (steering angle target value) from the automatic driving system 40 of the vehicle. Specifically, the automatic driving system 40 detects a boundary line (white line) of a running lane as information outside the vehicle, and calculates a steering angle target value necessary for the host vehicle to keep running in the lane. Then, the steering angle target value is output to the automatic steering control unit 60. In other words, the steering angle target value is set based on the movement target position of the vehicle. The automatic steering control unit 60 calculates an automatic steering target value based on the steering angle of the steering wheel 1 detected by the steering angle sensor 15 and the steering angle target value input from the automatic driving system 40. Details will be described later.
 コントローラ30は、アシスト力目標値及び自動操舵目標値に基づいて電動モータ10に印加する電流を制御する電流制御部31と、電動モータ10の駆動を制御するための駆動回路32と、トルクセンサ12によって検出されるトルクに基づいて運転者によるステアリング介入操作を判定する介入判定部33と、をさらに備える。電動パワーステアリング装置100では、電流センサ10bによって検出された電動モータ10の電流値を、電流制御部31に帰還させてフィードバック制御を行う。 The controller 30 includes a current control unit 31 that controls a current applied to the electric motor 10 based on the assist force target value and the automatic steering target value, a drive circuit 32 that controls driving of the electric motor 10, and the torque sensor 12. An intervention determination unit 33 that determines a steering intervention operation by the driver based on the torque detected by the driver. In the electric power steering device 100, the current value of the electric motor 10 detected by the current sensor 10b is fed back to the current control unit 31 to perform feedback control.
 介入判定部33は、自動操舵中、トルクセンサ12によって検出されるトルクに基づいて運転者によるステアリング操作が行われているかを判定する(以下では、自動操舵時の運転者によるステアリング操作を「運転者によるステアリング介入操作」ともいう。)。具体的には、介入判定部33は、トルクセンサ12によって検出されるトルクが一定時間所定値以上となった場合に、運転者によるステアリング介入操作が行われたと判定する。介入判定部33は、その判定結果に基づいて、自動操舵制御部60による制御を無効あるいは停止させることで、電動モータ10をアシスト制御のみで制御する。 The intervention determination unit 33 determines whether a steering operation by the driver is performed based on the torque detected by the torque sensor 12 during automatic steering (hereinafter, the steering operation by the driver during automatic steering is referred to as “driving”). This is also referred to as “steering intervention by the user”.) Specifically, the intervention determination unit 33 determines that a steering intervention operation by the driver has been performed when the torque detected by the torque sensor 12 exceeds a predetermined value for a predetermined time. The intervention determination unit 33 controls the electric motor 10 only by assist control by invalidating or stopping the control by the automatic steering control unit 60 based on the determination result.
 次に、図3を参照して、自動操舵制御部60について説明する。図3は、自動操舵制御部60のブロック図である。 Next, the automatic steering control unit 60 will be described with reference to FIG. FIG. 3 is a block diagram of the automatic steering control unit 60.
 自動操舵制御部60は、自動運転システム40から入力された舵角目標値と舵角センサ15によって検出されたステアリングホイール1の舵角とに基づいて、電動モータ10を制御するための角速度目標値を演算する角速度目標値演算部61を備える。 The automatic steering control unit 60 controls the electric motor 10 based on the steering angle target value input from the automatic driving system 40 and the steering angle of the steering wheel 1 detected by the steering angle sensor 15. An angular velocity target value calculation unit 61 is provided.
 角速度目標値演算部61は、自動運転システム40から出力された舵角目標値と舵角センサ15によって検出されたステアリングホイール1の舵角との差に基づいて舵角目標値にステアリングホイール1の舵角が一致するように電動モータ10を制御するための位置制御目標値を演算する位置制御部62と、自動運転システム40から出力された舵角目標値の単位時間当たりの変化に基づいて目標変化補償信号を演算する目標変化補償部63と、を備える。 The angular velocity target value calculation unit 61 converts the steering wheel 1 to the steering angle target value based on the difference between the steering angle target value output from the automatic driving system 40 and the steering angle of the steering wheel 1 detected by the steering angle sensor 15. A position control unit 62 that calculates a position control target value for controlling the electric motor 10 so that the steering angles coincide with each other, and a target based on a change per unit time of the steering angle target value output from the automatic driving system 40. A target change compensator 63 for calculating a change compensation signal.
 位置制御部62によって位置制御目標値を演算するときには、舵角センサ15によって検出されたステアリングホイール1の舵角が用いられる。しかし、舵角センサ15の検出周期は間隔が比較的長く、ステアリングホイール1が素早く操舵された際には、舵角センサ15のみではステアリングホイール1の舵角を精度良く検出することができない。 When calculating the position control target value by the position control unit 62, the steering angle of the steering wheel 1 detected by the steering angle sensor 15 is used. However, the detection period of the steering angle sensor 15 is relatively long, and when the steering wheel 1 is quickly steered, the steering angle of the steering wheel 1 cannot be detected with high accuracy only by the steering angle sensor 15.
 そこで、位置制御部62は、ステアリングホイール1の舵角をより高精度に検出するために、舵角センサ15よって検出された舵角を、モータ回転角センサ10aにて検出されたモータ回転角を用いて補正することによって高精度舵角を演算する。具体的に説明すると、モータ回転角センサ10aは、舵角センサ15の検出周期よりも短い周期で電動モータ10の回転角変化量であるモータ回転角を検出する。モータ回転角センサ10aで検出されたモータ回転角と減速機11の減速比(出力シャフト3と電動モータ10の減速比)から出力シャフト3の回転角度変化量を得ることができる。したがって、舵角センサ15によって検出される舵角に、モータ回転角センサ10aで検出されるモータ回転角と減速機11の減速比から得られる出力シャフト3の回転角度変化量を加算することによって、短い周期でステアリングホイール1の高精度舵角を演算することができる。これにより、ステアリングホイール1が素早く操舵された際であっても、高精度な舵角を得ることができる。本実施形態では、モータ回転角センサ10aは、舵角検出器の一部として機能する。 Therefore, in order to detect the steering angle of the steering wheel 1 with higher accuracy, the position control unit 62 uses the steering angle detected by the steering angle sensor 15 as the motor rotation angle detected by the motor rotation angle sensor 10a. A high precision rudder angle is calculated by using and correcting. More specifically, the motor rotation angle sensor 10 a detects the motor rotation angle that is the rotation angle change amount of the electric motor 10 at a cycle shorter than the detection cycle of the rudder angle sensor 15. The amount of change in the rotation angle of the output shaft 3 can be obtained from the motor rotation angle detected by the motor rotation angle sensor 10a and the reduction ratio of the reduction gear 11 (the reduction ratio of the output shaft 3 and the electric motor 10). Therefore, by adding the rotation angle change amount of the output shaft 3 obtained from the motor rotation angle detected by the motor rotation angle sensor 10a and the reduction ratio of the speed reducer 11 to the steering angle detected by the steering angle sensor 15, The high-precision steering angle of the steering wheel 1 can be calculated with a short cycle. Thereby, even when the steering wheel 1 is quickly steered, a highly accurate steering angle can be obtained. In the present embodiment, the motor rotation angle sensor 10a functions as a part of the steering angle detector.
 このように、電動パワーステアリング装置100では、ステアリングホイール1の舵角は、モータ回転角センサ10aによって検出された電動モータ10のモータ回転角と、舵角センサ15によって検出されたステアリングホイール1の回転角とに基づいて、演算される。これにより、高精度な舵角を得ることができる。なお、例えば、舵角センサ15の検出周期は10msec程度であり、モータ回転角センサ10aの検出周期は1msec以下であるが、舵角センサ15の検出周期が短ければ、舵角センサ15によって検出された舵角のみを用いてもよい。 Thus, in the electric power steering apparatus 100, the steering angle of the steering wheel 1 is determined by the motor rotation angle of the electric motor 10 detected by the motor rotation angle sensor 10a and the rotation of the steering wheel 1 detected by the steering angle sensor 15. Calculation is performed based on the angle. Thereby, a highly accurate rudder angle can be obtained. For example, the detection cycle of the rudder angle sensor 15 is about 10 msec and the detection cycle of the motor rotation angle sensor 10a is 1 msec or less, but if the detection cycle of the rudder angle sensor 15 is short, it is detected by the rudder angle sensor 15. Only the rudder angle may be used.
 位置制御部62は、舵角目標値とステアリングホイール1の舵角との差を演算し、この差にPD制御を実施して所定のゲインを乗じることで、ステアリングホイール1の目標とする角速度に相当する位置制御目標値を演算する。具体的には、位置制御部62は、自動運転システム40から出力された舵角目標値と舵角センサ15によって検出されたステアリングホイール1の実際の舵角との差に基づいて、ステアリングホイール1の舵角を舵角目標値に一致させるための位置制御目標値を演算する。つまり、位置制御部62は、舵角目標値とステアリングホイール1の実際の舵角との差とに基づいた位置フィードバック制御を行う。なお、ゲインは、例えば、単位時間の逆数に相当するものである。 The position control unit 62 calculates the difference between the steering angle target value and the steering angle of the steering wheel 1, performs PD control on this difference, and multiplies a predetermined gain to obtain the target angular velocity of the steering wheel 1. The corresponding position control target value is calculated. Specifically, the position control unit 62 determines the steering wheel 1 based on the difference between the steering angle target value output from the automatic driving system 40 and the actual steering angle of the steering wheel 1 detected by the steering angle sensor 15. The position control target value for making the rudder angle equal to the rudder angle target value is calculated. That is, the position control unit 62 performs position feedback control based on the difference between the steering angle target value and the actual steering angle of the steering wheel 1. The gain corresponds to, for example, the reciprocal of unit time.
 目標変化補償部63は、自動運転システム40から出力された前回の舵角目標値と今回の舵角目標値との差を単位時間(舵角目標値が出力される間隔)で除算し、PID制御を実施することによって、目標変化補償信号を演算する。 The target change compensation unit 63 divides the difference between the previous steering angle target value output from the automatic driving system 40 and the current steering angle target value by a unit time (interval at which the steering angle target value is output), and PID. By executing the control, the target change compensation signal is calculated.
 角速度目標値演算部61は、位置制御部62によって演算された位置制御目標値に目標変化補償部63によって演算された目標変化補償信号を加算する。これは、舵角目標値の変化に対する追従性を向上させることを目的としている。以下に詳細に説明する。 The angular velocity target value calculation unit 61 adds the target change compensation signal calculated by the target change compensation unit 63 to the position control target value calculated by the position control unit 62. This is intended to improve the followability to changes in the steering angle target value. This will be described in detail below.
 舵角目標値が急激に変化すると、位置制御部62による制御では、舵角目標値の変化に対して電動モータ10の制御が追従できない(遅れが生じる)ことがある。舵角目標値が実際の舵角よりも大きい状態から実際の舵角よりも小さな状態まで急激に変化する場合を例に説明する。 If the steering angle target value changes abruptly, the control by the position control unit 62 may not be able to follow the control of the electric motor 10 with respect to the change in the steering angle target value (a delay occurs). A case will be described as an example where the steering angle target value changes suddenly from a state where it is larger than the actual steering angle to a state where it is smaller than the actual steering angle.
 舵角目標値が変化を始めた時点では、舵角目標値は実際の舵角よりも大きいので、位置制御部62は、ステアリングホイール1の舵角が大きくなるような位置制御目標値を出力する。このため、電動モータ10はステアリングホイール1の舵角が大きくなるように駆動される。位置制御部62は、舵角目標値が減少していても、実際の舵角が舵角目標値よりも小さければ、実際の舵角が舵角目標値と一致するようにステアリングホイール1の舵角が大きくなるような位置制御目標値を出力する。そして、舵角目標値がさらに減少し実際の舵角よりも小さくなると、位置制御部62は、この時点から、舵角目標値に追従するためにステアリングホイール1の舵角が小さくなるような位置制御目標値を出力する。このように、位置制御部62による制御では、舵角目標値が急激に小さくなるような変化が生じても、実際の舵角が舵角目標値と一致するまでステアリングホイール1の舵角が大きくなるような位置制御目標値の出力が続けられるので、遅れが生じやすい。 Since the steering angle target value is larger than the actual steering angle when the steering angle target value starts to change, the position control unit 62 outputs a position control target value that increases the steering angle of the steering wheel 1. . For this reason, the electric motor 10 is driven so that the steering angle of the steering wheel 1 is increased. Even if the steering angle target value is decreased, the position control unit 62 is configured to steer the steering wheel 1 so that the actual steering angle matches the steering angle target value if the actual steering angle is smaller than the steering angle target value. A position control target value that increases the angle is output. When the rudder angle target value further decreases and becomes smaller than the actual rudder angle, the position control unit 62 starts the position where the rudder angle of the steering wheel 1 becomes smaller from this point in order to follow the rudder angle target value. Outputs the control target value. As described above, in the control by the position control unit 62, the steering angle of the steering wheel 1 is increased until the actual steering angle matches the steering angle target value even if the steering angle target value suddenly decreases. Since the output of such a position control target value is continued, a delay is likely to occur.
 このため、角速度目標値演算部61は、舵角目標値の変化速度に相当する目標変化補償信号を演算し、位置制御部62によって演算された位置制御目標値に目標変化補償部63によって演算された目標変化補償信号を加算して角速度目標値を生成する。これにより、舵角目標値が急激に変化した場合であっても、目標変化補償部63にて演算された目標変化補償信号によって、舵角目標値の変化が補償される。したがって、位置制御目標値に目標変化補償信号を加算して生成された角速度目標値によって制御を行うことで、位置制御部62にて演算された位置制御目標値のみによって制御を行うよりも舵角目標値の変化に対する追従性が向上する。 Therefore, the angular velocity target value calculator 61 calculates a target change compensation signal corresponding to the change speed of the steering angle target value, and the target change compensator 63 calculates the position control target value calculated by the position controller 62. The target change compensation signal is added to generate an angular velocity target value. Thereby, even if the steering angle target value changes rapidly, the change in the steering angle target value is compensated by the target change compensation signal calculated by the target change compensation unit 63. Therefore, by controlling with the angular velocity target value generated by adding the target change compensation signal to the position control target value, the steering angle is controlled rather than controlling only with the position control target value calculated by the position control unit 62. The followability to changes in the target value is improved.
 自動操舵制御部60は、トルクセンサ12によって検出されたトルクに基づいてトーションバー4の捩れ角を演算し、捩れ角に基づいてトーションバー4の捩れを抑制する方向に電動モータ10を制御するための振動補償信号を演算する振動補償部70をさらに備える。 The automatic steering control unit 60 calculates the twist angle of the torsion bar 4 based on the torque detected by the torque sensor 12, and controls the electric motor 10 in a direction to suppress the twist of the torsion bar 4 based on the twist angle. The vibration compensation unit 70 for calculating the vibration compensation signal is further provided.
 振動補償部70は、トルクセンサ12によって検出されたトルクからトーションバー4の捩れ角を演算する捩れ角演算部71を備える。振動補償部70は、捩れ角演算部71によって演算された捩れ角にPD制御を実施し振動補償信号を演算する。 The vibration compensation unit 70 includes a torsion angle calculation unit 71 that calculates the torsion angle of the torsion bar 4 from the torque detected by the torque sensor 12. The vibration compensation unit 70 performs PD control on the twist angle calculated by the twist angle calculation unit 71 and calculates a vibration compensation signal.
 振動補償信号は、ステアリングホイール1の慣性とトーションバー4のばね性とに起因して発生するステアリングホイール1の振動を抑制するための信号である。ここで、ステアリングホイール1の慣性とトーションバー4のばね性とに起因して発生するステアリングホイール1の振動について、具体的に説明する。 The vibration compensation signal is a signal for suppressing the vibration of the steering wheel 1 generated due to the inertia of the steering wheel 1 and the spring property of the torsion bar 4. Here, the vibration of the steering wheel 1 caused by the inertia of the steering wheel 1 and the spring property of the torsion bar 4 will be specifically described.
 自動操舵時に、電動モータ10が作動すると、電動モータ10の回転は減速機11を介して出力シャフト3に伝達される。出力シャフト3が回転すると、トーションバー4及び入力シャフト2を介してステアリングホイール1が回転する。このとき、トーションバー4はばね性を有しており、かつ、ステアリングホイール1にはその場に留まろうとする慣性が働くので、出力シャフト3が回転を始めるとトーションバー4に捩れが生じる。そして、ステアリングホイール1は、トーションバー4が捩れた分だけ出力シャフト3に遅れて回転を始める。その後、電動モータ10が停止しても、ステアリングホイール1は、トーションバー4のばね力とステアリングホイールの慣性によって回転を続け、トーションバー4の捩れが解消した位置を超えてトーションバー4を逆方向に捩る。このようにして、トーションバー4が逆方向に捩れると、舵角センサ15によって検出される舵角と舵角目標値との間に差が生じる。これにより、電動モータ10は、この差を無くすために、出力シャフト3を逆方向に回転させるように作動する。これと同時に、トーションバー4はそのばね力によって、再びトーションバー4自身の捩れを解消しようと逆方向に回転する。そして、電動モータ10は、舵角目標値になると停止するが、ステアリングホイール1は、トーションバー4の捩れが解消した位置になってもその慣性によって回転を続け、トーションバー4をさらに逆方向に捩ってしまう。このような動作が繰り返されることで、ステアリングホイール1が振動する。 When the electric motor 10 is activated during automatic steering, the rotation of the electric motor 10 is transmitted to the output shaft 3 via the speed reducer 11. When the output shaft 3 rotates, the steering wheel 1 rotates via the torsion bar 4 and the input shaft 2. At this time, the torsion bar 4 has a spring property, and the inertia that tries to stay in place acts on the steering wheel 1, so that the torsion bar 4 is twisted when the output shaft 3 starts to rotate. Then, the steering wheel 1 starts rotating with a delay from the output shaft 3 by the amount of twisting of the torsion bar 4. Thereafter, even if the electric motor 10 stops, the steering wheel 1 continues to rotate due to the spring force of the torsion bar 4 and the inertia of the steering wheel, and the torsion bar 4 is moved in the reverse direction beyond the position where the twist of the torsion bar 4 has been eliminated. Twist into. Thus, when the torsion bar 4 is twisted in the opposite direction, a difference is generated between the steering angle detected by the steering angle sensor 15 and the steering angle target value. As a result, the electric motor 10 operates to rotate the output shaft 3 in the reverse direction in order to eliminate this difference. At the same time, the torsion bar 4 rotates in the opposite direction by the spring force so as to eliminate the twist of the torsion bar 4 itself. The electric motor 10 stops when the steering angle target value is reached, but the steering wheel 1 continues to rotate due to its inertia even when the twist of the torsion bar 4 is eliminated, and the torsion bar 4 is further reversed. It will twist. By repeating such an operation, the steering wheel 1 vibrates.
 振動補償部70は、このような振動を抑制するために、振動補償信号を電動モータ10に対して出力する。具体的には、振動補償部70は、出力シャフト3が左方向に回転してトーションバー4に捩れが生じているときには、トーションバー4の捩れ角の大きさに応じてトーションバー4の捩れを抑制する方向、つまり、出力シャフト3の左方向への回転を抑制するような振動補償信号を電動モータ10に出力する。これにより、電動モータ10の左回転方向へのトルクが抑制されるので、トーションバー4の捩れが抑制される。したがって、ステアリングホイール1の慣性とトーションバー4の捩れに起因して発生するステアリングホイール1の振動が抑制される。同様に、振動補償部70は、出力シャフト3が右方向に回転してトーションバー4に捩れが生じているときには、トーションバー4の捩れ角に応じてトーションバー4の捩れを抑制する方向、つまり、出力シャフト3の右方向への回転を抑制するような振動補償信号を電動モータ10に出力する。これにより、電動モータ10の右回転方向へのトルクが抑制されるので、トーションバー4の捩れが抑制される。したがって、ステアリングホイール1の慣性とトーションバー4の捩れに起因して発生するステアリングホイール1の振動が抑制される。振動補償信号は、捩れ角演算部71によって演算された捩れ角が大きければ、その分、トーションバー4を捩る方向への電動モータ10の回転(トルク)を抑制するような信号になるように演算される。つまり、振動補償信号は、捩れ角の大きさに応じた値に演算されるとともに、電動モータ10に対して捩れを打ち消す方向に作用するので、トーションバー4の捩れを精度良く抑制できる。 The vibration compensation unit 70 outputs a vibration compensation signal to the electric motor 10 in order to suppress such vibration. Specifically, when the output shaft 3 rotates to the left and the torsion bar 4 is twisted, the vibration compensator 70 twists the torsion bar 4 according to the torsion angle of the torsion bar 4. A vibration compensation signal that suppresses the rotation direction, that is, the leftward rotation of the output shaft 3, is output to the electric motor 10. Thereby, since the torque to the left rotation direction of the electric motor 10 is suppressed, the twist of the torsion bar 4 is suppressed. Therefore, vibration of the steering wheel 1 caused by the inertia of the steering wheel 1 and the torsion of the torsion bar 4 is suppressed. Similarly, when the output shaft 3 rotates in the right direction and the torsion bar 4 is twisted, the vibration compensation unit 70 suppresses the twist of the torsion bar 4 according to the twist angle of the torsion bar 4, that is, Then, a vibration compensation signal that suppresses the rightward rotation of the output shaft 3 is output to the electric motor 10. Thereby, since the torque to the right rotation direction of the electric motor 10 is suppressed, the twist of the torsion bar 4 is suppressed. Therefore, vibration of the steering wheel 1 caused by the inertia of the steering wheel 1 and the torsion of the torsion bar 4 is suppressed. If the torsion angle calculated by the torsion angle calculation unit 71 is large, the vibration compensation signal is calculated so as to suppress the rotation (torque) of the electric motor 10 in the direction in which the torsion bar 4 is twisted. Is done. That is, the vibration compensation signal is calculated to a value corresponding to the magnitude of the torsion angle, and acts on the electric motor 10 in a direction to cancel the torsion, so that the torsion bar 4 can be accurately prevented from being twisted.
 自動操舵制御部60は、角速度目標値演算部61によって演算された角速度目標値と振動補償部70によって演算された振動補償信号とに基づいて補正角速度目標値を演算する補正角速度目標値演算部としての加算器64と、モータ回転角センサ10aによって検出されたモータ回転角からステアリングホイール1の角速度を演算する角速度演算部65と、加算器64によって演算された補正角速度目標値と角速度演算部65によって演算されたステアリングホイール1の角速度との偏差d(差)を演算する偏差演算部としての減算器66と、減算器66によって演算された偏差dに基づいて電動モータ10を制御するための自動操舵目標値を生成する角速度制御部67と、をさらに備える。 The automatic steering control unit 60 is a corrected angular velocity target value calculation unit that calculates a corrected angular velocity target value based on the angular velocity target value calculated by the angular velocity target value calculation unit 61 and the vibration compensation signal calculated by the vibration compensation unit 70. An adder 64, an angular velocity calculation unit 65 for calculating the angular velocity of the steering wheel 1 from the motor rotation angle detected by the motor rotation angle sensor 10a, and a corrected angular velocity target value calculated by the adder 64 and the angular velocity calculation unit 65. A subtractor 66 serving as a deviation calculating unit that calculates a deviation d (difference) from the calculated angular velocity of the steering wheel 1, and automatic steering for controlling the electric motor 10 based on the deviation d calculated by the subtractor 66. And an angular velocity control unit 67 that generates a target value.
 加算器64は、角速度目標値に振動補償信号を加算して、補正角速度目標値を演算する。 The adder 64 adds a vibration compensation signal to the angular velocity target value and calculates a corrected angular velocity target value.
 角速度演算部65は、モータ回転角センサ10aによって検出された単位時間あたりのモータ回転数から電動モータ10の回転軸の角速度を演算する。さらに、角速度演算部65は、電動モータ10の回転軸の角速度に減速機11の減速比を除算することによって、ステアリングホイール1の角速度を演算する。このようにして角速度演算部65によって演算されたステアリングホイール1の角速度は、ステアリングホイール1の実際の角速度に相当する。なお、ステアリングホイール1の角速度は、舵角センサ15の検出周期が短ければ、舵角センサ15よって検出された舵角を基に演算してもよい。 The angular velocity calculation unit 65 calculates the angular velocity of the rotating shaft of the electric motor 10 from the motor rotation number per unit time detected by the motor rotation angle sensor 10a. Furthermore, the angular velocity calculation unit 65 calculates the angular velocity of the steering wheel 1 by dividing the reduction ratio of the reduction gear 11 by the angular velocity of the rotating shaft of the electric motor 10. Thus, the angular velocity of the steering wheel 1 calculated by the angular velocity calculating unit 65 corresponds to the actual angular velocity of the steering wheel 1. Note that the angular velocity of the steering wheel 1 may be calculated based on the steering angle detected by the steering angle sensor 15 as long as the detection cycle of the steering angle sensor 15 is short.
 角速度制御部67は、偏差dに基づいて比例制御を行うための比例器67aと、偏差dに基づいて積分制御を行うための積分器67bと、偏差dに基づいて微分制御を行うための微分器67cと、を備える。角速度制御部67は、比例器67a、積分器67b及び微分器67cによって偏差dに基づいてPID制御を実施して自動操舵目標値を生成する。具体的には、角速度制御部67は、偏差dに基づいて、補正角速度目標値にステアリングホイール1の実際の角速度が一致するように電動モータ10を制御するための自動操舵目標値を生成する。つまり、角速度制御部67は、ステアリングホイール1の角速度の目標値とステアリングホイール1の実際の角速度との偏差d(差)に基づいた速度フィードバック制御を行う。 The angular velocity control unit 67 includes a proportional unit 67a for performing proportional control based on the deviation d, an integrator 67b for performing integral control based on the deviation d, and a differential for performing differential control based on the deviation d. And a device 67c. The angular velocity control unit 67 performs PID control based on the deviation d by the proportional unit 67a, the integrator 67b, and the differentiator 67c to generate an automatic steering target value. Specifically, the angular velocity control unit 67 generates an automatic steering target value for controlling the electric motor 10 based on the deviation d so that the actual angular velocity of the steering wheel 1 matches the corrected angular velocity target value. That is, the angular velocity control unit 67 performs speed feedback control based on a deviation d (difference) between the target value of the angular velocity of the steering wheel 1 and the actual angular velocity of the steering wheel 1.
 上述のように、自動操舵制御部60では、加算器64において角速度目標値に振動補償部70によって演算された振動補償信号が加算されて補正角速度目標値が演算される。加算器64によって演算された補正角速度目標値と角速度演算部65によってフィードバックされた角速度との偏差dは、振動補償信号が加算された信号どうしの差になるので、偏差dは比較的小さな値となる。これにより、角速度制御部67における制御を安定させることができる。 As described above, in the automatic steering controller 60, the adder 64 adds the vibration compensation signal calculated by the vibration compensator 70 to the angular velocity target value to calculate the corrected angular velocity target value. Since the deviation d between the corrected angular velocity target value calculated by the adder 64 and the angular velocity fed back by the angular velocity calculator 65 is a difference between the signals to which the vibration compensation signal is added, the deviation d is a relatively small value. Become. Thereby, the control in the angular velocity control part 67 can be stabilized.
 自動操舵制御部60は、自動操舵中に運転者によってステアリングホイール1が操作されたときに、トルクセンサ12によって検出されたトルクの値が第1の閾値αに達すると、減算器66によって演算された偏差dの角速度制御部67への入力を制限する制限部としての偏差制限部80をさらに備える。 When the steering wheel 1 is operated by the driver during automatic steering, the automatic steering control unit 60 is calculated by the subtractor 66 when the torque value detected by the torque sensor 12 reaches the first threshold value α. A deviation limiting unit 80 is further provided as a limiting unit that limits the input of the deviation d to the angular velocity control unit 67.
 偏差制限部80は、図4に示すように、トーションバー4に作用するトルクが第1の閾値αに達したときに、舵角目標値に基づく信号と舵角に基づく信号との偏差、具体的には、減算器66によって演算された角速度と補正角速度目標値との偏差dを0として出力する。また、偏差制限部80は、トーションバー4に作用するトルクが第1の閾値αよりも小さな第2の閾値βまで低下したときに、偏差dをそのまま出力する。このように、偏差制限部80には、第1の閾値αと第2の閾値βとの間に不感帯が設けられているので、例えば、トルクが第1の閾値αを挟んで小刻みに変化したときにハンチングが発生することを防止できる。 As shown in FIG. 4, when the torque acting on the torsion bar 4 reaches the first threshold value α, the deviation limiting unit 80 determines the deviation between the signal based on the steering angle target value and the signal based on the steering angle. Specifically, the deviation d between the angular velocity calculated by the subtractor 66 and the corrected angular velocity target value is output as zero. The deviation limiting unit 80 outputs the deviation d as it is when the torque acting on the torsion bar 4 decreases to a second threshold value β that is smaller than the first threshold value α. As described above, since the dead zone is provided between the first threshold value α and the second threshold value β in the deviation limiting unit 80, for example, the torque changes in small increments across the first threshold value α. Occasional hunting can be prevented.
 図3を参照して、以上のように構成された自動操舵制御部60による自動操舵について説明する。 Referring to FIG. 3, the automatic steering by the automatic steering control unit 60 configured as described above will be described.
 角速度目標値演算部61に自動運転システム40から舵角目標値が入力されると、角速度目標値演算部61は、舵角センサ15によって検出された舵角が舵角目標値に一致するように電動モータ10を制御するための角速度目標値を演算する。さらに、この角速度目標値に振動補償部70によって演算された振動補償信号が加算されて補正角速度目標値が演算される。これと並行して、角速度演算部65は、モータ回転角センサ10aによって検出されたモータの回転角からステアリングホイール1の実際の角速度を演算する。 When the steering angle target value is input from the automatic driving system 40 to the angular velocity target value calculation unit 61, the angular velocity target value calculation unit 61 makes the steering angle detected by the steering angle sensor 15 coincide with the steering angle target value. An angular velocity target value for controlling the electric motor 10 is calculated. Further, the corrected angular velocity target value is calculated by adding the vibration compensation signal calculated by the vibration compensation unit 70 to the target angular velocity value. In parallel with this, the angular velocity calculator 65 calculates the actual angular velocity of the steering wheel 1 from the rotation angle of the motor detected by the motor rotation angle sensor 10a.
 角速度制御部67は、加算器64によって演算された補正角速度目標値と角速度演算部65によって演算されたステアリングホイール1の角速度との差(偏差d)に基づいて、補正角速度目標値にステアリングホイール1の実際の角速度が一致するように電動モータ10を制御するための自動操舵目標値を演算する。 Based on the difference (deviation d) between the corrected angular velocity target value calculated by the adder 64 and the angular velocity of the steering wheel 1 calculated by the angular velocity calculator 65, the angular velocity control unit 67 converts the steering wheel 1 into the corrected angular velocity target value. The automatic steering target value for controlling the electric motor 10 is calculated so that the actual angular velocities match.
 このようにして演算された自動操舵目標値は、電流制御部31に入力され、電流制御部31は、駆動回路32を介して電動モータ10を制御する。電動モータ10は、ステアリングホイール1の角速度が舵角目標値になるように減速機11を介してステアリングシャフト7を回転させる。 The automatic steering target value calculated in this way is input to the current control unit 31, and the current control unit 31 controls the electric motor 10 via the drive circuit 32. The electric motor 10 rotates the steering shaft 7 via the speed reducer 11 so that the angular velocity of the steering wheel 1 becomes the steering angle target value.
 電動モータ10が回転を始めると、上述のようにステアリングホイール1の慣性とトーションバー4のばね性に起因してトーションバー4が捩れる。トーションバー4が捩れるとトルクセンサ12によってトルクが検出され、このトルクが振動補償部70の捩れ角演算部71に入力される。捩れ角演算部71は、トーションバー4の捩れ角を演算する。振動補償部70は、この捩れ角に基づいてトーションバー4の捩れを抑制する方向に電動モータ10を制御する振動補償信号を演算する。振動補償部70によって演算された振動補償信号は、加算器64において角速度目標値演算部61によって演算された角速度目標値に加算される。そして、減算器66によって補正角速度目標値とステアリングホイール1の角速度との差(偏差d)が演算され、その偏差dは、角速度制御部67に入力される。角速度制御部67は、偏差dに基づいてPID制御を行い電動モータ10を制御するための自動操舵目標値を演算する。このように、電動モータ10は、振動補償部70によって演算された振動補償信号が加算された自動操舵目標値によって、トーションバー4の捩れ角の大きさに応じてトーションバー4の捩れを抑制する方向に制御されつつ、ステアリングホイール1の角速度が舵角目標値になるように制御される。言い換えると、電動モータ10は、トーションバー4の捩れ角の大きさに応じた分だけ回転方向のトルクを抑制されながら、ステアリングホイール1の角速度が舵角目標値になるように制御される。これにより、ステアリングホイール1の慣性とトーションバー4のばね性に起因して発生するステアリングホイール1の振動を抑制することができる。 When the electric motor 10 starts rotating, the torsion bar 4 is twisted due to the inertia of the steering wheel 1 and the spring property of the torsion bar 4 as described above. When the torsion bar 4 is twisted, torque is detected by the torque sensor 12, and this torque is input to the torsion angle calculation unit 71 of the vibration compensation unit 70. The torsion angle calculation unit 71 calculates the torsion angle of the torsion bar 4. The vibration compensation unit 70 calculates a vibration compensation signal for controlling the electric motor 10 in a direction to suppress the twist of the torsion bar 4 based on the twist angle. The vibration compensation signal calculated by the vibration compensator 70 is added to the angular velocity target value calculated by the angular velocity target value calculator 61 in the adder 64. Then, a subtractor 66 calculates a difference (deviation d) between the corrected angular velocity target value and the angular velocity of the steering wheel 1, and the deviation d is input to the angular velocity controller 67. The angular velocity control unit 67 performs PID control based on the deviation d, and calculates an automatic steering target value for controlling the electric motor 10. Thus, the electric motor 10 suppresses the twist of the torsion bar 4 according to the torsion angle of the torsion bar 4 by the automatic steering target value to which the vibration compensation signal calculated by the vibration compensator 70 is added. The angular velocity of the steering wheel 1 is controlled to be the steering angle target value while being controlled in the direction. In other words, the electric motor 10 is controlled so that the angular velocity of the steering wheel 1 becomes the steering angle target value while the torque in the rotational direction is suppressed by an amount corresponding to the magnitude of the torsion angle of the torsion bar 4. Thereby, the vibration of the steering wheel 1 generated due to the inertia of the steering wheel 1 and the spring property of the torsion bar 4 can be suppressed.
 次に、自動操舵中に運転者によるステアリング介入操作が行われたときの制御について説明する。 Next, control when a steering intervention operation by the driver is performed during automatic steering will be described.
 自動操舵中に運転者がステアリングホイール1を操作すると、トーションバー4にトルクが作用する。トーションバー4に作用したトルクは、トルクセンサ12によって検出され、偏差制限部80に入力される。偏差制限部80は、入力されたトルクが第1の閾値α以上になると、減算器66によって演算された偏差dを0として出力する。これにより、角速度制御部67には、偏差dが0として入力される。 When the driver operates the steering wheel 1 during automatic steering, torque acts on the torsion bar 4. Torque acting on the torsion bar 4 is detected by the torque sensor 12 and input to the deviation limiting unit 80. The deviation limiting unit 80 outputs the deviation d calculated by the subtractor 66 as 0 when the input torque becomes equal to or greater than the first threshold value α. As a result, the deviation d is input to the angular velocity control unit 67 as zero.
 これと同時に介入判定部33では、運転者によるステアリング介入操作が行われているか否かを判定する。具体的には、介入判定部33は、検出されたトルクが一定時間第1の閾値α以上である場合には、運転者によるステアリング介入操作が行われているとして、自動操舵制御部60による電動モータ10の制御を無効あるいは停止させる。検出されたトルクが第1の閾値α以上の値であっても、トルクが第1の閾値α以上の値を一定時間継続していない場合には、運転者によるステアリング介入操作が行われていない、あるいは、ステアリング介入操作が中断されたものとして自動操舵制御部60による電動モータ10の制御を継続する。なお、第1の閾値αや判定時間は、運転者の手などがステアリングホイール1に当たってしまった場合や、上述のようにステアリングホイール1に振動が発生した場合の誤判定を防止できる値に設定される。 At the same time, the intervention determination unit 33 determines whether a steering intervention operation by the driver is being performed. Specifically, when the detected torque is equal to or greater than the first threshold value α for a certain period of time, the intervention determination unit 33 determines that the driver is performing a steering intervention operation and performs the electric drive by the automatic steering control unit 60. The control of the motor 10 is invalidated or stopped. Even if the detected torque is a value equal to or greater than the first threshold value α, the steering intervention operation by the driver is not performed if the torque does not continue the value equal to or greater than the first threshold value α for a certain period of time. Alternatively, it is assumed that the steering intervention operation is interrupted, and the control of the electric motor 10 by the automatic steering control unit 60 is continued. Note that the first threshold value α and the determination time are set to values that can prevent erroneous determination when a driver's hand or the like hits the steering wheel 1 or when vibration occurs in the steering wheel 1 as described above. The
 電動パワーステアリング装置100では、トルクセンサ12によって検出されたトルクが第1の閾値α以上になると、介入判定部33による判定が完了しているか否かにかかわらず、偏差制限部80によって角速度制御部67へ入力される偏差dを0とする。これにより、角速度と補正角速度目標値との間に偏差dが存在していても、角速度制御部67には、偏差dとして0が入力される。つまり、角速度と補正角速度目標値との間に偏差dが存在していても、角速度制御部67に偏差dとして0を入力することにより、角速度制御部67の比例器67a、積分器67b、及び微分器67cによる制御を制限する。言い換えると、角速度制御部67に偏差dとして0を入力することにより、角速度制御部67の比例器67a、積分器67b、及び微分器67cによる制御を実質的に無効にする。これにより、角速度制御部67から出力される自動操舵目標値が一定となるので、自動操舵制御部60からの信号(自動操舵目標値)に基づいて電動モータ10が発生するトルクも一定となる。よって、自動操舵目標値に基づいて電動モータ10が発生するトルクの上昇が抑制される。 In the electric power steering apparatus 100, when the torque detected by the torque sensor 12 becomes equal to or higher than the first threshold value α, the deviation speed limiter 80 controls the angular velocity control unit regardless of whether the determination by the intervention determination unit 33 is completed. The deviation d input to 67 is set to zero. Accordingly, even if there is a deviation d between the angular velocity and the corrected angular velocity target value, 0 is input to the angular velocity control unit 67 as the deviation d. That is, even if there is a deviation d between the angular velocity and the corrected angular velocity target value, by inputting 0 as the deviation d to the angular velocity control unit 67, a proportional device 67a, an integrator 67b of the angular velocity control unit 67, and The control by the differentiator 67c is limited. In other words, by inputting 0 as the deviation d to the angular velocity control unit 67, the control by the proportional device 67a, the integrator 67b, and the differentiator 67c of the angular velocity control unit 67 is substantially invalidated. As a result, the automatic steering target value output from the angular velocity control unit 67 is constant, and the torque generated by the electric motor 10 based on the signal from the automatic steering control unit 60 (automatic steering target value) is also constant. Therefore, an increase in torque generated by the electric motor 10 based on the automatic steering target value is suppressed.
 このように、電動パワーステアリング装置100では、自動操舵中、運転者によってステアリングホイール1が操作され、トルクセンサ12によって検出されたトルクが第1の閾値αに達した場合には、介入判定部33による判定状況にかかわらず偏差制限部80が角速度制御部67による制御を制限する。これにより、自動操舵目標値に基づいて電動モータ10が発生するトルクの上昇を抑制することができる。よって、自動操舵中、運転者がステアリングホイール1を操作したときに、運転者がステアリングホイール1から覚えるトルクの上昇による違和感を低減できる。 As described above, in the electric power steering apparatus 100, when the steering wheel 1 is operated by the driver during automatic steering and the torque detected by the torque sensor 12 reaches the first threshold value α, the intervention determination unit 33. Regardless of the determination status, the deviation limiting unit 80 limits the control by the angular velocity control unit 67. Thereby, the raise of the torque which the electric motor 10 generate | occur | produces based on an automatic steering target value can be suppressed. Therefore, when the driver operates the steering wheel 1 during automatic steering, it is possible to reduce a sense of discomfort due to an increase in torque that the driver learns from the steering wheel 1.
 自動操舵制御部60において、このような制御が行われなければ、介入判定部33によってステアリング介入操作の判定を行っている間も、角速度制御部67は、舵角を舵角目標値に近づけるような(偏差を小さくするような)自動操舵目標値を生成する。このようにして生成された自動操舵目標値に基づいて電動モータ10が制御されても、運転者がステアリングホイール1を操作しているため、舵角目標値との差分を解消することができない。このため、角速度制御部67は、偏差dを解消するため積分器67bによって偏差dを積分し、前回の自動操舵目標値よりも大きな自動操舵目標値を生成する。これにより、電動モータ10を駆動する電流値が大きくなり、舵角を舵角目標値に近づける方向、つまり、運転者のステアリング操作とは反対の方向に作用するトルクが大きくなる。 If such control is not performed in the automatic steering control unit 60, the angular velocity control unit 67 makes the steering angle closer to the steering angle target value even while the intervention determination unit 33 determines the steering intervention operation. The automatic steering target value is generated (such that the deviation is reduced). Even if the electric motor 10 is controlled based on the automatic steering target value generated in this way, the difference from the steering angle target value cannot be resolved because the driver operates the steering wheel 1. Therefore, the angular velocity control unit 67 integrates the deviation d by the integrator 67b to eliminate the deviation d, and generates an automatic steering target value that is larger than the previous automatic steering target value. As a result, the current value for driving the electric motor 10 increases, and the torque acting in the direction in which the steering angle approaches the steering angle target value, that is, the direction opposite to the driver's steering operation, increases.
 介入判定部33によって手動操作の判定を行っている間は、このようなフィードバック制御が繰り返され、角速度制御部67は、積分器67bによって偏差dを順次積分するので、自動操舵目標値も順次大きくなる。これにより、自動操舵目標値に基づいて電動モータ10が発生する、運転者のステアリング操作とは反対の方向へのトルクが徐々に大きくなってしまう。 While the intervention determination unit 33 determines the manual operation, such feedback control is repeated, and the angular velocity control unit 67 sequentially integrates the deviation d by the integrator 67b, so that the automatic steering target value also increases sequentially. Become. As a result, the torque generated by the electric motor 10 based on the automatic steering target value in the direction opposite to the driver's steering operation gradually increases.
 そのため、電動パワーステアリング装置100では、自動操舵中、運転者によってステアリングホイール1が操作されたときに、介入判定部33による判定にかかわらず、トルクセンサ12によって検出されたトルクの値が第1の閾値に達すると、偏差制限部80が角速度制御部67による制御、特に積分器67bによる積分制御を制限する。これにより、運転者のステアリング操作とは反対の方向に作用するトルクの上昇を抑制することができる。よって、自動操舵中、運転者がステアリングホイール1を操作したときに、運転者がステアリングホイール1から覚えるトルクの上昇による違和感を低減できる。さらに、介入判定部33によって自動操舵制御が無効化あるいは停止されたときのトルクの急激な低下が抑制されるので、トルクの急激な変化による違和感を低減できる。 Therefore, in the electric power steering apparatus 100, when the steering wheel 1 is operated by the driver during automatic steering, the value of the torque detected by the torque sensor 12 is the first value regardless of the determination by the intervention determination unit 33. When the threshold value is reached, the deviation limiting unit 80 limits the control by the angular velocity control unit 67, particularly the integration control by the integrator 67b. As a result, an increase in torque acting in the direction opposite to the driver's steering operation can be suppressed. Therefore, when the driver operates the steering wheel 1 during automatic steering, it is possible to reduce a sense of discomfort due to an increase in torque that the driver learns from the steering wheel 1. Furthermore, since the sudden decrease in the torque when the automatic steering control is invalidated or stopped by the intervention determination unit 33 is suppressed, it is possible to reduce a sense of incongruity due to a rapid change in the torque.
 上記実施形態では、偏差制限部80は、第1の閾値αあるいは第2の閾値βで切り換えられるように構成されているが、図5に示すように、偏差制限部80は、トルクセンサ12によって検出されたトルクが第1の閾値αから第2の閾値βの範囲内にあるときは、トルクが大きくなるにつれて偏差dを小さくするように構成してもよい。このように構成することで、トルクの変化を滑らかにすることができる。 In the above-described embodiment, the deviation limiting unit 80 is configured to be switched by the first threshold value α or the second threshold value β. However, as shown in FIG. When the detected torque is in the range from the first threshold value α to the second threshold value β, the deviation d may be reduced as the torque increases. With this configuration, the torque change can be smoothed.
 また、上記実施形態では、介入判定部33の閾値を第1の閾値αとしたが、これに限らず、介入判定部33の閾値を第3の閾値γとし、第1の閾値αを第3の閾値γよりも小さな値に設定してもよい。つまり、介入判定部33による介入判定のための閾値と角速度制御部67による制御を制限するための閾値とを異なるトルクに設定してもよい。例えば、運転者によるステアリング介入操作の速度が遅い場合には、トルクが第1の閾値αに達するまでに時間を要するため、積分器67bによる偏差dの積算がより進んでしまう。このため、第1の閾値αを第3の閾値γよりも小さな値に設定することで、積分器67bによる偏差dの積算が少ないときに、積分器67bに基づく積分制御を制限する。これにより、角速度制御部67によって生成される自動操舵目標値の上昇を早めに抑制できるので、トルクの上昇に伴う運転者の違和感をより低減できる。 Moreover, in the said embodiment, although the threshold value of the intervention determination part 33 was made into the 1st threshold value (alpha), it is not restricted to this, The threshold value of the intervention determination part 33 is made into the 3rd threshold value (gamma), and 1st threshold value (alpha) is set to 3rd. A value smaller than the threshold value γ may be set. That is, the threshold for intervention determination by the intervention determination unit 33 and the threshold for limiting control by the angular velocity control unit 67 may be set to different torques. For example, when the speed of the steering intervention operation by the driver is slow, it takes time for the torque to reach the first threshold value α, so that the integration of the deviation d by the integrator 67b further progresses. Therefore, by setting the first threshold value α to a value smaller than the third threshold value γ, the integration control based on the integrator 67b is limited when the integration of the deviation d by the integrator 67b is small. Thereby, since the raise of the automatic steering target value produced | generated by the angular velocity control part 67 can be suppressed early, a driver | operator's uncomfortable feeling accompanying the raise of a torque can be reduced more.
 以上の第1実施形態によれば、以下の効果を奏する。 According to the above 1st Embodiment, there exist the following effects.
 電動パワーステアリング装置100では、自動操舵制御部60は、自動操舵中に運転者によってステアリングホイール1が操作されたときに、トルクセンサ12によって検出されたトルクの値が第1の閾値αに達すると、比例器67a、積分器67b及び微分器67cによる制御を制限する偏差制限部80を備える。これにより、自動操舵中、運転者によってステアリングホイール1が操作されたときに、自動操舵制御部60によって生成された自動操舵目標値に基づいて電動モータ10が発生するトルクの上昇を抑制することができる。したがって、ステアリング介入操作中に運転者がステアリングホイール1から覚えるトルクの上昇による違和感を低減できる。さらに、介入判定部33によって自動操舵制御が無効化あるいは停止されたときのトルクの急激な低下が抑制されるので、運転者がステアリングホイール1から覚えるトルクの急激な変化による違和感を低減できる。 In the electric power steering apparatus 100, the automatic steering control unit 60, when the steering wheel 1 is operated by the driver during automatic steering, when the torque value detected by the torque sensor 12 reaches the first threshold value α. The deviation limiting unit 80 limits the control by the proportional unit 67a, the integrator 67b, and the differentiator 67c. This suppresses an increase in torque generated by the electric motor 10 based on the automatic steering target value generated by the automatic steering control unit 60 when the driver operates the steering wheel 1 during automatic steering. it can. Therefore, it is possible to reduce a sense of incongruity due to an increase in torque that the driver learns from the steering wheel 1 during the steering intervention operation. Further, since the sudden decrease in torque when the automatic steering control is invalidated or stopped by the intervention determination unit 33, the uncomfortable feeling due to the rapid change in torque that the driver learns from the steering wheel 1 can be reduced.
 また、電動パワーステアリング装置100では、自動操舵制御部60は、トーションバー4に作用するトルクが第1の閾値α以上のときに偏差制限部80によって偏差dを0にするので、角速度制御部67における比例器67a、積分器67b及び微分器67cによる制御をより確実に制限することができる。よって、自動操舵制御部60によって生成された自動操舵目標値に基づいて電動モータ10が発生するトルクの上昇をより抑制できる。 In the electric power steering apparatus 100, the automatic steering control unit 60 sets the deviation d to 0 by the deviation limiting unit 80 when the torque acting on the torsion bar 4 is equal to or greater than the first threshold value α. The control by the proportional unit 67a, the integrator 67b and the differentiator 67c can be more reliably limited. Therefore, an increase in torque generated by the electric motor 10 can be further suppressed based on the automatic steering target value generated by the automatic steering control unit 60.
 電動パワーステアリング装置100では、自動操舵制御部60は、ステアリングホイール1の角速度を演算する角速度演算部65、をさらに備える。これにより、電動モータ10は、舵角に加えて角速度目標値とステアリングホイール1の角速度との差に基づいて制御されるので、制御の精度及び応答性が向上する。 In the electric power steering apparatus 100, the automatic steering control unit 60 further includes an angular velocity calculation unit 65 that calculates the angular velocity of the steering wheel 1. Thereby, since the electric motor 10 is controlled based on the difference between the target angular velocity value and the angular velocity of the steering wheel 1 in addition to the steering angle, the control accuracy and responsiveness are improved.
 電動パワーステアリング装置100では、自動操舵制御部60は、角速度目標値演算部61によって演算された角速度目標値と振動補償部70によって演算された捩れ角に基づいてトーションバー4の捩れを抑制する方向に電動モータ10を制御する振動補償信号とに基づいて電動モータ10を制御する。これにより、電動モータ10は、トーションバー4の捩れ角に基づいて回転方向のトルクを抑制されながら、ステアリングホイール1の角速度が舵角目標値になるように制御される。したがって、ステアリングホイール1の慣性とトーションバー4のばね性に起因して発生するステアリングホイール1の振動を抑制することができる。 In the electric power steering apparatus 100, the automatic steering control unit 60 suppresses the twist of the torsion bar 4 based on the angular velocity target value calculated by the angular velocity target value calculation unit 61 and the torsion angle calculated by the vibration compensation unit 70. The electric motor 10 is controlled based on the vibration compensation signal for controlling the electric motor 10. Thus, the electric motor 10 is controlled so that the angular velocity of the steering wheel 1 becomes the steering angle target value while the torque in the rotational direction is suppressed based on the twist angle of the torsion bar 4. Therefore, vibration of the steering wheel 1 caused by the inertia of the steering wheel 1 and the spring property of the torsion bar 4 can be suppressed.
 なお、上記電動パワーステアリング装置100では、偏差制限部80によって偏差dを0にしていたが、図6に示す変形例に示す切換スイッチ180を用いることによって偏差dを0にすることもできる。以下に、変形例について説明する。 In the electric power steering apparatus 100, the deviation d is set to 0 by the deviation limiting unit 80. However, the deviation d can be set to 0 by using the changeover switch 180 shown in the modification shown in FIG. Hereinafter, modified examples will be described.
 図6に示す変形例では、自動操舵制御部60が、偏差制限部80に換えて、トーションバー4に作用するトルクが第1の閾値αに達したときに、角速度目標値として角速度演算部65によって演算された角速度を出力する制限部としての切換スイッチ180を備える。 In the modification shown in FIG. 6, the automatic steering control unit 60 replaces the deviation limiting unit 80, and when the torque acting on the torsion bar 4 reaches the first threshold value α, the angular velocity calculation unit 65 serves as the angular velocity target value. The selector switch 180 is provided as a limiting unit that outputs the angular velocity calculated by the above.
 切換スイッチ180は、加算器64と減算器66との間に設けられる。切換スイッチ180は、トーションバー4に作用するトルクが第1の閾値αに達したときに、角速度目標値として角速度演算部65によって演算された角速度を出力するように切り換えられる。これにより、減算器66によって演算される偏差を0にすることができる。 The changeover switch 180 is provided between the adder 64 and the subtractor 66. When the torque acting on the torsion bar 4 reaches the first threshold value α, the selector switch 180 is switched so as to output the angular velocity calculated by the angular velocity calculator 65 as the angular velocity target value. Thereby, the deviation calculated by the subtractor 66 can be made zero.
 また、図7に示す変形例のように、トーションバー4に作用するトルクが第1の閾値αに達したときに、角速度演算部65によって演算された角速度として角速度目標値を出力するように切り換えられるように切換スイッチ180を設けてもよい。この場合であっても、減算器66によって演算される偏差dを0にすることができる。 Further, as in the modification shown in FIG. 7, when the torque acting on the torsion bar 4 reaches the first threshold value α, switching is performed so that the angular velocity target value is output as the angular velocity calculated by the angular velocity calculator 65. For example, a changeover switch 180 may be provided. Even in this case, the deviation d calculated by the subtractor 66 can be made zero.
 さらに、上記実施形態において、各閾値α、β、γを車速に応じて変化させるようにしてもよい。例えば、車両の車速が早くなるにつれて、第1の閾値αを小さくするように構成してもよい。車速が早い場合には、運転者がステアリングホイール1を急激に操作することが少ない。言い換えると、車速が早い場合には、トーションバー4に大きなトルクが発生することがほとんどない。このため、第1の閾値αを小さくすることで、ステアリング操作によって発生するトルクが小さくても角速度制御部67による制御を制限する。これにより、運転者がステアリングホイール1から覚えるトルクの上昇による違和感を車速に応じて適切に低減できる。 Furthermore, in the above embodiment, the threshold values α, β, γ may be changed according to the vehicle speed. For example, the first threshold value α may be decreased as the vehicle speed increases. When the vehicle speed is high, the driver rarely operates the steering wheel 1 abruptly. In other words, when the vehicle speed is high, a large torque is hardly generated in the torsion bar 4. For this reason, by reducing the first threshold value α, the control by the angular velocity control unit 67 is limited even if the torque generated by the steering operation is small. Thereby, the uncomfortable feeling due to the increase in torque that the driver learns from the steering wheel 1 can be appropriately reduced according to the vehicle speed.
 <第2実施形態>
 次に、図8を参照して、本発明の第2実施形態に係る電動パワーステアリング装置200について説明する。以下では、上記第1実施形態と異なる点を中心に説明し、第1実施形態の電動パワーステアリング装置100と同一の構成には、同一の符号を付して説明を省略する。
Second Embodiment
Next, with reference to FIG. 8, an electric power steering apparatus 200 according to a second embodiment of the present invention will be described. Below, it demonstrates centering on a different point from the said 1st Embodiment, the same code | symbol is attached | subjected to the structure same as the electric power steering apparatus 100 of 1st Embodiment, and description is abbreviate | omitted.
 電動パワーステアリング装置200の基本的な構成は、第1実施形態に係る電動パワーステアリング装置100と同様である。第1実施形態に係る電動パワーステアリング装置100では、比例器67a、積分器67b及び微分器67cに入力される偏差dを制限しているのに対し、電動パワーステアリング装置200では、積分器67bに入力される偏差dのみを制限している点で相違している。 The basic configuration of the electric power steering apparatus 200 is the same as that of the electric power steering apparatus 100 according to the first embodiment. In the electric power steering apparatus 100 according to the first embodiment, the deviation d input to the proportional unit 67a, the integrator 67b, and the differentiator 67c is limited, whereas in the electric power steering apparatus 200, the integrator 67b is used. The difference is that only the input deviation d is limited.
 電動パワーステアリング装置200では、自動操舵制御部60は、減算器66と積分器67bとの間に設けられ、トーションバー4に作用するトルクが第1の閾値αに達したときに、積分器67bに基づく積分制御のみを制限する制限部としての積分制限部280を備える。 In the electric power steering apparatus 200, the automatic steering control unit 60 is provided between the subtractor 66 and the integrator 67b, and when the torque acting on the torsion bar 4 reaches the first threshold value α, the integrator 67b. An integration limiting unit 280 is provided as a limiting unit that limits only the integration control based on.
 積分制限部280は、トーションバー4に作用するトルクが第1の閾値αに達したときに、積分器67bに入力される偏差を0にする。つまり、電動パワーステアリング装置200では、トーションバー4に作用するトルクが第1の閾値αに達したときに、積分器67bに基づく積分制御のみを制限する。 The integration limiting unit 280 sets the deviation input to the integrator 67b to 0 when the torque acting on the torsion bar 4 reaches the first threshold value α. That is, in the electric power steering apparatus 200, when the torque acting on the torsion bar 4 reaches the first threshold value α, only the integration control based on the integrator 67b is limited.
 積分器67bに基づく積分制御が制限されたときでも、角速度制御部67では、比例器67aによる比例制御及び微分器67cによる微分制御が行われる。しかし、比例制御及び微分制御は、偏差dが存在しても積分制御のように偏差dが積算されることがない。このため、自動操舵目標値が積分制御が行われたときのように徐々に大きくなることがない。したがって、自動操舵中、運転者がステアリングホイール1が操作したときに、自動操舵目標値に基づいて電動モータ10が発生するトルクの上昇を抑制することができる。よって、電動パワーステアリング装置200においても、運転者がステアリングホイール1から覚えるトルクの上昇による違和感を低減できる。 Even when the integration control based on the integrator 67b is restricted, the angular velocity control unit 67 performs the proportional control by the proportional device 67a and the differential control by the differentiator 67c. However, in the proportional control and the differential control, even if the deviation d exists, the deviation d is not integrated unlike the integral control. For this reason, the automatic steering target value does not gradually increase as in the case where the integral control is performed. Therefore, an increase in torque generated by the electric motor 10 based on the automatic steering target value can be suppressed when the driver operates the steering wheel 1 during automatic steering. Therefore, also in the electric power steering apparatus 200, it is possible to reduce a sense of incongruity due to an increase in torque that the driver learns from the steering wheel 1.
 なお、積分制限部280は、積分器67bの出力側に設けてもよい。この場合には、積分制限部280は、例えば、ON/OFFスイッチによって構成することができる。 The integration limiting unit 280 may be provided on the output side of the integrator 67b. In this case, the integration limiting unit 280 can be configured by, for example, an ON / OFF switch.
 以上の第2実施形態の電動パワーステアリング装置200は、第1実施形態と同様の効果を奏することができる。 The electric power steering apparatus 200 of the second embodiment described above can achieve the same effects as those of the first embodiment.
 以上のように構成された本発明の実施形態の構成、作用、及び効果をまとめて説明する。 The configuration, operation, and effect of the embodiment of the present invention configured as described above will be described together.
 電動パワーステアリング装置100,200は、運転者によって操作されるステアリング部材(ステアリングホイール1)に連結され、運転者によるステアリング部材(ステアリングホイール1)の操作に伴って回転するステアリングシャフト7と、ステアリングシャフト7の一部を構成するトーションバー4と、トーションバー4に作用するトルクを検出するトルクセンサ12と、ステアリングシャフト7に回転トルクを付与する電動モータ10と、トルクセンサ12によって検出されたトルクに基づいて電動モータ10を制御する操舵補助と車両外の情報に基づいて電動モータ10を制御する自動操舵とを選択的に行う制御部(コントローラ30)と、ステアリング部材(ステアリングホイール1)の舵角を検出する舵角検出部(モータ回転角センサ10a、舵角センサ15)と、を備え、制御部(コントローラ30)は、自動操舵時に、車両の移動目標位置に基づいて設定される舵角目標値に基づく信号と舵角検出部(モータ回転角センサ10a、舵角センサ15)によって検出された舵角に基づく信号との偏差(偏差d)に応じて電動モータ10を制御する自動操舵制御部60を有し、自動操舵制御部60は、偏差(偏差d)に基づいて積分制御を行うための積分器67bと、自動操舵中に運転者によってステアリング部材(ステアリングホイール1)が操作されたときに、トルクセンサ12によって検出されたトルクの値が第1の閾値αに達すると、積分器67bに基づく積分制御を制限する制限部(偏差制限部80、切換スイッチ180、積分制限部280)と、を有する。 The electric power steering devices 100 and 200 are connected to a steering member (steering wheel 1) operated by a driver, and rotate according to the operation of the steering member (steering wheel 1) by the driver, and the steering shaft. 7, a torque sensor 12 that detects torque acting on the torsion bar 4, an electric motor 10 that applies rotational torque to the steering shaft 7, and torque detected by the torque sensor 12. A control unit (controller 30) that selectively performs steering assistance for controlling the electric motor 10 based on the above and automatic steering for controlling the electric motor 10 based on information outside the vehicle, and a steering angle of the steering member (steering wheel 1). Rudder angle detector A rotation angle sensor 10a and a rudder angle sensor 15), and a control unit (controller 30) includes a signal and a rudder angle detection unit based on a rudder angle target value set based on a moving target position of the vehicle during automatic steering. An automatic steering control unit 60 that controls the electric motor 10 in accordance with a deviation (deviation d) from a signal based on the steering angle detected by the (motor rotation angle sensor 10a and the steering angle sensor 15) includes an automatic steering control unit. 60 is detected by the torque sensor 12 when the steering member (steering wheel 1) is operated by the driver during the automatic steering, and the integrator 67b for performing integral control based on the deviation (deviation d). When the torque value reaches the first threshold value α, a limiting unit (deviation limiting unit 80, changeover switch 180, integration limiting unit 280) that limits integration control based on the integrator 67b is provided. To do.
 この構成によれば、自動操舵中、運転者によってステアリング部材(ステアリングホイール1)が操作されたときに、自動操舵制御部60からの信号(自動操舵目標値)に基づいて電動モータ10が発生するトルクの上昇を抑制することができる。したがって、自動操舵中、運転者がステアリング部材(ステアリングホイール1)を操作したときに、運転者がステアリング部材(ステアリングホイール1)から覚えるトルクの上昇による違和感を低減できる。 According to this configuration, when the steering member (steering wheel 1) is operated by the driver during automatic steering, the electric motor 10 is generated based on a signal (automatic steering target value) from the automatic steering control unit 60. An increase in torque can be suppressed. Therefore, when the driver operates the steering member (steering wheel 1) during automatic steering, it is possible to reduce a sense of discomfort due to an increase in torque that the driver learns from the steering member (steering wheel 1).
 また、電動パワーステアリング装置100は、制限部(偏差制限部80)は、トーションバー4に作用するトルクが第1の閾値αに達したときに、舵角目標値に基づく信号と舵角に基づく信号との偏差(偏差d)を0として出力することによって積分器67bに基づく積分制御を制限する。 Further, in the electric power steering apparatus 100, the limiting unit (deviation limiting unit 80) is based on the signal based on the steering angle target value and the steering angle when the torque acting on the torsion bar 4 reaches the first threshold value α. The integration control based on the integrator 67b is limited by outputting the deviation (deviation d) from the signal as zero.
 電動パワーステアリング装置100では、制限部(切換スイッチ180)は、トーションバー4に作用するトルクが第1の閾値αに達したときに、舵角目標値に基づく信号として舵角に基づく信号を出力することによって積分器67bに基づく積分制御を制限する。 In the electric power steering apparatus 100, the limiter (changeover switch 180) outputs a signal based on the steering angle as a signal based on the steering angle target value when the torque acting on the torsion bar 4 reaches the first threshold value α. By doing so, the integration control based on the integrator 67b is limited.
 電動パワーステアリング装置100では、制限部(切換スイッチ180)は、トーションバー4に作用するトルクが第1の閾値α以上に達したときに、舵角に基づく信号として舵角目標値に基づく信号を出力することによって積分器67bに基づく積分制御を制限する。 In the electric power steering apparatus 100, when the torque acting on the torsion bar 4 reaches or exceeds the first threshold value α, the limiting unit (changeover switch 180) outputs a signal based on the steering angle target value as a signal based on the steering angle. By outputting, the integration control based on the integrator 67b is limited.
 これらの構成によれば、トーションバー4に作用するトルクが第1の閾値α以上のときに、角速度制御部67に入力される偏差dを0にすることができる。これにより、積分器67bによって偏差dが積分されて信号(自動操舵目標値)が生成されることがないので、運転者のステアリング操作とは反対の方向に作用するトルクが上昇することを確実に抑制できる。 According to these configurations, when the torque acting on the torsion bar 4 is equal to or greater than the first threshold value α, the deviation d input to the angular velocity control unit 67 can be set to zero. Thereby, since the deviation d is not integrated by the integrator 67b and a signal (automatic steering target value) is not generated, it is ensured that the torque acting in the direction opposite to the steering operation of the driver increases. Can be suppressed.
 また、電動パワーステアリング装置200では、自動操舵制御部60は、偏差dに基づいて比例制御を行うための比例器67aと、偏差dに基づいて微分制御を行うための微分器67cと、をさらに備え、制限部(積分制限部280)は、トーションバー4に作用するトルクが第1の閾値αに達したときに、積分器67bに基づく積分制御のみを制限する。 In the electric power steering apparatus 200, the automatic steering control unit 60 further includes a proportional unit 67a for performing proportional control based on the deviation d and a differentiator 67c for performing differential control based on the deviation d. The limiting unit (integration limiting unit 280) limits only the integration control based on the integrator 67b when the torque acting on the torsion bar 4 reaches the first threshold value α.
 この構成によれば、積分器67bに基づく積分制御が制限されるので、偏差dが積分されず自動操舵制御部60によって生成される信号(自動操舵目標値)が大きくなることがない。したがって、自動操舵中、運転者がステアリング部材(ステアリングホイール1)を操作したときに、自動操舵制御部60からの信号(自動操舵目標値)に基づいて電動モータ10が発生するトルクの上昇を抑制することができる。 According to this configuration, since the integration control based on the integrator 67b is limited, the deviation d is not integrated and the signal (automatic steering target value) generated by the automatic steering control unit 60 does not increase. Therefore, when the driver operates the steering member (steering wheel 1) during automatic steering, an increase in torque generated by the electric motor 10 is suppressed based on a signal (automatic steering target value) from the automatic steering control unit 60. can do.
 また、電動パワーステアリング装置100,200では、制限部(偏差制限部80)は、トーションバー4に作用するトルクが第1の閾値αに達したときに、舵角目標値に基づく信号と舵角に基づく信号との偏差(偏差d)を0として出力し、トーションバー4に作用するトルクが第1の閾値αよりも小さな第2の閾値βまで低下したときに、舵角目標値に基づく信号と舵角に基づく信号との偏差(偏差d)をそのまま出力する。 Further, in the electric power steering devices 100 and 200, the limiting unit (deviation limiting unit 80) is configured such that when the torque acting on the torsion bar 4 reaches the first threshold value α, the signal and the steering angle based on the steering angle target value. When the torque acting on the torsion bar 4 decreases to a second threshold value β smaller than the first threshold value α, a signal based on the steering angle target value is output. And the deviation (deviation d) from the signal based on the steering angle are output as they are.
 この構成によれば、トーションバー4に作用するトルクが第1の閾値αを挟んで小刻みに変化しても制御が切り換わることがないので、制御が安定する。 According to this configuration, the control is not switched even if the torque acting on the torsion bar 4 changes in small increments across the first threshold value α, so that the control is stable.
 また、電動パワーステアリング装置100,200では、制限部(偏差制限部80)は、トーションバー4に作用するトルクが第1の閾値αから第2の閾値βの範囲内にあるときは、トーションバー4に作用するトルクが大きくなるにつれて舵角目標値に基づく信号と舵角に基づく信号との偏差(偏差d)を小さくする。 Further, in the electric power steering devices 100 and 200, the limiting unit (deviation limiting unit 80) is configured such that the torque acting on the torsion bar 4 is within the range from the first threshold value α to the second threshold value β. As the torque acting on 4 increases, the deviation (deviation d) between the signal based on the steering angle target value and the signal based on the steering angle is reduced.
 この構成によれば、トーションバー4に作用するトルクが大きくなるにつれて舵角目標値に基づく信号と舵角に基づく信号との偏差(偏差d)を小さくするので、トルクの変化を滑らかにすることができる。したがって、運転者がステアリング部材(ステアリングホイール1)から覚えるトルクの変化による違和感を低減できる。 According to this configuration, as the torque acting on the torsion bar 4 increases, the deviation (deviation d) between the signal based on the steering angle target value and the signal based on the steering angle is reduced, so that the change in torque is smoothed. Can do. Therefore, it is possible to reduce a sense of incongruity due to a change in torque that the driver learns from the steering member (steering wheel 1).
 また、電動パワーステアリング装置100,200では、自動操舵制御部60は、舵角に基づいてステアリング部材(ステアリングホイール1)の角速度を演算する角速度演算部65と、舵角目標値と舵角とに基づいて電動モータ10を制御するための角速度目標値を演算する角速度目標値演算部61と、を備え、舵角目標値に基づく信号と舵角に基づく信号との偏差(偏差d)は、角速度と角速度目標値との偏差dである。 In the electric power steering devices 100 and 200, the automatic steering control unit 60 includes an angular velocity calculation unit 65 that calculates an angular velocity of the steering member (steering wheel 1) based on the steering angle, a steering angle target value, and a steering angle. An angular velocity target value calculation unit 61 for calculating an angular velocity target value for controlling the electric motor 10 based on the difference, and the deviation (deviation d) between the signal based on the steering angle target value and the signal based on the steering angle is an angular velocity. And the angular velocity target value d.
 この構成によれば、電動モータ10は角速度に基づいて制御されるので、舵角のみによる制御に比べて制御の精度及び応答性が向上する。 According to this configuration, since the electric motor 10 is controlled based on the angular velocity, the control accuracy and responsiveness are improved as compared with the control based only on the steering angle.
 また、電動パワーステアリング装置100,200は、トーションバー4に作用するトルクが一定時間第3の閾値γ以上であるときに、自動操舵制御部60による制御を停止させる介入判定部33をさらに備え、第1の閾値αは、第3の閾値γよりも小さな値に設定される。 The electric power steering devices 100 and 200 further include an intervention determination unit 33 that stops the control by the automatic steering control unit 60 when the torque acting on the torsion bar 4 is equal to or greater than the third threshold value γ for a certain period of time. The first threshold value α is set to a value smaller than the third threshold value γ.
 この構成によれば、第1の閾値αを第3の閾値γよりも小さな値に設定することで、積分器67bによる偏差dの積算が少ないときに、積分器67bに基づく積分制御を制限できる。これにより、角速度制御部67によって生成される信号(自動操舵目標値)の上昇を早めに抑制できるので、ステアリング操作の速度が遅いときにトルクの上昇に伴う運転者の違和感をより低減できる。 According to this configuration, by setting the first threshold value α to a value smaller than the third threshold value γ, integration control based on the integrator 67b can be limited when the integration of the deviation d by the integrator 67b is small. . As a result, the increase in the signal (automatic steering target value) generated by the angular velocity control unit 67 can be suppressed early, so that the driver's uncomfortable feeling associated with the increase in torque can be further reduced when the steering operation speed is slow.
 また、電動パワーステアリング装置100,200では、自動操舵制御部60は、車両の車速が早くなるにつれて第1の閾値αを小さくする。 Further, in the electric power steering devices 100 and 200, the automatic steering control unit 60 decreases the first threshold value α as the vehicle speed increases.
 この構成によれば、運転者がステアリング部材(ステアリングホイール1)から覚えるトルクの上昇による違和感を車速に応じて適切に低減できる。 According to this configuration, the uncomfortable feeling due to the increase in torque that the driver learns from the steering member (steering wheel 1) can be appropriately reduced according to the vehicle speed.
 以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。 The embodiment of the present invention has been described above. However, the above embodiment only shows a part of application examples of the present invention, and the technical scope of the present invention is limited to the specific configuration of the above embodiment. Absent.
 電動パワーステアリング装置100,200では、振動補償部70、介入判定部33は、設けられていなくてもよい。また、自動操舵目標値は、角速度目標値及び角速度によって生成されているが、舵角目標値に基づく信号と、舵角センサ15、モータ回転角センサ10aによって検出された舵角に基づく信号と、の偏差に基づいていれば、どのようなものであってもよい。 In the electric power steering devices 100 and 200, the vibration compensation unit 70 and the intervention determination unit 33 may not be provided. The automatic steering target value is generated by the angular velocity target value and the angular velocity, but the signal based on the steering angle target value, the signal based on the steering angle detected by the steering angle sensor 15 and the motor rotation angle sensor 10a, Anything may be used as long as it is based on the deviation.
 本願は、2016年9月23日に日本国特許庁に出願された特願2016-185149号に基づく優先権を主張し、この出願の全ての内容は参照により本明細書に組み込まれる。 This application claims priority based on Japanese Patent Application No. 2016-185149 filed with the Japan Patent Office on September 23, 2016, the entire contents of which are incorporated herein by reference.

Claims (10)

  1.  電動パワーステアリング装置であって、
     運転者によって操作されるステアリング部材に連結され、運転者による前記ステアリング部材の操作に伴って回転するステアリングシャフトと、
     前記ステアリングシャフトの一部を構成するトーションバーと、
     前記トーションバーに作用するトルクを検出するトルクセンサと、
     前記ステアリングシャフトに回転トルクを付与する電動モータと、
     前記トルクセンサによって検出されたトルクに基づいて前記電動モータを制御する操舵補助と車両外の情報に基づいて前記電動モータを制御する自動操舵とを選択的に行う制御部と、
     前記ステアリング部材の舵角を検出する舵角検出部と、を備え、
     前記制御部は、前記自動操舵時に、車両の移動目標位置に基づいて設定される舵角目標値に基づく信号と前記舵角検出部によって検出された前記舵角に基づく信号との偏差に応じて前記電動モータを制御する自動操舵制御部を有し、
     前記自動操舵制御部は、
     前記偏差に基づいて積分制御を行うための積分器と、
     前記自動操舵中に運転者によって前記ステアリング部材が操作されたときに、前記トルクセンサによって検出されたトルクの値が第1の閾値に達すると、前記積分器に基づく積分制御を制限する制限部と、
     を有する電動パワーステアリング装置。
    An electric power steering device,
    A steering shaft coupled to a steering member operated by a driver and rotating in accordance with the operation of the steering member by the driver;
    A torsion bar constituting a part of the steering shaft;
    A torque sensor for detecting torque acting on the torsion bar;
    An electric motor for applying rotational torque to the steering shaft;
    A control unit that selectively performs steering assistance for controlling the electric motor based on torque detected by the torque sensor and automatic steering for controlling the electric motor based on information outside the vehicle;
    A steering angle detector that detects a steering angle of the steering member,
    In response to a deviation between a signal based on a steering angle target value set based on a moving target position of a vehicle and a signal based on the steering angle detected by the steering angle detection unit during the automatic steering. An automatic steering control unit for controlling the electric motor;
    The automatic steering control unit
    An integrator for performing integral control based on the deviation;
    When the steering member is operated by the driver during the automatic steering, if the value of the torque detected by the torque sensor reaches a first threshold value, a limiting unit that limits integration control based on the integrator; ,
    An electric power steering apparatus.
  2.  請求項1に記載の電動パワーステアリング装置であって、
     前記制限部は、
     前記トーションバーに作用するトルクが前記第1の閾値に達したときに、前記舵角目標値に基づく信号と前記舵角に基づく信号との前記偏差を0として出力することによって前記積分器に基づく積分制御を制限する電動パワーステアリング装置。
    The electric power steering apparatus according to claim 1,
    The restriction unit is
    When the torque acting on the torsion bar reaches the first threshold, based on the integrator, the deviation between the signal based on the steering angle target value and the signal based on the steering angle is output as zero. Electric power steering device that limits integral control.
  3.  請求項1に記載の電動パワーステアリング装置であって、
     前記制限部は、
     前記トーションバーに作用するトルクが前記第1の閾値に達したときに、前記舵角目標値に基づく信号として前記舵角に基づく信号を出力することによって前記積分器に基づく積分制御を制限する電動パワーステアリング装置。
    The electric power steering apparatus according to claim 1,
    The restriction unit is
    When the torque acting on the torsion bar reaches the first threshold, the electric control is performed to limit the integration control based on the integrator by outputting the signal based on the steering angle as a signal based on the steering angle target value. Power steering device.
  4.  請求項1に記載の電動パワーステアリング装置であって、
     前記制限部は、
     前記トーションバーに作用するトルクが前記第1の閾値以上に達したときに、前記舵角に基づく信号として前記舵角目標値に基づく信号を出力することによって前記積分器に基づく積分制御を制限する電動パワーステアリング装置。
    The electric power steering apparatus according to claim 1,
    The restriction unit is
    When the torque acting on the torsion bar reaches the first threshold value or more, the integration control based on the integrator is limited by outputting a signal based on the steering angle target value as a signal based on the steering angle. Electric power steering device.
  5.  請求項1に記載の電動パワーステアリング装置であって、
     前記自動操舵制御部は、
     前記偏差に基づいて比例制御を行うための比例器と、
     前記偏差に基づいて微分制御を行うための微分器と、をさらに備え、
     前記制限部は、
     前記トーションバーに作用するトルクが前記第1の閾値に達したときに、前記積分器に基づく積分制御のみを制限する電動パワーステアリング装置。
    The electric power steering apparatus according to claim 1,
    The automatic steering control unit
    A proportional device for performing proportional control based on the deviation;
    A differentiator for performing differential control based on the deviation,
    The restriction unit is
    An electric power steering device that limits only integral control based on the integrator when a torque acting on the torsion bar reaches the first threshold value.
  6.  請求項1に記載の電動パワーステアリング装置であって、
     前記制限部は、
     前記トーションバーに作用するトルクが前記第1の閾値に達したときに、前記舵角目標値に基づく信号と前記舵角に基づく信号との前記偏差を0として出力し、前記トーションバーに作用するトルクが前記第1の閾値よりも小さな第2の閾値まで低下したときに、前記舵角目標値に基づく信号と前記舵角に基づく信号との前記偏差をそのまま出力する電動パワーステアリング装置。
    The electric power steering apparatus according to claim 1,
    The restriction unit is
    When the torque acting on the torsion bar reaches the first threshold value, the deviation between the signal based on the steering angle target value and the signal based on the steering angle is output as 0 and acts on the torsion bar. An electric power steering apparatus that outputs the deviation between the signal based on the steering angle target value and the signal based on the steering angle as it is when the torque decreases to a second threshold smaller than the first threshold.
  7.  請求項6に記載の電動パワーステアリング装置であって、
     前記制限部は、
     前記トーションバーに作用するトルクが前記第1の閾値から前記第2の閾値の範囲内にあるときは、前記トーションバーに作用するトルクが大きくなるにつれて前記舵角目標値に基づく信号と前記舵角に基づく信号との前記偏差を小さくする電動パワーステアリング装置。
    The electric power steering apparatus according to claim 6,
    The restriction unit is
    When the torque acting on the torsion bar is within the range from the first threshold value to the second threshold value, the signal based on the steering angle target value and the steering angle are increased as the torque acting on the torsion bar increases. An electric power steering device for reducing the deviation from the signal based on the above.
  8.  請求項1に記載の電動パワーステアリング装置であって、
     前記自動操舵制御部は、
     前記舵角に基づいて前記ステアリング部材の角速度を演算する角速度演算部と、
     前記舵角目標値と前記舵角とに基づいて前記電動モータを制御するための角速度目標値を演算する角速度目標値演算部と、を備え、
     前記舵角目標値に基づく信号と前記舵角に基づく信号との前記偏差は、前記角速度と前記角速度目標値との偏差である電動パワーステアリング装置。
    The electric power steering apparatus according to claim 1,
    The automatic steering control unit
    An angular velocity calculator that calculates an angular velocity of the steering member based on the rudder angle;
    An angular velocity target value calculation unit that calculates an angular velocity target value for controlling the electric motor based on the steering angle target value and the steering angle;
    The electric power steering apparatus, wherein the deviation between the signal based on the steering angle target value and the signal based on the steering angle is a deviation between the angular velocity and the angular velocity target value.
  9.  請求項1に記載の電動パワーステアリング装置であって、
     前記トーションバーに作用するトルクが一定時間第3の閾値以上であるときに、前記自動操舵制御部による制御を停止させる介入判定部をさらに備え、
     前記第1の閾値は、前記第3の閾値よりも小さな値に設定される電動パワーステアリング装置。
    The electric power steering apparatus according to claim 1,
    When the torque acting on the torsion bar is equal to or greater than a third threshold for a certain time, further comprising an intervention determination unit that stops control by the automatic steering control unit,
    The electric power steering apparatus, wherein the first threshold is set to a value smaller than the third threshold.
  10.  請求項1に記載の電動パワーステアリング装置であって、
     前記自動操舵制御部は、車両の車速が早くなるにつれて前記第1の閾値を小さくする電動パワーステアリング装置。
    The electric power steering apparatus according to claim 1,
    The automatic steering control unit is an electric power steering device that reduces the first threshold as the vehicle speed increases.
PCT/JP2017/032425 2016-09-23 2017-09-08 Electric power steering apparatus WO2018056077A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-185149 2016-09-23
JP2016185149A JP6875813B2 (en) 2016-09-23 2016-09-23 Electric power steering device

Publications (1)

Publication Number Publication Date
WO2018056077A1 true WO2018056077A1 (en) 2018-03-29

Family

ID=61690975

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/032425 WO2018056077A1 (en) 2016-09-23 2017-09-08 Electric power steering apparatus

Country Status (2)

Country Link
JP (1) JP6875813B2 (en)
WO (1) WO2018056077A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020090493A1 (en) * 2018-11-02 2020-05-07 株式会社デンソー Steering control device
CN113120079A (en) * 2020-01-15 2021-07-16 通用汽车环球科技运作有限责任公司 Steering wheel angle offset correction for autonomous vehicles using angle control
WO2021147182A1 (en) * 2020-01-21 2021-07-29 南京艾格慧元农业科技有限公司 Agricultural machinery electric drive steering wheel self-inductance type reversing device and method
WO2021261492A1 (en) * 2020-06-23 2021-12-30 いすゞ自動車株式会社 Steering control system, electric power steering device, and steering control program
US20220144295A1 (en) * 2020-11-11 2022-05-12 Hyundai Motor Company Method for controlling switching of steering control rights of autonomous vehicle

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102172090B1 (en) * 2019-08-30 2020-10-30 현대모비스 주식회사 Apparatus for controlling motor driven power steering apparatus and method thereof
WO2023203751A1 (en) * 2022-04-22 2023-10-26 三菱電機株式会社 Steering control device and electric power steering device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006117181A (en) * 2004-10-25 2006-05-11 Favess Co Ltd Steering control device
WO2011016429A1 (en) * 2009-08-03 2011-02-10 トヨタ自動車株式会社 Driving assistance device for vehicle

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014162769A1 (en) * 2013-04-04 2014-10-09 日本精工株式会社 Electric power steering device
JP6213033B2 (en) * 2013-08-09 2017-10-18 株式会社デンソー Motor control device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006117181A (en) * 2004-10-25 2006-05-11 Favess Co Ltd Steering control device
WO2011016429A1 (en) * 2009-08-03 2011-02-10 トヨタ自動車株式会社 Driving assistance device for vehicle

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020090493A1 (en) * 2018-11-02 2020-05-07 株式会社デンソー Steering control device
CN113120079A (en) * 2020-01-15 2021-07-16 通用汽车环球科技运作有限责任公司 Steering wheel angle offset correction for autonomous vehicles using angle control
US11498619B2 (en) 2020-01-15 2022-11-15 GM Global Technology Operations LLC Steering wheel angle bias correction for autonomous vehicles using angle control
WO2021147182A1 (en) * 2020-01-21 2021-07-29 南京艾格慧元农业科技有限公司 Agricultural machinery electric drive steering wheel self-inductance type reversing device and method
WO2021261492A1 (en) * 2020-06-23 2021-12-30 いすゞ自動車株式会社 Steering control system, electric power steering device, and steering control program
JP2022002928A (en) * 2020-06-23 2022-01-11 いすゞ自動車株式会社 Steering control system, electric power steering device, and steering control program
JP7347346B2 (en) 2020-06-23 2023-09-20 いすゞ自動車株式会社 Steering control system, electric power steering device and steering control program
US20220144295A1 (en) * 2020-11-11 2022-05-12 Hyundai Motor Company Method for controlling switching of steering control rights of autonomous vehicle
US11713050B2 (en) * 2020-11-11 2023-08-01 Hyundai Motor Company Method for controlling switching of steering control rights of autonomous vehicle

Also Published As

Publication number Publication date
JP2018047815A (en) 2018-03-29
JP6875813B2 (en) 2021-05-26

Similar Documents

Publication Publication Date Title
WO2018056077A1 (en) Electric power steering apparatus
JP5126357B2 (en) Vehicle steering device
WO2017056975A1 (en) Electric power steering device
EP3705379B1 (en) Steering control device
JP5975046B2 (en) Electric power steering control device
JP7099892B2 (en) Steering control device
US8229627B2 (en) Vehicle steering apparatus
JP2017024520A (en) Steering control device
JP2020069862A (en) Steering control device
JP4456018B2 (en) Vehicle steering device
EP3103704A1 (en) Electric power steering device
US6408234B1 (en) Automatic compensation for electric power steering hysteresis
JP4906333B2 (en) Vehicle steering device
JP4929892B2 (en) Vehicle steering device
KR101172098B1 (en) Electric Power Steering System for Reducing Reaction in Active Front Steering
JP4857627B2 (en) Vehicle steering apparatus and vehicle steering method
JPH04349068A (en) Motor control device of four-wheel steering car
JP2020090134A (en) Turning system, steering support system
WO2016204072A1 (en) Electric power steering device
JP4696932B2 (en) Vehicle steering device
CN116001906A (en) Steering system
JP2019206267A (en) Steering control device
KR20060039490A (en) A steering control system for steer by wire system
JP2019127233A (en) Steering control device
JP2014184773A (en) Steering device, and steering control device

Legal Events

Date Code Title Description
DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17852854

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17852854

Country of ref document: EP

Kind code of ref document: A1