WO2018052355A1 - Procédé et nœud de réseau permettant un brouillage réduit dans un réseau sans fil - Google Patents

Procédé et nœud de réseau permettant un brouillage réduit dans un réseau sans fil Download PDF

Info

Publication number
WO2018052355A1
WO2018052355A1 PCT/SE2017/050695 SE2017050695W WO2018052355A1 WO 2018052355 A1 WO2018052355 A1 WO 2018052355A1 SE 2017050695 W SE2017050695 W SE 2017050695W WO 2018052355 A1 WO2018052355 A1 WO 2018052355A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
network node
time offset
wireless device
timing advance
Prior art date
Application number
PCT/SE2017/050695
Other languages
English (en)
Inventor
Mats ÅHLANDER
David Sandberg
Patrik Rask
Original Assignee
Telefonaktiebolaget Lm Ericsson (Publ)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/SE2016/050862 external-priority patent/WO2017052448A1/fr
Application filed by Telefonaktiebolaget Lm Ericsson (Publ) filed Critical Telefonaktiebolaget Lm Ericsson (Publ)
Priority to US16/333,473 priority Critical patent/US11012173B2/en
Priority to EP17736780.2A priority patent/EP3513521A1/fr
Publication of WO2018052355A1 publication Critical patent/WO2018052355A1/fr

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/004Synchronisation arrangements compensating for timing error of reception due to propagation delay
    • H04W56/0045Synchronisation arrangements compensating for timing error of reception due to propagation delay compensating for timing error by altering transmission time
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0062Avoidance of ingress interference, e.g. ham radio channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0073Allocation arrangements that take into account other cell interferences
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT

Definitions

  • the present disclosure relates generally to a method and a network node of a first cell in a wireless network, for enabling reduction of interference in a second cell from reference signals transmitted in the first cell.
  • wireless network In a wireless network comprising a plurality of network nodes, it is desirable to utilize available radio resources as efficiently as possible so as to achieve high capacity and adequate performance in communication with wireless devices.
  • wireless network is used in this description to denote any network comprising network nodes such as base stations, access points, eNodeBs or the like which are capable of radio communication with wireless devices, e.g. by transmitting scheduling blocks carrying reference signals and typically also various data and control information.
  • wireless device denotes any communication equipment that is capable of radio communication with network nodes in a wireless network.
  • wireless devices that may be involved in the procedures described herein include mobile phones, smartphones, tablets, laptop computers and Machine-to-Machine, M2M, devices.
  • M2M Machine-to-Machine
  • UE User Equipment
  • the wireless devices are requested to perform measurements on predefined reference signals which are regularly transmitted from the network node.
  • predefined reference signals which are regularly transmitted from the network node.
  • OFDM Orthogonal Frequency-Division Multiplexing
  • the reference signals will be referred to as "Cell-specific Reference Signals", CRSs, which term is commonly used in LTE.
  • scheduling block In downlink transmission according to LTE, the smallest schedulable resource is commonly referred to as a "scheduling block" which is illustrated in Fig. 1A.
  • scheduling block will be used throughout this description, regardless of whether it carries any data or not.
  • any of the terms “resource block” and “resource grid” could also be used herein as a synonym for scheduling block.
  • Another term that is commonly used in this context is Physical Resource Block, PRB.
  • a scheduling block may carry various reference signals as well as data and control signaling, see below. The scheduling block described herein may thus carry one or more of data, control signaling, reference signals, synchronization signals, etc. , and the description is not limited in this respect.
  • a downlink transmission may comprise multiple scheduling blocks which can be "stacked" the frequency domain to fill the available system bandwidth or any part thereof.
  • a scheduling block 100 may typically extend over 180 kHz during 1 millisecond, ms. This resource 100 is further divided into 12 subcarriers in the frequency domain. In the time domain this resource is divided into 14 OFDM symbols as shown in Fig. 1 when a normal cyclic prefix is used, or 12 OFDM symbols when an extended cyclic prefix is used. The cyclic prefix is used in OFDM to maintain orthogonality between subcarriers when the signal is distorted by multipath propagation.
  • the scheduling block 100 in Fig. 1 is shown as a "resource grid" divided into 12 elements in the frequency domain representing the subcarriers and 14 elements in the time domain representing the OFDM symbols.
  • the smallest resource in LTE is comprised of one Resource Element, RE, 100A which corresponds to one subcarrier 100B during one OFDM symbol 100C.
  • the scheduling block 100 is thus comprised of 12 x 14 REs.
  • the first 1 to 3 OFDM symbols in this example compose the control region where mainly the Physical Downlink Control Channel, PDCCH, is multiplexed.
  • the rest of the OFDM symbols in the scheduling block 100 compose the data region, where mainly the Physical Downlink Shared Channel, PDSCH, is multiplexed.
  • Some resource elements in the time/frequency grid are used for transmitting CRSs which are indicated in Fig. 1 A as striped resource elements, while the resource elements used for data and control are non-striped.
  • a predetermined sequence of CRSs is transmitted in predefined RE positions known to the wireless devices.
  • the CRSs can be used by wireless devices for
  • CRSs are used also for cell measurements by wireless devices in idle mode which are more or less unknown to the network, the CRSs need to be transmitted even if there are no wireless devices attached to the cell. Note that this description has been simplified to involve only one antenna. If more antenna ports are used (e.g. 2 or 4), the resource grid of one antenna will contain unused REs in positions that are used for a CRS on the other antenna.
  • CRSs are transmitted in the predefined REs by a network node 102 of a first cell 102A and also by a network node 104 of a second cell 104A.
  • wireless devices 106 present in the first cell 102A try to measure the CRSs from the network node 102, they will also receive interfering CRSs from the network node 104.
  • wireless devices 108 present in the second cell 104A try to measure the CRSs from the network node 104, they will also receive interfering
  • the interfering CRSs are indicated by dashed arrows.
  • the CRS measurements in either cell will be too “pessimistic" due to the interference of CRSs from the other cell, and if the CRS measurements are used for channel estimation or the like, the channel may be under-estimated since the above harmful interference from CRSs, which interference made the CRS measurements pessimistic, will not occur when data is transmitted in other REs. The capacity of the network may therefore not be fully utilized due to such pessimistic and misleading CRS measurements.
  • This under-estimation of the channel can be avoided by not transmitting the CRSs in the same REs in the two cells, but then the CRSs in one cell may instead interfere with data transmissions in the other cell.
  • a method is performed by a first network node of a first cell in a wireless network, for enabling reduction of interference in a second cell from reference signals transmitted in the first cell.
  • the first network node transmits in the first cell scheduling blocks where said reference signals are located in predefined resource element positions, using a time offset relative transmission of scheduling blocks in the second cell.
  • the first network node also determines a timing advance value for a wireless device that is served by the first network node, and then instructs the wireless device to apply said timing advance value for uplink transmissions.
  • the timing advance value is determined such that uplink symbols transmitted from the wireless device are aligned with uplink symbols received at a second network node of the second cell.
  • a first network node is arranged to serve a first cell in a wireless network and enable reduction of interference in a second cell from reference signals transmitted in the first cell.
  • the first network node is configured to transmit in the first cell scheduling blocks where said reference signals are located in predefined resource element positions, using a time offset relative transmission of scheduling blocks in the second cell.
  • the first network node is further configured to determine a timing advance value for a wireless device served by the first network node, and to instruct the wireless device to apply said timing advance value for uplink transmissions, the timing advance value being determined such that uplink symbols transmitted from the wireless device are aligned with uplink symbols received at a second network node of the second cell.
  • a computer program is also provided comprising instructions which, when executed on at least one processor in the network node, cause the at least one processor to carry out the method described above.
  • a carrier is also provided which contains the above computer program, wherein the carrier is one of an electronic signal, optical signal, radio signal, or a computer readable storage medium.
  • Fig. 1 A illustrates schematically a regular downlink scheduling block with resource elements used for reference signals in predefined positions, according to the prior art.
  • Fig. 1 B is a communication scenario illustrating how transmission of CRSs simultaneously in two cells may cause interference, according to the prior art.
  • Fig. 2 illustrates how CRSs transmitted in one cell may interfere with data and control signals transmitted in another cell when frequency-shifted CRSs are used.
  • Fig. 3 illustrates how the interference caused by transmission of CRSs in a first cell can be spread out in a second cell by using a time offset in the first cell, according to some example embodiments.
  • Fig. 4A illustrates timing of downlink symbols and uplink symbols when a respective time offset is used in two cells B and C relative another cell A.
  • Fig. 4B illustrates that a cyclic prefix (CP) of a symbol comprises a copy of data at the end of said symbol.
  • CP cyclic prefix
  • Fig. 5A illustrates how downlink symbols could interfere with uplink symbols in two cells B and C using a respective time offset relative another cell A and time division duplex (TDD) is employed in the cells A-C.
  • TDD time division duplex
  • Fig. 5B illustrates how a fast Fourier transform (FFT) operation could be affected when a time offset is used in one cell B relative another cell A.
  • FFT fast Fourier transform
  • Fig. 6 illustrates timing of downlink symbols and uplink symbols when a respective time offset is used in two cells B and C relative another cell A and the uplink symbols are aligned in cells A-C.
  • Fig. 7 is a flow chart illustrating a procedure in a network node, according to further example embodiments.
  • Fig. 8 is a communication scenario where the solution is used, according to further example embodiments.
  • Fig. 9 is a block diagram illustrating how a network node may be structured, according to further example embodiments.
  • Fig. 9A is a block diagram illustrating how a network node may alternatively be structured, according to further example embodiments.
  • Fig. 10 illustrates how a guard period GP can be inserted at each UL-DL transition when TDD is employed in the cells A-C.
  • a solution is provided to reduce the impact of interference from downlink transmission of reference signals, such as CRSs, in a scheduling block by applying a time offset in one cell relative another neighboring cell so that the scheduling blocks will not be transmitted at the same time in the two cells but with a time difference corresponding to the time offset.
  • the interference from a transmitted CRS will not hit a single RE in either cell but it will be distributed, or "spread out", over two or more REs which reduces the impact on each RE in the opposite cell.
  • the time offset may be a fraction of the duration of an OFDM symbol.
  • neighboring cells is used to indicate that the cells are located close enough to cause interference across the cells. Hence, the neighboring cells may or may not actually border one another.
  • Fig. 2 depicting a scheduling block 200 transmitted in a serving cell and a scheduling block 202 transmitted in a neighbor cell.
  • the scheduling block 200 is transmitted in the serving cell with CRSs positioned as shown in Fig. 1 A, and at the same time the scheduling block 202 is transmitted in the neighbor cell with all CRSs shifted one RE in the frequency domain.
  • Fig. 2 thus illustrates what would happen if the above-mentioned time offset is not applied at frequency shifted CRSs.
  • transmission of such frequency shifted CRSs on the downlink may instead cause interference by hitting REs used in another cell for data or control, e.g. as indicated by dashed arrows.
  • An example RE in scheduling block 200 that is hit by such interference from scheduling block 202 is denoted 204. It should be noted that such interference may also occur in the opposite direction when shifted CRSs are applied in one of the cells, and an example RE in scheduling block 202 that is hit by such interference from scheduling block 200 is denoted 206.
  • each wireless device may apply a timing advance value for uplink transmissions so that the uplink transmissions, or uplink carriers, from the wireless devices are aligned with one another so that their transmitted symbols or subframes are received at a network node in a
  • the term "aligned" means that uplink symbols transmitted from a wireless device in one cell that applies a time offset virtually coincide in time with uplink symbols transmitted in another cell that applies a different time offset or no time offset, when said uplink symbols are received at a network node of another cell. This implies that uplink symbols or subframes from wireless devices in different cells can be regarded as being received simultaneously at one or more network nodes not applying the same time offset. However, there may be slightly different propagation delays between the wireless devices and the network nodes although these delay differences are negligible in this context. The alignment of uplink symbols and how it can be achieved will be described in more detail below.
  • the timing advance values given to the wireless devices can thus be determined in this solution to compensate for the time offset applied to the downlink
  • Fig. 3 corresponds to Fig. 2 but with the time offset applied.
  • scheduling blocks are transmitted in a first cell and in a second cell where the above-described time offset is used in the second cell.
  • a scheduling block 300 is transmitted in the second cell, corresponding to the above- mentioned serving cell, and a scheduling block 302 is transmitted in the first cell, corresponding to the above-mentioned neighbor cell, with a time offset 304 relative the scheduling block 300 in the second cell.
  • the reference signals are represented by CRSs in Fig. 3 for simplicity, although it should be understood that other types of reference signals could also be used in the manner described herein and the solution is not limited in this respect.
  • the network node that instructs its served wireless device(s) to apply a timing advance value for uplink transmissions corresponds to the network node that transmits the scheduling block 302 in Fig. 3 with the time offset 304 applied, in this case a slight delay relative the scheduling block 300 which delay can be less than one OFDM symbol in time domain.
  • the above-described frequency shift of CRSs is also applied in the first cell by shifting the CRSs in the scheduling block 302 one RE in the frequency domain relative the corresponding CRSs in the scheduling block 300.
  • the embodiments herein are also applicable when no such frequency shift of CRSs is applied in the first cell.
  • Fig. 3 illustrates that an example CRS 306 transmitted in the first cell causes interference 308 in the second cell which is distributed, i.e. spread out, over several REs in the second cell both in the time domain and in the frequency domain, in this case over roughly six REs, as a result of the applied time offset 304. If the time offset 304 is applied but no CRS frequency shift is applied, the CRS interference would still be distributed over roughly four REs, not shown, thus reducing the peak interference that hits a single RE. Even though the interference from a reference signal in the first cell will hit multiple resource elements in the second cell instead of one, the wanted signal in each resource element can be detected and decoded more successfully due to the lower peak interference. This way, the harmful effect of said interference can be reduced.
  • Uplink synchronization and time coordination towards downlink (DL) transmissions of a DL cell carrier is in LTE normally performed as follows.
  • a wireless device attempts to connect to a cell, it first listens to primary and secondary synchronization channels transmitted in DL by the serving network node. The wireless device uses these signals to synchronize its internal timing against the transmission timing of a DL frame structure of the cell.
  • Initial access and time coordination towards uplink (UL) transmissions of an UL cell carrier is in LTE normally performed as follows.
  • the wireless device After having completed the synchronization towards the DL frame structure of the cell, the wireless device transmits a Random Access message (PRACH), also referred to as "message 1 ".
  • PRACH Random Access message
  • the PRACH is sent on a physical resource that is specified in DL broadcast information.
  • the time of arrival of the PRACH is measured by the serving network node. Since it is known that PRACH must be transmitted at the beginning of an UL subframe, the network node can use this information to calculate the propagation delay between the wireless device and the network node, which is well-known in the art.
  • the propagation delay corresponds to the initial timing displacement between the frame structures of the UL and DL carriers.
  • a message referred to as "message 2" is returned to the wireless device in response to message 1 .
  • Message 2 includes information that commands the wireless device to adjust its initial UL transmission timing for subsequent UL transmissions, that is by starting UL transmission earlier so that the uplink transmissions when received at the network node will be coordinated in time with its downlink transmissions.
  • the timing relationship between UL and DL transmissions may be configured in different ways.
  • the DL and UL frame structures may be perfectly coordinated with a certain time relation, which is also the usual configuration for frequency division duplex (FDD).
  • FDD frequency division duplex
  • usage of a time offset by a network node as described above will not only time shift the DL frame structure but also the UL frame structure with the same amount if not compensated according to embodiments herein.
  • This time offset in the DL frame structure will introduce a time shift, e.g. a fraction of an ODFM symbol, in the UL frame structure when received by the same network node.
  • Fig. 4A illustrates how the timing of downlink transmissions and uplink
  • each RE carries a symbol preceded by a cyclic prefix (CP) which comprises a copy of the signal at the end of said symbol, which is illustrated in more detail in Fig. 4B.
  • CP cyclic prefix
  • a time offset 1 is used for downlink transmissions relative the downlink transmissions in cell A which will reduce the impact of downlink interference to cell A as described above for Fig. 3. If this time offset is not compensated by a timing advance, the uplink transmissions in REs from wireless devices in cell B will be coordinated with the downlink transmissions in that cell since they are
  • the uplink transmissions in cell B will be delayed with the time offset 1 relative the uplink transmissions in cell A, as shown in Fig. 4A.
  • a time offset 2 is used in cell C for downlink transmissions relative the downlink transmissions in cell A such that time offset 2 is in this example basically twice as long as time offset 1 , which will likewise reduce the impact of downlink interference to both cells A and B. If this time offset is not compensated by a timing advance, the uplink transmissions in REs from wireless devices in cell B will follow the downlink transmissions in that cell. Consequently, the uplink transmissions of symbols in cell C will be delayed with the time offset 2 relative the uplink transmissions of symbols in cell A and also delayed relative the uplink transmissions of symbols in cell B, as shown in Fig. 4A. The symbols transmitted in cells A-C will thus be mutually displaced in time and arrive at the network nodes with a time difference corresponding to the respective time offsets where applied.
  • the wireless devices are instructed to apply a timing advance on the UL that compensates for the DL time offset, so that uplink transmissions in all cells A-C are aligned, i.e. synchronized with each other, which will be described in more detail below.
  • the above-described time offset in the downlink may otherwise cause the following problems when the uplink transmissions are not aligned with each other.
  • the TDD frame structure is divided into a set of UL and DL subframes per radio frame, which is well-known in the art. At certain time intervals within the radio frame, there is a switch from a DL subframe to an UL subframe, and vice versa. Further, when there is a switch from a DL subframe to an UL subframe, a so-called special subframe is located between the DL and UL subframes.
  • the special subframe contains a set of guard symbols in which no energy should be transmitted. The purpose of the guard symbols is to protect the first OFDM symbol in the UL from interference arriving from the DL subframe.
  • Fig. 5A where the timing of a transition from an UL subframe to a DL subframe is shown for three cells A, B and C where time offsets 1 and 2 used for DL transmissions in cells B and C, respectively, in the manner shown in Fig. 4A.
  • the UL-DL transition occurs first in cell A at 500, then in cell B at 502 after time offset 1 and last in cell C at 504 after time offset 2, as shown in Fig. 5A.
  • the DL transmission starting in cell A at 500 will cause interference to the UL transmission not yet finished in cells B and C, and similarly the DL transmission starting in cell B at 502 will add further interference to the UL transmission not yet finished in cell C, as illustrated by the dotted parts of the respective UL transmissions in cell B and C before UL-DL transition.
  • This interference from DL to UL may be severe because the transmit power for DL transmissions is generally much higher than for UL transmissions.
  • this inter cell interference can be avoided by compensating the time offsets to achieve aligned UL transmissions, which will be described in more detail below.
  • This procedure involves signal detection by applying a Fast Fourier Transform (FFT) operation on a so-called FFT window of a received signal, which is well-known in the art.
  • the FFT window basically defines a time window during which the signal is expected to be received.
  • Network nodes such as base stations in a wireless network are often equipped with several receive antennas. A radio signal from a wireless device can be received at the network node by combining signals from these several antennas to increase the received signal power and receive diversity.
  • Combining signals from several antennas also makes it possible to suppress interference by employing a procedure called Interference Rejection Combining (IRC).
  • IRC Interference Rejection Combining
  • Another procedure that can be used for combining signals from several antennas is Maximum Ratio Combining (MRC)
  • the antennas of the network node may be divided into sectors that cover different geographical areas.
  • the antennas may be close to the network node or at a distance in case radio remote heads are used.
  • antenna signals used for combining are located in the same sector, also referred to as single-point reception.
  • single-point reception In order to further increase the received signal power and to further suppress interference antenna signals from different sectors, several reception points may be combined, known as multi-point reception.
  • Antenna signals may also be sent from one network node to another network node, to be used for combining in the latter network node.
  • IRC and MRC can be used for combining signals from several antennas both in single-point reception and multi-point reception.
  • the FFT window typically has a length that corresponds to the duration of the data part in one OFDM symbol, e.g. 66.67 microseconds.
  • the antenna points of the network nodes involved in the multi-point reception may be located at significantly different distances relative to the wireless device. Since the wireless device can only synchronize its timing towards one of the network nodes involved in the multi-point reception, the wireless network needs to decide for which network node the UL timing of the wireless device shall be synchronized. The network node responsible for UL timing adjustment will control the
  • the FFT window is adapted to the timing of cell A to extend basically over an UL subframe n, which means that in cell B this FFT window will extend partly over the foregoing UL subframe n-1 but not covering the UL subframe n leaving a part that lies outside the FFT window, since the time offset 1 is applied in cell B as described above.
  • ISI inter symbol interference
  • timing advance is employed to compensate for the time offsets used in cell B and cell C for the DL transmissions shown in Fig. 4A.
  • a timing advance is determined for wireless devices in cell B to compensate for the time offset 1 while a timing advance is determined for wireless devices in cell C to compensate for the time offset 2.
  • Fig. 5A interference from DL transmission in one cell to UL transmission in another cell as shown in Fig. 5A can be avoided. Also, the misalignment of the FFT window between UL signals in two cells can also be avoided.
  • the timing of the UL transmissions in all cells A-C are synchronized to the DL transmissions in cell A which thus acts as a reference cell.
  • the other cells B and C instead as a reference cell to which the UL transmissions in cells A-C are synchronized.
  • FIG. 7 illustrates a communication scenario where a first network node 800 is operative in a first cell 800A and serves a wireless device
  • a second network node 804 is also shown which is operative in a neighboring second cell 804A.
  • This procedure may be employed when the first network node 800 is operating in any type of wireless network and any suitable protocols and standards may be employed by the first network node 800 for communication in this network.
  • a first action 700 illustrates that the first network node 800 may initially determine, or otherwise obtain, a time offset relative transmission of scheduling blocks in the second cell, which time offset will be used for transmitting scheduling blocks in the first cell 800A.
  • the time offset may be determined such that different time offsets are assigned to cells which are expected to interfere with each other by transmission of reference signals.
  • the time offset may alternatively be determined based on a Physical Cell Identity, PCI, of the first cell, e.g. by computing a predefined function of the PCI.
  • the first network node 800 may further signal the time offset to the wireless device 802, e.g. by including the time offset in network assistance information, which enables the wireless device 802 to synchronize reception of downlink transmissions from the first network node 800.
  • the first network node 800 transmits in the first cell scheduling blocks where said reference signals are located in predefined resource element positions, using the above time offset relative transmission of scheduling blocks in the second cell, which is also illustrated by an action 8:1 in Fig. 8.
  • the first network node 800 determines a timing advance value for a wireless device 802 that is served by the first network node 800.
  • the timing advance value may be determined after receiving a PRACH preamble from the wireless device 802 as illustrated by an action 8:2 in Fig. 8.
  • Action 704 corresponds to another action 8:3 in Fig. 8.
  • the first network node 800 then instructs the wireless device to apply said timing advance value for uplink transmissions, in another action 706.
  • the timing advance value is determined such that uplink symbols transmitted from the wireless device in the first cell are aligned with uplink symbols transmitted in the second cell, when said uplink symbols are received at a second network node of the second cell.
  • Figs 7 and 8 Even though the procedure of Figs 7 and 8 was described in terms of two cells with two respective network nodes, the solution and its embodiments described herein may be employed for any number of cells and network nodes. For example, the cells described herein may be served by the same network node or by multiple different network nodes.
  • the timing advance value determined in action 704 may comprise a first part corresponding to the time offset used for transmitting scheduling blocks in the first cell.
  • the timing advance value determined in action 704 may comprise a first part corresponding to the time offset used for transmitting scheduling blocks in the first cell.
  • embodiment may be that said first part is determined so that the uplink symbols transmitted from the wireless device 802 are coordinated in time with downlink symbols transmitted by the second network node 804.
  • the timing advance value may further comprise a second part corresponding to a propagation delay of signals between the first network node 800 and the wireless device 802.
  • the timing advance value can, according to another example embodiment, be determined as the sum of said first and second parts, which may also be referred to as first and second components of the timing advance value. Thereby, the timing advance value will compensate for both the applied time offset by means of the first part, and for any propagation delay between the first network node 800 and the wireless device 802 by means of the second part. However, if the wireless device 802 is located close to the first network node 800 the second part would be
  • downlink transmission from the first network node 800 may be muted in a subframe that occurs immediately after an uplink subframe configured for random access in the first cell, such as a Physical Random Access Channel PRACH subframe.
  • This embodiment may be useful to reduce leakage of interference into an uplink subframe configured for random access in another cell such as the second cell. Synchronization of the UL transmissions in the first cell towards a DL cell carrier in the second cell is not achieved until the random access procedure has been completed. Thus, leakage of interference to the second cell caused by PRACH transmissions from a wireless device in the first cell may occur before the wireless device has received and applied the timing advance value.
  • the last UL symbol of a PRACH subframe may thus collide with the first DL symbol in any of the neighboring cells that has another sub symbol time offset than the first cell. This can thus be solved by not allowing DL transmissions of scheduling blocks reserved for PRACH in a subframe that is located immediately after the PRACH subframe.
  • the time offset used for transmitting scheduling blocks in the first cell may be a fraction of the duration of an OFDM symbol. This will provide a distribution of the interference power hitting the opposite cell 804A over multiple REs, as illustrated in Fig. 3. In that case, further example
  • the time offset is any of 1/2, 1/3 and 2/3 of the duration of the OFDM symbol.
  • the time offset may be larger than the duration of a cyclic prefix.
  • the cyclic prefix is used in OFDM, as mentioned above, and acts as a buffer region or guard interval to protect the OFDM signals from inter-symbol interference.
  • the cyclic prefix duration is typically 0.0047 milliseconds.
  • the block diagram in Fig. 9 illustrates a detailed but non-limiting example of how a first network node 900 may be structured to bring about the above-described solution and embodiments thereof.
  • the first network node 900 may be
  • the first network node 900 is shown to comprise a processor P and a memory M, said memory comprising instructions executable by said processor P whereby the first network node 900 is operable as described herein.
  • the first network node 900 also comprises a communication circuit C with suitable equipment for transmitting and receiving signals in the manner described herein.
  • the communication circuit C is configured for communication with wireless devices using suitable protocols depending on the implementation. This communication may be performed in a conventional manner over radio links for wireless communication and using a suitable protocol depending on the implementation, which is not necessary to describe here as such in any detail.
  • the solution and embodiments herein are thus not limited to using any specific types of networks, technology or protocols for radio communication.
  • the first network node 900 comprises means configured or arranged to perform at least some of the actions 700-706 in Fig. 7.
  • the first network node 900 is arranged or configured to serve a first cell in a wireless network, and to enable reduction of interference in a second cell from reference signals transmitted in the first cell.
  • the first network node 900 is configured to transmit in the first cell scheduling blocks where said reference signals are located in predefined resource element positions, using a time offset relative transmission of scheduling blocks in the second cell.
  • a scheduling block that is transmitted with such a time offset was described above with reference to Fig. 3. This operation may be performed by a transmitting module 900A in the first network node 900, e.g. in the manner described for action 702 above.
  • the first network node 900 is also configured to determine a timing advance value for a wireless device served by the first network node 900. This operation may be performed by a logic module 900B in the first network node 900, e.g. as described for action 704 above.
  • the logic module 900B could alternatively be named a determining module, computing module or timing module.
  • the first network node 900 is also configured to instruct the wireless device to apply said timing advance value for uplink transmissions, the timing advance value being determined such that uplink symbols transmitted from the wireless device in the first cell are aligned with uplink symbols transmitted in the second cell, when said uplink symbols are received at a second network node of the second cell.
  • This instructing operation may be performed by a signaling module 900C in the first network node 900, e.g. as described above for action 706.
  • the signaling module 900C could alternatively be named an instructing module, control module or commanding module.
  • the first network node 900 may also be configured to mute downlink
  • This operation may be performed by the transmitting module 900A.
  • Fig. 9 illustrates various functional modules or units in the first network node 900, and the skilled person is able to implement these functional modules or in practice using suitable software and hardware.
  • the solution is generally not limited to the shown structures of the first network node 900, and the functional modules or units 900A-C therein may be configured to operate according to any of the features and embodiments described in this disclosure, where appropriate.
  • the functional modules or units 900A-C described above can be implemented in the first network node 900 by means of suitable hardware and program modules of a computer program comprising code means which, when run by the processor P causes the first network node 900 to perform at least some of the above-described actions and procedures.
  • the first network node 900 comprises the functional modules 900A-C and a processor P, the modules 900A-C being configured to operate in the manner described above as controlled by the processor P.
  • the processor P may comprise a single Central Processing Unit (CPU), or could comprise two or more processing units such as CPUs.
  • the processor P may include a general purpose
  • the processor P may also comprise a storage for caching purposes.
  • Each computer program may be carried by a computer program product in the first network node 900 in the form of a memory having a computer readable medium and being connected to the processor P.
  • the computer program product or memory in the first network node 900 may thus comprise a computer readable medium on which the computer program is stored e.g. in the form of computer program modules or the like.
  • the memory may be a flash memory, a Random-Access Memory (RAM), a Read-Only Memory (ROM), an Electrically Erasable Programmable ROM (EEPROM) or hard drive storage (HDD), and the program modules could in alternative embodiments be distributed on different computer program products in the form of memories within the first network node 900.
  • the solution described herein may be implemented in the first network node 900 by means of a computer program product 902 comprising a computer program 904 with computer readable instructions which, when executed on the first network node 900, cause the first network node 900 to carry out the actions and features according to any of the above embodiments, where appropriate.
  • a wireless device i.e. an UL cell carrier
  • Operation 1 Detection of random access preambles
  • the first network node 800 listens for random access messages from wireless devices, at certain subframes and scheduling block allocations defined in the broadcast and synchronization channels.
  • a random access preamble from a wireless device is classified as being detected when there is a strong enough correlation between received baseband signal on the PRACH resource and at least one of a set of known Zadhoff Chu preamble sequences that have been defined for the UL cell carrier.
  • Operation 2 Time of arrival estimation of random access preamble
  • the first network node 800 estimates the time of arrival, PRACH , of the detected random access preamble.
  • the time of arrival for random access preamble is measured relative to the subframe border of the DL cell carrier, which is the instance in time when the wireless device will start the
  • Operation 3 UL carrier coordination towards DL carrier
  • the first network node 800 calculates the amount of timing adjustment,
  • the desired timing position, desired is located within the cyclic prefix.
  • the desired time of reception within the cyclic prefix of the UL carrier is measured relative to the subframe border of the corresponding DL carrier.
  • the subframe border of the DL carrier acts as the timing reference point in the time of arrival measurement of the random access preamble.
  • the timing adjustment value required to align the UL carrier into the desired timing position relative to the DL carrier is
  • Operation 4 UL carrier coordination towards DL reference carrier
  • the first network node 800 calculates the amount of additional timing
  • the required additional adjustment, j s calculated as the difference between: the subframe border position, T p ⁇ rner , of the DL cell carrier in which the random access preamble was detected, and the subframe border position of the DL reference carrier, T?f er °Z r ⁇
  • the first network node 800 sends the total timing advance value,
  • Operation 6 Device action in response to timing alignment command
  • the wireless device If the wireless device receives and successfully decodes the message 2, it will read the timing advance information and adjusts the UL transmission timing accordingly. This completes the alignment procedure of the UL cell carrier.
  • Another advantage is that interference from downlink symbols on uplink symbols across two or more cells using a TDD scheme can be avoided by aligning the uplink transmissions in the cells by instructing the wireless device to apply a timing advance value that compensates for the time offset.
  • an FFT operation on symbols received in two or more cells can be successfully performed even when a time offset is used in at least one of the cells, since the positioning of the FFT window in each UL cell carrier will be the same and the received signal will be captured in a manner that is thus synchronized with the FFT window.
  • a guard period GP is inserted after the UL period and before the DL period at each UL-DL transition.
  • This alternative may thus be useful for TDD in situations where the need for a simultaneous reception of the UL carriers at the eNB is of less importance.
  • a guard symbol is inserted at the switching point from an UL subframe to a DL subframe.
  • the guard symbol may be created by configuring the last symbol in the UL subframe as a sounding symbol. By not allowing transmissions in this sounding symbol this symbol will become muted and would consequently act as a guard symbol in a manner equivalent to the guard period in the special subframe.
  • This alternative could be defined as follows in case it is the wireless device that performs the muting:
  • a first network node of a first cell in a wireless network arranged to enable reduction of interference in a second cell from reference signals transmitted in the first cell, the first network node being configured to:
  • the wireless device to mute transmission in a guard period before a transition from uplink to downlink in a TDD scheme such that a preceding uplink symbol transmitted from the wireless device is not interfered by a downlink transmission in the second cell.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

L'invention concerne un procédé et un nœud de réseau (800), desservant une première cellule (800A) dans un réseau sans fil, qui permettent de réduire un brouillage dans une seconde cellule (800B) provoqué par l'émission de signaux de référence dans la première cellule (800A). Le premier nœud de réseau (800) transmet (8:1) des blocs de planification avec lesdits signaux de référence, à l'aide d'une transmission relative à décalage temporel de blocs de planification dans la seconde cellule. Une valeur d'avance temporelle est déterminée (8:3) pour un dispositif sans fil (802) et on commande (8:4) au dispositif sans fil (802) d'appliquer ladite valeur d'avance temporelle pour des transmissions en liaison montante. La valeur d'avance temporelle a été déterminée de manière que des symboles de liaison montante transmis par le dispositif sans fil (802) sont alignés avec des symboles de liaison montante reçus au niveau d'un second nœud de réseau (804) de la seconde cellule (804A).
PCT/SE2017/050695 2015-09-25 2017-06-22 Procédé et nœud de réseau permettant un brouillage réduit dans un réseau sans fil WO2018052355A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/333,473 US11012173B2 (en) 2015-09-25 2017-06-22 Method and network node for enabling reduced interference in a wireless network
EP17736780.2A EP3513521A1 (fr) 2015-09-25 2017-06-22 Procédé et noeud de réseau permettant un brouillage réduit dans un réseau sans fil

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
SEPCT/SE2016/050862 2016-09-15
PCT/SE2016/050862 WO2017052448A1 (fr) 2015-09-25 2016-09-15 Procédé et nœud de réseau de réduction de l'interférence dans un réseau sans fil

Publications (1)

Publication Number Publication Date
WO2018052355A1 true WO2018052355A1 (fr) 2018-03-22

Family

ID=59295281

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/SE2017/050695 WO2018052355A1 (fr) 2015-09-25 2017-06-22 Procédé et nœud de réseau permettant un brouillage réduit dans un réseau sans fil

Country Status (1)

Country Link
WO (1) WO2018052355A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020165396A1 (fr) * 2019-02-15 2020-08-20 Telefonaktiebolaget Lm Ericsson (Publ) Alignement temporel pour des mesures de dispositif sans fil à dispositif sans fil
CN116744431A (zh) * 2020-05-15 2023-09-12 中兴通讯股份有限公司 用于同步的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110080896A1 (en) * 2009-10-05 2011-04-07 Motorola, Inc. Method and apparatus for mitigating downlink control channel interference
EP2557867A1 (fr) * 2011-08-11 2013-02-13 Panasonic Corporation Configuration d'avance temporelle pour des composantes multiples de porteuses de liaisons montantes
US20150094092A1 (en) * 2008-12-05 2015-04-02 Telefonaktiebolaget L M Ericsson (Publ) Methods and arrangements in a telecommunication system
WO2015074719A1 (fr) * 2013-11-25 2015-05-28 Nokia Solutions And Networks Oy Appareil et procédé de communication avec des sous-bandes à décalage temporel
US20150195841A1 (en) * 2012-06-21 2015-07-09 Telefonica, S.A. Method for cancelling downlink interference in a lte-advanced network

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150094092A1 (en) * 2008-12-05 2015-04-02 Telefonaktiebolaget L M Ericsson (Publ) Methods and arrangements in a telecommunication system
US20110080896A1 (en) * 2009-10-05 2011-04-07 Motorola, Inc. Method and apparatus for mitigating downlink control channel interference
EP2557867A1 (fr) * 2011-08-11 2013-02-13 Panasonic Corporation Configuration d'avance temporelle pour des composantes multiples de porteuses de liaisons montantes
US20150195841A1 (en) * 2012-06-21 2015-07-09 Telefonica, S.A. Method for cancelling downlink interference in a lte-advanced network
WO2015074719A1 (fr) * 2013-11-25 2015-05-28 Nokia Solutions And Networks Oy Appareil et procédé de communication avec des sous-bandes à décalage temporel

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020165396A1 (fr) * 2019-02-15 2020-08-20 Telefonaktiebolaget Lm Ericsson (Publ) Alignement temporel pour des mesures de dispositif sans fil à dispositif sans fil
CN116744431A (zh) * 2020-05-15 2023-09-12 中兴通讯股份有限公司 用于同步的方法

Similar Documents

Publication Publication Date Title
US11012173B2 (en) Method and network node for enabling reduced interference in a wireless network
US11991548B2 (en) Measurement-based random access configuration
CN111919414B (zh) 用于基于触发传输的时间和频率跟踪信号的系统和方法
CN106538016B (zh) 用于具有快速自适应发送和接收的通信的设备、网络和方法
US11283558B2 (en) Method and apparatus for uplink and downlink transmission alignment
EP3451571B1 (fr) Procédé d'émission de signaux de découverte et procédé de reception de signaux de découverte
US20220116899A1 (en) Methods for controlling ue synchronization and cell identification in nr
KR20180108038A (ko) 무선 통신 시스템에서 타이밍 조정 방법 및 장치
KR20170119290A (ko) 무선통신 시스템에서 동적 시분할 복신을 위한 방법 및 장치
US20220078738A1 (en) Full duplex timing advance enhancements
KR102443321B1 (ko) 무선 통신 시스템에서 단말의 위상 트래킹 참조 신호 수신 방법 및 이를 지원하는 장치
WO2018143875A1 (fr) Procédés de surveillance de qualité de liaison radio basée sur la formation de faisceau dans nr
US20140169241A1 (en) Radio base station and communication control method
WO2018052355A1 (fr) Procédé et nœud de réseau permettant un brouillage réduit dans un réseau sans fil
EP2901606B1 (fr) (dés)activation de porteuses de composantes dans des systèmes de communication utilisant une agrégation de porteuses
WO2018203278A1 (fr) Perforation de signaux de référence dans un bloc de canal
WO2018174766A1 (fr) Systèmes et procédés pour commander un renvoi de harq lorsque nr et lte coexistent sur le même support
US20210195586A1 (en) Method by which base station and terminal transmit/receive signal in wireless communication system, and device for supporting same
EP3568960B1 (fr) Numérologie différente pour des signaux de référence et des données dans un scénario de numérologies mélangées
CN110089140B (zh) 涉及基于上行链路测量的自动相邻检测的方法及节点
KR20180018303A (ko) 통신 시스템에서 동기 신호의 송수신 방법
US20230217389A1 (en) A method for handling communication using parallel data streams and related wireless nodes and wireless devices
CN114205015B (zh) 测量方法、发送方法及相关设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17736780

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017736780

Country of ref document: EP

Effective date: 20190415