WO2018052000A1 - Heat-cycle working medium composition and heat cycle system - Google Patents

Heat-cycle working medium composition and heat cycle system Download PDF

Info

Publication number
WO2018052000A1
WO2018052000A1 PCT/JP2017/032972 JP2017032972W WO2018052000A1 WO 2018052000 A1 WO2018052000 A1 WO 2018052000A1 JP 2017032972 W JP2017032972 W JP 2017032972W WO 2018052000 A1 WO2018052000 A1 WO 2018052000A1
Authority
WO
WIPO (PCT)
Prior art keywords
working medium
trifluoropropyne
medium composition
refrigerant
mass
Prior art date
Application number
PCT/JP2017/032972
Other languages
French (fr)
Japanese (ja)
Inventor
大輔 加留部
土屋 立美
勇博 茶木
山田 康夫
雄三 小松
育美 友塚
水野 彰人
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to JP2018539734A priority Critical patent/JPWO2018052000A1/en
Publication of WO2018052000A1 publication Critical patent/WO2018052000A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/04Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle

Definitions

  • the present invention relates to a working medium composition for heat cycle and a heat cycle system.
  • the present invention has been made in view of the above, has an excellent refrigerant performance, and can be used as a substitute for various existing refrigerants, and a heat cycle working medium composition and a heat cycle using this composition
  • the purpose is to provide a system.
  • the present inventor has found that the above object can be achieved by using a specific refrigerant, and has completed the present invention.
  • the present invention includes, for example, the subject matters described in the following sections.
  • Item 1 Containing a refrigerant containing at least one compound selected from difluoromethane, pentafluoroethane and 1,1,1,2-tetrafluoroethane, and 3,3,3-trifluoropropyne; (1) or (2) below (1)
  • the content of 3,3,3-trifluoropropyne is 1% by mass or more based on the total mass of the compound and 3,3,3-trifluoropropyne.
  • the refrigerant is an azeotropic or azeotrope-like mixture;
  • a working medium composition for heat cycle that satisfies Item 2 A refrigerant comprising difluoromethane and 3,3,3-trifluoropropyne, wherein the refrigerant has a 3,3,3-trifluoropropyne content of difluoromethane and 3,3,3-trifluoropropyne.
  • Item 3 Item 3.
  • Item 8 Containing a refrigerant comprising pentafluoroethane and 3,3,3-trifluoropropyne; Item 2.
  • Item 9 Item 9.
  • Working medium composition for heat cycle Item 10 Item 9. The refrigerant according to Item 8, wherein the content of 3,3,3-trifluoropropyne is 20 to 90% by mass with respect to the total mass of pentafluoroethane and 3,3,3-trifluoropropyne.
  • Working medium composition for heat cycle Item 11 Item 9. The refrigerant according to Item 8, wherein the content of 3,3,3-trifluoropropyne is 70 to 99% by mass with respect to the total mass of pentafluoroethane and 3,3,3-trifluoropropyne.
  • Working medium composition for heat cycle Item 12 Item 2.
  • the working medium composition for heat cycle according to Item 1 comprising a refrigerant comprising pentafluoroethane, 3,3,3-trifluoropropyne and difluoromethane.
  • the refrigerant is based on the total mass of pentafluoroethane, 3,3,3-trifluoropropyne and difluoromethane. 30 to 98% by mass of pentafluoroethane, 1 to 52% by weight of 3,3,3-trifluoropropyne, and 1 to 63% by mass of difluoromethane, Item 13.
  • Item 14 Containing a refrigerant comprising 1,1,1,2-tetrafluoroethane and 3,3,3-trifluoropropyne;
  • the content of 3,3,3-trifluoropropyne is 5 to 99 mass% with respect to the total mass of 1,1,1,2-tetrafluoroethane and 3,3,3-trifluoropropyne.
  • the refrigerant has a 3,3,3-trifluoropropyne content of 5 to 40% by mass with respect to the total mass of 1,1,1,2-tetrafluoroethane and 3,3,3-trifluoropropyne.
  • the working medium composition for heat cycle according to Item 14 wherein Item 16
  • the refrigerant has a content of 3,3,3-trifluoropropyne of 20 to 90% by mass with respect to the total mass of 1,1,1,2-tetrafluoroethane and 3,3,3-trifluoropropyne.
  • Item 15 The working medium composition for heat cycle according to Item 14, wherein Item 17
  • the refrigerant has a 3,3,3-trifluoropropyne content of 70 to 99% by mass with respect to the total mass of 1,1,1,2-tetrafluoroethane and 3,3,3-trifluoropropyne.
  • the working medium composition for heat cycle according to Item 14 wherein Item 18
  • the refrigerant further includes difluoromethane,
  • 1,1,1,2-tetrafluoroethane is 50 to 98% by mass, 1 to 40% by weight of 3,3,3-trifluoropropyne, and Item 15.
  • difluoromethane is 1 to 43% by mass.
  • HFO Hydrofluoroolefin
  • HFC hydrofluorocarbon
  • HFC hydrofluorocarbon
  • HCFO hydrochlorofluorocarbon
  • the working medium composition for heat cycle of the present invention has excellent refrigerant performance and can be used as a substitute for various existing refrigerants.
  • working medium composition for heat cycle
  • working medium composition for heat cycle is abbreviated as “working medium composition”.
  • the working fluid composition for heat cycle of the present invention comprises at least one compound selected from difluoromethane, pentafluoroethane and 1,1,1,2-tetrafluoroethane, and 3,3,3-trifluoropropyne.
  • Containing refrigerant, (1) or (2) below (1) The content of 3,3,3-trifluoropropyne is 1% by mass or more based on the total mass of the compound and 3,3,3-trifluoropropyne.
  • the refrigerant is an azeotropic or azeotrope-like mixture; Meet.
  • the “first embodiment” of the working medium composition of the present invention contains a refrigerant containing difluoromethane and 3,3,3-trifluoropropyne, and the content of 3,3,3-trifluoropropyne is It is 32-99 mass% with respect to the total mass of difluoromethane and 3,3,3-trifluoropropyne.
  • the “second embodiment” of the working medium composition of the present invention contains a refrigerant containing difluoromethane and 3,3,3-trifluoropropyne, and the refrigerant is an azeotrope-like mixture.
  • the “third embodiment” of the working medium composition of the present invention contains a refrigerant containing pentafluoroethane and 3,3,3-trifluoropropyne, and the refrigerant is an azeotropic or azeotrope-like mixture.
  • the “fourth embodiment” of the working medium composition of the present invention contains a refrigerant containing pentafluoroethane and 3,3,3-trifluoropropyne, and the refrigerant includes pentafluoroethane and 3,3,3. -Hydrofluoroolefin (HFO), hydrofluorocarbon (HFC), hydrochlorofluorocarbon (HCFC), chlorofluorocarbon (CFC), chlorofluoroolefin (CFO), hydrochlorofluoroolefin (HCFO) as a third component other than trifluoropropyne And at least one compound selected from the group consisting of trifluoromethane iodide and carbon dioxide.
  • HFO Hydrofluoroolefin
  • HFC hydrofluorocarbon
  • HCFC hydrochlorofluorocarbon
  • CFC chlorofluorocarbon
  • CFO chlorofluoroolefin
  • HCFO hydrochlor
  • the “fifth embodiment” of the working medium composition of the present invention contains a refrigerant containing 1,1,1,2-tetrafluoroethane and 3,3,3-trifluoropropyne, and 3,3,3 -The content of trifluoropropyne is 5 to 99 mass% with respect to the total mass of 1,1,1,2-tetrafluoroethane and 3,3,3-trifluoropropyne.
  • difluoromethane is “HFC-32”
  • 3,3,3-trifluoropropyne is “TFP”
  • pentafluoroethane is “R125”
  • 1,1,1,2-tetrafluoroethane May be written as “R134a”.
  • the temperature glide can be rephrased as the absolute value of the difference between the start temperature and the end temperature of the phase change process of the working medium composition in the components of the refrigerant system.
  • the refrigerant has a content of 3,3,3-trifluoropropyne of 32 to 99 mass with respect to the total mass of difluoromethane and 3,3,3-trifluoropropyne. %,
  • the combustibility tends to be equal to or less than that of TFP, the temperature glide can be further reduced, and a high COP (coefficient of performance) is likely to be obtained.
  • the azeotrope-like mixture means that the composition fluctuation of the mixture is small even when the cycle of distilling and condensing the mixture is repeated. It means a composition that fits.
  • the definition of an azeotrope-like mixture is the same.
  • the refrigerant is likely to be an azeotrope-like mixture, for example, when the TFP content is 0.01 to 40% by mass with respect to the total mass of HFC-32 and TFP. .
  • the temperature glide can be 5K or less.
  • the working medium composition of the first embodiment and the working medium composition of the second embodiment are collectively referred to as “the working medium composition of the first and second embodiments”.
  • the refrigerant preferably has a TFP content of 33 to 95% by mass with respect to the total mass of HFC-32 and TFP.
  • the combustibility tends to be lower, and the temperature glide can be smaller.
  • this working medium composition can be less combustible than HFC-32 alone or TFP alone.
  • the upper limit of the TFP content is 95% by mass with respect to the total mass of HFC-32 and TFP.
  • the TFP content is preferably 57% by mass or more based on the total mass of HFC-32 and TFP.
  • GWP tends to be low in addition to low combustibility and low temperature glide, and can be, for example, a GWP of 300 or less.
  • the upper limit of the TFP content may be 99% by mass or 95% by mass with respect to the total mass of HFC-32 and TFP.
  • the content of TFP is preferably 79% by mass or more based on the total mass of HFC-32 and TFP.
  • the GWP tends to be low, and for example, the GWP can be 150 or less.
  • the upper limit of the TFP content may be 99% by mass or 95% by mass with respect to the total mass of HFC-32 and TFP.
  • both COP (coefficient of performance) and refrigeration capacity are, for example, R410A, which is an existing refrigerant. It tends to be higher than In this case, the content of TFP is particularly preferably 32 to 40% by mass with respect to the total mass of HFC-32 and TFP.
  • both COP (coefficient of performance) and refrigeration capacity are, for example, existing refrigerants.
  • the working medium composition is particularly suitable for freezing and refrigeration applications.
  • the content of TFP is particularly preferably 85 to 99% by mass with respect to the total mass of HFC-32 and TFP.
  • the refrigerant can contain other components having a refrigerant function (hereinafter referred to as “third component”) as necessary in addition to HFC-32 and TFP.
  • third component a refrigerant function
  • Appropriate selection of the third component can further reduce GWP, reduce combustibility, make it nonflammable, and improve performance.
  • the compatibility between the refrigerating machine oil and the working medium composition Adjustment is easy.
  • various objects can be achieved by selecting the third component.
  • the third component is a component having a refrigerant function and is not particularly limited as long as it is a component other than HFC-32 and TFP.
  • An example of such a third component is a hydrocarbon having a fluorine group.
  • Specific examples of the hydrocarbon having a fluorine group include hydrofluoroolefin (HFO), hydrofluorocarbon (HFC), hydrochlorofluorocarbon (HCFC), chlorofluorocarbon (CFC), chlorofluoroolefin (CFO), hydrochlorofluoroolefin (HCFO). ), And compounds such as iodinated trifluoromethane.
  • the third component may be carbon dioxide.
  • Hydrofluoropropanes represented by H y F (8-y) (where y 1 to 7)
  • molecular formulas such as HFC-365mfc C 4 H z F (8-z) (where z 1 to 9)
  • the hydrofluorobutane etc. which are represented by these are illustrated.
  • HFO examples include haloolefins having 2 or more carbon atoms having a fluorine group, preferably haloolefins having 3 or more carbon atoms having a fluorine group.
  • the type of isomer is not particularly limited.
  • HFO include fluoroethylene (HFO-1141), trans-1,2-difluoroethylene (HFO-1132E), cis-1,2-difluoroethylene (HFO-1132Z), 1,1-difluoroethylene ( HFO-1132a), trifluoroethylene (HFO-1123), 2,3,3,3-tetrafluoropropene (HFO-1234yf), 1,3,3,3-tetrafluoropropene (HFO-1234ze), 1, 2,3,3-tetrafluoropropene (HFO-1234ye), 1,1,2,3-tetrafluoropropene (HFO-1234yc), 1,2,3,3,3-pentafluoropropene (HFO-1225ye) 1,1,3,3,3-pentafluoropropene (HFO-1225zc), 3, , 3-trifluoropropene (-HFO 1243zf), 1,1,1,4,4,4- hexafluoro-2-butene (HFO-13), 1,
  • the third component can contain one or more compounds.
  • each content of the third component is as long as the effect of the present invention is not hindered. There is no particular limitation.
  • the refrigerant consists of only HFC-32 and TFP.
  • the total amount of HFC-32 and TFP is also preferably 100% by mass with respect to the total mass of the refrigerant. It is also preferred that the refrigerant consists essentially of HFC-32 and TFP.
  • the refrigerant when the refrigerant contains a third component in addition to HFC-32 and TFP, each of the third components is contained unless the effect of the present invention is inhibited.
  • the content of the third component in the refrigerant is preferably 0.5% by mass or less, more preferably 0.3% by mass or less, and particularly preferably 0.1% by mass or less.
  • the working medium composition tends to have a higher COP (coefficient of performance) than, for example, HFC-32 alone, in addition to low combustibility and low temperature glide, and is suitable as an alternative to R410A and the like.
  • the working medium composition of the first and second embodiments can have a combustion rate of, for example, 3.9 cm / sec or less. When the combustion speed is within this range, excellent low combustibility is ensured.
  • the burning rate is preferably 3.6 cm / sec or less, more preferably 2.0 cm / sec or less, and particularly preferably 1.0 cm / sec or less.
  • the burning rate referred to here is a value measured by an apparatus and method according to ASHRAE Standard 34-2013 and ASHRAE Standard 34-2013 Appendix B2.
  • the refrigerant contains HFC-32 and TFP as essential components.
  • the working medium composition has an excellent refrigerant capacity, low combustibility, low GWP, and low temperature glide. Therefore, according to the working medium composition of the present embodiment, the environmental load can be further reduced, and it can be applied as an alternative to the existing refrigerant.
  • the working medium composition of the present embodiment can be used as an alternative to the existing refrigerants R410A, R404A, R22, and the like.
  • the method for preparing the working medium composition of the first and second embodiments is not particularly limited.
  • the working medium composition can be prepared by mixing HFC-32 and TFP at a predetermined ratio.
  • HFC-32 and TFP are not particularly limited, and for example, HFC-32 and TFP can be produced by a known production method, and these can be applied to the working medium composition.
  • TFP and R125 penentafluoroethane
  • the working medium composition of the third embodiment has a small temperature glide at an arbitrary composition ratio and lower combustibility than TFP alone.
  • the temperature glide can be 5K or less.
  • the refrigerant preferably has a TFP content of 1 to 52 mass% with respect to the total mass of R125 and TFP.
  • combustibility tends to be lower, and in particular, an incombustible composition tends to be obtained.
  • content of TFP is the said range, a temperature glide can also become smaller.
  • this working medium composition can be less combustible than R125 alone or TFP alone.
  • the upper limit of the TFP content is particularly effective for the upper limit of the TFP content to be 52% by mass with respect to the total mass of R125 and TFP in order to reduce the combustibility of the working medium composition.
  • the refrigerant preferably has a TFP content of 20 to 90% by mass with respect to the total mass of R125 and TFP.
  • the working medium composition of the third embodiment can be used as an alternative refrigerant such as R410A, R404A, R22, and R407 because the GWP becomes small in addition to low combustibility and low temperature glide.
  • the refrigerant has a GWP value of 1500 or less when the content of TFP is 58% by mass or more with respect to the total mass of R125 and TFP, compared to R125 alone. It can be a refrigerant with low environmental impact.
  • the refrigerant preferably has a TFP content of 70 to 99% by mass with respect to the total mass of R125 and TFP.
  • the working medium composition of the third embodiment has a particularly low GWP in addition to low flammability and low temperature glide, and therefore can be used as an alternative refrigerant such as R134a and R1234yf.
  • both the refrigerating capacity and the heating capacity are likely to be significantly higher than, for example, the existing refrigerants R134a and R1234yf, and the discharge temperature can be equal to R134a and R1234yf.
  • the working medium composition having a TFP content of 70 to 99% by mass with respect to the total mass of R125 and TFP is particularly suitable for car air-conditioner applications, and particularly has a high heating capacity. It is suitable for car air-conditioner applications where it has been difficult to use the heat of an internal combustion engine for heating, such as a plug-in hybrid vehicle. It is particularly preferable that the content of TFP is 90 to 99% by mass with respect to the total mass of R125 and TFP.
  • the refrigerant can be a GWP of 750 or less when the TFP content is 79% by mass or more with respect to the total mass of R125 and TFP.
  • the refrigerant can be a GWP of 300 or less when the TFP content is 92% by mass or more with respect to the total mass of R125 and TFP.
  • the working medium composition of the third embodiment can have a GWP of 150 or less.
  • one or both of COP (coefficient of performance) and refrigeration capacity is, for example, R410A which is an existing refrigerant. It tends to be higher than In this case, the content of TFP can be 50 to 80% by mass with respect to the total mass of R125 and TFP.
  • the working medium composition of the third embodiment in addition to low flammability and low temperature glide, one or both of COP (coefficient of performance) and refrigeration capacity are, for example, existing refrigerants. Compared to R404A, it tends to be higher, and the discharge temperature and discharge pressure can be equivalent to R404A. Therefore, the working medium composition is particularly suitable for freezing and refrigeration applications.
  • the content of TFP can be 50 to 70% by mass with respect to the total mass of R125 and TFP.
  • the working medium composition of the third embodiment can contain, in addition to R125 and TFP, a third component as another component having a refrigerant function, if necessary. Appropriate selection of the third component can further reduce GWP, reduce combustibility, make it nonflammable, and improve performance. When using refrigerating machine oil, the compatibility between the refrigerating machine oil and the working medium composition Adjustment is easy. In addition, various objects can be achieved by selecting the third component.
  • the kind of the third component contained in the working medium composition of the third embodiment can be the same kind as the third component contained in the working medium composition of the first and second embodiments.
  • the refrigerant may be hydrofluoroolefin (HFO), hydrofluorocarbon (HFC), hydrochlorofluorocarbon (HCFC), chlorofluorocarbon (third component other than R125 and TFP).
  • CFC chlorofluoroolefin
  • CFO chlorofluoroolefin
  • HCFO hydrochlorofluoroolefin
  • iodinated trifluoromethane iodinated trifluoromethane
  • the working medium composition of the third embodiment when the refrigerant contains the third component, the working medium composition of the third embodiment is the same as that of the fourth embodiment.
  • the content of 3,3,3-trifluoropropyne is 5 to 99% by mass with respect to the total mass of pentafluoroethane and 3,3,3-trifluoropropyne. It can be. That is, in the working medium composition of the fourth embodiment, pentafluoroethane and 3,3,3-trifluoropropyne are not limited to azeotropic or azeotrope-like mixtures but can be non-azeotropic mixtures.
  • the third component may include one or more compounds.
  • each content of the third component is not particularly limited.
  • the third component is preferably difluoromethane (HFC-32).
  • HFC-32 difluoromethane
  • one or both of COP (coefficient of performance) and refrigeration capacity are compared with, for example, R410A which is an existing refrigerant.
  • the discharge temperature and discharge pressure can be equivalent to R410A. Therefore, the working medium composition of the third embodiment containing HFC-32 as the third component has a lower GWP than R410A and is suitable for use as an alternative to R410A.
  • the refrigerant is 30 to 98% by mass of R125, 1 to 60% by mass of TFP, and 1 to 60% by mass of the total mass of R125, TFP and HFC-32.
  • HFC-32 can be 1 to 69% by mass, and from the viewpoint of easily becoming an incombustible composition, R125 is 30 to 98% by mass, TFP is 1 to 52% by mass, and HFC-32 is 1 to 63% by mass.
  • R125 is 37 to 98% by mass
  • TFP is 1 to 40% by mass
  • HFC-32 is more preferably 1 to 50% by mass
  • R125 is 40 to 98% by mass
  • HFC-32 is particularly preferably 1 to 50% by mass.
  • R125 is 37 to 70% by mass
  • TFP is 1 to 30% by mass
  • HFC-32 is 1 to 33% with respect to the total mass of R125, TFP and HFC-32. It is preferable that it is mass%.
  • the working medium composition of the fourth embodiment containing HFC-32 is low in flammability, has a low GWP, and has a low temperature glide, with respect to the total mass of R125, TFP and HFC-32.
  • R125 is preferably 30 to 98% by mass
  • TFP is 1 to 51% by mass
  • HFC-32 is preferably 1 to 63% by mass
  • R125 is 48 to 98% by mass
  • TFP is 1 to 51% by mass
  • the working medium compositions of the third embodiment and the fourth embodiment can have a combustion rate of, for example, 3.9 cm / sec or less. When the combustion speed is within this range, excellent low combustibility is ensured.
  • the burning rate is preferably 3.6 cm / sec or less, more preferably 2.0 cm / sec or less, and particularly preferably 1.0 cm / sec or less.
  • the refrigerant includes R125 and TFP as essential components.
  • the working medium composition has an excellent refrigerant capacity, low combustibility, low GWP, and low temperature glide. Therefore, according to the working-medium composition of 3rd Embodiment, while being able to reduce an environmental load more, it can apply as a substitute of the existing refrigerant
  • the working medium composition of the present embodiment can be used as an alternative to the existing refrigerants R410A, R404A, R22, R134a, R1234yf, and the like.
  • the method for preparing the working medium composition of the third embodiment and the fourth embodiment is not particularly limited.
  • a working medium composition can be prepared by mixing R125 and TFP at a predetermined ratio.
  • R125 and TFP are not particularly limited, and for example, R125 and TFP can be produced by a known production method.
  • the refrigerant has a TFP content of 5 to 99% by mass with respect to the total mass of R134a and TFP. Further, the temperature glide can be made smaller, and a high COP (coefficient of performance) tends to be obtained.
  • the refrigerant preferably has a TFP content of 5 to 40% by mass with respect to the total mass of R134a and TFP.
  • combustibility tends to be lower, and in particular, an incombustible composition tends to be obtained.
  • content of TFP is the said range, a temperature glide can also become smaller.
  • this working medium composition can be less combustible than R134a alone or TFP alone.
  • the refrigerant preferably has a TFP content of 20 to 90% by mass with respect to the total mass of R134a and TFP.
  • the working medium composition of the fifth embodiment can be used as an alternative refrigerant such as R410A, R404A, R22, and R407 because the GWP becomes small in addition to low combustibility and low temperature glide.
  • the refrigerant has a GWP value of 1000 or less when the TFP content is 70% by mass or more with respect to the total mass of R134a and TFP, compared to R134a alone. It can be a refrigerant with low environmental impact.
  • the refrigerant preferably has a TFP content of 70 to 99% by mass with respect to the total mass of R134a and TFP.
  • the working medium composition of the fifth embodiment has a particularly low GWP in addition to low combustibility and low temperature glide, and therefore can be used as an alternative refrigerant such as R134a and R1234yf.
  • one or both of the COP and the refrigerating capacity tends to be higher than R134a or HFO-1234yf. Therefore, a working medium composition having a TFP content of 70 to 99% by mass with respect to the total mass of R134a and TFP is particularly suitable for car air-conditioner applications, and particularly has a high heating capacity.
  • TFP is 90 to 99% by mass with respect to the total mass of R134a and TFP.
  • the refrigerant can be a GWP of 750 or less when the TFP content is 52% by mass or more with respect to the total mass of R134a and TFP.
  • the working medium composition of the fifth embodiment can be a GWP of 152 or less.
  • both COP (coefficient of performance) and refrigeration capacity are, for example, compared to R410A, which is an existing refrigerant. It tends to be expensive.
  • the content of TFP can be 20 to 90% by mass with respect to the total mass of R134a and TFP.
  • both COP (coefficient of performance) and refrigeration capacity are, for example, the existing refrigerant R404A and In comparison, the discharge temperature and discharge pressure are likely to be equivalent to R404A. Therefore, the working medium composition is particularly suitable for freezing and refrigeration applications.
  • the TFP content can be 40 to 70% by mass with respect to the total mass of R134a and TFP.
  • the refrigerant can include, in addition to R134a and TFP, a third component as another component having a refrigerant function, if necessary.
  • a third component as another component having a refrigerant function, if necessary.
  • Appropriate selection of the third component can further reduce GWP, reduce combustibility, make it nonflammable, and improve performance.
  • the compatibility between the refrigerating machine oil and the working medium composition Adjustment is easy.
  • various objects can be achieved by selecting the third component.
  • the kind of the third component contained in the working medium composition of the fifth embodiment can be the same kind as the third component contained in the working medium composition of the first and second embodiments.
  • the refrigerant is a hydrofluoroolefin (HFO), hydrofluorocarbon (HFC), hydrochlorofluorocarbon (HCFC), chlorofluorocarbon (as a third component other than R134a and TFP).
  • HFO hydrofluoroolefin
  • HFC hydrofluorocarbon
  • HCFC hydrochlorofluorocarbon
  • chlorofluorocarbon as a third component other than R134a and TFP.
  • CFC chlorofluoroolefin
  • CFO chlorofluoroolefin
  • HCFO hydrochlorofluoroolefin
  • iodinated trifluoromethane iodinated trifluoromethane
  • the third component can contain one or more compounds.
  • the content of the third component is not particularly limited as long as the effect of the present invention is not inhibited.
  • the third component is preferably difluoromethane (HFC-32).
  • HFC-32 difluoromethane
  • both COP (coefficient of performance) and refrigeration capacity are higher than, for example, the existing refrigerant R410A.
  • the discharge temperature and the discharge pressure can be equivalent to R410A. Therefore, the working medium composition of the fifth embodiment containing HFC-32 as the third component has a lower GWP than R410A and is suitable for use as an alternative to R410A.
  • the working medium composition of the fifth embodiment containing HFC-32 has an R134a of 30 to 98% by mass, a TFP of 1 to 60% by mass, and an HFC- of the total mass of R134a, TFP and HFC-32. 32 may be 1 to 69 mass%.
  • the working medium composition of the fifth embodiment containing HFC-32 is low in flammability, has a low GWP, and has a low temperature glide, with respect to the total mass of R134a, TFP and HFC-32.
  • R134a is 50 to 98% by mass
  • TFP is 1 to 40% by mass
  • HFC-32 is 1 to 43% by mass
  • R134a is 55 to 98% by mass
  • TFP is 1 to 30% by mass
  • the nonflammable composition is likely to be obtained.
  • the working medium composition of the fifth embodiment can have a combustion rate of, for example, 3.9 cm / sec or less. When the combustion speed is within this range, excellent low combustibility is ensured.
  • the burning rate is preferably 3.6 cm / sec or less, more preferably 2.0 cm / sec or less, and particularly preferably 1.0 cm / sec or less.
  • the working medium composition of the fifth embodiment includes R134a and TFP as essential components.
  • the working medium composition has an excellent refrigerant capacity, low combustibility, low GWP, and low temperature glide. Therefore, according to the working-medium composition of 5th Embodiment, while being able to reduce an environmental load more, it can apply as a substitute of the existing refrigerant
  • the working medium composition of the present embodiment can be used as an alternative to the existing refrigerants R410A, R404A, R22, R134a, R1234yf, and the like.
  • the method for preparing the working medium composition of the fifth embodiment is not particularly limited.
  • a working medium composition can be prepared by mixing R134a and TFP at a predetermined ratio.
  • R134a and TFP are not particularly limited, and for example, R134a and TFP can be produced by a known production method.
  • the working medium composition of the first to fifth embodiments can contain additives other than the refrigerant as necessary.
  • additives other than the refrigerant include stabilizers, refrigerating machine oils, rust inhibitors, corrosion inhibitors, lubricants, polymerization inhibitors, solvents, and moisture.
  • stabilizer include aliphatic nitro compounds such as nitromethane and nitroethane, ethers such as 1,4-dioxane, amines such as 2,2,3,3,3-pentafluoropropylamine and diphenylamine, butylhydroxy Examples include xylene and benzotriazole.
  • One stabilizer can be used, or two or more stabilizers can be used in combination.
  • the refrigerating machine oil include, but are not limited to, polyalkylene glycol, polyol ester, polyvinyl ether, alkylbenzene mineral oil, and the like.
  • the polymerization inhibitor include 4-methoxy-1-naphthol, hydroquinone, hydroquinone methyl ether, dimethyl-tert-butylphenol, 2,6-di-tert-butyl-p-cresol, and benzotriazole. .
  • the content of additives other than the refrigerant is not particularly limited, for example, in the case of a polymerization inhibitor, it can be 0.01 to 5.0% by mass with respect to the total mass of the refrigerant.
  • the working medium composition may not contain additives other than the refrigerant.
  • the working medium composition of the present embodiment can be suitably used for various heat cycle systems.
  • the thermal cycle system can be a thermal cycle system with a high cooling capacity by including the working medium composition of the present embodiment.
  • the working medium composition has low combustibility and low GWP, it can impart higher safety to the heat cycle system compared to the case where an existing refrigerant is used.
  • the working medium composition also has a low temperature clad, it is possible to provide a highly stable thermal cycle system.
  • the type of heat cycle system is not particularly limited.
  • Examples of heat cycle systems include room air conditioners, store packaged air conditioners, building packaged air conditioners, facility packaged air conditioners, separate air conditioners with one or more indoor units and outdoor units connected by refrigerant piping, window type air conditioners, and portable types.
  • Examples include body refrigerators, vending machines, car air conditioners, maritime transport containers, refrigerators for cooling refrigerators, chiller units, turbo refrigerators, or heating cycle dedicated machines.
  • Examples of the heating cycle dedicated machine include a hot water supply device, a floor heating device, and a snow melting device.
  • the other configurations are not particularly limited, and for example, may be the same as a known configuration.
  • Example 1-1 to 1-6 Difluoromethane (HFC-32) and 3,3,3-trifluoropropyne (TFP) were prepared, and working fluid compositions were prepared so as to have the composition ratios shown in Table 1 below.
  • Example 1-7 to 1-9 Difluoromethane (HFC-32) and 3,3,3-trifluoropropyne (TFP) were prepared, and a working medium composition was prepared so that they had the composition ratios shown in Table 2 below.
  • the obtained working medium composition was used, and COP, refrigeration capacity (kJ / m 3 ), and temperature glide (K) were evaluated using a heat pump.
  • the heat pump operating conditions are as follows: the refrigerant evaporating temperature in the evaporator is ⁇ 10 ° C., the refrigerant condensing temperature in the condenser is 40 ° C., the compressor efficiency is 0.7, the superheat is 10 ° C., and the supercooling is 0 ° C. I drove like that.
  • the results of each evaluation are shown in Table 2.
  • the obtained working medium composition was used, and COP, refrigeration capacity (kJ / m 3 ), and temperature glide (K) were evaluated using a heat pump.
  • the heat pump operating conditions are as follows: the refrigerant evaporation temperature in the evaporator is ⁇ 40 ° C., the refrigerant condensation temperature in the condenser is 40 ° C., the compressor efficiency is 0.7, the degree of superheat is 20 ° C., and the degree of supercooling is 0 ° C. I drove like that.
  • the results of each evaluation are shown in Table 3.
  • the obtained working medium composition was used, and COP, refrigeration capacity (kJ / m 3 ), and temperature glide (K) were evaluated using a heat pump.
  • the heat pump operating conditions are as follows: the refrigerant evaporation temperature in the evaporator is ⁇ 65 ° C., the refrigerant condensation temperature in the condenser is 40 ° C., the compressor efficiency is 0.7, the degree of superheat is 20 ° C., and the degree of supercooling is 0 ° C. I drove like that.
  • the results of each evaluation are shown in Table 4.
  • Example 1-16 to 1-21 Difluoromethane (HFC-32) and 3,3,3-trifluoropropyne (TFP) were prepared, and working fluid compositions were prepared so as to have the composition ratios shown in Table 5 below.
  • Table 5 shows the results of evaluating the GWP and the combustion rate (cm / sec) (BV value) for each gas composition ratio.
  • Pentafluoroethane (R125) and 3,3,3-trifluoropropyne (TFP) were prepared, and working fluid compositions were prepared so as to have composition ratios shown in Tables 6 to 11 below.
  • COP refrigeration capacity or heating capacity
  • K temperature glide
  • Measurement of refrigeration capacity or heating capacity includes the first cooling test (also referred to as MAC cooling test), the second cooling test (also referred to as cooling test such as R410A), the heating test (also referred to as MAC heating test), the refrigeration test, the freezing test, The test was performed in 6 patterns of the cryogenic test, and each was performed under the following heat pump operating conditions.
  • Tables 6 to 11 show the results of the first cooling test, the second cooling test, the heating test, the refrigeration test, the freezing test, and the cryogenic test, respectively. Tables 6 to 11 also show the evaluation results of the temperature glide. As comparative objects, Tables 6 to 11 show the results of the same evaluations as in Examples 3-1 to 3-8 for the compositions of Comparative Examples 1 and 3.
  • GWP is remarkably low and COP is equal to or higher than R410A used in the past, and the temperature glide is sufficiently small. Further, it is also clear that the composition of Example 3-2 is nonflammable in the combustion range test described later. Thus, a thermal cycle working medium composition containing R125 and TFP can be an alternative working medium useful in applications where R410A is used.
  • GWP is remarkably low and COP is equal to or higher than R134a used conventionally, and the refrigerating capacity is extremely large.
  • the refrigerating capacity is remarkably large while the COP is comparable.
  • a working fluid composition for thermal cycling containing R125 and TFP can be an alternative working fluid useful in applications where R134a or R1234yf is used.
  • GWP is remarkably low and COP is equal to or higher than R134a that is conventionally used, and the heating capacity is extremely large.
  • R1234yf which will be used in the future, the heating capacity is significantly large while the COP is comparable. Therefore, the working medium composition for heat cycle containing R125 and TFP is used for car air conditioners and the like that are difficult to use the heating function of the internal combustion engine, such as hybrid cars and plug-in hybrid cars that are increasingly used in the future.
  • R134a and R1234yf can be useful alternative working media in applications.
  • COP refrigeration capacity or heating capacity
  • K temperature glide
  • Tables 12 to 14 show the results of the first cooling test, the second cooling test, and the heating test, respectively. Tables 12 to 14 also show the evaluation results of the temperature glide. As comparative objects, Tables 6 to 11 show the results of the same evaluations as in Examples 4-1 to 4-6 for the compositions of Comparative Example 3, Comparative Example 12, and Comparative Example 13.
  • the working medium composition for heat cycle containing R134a and TFP has a low GWP, an excellent refrigeration capacity, and a low temperature glide.
  • the working medium compositions of Examples 4-1 to 4-6 also had a high COP.
  • GWP is remarkably low and COP is equal to or higher than R410A used conventionally, and the temperature glide is sufficiently small. Further, it is clear that the compositions of Examples 4-1 and 4-2 are nonflammable in the combustion range test described later. Thus, a thermal cycle working medium composition containing R134a and TFP can be an alternative working medium useful in applications where R410A is used.
  • GWP is remarkably low and COP is equal to or higher than R134a that is conventionally used, and the refrigerating capacity is remarkably large.
  • COP is comparable and refrigerating capacity is remarkably large also with respect to R1234yf whose use will expand in the future. Therefore, the working medium composition for heat cycle containing R134a and TFP can be a useful working medium in applications where R134a alone or R1234yf is used.
  • GWP is remarkably low and COP is equivalent as compared with R134a used in the past, and heating capability is remarkably large, and COP is comparable to R1234yf whose use will be expanded in the future.
  • the heating capacity is remarkably large. Therefore, the working medium composition for heat cycle containing R134a and TFP is used for car air conditioners and the like that are difficult to use the heating function of an internal combustion engine such as hybrid cars and plug-in hybrid cars that are increasingly used in the future. It can be an alternative working medium useful in applications where R134a alone or R1234yf is used.
  • Pentafluoroethane (R125), 3,3,3-trifluoropropyne (TFP) 1,1,1,2-tetrafluoroethane (R134a) and difluoromethane (HFC-32) were prepared.
  • the working medium composition was prepared so as to have the composition ratio shown in FIG.
  • GWP is remarkably low and COP is equal to or higher than R410A used in the past, and temperature glide is sufficiently small.
  • a working fluid composition for thermal cycling containing R32, R125, and TFP and a working fluid composition for thermal cycling containing R32, R134a, and TFP are alternative working media useful in applications where R410A is used. It can be.
  • FIG. 3 shows an apparatus for performing the combustion test 2.
  • reference numeral 1 is an ignition source
  • 2 is a sample inlet
  • 3 is a spring
  • 4 is a 12-liter spherical glass flask
  • 5 is an electrode
  • 6 is a stirring means
  • 7 is a heat insulating chamber.
  • a spherical glass flask with an internal volume of 12 liters was used so that the state of combustion could be visually observed and recorded.
  • gas was released from the upper lid.
  • the ignition method was generated by discharge from an electrode held at a height of 1/3 from the bottom.
  • Test container 280mm ⁇ spherical shape (internal volume: 12 liters) ⁇ Test temperature: 60 °C ⁇ 3 °C ⁇ Pressure: 101.3 kPa ⁇ 0.7 kPa ⁇ Moisture: 0.0088g ⁇ 0.0005g / g dry air Composition / air mixing ratio: 1 vol.% Increments ⁇ 0.2 vol.% -Composition mixing: ⁇ 0.1% by weight ⁇ Ignition method: AC discharge, voltage 15 kV, current 30 mA, neon transformer ⁇ Electrode spacing: 6.4 mm (1/4 inch) -Spark: 0.4 seconds ⁇ 0.05 seconds As a criterion, it was determined that the flame spread (propagated) when the flame spread 90 degrees or more around the ignition point.
  • Table 16 shows the results of the combustion test 2. In this combustion test 2, as a comparison, the compositions of Reference Examples 1 to 4 were also tested.

Abstract

The present invention provides a heat-cycle working medium composition, the working medium composition having excellent refrigerant performance and being usable as a substitute for various existing refrigerants, and a heat cycle system using the composition. The heat-cycle working medium composition according to the present invention comprises a refrigerant containing 3,3,3-trifluoropropyne, and at least one compound selected from difluoromethane, pentafluoroethane, and 1,1,1,2-tetrafluoroethane, and satisfies (1) or (2) as follows: (1) the 3,3,3-trifluoropropyne content is 1 mass% or more with respect to the total mass of the compound and 3,3,3-trifluoropropyne; (2) the refrigerant is an azeotropic or azeotropic-like mixture.

Description

熱サイクル用作動媒体組成物及び熱サイクルシステムWorking medium composition for heat cycle and heat cycle system
 本発明は、熱サイクル用作動媒体組成物及び熱サイクルシステムに関する。 The present invention relates to a working medium composition for heat cycle and a heat cycle system.
 地球温暖化が深刻な問題として全世界で議論される中、環境への負担が少ない空調・冷凍装置等の熱サイクルシステムの開発は、益々重要性を増してきている。冷媒は、自身が持つ温暖化への影響度に加え、冷凍装置等の熱サイクルシステムの性能にも大きく関わる。よって、冷媒の選択は、温暖化に関与する二酸化炭素の発生量を削減するために重要な役割を果たす。 中 While global warming has been discussed as a serious problem all over the world, the development of heat cycle systems such as air conditioners and refrigeration systems that have less burden on the environment has become increasingly important. Refrigerants are greatly involved in the performance of thermal cycle systems such as refrigeration equipment, in addition to their impact on global warming. Therefore, the selection of the refrigerant plays an important role in reducing the amount of carbon dioxide generated that contributes to global warming.
 昨今、従来公知のクロロフルオロカーボン(CFC)、ハイドロクロロフルオロカーボン(HCFC)及びハイドロフルオロカーボン(HFC)に比べて地球温暖化係数(GWP)の低い冷媒が種々提案されている。このような冷媒として、ハイドロフルオロオレフィン(HFO)が知られており、例えば、2,3,3,3-テトラフルオロプロペン(HFO-1234yf)が提案されている(特許文献1、2等)。また、特許文献3には、フッ素化プロピンが提案されている(特許文献3等)。その他、GWPを低減するための冷媒として、炭化水素、二酸化炭素等の使用も提案されている。 Recently, various refrigerants having a low global warming potential (GWP) have been proposed as compared with conventionally known chlorofluorocarbon (CFC), hydrochlorofluorocarbon (HCFC) and hydrofluorocarbon (HFC). As such a refrigerant, hydrofluoroolefin (HFO) is known, and for example, 2,3,3,3-tetrafluoropropene (HFO-1234yf) has been proposed (Patent Documents 1, 2, etc.). Patent Document 3 proposes fluorinated propyne (Patent Document 3 and the like). In addition, the use of hydrocarbons, carbon dioxide or the like as a refrigerant for reducing GWP has been proposed.
国際公開第2005/105947号International Publication No. 2005/105947 国際公開第2006/094303号International Publication No. 2006/0943303 特開2011-38054号公報JP 2011-38054 A
 しかしながら、各種HFO冷媒は、冷媒能力や低燃焼性に限界があることから、更なる改善が求められている。また、炭化水素等の自然冷媒は、冷媒能力は高いものの、燃焼性が高いため、安全性等の観点から課題を有するものであった。 However, since various HFO refrigerants have limitations in refrigerant capacity and low combustibility, further improvements are required. In addition, natural refrigerants such as hydrocarbons have problems from the viewpoint of safety and the like because they have high refrigerant capacity but high combustibility.
 本発明は、上記に鑑みてなされたものであり、優れた冷媒性能を有し、既存の各種冷媒の代替として使用することができる熱サイクル用作動媒体組成物及びこの組成物を用いた熱サイクルシステムを提供することを目的とする。 The present invention has been made in view of the above, has an excellent refrigerant performance, and can be used as a substitute for various existing refrigerants, and a heat cycle working medium composition and a heat cycle using this composition The purpose is to provide a system.
 本発明者は、上記目的を達成すべく鋭意研究を重ねた結果、特定の冷媒を使用することにより、上記目的を達成できることを見出し、本発明を完成するに至った。 As a result of intensive studies to achieve the above object, the present inventor has found that the above object can be achieved by using a specific refrigerant, and has completed the present invention.
 すなわち、本発明は、例えば、以下の項に記載の主題を包含する。
項1
ジフルオロメタン、ペンタフルオロエタン及び1,1,1,2-テトラフルオロエタンから選択される少なくとも一種の化合物と、3,3,3-トリフルオロプロピンとを含む冷媒を含有し、
下記(1)又は(2)
(1)3,3,3-トリフルオロプロピンの含有量が、前記化合物及び3,3,3-トリフルオロプロピンの全質量に対して1質量%以上である、
(2)前記冷媒が共沸又は共沸様混合物である、
を満たす、熱サイクル用作動媒体組成物。
項2
ジフルオロメタン及び3,3,3-トリフルオロプロピンを含む冷媒を含有し、前記冷媒は、3,3,3-トリフルオロプロピンの含有量が、ジフルオロメタン及び3,3,3-トリフルオロプロピンの全質量に対して32~99質量%である、項1に記載の熱サイクル用作動媒体組成物。
項3
前記冷媒は、3,3,3-トリフルオロプロピンの含有量が、ジフルオロメタン及び3,3,3-トリフルオロプロピンの全質量に対して33~95質量%である、項2に記載の熱サイクル用作動媒体組成物。
項4
前記冷媒は、3,3,3-トリフルオロプロピンの含有量が、ジフルオロメタン及び3,3,3-トリフルオロプロピンの全質量に対して57質量%以上である、項2又は3に記載の熱サイクル用作動媒体組成物。
項5
前記冷媒は、3,3,3-トリフルオロプロピンの含有量が、ジフルオロメタン及び3,3,3-トリフルオロプロピンの全質量に対して79質量%以上である、項2~4のいずれか1項に記載の熱サイクル用作動媒体組成物。
項6
ジフルオロメタン及び3,3,3-トリフルオロプロピンを含む冷媒を含有し、
前記冷媒が共沸様混合物である、項2~5のいずれか1項に記載の熱サイクル用作動媒体組成物。
項7
前記冷媒は、ジフルオロメタン及び3,3,3-トリフルオロプロピンのみからなる、項1~6のいずれか1項に記載の熱サイクル用作動媒体組成物。
項8
ペンタフルオロエタン及び3,3,3-トリフルオロプロピンを含む冷媒を含有し、
前記冷媒が共沸又は共沸様混合物である、項1に記載の熱サイクル用作動媒体組成物。
項9
前記冷媒は、3,3,3-トリフルオロプロピンの含有量が、ペンタフルオロエタン及び3,3,3-トリフルオロプロピンの全質量に対して1~52質量%である、項8に記載の熱サイクル用作動媒体組成物。
項10
前記冷媒は、3,3,3-トリフルオロプロピンの含有量が、ペンタフルオロエタン及び3,3,3-トリフルオロプロピンの全質量に対して20~90質量%である、項8に記載の熱サイクル用作動媒体組成物。
項11
前記冷媒は、3,3,3-トリフルオロプロピンの含有量が、ペンタフルオロエタン及び3,3,3-トリフルオロプロピンの全質量に対して70~99質量%である、項8に記載の熱サイクル用作動媒体組成物。
項12
ペンタフルオロエタン、3,3,3-トリフルオロプロピン及びジフルオロメタンを含む冷媒を含有する、項1に記載の熱サイクル用作動媒体組成物。
項13
前記冷媒は、ペンタフルオロエタン、3,3,3-トリフルオロプロピン及びジフルオロメタンの全質量に対し、
ペンタフルオロエタンが30~98質量%、
3,3,3-トリフルオロプロピンが1~52質量%、及び、
ジフルオロメタンが1~63質量%である、
項12に記載の熱サイクル用作動媒体組成物。
項14
1,1,1,2-テトラフルオロエタン及び3,3,3-トリフルオロプロピンを含む冷媒を含有し、
前記冷媒は、3,3,3-トリフルオロプロピンの含有量が、1,1,1,2-テトラフルオロエタン及び3,3,3-トリフルオロプロピンの全質量に対して5~99質量%である、請求項1に記載の熱サイクル用作動媒体組成物。
項15
前記冷媒は、3,3,3-トリフルオロプロピンの含有量が、1,1,1,2-テトラフルオロエタン及び3,3,3-トリフルオロプロピンの全質量に対して5~40質量%である、項14に記載の熱サイクル用作動媒体組成物。
項16
前記冷媒は、3,3,3-トリフルオロプロピンの含有量が、1,1,1,2-テトラフルオロエタン及び3,3,3-トリフルオロプロピンの全質量に対して20~90質量%である、項14に記載の熱サイクル用作動媒体組成物。
項17
前記冷媒は、3,3,3-トリフルオロプロピンの含有量が、1,1,1,2-テトラフルオロエタン及び3,3,3-トリフルオロプロピンの全質量に対して70~99質量%である、項14に記載の熱サイクル用作動媒体組成物。
項18
前記冷媒は、ジフルオロメタンをさらに含み、
1,1,1,2-テトラフルオロエタン、3,3,3-トリフルオロプロピン及びジフルオロメタンの全質量に対し、
1,1,1,2-テトラフルオロエタンが50~98質量%、
3,3,3-トリフルオロプロピンが1~40質量%、及び、
ジフルオロメタンが1~43質量%である、項14に記載の熱サイクル用作動媒体組成物。
項19
ペンタフルオロエタン、ジフルオロメタン、1,1,1,2-テトラフルオロエタン及び3,3,3-トリフルオロプロピン以外の第三成分としてハイドロフルオロオレフィン(HFO)、ハイドロフルオロカーボン(HFC)、ハイドロクロロフルオロカーボン(HCFC)、クロロフルオロカーボン(CFC)、クロロフルオロオレフィン(CFO)、ハイドロクロロフルオロオレフィン(HCFO)、ヨウ化トリフルオロメタン及び二酸化炭素からなる群から選ばれる少なくとも一つを含む、項1~18に記載の熱サイクル用作動媒体組成物。
項20
項1~19のいずれか1項に記載の熱サイクル用作動媒体組成物を備える、熱サイクルシステム。
項21
項1~19のいずれか1項に記載の組成物のR22、R410A、R404A、R134a及びR1234yfのいずれかの冷媒を含む熱サイクル用作動媒体の代替としての使用。
That is, the present invention includes, for example, the subject matters described in the following sections.
Item 1
Containing a refrigerant containing at least one compound selected from difluoromethane, pentafluoroethane and 1,1,1,2-tetrafluoroethane, and 3,3,3-trifluoropropyne;
(1) or (2) below
(1) The content of 3,3,3-trifluoropropyne is 1% by mass or more based on the total mass of the compound and 3,3,3-trifluoropropyne.
(2) the refrigerant is an azeotropic or azeotrope-like mixture;
A working medium composition for heat cycle that satisfies
Item 2
A refrigerant comprising difluoromethane and 3,3,3-trifluoropropyne, wherein the refrigerant has a 3,3,3-trifluoropropyne content of difluoromethane and 3,3,3-trifluoropropyne. Item 2. The working medium composition for heat cycle according to Item 1, wherein the content is 32 to 99% by mass with respect to the total mass.
Item 3
Item 3. The heat according to Item 2, wherein the refrigerant has a content of 3,3,3-trifluoropropyne of 33 to 95% by mass with respect to the total mass of difluoromethane and 3,3,3-trifluoropropyne. Cycle working medium composition.
Item 4
Item 4. The refrigerant according to Item 2 or 3, wherein the content of 3,3,3-trifluoropropyne is 57% by mass or more based on the total mass of difluoromethane and 3,3,3-trifluoropropyne. Working medium composition for heat cycle.
Item 5
Item 2. The refrigerant according to any one of Items 2 to 4, wherein the content of 3,3,3-trifluoropropyne is 79% by mass or more based on the total mass of difluoromethane and 3,3,3-trifluoropropyne. 2. The working medium composition for heat cycle according to item 1.
Item 6
Containing a refrigerant comprising difluoromethane and 3,3,3-trifluoropropyne;
Item 6. The working medium composition for heat cycle according to any one of Items 2 to 5, wherein the refrigerant is an azeotrope-like mixture.
Item 7
Item 7. The working medium composition for heat cycle according to any one of Items 1 to 6, wherein the refrigerant comprises only difluoromethane and 3,3,3-trifluoropropyne.
Item 8
Containing a refrigerant comprising pentafluoroethane and 3,3,3-trifluoropropyne;
Item 2. The working medium composition for heat cycle according to Item 1, wherein the refrigerant is an azeotropic or azeotrope-like mixture.
Item 9
Item 9. The refrigerant according to Item 8, wherein the content of 3,3,3-trifluoropropyne is 1 to 52% by mass with respect to the total mass of pentafluoroethane and 3,3,3-trifluoropropyne. Working medium composition for heat cycle.
Item 10
Item 9. The refrigerant according to Item 8, wherein the content of 3,3,3-trifluoropropyne is 20 to 90% by mass with respect to the total mass of pentafluoroethane and 3,3,3-trifluoropropyne. Working medium composition for heat cycle.
Item 11
Item 9. The refrigerant according to Item 8, wherein the content of 3,3,3-trifluoropropyne is 70 to 99% by mass with respect to the total mass of pentafluoroethane and 3,3,3-trifluoropropyne. Working medium composition for heat cycle.
Item 12
Item 2. The working medium composition for heat cycle according to Item 1, comprising a refrigerant comprising pentafluoroethane, 3,3,3-trifluoropropyne and difluoromethane.
Item 13
The refrigerant is based on the total mass of pentafluoroethane, 3,3,3-trifluoropropyne and difluoromethane.
30 to 98% by mass of pentafluoroethane,
1 to 52% by weight of 3,3,3-trifluoropropyne, and
1 to 63% by mass of difluoromethane,
Item 13. The working medium composition for heat cycle according to Item 12.
Item 14
Containing a refrigerant comprising 1,1,1,2-tetrafluoroethane and 3,3,3-trifluoropropyne;
In the refrigerant, the content of 3,3,3-trifluoropropyne is 5 to 99 mass% with respect to the total mass of 1,1,1,2-tetrafluoroethane and 3,3,3-trifluoropropyne. The working medium composition for heat cycle according to claim 1, wherein
Item 15
The refrigerant has a 3,3,3-trifluoropropyne content of 5 to 40% by mass with respect to the total mass of 1,1,1,2-tetrafluoroethane and 3,3,3-trifluoropropyne. Item 15. The working medium composition for heat cycle according to Item 14, wherein
Item 16
The refrigerant has a content of 3,3,3-trifluoropropyne of 20 to 90% by mass with respect to the total mass of 1,1,1,2-tetrafluoroethane and 3,3,3-trifluoropropyne. Item 15. The working medium composition for heat cycle according to Item 14, wherein
Item 17
The refrigerant has a 3,3,3-trifluoropropyne content of 70 to 99% by mass with respect to the total mass of 1,1,1,2-tetrafluoroethane and 3,3,3-trifluoropropyne. Item 15. The working medium composition for heat cycle according to Item 14, wherein
Item 18
The refrigerant further includes difluoromethane,
For the total mass of 1,1,1,2-tetrafluoroethane, 3,3,3-trifluoropropyne and difluoromethane,
1,1,1,2-tetrafluoroethane is 50 to 98% by mass,
1 to 40% by weight of 3,3,3-trifluoropropyne, and
Item 15. The working medium composition for heat cycle according to Item 14, wherein difluoromethane is 1 to 43% by mass.
Item 19
Hydrofluoroolefin (HFO), hydrofluorocarbon (HFC), hydrochlorofluorocarbon as a third component other than pentafluoroethane, difluoromethane, 1,1,1,2-tetrafluoroethane and 3,3,3-trifluoropropyne The item 1 to 18, comprising at least one selected from the group consisting of (HCFC), chlorofluorocarbon (CFC), chlorofluoroolefin (CFO), hydrochlorofluoroolefin (HCFO), trifluoromethane iodide and carbon dioxide. A working medium composition for heat cycle.
Item 20
Item 20. A thermal cycle system comprising the thermal cycle working medium composition according to any one of Items 1 to 19.
Item 21
Item 20. Use of the composition according to any one of Items 1 to 19 as a substitute for a working medium for heat cycle including the refrigerant of any of R22, R410A, R404A, R134a, and R1234yf.
 本発明の熱サイクル用作動媒体組成物は、優れた冷媒性能を有し、既存の各種冷媒の代替として使用することができる。 The working medium composition for heat cycle of the present invention has excellent refrigerant performance and can be used as a substitute for various existing refrigerants.
TFPとR125との混合系の蒸気圧曲線を示すグラフである。It is a graph which shows the vapor pressure curve of the mixed system of TFP and R125. 実施例の燃焼試験1で使用した実験装置の概略図である。It is the schematic of the experimental apparatus used by the combustion test 1 of an Example. 実施例の燃焼試験2で使用した実験装置の概略図である。It is the schematic of the experimental apparatus used in the combustion test 2 of an Example.
 以下、本発明の実施形態について詳細に説明する。なお、本明細書中において、「含有」及び「含む」なる表現については、「含有」、「含む」、「実質的にからなる」及び「のみからなる」という概念を含む。 Hereinafter, embodiments of the present invention will be described in detail. In the present specification, the expressions “containing” and “including” include the concepts of “containing”, “including”, “consisting essentially of”, and “consisting only of”.
 以下、本発明に係る熱サイクル用作動媒体組成物の実施形態について詳細に説明する。なお、熱サイクル用作動媒体組成物を以下では「作動媒体組成物」と略記する。 Hereinafter, embodiments of the working medium composition for heat cycle according to the present invention will be described in detail. Hereinafter, the working medium composition for heat cycle is abbreviated as “working medium composition”.
 本発明の熱サイクル用作動媒体組成物は、ジフルオロメタン、ペンタフルオロエタン及び1,1,1,2-テトラフルオロエタンから選択される少なくとも一種の化合物と、3,3,3-トリフルオロプロピンとを含む冷媒を含有し、
下記(1)又は(2)
(1)3,3,3-トリフルオロプロピンの含有量が、前記化合物及び3,3,3-トリフルオロプロピンの全質量に対して1質量%以上である、
(2)前記冷媒が共沸又は共沸様混合物である、
を満たす。
The working fluid composition for heat cycle of the present invention comprises at least one compound selected from difluoromethane, pentafluoroethane and 1,1,1,2-tetrafluoroethane, and 3,3,3-trifluoropropyne. Containing refrigerant,
(1) or (2) below
(1) The content of 3,3,3-trifluoropropyne is 1% by mass or more based on the total mass of the compound and 3,3,3-trifluoropropyne.
(2) the refrigerant is an azeotropic or azeotrope-like mixture;
Meet.
 本発明の作動媒体組成物の「第1の実施形態」は、ジフルオロメタン及び3,3,3-トリフルオロプロピンを含む冷媒を含有し、3,3,3-トリフルオロプロピンの含有量が、ジフルオロメタン及び3,3,3-トリフルオロプロピンの全質量に対して32~99質量%である。 The “first embodiment” of the working medium composition of the present invention contains a refrigerant containing difluoromethane and 3,3,3-trifluoropropyne, and the content of 3,3,3-trifluoropropyne is It is 32-99 mass% with respect to the total mass of difluoromethane and 3,3,3-trifluoropropyne.
 本発明の作動媒体組成物の「第2の実施形態」は、ジフルオロメタン及び3,3,3-トリフルオロプロピンを含む冷媒を含有し、前記冷媒が共沸様混合物である。 The “second embodiment” of the working medium composition of the present invention contains a refrigerant containing difluoromethane and 3,3,3-trifluoropropyne, and the refrigerant is an azeotrope-like mixture.
 本発明の作動媒体組成物の「第3の実施形態」は、ペンタフルオロエタン及び3,3,3-トリフルオロプロピンを含む冷媒を含有し、前記冷媒が共沸又は共沸様混合物である。 The “third embodiment” of the working medium composition of the present invention contains a refrigerant containing pentafluoroethane and 3,3,3-trifluoropropyne, and the refrigerant is an azeotropic or azeotrope-like mixture.
 本発明の作動媒体組成物の「第4の実施形態」は、ペンタフルオロエタン及び3,3,3-トリフルオロプロピンを含む冷媒を含有し、前記冷媒は、ペンタフルオロエタン及び3,3,3-トリフルオロプロピン以外の第三成分としてハイドロフルオロオレフィン(HFO)、ハイドロフルオロカーボン(HFC)、ハイドロクロロフルオロカーボン(HCFC)、クロロフルオロカーボン(CFC)、クロロフルオロオレフィン(CFO)、ハイドロクロロフルオロオレフィン(HCFO)、ヨウ化トリフルオロメタン及び二酸化炭素からなる群から選ばれる少なくとも一つの化合物を含む。 The “fourth embodiment” of the working medium composition of the present invention contains a refrigerant containing pentafluoroethane and 3,3,3-trifluoropropyne, and the refrigerant includes pentafluoroethane and 3,3,3. -Hydrofluoroolefin (HFO), hydrofluorocarbon (HFC), hydrochlorofluorocarbon (HCFC), chlorofluorocarbon (CFC), chlorofluoroolefin (CFO), hydrochlorofluoroolefin (HCFO) as a third component other than trifluoropropyne And at least one compound selected from the group consisting of trifluoromethane iodide and carbon dioxide.
 本発明の作動媒体組成物の「第5の実施形態」は、1,1,1,2-テトラフルオロエタン及び3,3,3-トリフルオロプロピンを含む冷媒を含有し、3,3,3-トリフルオロプロピンの含有量が、1,1,1,2-テトラフルオロエタン及び3,3,3-トリフルオロプロピンの全質量に対して5~99質量%である。 The “fifth embodiment” of the working medium composition of the present invention contains a refrigerant containing 1,1,1,2-tetrafluoroethane and 3,3,3-trifluoropropyne, and 3,3,3 -The content of trifluoropropyne is 5 to 99 mass% with respect to the total mass of 1,1,1,2-tetrafluoroethane and 3,3,3-trifluoropropyne.
 また、以下では、ジフルオロメタンを「HFC-32」と、3,3,3-トリフルオロプロピンを「TFP」と、ペンタフルオロエタンを「R125」と、1,1,1,2-テトラフルオロエタンを「R134a」と表記することがある。 In the following, difluoromethane is “HFC-32”, 3,3,3-trifluoropropyne is “TFP”, pentafluoroethane is “R125”, 1,1,1,2-tetrafluoroethane. May be written as “R134a”.
 本明細書において温度グライド(Temperature Glide)とは、冷媒システムの構成要素内における作動媒体組成物の相変化過程の開始温度と終了温度の差の絶対値と言い換えることができる。 In this specification, the temperature glide can be rephrased as the absolute value of the difference between the start temperature and the end temperature of the phase change process of the working medium composition in the components of the refrigerant system.
 (第1の実施形態及び第2の実施形態)
 第1の実施形態の作動媒体組成物において冷媒は、3,3,3-トリフルオロプロピンの含有量が、ジフルオロメタン及び3,3,3-トリフルオロプロピンの全質量に対して32~99質量%であることで、燃焼性がTFP同等以下になりやすく、また、温度グライドもより小さくなり得るものとなり、また、高いCOP(成績係数)を有しやすくなる。
(First embodiment and second embodiment)
In the working medium composition of the first embodiment, the refrigerant has a content of 3,3,3-trifluoropropyne of 32 to 99 mass with respect to the total mass of difluoromethane and 3,3,3-trifluoropropyne. %, The combustibility tends to be equal to or less than that of TFP, the temperature glide can be further reduced, and a high COP (coefficient of performance) is likely to be obtained.
 第2の実施形態の作動媒体組成物において、共沸様混合物とは、この混合物を蒸留し凝縮するサイクルを繰り返してもその混合物の組成変動が少なく、例えば、組成変動が±2重量%の範囲におさまる組成物を意味する。以下、他の実施形態においても、共沸様混合物の定義は同じである。 In the working medium composition of the second embodiment, the azeotrope-like mixture means that the composition fluctuation of the mixture is small even when the cycle of distilling and condensing the mixture is repeated. It means a composition that fits. Hereinafter, also in other embodiments, the definition of an azeotrope-like mixture is the same.
 第2の実施形態の作動媒体組成物において冷媒は、例えば、TFPの含有量が、HFC-32及びTFPの全質量に対して0.01~40質量%である場合、共沸様混合物となりやすい。 In the working medium composition of the second embodiment, the refrigerant is likely to be an azeotrope-like mixture, for example, when the TFP content is 0.01 to 40% by mass with respect to the total mass of HFC-32 and TFP. .
 第2の実施形態の作動媒体組成物では、前記温度グライドは5K以下となり得る。 In the working medium composition of the second embodiment, the temperature glide can be 5K or less.
 第1の実施形態の作動媒体組成物及び第2の実施形態の作動媒体組成物をまとめて「第1及び第2実施形態の作動媒体組成物」と表記する。 The working medium composition of the first embodiment and the working medium composition of the second embodiment are collectively referred to as “the working medium composition of the first and second embodiments”.
 第1及び第2実施形態の作動媒体組成物において冷媒は、TFPの含有量が、HFC-32及びTFPの全質量に対して33~95質量%であることが好ましい。この場合、燃焼性がより低くなりやすく、また、温度グライドもより小さくなり得る。特に、この作動媒体組成物は、HFC-32単独又はTFP単独の場合に比べても低い燃焼性となり得るものである。 In the working medium compositions of the first and second embodiments, the refrigerant preferably has a TFP content of 33 to 95% by mass with respect to the total mass of HFC-32 and TFP. In this case, the combustibility tends to be lower, and the temperature glide can be smaller. In particular, this working medium composition can be less combustible than HFC-32 alone or TFP alone.
 TFPの含有量の上限が、HFC-32及びTFPの全質量に対して95質量%であることは、作動媒体組成物の燃焼性を低減するために特に有効である。 It is particularly effective to reduce the combustibility of the working medium composition that the upper limit of the TFP content is 95% by mass with respect to the total mass of HFC-32 and TFP.
 TFPの含有量が、HFC-32及びTFPの全質量に対して57質量%以上であることが好ましい。この場合、低燃焼性及び低温度グライドに加えてGWPが低くなりやすく、例えば、300以下のGWPとなり得る。この場合のTFPの含有量の上限は、HFC-32及びTFPの全質量に対して99質量%であってもよいし、あるいは、95質量%であってもよい。 The TFP content is preferably 57% by mass or more based on the total mass of HFC-32 and TFP. In this case, GWP tends to be low in addition to low combustibility and low temperature glide, and can be, for example, a GWP of 300 or less. In this case, the upper limit of the TFP content may be 99% by mass or 95% by mass with respect to the total mass of HFC-32 and TFP.
 TFPの含有量は、HFC-32及びTFPの全質量に対して79質量%以上であることが好ましい。この場合、低燃焼性及び低温度グライドに加えてGWPが低くなりやすく、例えば、150以下のGWPとなり得る。この場合のTFPの含有量の上限は、HFC-32及びTFPの全質量に対して99質量%であってもよいし、あるいは、95質量%であってもよい。 The content of TFP is preferably 79% by mass or more based on the total mass of HFC-32 and TFP. In this case, in addition to the low flammability and the low temperature glide, the GWP tends to be low, and for example, the GWP can be 150 or less. In this case, the upper limit of the TFP content may be 99% by mass or 95% by mass with respect to the total mass of HFC-32 and TFP.
 別の観点において、第1及び第2実施形態の作動媒体組成物では、低燃焼性及び低温度グライドに加えて、COP(成績係数)及び冷凍能力の両方が、例えば、既存の冷媒であるR410Aと比べて高くなりやすい。この場合のTFPの含有量としては、特に、HFC-32及びTFPの全質量に対して32~40質量%であることが好ましい。 In another aspect, in the working medium compositions of the first and second embodiments, in addition to low flammability and low temperature glide, both COP (coefficient of performance) and refrigeration capacity are, for example, R410A, which is an existing refrigerant. It tends to be higher than In this case, the content of TFP is particularly preferably 32 to 40% by mass with respect to the total mass of HFC-32 and TFP.
 さらに別の観点において、第1及び第2実施形態の作動媒体組成物では、低燃焼性及び低温度グライドに加えて、COP(成績係数)及び冷凍能力の両方が、例えば、既存の冷媒であるR404Aと比べて高くなりやすく、また、吐出温度および吐出圧力もR404A同等になり得る。そのため、作動媒体組成物は、冷凍冷蔵用途に特に好適である。この場合のTFPの含有量としては、特に、HFC-32及びTFPの全質量に対して85~99質量%であることが好ましい。 In yet another aspect, in the working medium compositions of the first and second embodiments, in addition to low flammability and low temperature glide, both COP (coefficient of performance) and refrigeration capacity are, for example, existing refrigerants. Compared to R404A, it tends to be higher, and the discharge temperature and discharge pressure can be equivalent to R404A. Therefore, the working medium composition is particularly suitable for freezing and refrigeration applications. In this case, the content of TFP is particularly preferably 85 to 99% by mass with respect to the total mass of HFC-32 and TFP.
 第1及び第2実施形態の作動媒体組成物において冷媒は、HFC-32及びTFP以外に、必要に応じて冷媒機能を有する他の成分(以下、「第三成分」)を含むことができる。第三成分の適切な選択により、さらなるGWPの低減、燃焼性の低減や不燃化、性能の向上が可能であり、また、冷凍機油を用いる場合はその冷凍機油と作動媒体組成物との相溶性の調整も容易になりやすい。その他、第三成分の選択により種々の目的が達成され得る。 In the working medium compositions of the first and second embodiments, the refrigerant can contain other components having a refrigerant function (hereinafter referred to as “third component”) as necessary in addition to HFC-32 and TFP. Appropriate selection of the third component can further reduce GWP, reduce combustibility, make it nonflammable, and improve performance. When using refrigerating machine oil, the compatibility between the refrigerating machine oil and the working medium composition Adjustment is easy. In addition, various objects can be achieved by selecting the third component.
 第三成分としては、冷媒機能を有する成分であって、HFC-32及びTFP以外の成分であれば、その種類は特に限定されない。このような第三成分としては、例えば、フッ素基を有する炭化水素が挙げられる。フッ素基を有する炭化水素の具体例として、ハイドロフルオロオレフィン(HFO)、ハイドロフルオロカーボン(HFC)、ハイドロクロロフルオロカーボン(HCFC)、クロロフルオロカーボン(CFC)、クロロフルオロオレフィン(CFO)、ハイドロクロロフルオロオレフィン(HCFO)、ヨウ化トリフルオロメタン等の化合物を挙げることができる。その他、第三成分は、二酸化炭素であってもよい。 The third component is a component having a refrigerant function and is not particularly limited as long as it is a component other than HFC-32 and TFP. An example of such a third component is a hydrocarbon having a fluorine group. Specific examples of the hydrocarbon having a fluorine group include hydrofluoroolefin (HFO), hydrofluorocarbon (HFC), hydrochlorofluorocarbon (HCFC), chlorofluorocarbon (CFC), chlorofluoroolefin (CFO), hydrochlorofluoroolefin (HCFO). ), And compounds such as iodinated trifluoromethane. In addition, the third component may be carbon dioxide.
 HFCとしては、HFC-134a、HFC-125等の分子式C(6-x)(ただし、x=1~5)で表されるハイドロフルオロエタン類、HFC-245fa等の分子式C(8-y)(ただしy=1~7)で表されるハイドロフルオロプロパン類、HFC-365mfc等の分子式C(8-z)(ただし、z=1~9)で表されるハイドロフルオロブタン類等が例示される。 Examples of HFC include hydrofluoroethanes represented by molecular formulas C 2 H x F (6-x) (where x = 1 to 5) such as HFC-134a and HFC-125, and molecular formulas C 3 such as HFC-245fa. Hydrofluoropropanes represented by H y F (8-y) (where y = 1 to 7), molecular formulas such as HFC-365mfc C 4 H z F (8-z) (where z = 1 to 9) The hydrofluorobutane etc. which are represented by these are illustrated.
 HFOとしては、フッ素基を有する炭素数2以上のハロオレフィン、好ましくはフッ素基を有する炭素数3以上のハロオレフィンが挙げられる。これらの化合物はいずれも、その異性体の種類については特に制限されない。HFOの具体例としては、フルオロエチレン(HFO-1141)、トランス-1,2-ジフルオロエチレン(HFO-1132E)、シス-1,2-ジフルオロエチレン(HFO-1132Z)、1,1-ジフルオロエチレン(HFO-1132a)、トリフルオロエチレン(HFO-1123)、2,3,3,3-テトラフルオロプロペン(HFO-1234yf)、1,3,3,3-テトラフルオロプロペン(HFO-1234ze)、1,2,3,3-テトラフルオロプロペン(HFO-1234ye)、1,1,2,3-テトラフルオロプロペン(HFO-1234yc)、1,2,3,3,3-ペンタフルオロプロペン(HFO-1225ye)、1,1,3,3,3-ペンタフルオロプロペン(HFO-1225zc)、3,3,3-トリフルオロプロペン(HFO-1243zf)、1,1,1,4,4,4-ヘキサフルオロ-2-ブテン(HFO-1336mzz)等が例示される。 Examples of HFO include haloolefins having 2 or more carbon atoms having a fluorine group, preferably haloolefins having 3 or more carbon atoms having a fluorine group. In any of these compounds, the type of isomer is not particularly limited. Specific examples of HFO include fluoroethylene (HFO-1141), trans-1,2-difluoroethylene (HFO-1132E), cis-1,2-difluoroethylene (HFO-1132Z), 1,1-difluoroethylene ( HFO-1132a), trifluoroethylene (HFO-1123), 2,3,3,3-tetrafluoropropene (HFO-1234yf), 1,3,3,3-tetrafluoropropene (HFO-1234ze), 1, 2,3,3-tetrafluoropropene (HFO-1234ye), 1,1,2,3-tetrafluoropropene (HFO-1234yc), 1,2,3,3,3-pentafluoropropene (HFO-1225ye) 1,1,3,3,3-pentafluoropropene (HFO-1225zc), 3, , 3-trifluoropropene (-HFO 1243zf), 1,1,1,4,4,4- hexafluoro-2-butene (HFO-1336mzz) and the like.
 第三成分は、1種又は2種以上の化合物を含むことができる。 The third component can contain one or more compounds.
 第1及び第2実施形態の作動媒体組成物において、冷媒が、HFC-32及びTFPに加えて第三成分を含む場合、本発明の効果が阻害されない限りは、第三成分の各含有量は特に限定されない。 In the working medium compositions of the first and second embodiments, when the refrigerant contains a third component in addition to HFC-32 and TFP, each content of the third component is as long as the effect of the present invention is not hindered. There is no particular limitation.
 第1及び第2実施形態の作動媒体組成物は、冷媒がHFC-32及びTFPのみからなることも好ましい。言い換えれば、本実施形態の作動媒体組成物は、HFC-32及びTFPの合計量が、冷媒の全質量に対して100質量%であることも好ましい。また、冷媒が実質的に、HFC-32及びTFPのみからなることも好ましい。さらに、第1及び第2実施形態の作動媒体組成物において、冷媒が、HFC-32及びTFPに加えて第三成分を含む場合、本発明の効果が阻害されない限りは、第三成分の各含有量は特に限定されないが、冷媒中の第三成分の含有量は好ましくは0.5質量%以下、より好ましくは0.3質量%以下、特に好ましくは0.1質量%以下である。この場合、作動媒体組成物は、低燃焼性及び低温度グライドに加えて、例えば、HFC-32単独に比べて高いCOP(成績係数)を有しやすく、R410A等の代替として好適となる。 In the working medium compositions of the first and second embodiments, it is also preferable that the refrigerant consists of only HFC-32 and TFP. In other words, in the working medium composition of the present embodiment, the total amount of HFC-32 and TFP is also preferably 100% by mass with respect to the total mass of the refrigerant. It is also preferred that the refrigerant consists essentially of HFC-32 and TFP. Furthermore, in the working medium compositions of the first and second embodiments, when the refrigerant contains a third component in addition to HFC-32 and TFP, each of the third components is contained unless the effect of the present invention is inhibited. Although the amount is not particularly limited, the content of the third component in the refrigerant is preferably 0.5% by mass or less, more preferably 0.3% by mass or less, and particularly preferably 0.1% by mass or less. In this case, the working medium composition tends to have a higher COP (coefficient of performance) than, for example, HFC-32 alone, in addition to low combustibility and low temperature glide, and is suitable as an alternative to R410A and the like.
 第1及び第2実施形態の作動媒体組成物は、燃焼速度が、例えば、3.9cm/sec以下となり得る。燃焼速度がこの範囲であることで、優れた低燃焼性が確保される。燃焼速度は、3.6cm/sec以下であることが好ましく、2.0cm/sec以下であることがさらに好ましく、1.0cm/sec以下であることが特に好ましい。 The working medium composition of the first and second embodiments can have a combustion rate of, for example, 3.9 cm / sec or less. When the combustion speed is within this range, excellent low combustibility is ensured. The burning rate is preferably 3.6 cm / sec or less, more preferably 2.0 cm / sec or less, and particularly preferably 1.0 cm / sec or less.
 ここでいう燃焼速度は、ASHRAE Standard34-2013および、ASHRAE Standard34-2013 Appendix B2に従った装置と方法で測定される値である。 The burning rate referred to here is a value measured by an apparatus and method according to ASHRAE Standard 34-2013 and ASHRAE Standard 34-2013 Appendix B2.
 第1及び第2実施形態の作動媒体組成物において冷媒は、HFC-32及びTFPを必須の成分とする。これにより、作動媒体組成物は、優れた冷媒能力を有し、低燃焼性でありながらGWPが低く、かつ、温度グライドも小さい。そのため、本実施形態の作動媒体組成物によれば、環境負荷をより低減できると共に、既存の冷媒の代替として適用することができる。例えば、既存の冷媒であるR410A、R404A、R22等の代替として、本実施形態の作動媒体組成物を使用することができる。 In the working medium compositions of the first and second embodiments, the refrigerant contains HFC-32 and TFP as essential components. As a result, the working medium composition has an excellent refrigerant capacity, low combustibility, low GWP, and low temperature glide. Therefore, according to the working medium composition of the present embodiment, the environmental load can be further reduced, and it can be applied as an alternative to the existing refrigerant. For example, the working medium composition of the present embodiment can be used as an alternative to the existing refrigerants R410A, R404A, R22, and the like.
 第1及び第2実施形態の作動媒体組成物の調製方法は、特に限定されない。例えば、HFC-32及びTFPを所定の割合で混合することで作動媒体組成物を調製することができる。また、必要に応じて、所定量の第三成分や添加剤を加えてもよい。 The method for preparing the working medium composition of the first and second embodiments is not particularly limited. For example, the working medium composition can be prepared by mixing HFC-32 and TFP at a predetermined ratio. Moreover, you may add a predetermined amount of 3rd components and additives as needed.
 HFC-32及びTFPの製造方法も特に限定されず、例えば、公知の製造方法によりHFC-32及びTFPを製造し、これらを作動媒体組成物に適用できる。 The production method of HFC-32 and TFP is not particularly limited, and for example, HFC-32 and TFP can be produced by a known production method, and these can be applied to the working medium composition.
 (第3および第4の実施形態)
 図1の蒸気圧曲線に示すように、第3の実施形態の作動媒体組成物において、TFPとR125(ペンタフルオロエタン)は任意の組成比で共沸様組成物を形成することができる。したがって、第3の実施形態の作動媒体組成物は、任意の組成比において温度グライドが小さくかつ、TFP単独よりも燃焼性が低い。
(Third and fourth embodiments)
As shown in the vapor pressure curve of FIG. 1, in the working medium composition of the third embodiment, TFP and R125 (pentafluoroethane) can form an azeotrope-like composition at an arbitrary composition ratio. Therefore, the working medium composition of the third embodiment has a small temperature glide at an arbitrary composition ratio and lower combustibility than TFP alone.
 第3の実施形態の作動媒体組成物では、前記温度グライドは5K以下となり得る。 In the working medium composition of the third embodiment, the temperature glide can be 5K or less.
 第3の実施形態の作動媒体組成物において冷媒は、TFPの含有量が、R125及びTFPの全質量に対して1~52質量%であることが好ましい。この場合、燃焼性がより低くなりやすく、特に不燃組成となりやすい。また、TFPの含有量が、前記範囲である場合、温度グライドもより小さくなり得る。特に、この作動媒体組成物は、R125単独又はTFP単独の場合に比べても低い燃焼性となり得るものである。 In the working medium composition of the third embodiment, the refrigerant preferably has a TFP content of 1 to 52 mass% with respect to the total mass of R125 and TFP. In this case, combustibility tends to be lower, and in particular, an incombustible composition tends to be obtained. Moreover, when content of TFP is the said range, a temperature glide can also become smaller. In particular, this working medium composition can be less combustible than R125 alone or TFP alone.
 TFPの含有量の上限が、R125及びTFPの全質量に対して52質量%であることは、作動媒体組成物の燃焼性を低減するために特に有効である。 It is particularly effective for the upper limit of the TFP content to be 52% by mass with respect to the total mass of R125 and TFP in order to reduce the combustibility of the working medium composition.
 第3の実施形態の作動媒体組成物は、別の観点において、冷媒は、TFPの含有量が、R125及びTFPの全質量に対して20~90質量%であることも好ましい。この場合、第3の実施形態の作動媒体組成物は、低燃焼性及び低温度グライドに加えてGWPが小さくなるので、R410A、R404A、R22及びR407系等の代替冷媒として使用することができる。 In another aspect of the working medium composition of the third embodiment, the refrigerant preferably has a TFP content of 20 to 90% by mass with respect to the total mass of R125 and TFP. In this case, the working medium composition of the third embodiment can be used as an alternative refrigerant such as R410A, R404A, R22, and R407 because the GWP becomes small in addition to low combustibility and low temperature glide.
 第3の実施形態の作動媒体組成物において冷媒は、TFPの含有量が、R125及びTFPの全質量に対して58質量%以上である場合には、GWP値が1500以下となり、R125単独に比べ環境負荷が低い冷媒となり得る。 In the working medium composition of the third embodiment, the refrigerant has a GWP value of 1500 or less when the content of TFP is 58% by mass or more with respect to the total mass of R125 and TFP, compared to R125 alone. It can be a refrigerant with low environmental impact.
 第3の実施形態の作動媒体組成物において冷媒は、TFPの含有量が、R125及びTFPの全質量に対して70~99質量%であることも好ましい。この場合、第3の実施形態の作動媒体組成物は、低燃焼性及び低温度グライドに加えて特にGWPが小さくなるので、R134a及びR1234yf等の代替冷媒として使用することができる。さらにこの場合、冷凍能力および暖房能力の両方が、例えば、既存の冷媒であるR134a及びR1234yfと比べて顕著に高くなりやすく、吐出温度もR134a及びR1234yfと同等になり得る。従って、TFPの含有量が、R125及びTFPの全質量に対して70~99質量%である作動媒体組成物は、カーエアコン用途に特に好適であり、特に、暖房能力が高いことから、電気自動車、プラグインハイブリッド車など内燃機関の熱を暖房に利用することが従来困難であったカーエアコン用途に適している。TFPの含有量が、R125及びTFPの全質量に対して90~99質量%であることが特に好ましい。 In the working medium composition of the third embodiment, the refrigerant preferably has a TFP content of 70 to 99% by mass with respect to the total mass of R125 and TFP. In this case, the working medium composition of the third embodiment has a particularly low GWP in addition to low flammability and low temperature glide, and therefore can be used as an alternative refrigerant such as R134a and R1234yf. Furthermore, in this case, both the refrigerating capacity and the heating capacity are likely to be significantly higher than, for example, the existing refrigerants R134a and R1234yf, and the discharge temperature can be equal to R134a and R1234yf. Therefore, the working medium composition having a TFP content of 70 to 99% by mass with respect to the total mass of R125 and TFP is particularly suitable for car air-conditioner applications, and particularly has a high heating capacity. It is suitable for car air-conditioner applications where it has been difficult to use the heat of an internal combustion engine for heating, such as a plug-in hybrid vehicle. It is particularly preferable that the content of TFP is 90 to 99% by mass with respect to the total mass of R125 and TFP.
 第3の実施形態の作動媒体組成物において冷媒は、TFPの含有量が、R125及びTFPの全質量に対して79質量%以上である場合、750以下のGWPとなり得る。第3の実施形態の作動媒体組成物において冷媒は、TFPの含有量が、R125及びTFPの全質量に対して92質量%以上である場合、300以下のGWPとなり得る。第3の実施形態の作動媒体組成物は、TFPの含有量が、R125及びTFPの全質量に対して96質量%以上である場合、150以下のGWPとなり得る。 In the working medium composition of the third embodiment, the refrigerant can be a GWP of 750 or less when the TFP content is 79% by mass or more with respect to the total mass of R125 and TFP. In the working medium composition of the third embodiment, the refrigerant can be a GWP of 300 or less when the TFP content is 92% by mass or more with respect to the total mass of R125 and TFP. When the content of TFP is 96% by mass or more with respect to the total mass of R125 and TFP, the working medium composition of the third embodiment can have a GWP of 150 or less.
 別の観点において、第3の実施形態の作動媒体組成物では、低燃焼性及び低温度グライドに加えて、COP(成績係数)及び冷凍能力の一方又は両方が、例えば、既存の冷媒であるR410Aと比べて高くなりやすい。この場合のTFPの含有量としては、特に、R125及びTFPの全質量に対して50~80質量%とすることができる。 In another aspect, in the working medium composition of the third embodiment, in addition to low flammability and low temperature glide, one or both of COP (coefficient of performance) and refrigeration capacity is, for example, R410A which is an existing refrigerant. It tends to be higher than In this case, the content of TFP can be 50 to 80% by mass with respect to the total mass of R125 and TFP.
 さらに別の観点において、第3の実施形態の作動媒体組成物では、低燃焼性及び低温度グライドに加えて、COP(成績係数)及び冷凍能力の一方又は両方が、例えば、既存の冷媒であるR404Aと比べて高くなりやすく、また、吐出温度および吐出圧力もR404A同等になり得る。そのため、作動媒体組成物は、冷凍冷蔵用途に特に好適である。この場合のTFPの含有量としては、特に、R125及びTFPの全質量に対して50~70質量%とすることができる。 In another aspect, in the working medium composition of the third embodiment, in addition to low flammability and low temperature glide, one or both of COP (coefficient of performance) and refrigeration capacity are, for example, existing refrigerants. Compared to R404A, it tends to be higher, and the discharge temperature and discharge pressure can be equivalent to R404A. Therefore, the working medium composition is particularly suitable for freezing and refrigeration applications. In this case, the content of TFP can be 50 to 70% by mass with respect to the total mass of R125 and TFP.
 第3の実施形態の作動媒体組成物は、R125及びTFP以外に、必要に応じて、冷媒機能を有する他の成分としての第三成分を含むことができる。第三成分の適切な選択により、さらなるGWPの低減、燃焼性の低減や不燃化、性能の向上が可能であり、また、冷凍機油を用いる場合はその冷凍機油と作動媒体組成物との相溶性の調整も容易になりやすい。その他、第三成分の選択により種々の目的が達成され得る。 The working medium composition of the third embodiment can contain, in addition to R125 and TFP, a third component as another component having a refrigerant function, if necessary. Appropriate selection of the third component can further reduce GWP, reduce combustibility, make it nonflammable, and improve performance. When using refrigerating machine oil, the compatibility between the refrigerating machine oil and the working medium composition Adjustment is easy. In addition, various objects can be achieved by selecting the third component.
 第3の実施形態の作動媒体組成物に含まれる第三成分の種類は、第1及び第2実施形態の作動媒体組成物に含まれる第三成分と同様の種類を挙げることができる。 The kind of the third component contained in the working medium composition of the third embodiment can be the same kind as the third component contained in the working medium composition of the first and second embodiments.
 例えば、第3の実施形態の作動媒体組成物において、冷媒は、R125及びTFP以外の第三成分として、ハイドロフルオロオレフィン(HFO)、ハイドロフルオロカーボン(HFC)、ハイドロクロロフルオロカーボン(HCFC)、クロロフルオロカーボン(CFC)、クロロフルオロオレフィン(CFO)、ハイドロクロロフルオロオレフィン(HCFO)、ヨウ化トリフルオロメタン及び二酸化炭素からなる群から選ばれる少なくとも一つの化合物を含むことができる。第3の実施形態の作動媒体組成物において、冷媒が前記第三成分を含む場合は、第3の実施形態の作動媒体組成物は、第4の実施形態と同様である。 For example, in the working medium composition of the third embodiment, the refrigerant may be hydrofluoroolefin (HFO), hydrofluorocarbon (HFC), hydrochlorofluorocarbon (HCFC), chlorofluorocarbon (third component other than R125 and TFP). CFC), chlorofluoroolefin (CFO), hydrochlorofluoroolefin (HCFO), iodinated trifluoromethane, and at least one compound selected from the group consisting of carbon dioxide can be included. In the working medium composition of the third embodiment, when the refrigerant contains the third component, the working medium composition of the third embodiment is the same as that of the fourth embodiment.
 第4の実施形態の作動媒体組成物は、3,3,3-トリフルオロプロピンの含有量は、ペンタフルオロエタン及び3,3,3-トリフルオロプロピンの全質量に対して5~99質量%とすることができる。つまり、第4の実施形態の作動媒体組成物では、ペンタフルオロエタン及び3,3,3-トリフルオロプロピンが共沸又は共沸様混合物とは限らず、非共沸混合物ともなり得る。 In the working medium composition of the fourth embodiment, the content of 3,3,3-trifluoropropyne is 5 to 99% by mass with respect to the total mass of pentafluoroethane and 3,3,3-trifluoropropyne. It can be. That is, in the working medium composition of the fourth embodiment, pentafluoroethane and 3,3,3-trifluoropropyne are not limited to azeotropic or azeotrope-like mixtures but can be non-azeotropic mixtures.
 第4の実施形態の作動媒体組成物において、前記第三成分は、1種又は2種以上の化合物を含むことができる。 In the working medium composition according to the fourth embodiment, the third component may include one or more compounds.
 第4の実施形態の作動媒体組成物において、第三成分の各含有量は特に限定されない。 In the working medium composition of the fourth embodiment, each content of the third component is not particularly limited.
 第4の実施形態の作動媒体組成物において、第三成分がジフルオロメタン(HFC-32)であることが好ましい。この場合、第3の実施形態の作動媒体組成物は、低燃焼性及び低温度グライドに加えて、COP(成績係数)及び冷凍能力の一方又は両方が、例えば、既存の冷媒であるR410Aと比べて高くなりやすく、また、吐出温度及び吐出圧力もR410A同等になり得る。そのため、第三成分としてHFC-32を含む第3の実施形態の作動媒体組成物は、R410Aに比べGWPが低く、かつ、R410A代替の使用として好適である。 In the working medium composition of the fourth embodiment, the third component is preferably difluoromethane (HFC-32). In this case, in the working medium composition of the third embodiment, in addition to low combustibility and low temperature glide, one or both of COP (coefficient of performance) and refrigeration capacity are compared with, for example, R410A which is an existing refrigerant. The discharge temperature and discharge pressure can be equivalent to R410A. Therefore, the working medium composition of the third embodiment containing HFC-32 as the third component has a lower GWP than R410A and is suitable for use as an alternative to R410A.
 HFC-32を含む第4の実施形態の作動媒体組成物において冷媒は、R125、TFP及びHFC-32の全質量に対し、R125が30~98質量%、TFPが1~60質量%、及び、HFC-32が1~69質量%とすることができ、不燃組成になりやすい観点からは、R125が30~98質量%、TFPが1~52質量%、及び、HFC-32が1~63質量%であることが好ましく、R125が37~98質量%、TFPが1~40質量%、及び、HFC-32が1~50質量%であることがより好ましく、R125が40~98質量%、TFPが1~40質量%、及び、HFC-32が1~50質量%であることが特に好ましい。 In the working medium composition of the fourth embodiment containing HFC-32, the refrigerant is 30 to 98% by mass of R125, 1 to 60% by mass of TFP, and 1 to 60% by mass of the total mass of R125, TFP and HFC-32. HFC-32 can be 1 to 69% by mass, and from the viewpoint of easily becoming an incombustible composition, R125 is 30 to 98% by mass, TFP is 1 to 52% by mass, and HFC-32 is 1 to 63% by mass. R125 is 37 to 98% by mass, TFP is 1 to 40% by mass, and HFC-32 is more preferably 1 to 50% by mass, R125 is 40 to 98% by mass, TFP Is 1 to 40% by mass, and HFC-32 is particularly preferably 1 to 50% by mass.
 GWPが1600以下になりやすいという観点からは、R125、TFP及びHFC-32の全質量に対し、R125が37~70質量%、TFPが1~30質量%、及び、HFC-32が1~33質量%であることが好ましい。 From the viewpoint that GWP tends to be 1600 or less, R125 is 37 to 70% by mass, TFP is 1 to 30% by mass, and HFC-32 is 1 to 33% with respect to the total mass of R125, TFP and HFC-32. It is preferable that it is mass%.
 HFC-32を含む第4の実施形態の作動媒体組成物は、低燃焼性でありながらGWPが低く、かつ、温度グライドも小さいという観点では、R125、TFP及びHFC-32の全質量に対し、R125が30~98質量%、TFPが1~51質量%、及び、HFC-32が1~63質量%であることが好ましく、R125が48~98質量%、TFPが1~51質量%、及び、HFC-32が1~51質量%であることがより好ましい。 The working medium composition of the fourth embodiment containing HFC-32 is low in flammability, has a low GWP, and has a low temperature glide, with respect to the total mass of R125, TFP and HFC-32. R125 is preferably 30 to 98% by mass, TFP is 1 to 51% by mass, and HFC-32 is preferably 1 to 63% by mass, R125 is 48 to 98% by mass, TFP is 1 to 51% by mass, and More preferably, HFC-32 is 1 to 51% by mass.
 第3の実施形態及び第4の実施形態の作動媒体組成物は、燃焼速度が、例えば、3.9cm/sec以下となり得る。燃焼速度がこの範囲であることで、優れた低燃焼性が確保される。燃焼速度は、3.6cm/sec以下であることが好ましく、2.0cm/sec以下であることがさらに好ましく、1.0cm/sec以下であることが特に好ましい。 The working medium compositions of the third embodiment and the fourth embodiment can have a combustion rate of, for example, 3.9 cm / sec or less. When the combustion speed is within this range, excellent low combustibility is ensured. The burning rate is preferably 3.6 cm / sec or less, more preferably 2.0 cm / sec or less, and particularly preferably 1.0 cm / sec or less.
 第3の実施形態及び第4の実施形態の作動媒体組成物において冷媒は、R125及びTFPを必須の成分とする。これにより、作動媒体組成物は、優れた冷媒能力を有し、低燃焼性でありながらGWPが低く、かつ、温度グライドも小さい。そのため、第3の実施形態の作動媒体組成物によれば、環境負荷をより低減できると共に、既存の冷媒の代替として適用することができる。例えば、既存の冷媒であるR410A、R404A、R22、R134a、R1234yf等の代替として、本実施形態の作動媒体組成物を使用することができる。 In the working medium composition of the third embodiment and the fourth embodiment, the refrigerant includes R125 and TFP as essential components. As a result, the working medium composition has an excellent refrigerant capacity, low combustibility, low GWP, and low temperature glide. Therefore, according to the working-medium composition of 3rd Embodiment, while being able to reduce an environmental load more, it can apply as a substitute of the existing refrigerant | coolant. For example, the working medium composition of the present embodiment can be used as an alternative to the existing refrigerants R410A, R404A, R22, R134a, R1234yf, and the like.
 第3の実施形態及び第4の実施形態の作動媒体組成物の調製方法は、特に限定されない。例えば、R125及びTFPを所定の割合で混合することで作動媒体組成物を調製することができる。また、必要に応じて、所定量の第三成分や添加剤を加えてもよい。 The method for preparing the working medium composition of the third embodiment and the fourth embodiment is not particularly limited. For example, a working medium composition can be prepared by mixing R125 and TFP at a predetermined ratio. Moreover, you may add a predetermined amount of 3rd components and additives as needed.
 R125及びTFPの製造方法も特に限定されず、例えば、公知の製造方法によりR125及びTFPを製造できる。 The production method of R125 and TFP is not particularly limited, and for example, R125 and TFP can be produced by a known production method.
 (第5の実施形態)
 第5の実施形態の作動媒体組成物において冷媒は、TFPの含有量が、R134a及びTFPの全質量に対して5~99質量%であることで、燃焼性がTFP同等以下になりやすく、また、温度グライドもより小さくなり得るものとなり、また、高いCOP(成績係数)を有しやすくなる。
(Fifth embodiment)
In the working medium composition of the fifth embodiment, the refrigerant has a TFP content of 5 to 99% by mass with respect to the total mass of R134a and TFP. Further, the temperature glide can be made smaller, and a high COP (coefficient of performance) tends to be obtained.
 第5の実施形態の作動媒体組成物において冷媒は、TFPの含有量が、R134a及びTFPの全質量に対して5~40質量%であることが好ましい。この場合、燃焼性がより低くなりやすく、特に不燃組成となりやすい。また、TFPの含有量が、前記範囲である場合、温度グライドもより小さくなり得る。特に、この作動媒体組成物は、R134a単独又はTFP単独の場合に比べても低い燃焼性となり得るものである。 In the working medium composition of the fifth embodiment, the refrigerant preferably has a TFP content of 5 to 40% by mass with respect to the total mass of R134a and TFP. In this case, combustibility tends to be lower, and in particular, an incombustible composition tends to be obtained. Moreover, when content of TFP is the said range, a temperature glide can also become smaller. In particular, this working medium composition can be less combustible than R134a alone or TFP alone.
 第5の実施形態の作動媒体組成物は、別の観点において、冷媒は、TFPの含有量が、R134a及びTFPの全質量に対して20~90質量%であることも好ましい。この場合、第5の実施形態の作動媒体組成物は、低燃焼性及び低温度グライドに加えてGWPが小さくなるので、R410A、R404A、R22及びR407系等の代替冷媒として使用することができる。 In another aspect of the working medium composition of the fifth embodiment, the refrigerant preferably has a TFP content of 20 to 90% by mass with respect to the total mass of R134a and TFP. In this case, the working medium composition of the fifth embodiment can be used as an alternative refrigerant such as R410A, R404A, R22, and R407 because the GWP becomes small in addition to low combustibility and low temperature glide.
 第5の実施形態の作動媒体組成物において冷媒は、TFPの含有量が、R134a及びTFPの全質量に対して70質量%以上である場合には、GWP値が1000以下となり、R134a単独に比べ環境負荷が低い冷媒となり得る。 In the working medium composition of the fifth embodiment, the refrigerant has a GWP value of 1000 or less when the TFP content is 70% by mass or more with respect to the total mass of R134a and TFP, compared to R134a alone. It can be a refrigerant with low environmental impact.
 第5の実施形態の作動媒体組成物において冷媒は、TFPの含有量が、R134a及びTFPの全質量に対して70~99質量%であることも好ましい。この場合、第5の実施形態の作動媒体組成物は、低燃焼性及び低温度グライドに加えて特にGWPが小さくなるので、R134a及びR1234yf等の代替冷媒として使用することができる。さらにこの場合、COP及び冷凍能力の一方又は両方がR134aもしくはHFO-1234yfより高くなりやすい。従って、TFPの含有量が、R134a及びTFPの全質量に対して70~99質量%である作動媒体組成物は、カーエアコン用途に特に好適であり、特に、暖房能力が高いことから、電気自動車、プラグインハイブリッド車など内燃機関の熱を暖房に利用することが従来困難であったカーエアコン用途に適している。TFPの含有量が、R134a及びTFPの全質量に対して90~99質量%であることが特に好ましい。 In the working medium composition of the fifth embodiment, the refrigerant preferably has a TFP content of 70 to 99% by mass with respect to the total mass of R134a and TFP. In this case, the working medium composition of the fifth embodiment has a particularly low GWP in addition to low combustibility and low temperature glide, and therefore can be used as an alternative refrigerant such as R134a and R1234yf. Furthermore, in this case, one or both of the COP and the refrigerating capacity tends to be higher than R134a or HFO-1234yf. Therefore, a working medium composition having a TFP content of 70 to 99% by mass with respect to the total mass of R134a and TFP is particularly suitable for car air-conditioner applications, and particularly has a high heating capacity. It is suitable for car air-conditioner applications where it has been difficult to use the heat of an internal combustion engine for heating, such as a plug-in hybrid vehicle. It is particularly preferable that the content of TFP is 90 to 99% by mass with respect to the total mass of R134a and TFP.
 第5の実施形態の作動媒体組成物において冷媒は、TFPの含有量が、R134a及びTFPの全質量に対して52質量%以上である場合、750以下のGWPとなり得る。第5の実施形態の作動媒体組成物は、TFPの含有量が、R134a及びTFPの全質量に対して90質量%以上である場合、152以下のGWPとなり得る。 In the working medium composition of the fifth embodiment, the refrigerant can be a GWP of 750 or less when the TFP content is 52% by mass or more with respect to the total mass of R134a and TFP. When the content of TFP is 90% by mass or more with respect to the total mass of R134a and TFP, the working medium composition of the fifth embodiment can be a GWP of 152 or less.
 別の観点において、第5の実施形態の作動媒体組成物では、低燃焼性及び低温度グライドに加えて、COP(成績係数)及び冷凍能力の両方が、例えば、既存の冷媒であるR410Aと比べて高くなりやすい。この場合のTFPの含有量としては、特に、R134a及びTFPの全質量に対して20~90質量%とすることができる。 In another aspect, in the working medium composition of the fifth embodiment, in addition to low flammability and low temperature glide, both COP (coefficient of performance) and refrigeration capacity are, for example, compared to R410A, which is an existing refrigerant. It tends to be expensive. In this case, the content of TFP can be 20 to 90% by mass with respect to the total mass of R134a and TFP.
 さらに別の観点において、第5の実施形態の作動媒体組成物では、低燃焼性及び低温度グライドに加えて、COP(成績係数)及び冷凍能力の両方が、例えば、既存の冷媒であるR404Aと比べて高くなりやすく、また、吐出温度および吐出圧力もR404A同等になり得る。そのため、作動媒体組成物は、冷凍冷蔵用途に特に好適である。この場合のTFPの含有量としては、特に、R134a及びTFPの全質量に対して40~70質量%とすることができる。 In still another aspect, in the working medium composition of the fifth embodiment, in addition to low flammability and low temperature glide, both COP (coefficient of performance) and refrigeration capacity are, for example, the existing refrigerant R404A and In comparison, the discharge temperature and discharge pressure are likely to be equivalent to R404A. Therefore, the working medium composition is particularly suitable for freezing and refrigeration applications. In this case, the TFP content can be 40 to 70% by mass with respect to the total mass of R134a and TFP.
 第5の実施形態の作動媒体組成物において冷媒は、R134a及びTFP以外に、必要に応じて、冷媒機能を有する他の成分としての第三成分を含むことができる。第三成分の適切な選択により、さらなるGWPの低減、燃焼性の低減や不燃化、性能の向上が可能であり、また、冷凍機油を用いる場合はその冷凍機油と作動媒体組成物との相溶性の調整も容易になりやすい。その他、第三成分の選択により種々の目的が達成され得る。 In the working medium composition of the fifth embodiment, the refrigerant can include, in addition to R134a and TFP, a third component as another component having a refrigerant function, if necessary. Appropriate selection of the third component can further reduce GWP, reduce combustibility, make it nonflammable, and improve performance. When using refrigerating machine oil, the compatibility between the refrigerating machine oil and the working medium composition Adjustment is easy. In addition, various objects can be achieved by selecting the third component.
 第5の実施形態の作動媒体組成物に含まれる第三成分の種類は、第1及び第2実施形態の作動媒体組成物に含まれる第三成分と同様の種類を挙げることができる。 The kind of the third component contained in the working medium composition of the fifth embodiment can be the same kind as the third component contained in the working medium composition of the first and second embodiments.
 つまり、第5の実施形態の作動媒体組成物において、冷媒は、R134a及びTFP以外の第三成分として、ハイドロフルオロオレフィン(HFO)、ハイドロフルオロカーボン(HFC)、ハイドロクロロフルオロカーボン(HCFC)、クロロフルオロカーボン(CFC)、クロロフルオロオレフィン(CFO)、ハイドロクロロフルオロオレフィン(HCFO)、ヨウ化トリフルオロメタン及び二酸化炭素からなる群から選ばれる少なくとも一つの化合物を含むことができる。 That is, in the working medium composition of the fifth embodiment, the refrigerant is a hydrofluoroolefin (HFO), hydrofluorocarbon (HFC), hydrochlorofluorocarbon (HCFC), chlorofluorocarbon (as a third component other than R134a and TFP). CFC), chlorofluoroolefin (CFO), hydrochlorofluoroolefin (HCFO), iodinated trifluoromethane, and at least one compound selected from the group consisting of carbon dioxide can be included.
 第三成分は、1種又は2種以上の化合物を含むことができる。 The third component can contain one or more compounds.
 第5の実施形態の作動媒体組成物において、冷媒が、R134a及びTFPに加えて第三成分を含む場合、本発明の効果が阻害されない限りは、第三成分の各含有量は特に限定されない。 In the working medium composition of the fifth embodiment, when the refrigerant includes the third component in addition to R134a and TFP, the content of the third component is not particularly limited as long as the effect of the present invention is not inhibited.
 第5の実施形態の作動媒体組成物において、第三成分がジフルオロメタン(HFC-32)であることが好ましい。この場合、第5の実施形態の作動媒体組成物は、低燃焼性及び低温度グライドに加えて、COP(成績係数)及び冷凍能力の両方が、例えば、既存の冷媒であるR410Aと比べて高くなりやすく、また、吐出温度及び吐出圧力もR410A同等になり得る。そのため、第三成分としてHFC-32を含む第5の実施形態の作動媒体組成物は、R410Aに比べGWPが低く、かつ、R410A代替の使用として好適である。 In the working medium composition of the fifth embodiment, the third component is preferably difluoromethane (HFC-32). In this case, in the working medium composition of the fifth embodiment, in addition to low combustibility and low temperature glide, both COP (coefficient of performance) and refrigeration capacity are higher than, for example, the existing refrigerant R410A. In addition, the discharge temperature and the discharge pressure can be equivalent to R410A. Therefore, the working medium composition of the fifth embodiment containing HFC-32 as the third component has a lower GWP than R410A and is suitable for use as an alternative to R410A.
 HFC-32を含む第5の実施形態の作動媒体組成物は、R134a、TFP及びHFC-32の全質量に対し、R134aが30~98質量%、TFPが1~60質量%、及び、HFC-32が1~69質量%とすることができる。 The working medium composition of the fifth embodiment containing HFC-32 has an R134a of 30 to 98% by mass, a TFP of 1 to 60% by mass, and an HFC- of the total mass of R134a, TFP and HFC-32. 32 may be 1 to 69 mass%.
 HFC-32を含む第5の実施形態の作動媒体組成物は、低燃焼性でありながらGWPが低く、かつ、温度グライドも小さいという観点では、R134a、TFP及びHFC-32の全質量に対し、R134aが50~98質量%、TFPが1~40質量%、及び、HFC-32が1~43質量%であることが好ましく、R134aが55~98質量%、TFPが1~30質量%、及び、HFC-32が1~25質量%である場合には、さらに不燃組成となりやすい。 The working medium composition of the fifth embodiment containing HFC-32 is low in flammability, has a low GWP, and has a low temperature glide, with respect to the total mass of R134a, TFP and HFC-32. Preferably, R134a is 50 to 98% by mass, TFP is 1 to 40% by mass, and HFC-32 is 1 to 43% by mass, R134a is 55 to 98% by mass, TFP is 1 to 30% by mass, and When HFC-32 is 1 to 25% by mass, the nonflammable composition is likely to be obtained.
 第5の実施形態の作動媒体組成物は、燃焼速度が、例えば、3.9cm/sec以下となり得る。燃焼速度がこの範囲であることで、優れた低燃焼性が確保される。燃焼速度は、3.6cm/sec以下であることが好ましく、2.0cm/sec以下であることがさらに好ましく、1.0cm/sec以下であることが特に好ましい。 The working medium composition of the fifth embodiment can have a combustion rate of, for example, 3.9 cm / sec or less. When the combustion speed is within this range, excellent low combustibility is ensured. The burning rate is preferably 3.6 cm / sec or less, more preferably 2.0 cm / sec or less, and particularly preferably 1.0 cm / sec or less.
 第5の実施形態の作動媒体組成物は、R134a及びTFPを必須の成分とする。これにより、作動媒体組成物は、優れた冷媒能力を有し、低燃焼性でありながらGWPが低く、かつ、温度グライドも小さい。そのため、第5の実施形態の作動媒体組成物によれば、環境負荷をより低減できると共に、既存の冷媒の代替として適用することができる。例えば、既存の冷媒であるR410A、R404A、R22、R134a、R1234yf等の代替として、本実施形態の作動媒体組成物を使用することができる。 The working medium composition of the fifth embodiment includes R134a and TFP as essential components. As a result, the working medium composition has an excellent refrigerant capacity, low combustibility, low GWP, and low temperature glide. Therefore, according to the working-medium composition of 5th Embodiment, while being able to reduce an environmental load more, it can apply as a substitute of the existing refrigerant | coolant. For example, the working medium composition of the present embodiment can be used as an alternative to the existing refrigerants R410A, R404A, R22, R134a, R1234yf, and the like.
 第5の実施形態の作動媒体組成物の調製方法は、特に限定されない。例えば、R134a及びTFPを所定の割合で混合することで作動媒体組成物を調製することができる。また、必要に応じて、所定量の第三成分や添加剤を加えてもよい。 The method for preparing the working medium composition of the fifth embodiment is not particularly limited. For example, a working medium composition can be prepared by mixing R134a and TFP at a predetermined ratio. Moreover, you may add a predetermined amount of 3rd components and additives as needed.
 R134a及びTFPの製造方法も特に限定されず、例えば、公知の製造方法によりR134a及びTFPを製造できる。 The production method of R134a and TFP is not particularly limited, and for example, R134a and TFP can be produced by a known production method.
 (第1~5の実施形態)
 第1~5の実施形態(以下、本実施形態)の作動媒体組成物は、必要に応じて、冷媒以外の添加剤を含むことができる。冷媒以外の添加剤としては、例えば、安定剤、冷凍機油、防錆剤、腐食防止剤、潤滑剤、重合禁止剤、溶剤、水分等を挙げることができる。安定剤としては、例えば、ニトロメタン、ニトロエタン等の脂肪族ニトロ化合物、1,4-ジオキサン等のエーテル類、2,2,3,3,3-ペンタフルオロプロピルアミン、ジフェニルアミン等のアミン類、ブチルヒドロキシキシレン、ベンゾトリアゾール等が挙げられる。安定剤は、1種を使用、または2種以上を組み合わせて使用することができる。冷凍機油としては、例えば、ポリアルキレングリコール、ポリオールエステル、ポリビニルエーテル、アルキルベンゼン鉱油等が利用できるが、これらに限定されない。また、重合禁止剤としては、例えば、4-メトキシ-1-ナフトール、ヒドロキノン、ヒドロキノンメチルエーテル、ジメチル-tert-ブチルフェノール、2,6-ジ-tert-ブチル-p-クレゾール、ベンゾトリアゾール等が挙げられる。
(First to fifth embodiments)
The working medium composition of the first to fifth embodiments (hereinafter referred to as “this embodiment”) can contain additives other than the refrigerant as necessary. Examples of additives other than the refrigerant include stabilizers, refrigerating machine oils, rust inhibitors, corrosion inhibitors, lubricants, polymerization inhibitors, solvents, and moisture. Examples of the stabilizer include aliphatic nitro compounds such as nitromethane and nitroethane, ethers such as 1,4-dioxane, amines such as 2,2,3,3,3-pentafluoropropylamine and diphenylamine, butylhydroxy Examples include xylene and benzotriazole. One stabilizer can be used, or two or more stabilizers can be used in combination. Examples of the refrigerating machine oil include, but are not limited to, polyalkylene glycol, polyol ester, polyvinyl ether, alkylbenzene mineral oil, and the like. Examples of the polymerization inhibitor include 4-methoxy-1-naphthol, hydroquinone, hydroquinone methyl ether, dimethyl-tert-butylphenol, 2,6-di-tert-butyl-p-cresol, and benzotriazole. .
 冷媒以外の添加剤の含有量に特に制限は無いが、例えば、重合禁止剤であれば冷媒の全質量に対して、0.01~5.0質量%とすることができる。もちろん、作動媒体組成物は、冷媒以外の添加剤を含まなくてもよい。 Although the content of additives other than the refrigerant is not particularly limited, for example, in the case of a polymerization inhibitor, it can be 0.01 to 5.0% by mass with respect to the total mass of the refrigerant. Of course, the working medium composition may not contain additives other than the refrigerant.
 本実施形態の作動媒体組成物は、各種の熱サイクルシステムに好適に使用することができる。熱サイクルシステムは、本実施形態の作動媒体組成物を備えることで、冷却能力の高い熱サイクルシステムとなり得る。また、作動媒体組成物は、低燃焼性でありながらGWPも低いため、既存の冷媒を使用した場合に比べて高い安全性を熱サイクルシステムに付与することができる。しかも、作動媒体組成物は、温度クライドも低いので、安定性の高い熱サイクルシステムを提供することができる。 The working medium composition of the present embodiment can be suitably used for various heat cycle systems. The thermal cycle system can be a thermal cycle system with a high cooling capacity by including the working medium composition of the present embodiment. In addition, since the working medium composition has low combustibility and low GWP, it can impart higher safety to the heat cycle system compared to the case where an existing refrigerant is used. Moreover, since the working medium composition also has a low temperature clad, it is possible to provide a highly stable thermal cycle system.
 熱サイクルシステムの種類は特に限定されない。熱サイクルシステムの例としては、ルームエアコン、店舗用パッケージエアコン、ビル用パッケージエアコン、設備用パッケージエアコン、一以上の室内機及び室外機を冷媒配管で接続したセパレート型エアコン、ウインドウ型エアコン、ポータブル型エアコン、ダクトで冷温風を搬送するルーフトップ型又はセントラル型エアコン、ガスエンジンヒートポンプ、列車用空調装置、自動車用空調装置、内蔵型ショーケース、別置型ショーケース、業務用冷凍冷蔵庫、製氷機、一体型冷凍機、自動販売機、カーエアコン、海上輸送等のコンテナ又は冷蔵庫を冷却するための冷凍機、チラーユニット、ターボ冷凍機、もしくは、暖房サイクル専用機を挙げることができる。前記暖房サイクル専用機とは、例えば、給湯装置、床暖房装置、融雪装置等が挙げられる。 The type of heat cycle system is not particularly limited. Examples of heat cycle systems include room air conditioners, store packaged air conditioners, building packaged air conditioners, facility packaged air conditioners, separate air conditioners with one or more indoor units and outdoor units connected by refrigerant piping, window type air conditioners, and portable types. Air-conditioner, rooftop type or central type air conditioner that transports cool and warm air through ducts, gas engine heat pump, air conditioner for trains, air conditioner for automobile, built-in showcase, separate showcase, commercial refrigerator-freezer, ice machine, Examples include body refrigerators, vending machines, car air conditioners, maritime transport containers, refrigerators for cooling refrigerators, chiller units, turbo refrigerators, or heating cycle dedicated machines. Examples of the heating cycle dedicated machine include a hot water supply device, a floor heating device, and a snow melting device.
 上記例示列挙した熱サイクルシステムは、本実施形態の作動媒体組成物を備える限り、その他の構成については、特に限定されず、例えば、公知と同様の構成とすることができる。 As long as the thermal cycle system enumerated above includes the working medium composition of the present embodiment, the other configurations are not particularly limited, and for example, may be the same as a known configuration.
 以下、実施例により本発明をより具体的に説明するが、本発明はこれら実施例の態様に限定されるものではない。 Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the embodiments.
 (実施例1-1~1-6)
 ジフルオロメタン(HFC-32)及び3,3,3-トリフルオロプロピン(TFP)を準備し、これらを後記表1に示す組成割合となるように作動媒体組成物を調製した。
(Examples 1-1 to 1-6)
Difluoromethane (HFC-32) and 3,3,3-trifluoropropyne (TFP) were prepared, and working fluid compositions were prepared so as to have the composition ratios shown in Table 1 below.
 得られた作動媒体組成物を使用し、ヒートポンプを用いてCOP、冷凍能力(kJ/m)、温度グライド(K)の評価をした。ヒートポンプ運転条件は、蒸発器における冷媒の蒸発温度が15℃、凝縮器における冷媒の凝縮温度が45℃、圧縮機の効率が0.7、過熱度及び過冷却度が0℃になるようにして運転した。各評価の結果を表1に示す。
蒸発温度:15℃
吸入温度:20℃
圧縮機効率:0.7
凝縮温度:45℃
凝縮器出口:40℃
Using the obtained working medium composition, COP, refrigerating capacity (kJ / m 3 ), and temperature glide (K) were evaluated using a heat pump. The heat pump operating conditions are such that the refrigerant evaporation temperature in the evaporator is 15 ° C., the refrigerant condensation temperature in the condenser is 45 ° C., the compressor efficiency is 0.7, the degree of superheat and the degree of supercooling are 0 ° C. Drove. The results of each evaluation are shown in Table 1.
Evaporation temperature: 15 ° C
Inhalation temperature: 20 ° C
Compressor efficiency: 0.7
Condensation temperature: 45 ° C
Condenser outlet: 40 ° C
 (比較例1~3)
 作動媒体組成物を、R410A単独(比較例1)、HFC-32単独(比較例2)、TFP単独(比較例3)の組成として調製し、実施例1-1~1-6と同様の評価を行った。その結果を表1に示す。
(Comparative Examples 1 to 3)
Working medium compositions were prepared as compositions of R410A alone (Comparative Example 1), HFC-32 alone (Comparative Example 2), and TFP alone (Comparative Example 3), and the same evaluations as in Examples 1-1 to 1-6 Went. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1の結果から、ジフルオロメタン(HFC-32)及び3,3,3-トリフルオロプロピン(TFP)を含有する熱サイクル用作動媒体組成物は、いずれも低いGWP有した上で、優れた冷凍能力を有し、しかも、温度クライドも低いことがわかる。また、各実施例の作動媒体組成物は、高いCOPも有していた。 From the results of Table 1, the working fluid composition for heat cycle containing difluoromethane (HFC-32) and 3,3,3-trifluoropropyne (TFP) both had low GWP and excellent refrigeration. It can be seen that it has the capability and also has a low temperature clyde. Moreover, the working medium composition of each Example also had a high COP.
 (実施例1-7~1-9)
 ジフルオロメタン(HFC-32)及び3,3,3-トリフルオロプロピン(TFP)を準備し、これらを後記表2に示す組成割合となるように作動媒体組成物を調製した。
(Examples 1-7 to 1-9)
Difluoromethane (HFC-32) and 3,3,3-trifluoropropyne (TFP) were prepared, and a working medium composition was prepared so that they had the composition ratios shown in Table 2 below.
 得られた作動媒体組成物を使用し、ヒートポンプを用いてCOP、冷凍能力(kJ/m)、温度グライド(K)について評価をした。ヒートポンプ運転条件は、蒸発器における冷媒の蒸発温度が-10℃、凝縮器における冷媒の凝縮温度が40℃、圧縮機の効率が0.7、過熱度が10℃、過冷却度が0℃になるようにして運転した。各評価の結果を表2に示す。 The obtained working medium composition was used, and COP, refrigeration capacity (kJ / m 3 ), and temperature glide (K) were evaluated using a heat pump. The heat pump operating conditions are as follows: the refrigerant evaporating temperature in the evaporator is −10 ° C., the refrigerant condensing temperature in the condenser is 40 ° C., the compressor efficiency is 0.7, the superheat is 10 ° C., and the supercooling is 0 ° C. I drove like that. The results of each evaluation are shown in Table 2.
 (比較例4)
 作動媒体組成物を、R404A単独(比較例4)の組成として調製し、実施例1-7~1-9と同様の評価を行った。その結果を表2に示す。
(Comparative Example 4)
A working medium composition was prepared as a composition of R404A alone (Comparative Example 4) and evaluated in the same manner as in Examples 1-7 to 1-9. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2の結果から、ジフルオロメタン(HFC-32)及び3,3,3-トリフルオロプロピン(TFP)を含有する熱サイクル用作動媒体組成物は、いずれも低いGWPを有した上で、優れた冷凍能力を有し、しかも、温度クライドも低いことがわかる。また、各実施例の作動媒体組成物は、R404A以上のCOPも有し、吐出温度や吐出圧力もR404A同等にできることがわかる。 From the results of Table 2, the working fluid composition for heat cycle containing difluoromethane (HFC-32) and 3,3,3-trifluoropropyne (TFP) both had excellent GWP and low GWP. It can be seen that it has a refrigerating capacity and also has a low temperature clade. In addition, it can be seen that the working medium composition of each Example also has a COP of R404A or higher, and the discharge temperature and discharge pressure can be equal to those of R404A.
 (実施例1-10~1-12)
 ジフルオロメタン(HFC-32)及び3,3,3-トリフルオロプロピン(TFP)を準備し、これらを後記表3に示す組成割合となるように作動媒体組成物を調製した。
(Examples 1-10 to 1-12)
Difluoromethane (HFC-32) and 3,3,3-trifluoropropyne (TFP) were prepared, and working fluid compositions were prepared so as to have the composition ratios shown in Table 3 below.
 得られた作動媒体組成物を使用し、ヒートポンプを用いてCOP、冷凍能力(kJ/m)、温度グライド(K)について評価をした。ヒートポンプ運転条件は、蒸発器における冷媒の蒸発温度が-40℃、凝縮器における冷媒の凝縮温度が40℃、圧縮機の効率が0.7、過熱度が20℃、過冷却度が0℃になるようにして運転した。各評価の結果を表3に示す。 The obtained working medium composition was used, and COP, refrigeration capacity (kJ / m 3 ), and temperature glide (K) were evaluated using a heat pump. The heat pump operating conditions are as follows: the refrigerant evaporation temperature in the evaporator is −40 ° C., the refrigerant condensation temperature in the condenser is 40 ° C., the compressor efficiency is 0.7, the degree of superheat is 20 ° C., and the degree of supercooling is 0 ° C. I drove like that. The results of each evaluation are shown in Table 3.
 (比較例5)
 作動媒体組成物を、R404A単独(比較例5)の組成として調製し、実施例1-10~1-12と同様の評価を行った。その結果を表3に示す。
(Comparative Example 5)
A working medium composition was prepared as a composition of R404A alone (Comparative Example 5) and evaluated in the same manner as in Examples 1-10 to 1-12. The results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3の結果から、ジフルオロメタン(HFC-32)及び3,3,3-トリフルオロプロピン(TFP)を含有する熱サイクル用作動媒体組成物は、いずれも低いGWPを有した上で、優れた冷凍能力を有し、しかも、温度クライドも低いことがわかる。また、各実施例の作動媒体組成物は、R404A以上のCOPも有し、吐出温度や吐出圧力もR404A同等にできることがわかる。 From the results in Table 3, the working fluid composition for heat cycle containing difluoromethane (HFC-32) and 3,3,3-trifluoropropyne (TFP) both had excellent GWP and low GWP. It can be seen that it has a refrigerating capacity and also has a low temperature clade. In addition, it can be seen that the working medium composition of each Example also has a COP of R404A or higher, and the discharge temperature and discharge pressure can be equal to those of R404A.
 (実施例1-13~1-15)
 ジフルオロメタン(HFC-32)及び3,3,3-トリフルオロプロピン(TFP)を準備し、これらを後記表4に示す組成割合となるように作動媒体組成物を調製した。
(Examples 1-13 to 1-15)
Difluoromethane (HFC-32) and 3,3,3-trifluoropropyne (TFP) were prepared, and working fluid compositions were prepared so as to have the composition ratios shown in Table 4 below.
 得られた作動媒体組成物を使用し、ヒートポンプを用いてCOP、冷凍能力(kJ/m)、温度グライド(K)について評価をした。ヒートポンプ運転条件は、蒸発器における冷媒の蒸発温度が-65℃、凝縮器における冷媒の凝縮温度が40℃、圧縮機の効率が0.7、過熱度が20℃、過冷却度が0℃になるようにして運転した。各評価の結果を表4に示す。 The obtained working medium composition was used, and COP, refrigeration capacity (kJ / m 3 ), and temperature glide (K) were evaluated using a heat pump. The heat pump operating conditions are as follows: the refrigerant evaporation temperature in the evaporator is −65 ° C., the refrigerant condensation temperature in the condenser is 40 ° C., the compressor efficiency is 0.7, the degree of superheat is 20 ° C., and the degree of supercooling is 0 ° C. I drove like that. The results of each evaluation are shown in Table 4.
 (比較例6)
 作動媒体組成物を、R404A単独(比較例6)の組成として調製し、実施例1-13~1-15と同様の評価を行った。その結果を表4に示す。
(Comparative Example 6)
A working medium composition was prepared as a composition of R404A alone (Comparative Example 6) and evaluated in the same manner as in Examples 1-13 to 1-15. The results are shown in Table 4.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表4の結果から、ジフルオロメタン(HFC-32)及び3,3,3-トリフルオロプロピン(TFP)を含有する熱サイクル用作動媒体組成物は、いずれも低いGWPを有した上で、優れた冷凍能力を有し、しかも、温度クライドも低いことがわかる。また、各実施例の作動媒体組成物は、R404A以上のCOPも有し、吐出温度や吐出圧力もR404A同等にできることがわかる。 From the results of Table 4, the working fluid composition for heat cycle containing difluoromethane (HFC-32) and 3,3,3-trifluoropropyne (TFP) both had excellent GWP and low GWP. It can be seen that it has a refrigerating capacity and also has a low temperature clade. In addition, it can be seen that the working medium composition of each Example also has a COP of R404A or higher, and the discharge temperature and discharge pressure can be equal to those of R404A.
 (実施例1-16~1-21)
 ジフルオロメタン(HFC-32)及び3,3,3-トリフルオロプロピン(TFP)を準備し、これらを後記表5に示す組成割合となるように作動媒体組成物を調製した。
(Examples 1-16 to 1-21)
Difluoromethane (HFC-32) and 3,3,3-trifluoropropyne (TFP) were prepared, and working fluid compositions were prepared so as to have the composition ratios shown in Table 5 below.
 <燃焼試験1>
 得られた作動媒体組成物について、密閉法にて燃焼速度を測定した(本明細書では、燃焼速度を測定するための試験を燃焼試験1と表記した。この測定では、図2に記載の実験装置を用いた。測定にあたり、図2の装置が、ASHRAE Standard34-2013および、ASHRAE Standard34-2013 Appendix B2に従い、R32の燃焼速度6.7±0.7cm/secおよびR152aの燃焼速度23.0±2.3cm/secを測定できることを確認した上で使用した。この装置を用い、乾燥空気と混合したガスを密閉容器(test cell)に入れ、23℃の温度で電気火花によって着火し、火炎の広がる速度を高速度カメラ(high speed camera)で撮影、測定した。ただし、酸素との燃焼量論濃度の1.03倍になるようにした。
<Combustion test 1>
About the obtained working-medium composition, the burning rate was measured by the sealing method. (In this specification, the test for measuring a burning rate was described as the burning test 1. In this measurement, experiment shown in FIG. 2 was carried out. In the measurement, the apparatus of FIG. It was used after confirming that it was able to measure 2.3 cm / sec.Using this apparatus, gas mixed with dry air was put in a closed cell (test cell) and ignited by electric spark at a temperature of 23 ° C. The spreading speed was taken and measured with a high speed camera (however, the acid It was set to 1.03 times the combustion stoichiometry concentrations of.
 ガスの組成比ごとにGWP、燃焼速度(cm/sec)(BV値)について評価した結果を表5に示す。 Table 5 shows the results of evaluating the GWP and the combustion rate (cm / sec) (BV value) for each gas composition ratio.
 (比較例7~10)
 ジフルオロメタン(HFC-32)及び3,3,3-トリフルオロプロピン(TFP)を準備し、これらを後記表5に示す組成割合(比較例7~9)となるように作動媒体組成物を調製、もしくは、作動媒体組成物を、TFP単独(比較例10)の組成として調製し、実施例1-16~1-21と同様の評価を行った。その結果を表5に示す。
(Comparative Examples 7 to 10)
Difluoromethane (HFC-32) and 3,3,3-trifluoropropyne (TFP) were prepared, and the working medium compositions were prepared so that the composition ratios shown in Table 5 below (Comparative Examples 7 to 9) were obtained. Alternatively, a working medium composition was prepared as a composition of TFP alone (Comparative Example 10) and evaluated in the same manner as in Examples 1-16 to 1-21. The results are shown in Table 5.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表5の結果から、ジフルオロメタン(HFC-32)及び3,3,3-トリフルオロプロピン(TFP)を含有する熱サイクル用作動媒体組成物は、いずれもBV値が低く、低燃焼性を有していることがわかる。 From the results shown in Table 5, the working fluid composition for heat cycle containing difluoromethane (HFC-32) and 3,3,3-trifluoropropyne (TFP) all have a low BV value and low combustibility. You can see that
 (実施例3-1~3-8)
 ペンタフルオロエタン(R125)及び3,3,3-トリフルオロプロピン(TFP)を準備し、これらを後記表6~11に示す組成割合となるように作動媒体組成物を調製した。
(Examples 3-1 to 3-8)
Pentafluoroethane (R125) and 3,3,3-trifluoropropyne (TFP) were prepared, and working fluid compositions were prepared so as to have composition ratios shown in Tables 6 to 11 below.
 得られた作動媒体組成物を使用し、ヒートポンプを用いてCOP、冷凍能力又は加熱能力(kJ/m)、温度グライド(K)の評価をした。冷凍能力又は加熱能力の測定は、第1冷房試験(MAC冷房試験ともいう)、第2冷房試験(R410A等冷房試験ともいう)、暖房試験(MAC暖房試験ともいう)、冷蔵試験、冷凍試験、極低温試験の6パターンで行い、それぞれ下記のヒートポンプ運転条件で行った。 Using the obtained working medium composition, COP, refrigeration capacity or heating capacity (kJ / m 3 ), and temperature glide (K) were evaluated using a heat pump. Measurement of refrigeration capacity or heating capacity includes the first cooling test (also referred to as MAC cooling test), the second cooling test (also referred to as cooling test such as R410A), the heating test (also referred to as MAC heating test), the refrigeration test, the freezing test, The test was performed in 6 patterns of the cryogenic test, and each was performed under the following heat pump operating conditions.
 <第1冷房試験>
蒸発温度(中間):5℃
吸入温度:10℃
圧縮機効率:0.7
凝縮温度(中間):45℃
過冷却度:0℃
 <第2冷房試験>
蒸発温度(中間):15℃
吸入温度:20℃
圧縮機効率:0.7
凝縮温度(中間):45℃
凝縮器出口:40℃
 <暖房試験>
蒸発温度(中間):0℃
吸入温度:5℃
圧縮機効率:0.7
凝縮温度(中間):35℃
過冷却度:0℃
 <冷蔵試験>
蒸発温度(中間):-10℃
吸入温度:0℃
圧縮機効率:0.7
凝縮温度(中間):40℃
過冷却度:0℃
 <冷凍試験>
蒸発温度(中間):-40℃
吸入温度:-25℃
圧縮機効率:0.7
凝縮温度(中間):40℃
過冷却度:0℃
 <極低温試験>
蒸発温度(中間):-65℃
吸入温度:-45℃
圧縮機効率:0.7
凝縮温度(中間):40℃
過冷却度:0℃
<First cooling test>
Evaporation temperature (intermediate): 5 ° C
Inhalation temperature: 10 ° C
Compressor efficiency: 0.7
Condensation temperature (intermediate): 45 ° C
Supercooling degree: 0 ℃
<Second cooling test>
Evaporation temperature (intermediate): 15 ° C
Inhalation temperature: 20 ° C
Compressor efficiency: 0.7
Condensation temperature (intermediate): 45 ° C
Condenser outlet: 40 ° C
<Heating test>
Evaporation temperature (intermediate): 0 ° C
Inhalation temperature: 5 ° C
Compressor efficiency: 0.7
Condensation temperature (intermediate): 35 ° C
Supercooling degree: 0 ℃
<Refrigeration test>
Evaporation temperature (intermediate): -10 ° C
Inhalation temperature: 0 ° C
Compressor efficiency: 0.7
Condensation temperature (intermediate): 40 ° C
Supercooling degree: 0 ℃
<Frozen test>
Evaporation temperature (intermediate): -40 ° C
Inhalation temperature: -25 ° C
Compressor efficiency: 0.7
Condensation temperature (intermediate): 40 ° C
Supercooling degree: 0 ℃
<Cryogenic test>
Evaporation temperature (intermediate): -65 ° C
Inhalation temperature: -45 ° C
Compressor efficiency: 0.7
Condensation temperature (intermediate): 40 ° C
Supercooling degree: 0 ℃
 (比較例11)
 作動媒体組成物を、R125単独の組成として調製し、実施例3-1~3-8と同様の評価を行った。
(Comparative Example 11)
A working medium composition was prepared as a composition of R125 alone and evaluated in the same manner as in Examples 3-1 to 3-8.
 (比較例12)
 作動媒体組成物を、R134a単独の組成として調製し、実施例3-1~3-8と同様の評価を行った。
(Comparative Example 12)
A working medium composition was prepared as a composition of R134a alone and evaluated in the same manner as in Examples 3-1 to 3-8.
 (比較例13)
 作動媒体組成物を、R1234yf単独の組成として調製し、実施例3-1~3-8と同様の評価を行った。
(Comparative Example 13)
A working medium composition was prepared as a composition of R1234yf alone and evaluated in the same manner as in Examples 3-1 to 3-8.
 (比較例14)
 作動媒体組成物を、R404A単独の組成として調製し、実施例3-1~3-8と同様の評価を行った。
(Comparative Example 14)
A working medium composition was prepared as a composition of R404A alone and evaluated in the same manner as in Examples 3-1 to 3-8.
 表6~11はそれぞれ、第1冷房試験、第2冷房試験、暖房試験、冷蔵試験、冷凍試験及び極低温試験の結果を示している。表6~11には、温度グライドの評価結果も示している。なお、比較対象として、比較例1、3の組成についても一部、実施例3-1~3-8と同様の評価を行った結果を表6~11に示す。 Tables 6 to 11 show the results of the first cooling test, the second cooling test, the heating test, the refrigeration test, the freezing test, and the cryogenic test, respectively. Tables 6 to 11 also show the evaluation results of the temperature glide. As comparative objects, Tables 6 to 11 show the results of the same evaluations as in Examples 3-1 to 3-8 for the compositions of Comparative Examples 1 and 3.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表6の実施例では、従来用いられているR410Aに比べて、GWPが著しく低くCOPも同等以上であり、また、温度グライドも十分小さい。さらに、実施例3-2の組成は後述する燃焼範囲試験において不燃であることも明らかである。従って、R125およびTFPを含有する熱サイクル用作動媒体組成物は、R410Aが使用される用途において有用な代替の作動媒体となりうる。 In the example of Table 6, GWP is remarkably low and COP is equal to or higher than R410A used in the past, and the temperature glide is sufficiently small. Further, it is also clear that the composition of Example 3-2 is nonflammable in the combustion range test described later. Thus, a thermal cycle working medium composition containing R125 and TFP can be an alternative working medium useful in applications where R410A is used.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 表7の実施例では、従来用いられているR134aに比べて、GWPが著しく低くCOPも同等以上であり、また、冷凍能力も極めて大きい。また、今後使用が拡大するR1234yfと比べても、COPは同程度でありながら冷凍能力は著しく大きい。従って、R125およびTFPを含有する熱サイクル用作動媒体組成物は、R134aやR1234yfが使用される用途において有用な代替の作動媒体となりうる。 In the example of Table 7, GWP is remarkably low and COP is equal to or higher than R134a used conventionally, and the refrigerating capacity is extremely large. In addition, compared with R1234yf, whose use will expand in the future, the refrigerating capacity is remarkably large while the COP is comparable. Thus, a working fluid composition for thermal cycling containing R125 and TFP can be an alternative working fluid useful in applications where R134a or R1234yf is used.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 表8の実施例では、従来用いられているR134aに比べて、GWPが著しく低くCOPも同等以上であり、また、加熱能力も極めて大きい。また、今後使用が拡大するR1234yfと比べても、COPは同程度でありながら加熱能力は著しく大きい。従って、R125およびTFPを含有する熱サイクル用作動媒体組成物は、将来、使用が広がりつつあるハイブリッド車およびプラグインハイブリッド車など、内燃機関による暖房機能を利用することが困難なカーエアコン用等の、R134aやR1234yfが使用される用途において有用な代替の作動媒体となりうる。 In the examples of Table 8, GWP is remarkably low and COP is equal to or higher than R134a that is conventionally used, and the heating capacity is extremely large. In addition, compared with R1234yf, which will be used in the future, the heating capacity is significantly large while the COP is comparable. Therefore, the working medium composition for heat cycle containing R125 and TFP is used for car air conditioners and the like that are difficult to use the heating function of the internal combustion engine, such as hybrid cars and plug-in hybrid cars that are increasingly used in the future. , R134a and R1234yf can be useful alternative working media in applications.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 表9~11の実施例では、従来用いられているR404Aに比べ、GWPが著しく低くCOPも同等以上であり、冷凍能力も同等であり、しかも、温度グライドも十分小さい。さらに、実施例3-1の組成は後述する燃焼範囲試験において不燃であることが明らかである。従って、R125およびTFPを含有する熱サイクル用作動媒体組成物は、R404Aが使用される冷蔵用途において有用な代替の作動媒体となりうる。また、表9~11の結果から、R125およびTFPを含有する熱サイクル用作動媒体組成物は、地域によっては未だ使用されているR22(GWP=1810、オゾン層破壊物質)が使用されている冷凍及び冷蔵用途とほぼ同等であったことから、その代替となりうる。 In the examples in Tables 9 to 11, the GWP is remarkably low, the COP is equal to or higher than the conventionally used R404A, the refrigerating capacity is also equal, and the temperature glide is sufficiently small. Further, it is clear that the composition of Example 3-1 is nonflammable in the combustion range test described later. Thus, a thermal cycle working medium composition containing R125 and TFP can be an alternative working medium useful in refrigeration applications where R404A is used. Further, from the results of Tables 9 to 11, the working fluid composition for heat cycle containing R125 and TFP is a refrigeration in which R22 (GWP = 1810, ozone depleting substance) still used in some regions is used. Since it was almost the same as refrigeration, it can be an alternative.
 (実施例4-1~4-6)
 1,1,1,2-テトラフルオロエタン(R134a)及び3,3,3-トリフルオロプロピン(TFP)を準備し、これらを後記表12~14に示す組成割合となるように作動媒体組成物を調製した。
(Examples 4-1 to 4-6)
1,1,1,2-tetrafluoroethane (R134a) and 3,3,3-trifluoropropyne (TFP) were prepared, and the working medium composition was such that the composition ratios shown in Tables 12 to 14 below were obtained. Was prepared.
 得られた作動媒体組成物を使用し、ヒートポンプを用いてCOP、冷凍能力又は加熱能力(kJ/m)、温度グライド(K)の評価をした。冷凍能力又は加熱能力の測定は、前記第1冷房試験、前記第2冷房試験、前記暖房試験のヒートポンプ運転条件と同じ条件で行った。 Using the obtained working medium composition, COP, refrigeration capacity or heating capacity (kJ / m 3 ), and temperature glide (K) were evaluated using a heat pump. The refrigerating capacity or heating capacity was measured under the same conditions as the heat pump operating conditions of the first cooling test, the second cooling test, and the heating test.
 (比較例15)
 作動媒体組成物を、R134a単独の組成として調製し、実施例4-1~4-6と同様の評価を行った。
(Comparative Example 15)
A working medium composition was prepared as a composition of R134a alone and evaluated in the same manner as in Examples 4-1 to 4-6.
 (比較例16)
 作動媒体組成物を、R410A単独の組成として調製し、実施例4-1~4-6と同様の評価を行った。
(Comparative Example 16)
A working medium composition was prepared as a composition of R410A alone and evaluated in the same manner as in Examples 4-1 to 4-6.
 表12~14はそれぞれ、第1冷房試験、第2冷房試験、暖房試験の結果を示している。表12~14には、温度グライドの評価結果も示している。なお、比較対象として、比較例3、比較例12、比較例13の組成についても一部、実施例4-1~4-6と同様の評価を行った結果を表6~11に示す。 Tables 12 to 14 show the results of the first cooling test, the second cooling test, and the heating test, respectively. Tables 12 to 14 also show the evaluation results of the temperature glide. As comparative objects, Tables 6 to 11 show the results of the same evaluations as in Examples 4-1 to 4-6 for the compositions of Comparative Example 3, Comparative Example 12, and Comparative Example 13.
 R134a及びTFPを含有する熱サイクル用作動媒体組成物は、いずれも低いGWPを有した上で、優れた冷凍能力を有し、しかも、温度グライドも低いことがわかる。また、実施例4-1~4-6の作動媒体組成物は、高いCOPも有していた。 It can be seen that the working medium composition for heat cycle containing R134a and TFP has a low GWP, an excellent refrigeration capacity, and a low temperature glide. In addition, the working medium compositions of Examples 4-1 to 4-6 also had a high COP.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
 表12の実施例では、従来用いられているR410Aに比べて、GWPが著しく低くCOPも同等以上であり、また、温度グライドも十分小さい。さらに、実施例4-1および4-2の組成は、後述する燃焼範囲試験において不燃であることが明らかである。従って、R134aおよびTFPを含有する熱サイクル用作動媒体組成物は、R410Aが使用される用途において有用な代替の作動媒体となりうる。 In the example of Table 12, GWP is remarkably low and COP is equal to or higher than R410A used conventionally, and the temperature glide is sufficiently small. Further, it is clear that the compositions of Examples 4-1 and 4-2 are nonflammable in the combustion range test described later. Thus, a thermal cycle working medium composition containing R134a and TFP can be an alternative working medium useful in applications where R410A is used.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
 表13の実施例では、従来用いられているR134aに比べて、GWPが著しく低くCOPも同等以上であり、また、冷凍能力が著しく大きい。また、表13の実施例では、今後使用が拡大するR1234yfに対しても、COPは同程度であり冷凍能力は著しく大きい。従って、R134aおよびTFPを含有する熱サイクル用作動媒体組成物は、R134a単体やR1234yfが使用される用途において有用な作動媒体となりうる。 In the examples of Table 13, GWP is remarkably low and COP is equal to or higher than R134a that is conventionally used, and the refrigerating capacity is remarkably large. Moreover, in the Example of Table 13, COP is comparable and refrigerating capacity is remarkably large also with respect to R1234yf whose use will expand in the future. Therefore, the working medium composition for heat cycle containing R134a and TFP can be a useful working medium in applications where R134a alone or R1234yf is used.
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
 表14の実施例では、従来用いられているR134aに比べ、GWPが著しく低くCOPも同等であり、かつ加熱能力が著しく大きく、また、今後使用が拡大するR1234yfに対しても、COPは同程度であり加熱能力は著しく大きい。従って、R134a及びTFPを含有する熱サイクル用作動媒体組成物は、将来、使用が広がりつつあるハイブリッド車およびプラグインハイブリッド車など、内燃機関による暖房機能を利用することが困難なカーエアコン用等のR134a単体やR1234yfが使用される用途において有用な代替の作動媒体となりうる。 In the example of Table 14, GWP is remarkably low and COP is equivalent as compared with R134a used in the past, and heating capability is remarkably large, and COP is comparable to R1234yf whose use will be expanded in the future. The heating capacity is remarkably large. Therefore, the working medium composition for heat cycle containing R134a and TFP is used for car air conditioners and the like that are difficult to use the heating function of an internal combustion engine such as hybrid cars and plug-in hybrid cars that are increasingly used in the future. It can be an alternative working medium useful in applications where R134a alone or R1234yf is used.
 (実施例5-1~5-2)
 ペンタフルオロエタン(R125)、3,3,3-トリフルオロプロピン(TFP)1,1,1,2-テトラフルオロエタン(R134a)及びジフルオロメタン(HFC-32)を準備し、これらを後記表15に示す組成割合となるように作動媒体組成物を調製した。
(Examples 5-1 and 5-2)
Pentafluoroethane (R125), 3,3,3-trifluoropropyne (TFP) 1,1,1,2-tetrafluoroethane (R134a) and difluoromethane (HFC-32) were prepared. The working medium composition was prepared so as to have the composition ratio shown in FIG.
 得られた作動媒体組成物を使用し、ヒートポンプを用いてCOP、冷凍能力又は加熱能力(kJ/m)、温度グライド(K)の評価をした。冷凍能力又は加熱能力の測定は、前記第1冷房試験のヒートポンプ運転条件と同じ条件で行った。 Using the obtained working medium composition, COP, refrigeration capacity or heating capacity (kJ / m 3 ), and temperature glide (K) were evaluated using a heat pump. The refrigerating capacity or the heating capacity was measured under the same conditions as the heat pump operating conditions of the first cooling test.
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
 表15の実施例では、従来用いられているR410Aに比べ、GWPが著しく低くCOPも同等以上であり、また、温度グライドも十分小さい。したがって、R32、R125、及びTFPを含有する熱サイクル用作動媒体組成物、並びにR32、R134a及びTFPを含有する熱サイクル用作動媒体組成物は、R410Aが使用される用途において有用な代替の作動媒体となりうる。 In the examples of Table 15, GWP is remarkably low and COP is equal to or higher than R410A used in the past, and temperature glide is sufficiently small. Thus, a working fluid composition for thermal cycling containing R32, R125, and TFP, and a working fluid composition for thermal cycling containing R32, R134a, and TFP are alternative working media useful in applications where R410A is used. It can be.
 <燃焼試験2>
 得られた作動媒体組成物の燃焼性は、米国ASHRAE34-2013規格に従って評価した。燃焼範囲は、ASTM E681-09に基づく測定装置を用いて測定を実施した。
<Combustion test 2>
The flammability of the obtained working medium composition was evaluated according to the US ASHRAE 34-2013 standard. The combustion range was measured using a measuring device based on ASTM E681-09.
 図3は、燃焼試験2を実施するための装置である。図3中、符号1は、発火源、2はサンプル投入口、3はばね、4は12リットルの球形ガラスフラスコ、5は電極、6は撹拌手段、7は断熱室である。 FIG. 3 shows an apparatus for performing the combustion test 2. In FIG. 3, reference numeral 1 is an ignition source, 2 is a sample inlet, 3 is a spring, 4 is a 12-liter spherical glass flask, 5 is an electrode, 6 is a stirring means, and 7 is a heat insulating chamber.
 燃焼の状態が目視および録画撮影できるように内容積12リットルの球形ガラスフラスコを使用し、燃焼により過大な圧力が発生した場合は上部のふたからガスを開放させた。着火方法は底部から1/3の高さに保持された電極からの放電により発生させた。 A spherical glass flask with an internal volume of 12 liters was used so that the state of combustion could be visually observed and recorded. When excessive pressure was generated by combustion, gas was released from the upper lid. The ignition method was generated by discharge from an electrode held at a height of 1/3 from the bottom.
 <試験条件>
・試験容器:280mmφ球形(内容積:12リットル)
・試験温度:60℃±3℃
・圧力:101.3kPa±0.7kPa
・水分:乾燥空気1gにつき0.0088g±0.0005g
・組成物/空気混合比:1vol.%刻み±0.2vol.%
・組成物混合:±0.1重量%
・点火方法:交流放電、電圧15kV、電流30mA、ネオン変圧器
・電極間隔:6.4mm(1/4inch)
・スパーク:0.4秒±0.05秒
 判定基準として、着火点を中心に90度以上火炎が広がった場合を燃焼(伝播)したと判断した。
<Test conditions>
・ Test container: 280mmφ spherical shape (internal volume: 12 liters)
・ Test temperature: 60 ℃ ± 3 ℃
・ Pressure: 101.3 kPa ± 0.7 kPa
・ Moisture: 0.0088g ± 0.0005g / g dry air
Composition / air mixing ratio: 1 vol.% Increments ± 0.2 vol.%
-Composition mixing: ± 0.1% by weight
・ Ignition method: AC discharge, voltage 15 kV, current 30 mA, neon transformer ・ Electrode spacing: 6.4 mm (1/4 inch)
-Spark: 0.4 seconds ± 0.05 seconds As a criterion, it was determined that the flame spread (propagated) when the flame spread 90 degrees or more around the ignition point.
 表16は、燃焼試験2の結果を示す。なお、本燃焼試験2では、対比として、参考例1~4の組成物についても試験を行った。 Table 16 shows the results of the combustion test 2. In this combustion test 2, as a comparison, the compositions of Reference Examples 1 to 4 were also tested.
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016

Claims (21)

  1. ジフルオロメタン、ペンタフルオロエタン及び1,1,1,2-テトラフルオロエタンから選択される少なくとも一種の化合物と、3,3,3-トリフルオロプロピンとを含む冷媒を含有し、
    下記(1)又は(2)
    (1)3,3,3-トリフルオロプロピンの含有量が、前記化合物及び3,3,3-トリフルオロプロピンの全質量に対して1質量%以上である、
    (2)前記冷媒が共沸又は共沸様混合物である、
    を満たす、熱サイクル用作動媒体組成物。
    Containing a refrigerant containing at least one compound selected from difluoromethane, pentafluoroethane and 1,1,1,2-tetrafluoroethane, and 3,3,3-trifluoropropyne;
    (1) or (2) below
    (1) The content of 3,3,3-trifluoropropyne is 1% by mass or more based on the total mass of the compound and 3,3,3-trifluoropropyne.
    (2) the refrigerant is an azeotropic or azeotrope-like mixture;
    A working medium composition for heat cycle that satisfies
  2. ジフルオロメタン及び3,3,3-トリフルオロプロピンを含む冷媒を含有し、前記冷媒は、3,3,3-トリフルオロプロピンの含有量が、ジフルオロメタン及び3,3,3-トリフルオロプロピンの全質量に対して32~99質量%である、請求項1に記載の熱サイクル用作動媒体組成物。 A refrigerant comprising difluoromethane and 3,3,3-trifluoropropyne, wherein the refrigerant has a 3,3,3-trifluoropropyne content of difluoromethane and 3,3,3-trifluoropropyne. The working medium composition for heat cycle according to claim 1, wherein the content is 32 to 99% by mass relative to the total mass.
  3. 前記冷媒は、3,3,3-トリフルオロプロピンの含有量が、ジフルオロメタン及び3,3,3-トリフルオロプロピンの全質量に対して33~95質量%である、請求項2に記載の熱サイクル用作動媒体組成物。 3. The refrigerant according to claim 2, wherein the content of 3,3,3-trifluoropropyne is 33 to 95% by mass with respect to the total mass of difluoromethane and 3,3,3-trifluoropropyne. Working medium composition for heat cycle.
  4. 前記冷媒は、3,3,3-トリフルオロプロピンの含有量が、ジフルオロメタン及び3,3,3-トリフルオロプロピンの全質量に対して57質量%以上である、請求項2又は3に記載の熱サイクル用作動媒体組成物。 The content of 3,3,3-trifluoropropyne in the refrigerant is 57% by mass or more based on the total mass of difluoromethane and 3,3,3-trifluoropropyne. A working medium composition for heat cycle.
  5. 前記冷媒は、3,3,3-トリフルオロプロピンの含有量が、ジフルオロメタン及び3,3,3-トリフルオロプロピンの全質量に対して79質量%以上である、請求項2~4のいずれか1項に記載の熱サイクル用作動媒体組成物。 5. The refrigerant according to claim 2, wherein the content of 3,3,3-trifluoropropyne is 79% by mass or more based on the total mass of difluoromethane and 3,3,3-trifluoropropyne. The working medium composition for heat cycles according to claim 1.
  6. ジフルオロメタン及び3,3,3-トリフルオロプロピンを含む冷媒を含有し、
    前記冷媒が共沸様混合物である、請求項2~5のいずれか1項に記載の熱サイクル用作動媒体組成物。
    Containing a refrigerant comprising difluoromethane and 3,3,3-trifluoropropyne;
    The working medium composition for heat cycle according to any one of claims 2 to 5, wherein the refrigerant is an azeotrope-like mixture.
  7. 前記冷媒は、ジフルオロメタン及び3,3,3-トリフルオロプロピンのみからなる、請求項1~6のいずれか1項に記載の熱サイクル用作動媒体組成物。 The working medium composition for heat cycle according to any one of claims 1 to 6, wherein the refrigerant comprises only difluoromethane and 3,3,3-trifluoropropyne.
  8. ペンタフルオロエタン及び3,3,3-トリフルオロプロピンを含む冷媒を含有し、
    前記冷媒が共沸又は共沸様混合物である、請求項1に記載の熱サイクル用作動媒体組成物。
    Containing a refrigerant comprising pentafluoroethane and 3,3,3-trifluoropropyne;
    The working medium composition for heat cycle according to claim 1, wherein the refrigerant is an azeotropic or azeotrope-like mixture.
  9. 前記冷媒は、3,3,3-トリフルオロプロピンの含有量が、ペンタフルオロエタン及び3,3,3-トリフルオロプロピンの全質量に対して1~52質量%である、請求項8に記載の熱サイクル用作動媒体組成物。 9. The refrigerant according to claim 8, wherein the content of 3,3,3-trifluoropropyne is 1 to 52 mass% with respect to the total mass of pentafluoroethane and 3,3,3-trifluoropropyne. A working medium composition for heat cycle.
  10. 前記冷媒は、3,3,3-トリフルオロプロピンの含有量が、ペンタフルオロエタン及び3,3,3-トリフルオロプロピンの全質量に対して20~90質量%である、請求項8に記載の熱サイクル用作動媒体組成物。 9. The refrigerant according to claim 8, wherein the content of 3,3,3-trifluoropropyne is 20 to 90% by mass with respect to the total mass of pentafluoroethane and 3,3,3-trifluoropropyne. A working medium composition for heat cycle.
  11. 前記冷媒は、3,3,3-トリフルオロプロピンの含有量が、ペンタフルオロエタン及び3,3,3-トリフルオロプロピンの全質量に対して70~99質量%である、請求項8に記載の熱サイクル用作動媒体組成物。 9. The refrigerant according to claim 8, wherein the content of 3,3,3-trifluoropropyne is 70 to 99% by mass with respect to the total mass of pentafluoroethane and 3,3,3-trifluoropropyne. A working medium composition for heat cycle.
  12. ペンタフルオロエタン、3,3,3-トリフルオロプロピン及びジフルオロメタンを含む冷媒を含有する、請求項1に記載の熱サイクル用作動媒体組成物。 The working medium composition for heat cycle according to claim 1, comprising a refrigerant containing pentafluoroethane, 3,3,3-trifluoropropyne and difluoromethane.
  13. 前記冷媒は、ペンタフルオロエタン、3,3,3-トリフルオロプロピン及びジフルオロメタンの全質量に対し、
    ペンタフルオロエタンが30~98質量%、
    3,3,3-トリフルオロプロピンが1~52質量%、及び、
    ジフルオロメタンが1~63質量%である、
    請求項12に記載の熱サイクル用作動媒体組成物。
    The refrigerant is based on the total mass of pentafluoroethane, 3,3,3-trifluoropropyne and difluoromethane.
    30 to 98% by mass of pentafluoroethane,
    1 to 52% by weight of 3,3,3-trifluoropropyne, and
    1 to 63% by mass of difluoromethane,
    The working medium composition for heat cycles according to claim 12.
  14. 1,1,1,2-テトラフルオロエタン及び3,3,3-トリフルオロプロピンを含む冷媒を含有し、
    前記冷媒は、3,3,3-トリフルオロプロピンの含有量が、1,1,1,2-テトラフルオロエタン及び3,3,3-トリフルオロプロピンの全質量に対して5~99質量%である、請求項1に記載の熱サイクル用作動媒体組成物。
    Containing a refrigerant comprising 1,1,1,2-tetrafluoroethane and 3,3,3-trifluoropropyne;
    In the refrigerant, the content of 3,3,3-trifluoropropyne is 5 to 99 mass% with respect to the total mass of 1,1,1,2-tetrafluoroethane and 3,3,3-trifluoropropyne. The working medium composition for heat cycle according to claim 1, wherein
  15. 前記冷媒は、3,3,3-トリフルオロプロピンの含有量が、1,1,1,2-テトラフルオロエタン及び3,3,3-トリフルオロプロピンの全質量に対して5~40質量%である、請求項14に記載の熱サイクル用作動媒体組成物。 The refrigerant has a 3,3,3-trifluoropropyne content of 5 to 40% by mass with respect to the total mass of 1,1,1,2-tetrafluoroethane and 3,3,3-trifluoropropyne. The working medium composition for heat cycle according to claim 14, wherein
  16. 前記冷媒は、3,3,3-トリフルオロプロピンの含有量が、1,1,1,2-テトラフルオロエタン及び3,3,3-トリフルオロプロピンの全質量に対して20~90質量%である、請求項14に記載の熱サイクル用作動媒体組成物。 The refrigerant has a content of 3,3,3-trifluoropropyne of 20 to 90% by mass with respect to the total mass of 1,1,1,2-tetrafluoroethane and 3,3,3-trifluoropropyne. The working medium composition for heat cycle according to claim 14, wherein
  17. 前記冷媒は、3,3,3-トリフルオロプロピンの含有量が、1,1,1,2-テトラフルオロエタン及び3,3,3-トリフルオロプロピンの全質量に対して70~99質量%である、請求項14に記載の熱サイクル用作動媒体組成物。 The refrigerant has a 3,3,3-trifluoropropyne content of 70 to 99% by mass with respect to the total mass of 1,1,1,2-tetrafluoroethane and 3,3,3-trifluoropropyne. The working medium composition for heat cycle according to claim 14, wherein
  18. 前記冷媒は、ジフルオロメタンをさらに含み、
    1,1,1,2-テトラフルオロエタン、3,3,3-トリフルオロプロピン及びジフルオロメタンの全質量に対し、
    1,1,1,2-テトラフルオロエタンが50~98質量%、
    3,3,3-トリフルオロプロピンが1~40質量%、及び、
    ジフルオロメタンが1~43質量%である、請求項14に記載の熱サイクル用作動媒体組成物。
    The refrigerant further includes difluoromethane,
    For the total mass of 1,1,1,2-tetrafluoroethane, 3,3,3-trifluoropropyne and difluoromethane,
    1,1,1,2-tetrafluoroethane is 50 to 98% by mass,
    1 to 40% by weight of 3,3,3-trifluoropropyne, and
    The working medium composition for heat cycle according to claim 14, wherein difluoromethane is 1 to 43% by mass.
  19. ペンタフルオロエタン、ジフルオロメタン、1,1,1,2-テトラフルオロエタン及び3,3,3-トリフルオロプロピン以外の第三成分としてハイドロフルオロオレフィン(HFO)、ハイドロフルオロカーボン(HFC)、ハイドロクロロフルオロカーボン(HCFC)、クロロフルオロカーボン(CFC)、クロロフルオロオレフィン(CFO)、ハイドロクロロフルオロオレフィン(HCFO)、ヨウ化トリフルオロメタン及び二酸化炭素からなる群から選ばれる少なくとも一つを含む、請求項1~18に記載の熱サイクル用作動媒体組成物。 Hydrofluoroolefin (HFO), hydrofluorocarbon (HFC), hydrochlorofluorocarbon as a third component other than pentafluoroethane, difluoromethane, 1,1,1,2-tetrafluoroethane and 3,3,3-trifluoropropyne (HCFC), chlorofluorocarbon (CFC), chlorofluoroolefin (CFO), hydrochlorofluoroolefin (HCFO), at least one selected from the group consisting of trifluoromethane iodide and carbon dioxide, The working medium composition for heat cycle as described.
  20. 請求項1~19のいずれか1項に記載の熱サイクル用作動媒体組成物を備える、熱サイクルシステム。 A heat cycle system comprising the working medium composition for heat cycle according to any one of claims 1 to 19.
  21. 請求項1~19のいずれか1項に記載の組成物のR22、R410A、R404A、R134a及びR1234yfのいずれかの冷媒を含む熱サイクル用作動媒体の代替としての使用。 Use of the composition according to any one of claims 1 to 19 as an alternative to a working medium for heat cycle comprising a refrigerant of any of R22, R410A, R404A, R134a and R1234yf.
PCT/JP2017/032972 2016-09-13 2017-09-13 Heat-cycle working medium composition and heat cycle system WO2018052000A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018539734A JPWO2018052000A1 (en) 2016-09-13 2017-09-13 Working medium composition for thermal cycling and thermal cycling system

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016-178299 2016-09-13
JP2016178299 2016-09-13
JP2017132994 2017-07-06
JP2017-132994 2017-07-06

Publications (1)

Publication Number Publication Date
WO2018052000A1 true WO2018052000A1 (en) 2018-03-22

Family

ID=61619457

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/032972 WO2018052000A1 (en) 2016-09-13 2017-09-13 Heat-cycle working medium composition and heat cycle system

Country Status (2)

Country Link
JP (1) JPWO2018052000A1 (en)
WO (1) WO2018052000A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013529717A (en) * 2010-06-30 2013-07-22 アルケマ フランス Composition comprising 2,3,3,3-tetrafluoropropene
JP2016065206A (en) * 2014-09-25 2016-04-28 ダイキン工業株式会社 Composition containing hfc and hfo
JP2016519703A (en) * 2013-03-20 2016-07-07 アルケマ フランス Composition comprising HF and 3,3,3-trifluoro-2-chloropropene

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013529717A (en) * 2010-06-30 2013-07-22 アルケマ フランス Composition comprising 2,3,3,3-tetrafluoropropene
JP2016519703A (en) * 2013-03-20 2016-07-07 アルケマ フランス Composition comprising HF and 3,3,3-trifluoro-2-chloropropene
JP2016065206A (en) * 2014-09-25 2016-04-28 ダイキン工業株式会社 Composition containing hfc and hfo

Also Published As

Publication number Publication date
JPWO2018052000A1 (en) 2019-06-24

Similar Documents

Publication Publication Date Title
US11834602B2 (en) Refrigerant-containing composition, and refrigerating method, refrigerating device operating method, and refrigerating device using said composition
US11421137B2 (en) Refrigerant-containing composition, heat transfer medium, and heat cycle system
TWI616522B (en) Low gwp heat transfer compositions
JP7328550B2 (en) Composition containing refrigerant, refrigeration method using the composition, method for operating refrigeration apparatus, and refrigeration apparatus
JP6642757B2 (en) Composition containing refrigerant, heat transfer medium and heat cycle system
JP6642756B2 (en) Composition containing refrigerant, heat transfer medium and heat cycle system
TW201843291A (en) Composition containing refrigerant and application of said compostion
JP7410429B2 (en) Compositions containing refrigerants and their applications
US20210198547A1 (en) REFRIGERANT COMPOSITION INCLUDING HFO-1234ze(E) AND HFC-134 AND USE FOR SAME
US11834601B2 (en) Composition containing refrigerant, refrigeration method using said composition, method for operating refrigeration device, and refrigeration device
WO2018052000A1 (en) Heat-cycle working medium composition and heat cycle system
JP2019182945A (en) Composition
JP7389373B2 (en) A composition containing a refrigerant, its use, a refrigerator having the same, and a method of operating the refrigerator
JP6879411B1 (en) A composition containing a refrigerant, its use, a refrigerator having it, and a method of operating the refrigerator.
JP2016513166A (en) Composition comprising difluoromethane and fluorine-substituted olefin
WO2009061002A1 (en) Hfc-1225ye-containing refrigerant and refrigerant composition containing the refrigerant

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018539734

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17850901

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17850901

Country of ref document: EP

Kind code of ref document: A1