WO2018051957A1 - Method for making biological sample transparent - Google Patents

Method for making biological sample transparent Download PDF

Info

Publication number
WO2018051957A1
WO2018051957A1 PCT/JP2017/032738 JP2017032738W WO2018051957A1 WO 2018051957 A1 WO2018051957 A1 WO 2018051957A1 JP 2017032738 W JP2017032738 W JP 2017032738W WO 2018051957 A1 WO2018051957 A1 WO 2018051957A1
Authority
WO
WIPO (PCT)
Prior art keywords
reagent
biological sample
guanidine
urea
clearing
Prior art date
Application number
PCT/JP2017/032738
Other languages
French (fr)
Japanese (ja)
Inventor
達也 山岨
真次 浦田
繁男 岡部
弥生 吉川
有 松本
千里 藤本
Original Assignee
国立大学法人東京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東京大学 filed Critical 国立大学法人東京大学
Publication of WO2018051957A1 publication Critical patent/WO2018051957A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/30Staining; Impregnating ; Fixation; Dehydration; Multistep processes for preparing samples of tissue, cell or nucleic acid material and the like for analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q

Definitions

  • the present invention relates to a method for clarifying a biological sample.
  • the cochlea which is the auditory organ in the inner ear, has a complex structure consisting of a bone maze and a membrane maze in the temporal bone, and important structures (such as hair cells) inside the bone There are many.
  • bone marrow is present inside the bones constituting the skeleton.
  • Hair cells play an important role in transmitting sound to the brain, and the bone marrow plays an important role in producing red blood cells and granular white blood cells. If the tissues and structures existing inside these bones can be imaged intact, a lot of information useful for diagnosis and treatment of diseases can be acquired. However, at present, no transparent method has been established that can solve the above problem.
  • the biological sample clarification technology is a useful tool that contributes to the development of basic and clinical research in the fields of medicine and biology, but many problems remain to be solved.
  • an object of the present invention is to provide a clarification method capable of reducing tissue expansion of a biological sample and achieving effective clarification. Furthermore, this invention aims at provision of the clearing method of the biological sample containing a bone.
  • the present invention makes it clear that a biological sample containing bone is preserved in a state in which the structure of a tissue or organ (or cell network) inside the bone is preserved (stored in a state in vivo).
  • the development of the method is the solution issue.
  • the present inventors changed to the conventional urea-based reagent clearing method and performed clarification with a guanidine-based reagent. We have succeeded in developing a transparency method that does not cause any problems.
  • the present inventors removed calcium, which is the main component of bone, with a chelating agent (hereinafter also referred to as “demineralization”) to clarify a biological sample containing bone, and the bone after decalcification.
  • a chelating agent hereinafter also referred to as “demineralization”
  • CUBIC has been reported to cause tissue edema and fluorescence loss
  • iDISCO is an organic solvent, so it is difficult to use for living tissue.
  • the present invention includes the following (1) to (20).
  • a biological sample clarification method comprising treating a biological sample with a clarification reagent containing at least one chaotrope selected from the group consisting of guanidine or a guanidine derivative or a salt thereof.
  • the above-mentioned (1) further comprising the step of treating the biological sample with a refractive index adjusting reagent containing at least one chaotrope selected from the group consisting of guanidine or a guanidine derivative or a salt thereof.
  • Method (3) The method according to (1) or (2) above, wherein the clearing reagent and / or refractive index adjusting reagent contains sorbitol.
  • a biological sample clarification reagent which is a solution containing at least one chaotrope selected from the group consisting of guanidine or a guanidine derivative or a salt thereof.
  • a reagent for adjusting the refractive index of a biological sample which is a solution containing at least one chaotrope selected from the group consisting of guanidine or a guanidine derivative or a salt thereof.
  • a method for clarifying a biological sample containing bone comprising the following steps (a) to (c): (A) treating a biological sample with a solution containing a calcium chelator; (B) treating the biological sample with a clearing reagent comprising at least one chaotrope and sorbitol selected from the group consisting of urea or urea derivatives or salts thereof, guanidine or guanidine derivatives or salts thereof; (C) treating the biological sample with a refractive index adjusting reagent comprising at least one chaotrope and sorbitol selected from the group consisting of urea or urea derivatives or salts thereof, guanidine or guanidine derivatives or salts thereof.
  • a biological sample clarification reagent which is a solution containing at least one chaotrope, sorbitol and glucose selected from the group consisting of urea or urea derivatives or salts thereof.
  • a reagent for adjusting the refractive index of a biological sample which is a solution containing at least one chaotrope and sorbitol selected from the group consisting of urea or urea derivatives or salts thereof.
  • the method for clarifying a biological sample of the present invention (a method using a guanidine-based reagent), it is possible to clear the sample without causing expansion of the biological sample.
  • a biological sample containing bone can be clarified. More specifically, it is possible to make the structure transparent while maintaining the structure of tissues and organs existing inside the bone.
  • Results of clarifying cerebral slice specimens of Thy1-YFP mice with reagents containing guanidine hydrochloride The results of clearing treatment with a reagent containing 4M urea, 1M guanidine hydrochloride, 2M guanidine hydrochloride, 3M guanidine hydrochloride, 4M guanidine hydrochloride, 5M guanidine hydrochloride, 6M guanidine hydrochloride are shown.
  • the upper figure is a fluorescence micrograph. In the following figure, the fluorescence intensity of the control is taken as 1 and expressed as a relative value.
  • the control is a sample that has not been subjected to a clearing treatment.
  • the degree of tissue edema and the degree of transparency were compared between the case of clearing with a urea-based reagent and the case of clearing with a guanidine-based reagent according to the present invention.
  • a reagent containing 4M urea 1M guanidine hydrochloride, 2M guanidine hydrochloride, 3M guanidine hydrochloride
  • optical microscope observation was performed (above figure).
  • the degree of expansion of the same region before and after treatment of the sample was graphed (lower graph).
  • Regarding transparency after setting the region of interest (ROI) around the entire sample, a transparency treatment was performed, and the average luminance within the ROI was calculated.
  • ROI region of interest
  • the brain sample as a control was measured in a state where it was infiltrated with PBS, and the sample subjected to the clearing treatment was measured after the clearing treatment. Comparison of the effects when the conventional clearing method and the clearing method of the present invention (urea base) are applied to a biological sample containing bone.
  • PBS Phosphate buffer
  • organic solvent-based 3DISCO Erturk et al., Nat Protoc., 11: 1983-95 2012
  • iDISCO Renier et al., Cell 159: 896-910 2014
  • CLARITY a water-soluble reagent
  • CUBIC Survection et al., Nature 497 (7449): 332-7 2013
  • CUBIC Survection et al.
  • the result of having observed the inner ear sample with the optical microscope (upper stage, middle stage) and the confocal laser microscope (lower stage) after the clearing process is shown.
  • the scale bar is 500 ⁇ m.
  • the upper arrow is a diagram schematically showing a conventional method
  • the lower arrow is a diagram showing a transparency method according to the present invention in a time series.
  • the conceptual diagram below it is a diagram for explaining the outline of the transparency method according to the present invention.
  • the femur (a), knee joint (b), hand bone (c), inner ear (d), skull axis position (e), and skull sagittal position ( The result of processing f) is shown.
  • the upper figure shows the state before the transparency, and the lower figure shows the state after the transparency.
  • Examination of effects on fluorescent molecules (1) The above figure shows the result of cerebral slice preparation of a Thy1-YFP mouse in which yellow fluorescent protein (YFP) is expressed in central nerve cells and fibers, and then fluorescence observation was performed the next day.
  • the figure below shows the result of fluorescing the inner ear of a mouse expressing Ateam, a probe that senses ATP, and observing fluorescence the next day.
  • F-actin which is a marker for auditory hair
  • Rhodamine- phalloidin was labeled with Rhodamine- phalloidin.
  • YFP is an image of fluorescence detected from Ateam
  • Rhodamine- phalloidin is an image of fluorescence detected from Rhodamine labeled with F-actin, which is an auditory hair marker.
  • d is a diagram in which a, b and c are merged.
  • e and f are three-dimensional reconstructed images of the inner ear in which only hair cells are extracted.
  • g and h are two-dimensional reconstructed images obtained by extracting only the hairs arranged in a spiral of two and a half rotations from the cochlear top rotation to the basal rotation in order to examine the fluorescence depth of the transparent sample.
  • g is a construction image of the surface layer 0-180 ⁇ m
  • h is a construction image of the deep layer 180-580 ⁇ m.
  • ik is a three-dimensional reconstructed image with a micro sample.
  • i is a front image
  • j is a horizontal image
  • k is an image from the back.
  • EDTA treatment decalcification
  • CUA method Susaki et al., Cell 157: 726-739 2014
  • the right figure shows the result of treating the inner ear sample with the clearing treatment method (urea-based method) of the present invention and staining the hair cells with the anti-Myosin7a antibody.
  • the result of having processed the knee joint, the wrist joint, and the femur using the transparency method (guanidine base) concerning this invention is shown.
  • Arrow Bone marrow remaining part
  • Arrow butt Joint preservation part
  • * Bone marrow clearing part
  • the first embodiment of the present invention comprises at least one chaotrope selected from the group consisting of guanidine or guanidine derivatives or their salts, preferably sorbitol, more preferably glucose, a biological sample with a clearing reagent Is a method for clarifying a biological sample. Furthermore, the first embodiment of the present invention comprises treating at least one biological sample with a refractive index adjusting reagent comprising at least one chaotrope selected from the group consisting of guanidine or a guanidine derivative or a salt thereof, preferably comprising sorbitol. The process to do may be included. In addition, the first embodiment of the present invention may include a step of staining a biological sample using an antibody or the like by an immunohistological method (such as immunostaining).
  • an immunohistological method such as immunostaining
  • the biological sample to be transparentized is not particularly limited, and is, for example, a tissue, organ, cell, or the like derived from an individual of a multicellular organism.
  • the multicellular organism is not particularly limited, and may be, for example, fish, amphibians, reptiles, birds, mammals, etc., particularly preferably mammals.
  • Preferred mammals are, for example, mice, rats, rabbits, guinea pigs, dogs, cats, primates (except humans) and humans.
  • the biological sample may be obtained by expressing a fluorescent protein or the like in advance, introducing a fluorescent chemical substance, or staining using a fluorescent label.
  • the biological sample may be one that has been immobilized for microscopic observation (for example, treated with PFA (paraformaldehyde) -PBS).
  • the step of treating the biological sample with the clearing reagent is a step of mainly removing an extracellular matrix composed of lipid, collagen, etc. (degreasing and decollagen).
  • the clarification reagent used in the first embodiment includes at least one chaotrope selected from the group consisting of guanidine or a guanidine derivative or a salt thereof, preferably sorbitol, and further includes glucose. Good.
  • the clearing reagent is preferably a solution using water or a buffer capable of maintaining pH, and the osmotic pressure is adjusted so that the biological sample is not deformed when the biological sample is immersed. It may be a thing.
  • a preferred chaotrope used in the first embodiment is guanidine or a guanidine derivative or a salt thereof.
  • “treating a biological sample with a reagent” is to immerse the biological sample in a solution that is a reagent, and to infiltrate the entire biological sample (hereinafter, treatment of the solution with the reagent in this specification). Is synonymous).
  • the optimum concentration of guanidine or a guanidine derivative or a salt thereof contained in the clearing reagent of the first embodiment differs depending on the biological sample, and is not particularly limited.
  • the optimum concentration can be easily determined.
  • guanidine hydrochloride it is 1M to 6M, more preferably 1M to 3M.
  • the concentration of sorbitol and glucose is not particularly limited, but for sorbitol, for example, 10 (w / v)% to 50 (w / v)%, preferably 20 (w / v)% to 45 (w / v)%, more preferably 30 (w / v)% to 40 (w / v)%.
  • 10 (w / v)% to 50 (w / v)% preferably 20 (w / v)% to 45 (w / v)%, more preferably 30 (w / v)% to 40 (w / v)%.
  • 5 (w / v)% to 30 (w / v)% preferably 10 (w / v)% to 25 (w / v)%, particularly preferably 10 (w / v)% to 20 ( w / v)%.
  • the clearing reagent of the first embodiment further includes a surfactant (for example, ester-type nonionic surfactants such as sorbitan fatty acid ester, glycerin fatty acid ester, sucrose fatty acid ester, fatty alcohol ethoxylate, polyoxy And ether type nonionic surfactants such as ethylene alkyl phenyl ether, etc. More specifically, Triton X (registered trademark) series, Nonidet P (registered trademark) series, Tween (registered trademark) series, etc. May be included).
  • the preferred concentration of the surfactant is not particularly limited, but is about 0.1% to 4.0%.
  • the conditions for the treatment time and the treatment temperature with the clearing reagent of the first embodiment vary depending on the biological sample, and those skilled in the art can set the conditions by preliminary experiments.
  • the treatment temperature is The processing time is about 20 ° C to 37 ° C, and the processing time is about several minutes to 48 hours.
  • the first embodiment of the present invention may further include a step of treating with a refractive index adjusting reagent in order to adjust the difference in refractive index between different tissues contained in the biological sample.
  • the refractive index adjusting reagent used in the first embodiment includes at least one chaotrope selected from the group consisting of guanidine or a guanidine derivative or a salt thereof, and may preferably include sorbitol.
  • the refractive index adjusting reagent is preferably a solution containing water or a buffer capable of maintaining pH, and the osmotic pressure is adjusted so that the biological sample is not deformed when the biological sample is immersed. It may be.
  • the optimum concentration of guanidine or a guanidine derivative or a salt thereof contained in the refractive index adjusting reagent of the first embodiment differs depending on the biological sample, and is not particularly limited.
  • the optimum concentration can be easily determined.
  • guanidine hydrochloride it is 1M to 6M, more preferably 1M to 3M.
  • the concentration of sorbitol is not particularly limited, but is, for example, 15 (w / v)% to 65 (w / v)%, preferably Is 20 (w / v)% to 60 (w / v)%, more preferably 50 (w / v)% to 60 (w / v)%.
  • the concentration of sorbitol contained in the refractive index adjusting reagent is A higher concentration than the sorbitol concentration contained in the clearing reagent is preferred.
  • the refractive index adjusting reagent of the first embodiment further includes a surfactant (for example, an ester-type nonionic surfactant such as sorbitan fatty acid ester, glycerin fatty acid ester, sucrose fatty acid ester, fatty alcohol ethoxylate, Examples include ether type nonionic surfactants such as oxyethylene alkylphenyl ether, etc. More specifically, Triton X (registered trademark) series, Nonidet P (registered trademark) series, Tween (registered trademark) series, etc. May be included).
  • the preferred concentration of the surfactant is not particularly limited, but is about 0.1% to 4.0%.
  • the conditions for the treatment time and the treatment temperature by the refractive index adjusting reagent of the first embodiment vary depending on the biological sample, and those skilled in the art can set the conditions by preliminary experiments.
  • the treatment temperature is 25
  • the processing time is about several minutes to several hours at about 37 ° C.
  • the second embodiment of the present invention is a method for clarifying a biological sample containing bone, comprising the following steps (a) to (c). (A) treating a biological sample with a solution containing a calcium chelator; (B) a clearing reagent comprising at least one chaotrope selected from the group consisting of urea or urea derivatives or salts thereof, guanidine or guanidine derivatives or salts thereof, preferably sorbitol, more preferably glucose.
  • the second embodiment mainly includes a step of removing calcium, which is a main component of bone, from a biological sample, a step of clarifying the biological sample, and a step of adjusting a refractive index between tissues included in the biological sample.
  • a method for clarifying a biological sample containing bone when a biological sample is stained by an immunohistological method (such as immunostaining) and observed, in addition to these steps, a step of immunostaining the biological sample with an antibody or the like may be included. Good.
  • the biological sample to be transparentized contains bone (or bone tissue) in the living body, for example, vertebrates (for example, teleosts, amphibians, reptiles, birds, mammals are preferable, particularly Mammals are preferred, and preferred mammals may be derived from any organism, such as mice, rats, rabbits, guinea pigs, dogs, cats, primates (except humans) and humans.
  • bone may be understood as a general meaning understood by those skilled in the art, and is a hard tissue (hard tissue) containing a large amount of calcium phosphate constituting a skeleton in vertebrates.
  • the “biological sample containing bone” may be any tissue or organ containing “bone”.
  • a sample derived from a hard tissue containing bone marrow and bone the head or one of them.
  • the “biological sample containing bone” may be one in which a fluorescent protein or the like is expressed in advance, one into which a fluorescent chemical substance has been introduced, or one that has been immunostained using a fluorescent label.
  • the biological sample may be one that has been immobilized for microscopic observation (for example, treated with PFA (paraformaldehyde) -PBS).
  • Step (a) of the second embodiment is a step of decalcifying bone and is a step of treating a biological sample with a solution containing a calcium chelating agent.
  • the calcium chelating agent is not particularly limited as long as it chelates calcium.
  • EDAT ethylenediaminetetraacetic acid
  • EGTA glycol etherdiaminetetraacetic acid
  • NTA nitrilotriacetic acid
  • DTPA diethylenetriamine
  • Examples include pentaacetic acid), HEDTA (ethylenediaminehydroxyethyl triacetic acid), TTHA (triethylenetetramine hexaacetic acid), and derivatives thereof.
  • the solvent of the solution containing the calcium chelating agent is preferably water, and may be a buffer capable of maintaining the pH.
  • the concentration of the chelating agent depends on the type of chelating agent used and the type of sample to be clarified, but may be, for example, several mM to several hundred mM.
  • the treatment time with the calcium chelating agent varies depending on the biological sample, but the chelating agent treatment may be performed to such an extent that there is no resistance when the material containing bone is cut off, and is, for example, several minutes to several days (for example, When using 10% EDTA ⁇ 2Na (269 mM) as a chelating agent, inner ear (3-5 days), skull (7-21 days), limb bone (2-7 days)).
  • the step (b) of the second embodiment of the present invention is a step of clarifying a biological sample, and is a step of removing an extracellular matrix mainly composed of lipid, collagen, etc. (degreasing and decollagen).
  • the clearing reagent of the second embodiment includes at least one chaotrope, preferably includes sorbitol, and may further include glucose.
  • the clearing reagent is preferably a solution using water or a buffer capable of maintaining pH, and the osmotic pressure is adjusted so that the biological sample is not deformed when the biological sample is immersed. It may be a thing.
  • urea, urea derivative, urea or a salt of urea derivative, guanidine, guanidine derivative, salt of guanidine or guanidine derivative and the like are preferable.
  • the clearing reagent of the second embodiment may preferably contain sorbitol, more preferably glucose in addition to the chaotrope.
  • Sorbitol is also included in the biological reagent clearing reagents reported so far (see, for example, Non-Patent Document 1), but sorbitol is mainly used to prevent quenching of fluorescent substances in conventional methods.
  • the preservation of tissue inside the bone is improved (for example, in the case of cochlear clarification, the preservation of outer hair cells and the like is improved. ), And in that the bone collagen is dissolved to adjust the refractive index of the bone.
  • the optimal concentration of the chaotrope contained in the clearing reagent of the second embodiment varies depending on the biological sample to be cleared or the type of chaotrope used, and is not particularly limited.
  • the optimum concentration can be easily determined.
  • urea when used as the chaotrope, it is 1M to 6M, more preferably 1M to 4M, and when guanidine hydrochloride is used, it is 1M to 6M, more preferably 1M to 3M.
  • the concentration of sorbitol and glucose is not particularly limited, but for sorbitol, for example, 10 (w / v)% to 50 (w / v)%, preferably 20 (w / v)% to 45 (w / v)%, more preferably 30 (w / v)% to 40 (w / v)%.
  • 10 (w / v)% to 50 (w / v)% preferably 20 (w / v)% to 45 (w / v)%, more preferably 30 (w / v)% to 40 (w / v)%.
  • 5 (w / v)% to 30 (w / v)% preferably 10 (w / v)% to 25 (w / v)%, particularly preferably 10 (w / v)% to 20 ( w / v)%.
  • the clearing reagent of the second embodiment further includes a surfactant (for example, an ester-type nonionic surfactant such as sorbitan fatty acid ester, glycerin fatty acid ester, sucrose fatty acid ester, fatty alcohol ethoxylate, polyoxy And ether type nonionic surfactants such as ethylene alkyl phenyl ether, etc. More specifically, Triton X (registered trademark) series, Nonidet P (registered trademark) series, Tween (registered trademark) series, etc. May be included).
  • the preferred concentration of the surfactant is not particularly limited, but is about 0.1% to 4.0%.
  • the conditions for the treatment time and the treatment temperature with the clearing reagent of the second embodiment vary depending on the biological sample, and those skilled in the art can set the conditions by preliminary experiments.
  • the treatment temperature is 20 ° C.
  • the processing time is about several minutes to 48 hours.
  • a sample containing more bone tissue at room temperature (10-30 ° C) for about 2-4 hours, or at 30-40 ° C for about 0.5-1.5 hours May be treated at room temperature (10-30 ° C.) for about 15-30 hours, or at 30-40 ° C. for about 2-4 hours.
  • Step (c) of the second embodiment of the present invention is a step of adjusting the difference in refractive index between the bone constituting the biological sample and other tissues or organs.
  • the refractive index adjusting reagent used in the second embodiment may contain at least one kind of chaotrope, and preferably sorbitol.
  • the refractive index adjusting reagent is preferably a solution using water as a solvent or a buffer capable of maintaining pH, and the osmotic pressure is adjusted so that the biological sample is not deformed when the biological sample is immersed. It may be.
  • urea, urea derivative, urea or salt of urea derivative, guanidine, guanidine derivative, salt of guanidine or guanidine derivative and the like are preferable.
  • the optimal concentration of the chaotrope contained in the refractive index adjusting reagent of the second embodiment varies depending on the biological sample to be clarified or the type of chaotrope used, and is not particularly limited. Thus, the optimum concentration can be easily determined. For example, when urea is used as the chaotrope, it is 1M to 6M, more preferably 1M to 4M, and when guanidine hydrochloride is used, it is 1M to 6M, more preferably 1M to 3M.
  • the concentration of sorbitol is not particularly limited, but is, for example, 15 (w / v)% to 65 (w / v)%, preferably Is 20 (w / v)% to 60 (w / v)%, more preferably 50 (w / v)% to 60 (w / v)%.
  • the sorbitol concentration contained in the refractive index adjusting reagent is preferably higher than the sorbitol concentration contained in the clearing reagent.
  • the concentration of sorbitol is preferably higher than 40 (w / v)% and preferably 60 (w / v)% or less.
  • the refractive index adjusting reagent of the second embodiment further includes a surfactant (for example, an ester-type nonionic surfactant such as sorbitan fatty acid ester, glycerin fatty acid ester, sucrose fatty acid ester, fatty alcohol ethoxylate).
  • ether type nonionic surfactants such as polyoxyethylene alkylphenyl ether, etc.
  • Triton X registered trademark
  • Nonidet P registered trademark
  • Tween registered trademark
  • the preferred concentration of the surfactant is not particularly limited, but is about 0.1% to 4.0%.
  • the conditions for the treatment time and the treatment temperature with the refractive index adjusting reagent of the second embodiment vary depending on the biological sample, and those skilled in the art can set the conditions by preliminary experiments.
  • the treatment temperature is 25 At about 37 ° C
  • the processing time is about several minutes to 48 hours.
  • the treatment may be performed at room temperature (10 to 30 ° C.) for about 2 to 4 hours or at 30 to 40 ° C. for about 0.5 to 2 hours.
  • the biological sample after clarification can be treated with, for example, PBS (for example, NaCl: 137 mM, 4 (PO4) 3-: 9.57 mM)) or a known urea-based clarification reagent ( For example, treat with 25% (W / V)% urea, 50% (W / V)% sucrose, 10% (W / V)% 2,2,2 ', 2 "-nitrilotriethanol, 0.1% Triton X-100) Thus, fluorescence can be recovered.
  • PBS for example, NaCl: 137 mM, 4 (PO4) 3-: 9.57 mM
  • a known urea-based clarification reagent For example, treat with 25% (W / V)% urea, 50% (W / V)% sucrose, 10% (W / V)% 2,2,2 ', 2 "-nitrilotriethanol, 0.1% Triton X-100
  • the urea derivative when urea or a urea derivative or a salt thereof is used as the chaotrope, is not particularly limited.
  • R 1 , R 2 , R 3 and R 4 are each independently hydrogen, a hydrocarbon group, or a halogen atom.
  • the hydrocarbon group may have a substituent, and may be a chain or a ring.
  • an alkyl group, an alkenyl group, an alkynyl group, a cycloalkyl group, a cycloalkenyl group Etc. are preferable.
  • More preferred hydrocarbon groups are those having 1 to 6 carbon atoms, specifically, methyl group, ethyl group, propyl group, cyclopropyl group, isopropyl group, butyl group, cyclobutyl group, pentyl group, cyclopentyl group, hexyl group. Group, cyclohexyl group and the like.
  • the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • Preferred examples of urea and urea derivatives used in embodiments of the invention are the compounds of formula (1), other all R 1 ⁇ R 4 is a urea hydrogen, three of R 1 ⁇ R 4 hydrogen Wherein the remaining one group is a halogen atom, which is a urea derivative and acts as a chaotrope, and any one of R 1 to R 4 , R 1 or R 2 and any one of R 3 or R 4 is hydrogen Thus, the remaining two groups are urea derivatives having an alkyl group, and are compounds that act as a chaotrope.
  • Examples of the salt of urea and urea derivative represented by the general formula (1) include hydrochloride and sulfate.
  • the guanidine derivative when guanidine or a guanidine derivative or a salt thereof is used as the chaotrope, the guanidine derivative is not particularly limited.
  • the following general formula (2) R 1 , R 2 , R 3 , and R 4 are each independently hydrogen, a hydrocarbon group, or a halogen atom.
  • the hydrocarbon group may have a substituent, and may be a chain or a ring.
  • an alkyl group, an alkenyl group, an alkynyl group, a cycloalkyl group, a cycloalkenyl group Etc. are preferable.
  • More preferred hydrocarbon groups are those having 1 to 6 carbon atoms, specifically, methyl group, ethyl group, propyl group, cyclopropyl group, isopropyl group, butyl group, cyclobutyl group, pentyl group, cyclopentyl group, hexyl group. Group, cyclohexyl group and the like.
  • the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • Preferred examples of guanidine and guanidine derivatives used in the embodiment of the present invention include guanidine in which R 1 to R 4 are all hydrogen in the general formula (2), and three of R 1 to R 4 are hydrogen.
  • the remaining one group is a halogen atom and is a compound that acts as a chaotrope and any one of R 1 to R 4 , R 1 or R 2 , and any one of R 3 or R 4 is hydrogen
  • the remaining two groups are guanidine derivatives in which an alkyl group is present, and are compounds that act as a chaotrope.
  • Examples of the guanidine and guanidine derivative salts represented by the general formula (2) include hydrochloride and thiocyanate.
  • the biological sample can be effectively clarified by using either urea and its derivatives or guanidine and its derivatives as the chaotrope contained in the clearing reagent and refractive index adjusting reagent of the present invention. Since guanidine is generally known as a stronger chaotrope than urea, those skilled in the art usually consider it more damaging to biological samples than urea. However, the inventors have found that when guanidine hydrochloride is used as the chaotrope of the clearing reagent and refractive index adjusting reagent, the swelling of the biological sample is less than when urea is used.
  • the inventors have confirmed that the guanidine-based reagent can achieve the same degree of transparency as the urea-based reagent or more than that of the biological sample. After understanding the above characteristics, those skilled in the art can select either a urea-based reagent or a guanidine-based reagent as the chaotrope.
  • the third embodiment of the present invention is a biological sample clearing reagent (also referred to as “clearing reagent of the present invention”) and a biological sample refractive index adjusting reagent used in the first and second embodiments. (Also described as “refractive index adjusting reagent of the present invention”).
  • the clarifying reagent of the present invention include a solution containing at least one chaotrope selected from the group consisting of urea or urea derivatives or salts thereof, guanidine or guanidine derivatives or salts thereof.
  • the clarification reagent of the present invention may preferably contain sorbitol, more preferably glucose, and a surfactant (for example, sorbitan fatty acid ester, glycerin fatty acid ester, sucrose fatty acid ester).
  • a surfactant for example, sorbitan fatty acid ester, glycerin fatty acid ester, sucrose fatty acid ester.
  • ester type nonionic surfactants such as fatty alcohol ethoxylate, polyoxyethylene alkylphenyl ether, etc. More specifically, the Triton X (registered trademark) series. , Nonidet P (registered trademark) series, Tween (registered trademark) series, and the like.
  • Preferred chaotropes are urea or guanidine salts (eg guanidine hydrochloride).
  • the preferred concentration of the surfactant is not particularly limited, but is about 0.1% to 4.0%.
  • refractive index adjusting reagent of the present invention examples include a solution containing at least one chaotrope selected from the group consisting of urea or urea derivatives or salts thereof, guanidine or guanidine derivatives or salts thereof.
  • sorbitol may be preferably contained, and surfactants (eg, ester-type nonionic surfactants such as sorbitan fatty acid ester, glycerin fatty acid ester, sucrose fatty acid ester, fatty alcohol ethoxylate) And ether type nonionic surfactants such as polyoxyethylene alkylphenyl ether, etc.
  • Triton X registered trademark
  • Nonidet P registered trademark
  • Tween registered trademark
  • Series etc.
  • Preferred chaotropes are urea or guanidine salts (eg guanidine hydrochloride).
  • the preferred concentration of the surfactant is not particularly limited, but is about 0.1% to 4.0%.
  • the fourth embodiment of the present invention is a biological material clearing treatment kit containing biological material or bone (also referred to as “the clearing treatment kit of the present invention”).
  • the clearing treatment kit of the present invention includes the above-described clearing reagent and refractive index adjusting reagent of the present invention, as well as a reagent necessary for the clearing of a biological sample, such as a biological sample fixing solution (for example, PFA- PBS, etc.), calcium chelating agent solutions, various antibodies used for immunostaining (which may or may not be labeled), and the like.
  • the parietal bone was removed as bluntly as possible until the entire upper brain was clearly visible.
  • the exfoliator was inserted under the medulla oblongata, midbrain, and then the bilateral temporal lobes, and manual exfoliation was performed from the skull base.
  • the posterior parietal bone resulting from the dissection between the bilateral orbits was carefully removed with a scissors, and the exfoliator was moved under the olfactory bulb, and the whole brain was removed. After brain removal, a midline incision was made in the maxilla and the temporal bone was dissected.
  • a scissors were inserted into the shoulder joint and hip joint, and the upper forearm and upper and lower thighs were removed.
  • the extracted sample was infiltrated into 4% PFA (paraformaldehyde) / PBS (NaCl: 137 mM, (PO4) 3-: 9.57 mM) (hereinafter referred to as a fixing solution).
  • the brain samples were stored at 4 ° C. until the next day with the fixative infiltrated.
  • an insulator was inserted from the bottom of the temporal bone skull along the semicircular canal temporal fracture, and the outer shape of the inner ear was excavated.
  • the top of the cochlea has a strong bond with the bone and is prone to cochlear damage, so careful peeling is required.
  • a jelly-like tissue is attached to the front side of the cochlea. If the tissue is not extracted sufficiently, the refractive index adjustment is insufficient, which may prevent the sample from becoming transparent.
  • the removed inner ear was infiltrated with fresh fixative and stored at 4 ° C. until the next day. With the fixative infiltrated, the skull was manually attached to the buccal and temporal muscles using a lever, and the limb bones were attached to the bone by rotating the cutting blade against the midline of the bone and rotating on the long bone axis. The soft tissue was cut off, and the remaining soft tissue was peeled off using the dorsal blade spine. The joint capsule was kept infiltrated into the fixative and stored at 4 ° C until the next day.
  • a tympanic membrane perforation was made between the tympanic marginal temporal bones at the distal end of the insulator, and the tympanic membrane was separated from the temporal bone at the outer periphery of the tympanic membrane.
  • the cochlear surface was clearly visualized, and the surrounding tissues were dissected with careful attention to inner ear damage.
  • it was removed from the inner ear with a safety region of about several millimeters and a partial temporal bone remaining. It does not matter whether or not the ear ossicles are removed (because they may be removed forcibly and may cause cochlear damage).
  • the excised inner ear was changed to a fresh fixative and stored at 4 ° C. until the next day.
  • Cerebral cortex slice preparation Coronal section of the whole brain fixed sample is performed at the boundary between the cerebrum and cerebellum. After the coronal surface of the cerebral side sample is vertically fixed using a cyanoacrylate instant adhesive (trade name: Aron Alpha (registered trademark)), a slice specimen having a thickness of 100 ⁇ m to 2 mm is prepared using a vibratome.
  • a cyanoacrylate instant adhesive trade name: Aron Alpha (registered trademark)
  • the tweezers were inserted between the semicircular canal and the skull, and the inner ear labyrinth bone capsule was peeled off from the temporal bone in a lump so as to hollow out the entire inner ear. It makes it easier to preserve the inner ear by peeling left and right with a fracture above the cochlea. Carefully peel off the jelly-like tissue adhering to the front of the cochlea after removing the inner ear.
  • the inner ear was removed from the temporal bone while the inner ear (cochlea, semicircular canal) was preserved (the bone was attached to the inner ear).
  • a semicircular canal overhanging the hook potion from the inner ear on the cochlear shaft side and the vestibule were cut off to prepare an inner ear sample.
  • the primary antibody was diluted to the optimal concentration in the washing solution and then centrifuged (4 ° C., 140 rpm, 30 minutes). The sample was permeated into the supernatant and stored at 37 ° C. for 24-48 hours.
  • the inner ear (10 minutes ⁇ 3) and the skull / limb bones (1 hour ⁇ 3) were stirred and washed (40 rpm) with a washing solution.
  • the secondary antibody was diluted to the optimal concentration in the washing solution and then centrifuged (4 ° C., 140 rpm, 30 minutes), the sample was permeated into the supernatant, and stored at 37 ° C. for 24-48 hours.
  • Refractive index adjustment consisting of urea (1-4M) or guanidine hydrochloride (1-3M), D-sorbitol (60% v / w), Triton X-100 (0.1% v / w) pH 6.0-8.0) was prepared.
  • the refractive index adjusting reagent was poured into an appropriately sized petri dish (such as a 1 ml ebben tube in the case of the inner ear), and the sample was allowed to stand therein.
  • the inner ear is completed at room temperature for 15 minutes, 37 ° C for several minutes, and other hard tissues at room temperature for about 3 hours and at 37 ° C for about 1 hour.
  • the treatment is completed at room temperature or 37 ° C. for several seconds.
  • the sample that had been cleared was taken out into a slide glass, covered with a cover glass, and then a fresh refractive index adjusting reagent was injected between the sample and the cover glass.
  • urea is an essential element and is generally used at 4M.
  • tissue edema, transparency, and fluorescence (GFP) brightness between 4M urea and guanidine hydrochloride.
  • the concentration of guanidine hydrochloride contained in the clearing reagent was changed, and the treatment was performed for several seconds at room temperature. As a result, transparency was achieved at about 3M (Fig. 1).
  • the concentration of guanidine hydrochloride is considered to be about 3M.
  • the collagen was decomposed and degreased with a reagent containing Then, after immunostaining the biological sample, the refractive index is adjusted by treating the biological sample with a refractive index adjusting reagent (a reagent containing urea, sorbitol and TritonX-100, or a reagent containing guanidine hydrochloride, sorbitol and TritonX-100).
  • a refractive index adjusting reagent a reagent containing urea, sorbitol and TritonX-100, or a reagent containing guanidine hydrochloride, sorbitol and TritonX-100.
  • the calcium chelating agent (EDTA) was used to decalcify the femur, knee joint and wrist joint for 2 days, the inner ear for 3 days, and the skull for 7 days.
  • the inner ear penetrates into the clearing reagent at room temperature for 1 hour or 37 ° C for 1 hour, and other tissues penetrate for about 24 hours at room temperature or 37 ° C for 3 hours. Min and other tissues were infiltrated at room temperature for 3 hours or at 37 ° C. for about 1 hour.
  • the femur became transparent, and the bone marrow present in the femur could be seen through (FIG. 6 (a)).
  • the hand bone is composed of a plurality of bones and joints, but all the bones and joints were transparent (FIG. 6C).
  • the inner ear is a tissue composed of a bone labyrinth and a membrane labyrinth. Although there are some vascular pigments that contain a large amount of pigment protein such as heme in the membrane labyrinth, both the bone and membrane labyrinth can be made transparent (Fig. 6 (d)).
  • nasal air bubbles (arrowheads) were confirmed in both the axial position and the sagittal position (FIGS. 6E and 6F).
  • the structure of the nasal turbinates and nasal septum present in the nasal cavity could be confirmed (arrows).
  • Rhodamine-phalloidin labeled with F-actin
  • F-actin an auricular marker that was bent in the shape of a “bow” at the top of each hair cell
  • FIG. 9 is a diagram in which a to c are merged.
  • e and f are three-dimensional reconstructed images of the inner ear extracted from only hair cells. Further, g and h in FIG.
  • FIG. 9 are two-dimensional reconstructed images obtained by extracting only auditory hair
  • g is a structured image of the surface layer 0-180 ⁇ m
  • h is a constructed image of the deep layer 180-580 ⁇ m.
  • three-dimensional reconstruction with a micro sample is possible with the conventional method (section, surface preparation), but it was possible to observe with the same resolution as the conventional method using this method (Fig. 9, i- k).
  • the nerve fibers are not sufficiently observed due to the presence of hair cells and auditory hairs from the front and side (Figs. 9, i and j). (Fig. 9k).
  • the inner ear sample was treated with one of the conventional clarification methods (CUBIC method; Susaki et al., Cell 157: 726-739 2014) after EDTA treatment (decalcification). Only one rotation of hair cells could be confirmed (FIG. 10 left).
  • the transparency treatment method of the present invention it was possible to confirm two and a half rotations (right in FIG. 10). Therefore, it has been found that the transparent treatment method of the present invention can also observe a three-dimensional deeper portion than the conventional method (the comparison target this time is the CUBIC method).
  • the conventional method (CUBIC) was performed after EDTA treatment, the deep part of the inner ear could not be confirmed. It became clear that transparency could not be realized only at the stage of ash), and that the excellent results as described above could be realized only by performing the treatment method of the present invention.
  • Refractive index adjusting reagent 3M guanidine hydrochloride, 60 (w / v)% sorbitol, 0.1 (w / v)% Triton X-100
  • the femur, knee joint and wrist joint were infiltrated with calcium chelating agent (EDTA) for 2 days for decalcification. Further, the treatment was performed by allowing the clearing reagent to permeate at room temperature for 24 hours or 37 ° C. for 3 hours, and allowing the refractive index adjusting reagent to permeate at room temperature for 3 hours or 37 ° C. for 1 hour. As a result of the clearing treatment, it was confirmed that the bone marrow was preserved in the portion far from the bone stage end (arrow in FIG. 11). In addition, preservation of the joint capsule was confirmed at the same time (arrowhead in FIG. 11). In the femur, the transparency of the bone marrow was recognized (“*” in FIG. 11).
  • the clearing method according to the present invention makes it possible to reproduce the three-dimensional structure of a biological sample in a state close to the living body, and is expected to contribute to the development of fields such as biology and medicine.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

A purpose of the present invention is to provide a method whereby a biological sample can be effectively made transparent while reducing tissue swelling thereof. Another purpose of the present invention is to provide a method for making a biological sample including a bone transparent. More specifically, the method according to the present invention for making a biological sample transparent is characterized by comprising treating the biological sample with a reagent for making a material transparent, said reagent comprising at least one kind of chaotrope selected from the group consisting of guanidine, a guanidine derivative and salts thereof.

Description

生物試料の透明化方法Biological sample clarification method
 本発明は、生物試料の透明化方法に関する。 The present invention relates to a method for clarifying a biological sample.
 医学、生物学の分野において、生体由来の組織の構造や形態を観察および解析する上で必要な情報を得る際、本来の構造にできるだけ近い状態で行うことが重要である。とりわけ、1つの細胞における変化が細胞間相互作用等を通じたネットワークにより、生体全体に重大な影響を及ぼすような疾患(例えば、がん、免疫疾患など)の原因や症状の進行を解明する場合、組織や器官の3次元構造を詳細に解析することで有益な情報が得られることも多い。
 生物組織の観察において、特定の分子を標識し、生体内における存在状態を観察する手法は、生物試料の形態や分子組成を明らかにする上で有効な方法の1つである。生物組織や器官は立体的で複雑な構造をしているため、組織全体、あるいは個体全体を、3次元イメージングにより観察する方がより多くの有益な情報を得ることができる。しかし、これまでの免疫的な手法による観察は、切片などの2次元の試料を用いて行うことが多く、3次元的な深い構造を明瞭に観察することは困難な場合が多かった。
In the fields of medicine and biology, it is important to obtain information necessary for observing and analyzing the structure and morphology of a living body-derived tissue in a state as close as possible to the original structure. In particular, when elucidating the progression of a cause or symptom of a disease (for example, cancer, immune disease, etc.) in which changes in one cell have a significant effect on the whole living body through a network through cell-cell interactions, etc. In many cases, useful information can be obtained by analyzing the three-dimensional structure of a tissue or organ in detail.
In the observation of biological tissues, a technique of labeling specific molecules and observing the existence state in the living body is one of effective methods for clarifying the form and molecular composition of a biological sample. Since biological tissues and organs have a three-dimensional and complicated structure, more useful information can be obtained by observing the whole tissue or the whole individual by three-dimensional imaging. However, the conventional immunological observation is often performed using a two-dimensional sample such as a slice, and it is often difficult to clearly observe a three-dimensional deep structure.
 近年、生物試料の3次元イメージングを行う試みが多くの研究者によって行われており、生物試料内の各領域の屈折率の相違を少なくし、試料をできる限り透明化して深い3次元構造を可視化するための手法がいくつか開発されてきている。このような手法として、例えば、Scale(非特許文献1、特許文献1)、iDISCO(非特許文献2)、CUBIC(非特許文献3)などを挙げることができる。
 これらの方法は、主として脳サンプルに導入された蛍光タンパク質や蛍光標識した抗体からの蛍光シグナルをある程度保持しながら、組織を透明化することが可能で、3次元イメージングを行う上で有効な方法である。
In recent years, many researchers have attempted to perform three-dimensional imaging of biological samples, reducing the difference in the refractive index of each region within the biological sample, and making the sample as transparent as possible to visualize deep three-dimensional structures. Several techniques have been developed to do this. Examples of such a method include Scale (Non-patent Document 1, Patent Document 1), iDISCO (Non-Patent Document 2), CUBIC (Non-Patent Document 3), and the like.
These methods are effective in performing three-dimensional imaging because it is possible to make tissues transparent while maintaining a certain amount of fluorescence signals mainly from fluorescent proteins and fluorescently labeled antibodies introduced into brain samples. is there.
 しかし、従来法による処理においては、組織や器官が膨張し本来の構造を再現できない、あるいは、イメージングに使用する蛍光分子の消退が生じる、などの改善すべき点が存在している。
 また、骨などの硬組織を含む生体試料の透明化においては、骨と他の組織との屈折率の違いを調整することが難しく、さらには、骨の内側に存在する重要な組織や構造体を保存したまま(損傷することなく)、骨を透明化することも非常に困難であった。例えば、内耳に存在する聴覚器官である蝸牛は、側頭骨内の骨迷路と膜迷路から構成される複雑な構造をしており、骨の内側に重要な構造(例えば、有毛細胞など)が多く存在している。また、骨格を構成する硬骨の内部には、骨髄が存在している。有毛細胞は音を脳に伝える際に重要な役割をしており、また、骨髄は赤血球や顆粒白血球をつくりだす重要な場としての役割を果たしている。これらの骨の内側に存在する組織や構造体を、無傷な状態でイメージングすることができれば、疾患の診断や治療に有用な多くの情報を取得することができる。しかしながら、現在のところ、上記問題を解決し得るような透明化方法は確立されていない。
However, in the conventional processing, there are points to be improved such that the tissue or organs expand and the original structure cannot be reproduced, or the fluorescent molecules used for imaging are lost.
In addition, it is difficult to adjust the difference in refractive index between bones and other tissues in the clearing of biological samples containing hard tissues such as bones. In addition, important tissues and structures existing inside the bones. It was also very difficult to make the bone transparent while preserving (without damaging it). For example, the cochlea, which is the auditory organ in the inner ear, has a complex structure consisting of a bone maze and a membrane maze in the temporal bone, and important structures (such as hair cells) inside the bone There are many. In addition, bone marrow is present inside the bones constituting the skeleton. Hair cells play an important role in transmitting sound to the brain, and the bone marrow plays an important role in producing red blood cells and granular white blood cells. If the tissues and structures existing inside these bones can be imaged intact, a lot of information useful for diagnosis and treatment of diseases can be acquired. However, at present, no transparent method has been established that can solve the above problem.
 以上のように、生物試料の透明化技術は、医学、生物学の分野における基礎的および臨床的研究の発展に寄与する有用なツールであるが、解決すべき課題も多く残されている。 As described above, the biological sample clarification technology is a useful tool that contributes to the development of basic and clinical research in the fields of medicine and biology, but many problems remain to be solved.
特願2013-522590Japanese Patent Application 2013-522590
 上述の通り、これまでにも様々な生物試料の透明化方法が報告されている。
 しかしながら、生物試料の組織膨張を軽減し、かつ、研究等に利用可能な程度に生物試料を透明化する方法はまだ報告されていない。
 また、骨を含む生物試料を透明化する場合には、できるだけ骨の内側の組織や器官の構造を保存した状態(生体内で存在する状態に保存)で透明化することが好ましく、既知の手法のみでは、この目的を達成することは困難である。
 上記事情に鑑み、本発明は、生物試料の組織膨張を軽減し、かつ、有効な透明化を達成し得る透明化方法の提供を目的とする。
 さらに、本発明は、骨を含む生物試料の透明化方法の提供を目的とする。より具体的には、本発明は、骨の内側の組織や器官(あるいは、細胞のネットワーク)の構造を保存した状態(生体内で存在する状態に保存)で、骨を含む生物試料の透明化方法の開発を解決課題とする。
As described above, various methods for clarifying biological samples have been reported so far.
However, a method for reducing the tissue expansion of the biological sample and making the biological sample transparent to the extent that it can be used for research or the like has not yet been reported.
In addition, when making a biological sample containing bone transparent, it is preferable to make it transparent with the structure of the tissues and organs inside the bone preserved as much as possible (preserved in a state existing in the living body). By itself, this goal is difficult to achieve.
In view of the above circumstances, an object of the present invention is to provide a clarification method capable of reducing tissue expansion of a biological sample and achieving effective clarification.
Furthermore, this invention aims at provision of the clearing method of the biological sample containing a bone. More specifically, the present invention makes it clear that a biological sample containing bone is preserved in a state in which the structure of a tissue or organ (or cell network) inside the bone is preserved (stored in a state in vivo). The development of the method is the solution issue.
 本発明者らは、生物試料の透明化処理の過程における組織膨張を軽減すべく、従来の尿素ベースの試薬による透明化方法に変えて、グアニジンベースの試薬による透明化を行ったところ、組織膨張を引き起こさない透明化方法の開発に成功した。 In order to reduce tissue expansion in the course of the biological sample clearing process, the present inventors changed to the conventional urea-based reagent clearing method and performed clarification with a guanidine-based reagent. We have succeeded in developing a transparency method that does not cause any problems.
 さらに、本発明者らは、骨を含む生物試料の透明化のために、骨の主成分であるカルシウムをキレート剤で除去し(以下、「脱灰」とも記載する)、脱灰後の骨組織と骨の内側に存在する組織の屈折率を一致させるための試薬の開発を試みた。
 これまでに報告されている生物試料の透明化方法のうち、例えば、CUBICは組織浮腫並びに蛍光減退を生じることが報告されており、iDISCOは有機溶媒であることから、生組織に用いるのは困難であるだけでなく、試薬特性から自然環境への配慮が必要となり、臨床研究への応用が不可能である。CUBICならびにiDISCOでは骨自体の透明化は一定のレベルで達成されている。しかし、骨の奥に存在する組織の観察は実現できていない。 
 発明者らは、生物試料を主として透明化するための透明化試薬、異なる組織間の屈折率を一致させるための手法および屈折率調整試薬の組成について鋭意検討を行った。
Furthermore, the present inventors removed calcium, which is the main component of bone, with a chelating agent (hereinafter also referred to as “demineralization”) to clarify a biological sample containing bone, and the bone after decalcification. An attempt was made to develop a reagent to match the refractive index of the tissue and the tissue existing inside the bone.
Among the methods for clarifying biological samples that have been reported so far, for example, CUBIC has been reported to cause tissue edema and fluorescence loss, and iDISCO is an organic solvent, so it is difficult to use for living tissue. In addition, it is necessary to consider the natural environment from the reagent characteristics, and cannot be applied to clinical research. In CUBIC and iDISCO, the transparency of the bone itself has been achieved at a certain level. However, observation of the tissue existing in the back of the bone has not been realized.
The inventors diligently studied the composition of a clearing reagent for mainly clarifying a biological sample, a technique for matching refractive indexes between different tissues, and a refractive index adjusting reagent.
 すなわち、本発明は以下の(1)~(20)である。
(1)グアニジンもしくはグアニジン誘導体またはそれらの塩からなるグループから選択される、少なくとも1種のカオトロープを含む透明化試薬で生物試料を処理することを特徴とする生物試料の透明化方法。
(2)グアニジンもしくはグアニジン誘導体またはそれらの塩からなるグループから選択される、少なくとも1種のカオトロープを含む屈折率調整試薬で生物試料を処理する工程を、さらに、含むことを特徴とする上記(1)に記載の方法。
(3)前記透明化試薬および/または屈折率調整試薬がソルビトールを含むことを特徴とする上記(1)または(2)に記載の方法。
(4)前記透明化試薬が、グルコースを含むことを特徴とする上記(1)ないし(3)のいずれかに記載の方法。
(5)前記透明化試薬および/または屈折率調整試薬が、界面活性剤を含むことを特徴とする上記(1)ないし(4)のいずれかに記載の方法。
(6)グアニジンもしくはグアニジン誘導体またはそれらの塩からなるグループから選択される、少なくとも1種のカオトロープを含む溶液であることを特徴とする生物試料の透明化試薬。
(7)ソルビトールおよび/またはグルコースを含むことを特徴とする上記(6)に記載の生物試料の透明化試薬。
(8)界面活性剤を含むことを特徴とする上記(6)または(7)に記載の生物試料の透明化試薬。
(9)グアニジンもしくはグアニジン誘導体またはそれらの塩からなるグループから選択される、少なくとも1種のカオトロープを含む溶液であることを特徴とする生物試料の屈折率調整試薬。
(10)ソルビトールを含むことを特徴とする上記(9)に記載の生物試料の屈折率調整試薬。
(11)界面活性剤を含むことを特徴とする上記(9)または(10)に記載の生物試料の屈折率調整試薬。
That is, the present invention includes the following (1) to (20).
(1) A biological sample clarification method comprising treating a biological sample with a clarification reagent containing at least one chaotrope selected from the group consisting of guanidine or a guanidine derivative or a salt thereof.
(2) The above-mentioned (1) further comprising the step of treating the biological sample with a refractive index adjusting reagent containing at least one chaotrope selected from the group consisting of guanidine or a guanidine derivative or a salt thereof. ) Method.
(3) The method according to (1) or (2) above, wherein the clearing reagent and / or refractive index adjusting reagent contains sorbitol.
(4) The method according to any one of (1) to (3), wherein the clearing reagent contains glucose.
(5) The method according to any one of (1) to (4) above, wherein the clearing reagent and / or refractive index adjusting reagent contains a surfactant.
(6) A biological sample clarification reagent, which is a solution containing at least one chaotrope selected from the group consisting of guanidine or a guanidine derivative or a salt thereof.
(7) The clarification reagent for a biological sample according to (6) above, which contains sorbitol and / or glucose.
(8) The biological sample clarification reagent according to (6) or (7) above, which comprises a surfactant.
(9) A reagent for adjusting the refractive index of a biological sample, which is a solution containing at least one chaotrope selected from the group consisting of guanidine or a guanidine derivative or a salt thereof.
(10) The reagent for adjusting a refractive index of a biological sample as described in (9) above, comprising sorbitol.
(11) The biological sample refractive index adjusting reagent as described in (9) or (10) above, which comprises a surfactant.
(12)以下の(a)~(c)の工程を含む、骨を含む生物試料の透明化方法。
(a)カルシウムキレート剤を含む溶液で生物試料を処理する工程、
(b)尿素もしくは尿素誘導体またはそれらの塩、グアニジンもしくはグアニジン誘導体またはそれらの塩からなるグループから選択される、少なくとも1種のカオトロープおよびソルビトールを含む透明化試薬で生物試料を処理する工程、
(c)尿素もしくは尿素誘導体またはそれらの塩、グアニジンもしくはグアニジン誘導体またはそれらの塩からなるグループから選択される、少なくとも1種のカオトロープおよびソルビトールを含む屈折率調整試薬で生物試料を処理する工程。
(13)前記透明化試薬が、さらにグルコースを含むことを特徴とする上記(12)に記載の方法。
(14)前記透明化試薬および/または屈折率調整試薬が、さらに、界面活性剤を含むことを特徴とする上記(12)または(13)に記載の方法。
(15)前記工程(b)および/または(c)のカオトロープが尿素もしくは尿素誘導体またはそれらの塩であることを特徴とする上記(12)ないし(14)のいずれかに記載の方法。
(16)前記工程(b)および/または(c)のカオトロープがグアニジンもしくはグアニジン誘導体またはそれらの塩であることを特徴とする上記(12)ないし(14)のいずれかに記載の方法。
(17)尿素もしくは尿素誘導体またはそれらの塩からなるグループから選択される、少なくとも1種のカオトロープ、ソルビトールおよびグルコースを含む溶液であることを特徴とする生物試料の透明化試薬。
(18)界面活性剤を含むことを特徴とする上記(17)に記載の生物試料の透明化試薬。
(19)尿素もしくは尿素誘導体またはそれらの塩からなるグループから選択される、少なくとも1種のカオトロープおよびソルビトールを含む溶液であることを特徴とする生物試料の屈折率調整試薬。
(20)界面活性剤を含むことを特徴とする上記(19)に記載の生物試料の屈折率調整試薬。
(12) A method for clarifying a biological sample containing bone, comprising the following steps (a) to (c):
(A) treating a biological sample with a solution containing a calcium chelator;
(B) treating the biological sample with a clearing reagent comprising at least one chaotrope and sorbitol selected from the group consisting of urea or urea derivatives or salts thereof, guanidine or guanidine derivatives or salts thereof;
(C) treating the biological sample with a refractive index adjusting reagent comprising at least one chaotrope and sorbitol selected from the group consisting of urea or urea derivatives or salts thereof, guanidine or guanidine derivatives or salts thereof.
(13) The method according to (12), wherein the clearing reagent further contains glucose.
(14) The method according to (12) or (13) above, wherein the clearing reagent and / or refractive index adjusting reagent further contains a surfactant.
(15) The method according to any one of (12) to (14) above, wherein the chaotrope in the step (b) and / or (c) is urea or a urea derivative or a salt thereof.
(16) The method according to any one of (12) to (14) above, wherein the chaotrope in the step (b) and / or (c) is guanidine or a guanidine derivative or a salt thereof.
(17) A biological sample clarification reagent, which is a solution containing at least one chaotrope, sorbitol and glucose selected from the group consisting of urea or urea derivatives or salts thereof.
(18) The biological sample clarification reagent as described in (17) above, which comprises a surfactant.
(19) A reagent for adjusting the refractive index of a biological sample, which is a solution containing at least one chaotrope and sorbitol selected from the group consisting of urea or urea derivatives or salts thereof.
(20) The reagent for adjusting a refractive index of a biological sample according to the above (19), comprising a surfactant.
 本発明の生物試料の透明化方法(グアニジンベースの試薬を使用する方法)によれば、生物試料の膨張を引き起こさずに、試料を透明化することが可能である。 According to the method for clarifying a biological sample of the present invention (a method using a guanidine-based reagent), it is possible to clear the sample without causing expansion of the biological sample.
 本発明の生物試料の透明化方法によれば、骨を含む生物試料を透明化することができる。より具体的には、骨の内側に存在する組織や器官の構造を保存した状態での透明化が可能である。 According to the biological sample clarification method of the present invention, a biological sample containing bone can be clarified. More specifically, it is possible to make the structure transparent while maintaining the structure of tissues and organs existing inside the bone.
グアニジン塩酸塩を含む試薬でThy1-YFPマウスの大脳スライス標本を透明化した結果。4M尿素、1M グアニジン塩酸塩、2M グアニジン塩酸塩、3M グアニジン塩酸塩、4M グアニジン塩酸塩、5M グアニジン塩酸塩、6M グアニジン塩酸塩を含む試薬で透明化処理を行った結果を示す。上図は蛍光顕微鏡写真である。下図は、コントロールの蛍光強度を1として相対値で表した。なお、コントロールとは透明化処理を行っていない試料のことである。Results of clarifying cerebral slice specimens of Thy1-YFP mice with reagents containing guanidine hydrochloride. The results of clearing treatment with a reagent containing 4M urea, 1M guanidine hydrochloride, 2M guanidine hydrochloride, 3M guanidine hydrochloride, 4M guanidine hydrochloride, 5M guanidine hydrochloride, 6M guanidine hydrochloride are shown. The upper figure is a fluorescence micrograph. In the following figure, the fluorescence intensity of the control is taken as 1 and expressed as a relative value. The control is a sample that has not been subjected to a clearing treatment. グアニジン塩酸塩を含む試薬の生物試料への影響の検討(1)。グアニジン塩酸塩を含む試薬で透明化処理することで消退した蛍光を、PBS(NaCl:137mM, (PO4)3-:9.57mM))、または、既知の尿素ベースの透明化試薬(25 (W/V) % 尿素、50 (W/V) % スクロース、10(W/V) % 2, 2', 2''-ニトリロトリエタノール、0.1% Triton X-100;図中「従来の透明化試薬2」と記載した)で試料を処理することで蛍光が回復する様子を示した蛍光写真(上の蛍光写真)と、当該既知の尿素ベースの透明化試薬(従来の透明化試薬2)により回復した蛍光強度をグラフ化した結果(下のグラフ)である。グラフは、コントロール(透明化処理を行っていない試料)の蛍光強度を1として相対値で表した。なお、「従来の透明化試薬1」と示される蛍光写真は、従来の透明化試薬1(25(W/V) % 尿素、10(W/V)% テトラキスエチレンジアミン、15% Triton X-100)を用いて透明化処理を行った結果である。Examination of the effect of reagents containing guanidine hydrochloride on biological samples (1). Fluorescence extinguished by clarification with a reagent containing guanidine hydrochloride is added to PBS (NaCl: 137 mM, (PO4) 3-: 9.57 mM)) or a known urea-based clarification reagent (25 (W / W V)% urea, 50 (W / V)% sucrose, 10 (W / V)% 2, 2 ', 2' '-nitrilotriethanol, 0.1% Triton X-100; "Conventional clearing reagent 2" in the figure And the fluorescence recovered by processing the sample in the above (fluorescence above) and the fluorescence recovered by the known urea-based clearing reagent (conventional clearing reagent 2). It is the result (lower graph) which graphed intensity. In the graph, the fluorescence intensity of the control (sample not subjected to the clearing treatment) was represented as 1 with a relative value. In addition, the fluorescent photograph shown as “Conventional clearing reagent 1” shows conventional clearing reagent 1 (25 (W / V)% urea, 10 (W / V)% tetrakisethylenediamine, 15% Triton X-100) It is the result of having performed the transparency process using. グアニジン塩酸塩を含む試薬の生物試料への影響の検討(2)。尿素ベースの試薬で透明化処理した場合と、本発明にかかるグアニジンベースの試薬で透明化処理した場合において、組織浮腫の程度および透明度について比較を行った。4M尿素、1M グアニジン塩酸塩、2M グアニジン塩酸塩、3M グアニジン塩酸塩、を含む試薬で透明化処理を行った後、光学顕微鏡観察を行い(上の図)、各処理後の試料の透明度および各試料の処理前と処理後の同一領域の膨張度をグラフ化した(下のグラフ)。なお、透明度については、試料全周に興味領域(ROI)を設定の後、透明化処理を行い、ROI内の平均輝度を算出した。コントロールとなる脳試料に関しては、PBSに浸透させた状態で測定を行い、透明化処理を行った試料に関しては透明化処理後に測定を行った。Examination of the influence of reagents containing guanidine hydrochloride on biological samples (2). The degree of tissue edema and the degree of transparency were compared between the case of clearing with a urea-based reagent and the case of clearing with a guanidine-based reagent according to the present invention. After clarification with a reagent containing 4M urea, 1M guanidine hydrochloride, 2M guanidine hydrochloride, 3M guanidine hydrochloride, optical microscope observation was performed (above figure). The degree of expansion of the same region before and after treatment of the sample was graphed (lower graph). Regarding transparency, after setting the region of interest (ROI) around the entire sample, a transparency treatment was performed, and the average luminance within the ROI was calculated. The brain sample as a control was measured in a state where it was infiltrated with PBS, and the sample subjected to the clearing treatment was measured after the clearing treatment. 従来の透明化方法と本発明の透明化方法(尿素ベース)を、骨を含む生物試料に適用した場合の効果の比較。リン酸緩衝液(PBS)、有機溶媒ベースである3DISCO(Erturkら, Nat Protoc., 11:1983-95 2012)、iDISCO(Renierら, Cell 159:896-910 2014)、水溶性試薬であるCLARITY(Chungら, Nature 497(7449):332-7 2013)、CUBIC(Susakiら, Cell 157:726-739 2014)を用いた方法、および本発明にかかる方法を用いて内耳サンプルの透明化処理および免疫染色を行った。透明化処理後、内耳サンプルを光学顕微鏡(上段、中段)および共焦点レーザー顕微鏡(下段)で観察した結果を示す。スケールバーは500 μmである。Comparison of the effects when the conventional clearing method and the clearing method of the present invention (urea base) are applied to a biological sample containing bone. Phosphate buffer (PBS), organic solvent-based 3DISCO (Erturk et al., Nat Protoc., 11: 1983-95 2012), iDISCO (Renier et al., Cell 159: 896-910 2014), CLARITY, a water-soluble reagent (Chung et al., Nature 497 (7449): 332-7 2013), a method using CUBIC (Susaki et al., Cell 157: 726-739 2014), and a method for clarifying inner ear samples using the method according to the present invention, and Immunostaining was performed. The result of having observed the inner ear sample with the optical microscope (upper stage, middle stage) and the confocal laser microscope (lower stage) after the clearing process is shown. The scale bar is 500 μm. 本発明にかかる骨を含む生物試料の透明化方法の概略図。上段の矢印は従来の方法を、下段の矢印は本発明にかかる透明化方法を、各々、時系列的に概略的に示した図である。その下の概念図は、本発明にかかる透明化方法の概要を説明した図である。Schematic of the transparent method of the biological sample containing the bone concerning this invention. The upper arrow is a diagram schematically showing a conventional method, and the lower arrow is a diagram showing a transparency method according to the present invention in a time series. The conceptual diagram below it is a diagram for explaining the outline of the transparency method according to the present invention. 本発明にかかる透明化方法(尿素ベース)を用いて、大腿骨(a)、膝関節(b)、手骨(c)、内耳(d)、頭蓋骨軸位(e)および頭蓋骨矢状位(f)を処理した結果を示す。各々、上図が透明化前、下図が透明化後の状態を示す。Using the transparency method (urea base) according to the present invention, the femur (a), knee joint (b), hand bone (c), inner ear (d), skull axis position (e), and skull sagittal position ( The result of processing f) is shown. The upper figure shows the state before the transparency, and the lower figure shows the state after the transparency. 蛍光分子に対する影響の検討(1)。上図は、中枢神経細胞、線維に黄色蛍光蛋白(YFP)が発現しているThy1-YFPマウスの大脳スライス標本を透明化処理(尿素ベース)し、その翌日に蛍光観察をした結果である。左図:透明化前、中央図:透明化後、右図:蛍光顕微鏡下で観察した試料(左図および中央図の四角部分の拡大図))。下図は、ATPを感受するプローブであるAteamを発現しているマウスの内耳を透明化処理し、その翌日に蛍光観察をした結果である。内耳サンプルについては、聴毛のマーカーであるF-アクチンをRhodamine- phalloidinで標識した。「YFP」はAteamからの蛍光、「Rhodamine- phalloidin」は聴毛マーカーであるF-アクチンを標識したRhodamineからの蛍光を検出したイメージである。Examination of effects on fluorescent molecules (1). The above figure shows the result of cerebral slice preparation of a Thy1-YFP mouse in which yellow fluorescent protein (YFP) is expressed in central nerve cells and fibers, and then fluorescence observation was performed the next day. Left figure: before clearing, middle figure: after clearing, right figure: sample observed under a fluorescence microscope (left figure and enlarged view of the square part in the middle figure)). The figure below shows the result of fluorescing the inner ear of a mouse expressing Ateam, a probe that senses ATP, and observing fluorescence the next day. For the inner ear sample, F-actin, which is a marker for auditory hair, was labeled with Rhodamine- phalloidin. “YFP” is an image of fluorescence detected from Ateam, and “Rhodamine- phalloidin” is an image of fluorescence detected from Rhodamine labeled with F-actin, which is an auditory hair marker. 蛍光分子に対する影響の検討(2)。従来の透明化手法では免疫染色における抗原性の維持も課題の一つである。今回、内耳透明化標本を用いて、抗MyosinVIIa抗体(有毛細胞マーカー)、抗Neurofilament200抗体(神経線維マーカー)、抗VGLUT3抗体(小胞型グルタミン酸トランスポーター)を用いて免疫染色を行った。また、Rhodamine-Phalloidin(聴毛マーカー)によりF-アクチンの染色が可能であった。Examination of effects on fluorescent molecules (2). Maintenance of antigenicity in immunostaining is also an issue with the conventional clearing method. In this study, immunostaining was performed using an anti-myosin VIIa antibody (hair cell marker), an anti-Neurofilament 200 antibody (nerve fiber marker), and an anti-VGLUT3 antibody (vesicular glutamate transporter) using the inner ear transparent specimen. In addition, it was possible to stain F-actin with Rhodamine-Phalloidin (audible hair marker). 本発明の透明化方法(尿素ベース)を使用し、内耳のマクロレベルとミクロレベルでの3次元再構築を行った結果。a-fは、頂回転から基底回転までの有毛細胞(図9a;抗Myosin7a抗体染色)、聴毛(図9b;Rhodamine-phalloidin染色)、神経線維(図9c;抗Neurofilament200抗体染色)を免疫染色した図である。dはa、bおよびcを重ね合わせた(merge)図である。eおよびfは、有毛細胞のみ抽出した内耳3次元再構築画像である。gおよびhは、透明化試料の蛍光深度を検討するため、蝸牛頂回転から基底回転まで2回転半のラセン状に配置された聴毛のみ抽出した2次元再構築画像である。gは、表層0-180μm、hは、深層180-580μmの構築画像である。i-kは、ミクロ試料での3次元再構築画像である。iは表、jは横、kは裏からの画像である。The result of three-dimensional reconstruction at the macro level and the micro level of the inner ear using the clearing method (urea base) of the present invention. af immunizes hair cells from apical rotation to basal rotation (FIG. 9a; anti-Myosin7a antibody staining), auditory hair (FIG. 9b; Rhodamine-phalloidin staining), nerve fiber (FIG. 9c; anti-Neurofilament200 antibody staining). It is the dye | stained figure. d is a diagram in which a, b and c are merged. e and f are three-dimensional reconstructed images of the inner ear in which only hair cells are extracted. g and h are two-dimensional reconstructed images obtained by extracting only the hairs arranged in a spiral of two and a half rotations from the cochlear top rotation to the basal rotation in order to examine the fluorescence depth of the transparent sample. g is a construction image of the surface layer 0-180 μm, and h is a construction image of the deep layer 180-580 μm. ik is a three-dimensional reconstructed image with a micro sample. i is a front image, j is a horizontal image, and k is an image from the back. 3次元構築における、本発明の透明化方法と従来法との比較。左図は、内耳サンプルをEDTA処理(脱灰)後、従来の透明化方法の1つ(CUBIC法;Susakiら, Cell 157:726-739 2014)を用いて処理を行い、抗Myosin7a抗体で有毛細胞を染色した結果である。右図は、内耳サンプルを本発明の透明化処理方法(尿素ベースの方法)で処理し、抗Myosin7a抗体で有毛細胞を染色した結果である。Comparison between the transparency method of the present invention and the conventional method in three-dimensional construction. The figure on the left shows EDTA treatment (decalcification) of the inner ear sample, followed by treatment using one of the conventional clarification methods (CUBIC method; Susaki et al., Cell 157: 726-739 2014), and the anti-Myosin7a antibody It is the result of dyeing hair cells. The right figure shows the result of treating the inner ear sample with the clearing treatment method (urea-based method) of the present invention and staining the hair cells with the anti-Myosin7a antibody. 本発明にかかる透明化方法(グアニジンベース)を用いて、膝関節、手関節および大腿骨を処理した結果を示す。矢印:骨髄残存部、矢尻:関節温存部、*:骨髄透明化部The result of having processed the knee joint, the wrist joint, and the femur using the transparency method (guanidine base) concerning this invention is shown. Arrow: Bone marrow remaining part, Arrow butt: Joint preservation part, *: Bone marrow clearing part
 本発明の第1の実施形態は、グアニジンもしくはグアニジン誘導体またはそれらの塩からなるグループから選択される少なくとも1種のカオトロープを含み、好ましくはソルビトールを含み、さらに好ましくはグルコース含む透明化試薬で生物試料を処理することを特徴とする生物試料の透明化方法である。
 さらに、本発明の第1の実施形態には、グアニジンもしくはグアニジン誘導体またはそれらの塩からなるグループから選択される少なくとも1種のカオトロープを含み、好ましくはソルビトールを含む屈折率調整試薬で生物試料を処理する工程が含まれていてもよい。
 また、本発明の第1の実施形態には、抗体等を用いて、免疫組織学的な方法(免疫染色など)により生物試料を染色する工程が含まれていてもよい。
The first embodiment of the present invention comprises at least one chaotrope selected from the group consisting of guanidine or guanidine derivatives or their salts, preferably sorbitol, more preferably glucose, a biological sample with a clearing reagent Is a method for clarifying a biological sample.
Furthermore, the first embodiment of the present invention comprises treating at least one biological sample with a refractive index adjusting reagent comprising at least one chaotrope selected from the group consisting of guanidine or a guanidine derivative or a salt thereof, preferably comprising sorbitol. The process to do may be included.
In addition, the first embodiment of the present invention may include a step of staining a biological sample using an antibody or the like by an immunohistological method (such as immunostaining).
 第1の実施形態において、透明化の対象となる生物試料は、特に限定されるものではなく、例えば、多細胞生物の個体に由来する組織、器官、細胞などである。また、多細胞生物についても、特に限定されるものではなく、例えば、魚類、両生類、は虫類、鳥類、哺乳類などであってもよく、特に好ましくは、哺乳類である。好ましい哺乳類としては、例えば、マウス、ラット、ウサギ、モルモット、イヌ、ネコ、霊長類(ヒトを除く)およびヒトである。
 また、生物試料は、あらかじめ、蛍光タンパク質などを発現させたもの、蛍光化学物質を導入したもの、蛍光標識を使用して染色を行ったものであってもよい。また、生物試料は顕微鏡観察用に固定化処理(例えば、PFA(paraformaldehyde) -PBSで処理)されたものであってもよい。
In the first embodiment, the biological sample to be transparentized is not particularly limited, and is, for example, a tissue, organ, cell, or the like derived from an individual of a multicellular organism. Further, the multicellular organism is not particularly limited, and may be, for example, fish, amphibians, reptiles, birds, mammals, etc., particularly preferably mammals. Preferred mammals are, for example, mice, rats, rabbits, guinea pigs, dogs, cats, primates (except humans) and humans.
In addition, the biological sample may be obtained by expressing a fluorescent protein or the like in advance, introducing a fluorescent chemical substance, or staining using a fluorescent label. Further, the biological sample may be one that has been immobilized for microscopic observation (for example, treated with PFA (paraformaldehyde) -PBS).
 第1の実施形態において、透明化試薬で生物試料を処理する工程は、主として、脂質やコラーゲンなどからなる細胞外基質を除去する工程である(脱脂および脱コラーゲン)。第1の実施形態で用いられる透明化試薬は、グアニジンもしくはグアニジン誘導体またはそれらの塩からなるグループから選択される少なくとも1種のカオトロープと、好ましくは、ソルビトールを含み、さらに、グルコースを含んでいてもよい。そして、当該透明化試薬は、水を溶媒とする溶液、または、pHの維持が可能な緩衝液が好ましく、生物試料を浸した際に、生物試料が変形しないように、浸透圧が調整されたものであってもよい。
 ここで、カオトロープ(chaotrope)とは、任意の物質に接触させた場合、当該物質内に存在する水分子間の相互作用を減少させ、その結果、当該物質の構造を不安定化させる(変性させる)もののことである。第1の実施形態で使用される好ましいカオトロープは、グアニジンもしくはグアニジン誘導体またはそれらの塩などである。
 また、「試薬で生物試料を処理する」とは、生物試料を試薬である溶液中に浸し、当該溶液を生物試料全体に浸透させることである(以下、本明細書において、溶液の試薬による処理において同義)。
In the first embodiment, the step of treating the biological sample with the clearing reagent is a step of mainly removing an extracellular matrix composed of lipid, collagen, etc. (degreasing and decollagen). The clarification reagent used in the first embodiment includes at least one chaotrope selected from the group consisting of guanidine or a guanidine derivative or a salt thereof, preferably sorbitol, and further includes glucose. Good. The clearing reagent is preferably a solution using water or a buffer capable of maintaining pH, and the osmotic pressure is adjusted so that the biological sample is not deformed when the biological sample is immersed. It may be a thing.
Here, when chaotrope is brought into contact with an arbitrary substance, the interaction between water molecules present in the substance is reduced, and as a result, the structure of the substance is destabilized (denatured). ) Things. A preferred chaotrope used in the first embodiment is guanidine or a guanidine derivative or a salt thereof.
In addition, “treating a biological sample with a reagent” is to immerse the biological sample in a solution that is a reagent, and to infiltrate the entire biological sample (hereinafter, treatment of the solution with the reagent in this specification). Is synonymous).
 第1の実施形態の透明化試薬に含まれるグアニジンもしくはグアニジン誘導体またはそれらの塩の至適濃度は、生物試料よって異なり、特に限定されるものではなく、当業者であれば予備的な実験により、その至適濃度を容易に決定することができる。例えば、グアニジン塩酸塩を用いる場合は、1M~6M、より好ましくは1M~3Mである。
 第1の実施形態の透明化試薬にソルビトールおよび/またはグルコースが含まれる場合、ソルビトールおよびグルコースの濃度は、特に限定されるものではないが、ソルビトールについては、例えば、10(w/v) %~50(w/v) %、好ましくは20(w/v)%~45(w/v)%、より好ましくは30(w/v)%~40(w/v)%であり、グルコースについては、例えば、5(w/v)%~30(w/v)%、好ましくは10(w/v)%~25(w/v)%、特に好ましくは10(w/v)%~20(w/v)%である。
 第1の実施形態の透明化試薬には、さらに、界面活性剤が(例えば、ソルビタン脂肪酸エステル、グリセリン脂肪酸エステル、ショ糖脂肪酸エステルなどのエステル型非イオン界面活性剤、脂肪アルコールエトキシレート、ポリオキシエチレンアルキルフェニルエーテルなどのエーテル型非イオン界面活性剤などを挙げることができる。より具体的には、Triton X(登録商標)シリーズ、Nonidet P(登録商標)シリーズ、Tween(登録商標)シリーズなどを挙げることができる)が含まれていてもよい。界面活性剤の好ましい濃度は、特に限定はしないが、0.1%~4.0%程度である。 
The optimum concentration of guanidine or a guanidine derivative or a salt thereof contained in the clearing reagent of the first embodiment differs depending on the biological sample, and is not particularly limited. The optimum concentration can be easily determined. For example, when guanidine hydrochloride is used, it is 1M to 6M, more preferably 1M to 3M.
When the clearing reagent of the first embodiment includes sorbitol and / or glucose, the concentration of sorbitol and glucose is not particularly limited, but for sorbitol, for example, 10 (w / v)% to 50 (w / v)%, preferably 20 (w / v)% to 45 (w / v)%, more preferably 30 (w / v)% to 40 (w / v)%. For example, 5 (w / v)% to 30 (w / v)%, preferably 10 (w / v)% to 25 (w / v)%, particularly preferably 10 (w / v)% to 20 ( w / v)%.
The clearing reagent of the first embodiment further includes a surfactant (for example, ester-type nonionic surfactants such as sorbitan fatty acid ester, glycerin fatty acid ester, sucrose fatty acid ester, fatty alcohol ethoxylate, polyoxy And ether type nonionic surfactants such as ethylene alkyl phenyl ether, etc. More specifically, Triton X (registered trademark) series, Nonidet P (registered trademark) series, Tween (registered trademark) series, etc. May be included). The preferred concentration of the surfactant is not particularly limited, but is about 0.1% to 4.0%.
 また、第1の実施形態の透明化試薬による処理時間、処理温度の条件は、生物試料によって異なり、当業者であれば、予備的な実験により条件を設定することができ、例えば、処理温度は20℃~37℃程度で、処理時間は数分~48時間程度である。  In addition, the conditions for the treatment time and the treatment temperature with the clearing reagent of the first embodiment vary depending on the biological sample, and those skilled in the art can set the conditions by preliminary experiments. For example, the treatment temperature is The processing time is about 20 ° C to 37 ° C, and the processing time is about several minutes to 48 hours.
 本発明の第1の実施形態には、生物試料中に含まれる異なる組織間の屈折率の違いを調整するために、さらに、屈折率調整試薬で処理する工程が含まれていてもよい。
 第1の実施形態で用いられる屈折率調整試薬は、グアニジンもしくはグアニジン誘導体またはそれらの塩からなるグループから選択される少なくとも1種のカオトロープを含み、好ましくは、ソルビトールを含んでいてもよい。そして、当該屈折率調整試薬は、水を溶媒とする溶液、または、pHの維持が可能な緩衝液が好ましく、生物試料を浸した際に、生物試料が変形しないように、浸透圧が調整されたものであってもよい。
The first embodiment of the present invention may further include a step of treating with a refractive index adjusting reagent in order to adjust the difference in refractive index between different tissues contained in the biological sample.
The refractive index adjusting reagent used in the first embodiment includes at least one chaotrope selected from the group consisting of guanidine or a guanidine derivative or a salt thereof, and may preferably include sorbitol. The refractive index adjusting reagent is preferably a solution containing water or a buffer capable of maintaining pH, and the osmotic pressure is adjusted so that the biological sample is not deformed when the biological sample is immersed. It may be.
 第1の実施形態の屈折率調整試薬に含まれるグアニジンもしくはグアニジン誘導体またはそれらの塩の至適濃度は、生物試料よって異なり、特に限定されるものはなく、当業者であれば予備的な実験により、その至適濃度を容易に決定することができる。例えば、グアニジン塩酸塩を用いる場合は、1M~6M、より好ましくは1M~3Mである。 
 第1の実施形態の屈折率調整試薬にソルビトールが含まれる場合、ソルビトールの濃度は、特に限定されるものではないが、例えば、15(w/v)%~65(w/v)%、好ましくは20(w/v)%~60(w/v)%、より好ましくは50(w/v)%~60(w/v)%である。
 なお、第1の実施形態において、屈折率調整試薬で処理する工程が含まれる場合であって、透明化試薬および屈折率調整試薬にソルビトールが含まれる場合、屈折率調整試薬に含まれるソルビトール濃度が透明化試薬に含まれるソルビトール濃度より高い方が好ましい。
 第1の実施形態の屈折率調整試薬には、さらに、界面活性剤が(例えば、ソルビタン脂肪酸エステル、グリセリン脂肪酸エステル、ショ糖脂肪酸エステルなどのエステル型非イオン界面活性剤、脂肪アルコールエトキシレート、ポリオキシエチレンアルキルフェニルエーテルなどのエーテル型非イオン界面活性剤などを挙げることができる。より具体的には、Triton X(登録商標)シリーズ、Nonidet P(登録商標)シリーズ、Tween(登録商標)シリーズなどを挙げることができる)が含まれていてもよい。界面活性剤の好ましい濃度は、特に限定はしないが、0.1%~4.0%程度である。
The optimum concentration of guanidine or a guanidine derivative or a salt thereof contained in the refractive index adjusting reagent of the first embodiment differs depending on the biological sample, and is not particularly limited. The optimum concentration can be easily determined. For example, when guanidine hydrochloride is used, it is 1M to 6M, more preferably 1M to 3M.
When sorbitol is included in the refractive index adjusting reagent of the first embodiment, the concentration of sorbitol is not particularly limited, but is, for example, 15 (w / v)% to 65 (w / v)%, preferably Is 20 (w / v)% to 60 (w / v)%, more preferably 50 (w / v)% to 60 (w / v)%.
In the first embodiment, when the step of treating with a refractive index adjusting reagent is included, and the clarification reagent and the refractive index adjusting reagent contain sorbitol, the concentration of sorbitol contained in the refractive index adjusting reagent is A higher concentration than the sorbitol concentration contained in the clearing reagent is preferred.
The refractive index adjusting reagent of the first embodiment further includes a surfactant (for example, an ester-type nonionic surfactant such as sorbitan fatty acid ester, glycerin fatty acid ester, sucrose fatty acid ester, fatty alcohol ethoxylate, Examples include ether type nonionic surfactants such as oxyethylene alkylphenyl ether, etc. More specifically, Triton X (registered trademark) series, Nonidet P (registered trademark) series, Tween (registered trademark) series, etc. May be included). The preferred concentration of the surfactant is not particularly limited, but is about 0.1% to 4.0%.
 第1の実施形態の屈折率調整試薬よる処理時間、処理温度の条件は、生物試料によって異なり、当業者であれば、予備的な実験により条件を設定することができ、例えば、処理温度は25~37℃程度で、処理時間は数分~数時間程度である。 The conditions for the treatment time and the treatment temperature by the refractive index adjusting reagent of the first embodiment vary depending on the biological sample, and those skilled in the art can set the conditions by preliminary experiments. For example, the treatment temperature is 25 The processing time is about several minutes to several hours at about 37 ° C.
 第1の実施形態にかかる透明化処理(カオトロープとして、グアニジンもしくはグアニジン誘導体またはそれらの塩を選択する処理)後、蛍光分子からの蛍光が消退する場合には、透明化後の生物試料を、例えば、PBS(例えば、NaCl:137mM, (PO4)3-:9.57mM))、あるいは、既知の尿素ベースの透明化試薬(例えば、25(W/V)% 尿素、50(W/V)% スクロース、10(W/V)% 2, 2', 2''-ニトリロトリエタノール、0.1% Triton X-100)などで処理することにより、蛍光を回復させることができる。  After the clearing treatment according to the first embodiment (treatment for selecting guanidine or a guanidine derivative or a salt thereof as a chaotrope), when the fluorescence from the fluorescent molecule is extinguished, , PBS (eg, NaCl: 137 mM, (PO4) 3-: 9.57 mM)) or known urea-based clearing reagents (eg, 25 (W / V)% urea, 50 (W / V)% sucrose , 10 (W / V)% 2, '2', 2 ''-nitrilotriethanol, 0.1% Triton な ど X-100) and the like can recover the fluorescence.
 本発明の第2の実施形態は、以下の(a)~(c)の工程を含む、骨を含む生物試料の透明化方法である。
(a)カルシウムキレート剤を含む溶液で生物試料を処理する工程、
(b)尿素もしくは尿素誘導体またはそれらの塩、グアニジンもしくはグアニジン誘導体またはそれらの塩からなるグループから選択される少なくとも1種のカオトロープを含み、好ましくは、ソルビトール、さらに好ましくはグルコースを含む透明化試薬で生物試料を処理する工程、
(c)尿素もしくは尿素誘導体またはそれらの塩、グアニジンもしくはグアニジン誘導体またはそれらの塩からなるグループから選択される少なくとも1種のカオトロープを含み、好ましくは、ソルビトールを含む屈折率調整試薬で生物試料を処理する工程
The second embodiment of the present invention is a method for clarifying a biological sample containing bone, comprising the following steps (a) to (c).
(A) treating a biological sample with a solution containing a calcium chelator;
(B) a clearing reagent comprising at least one chaotrope selected from the group consisting of urea or urea derivatives or salts thereof, guanidine or guanidine derivatives or salts thereof, preferably sorbitol, more preferably glucose. Processing a biological sample;
(C) treating a biological sample with a refractive index adjusting reagent comprising at least one chaotrope selected from the group consisting of urea or urea derivatives or salts thereof, guanidine or guanidine derivatives or salts thereof, preferably comprising sorbitol Process
 第2の実施形態は、主として、骨の主成分であるカルシウムを生物試料から除去する工程、生物試料を透明化する工程、生物試料に含まれる組織間の屈折率を調整する工程から構成される、骨を含む生物試料の透明化方法である。また、生物試料を免疫組織学的な方法(免疫染色など)により染色し、観察する場合には、これらの工程の他、さらに、抗体等で生物試料を免疫染色する工程が含まれていてもよい。 The second embodiment mainly includes a step of removing calcium, which is a main component of bone, from a biological sample, a step of clarifying the biological sample, and a step of adjusting a refractive index between tissues included in the biological sample. A method for clarifying a biological sample containing bone. In addition, when a biological sample is stained by an immunohistological method (such as immunostaining) and observed, in addition to these steps, a step of immunostaining the biological sample with an antibody or the like may be included. Good.
 第2の実施形態において、透明化の対象となる生物試料は、骨(または骨組織)を生体内に含む、例えば、脊椎動物(例えば、硬骨魚類、両生類、は虫類、鳥類、哺乳類が好ましく、特に哺乳類が好ましい。好ましい哺乳類としては、例えば、マウス、ラット、ウサギ、モルモット、イヌ、ネコ、霊長類(ヒトを除く)およびヒトである。)であればいかなる生物由来のものであってもよい。また、本明細書において「骨」は、当業者において理解される一般的な意味として捉えればよく、脊椎動物において骨格を構成するリン酸カルシウムを多分に含んだ硬い組織(硬組織)のことである。また、「骨を含む生物試料」とは、「骨」が含まれる組織や器官であればいかなるものであってもよく、例えば、骨髄および骨を含む硬組織由来の試料、頭部またはその一部のように頭蓋骨と脳を含む試料、内耳を含む試料、骨軟骨の連結部、骨と靭帯などの結合組織の連結部、骨同士が軟骨により連結する部分である関節を含む試料、骨化、石灰化をおこした病理組織などである。
 さらに、「骨を含む生物試料」は、あらかじめ、蛍光タンパク質などを発現させたもの、蛍光化学物質を導入したもの、蛍光標識を使用して免疫染色を行ったものであってもよい。また、生物試料は顕微鏡観察用に固定化処理(例えば、PFA(paraformaldehyde) -PBSで処理)されたものであってもよい。
In the second embodiment, the biological sample to be transparentized contains bone (or bone tissue) in the living body, for example, vertebrates (for example, teleosts, amphibians, reptiles, birds, mammals are preferable, particularly Mammals are preferred, and preferred mammals may be derived from any organism, such as mice, rats, rabbits, guinea pigs, dogs, cats, primates (except humans) and humans. In the present specification, “bone” may be understood as a general meaning understood by those skilled in the art, and is a hard tissue (hard tissue) containing a large amount of calcium phosphate constituting a skeleton in vertebrates. The “biological sample containing bone” may be any tissue or organ containing “bone”. For example, a sample derived from a hard tissue containing bone marrow and bone, the head or one of them. Sample including skull and brain, sample including inner ear, connecting part of osteochondral, connecting part of connective tissue such as bone and ligament, sample including joint where bones are connected by cartilage, ossification Or pathological tissue that has undergone calcification.
Furthermore, the “biological sample containing bone” may be one in which a fluorescent protein or the like is expressed in advance, one into which a fluorescent chemical substance has been introduced, or one that has been immunostained using a fluorescent label. Further, the biological sample may be one that has been immobilized for microscopic observation (for example, treated with PFA (paraformaldehyde) -PBS).
 第2の実施形態の工程(a)は、骨の脱灰を行う工程で、カルシウムキレート剤を含む溶液で生物試料を処理する工程である。カルシウムキレート剤は、カルシウムをキレートする剤であれば、特に限定されるものではなく、例えば、EDAT(エチレンジアミン四酢酸)、EGTA(グリコールエーテルジアミン四酢酸)、NTA(ニトリロ三酢酸)、DTPA(ジエチレントリアミン五酢酸)、HEDTA(エチレンジアミンヒドロキシエチル三酢酸)、TTHA(トリエチレンテトラミン六酢酸)およびこれらの誘導体を例示することができる。カルシウムキレート剤を含む溶液の溶媒は水が好ましく、また、pHの維持が可能な緩衝液であってもよい。また、キレート剤の濃度は、用いるキレート剤の種類および透明化する試料の種類にもよるが、例えば、数mMから数百mMであってもよい。
 カルシウムキレート剤で処理する時間は、生物試料によって異なるが、骨を含む資料を切離する際に抵抗が無くなる程度にキレート剤処理を行えばよく、例えば、数分~数日である(例えば、10%EDTA・2Na(269 mM)をキレート剤とした場合、内耳(3~5日)、頭蓋骨(7~21日)、四肢骨(2~7日))。
Step (a) of the second embodiment is a step of decalcifying bone and is a step of treating a biological sample with a solution containing a calcium chelating agent. The calcium chelating agent is not particularly limited as long as it chelates calcium. For example, EDAT (ethylenediaminetetraacetic acid), EGTA (glycol etherdiaminetetraacetic acid), NTA (nitrilotriacetic acid), DTPA (diethylenetriamine) Examples include pentaacetic acid), HEDTA (ethylenediaminehydroxyethyl triacetic acid), TTHA (triethylenetetramine hexaacetic acid), and derivatives thereof. The solvent of the solution containing the calcium chelating agent is preferably water, and may be a buffer capable of maintaining the pH. The concentration of the chelating agent depends on the type of chelating agent used and the type of sample to be clarified, but may be, for example, several mM to several hundred mM.
The treatment time with the calcium chelating agent varies depending on the biological sample, but the chelating agent treatment may be performed to such an extent that there is no resistance when the material containing bone is cut off, and is, for example, several minutes to several days (for example, When using 10% EDTA · 2Na (269 mM) as a chelating agent, inner ear (3-5 days), skull (7-21 days), limb bone (2-7 days)).
 本発明の第2の実施形態の工程(b)は、生物試料を透明化する工程で、主として、脂質やコラーゲンなどからなる細胞外基質を除去する工程である(脱脂および脱コラーゲン)。
 第2の実施形態の透明化試薬は、少なくとも1種類のカオトロープを含み、好ましくはソルビトールを含み、さらに、グルコースを含んでいてもよい。そして、当該透明化試薬は、水を溶媒とする溶液、または、pHの維持が可能な緩衝液が好ましく、生物試料を浸した際に、生物試料が変形しないように、浸透圧が調整されたものであってもよい。第2の実施形態の透明化試薬に含まれるカオトロープとしては、例えば、尿素、尿素誘導体、尿素もしくは尿素誘導体の塩、グアニジン、グアニジン誘導体、グアニジンもしくはグアニジン誘導体の塩などが好ましい。
The step (b) of the second embodiment of the present invention is a step of clarifying a biological sample, and is a step of removing an extracellular matrix mainly composed of lipid, collagen, etc. (degreasing and decollagen).
The clearing reagent of the second embodiment includes at least one chaotrope, preferably includes sorbitol, and may further include glucose. The clearing reagent is preferably a solution using water or a buffer capable of maintaining pH, and the osmotic pressure is adjusted so that the biological sample is not deformed when the biological sample is immersed. It may be a thing. As the chaotrope contained in the clearing reagent of the second embodiment, for example, urea, urea derivative, urea or a salt of urea derivative, guanidine, guanidine derivative, salt of guanidine or guanidine derivative and the like are preferable.
 第2の実施形態の透明化試薬には、カオトロープの他、好ましくはソルビトール、さらに好ましくはグルコースが含まれていてもよい。ソルビトールは、これまでに報告されている生物試料の透明化試薬にも含まれているが(例えば、非特許文献1を参照のこと)、従来の方法においてソルビトールは主として蛍光物質の消光を防ぐ目的で使用されていたのに対し、本発明においては骨の内側の組織等の保存性の向上(たとえば、蝸牛の透明化の場合には、外有毛細胞の聴毛などの保存性の向上など)、および骨コラーゲンを溶解させ骨の屈折率を調整するという点において効果を発揮していると考えられる。さらに、透明化試薬にグルコースを加えることで、透明化処理時間が短くなり、また、透明化後の試料に含まれる組織や細胞のコントラストが際立つ傾向にあることを見いだした。 The clearing reagent of the second embodiment may preferably contain sorbitol, more preferably glucose in addition to the chaotrope. Sorbitol is also included in the biological reagent clearing reagents reported so far (see, for example, Non-Patent Document 1), but sorbitol is mainly used to prevent quenching of fluorescent substances in conventional methods. In the present invention, the preservation of tissue inside the bone is improved (for example, in the case of cochlear clarification, the preservation of outer hair cells and the like is improved. ), And in that the bone collagen is dissolved to adjust the refractive index of the bone. Furthermore, it has been found that by adding glucose to the clarification reagent, the clarification processing time is shortened and the contrast of tissues and cells contained in the sample after clarification tends to stand out.
 第2の実施形態の透明化試薬に含まれるカオトロープの至適濃度は、透明化する生物試料または用いるカオトロープの種類によって異なり、特に限定されるものではなく、当業者であれば予備的な実験により、その至適濃度を容易に決定することができる。例えば、カオトロープとして、尿素を用いる場合は、1M~6M、より好ましくは1M~4Mであり、グアニジン塩酸塩を用いる場合は、1M~6M、より好ましくは1M~3Mである。
 第2の実施形態の透明化試薬にソルビトールおよび/またはグルコースが含まれる場合、ソルビトールおよびグルコースの濃度は、特に限定されるものではないが、ソルビトールについては、例えば、10(w/v)%~50(w/v)%、好ましくは20(w/v)%~45(w/v)%、より好ましくは30(w/v)%~40(w/v)%であり、グルコースについては、例えば、5(w/v)%~30(w/v)%、好ましくは10(w/v)%~25(w/v)%、特に好ましくは10(w/v)%~20(w/v)%である。
 第2の実施形態の透明化試薬には、さらに、界面活性剤が(例えば、ソルビタン脂肪酸エステル、グリセリン脂肪酸エステル、ショ糖脂肪酸エステルなどのエステル型非イオン界面活性剤、脂肪アルコールエトキシレート、ポリオキシエチレンアルキルフェニルエーテルなどのエーテル型非イオン界面活性剤などを挙げることができる。より具体的には、Triton X(登録商標)シリーズ、Nonidet P(登録商標)シリーズ、Tween(登録商標)シリーズなどを挙げることができる)が含まれていてもよい。界面活性剤の好ましい濃度は、特に限定はしないが、0.1%~4.0%程度である。
The optimal concentration of the chaotrope contained in the clearing reagent of the second embodiment varies depending on the biological sample to be cleared or the type of chaotrope used, and is not particularly limited. The optimum concentration can be easily determined. For example, when urea is used as the chaotrope, it is 1M to 6M, more preferably 1M to 4M, and when guanidine hydrochloride is used, it is 1M to 6M, more preferably 1M to 3M.
When the clearing reagent of the second embodiment includes sorbitol and / or glucose, the concentration of sorbitol and glucose is not particularly limited, but for sorbitol, for example, 10 (w / v)% to 50 (w / v)%, preferably 20 (w / v)% to 45 (w / v)%, more preferably 30 (w / v)% to 40 (w / v)%. For example, 5 (w / v)% to 30 (w / v)%, preferably 10 (w / v)% to 25 (w / v)%, particularly preferably 10 (w / v)% to 20 ( w / v)%.
The clearing reagent of the second embodiment further includes a surfactant (for example, an ester-type nonionic surfactant such as sorbitan fatty acid ester, glycerin fatty acid ester, sucrose fatty acid ester, fatty alcohol ethoxylate, polyoxy And ether type nonionic surfactants such as ethylene alkyl phenyl ether, etc. More specifically, Triton X (registered trademark) series, Nonidet P (registered trademark) series, Tween (registered trademark) series, etc. May be included). The preferred concentration of the surfactant is not particularly limited, but is about 0.1% to 4.0%.
 第2の実施形態の透明化試薬による処理時間、処理温度の条件は、生物試料によって異なり、当業者であれば、予備的な実験により条件を設定することができ、例えば、処理温度は20℃~37℃程度で、処理時間は数分~48時間程度である。例えば、内耳のように骨組織が少ない試料の場合は、室温(10~30℃)で2~4時間程度、または30~40℃で0.5~1.5時間程度、より骨組織を多く含む試料の場合は、室温(10~30℃)で15~30時間程度、または30~40℃で2~4時間程度処理してもよい。 The conditions for the treatment time and the treatment temperature with the clearing reagent of the second embodiment vary depending on the biological sample, and those skilled in the art can set the conditions by preliminary experiments. For example, the treatment temperature is 20 ° C. At about 37 ° C, the processing time is about several minutes to 48 hours. For example, in the case of a sample with a small amount of bone tissue such as the inner ear, a sample containing more bone tissue at room temperature (10-30 ° C) for about 2-4 hours, or at 30-40 ° C for about 0.5-1.5 hours May be treated at room temperature (10-30 ° C.) for about 15-30 hours, or at 30-40 ° C. for about 2-4 hours.
 本発明の第2の実施形態の工程(c)は、生物試料を構成する骨とその他の組織もしくは器官との間の屈折率の違いを調整する工程である。
 第2の実施形態で用いられる屈折率調整試薬は、少なくとも1種類のカオトロープと、好ましくは、ソルビトールを含んでいてもよい。そして、該屈折率調整試薬は、水を溶媒とする溶液、または、pHの維持が可能な緩衝液が好ましく、生物試料を浸した際に、生物試料が変形しないように、浸透圧が調整されたものであってもよい。第2の実施形態の屈折率調整試薬に含まれるカオトロープとしては、例えば、尿素、尿素誘導体、尿素もしくは尿素誘導体の塩、グアニジン、グアニジン誘導体、グアニジンもしくはグアニジン誘導体の塩などが好ましい。
Step (c) of the second embodiment of the present invention is a step of adjusting the difference in refractive index between the bone constituting the biological sample and other tissues or organs.
The refractive index adjusting reagent used in the second embodiment may contain at least one kind of chaotrope, and preferably sorbitol. The refractive index adjusting reagent is preferably a solution using water as a solvent or a buffer capable of maintaining pH, and the osmotic pressure is adjusted so that the biological sample is not deformed when the biological sample is immersed. It may be. As the chaotrope contained in the refractive index adjusting reagent of the second embodiment, for example, urea, urea derivative, urea or salt of urea derivative, guanidine, guanidine derivative, salt of guanidine or guanidine derivative and the like are preferable.
 第2の実施形態の屈折率調整試薬に含まれるカオトロープの至適濃度は、透明化する生物試料または用いるカオトロープの種類によって異なり、特に限定されるものではなく、当業者であれば予備的な実験により、その至適濃度を容易に決定することができる。例えば、カオトロープとして、尿素を用いる場合は、1M~6M、より好ましくは1M~4Mであり、グアニジン塩酸塩を用いる場合は、1M~6M、より好ましくは1M~3Mである。
 第2の実施形態の屈折率調整試薬にソルビトールが含まれる場合、ソルビトールの濃度は、特に限定されるものではないが、例えば、15 (w/v) %~65 (w/v) %、好ましくは20 (w/v) %~60 (w/v) %、より好ましくは50 (w/v) %~60 (w/v) %である。
 なお、第2の実施形態において、透明化試薬および屈折率調整試薬にソルビトールが含まれる場合、屈折率調整試薬に含まれるソルビトール濃度が透明化試薬に含まれるソルビトール濃度より高い方が好ましい。
 また、カオトロープとして尿素もしくは尿素誘導体またはこれらの塩を選択する場合、ソルビトールの濃度は、好ましくは40(w/v)%よりも高濃度で、60(w/v)%以下であることが好ましい。
 また、第2の実施形態の屈折率調整試薬には、さらに、界面活性剤が(例えば、ソルビタン脂肪酸エステル、グリセリン脂肪酸エステル、ショ糖脂肪酸エステルなどのエステル型非イオン界面活性剤、脂肪アルコールエトキシレート、ポリオキシエチレンアルキルフェニルエーテルなどのエーテル型非イオン界面活性剤などを挙げることができる。より具体的には、Triton X(登録商標)シリーズ、Nonidet P(登録商標)シリーズ、Tween(登録商標)シリーズなどを挙げることができる)が含まれていてもよい。界面活性剤の好ましい濃度は、特に限定はしないが、0.1%~4.0%程度である。
The optimal concentration of the chaotrope contained in the refractive index adjusting reagent of the second embodiment varies depending on the biological sample to be clarified or the type of chaotrope used, and is not particularly limited. Thus, the optimum concentration can be easily determined. For example, when urea is used as the chaotrope, it is 1M to 6M, more preferably 1M to 4M, and when guanidine hydrochloride is used, it is 1M to 6M, more preferably 1M to 3M.
When sorbitol is included in the refractive index adjusting reagent of the second embodiment, the concentration of sorbitol is not particularly limited, but is, for example, 15 (w / v)% to 65 (w / v)%, preferably Is 20 (w / v)% to 60 (w / v)%, more preferably 50 (w / v)% to 60 (w / v)%.
In the second embodiment, when the clarification reagent and the refractive index adjusting reagent contain sorbitol, the sorbitol concentration contained in the refractive index adjusting reagent is preferably higher than the sorbitol concentration contained in the clearing reagent.
Further, when urea or urea derivative or a salt thereof is selected as the chaotrope, the concentration of sorbitol is preferably higher than 40 (w / v)% and preferably 60 (w / v)% or less. .
Further, the refractive index adjusting reagent of the second embodiment further includes a surfactant (for example, an ester-type nonionic surfactant such as sorbitan fatty acid ester, glycerin fatty acid ester, sucrose fatty acid ester, fatty alcohol ethoxylate). And ether type nonionic surfactants such as polyoxyethylene alkylphenyl ether, etc. More specifically, Triton X (registered trademark) series, Nonidet P (registered trademark) series, Tween (registered trademark) Series, etc.) may be included. The preferred concentration of the surfactant is not particularly limited, but is about 0.1% to 4.0%.
 第2の実施形態の屈折率調整試薬による処理時間、処理温度の条件は、生物試料によって異なり、当業者であれば、予備的な実験により条件を設定することができ、例えば、処理温度は25~37℃程度で、処理時間は数分~48時間程度である。例えば、内耳のように骨組織が少ない試料の場合は、室温(10~30℃)で5分~20分程度、または30~40℃で数分、より骨組織を多く含む試料の場合は、室温(10~30℃)で2~4時間程度または30~40℃で0.5~2時間程度処理してもよい。  The conditions for the treatment time and the treatment temperature with the refractive index adjusting reagent of the second embodiment vary depending on the biological sample, and those skilled in the art can set the conditions by preliminary experiments. For example, the treatment temperature is 25 At about 37 ° C, the processing time is about several minutes to 48 hours. For example, in the case of a sample with a small amount of bone tissue such as the inner ear, in the case of a sample containing more bone tissue at room temperature (10-30 ° C) for about 5 minutes to 20 minutes, or at 30-40 ° C for a few minutes, The treatment may be performed at room temperature (10 to 30 ° C.) for about 2 to 4 hours or at 30 to 40 ° C. for about 0.5 to 2 hours.
 第2の実施形態にかかる透明化処理(カオトロープとして、グアニジンもしくはグアニジン誘導体またはそれらの塩を選択する処理)を、蛍光タンパク質(例えば、GFPなど)を含む生物試料に対して行った後、蛍光分子からの蛍光が消退する場合には、透明化後の生物試料を、例えば、PBS(例えば、NaCl:137mM, (PO4)3-:9.57mM))、あるいは、既知の尿素ベースの透明化試薬(例えば、25 (W/V) % 尿素、50 (W/V) % スクロース、10 (W/V) % 2, 2’, 2’’-ニトリロトリエタノール、0.1 % Triton X-100)などで処理することにより、蛍光を回復させることができる。 After the clearing treatment (treatment for selecting guanidine or a guanidine derivative or a salt thereof as a chaotrope) according to the second embodiment is performed on a biological sample containing a fluorescent protein (for example, GFP), a fluorescent molecule When the fluorescence from the fluorescent light disappears, the biological sample after clarification can be treated with, for example, PBS (for example, NaCl: 137 mM, 4 (PO4) 3-: 9.57 mM)) or a known urea-based clarification reagent ( For example, treat with 25% (W / V)% urea, 50% (W / V)% sucrose, 10% (W / V)% 2,2,2 ', 2 "-nitrilotriethanol, 0.1% Triton X-100) Thus, fluorescence can be recovered.
 本発明の第1および第2の実施形態において、カオトロープとして、尿素もしくは尿素誘導体またはそれらの塩が使用される場合、尿素誘導体は、特に限定はされず、例えば、下記の一般式(1)で示される化合物である。
Figure JPOXMLDOC01-appb-C000001
 一般式(1)中、R、R、R、Rは、それぞれ独立して水素、炭化水素基、ハロゲン原子である。
 ここで、炭化水素基は、置換基を有してもよく、また、鎖状であっても環状であってもよく、例えば、アルキル基、アルケニル基、アルキニル基、シクロアルキル基、シクロアルケニル基などが好ましい。より好ましい炭化水素基としては、炭素数1~6であり、具体的には、メチル基、エチル基、プロピル基、シクロプロピル基、イソプロピル基、ブチル基、シクロブチル基、ペンチル基、シクロペンチル基、ヘキシル基、シクロヘキシル基などを挙げることができる。
 上記ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子を挙げることができる。
 本発明の実施形態で使用される尿素および尿素誘導体の好ましい例は、一般式(1)において、R~Rの全てが水素である尿素の他、R~Rのうち3つが水素で残り1つの基がハロゲン原子である尿素誘導体であってカオトロープとして作用する化合物およびR~RのうちRまたはRのいずれか1つおよびRまたはRのいずれか1つが水素で、残りの2つの基がアルキル基である尿素誘導体であってカオトロープとして作用する化合物である。 
 また、一般式(1)で表される尿素および尿素誘導体の塩としては、例えば、塩酸塩、硫酸塩などを挙げることができる。
In the first and second embodiments of the present invention, when urea or a urea derivative or a salt thereof is used as the chaotrope, the urea derivative is not particularly limited. For example, in the following general formula (1) It is the compound shown.
Figure JPOXMLDOC01-appb-C000001
In general formula (1), R 1 , R 2 , R 3 and R 4 are each independently hydrogen, a hydrocarbon group, or a halogen atom.
Here, the hydrocarbon group may have a substituent, and may be a chain or a ring. For example, an alkyl group, an alkenyl group, an alkynyl group, a cycloalkyl group, a cycloalkenyl group Etc. are preferable. More preferred hydrocarbon groups are those having 1 to 6 carbon atoms, specifically, methyl group, ethyl group, propyl group, cyclopropyl group, isopropyl group, butyl group, cyclobutyl group, pentyl group, cyclopentyl group, hexyl group. Group, cyclohexyl group and the like.
Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
Preferred examples of urea and urea derivatives used in embodiments of the invention are the compounds of formula (1), other all R 1 ~ R 4 is a urea hydrogen, three of R 1 ~ R 4 hydrogen Wherein the remaining one group is a halogen atom, which is a urea derivative and acts as a chaotrope, and any one of R 1 to R 4 , R 1 or R 2 and any one of R 3 or R 4 is hydrogen Thus, the remaining two groups are urea derivatives having an alkyl group, and are compounds that act as a chaotrope.
Examples of the salt of urea and urea derivative represented by the general formula (1) include hydrochloride and sulfate.
 また、本発明の第1および第2の実施形態において、カオトロープとして、グアニジンもしくはグアニジン誘導体またはそれらの塩が使用される場合、グアニジン誘導体は、特に限定はされず、例えば、下記の一般式(2)で示される化合物である。
Figure JPOXMLDOC01-appb-C000002
 一般式(2)中、R、R、R、Rは、それぞれ独立して水素、炭化水素基、ハロゲン原子である。 
 ここで、炭化水素基は、置換基を有してもよく、また、鎖状であっても環状であってもよく、例えば、アルキル基、アルケニル基、アルキニル基、シクロアルキル基、シクロアルケニル基などが好ましい。より好ましい炭化水素基としては、炭素数1~6であり、具体的には、メチル基、エチル基、プロピル基、シクロプロピル基、イソプロピル基、ブチル基、シクロブチル基、ペンチル基、シクロペンチル基、ヘキシル基、シクロヘキシル基などを挙げることができる。
 上記ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子を挙げることができる。
 本発明の実施形態で使用されるグアニジンおよびグアニジン誘導体の好ましい例は、一般式(2)において、R~Rの全てが水素であるグアニジンの他、R~Rのうち3つが水素で残り1つの基がハロゲン原子であるグアニジン誘導体であってカオトロープとして作用する化合物およびR~RのうちRまたはRのいずれか1つおよびRまたはRのいずれか1つが水素で、残りの2つの基がアルキル基であるグアニジン誘導体であってカオトロープとして作用する化合物である。 
 また、一般式(2)で表されるグアニジンおよびグアニジン誘導体の塩としては、例えば、塩酸塩、チオシアン酸塩などを挙げることができる。
In the first and second embodiments of the present invention, when guanidine or a guanidine derivative or a salt thereof is used as the chaotrope, the guanidine derivative is not particularly limited. For example, the following general formula (2) ).
Figure JPOXMLDOC01-appb-C000002
In General Formula (2), R 1 , R 2 , R 3 , and R 4 are each independently hydrogen, a hydrocarbon group, or a halogen atom.
Here, the hydrocarbon group may have a substituent, and may be a chain or a ring. For example, an alkyl group, an alkenyl group, an alkynyl group, a cycloalkyl group, a cycloalkenyl group Etc. are preferable. More preferred hydrocarbon groups are those having 1 to 6 carbon atoms, specifically, methyl group, ethyl group, propyl group, cyclopropyl group, isopropyl group, butyl group, cyclobutyl group, pentyl group, cyclopentyl group, hexyl group. Group, cyclohexyl group and the like.
Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
Preferred examples of guanidine and guanidine derivatives used in the embodiment of the present invention include guanidine in which R 1 to R 4 are all hydrogen in the general formula (2), and three of R 1 to R 4 are hydrogen. Wherein the remaining one group is a halogen atom and is a compound that acts as a chaotrope and any one of R 1 to R 4 , R 1 or R 2 , and any one of R 3 or R 4 is hydrogen The remaining two groups are guanidine derivatives in which an alkyl group is present, and are compounds that act as a chaotrope.
Examples of the guanidine and guanidine derivative salts represented by the general formula (2) include hydrochloride and thiocyanate.
 本発明の透明化試薬および屈折率調整試薬に含まれるカオトロープとして、尿素およびその誘導体、または、グアニジンおよびその誘導体のいずれを用いても、生物試料を効果的に透明化することができる。グアニジンは、一般には、尿素よりも強いカオトロープとして知られているため、当業者においては、尿素と比較して生物試料に対するダメージが大きいと考えるのが通常である。しかしながら、発明者らが、透明化試薬および屈折率調整試薬のカオトロープとしてグアニジン塩酸塩を使用したところ、生物試料の膨張が尿素を使用した場合よりも少ないことを見いだした。また、発明者らは、生物試料の透明化の程度も、グアニジンベースの試薬は、尿素ベースの試薬と同程度かそれ以上の透明化を実現し得ることを確認している。
 以上のような特徴を理解した上で、当業者は、カオトロープとして、尿素ベースの試薬またはグアニジンベースの試薬のいずれも選択することが可能である。
The biological sample can be effectively clarified by using either urea and its derivatives or guanidine and its derivatives as the chaotrope contained in the clearing reagent and refractive index adjusting reagent of the present invention. Since guanidine is generally known as a stronger chaotrope than urea, those skilled in the art usually consider it more damaging to biological samples than urea. However, the inventors have found that when guanidine hydrochloride is used as the chaotrope of the clearing reagent and refractive index adjusting reagent, the swelling of the biological sample is less than when urea is used. In addition, the inventors have confirmed that the guanidine-based reagent can achieve the same degree of transparency as the urea-based reagent or more than that of the biological sample.
After understanding the above characteristics, those skilled in the art can select either a urea-based reagent or a guanidine-based reagent as the chaotrope.
 本発明の第3の実施形態は、第1および第2の実施形態において使用される、生物試料の透明化試薬(「本発明の透明化試薬」とも記載する)および生物試料の屈折率調整試薬(「本発明の屈折率調整試薬」とも記載する)である。
 本発明の透明化試薬としては、例えば、尿素もしくは尿素誘導体またはそれらの塩、グアニジンもしくはグアニジン誘導体もしくはそれらの塩からなるグループから選択される少なくとも1種のカオトロープ含む溶液を挙げることができる。本発明の透明化試薬には、カオトロープの他に、好ましくはソルビトール、より好ましくはグルコースが含まれていてもよく、さらに、界面活性剤(例えば、ソルビタン脂肪酸エステル、グリセリン脂肪酸エステル、ショ糖脂肪酸エステルなどのエステル型非イオン界面活性剤、脂肪アルコールエトキシレート、ポリオキシエチレンアルキルフェニルエーテルなどのエーテル型非イオン界面活性剤などを挙げることができる。より具体的には、Triton X(登録商標)シリーズ、Nonidet P(登録商標)シリーズ、Tween(登録商標)シリーズなどを挙げることができる)が含まれていてもよい。好ましいカオトロープは、尿素またはグアニジン塩(例えば、グアニジン塩酸塩)である。界面活性剤の好ましい濃度は、特に限定はしないが、0.1%~4.0%程度である。 
The third embodiment of the present invention is a biological sample clearing reagent (also referred to as “clearing reagent of the present invention”) and a biological sample refractive index adjusting reagent used in the first and second embodiments. (Also described as “refractive index adjusting reagent of the present invention”).
Examples of the clarifying reagent of the present invention include a solution containing at least one chaotrope selected from the group consisting of urea or urea derivatives or salts thereof, guanidine or guanidine derivatives or salts thereof. In addition to the chaotrope, the clarification reagent of the present invention may preferably contain sorbitol, more preferably glucose, and a surfactant (for example, sorbitan fatty acid ester, glycerin fatty acid ester, sucrose fatty acid ester). And ester type nonionic surfactants such as fatty alcohol ethoxylate, polyoxyethylene alkylphenyl ether, etc. More specifically, the Triton X (registered trademark) series. , Nonidet P (registered trademark) series, Tween (registered trademark) series, and the like. Preferred chaotropes are urea or guanidine salts (eg guanidine hydrochloride). The preferred concentration of the surfactant is not particularly limited, but is about 0.1% to 4.0%.
 本発明の屈折率調整試薬としては、例えば、尿素もしくは尿素誘導体またはそれらの塩、グアニジンもしくはグアニジン誘導体またはそれらの塩からなるグループから選択される少なくとも1種のカオトロープ含む溶液を挙げることができる。カオトロープの他に、好ましくはソルビトールが含まれていてもよく、さらに、界面活性剤(例えば、ソルビタン脂肪酸エステル、グリセリン脂肪酸エステル、ショ糖脂肪酸エステルなどのエステル型非イオン界面活性剤、脂肪アルコールエトキシレート、ポリオキシエチレンアルキルフェニルエーテルなどのエーテル型非イオン界面活性剤などを挙げることができる。より具体的には、Triton X(登録商標)シリーズ、Nonidet P(登録商標)シリーズ、Tween(登録商標)シリーズなどを挙げることができる)が含まれていてもよい。好ましいカオトロープは、尿素またはグアニジン塩(例えば、グアニジン塩酸塩)である。界面活性剤の好ましい濃度は、特に限定はしないが、0.1%~4.0%程度である。 Examples of the refractive index adjusting reagent of the present invention include a solution containing at least one chaotrope selected from the group consisting of urea or urea derivatives or salts thereof, guanidine or guanidine derivatives or salts thereof. In addition to chaotrope, sorbitol may be preferably contained, and surfactants (eg, ester-type nonionic surfactants such as sorbitan fatty acid ester, glycerin fatty acid ester, sucrose fatty acid ester, fatty alcohol ethoxylate) And ether type nonionic surfactants such as polyoxyethylene alkylphenyl ether, etc. More specifically, the Triton X (registered trademark) series, Nonidet P (registered trademark) series, and Tween (registered trademark). Series, etc.) may be included. Preferred chaotropes are urea or guanidine salts (eg guanidine hydrochloride). The preferred concentration of the surfactant is not particularly limited, but is about 0.1% to 4.0%.
 さらに、本発明の第4の実施形態は、生物材料または骨を含む生物材料透明化処理キット(「本発明の透明化処理キット」とも記載する)である。
 本発明の透明化処理キットには、上記の本発明の透明化試薬、屈折率調整試薬が含まれる他、生物試料の透明化に必要な試薬、例えば、生物試料の固定液(例えば、PFA-PBSなど)、カルシウムキレート剤の溶液、免疫染色に用いる種々の抗体(標識されていても、されていないなくてもよい)などが含まれていてもよい。
Furthermore, the fourth embodiment of the present invention is a biological material clearing treatment kit containing biological material or bone (also referred to as “the clearing treatment kit of the present invention”).
The clearing treatment kit of the present invention includes the above-described clearing reagent and refractive index adjusting reagent of the present invention, as well as a reagent necessary for the clearing of a biological sample, such as a biological sample fixing solution (for example, PFA- PBS, etc.), calcium chelating agent solutions, various antibodies used for immunostaining (which may or may not be labeled), and the like.
 本明細書において引用されたすべての文献の開示内容は、全体として明細書に参照により組み込まれる。また、本明細書全体において、単数形の「a」、「an」、および「the」の単語が含まれる場合、文脈から明らかにそうでないことが示されていない限り、単数のみならず複数のものを含むものとする。
 以下に、いくつかの実施例を示すが、本発明の範囲はこれらにより何ら限定されるものではない。
The disclosures of all documents cited herein are hereby incorporated by reference in their entirety. Also, throughout this specification, where the word “a”, “an”, and “the” is included, the term “a”, “an”, and “the” includes plurals as well as the singular unless the context clearly indicates otherwise. Including things.
Some examples are shown below, but the scope of the present invention is not limited by these examples.
実験方法
1.試料の固定
1-1.生後5日より前のマウス
 マウスを頸部脱臼して安楽死させた後、断頭および腕関節並びに股関節離断を行った。後頸筋を、用手的可及的に剥離を行い、背側頸髄正中を覆う骨に剪刀を挿入し、硬膜下腔に空気が入るように頭頂骨を垂直上方へ把持した後、脳組織を損傷しないよう剪刀を前進させるとともに両眼窩間正中にかけて頭頂骨の正中切開を行った。正中切開部より内耳上方の側頭骨まで鑷子を用いて鈍的剥離を行った。脳上方の全貌を明視化におくことができるまで頭頂骨を可及的鈍的剥離を行った。延髄、中脳、続いて両側側頭葉下に剥離子を挿入し頭蓋底より用手剥離を行った。両側眼窩間に切離を行って生じた後頭頂骨を、鑷子を用いて丁寧に摘出を行い、嗅球下へ剥離子をすすめ全脳を摘出した。脳摘出後上顎骨に正中切開を行い、側頭骨を切離した。肩関節、股関節に剪刀を挿入し上前腕、上下腿を摘出した。
 摘出した試料を4%PFA(paraformaldehyde) /PBS(NaCl:137mM, (PO4)3-:9.57mM)(以後固定液と称す)へ浸透させた。脳試料は固定液を浸透した状態で、4℃にて翌日まで保存した。固定液を浸透した状態で側頭骨頭蓋底面より三半規管側頭骨裂に沿わせて鑷子を挿入させ内耳外形を掘り出した。蝸牛頂部は骨との接着が強固なため蝸牛損傷を起こしやすいため丁寧な剥離をこころがける必要がある。早い週令では蝸牛表側にゼリー様組織が付着しており、組織摘出不十分だと屈折率調整が不十分になり試料透明化を妨げる可能性がある。 
 摘出された内耳は、新鮮な固定液に浸透させ4℃で翌日まで保存した。固定液を浸透した状態で、頭蓋骨は頬筋、側頭筋を、鑷子を用いて用手的に、四肢骨は剪刃を骨体正中部にあて骨長軸面で回転させ骨に付着した軟部組織の切離を行い、剪刃背を用いて残存軟部組織の剥離を行った。関節包を温存した状態で固定液へ浸透させ4℃で翌日まで保存した。
Experimental method 1. Sample fixation 1-1. Mice older than 5 days After mice were dislocated from the neck and euthanized, decapitation, arm joints, and hip joint dissection were performed. The posterior cervical muscle is manually removed as much as possible, a scissors is inserted into the bone covering the midline of the dorsal cervical spinal cord, and the parietal bone is grasped vertically upward so that air enters the subdural space. The scissors were advanced so that they were not damaged, and a midline incision of the parietal bone was performed between the mid-orbital centers. Blunt detachment was performed using a scissors from the midline incision to the temporal bone above the inner ear. The parietal bone was removed as bluntly as possible until the entire upper brain was clearly visible. The exfoliator was inserted under the medulla oblongata, midbrain, and then the bilateral temporal lobes, and manual exfoliation was performed from the skull base. The posterior parietal bone resulting from the dissection between the bilateral orbits was carefully removed with a scissors, and the exfoliator was moved under the olfactory bulb, and the whole brain was removed. After brain removal, a midline incision was made in the maxilla and the temporal bone was dissected. A scissors were inserted into the shoulder joint and hip joint, and the upper forearm and upper and lower thighs were removed.
The extracted sample was infiltrated into 4% PFA (paraformaldehyde) / PBS (NaCl: 137 mM, (PO4) 3-: 9.57 mM) (hereinafter referred to as a fixing solution). The brain samples were stored at 4 ° C. until the next day with the fixative infiltrated. With the fixative solution infiltrated, an insulator was inserted from the bottom of the temporal bone skull along the semicircular canal temporal fracture, and the outer shape of the inner ear was excavated. The top of the cochlea has a strong bond with the bone and is prone to cochlear damage, so careful peeling is required. In early weeks, a jelly-like tissue is attached to the front side of the cochlea. If the tissue is not extracted sufficiently, the refractive index adjustment is insufficient, which may prevent the sample from becoming transparent.
The removed inner ear was infiltrated with fresh fixative and stored at 4 ° C. until the next day. With the fixative infiltrated, the skull was manually attached to the buccal and temporal muscles using a lever, and the limb bones were attached to the bone by rotating the cutting blade against the midline of the bone and rotating on the long bone axis. The soft tissue was cut off, and the remaining soft tissue was peeled off using the dorsal blade spine. The joint capsule was kept infiltrated into the fixative and stored at 4 ° C until the next day.
1-2.生後5日以降のマウス
 十分量の麻酔下で疼痛刺激への反応がないことを確認した後にPBS 15mlでの脱血後、60mlの固定液で灌流固定を行った。脳、側頭骨、頭蓋骨、四肢骨の摘出法は前述した(上記(1))と同様である。内耳は、生後5日以降より側頭骨との接着が強固になるため、前述方法とは異なる処理を行った。側頭骨摘出後、固定液へ浸透させた状態で外耳道軟骨を、剪刀を用いて側頭骨より切離した。鑷子先端にて鼓膜縁側頭骨間で鼓膜穿孔を作製し、鼓膜外周で側頭骨より鼓膜を切離した。鼓膜摘出後、蝸牛表側を明視化におき内耳損傷に細心の注意をはらい周囲組織の切離を行った。その際、内耳から数mm程度の安全領域をつけて一部側頭骨を残存した状態で摘出した。耳小骨の摘出の有無は問わない(無理矢理摘出し蝸牛損傷をきたす可能性があるため)。摘出された内耳を新鮮な固定液へ変えて4℃で翌日まで保存した。
1-2. Mice after 5 days of age After confirming that there was no response to pain stimulation under a sufficient amount of anesthesia, blood was removed with 15 ml of PBS and then perfusion-fixed with 60 ml of fixative. The method of extracting the brain, temporal bone, skull, and limb bones is the same as described above ((1) above). The inner ear was treated differently from the above-mentioned method because the adhesion to the temporal bone became stronger from the fifth day after birth. After excision of the temporal bone, the external auditory canal cartilage was dissected from the temporal bone using a scissors while infiltrating into the fixing solution. A tympanic membrane perforation was made between the tympanic marginal temporal bones at the distal end of the insulator, and the tympanic membrane was separated from the temporal bone at the outer periphery of the tympanic membrane. After the tympanicectomy, the cochlear surface was clearly visualized, and the surrounding tissues were dissected with careful attention to inner ear damage. At that time, it was removed from the inner ear with a safety region of about several millimeters and a partial temporal bone remaining. It does not matter whether or not the ear ossicles are removed (because they may be removed forcibly and may cause cochlear damage). The excised inner ear was changed to a fresh fixative and stored at 4 ° C. until the next day.
1-3.大脳皮質スライス標本
 全脳固定化試料を大脳と小脳の境界部分で冠状断を行う。シアノアクリレート系瞬間接着剤(商品名:アロンアルファ(登録商標))を用いて大脳側の試料の冠状面の垂直固定を行った後にビブラトームを用いて100μm~2mmの厚さのスライス標本を作製する。 
1-3. Cerebral cortex slice preparation Coronal section of the whole brain fixed sample is performed at the boundary between the cerebrum and cerebellum. After the coronal surface of the cerebral side sample is vertically fixed using a cyanoacrylate instant adhesive (trade name: Aron Alpha (registered trademark)), a slice specimen having a thickness of 100 μm to 2 mm is prepared using a vibratome.
2.脱灰
 0.1% Triton X-100/ PBS(以後洗浄液と称する。)3mlで、内耳(10分×3)、頭蓋骨・四肢骨(1時間×3)の攪拌洗浄を(40 rpm)行った。洗浄終了後、試料を10%(269mM) EDTA・2Na溶液へ浸透させ37℃で保存した。内耳(3~5日)、頭蓋骨(7~21日)、四肢骨(2~7日)試料に付着している軟部組織を洗浄液下で除去した。内耳を側頭骨から摘出する際には頭蓋内の三半規管を目印に行った。三半規管と頭蓋骨間にピンセットを挿入して内耳を全周くりぬくようにして内耳迷路骨包を一塊に側頭骨から剥がした。蝸牛上方の骨裂で左右に剥がすことで内耳を温存しやすくなる。内耳摘出後に蝸牛前面に付着しているゼリー様組織を丁寧に剥離する。内耳(蝸牛、三半規管)を温存した状態(内耳に骨がついた状態)で内耳を側頭骨から摘出した。蝸牛軸側の内耳からフックポーションにOverhangした三半規管、前庭を切り離し、内耳試料を作製した。 
2. Demineralization The inner ear (10 minutes × 3) and the skull / limb bones (1 hour × 3) were agitated and washed (40 rpm) with 3 ml of 0.1% Triton X-100 / PBS (hereinafter referred to as a washing solution). After washing, the sample was infiltrated into a 10% (269 mM) EDTA · 2Na solution and stored at 37 ° C. The soft tissues attached to the inner ear (3-5 days), skull (7-21 days), and limb bones (2-7 days) were removed under washing solution. When removing the inner ear from the temporal bone, the internal semicircular canal was used as a landmark. The tweezers were inserted between the semicircular canal and the skull, and the inner ear labyrinth bone capsule was peeled off from the temporal bone in a lump so as to hollow out the entire inner ear. It makes it easier to preserve the inner ear by peeling left and right with a fracture above the cochlea. Carefully peel off the jelly-like tissue adhering to the front of the cochlea after removing the inner ear. The inner ear was removed from the temporal bone while the inner ear (cochlea, semicircular canal) was preserved (the bone was attached to the inner ear). A semicircular canal overhanging the hook potion from the inner ear on the cochlear shaft side and the vestibule were cut off to prepare an inner ear sample.
3.透明化(脱脂・脱コラーゲン)
 尿素(1-4M)またはグアニジン塩酸塩(1-3M)、D-ソルビトール(35%v/w)をD-グルコース(15%v/w)、Triton X-100(0.1%v/w)から構成される透明化試薬(pH6.0-8.0)を作製した。 
 透明化試薬を適切な大きさのペトリ皿(内耳の場合は1mlエッベンチューブなど)に注入し、その中に試料を静置した。内耳は、室温3時間、37℃1時間、その他の硬組織は室温24時間程度、37℃3時間程度で完了する。また、大脳スライス標本(100μm厚の場合)の場合は、室温または37℃にて、数秒の処理で完了する。 
3. Clarification (degreasing and decollagen)
Urea (1-4M) or guanidine hydrochloride (1-3M), D-sorbitol (35% v / w) from D-glucose (15% v / w), Triton X-100 (0.1% v / w) A structured clearing reagent (pH 6.0-8.0) was prepared.
The clearing reagent was poured into an appropriately sized Petri dish (such as a 1 ml Eben tube for the inner ear), and the sample was allowed to stand in it. The inner ear is completed at room temperature for 3 hours at 37 ° C for 1 hour, and the other hard tissues are completed at room temperature for about 24 hours at 37 ° C for about 3 hours. In the case of a cerebral slice sample (100 μm thick), the treatment is completed at room temperature or 37 ° C. for several seconds.
4.免疫染色(GFPシグナル観察の場合は不要)
 内耳(10分×3)、頭蓋骨・四肢骨(1時間×3)を洗浄液で攪拌洗浄(40rpm)を行った。
 1次抗体を洗浄液に最適濃度に希釈を行った後に遠心(4℃、140rpm、 30分)を行い、上清に試料を浸透させ37℃で24-48時間保存した。内耳(10分×3)、頭蓋骨・四肢骨(1時間×3)を洗浄液で攪拌洗浄(40rpm)を行った。
 2次抗体を洗浄液に最適濃度に希釈を行った後に遠心を行い(4℃ 140rpm 30分)上清に試料を浸透させ37℃で24-48時間保存した。
4). Immunostaining (not required for GFP signal observation)
The inner ear (10 minutes × 3) and the skull / limb bones (1 hour × 3) were stirred and washed (40 rpm) with a washing solution.
The primary antibody was diluted to the optimal concentration in the washing solution and then centrifuged (4 ° C., 140 rpm, 30 minutes). The sample was permeated into the supernatant and stored at 37 ° C. for 24-48 hours. The inner ear (10 minutes × 3) and the skull / limb bones (1 hour × 3) were stirred and washed (40 rpm) with a washing solution.
The secondary antibody was diluted to the optimal concentration in the washing solution and then centrifuged (4 ° C., 140 rpm, 30 minutes), the sample was permeated into the supernatant, and stored at 37 ° C. for 24-48 hours.
5.屈折率調整
 尿素(1-4M)またはグアニジン塩酸塩(1-3M)、D-ソルビトール(60%v/w)、Triton X-100(0.1%v/w)から構成される屈折率調整薬(pH6.0-8.0)を作製した。屈折率調整試薬を適切な大きさのペトリ皿(内耳の場合は1mlエッベンチューブなど)に注入し、その中に試料を静置した。内耳は室温で15分、37℃で数分、その他の硬組織は室温で3時間程度、37℃で1時間程度の処理で完了する。また、大脳スライス標本(100μm厚の場合)の場合は、室温または37℃にて、数秒の処理で完了する。
 イメージングを行う際は透明化の完了した試料をスライドグラスへ取り出し、カバーグラスをかけた後に試料とカバーグラスの間に新鮮な屈折率調整試薬を注入した。
5). Refractive index adjustment Refractive index adjuster consisting of urea (1-4M) or guanidine hydrochloride (1-3M), D-sorbitol (60% v / w), Triton X-100 (0.1% v / w) pH 6.0-8.0) was prepared. The refractive index adjusting reagent was poured into an appropriately sized petri dish (such as a 1 ml ebben tube in the case of the inner ear), and the sample was allowed to stand therein. The inner ear is completed at room temperature for 15 minutes, 37 ° C for several minutes, and other hard tissues at room temperature for about 3 hours and at 37 ° C for about 1 hour. In the case of a cerebral slice sample (100 μm thick), the treatment is completed at room temperature or 37 ° C. for several seconds.
At the time of imaging, the sample that had been cleared was taken out into a slide glass, covered with a cover glass, and then a fresh refractive index adjusting reagent was injected between the sample and the cover glass.
結果
1.カオトロープとしてグアニジン塩酸塩を使用した大脳スライス標本の透明化処理
 グアニジンは、尿素よりも強力なカオトロープであるが、グアニジン塩酸塩を用いて生物試料の透明化が可能かどうか検討を行った。
 以下の試薬を用いて、Thy1-YFPマウスの大脳スライス切片(100μm)の透明化を行った。
・透明化試薬;1M、2M、3M、4M、5Mまたは6M グアニジン塩酸塩 
Result 1. Clarification of cerebral slice specimens using guanidine hydrochloride as a chaotrope Guanidine is a stronger chaotrope than urea, but we examined whether guanidine hydrochloride can be used to clarify biological samples.
Using the following reagents, cerebral slice sections (100 μm) of Thy1-YFP mice were clarified.
・ Clearing reagent: 1M, 2M, 3M, 4M, 5M or 6M guanidine hydrochloride
 既存の水溶性透明化試薬において尿素は必須要素であり、一般的に4Mで使用されている。今回、4M尿素とグアニジン塩酸塩での組織浮腫、透明度、蛍光(GFP)輝度についての比較検討を行った。
 透明化試薬に含まれるグアニジン塩酸塩の濃度を変えて、室温で数秒処理を行った。その結果、3M程度で透明化を実現することができた(図1)。グアニジン塩酸塩濃度が4M以上の場合、蛍光タンパク質からの蛍光の検出が困難であった(図1、4M、5M、6Mの蛍光図の下段を参照のこと)。従って、蛍光タンパク質を含む試料等を透明化する場合には、グアニジン塩酸塩濃度は3M程度が適当であると考えられる。
In existing water-soluble clearing reagents, urea is an essential element and is generally used at 4M. In this study, we compared tissue edema, transparency, and fluorescence (GFP) brightness between 4M urea and guanidine hydrochloride.
The concentration of guanidine hydrochloride contained in the clearing reagent was changed, and the treatment was performed for several seconds at room temperature. As a result, transparency was achieved at about 3M (Fig. 1). When the guanidine hydrochloride concentration was 4M or more, it was difficult to detect fluorescence from the fluorescent protein (see the bottom of the fluorescence diagrams of FIGS. 1, 4M, 5M, and 6M). Therefore, when clarifying a sample containing a fluorescent protein, the concentration of guanidine hydrochloride is considered to be about 3M.
 しかし、グアニジン塩酸塩で透明化処理することにより消失退色したGFP蛍光は、PBS置換を行うと退色の度合いに関わらずほぼ元の蛍光GFP強度へと可逆的に回復することが分かった(図2「PBS」)。同様に、グアニジン塩酸塩で処理した試料を、従来の透明化試薬(25 (W/V) % 尿素、50 (W/V) % スクロース、10 (W/V) % 2, 2', 2''-ニトリロトリエタノール、0.1 % Triton X-100)(図2では、「従来の透明化試薬2」と記載)に浸透させると、蛍光強度を回復させることができた(図2)。 However, GFP fluorescence disappeared and faded by clarification with guanidine hydrochloride was found to be reversibly restored to the original fluorescence GFP intensity regardless of the degree of fading when PBS substitution was performed (FIG. 2). “PBS”). Similarly, the sample treated with guanidine hydrochloride was treated with a conventional clarification reagent (25 (W / V)% urea, 50 (W / V)% 、 sucrose, 10 (W / V)% 2, 2 ', 2' When infiltrated into '-nitrilotriethanol, 0.1% Triton X-100) (described as “conventional clearing reagent 2” in FIG. 2), the fluorescence intensity could be recovered (FIG. 2).
 次に、グアニジン塩酸塩を含む試薬で処理をしたときの試料の膨張の程度について検討を行った。1-3 Mのグアニジン塩酸塩を含む透明化試薬および屈折率調整試薬を用いて透明化処理を行った。その結果、4M尿素では20%程度の組織膨張を認めたがグアニジンでは最大5%程度の組織膨張しか認めなかった。また透明度においても3Mグアニジンが4M尿素を上回る結果となった。(図3)。 Next, the degree of expansion of the sample when treated with a reagent containing guanidine hydrochloride was examined. Clearing treatment was performed using a clearing reagent and a refractive index adjusting reagent containing 1-3 μM guanidine hydrochloride. As a result, about 20% tissue swelling was observed with 4M urea, but only about 5% tissue swelling was observed with guanidine. In terms of transparency, 3M guanidine exceeded 4M urea. (Figure 3).
2.骨を含む生物材料の透明化
2-1.従来の透明化方法と本発明の透明化方法の効果の比較
 従来の透明化方法として、有機溶媒ベースである3DISCOとiDISCO、ならびに、水溶性試薬であるCLARITYおよびCUBICの各溶液を用いて、内耳サンプルの透明化処理を行い、本発明の透明化方法による透明化処理の結果と比較した。
 従来の透明化方法で内耳サンプルを処理すると、脳組織の脱脂を行うための電気泳動を要するCLARITYで報告されている条件での透明化過程で硬組織に一部亀裂が入るような現象を認めたが、いずれの既存透明化手法においても一定の骨透明化を実現することができた(図4、3DISCO、iDISCO、CLARITYおよびCUBIC)。しかし、蝸牛内、コルチ器に存在する音を感受する有毛細胞(MyosinVIIa)の同定には至らなかった。 
 これに対して、本発明にかかる透明化方法で内耳サンプルを処理すると、骨の内側の有毛細胞を明瞭に確認することができた(図4、下段、Our studyの白色ラセン状の構造)。
 この結果から、本発明にかかる透明化方法は、骨の透明化だけでなく骨の内側に存在する細胞を観察できる新たな手法であることが示された。
2. 2. Transparency of biological material including bone 2-1. Comparison of the effects of the conventional clearing method and the clearing method of the present invention As the conventional clearing method, using 3DISCO and iDISCO, which are organic solvent bases, and CLARITY and CUBIC, which are water-soluble reagents, The sample was subjected to a clearing treatment and compared with the result of the clearing treatment by the clearing method of the present invention.
When inner ear samples were processed using a conventional clarification method, a phenomenon was observed in which hard tissue partially cracked during the clarification process under conditions reported by CLARITY, which requires electrophoresis to degrease brain tissue. However, a certain level of bone transparency could be achieved with any of the existing transparency methods (Fig. 4, 3DISCO, iDISCO, CLARITY and CUBIC). However, it failed to identify hair cells (MyosinVIIa) that sense the sounds present in the cochlea and in the Corti organ.
On the other hand, when the inner ear sample was processed by the clarification method according to the present invention, hair cells inside the bone could be clearly confirmed (FIG. 4, lower row, white spiral structure of Our study). .
From this result, it was shown that the clearing method according to the present invention is a new technique that can observe not only the clearing of the bone but also the cells existing inside the bone.
2-2.透明化方法の確立
 本発明の透明化方法の一例を概略的に以下に説明する(図5を参照のこと)。
 まず、生物試料の固定を十分に行った後、EDTAによる脱灰を行い、透明化試薬(尿素、ソルビトール、グルコースおよびTritonX-100を含む試薬、または、グアニジン塩酸塩、ソルビトール、グルコースおよびTritonX-100を含む試薬)にてコラーゲンの分解、脱脂を行った。その後、生物試料を免疫染色した後、屈折率調整試薬(尿素、ソルビトールおよびTritonX-100を含む試薬、または、グアニジン塩酸塩、ソルビトールおよびTritonX-100を含む試薬)で生物試料を処理して屈折率の調整を行った。
2-2. Establishment of transparency method An example of the transparency method of the present invention is schematically described below (see FIG. 5).
First, after sufficiently fixing the biological sample, decalcification with EDTA is performed, and a clearing reagent (a reagent containing urea, sorbitol, glucose and TritonX-100, or guanidine hydrochloride, sorbitol, glucose and TritonX-100) is used. The collagen was decomposed and degreased with a reagent containing Then, after immunostaining the biological sample, the refractive index is adjusted by treating the biological sample with a refractive index adjusting reagent (a reagent containing urea, sorbitol and TritonX-100, or a reagent containing guanidine hydrochloride, sorbitol and TritonX-100). Was adjusted.
2-3.カオトロープとして尿素を選択した場合の透明化(内耳、大腿骨、膝関節、手関節、頭蓋骨)
2-3-1.透明化処理の結果
 以下の試薬を用いて、内耳、大腿骨、膝関節、手関節、頭蓋骨を含む生物試料の透明化を行った。
(i)カルシウムキレート剤; 10%EDTA・2Na(269mM)
(ii)透明化試薬;4M 尿素、35(w/v)% ソルビトール、15(w/v)% グルコース、4(w/v)% Triton X-100
(iii)屈折率調整試薬;4M 尿素、60(w/v)% ソルビトール、0.1(w/v)% Triton X-100 
2-3. Clarification when urea is selected as the chaotrope (inner ear, femur, knee joint, wrist joint, skull)
2-3-1. Results of Clarification Treatment Biological samples including the inner ear, femur, knee joint, wrist joint, and skull were clarified using the following reagents.
(I) Calcium chelating agent; 10% EDTA · 2Na (269mM)
(Ii) Clarification reagent: 4M urea, 35 (w / v)% sorbitol, 15 (w / v)% glucose, 4 (w / v)% Triton X-100
(Iii) Refractive index adjusting reagent: 4M urea, 60 (w / v)% sorbitol, 0.1 (w / v)% Triton X-100
 カルシウムキレート剤(EDTA)にて、大腿骨、膝関節、手関節は2日、内耳は3日、頭蓋骨は7日浸透させて脱灰を行った。また、透明化試薬に、内耳は室温1時間または37℃1時間、その他の組織は、室温24時間または37℃3時間程度浸透させ、屈折率調整試薬に、内耳は室温15時間または37℃数分、その他の組織は、室温3時間または37℃1時間程度浸透させて処理を行った。 
 大腿骨は、骨が透明になり、大腿骨内に存在する骨髄を透視することができた(図6(a))。
 膝関節において骨体で離断したサンプルでは、骨越しに骨髄の透明化を確認できた(骨髄が透明化試薬と交通する。すなわち、骨髄の透明化されていることを意味する。)また、無傷状態の関節の透明化にも成功していることが確認できた(図6(b))。
 手骨は複数骨と関節から構成されるが、すべての骨、関節で透明化できていた(図6(c))。
 内耳は骨迷路と膜迷路から構成される組織であり、膜迷路内に存在するヘムなどの色素タンパク質を多く含む血管条の色素が若干残るものの、骨、膜迷路ともに透明化できている(図6(d))。
頭蓋骨は複数の厚い骨から構成されているが、軸位、矢状位ともに鼻腔内気泡(矢尻)を確認できた(図6(e)および(f))。また、鼻腔内に存在する鼻甲介、鼻中隔の構造も確認(矢印)することができた。
The calcium chelating agent (EDTA) was used to decalcify the femur, knee joint and wrist joint for 2 days, the inner ear for 3 days, and the skull for 7 days. In addition, the inner ear penetrates into the clearing reagent at room temperature for 1 hour or 37 ° C for 1 hour, and other tissues penetrate for about 24 hours at room temperature or 37 ° C for 3 hours. Min and other tissues were infiltrated at room temperature for 3 hours or at 37 ° C. for about 1 hour.
The femur became transparent, and the bone marrow present in the femur could be seen through (FIG. 6 (a)).
In the sample that had been dissected with the bone at the knee joint, bone marrow clearing was confirmed across the bone (the bone marrow communicates with the clearing reagent, meaning that the bone marrow has been cleared). It was confirmed that the joint in the intact state was also successfully made transparent (FIG. 6 (b)).
The hand bone is composed of a plurality of bones and joints, but all the bones and joints were transparent (FIG. 6C).
The inner ear is a tissue composed of a bone labyrinth and a membrane labyrinth. Although there are some vascular pigments that contain a large amount of pigment protein such as heme in the membrane labyrinth, both the bone and membrane labyrinth can be made transparent (Fig. 6 (d)).
Although the skull is composed of a plurality of thick bones, nasal air bubbles (arrowheads) were confirmed in both the axial position and the sagittal position (FIGS. 6E and 6F). In addition, the structure of the nasal turbinates and nasal septum present in the nasal cavity could be confirmed (arrows).
2-3-2.本発明の透明化方法の蛍光への影響
 従来法を用いて組織の透明化を行うと蛍光分子の消退が生じることが報告されている。そこで、本発明の透明化方法により蛍光分子が影響を受けるかどうか検討を行った。
 中枢神経細胞、線維に黄色蛍光蛋白(YFP)が発現しているThy1-YFPマウス(Fengら Neuron 1:41-51 2000)の大脳皮質スライス標本(100μm)と、ATeam(ATPの濃度変化に応じて色が変化する蛍光プローブ)が発現しているマウス(Imamuraら Proc Natl Acad Sci U S A 106(37):15651-15656)の内耳を、各々、本発明の透明化方法で処理し、その翌日に蛍光観察を行った。
 図7の上図(大脳皮質スライス標本)において、四角部分は聴皮質、皮質内に点状に白く点在している神経細胞体(矢印)と線上の神経線維(矢尻)を確認することができた。また、図7の下図(生後5日のマウスの内耳サンプル)においては、3列に配置された外有毛細胞(矢尻)とその内側に存在する1列に並んだフラスコ型の内有毛細胞(矢印)を確認することができ、それぞれの有毛細胞頂部に「くの字」屈曲した聴毛マーカーであるRhodamine- phalloidin(F-アクチンを標識する)も確認することができた。なお、Rhodamine- phalloidin処理は、透明化試薬による処理後で屈折率調整試薬による処理前の試料に対し、2次抗体処理と同じタイミングで行った。 
 以上の結果から、本発明の透明化方法で処理した生物試料において、蛍光シグナル消退は認められなかった。
2-3-2. Effect of the Transparency Method of the Present Invention on Fluorescence It has been reported that when a tissue is cleared using a conventional method, the fluorescence molecule disappears. Therefore, it was examined whether fluorescent molecules are affected by the transparency method of the present invention.
A cerebral cortex slice sample (100 μm) of a Thy1-YFP mouse (Feng et al. Neuron 1: 41-51 2000) in which yellow fluorescent protein (YFP) is expressed in the central nerve cell and fiber, and ATeam (in response to changes in ATP concentration The inner ear of a mouse (Imamura et al. Proc Natl Acad Sci USA 106 (37): 15651-15656) expressing a fluorescent probe that changes color is treated with the clearing method of the present invention, and the next day. Fluorescence observation was performed.
In the upper diagram of FIG. 7 (cerebral cortex slice specimen), the square part is the auditory cortex, the nerve cell bodies (arrows) that are dotted in white in the cortex, and the nerve fibers (arrowheads) on the line can be confirmed did it. Moreover, in the lower figure of FIG. 7 (inner ear sample of a mouse of 5 days after birth), outer hair cells (arrowheads) arranged in three rows and flask-shaped inner hair cells arranged in one row inside the outer hair cells. (Arrows) could be confirmed, and Rhodamine-phalloidin (labeled with F-actin), an auricular marker that was bent in the shape of a “bow” at the top of each hair cell, could also be confirmed. The Rhodamine-phalloidin treatment was performed at the same timing as the secondary antibody treatment on the sample after the treatment with the clearing reagent and before the treatment with the refractive index adjusting reagent.
From the above results, fluorescence signal quenching was not observed in the biological sample treated with the clarification method of the present invention.
 内耳を透明化したサンプルに対し、MyosinVIIa(有毛細胞マーカー)、Neurofilament200(神経線維マーカー)およびVGLUT3(内有毛細胞内、小胞グルタミン酸トランスポーター)に対する抗体を用いて免疫染色を行った(図7)。また、Rhodamine-Phalloidin(聴毛マーカー)による染色の結果も示す(図7)。  Immunostaining was performed on samples with a clear inner ear using antibodies to MyosinVIIa (hair cell marker), Neurofilament 200 (nerve fiber marker) and VGLUT3 (inner hair cells, vesicular glutamate transporter) (Fig. 7). Moreover, the result of the dyeing | staining by Rhodamine-Phalloidin (audible hair marker) is also shown (FIG. 7).
2-3-3.内耳3次元再構築
 本発明の透明化方法を使用して、内耳マクロとミクロの3次元再構築を行った。従来法(薄切切片、surface preparation)では、内耳に操作を加えて試料を作製するためマクロ3次元再構築は不可能であったが、本発明の透明化方法を用いることで可能となった(図9)。
 頂回転から基底回転までの有毛細胞(図9a)、聴毛(図9b)、神経線維(図9c)を確認することができた。図9のdは、a~cを重ね合わせた(merge)図である。eおよびfは、有毛細胞のみ抽出した内耳3次元再構築画像である。また、図9のgおよびhは、聴毛のみ抽出した2次元再構築画像で、gは、表層0-180μmを、hは、深層180-580μmの構築画像である。 
 また、ミクロ試料での3次元再構築は従来法(切片、surface preparation)でも可能であるが本手法を用いて従来法と同等の解像度で観察することが可能であった(図9、i~k)。3次元再構築画像では表、横からでは有毛細胞、聴毛の存在によって、神経線維の観察は不十分である(図9、iおよびj)が、裏から観察すると神経線維の走行を確認できた(図9k)。
2-3-3. Inner Ear 3D Reconstruction Using the transparency method of the present invention, inner ear macro and micro 3D reconstructions were performed. In the conventional method (thin sliced section, surface preparation), a sample is prepared by applying an operation to the inner ear, so that the macro three-dimensional reconstruction is impossible, but it is possible by using the transparency method of the present invention. (FIG. 9).
Hair cells (FIG. 9a), auditory hair (FIG. 9b), and nerve fibers (FIG. 9c) from apical rotation to basal rotation could be confirmed. FIG. 9d is a diagram in which a to c are merged. e and f are three-dimensional reconstructed images of the inner ear extracted from only hair cells. Further, g and h in FIG. 9 are two-dimensional reconstructed images obtained by extracting only auditory hair, g is a structured image of the surface layer 0-180 μm, and h is a constructed image of the deep layer 180-580 μm.
In addition, three-dimensional reconstruction with a micro sample is possible with the conventional method (section, surface preparation), but it was possible to observe with the same resolution as the conventional method using this method (Fig. 9, i- k). In the three-dimensional reconstructed image, the nerve fibers are not sufficiently observed due to the presence of hair cells and auditory hairs from the front and side (Figs. 9, i and j). (Fig. 9k).
 内耳サンプルに対し、EDTA処理(脱灰)後、従来の透明化方法の1つ(CUBIC法;Susakiら, Cell 157:726-739 2014)を用いて処理を行ったところ、2回転半ある有毛細胞は1回転しか確認できなかった(図10左)。これに対し、本発明の透明化処理法によれば、2回転半確認することができた(図10右)。 
 従って、従来法(今回の比較対象はCUBIC法)よりも、本発明の透明化処理法によれば、3次元的により深い部分の観察も可能であることがわかった。また、EDTA処理を施したのち、従来法(CUBIC)の処理を行った場合において、内耳の深い部分を確認することはできなかったことから、骨を含む組織の透明化において、EDTA処理(脱灰)の段階のみで透明化が実現できるわけではなく、本発明の処理方法を行うことで初めて、上述のような優れた結果を実現できることが明らかとなった。
The inner ear sample was treated with one of the conventional clarification methods (CUBIC method; Susaki et al., Cell 157: 726-739 2014) after EDTA treatment (decalcification). Only one rotation of hair cells could be confirmed (FIG. 10 left). On the other hand, according to the transparency treatment method of the present invention, it was possible to confirm two and a half rotations (right in FIG. 10).
Therefore, it has been found that the transparent treatment method of the present invention can also observe a three-dimensional deeper portion than the conventional method (the comparison target this time is the CUBIC method). In addition, when the conventional method (CUBIC) was performed after EDTA treatment, the deep part of the inner ear could not be confirmed. It became clear that transparency could not be realized only at the stage of ash), and that the excellent results as described above could be realized only by performing the treatment method of the present invention.
2-4.カオトロープとしてグアニジン塩酸塩を選択した場合の透明化(大腿骨、膝関節、手関節)
 以下の試薬を用いて、大腿骨、膝関節、手関節を含む生物試料の透明化を行った。
(i)カルシウムキレート剤; 10%EDTA・2Na(269mM) 
(ii)透明化試薬;3M グアニジン塩酸塩、35(w/v)% ソルビトール、15(w/v)% グルコース、4(w/v)% Triton X-100
(iii)屈折率調整試薬;3M グアニジン塩酸塩、60(w/v)% ソルビトール、0.1(w/v)% Triton X-100
2-4. Clarification when guanidine hydrochloride is selected as chaotrope (femur, knee joint, wrist joint)
Using the following reagents, biological samples including the femur, knee joint, and wrist joint were clarified.
(I) Calcium chelating agent; 10% EDTA · 2Na (269mM)
(Ii) Clarification reagent: 3M guanidine hydrochloride, 35 (w / v)% sorbitol, 15 (w / v)% glucose, 4 (w / v)% Triton X-100
(Iii) Refractive index adjusting reagent: 3M guanidine hydrochloride, 60 (w / v)% sorbitol, 0.1 (w / v)% Triton X-100
 カルシウムキレート剤(EDTA)にて、大腿骨、膝関節、手関節を2日
浸透させて脱灰を行った。また、透明化試薬に、室温24時間または37℃3時間程度浸透させ、屈折率調整試薬に、室温3時間または37℃1時間程度浸透させて処理を行った。
 透明化処理の結果、骨段端より遠方部は骨髄の温存を確認できた(図11中の矢印)。また、関節包の温存も同時に確認できた(図11中の矢尻)。大腿骨においては骨髄の透明化の透明化を認めた(図11中「*」)
The femur, knee joint and wrist joint were infiltrated with calcium chelating agent (EDTA) for 2 days for decalcification. Further, the treatment was performed by allowing the clearing reagent to permeate at room temperature for 24 hours or 37 ° C. for 3 hours, and allowing the refractive index adjusting reagent to permeate at room temperature for 3 hours or 37 ° C. for 1 hour.
As a result of the clearing treatment, it was confirmed that the bone marrow was preserved in the portion far from the bone stage end (arrow in FIG. 11). In addition, preservation of the joint capsule was confirmed at the same time (arrowhead in FIG. 11). In the femur, the transparency of the bone marrow was recognized (“*” in FIG. 11).
 本発明にかかる透明化方法により、生物試料の3次元的構造を生体内に近い状態で再現することが可能となり、生物学および医学等の分野の発展に寄与することが期待される。 The clearing method according to the present invention makes it possible to reproduce the three-dimensional structure of a biological sample in a state close to the living body, and is expected to contribute to the development of fields such as biology and medicine.

Claims (20)

  1.  グアニジンもしくはグアニジン誘導体またはそれらの塩からなるグループから選択される少なくとも1種のカオトロープを含む透明化試薬で生物試料を処理することを特徴とする生物試料の透明化方法。 A biological sample clarification method comprising treating a biological sample with a clarification reagent containing at least one chaotrope selected from the group consisting of guanidine or a guanidine derivative or a salt thereof.
  2.  グアニジンもしくはグアニジン誘導体またはそれらの塩からなるグループから選択される、少なくとも1種のカオトロープを含む屈折率調整試薬で生物試料を処理する工程を、さらに、含むことを特徴とする請求項1に記載の方法。 The method of claim 1, further comprising treating the biological sample with a refractive index adjusting reagent comprising at least one chaotrope selected from the group consisting of guanidine or guanidine derivatives or salts thereof. Method.
  3.  前記透明化試薬および/または屈折率調整試薬がソルビトールを含むことを特徴とする請求項1または2に記載の方法。 The method according to claim 1 or 2, wherein the clearing reagent and / or refractive index adjusting reagent contains sorbitol.
  4.  前記透明化試薬が、グルコースを含むことを特徴とする請求項1ないし3のいずれかに記載の方法。 The method according to any one of claims 1 to 3, wherein the clarification reagent contains glucose.
  5.  前記透明化試薬および/または屈折率調整試薬が、界面活性剤を含むことを特徴とする請求項1ないし4のいずれかに記載の方法。 The method according to any one of claims 1 to 4, wherein the clearing reagent and / or refractive index adjusting reagent contains a surfactant.
  6.  グアニジンもしくはグアニジン誘導体またはそれらの塩からなるグループから選択される、少なくとも1種のカオトロープを含む溶液であることを特徴とする生物試料の透明化試薬。 A clearing reagent for a biological sample, which is a solution containing at least one chaotrope selected from the group consisting of guanidine or guanidine derivatives or salts thereof.
  7.  ソルビトールおよび/またはグルコースを含むことを特徴とする請求項6に記載の生物試料の透明化試薬。 The biological sample clarification reagent according to claim 6, comprising sorbitol and / or glucose.
  8.  界面活性剤を含むことを特徴とする請求項6または7に記載の生物試料の透明化試薬。 The biological sample clarification reagent according to claim 6 or 7, further comprising a surfactant.
  9.  グアニジンもしくはグアニジン誘導体またはそれらの塩からなるグループから選択される、少なくとも1種のカオトロープを含む溶液であることを特徴とする生物試料の屈折率調整試薬。 A reagent for adjusting the refractive index of a biological sample, which is a solution containing at least one kind of chaotrope selected from the group consisting of guanidine, guanidine derivatives or salts thereof.
  10.  ソルビトールを含むことを特徴とする請求項9に記載の生物試料の屈折率調整試薬。 The reagent for adjusting a refractive index of a biological sample according to claim 9, comprising sorbitol.
  11.  界面活性剤を含むことを特徴とする請求項9または10に記載の生物試料の屈折率調整試薬。 The reagent for adjusting the refractive index of a biological sample according to claim 9 or 10, wherein the reagent contains a surfactant.
  12.  以下の(a)~(c)の工程を含む、骨を含む生物試料の透明化方法。
    (a)カルシウムキレート剤を含む溶液で生物試料を処理する工程、
    (b)尿素もしくは尿素誘導体またはそれらの塩、グアニジンもしくはグアニジン誘導体またはそれらの塩からなるグループから選択される、少なくとも1種のカオトロープおよびソルビトールを含む透明化試薬で生物試料を処理する工程、
    (c)尿素もしくは尿素誘導体またはそれらの塩、グアニジンもしくはグアニジン誘導体またはそれらの塩からなるグループから選択される、少なくとも1種のカオトロープおよびソルビトールを含む屈折率調整試薬で生物試料を処理する工程。
    A method for clarifying a biological sample containing bone, comprising the following steps (a) to (c):
    (A) treating a biological sample with a solution containing a calcium chelator;
    (B) treating the biological sample with a clearing reagent comprising at least one chaotrope and sorbitol selected from the group consisting of urea or urea derivatives or salts thereof, guanidine or guanidine derivatives or salts thereof;
    (C) treating the biological sample with a refractive index adjusting reagent comprising at least one chaotrope and sorbitol selected from the group consisting of urea or urea derivatives or salts thereof, guanidine or guanidine derivatives or salts thereof.
  13.  前記透明化試薬が、さらにグルコースを含むことを特徴とする請求項12に記載の方法。 The method according to claim 12, wherein the clarification reagent further contains glucose.
  14.  前記透明化試薬および/または屈折率調整試薬が、さらに、界面活性剤を含むことを特徴とする請求項12または13に記載の方法。 The method according to claim 12 or 13, wherein the clearing reagent and / or refractive index adjusting reagent further contains a surfactant.
  15.  前記工程(b)および/または(c)のカオトロープが尿素もしくは尿素誘導体またはそれらの塩であることを特徴とする請求項12ないし14のいずれかに記載の方法。 The method according to any one of claims 12 to 14, wherein the chaotrope in the step (b) and / or (c) is urea or a urea derivative or a salt thereof.
  16.  前記工程(b)および/または(c)のカオトロープがグアニジンもしくはグアニジン誘導体またはそれらの塩であることを特徴とする請求項12ないし14のいずれかに記載の方法。 The method according to any one of claims 12 to 14, wherein the chaotrope in the step (b) and / or (c) is guanidine or a guanidine derivative or a salt thereof.
  17.  尿素もしくは尿素誘導体またはそれらの塩からなるグループから選択される、少なくとも1種のカオトロープ、ソルビトールおよびグルコースを含む溶液であることを特徴とする生物試料の透明化試薬。 A clearing reagent for a biological sample, which is a solution containing at least one chaotrope, sorbitol and glucose selected from the group consisting of urea or urea derivatives or salts thereof.
  18.  界面活性剤を含むことを特徴とする請求項17に記載の生物試料の透明化試薬。 The biological sample clarification reagent according to claim 17, further comprising a surfactant.
  19.  尿素もしくは尿素誘導体またはそれらの塩からなるグループから選択される、少なくとも1種のカオトロープおよびソルビトールを含む溶液であることを特徴とする生物試料の屈折率調整試薬。 A reagent for adjusting the refractive index of a biological sample, which is a solution containing at least one chaotrope and sorbitol selected from the group consisting of urea or urea derivatives or salts thereof.
  20.  界面活性剤を含むことを特徴とする請求項19に記載の生物試料の屈折率調整試薬。 20. The biological sample refractive index adjusting reagent according to claim 19, further comprising a surfactant.
PCT/JP2017/032738 2016-09-13 2017-09-12 Method for making biological sample transparent WO2018051957A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016178127A JP2018044800A (en) 2016-09-13 2016-09-13 Transparentizing method of biological sample
JP2016-178127 2016-09-13

Publications (1)

Publication Number Publication Date
WO2018051957A1 true WO2018051957A1 (en) 2018-03-22

Family

ID=61619986

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/032738 WO2018051957A1 (en) 2016-09-13 2017-09-12 Method for making biological sample transparent

Country Status (2)

Country Link
JP (1) JP2018044800A (en)
WO (1) WO2018051957A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111610078A (en) * 2020-07-03 2020-09-01 中国科学技术大学 Reagent and method for transparentizing biological tissue
CN114288424A (en) * 2021-12-22 2022-04-08 湛江中心人民医院 Tissue clearing maintenance reagent and kit for tissue clearing
WO2024021284A1 (en) * 2022-07-28 2024-02-01 中国科学院深圳理工大学(筹) Non-invasive subcranial imaging monitoring method and kit

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014005231A (en) * 2012-06-22 2014-01-16 Institute Of Physical & Chemical Research Method for making biological material transparent and kit for clearing treatment for making biological material transparent
WO2015022883A1 (en) * 2013-08-14 2015-02-19 独立行政法人理化学研究所 Composition for preparing biomaterial with excellent light-transmitting property, and use thereof
WO2015041755A1 (en) * 2013-09-20 2015-03-26 California Institute Of Technology Methods for phenotyping of intact whole tissues
WO2016117614A1 (en) * 2015-01-20 2016-07-28 国立研究開発法人理化学研究所 Biological-specimen transparentizing agent, system, and use therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014005231A (en) * 2012-06-22 2014-01-16 Institute Of Physical & Chemical Research Method for making biological material transparent and kit for clearing treatment for making biological material transparent
WO2015022883A1 (en) * 2013-08-14 2015-02-19 独立行政法人理化学研究所 Composition for preparing biomaterial with excellent light-transmitting property, and use thereof
WO2015041755A1 (en) * 2013-09-20 2015-03-26 California Institute Of Technology Methods for phenotyping of intact whole tissues
WO2016117614A1 (en) * 2015-01-20 2016-07-28 国立研究開発法人理化学研究所 Biological-specimen transparentizing agent, system, and use therefor

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GALANZHA, E. I. ET AL.: "Skin backreflectance and microvascular system functioning at the action of osmotic agents", JOURNAL OF PHYSICS D: APPLIED PHYSICS, vol. 36, 1 July 2003 (2003-07-01), pages 1739 - 1746, XP055473918 *
URATA, S. ET AL.: "Tree-dimensional imaging of the whole intact cochlear by optical clearing methods", THE 121ST ANNUAL MEETING OF THE JAPANESE ASSOCIATE OF ANATOMISTS/LECTURE PROGRAM/ABSTRACTS, 28 March 2016 (2016-03-28) *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111610078A (en) * 2020-07-03 2020-09-01 中国科学技术大学 Reagent and method for transparentizing biological tissue
CN114288424A (en) * 2021-12-22 2022-04-08 湛江中心人民医院 Tissue clearing maintenance reagent and kit for tissue clearing
CN114288424B (en) * 2021-12-22 2022-07-19 湛江中心人民医院 Tissue clearing maintenance reagent and kit for tissue clearing
WO2024021284A1 (en) * 2022-07-28 2024-02-01 中国科学院深圳理工大学(筹) Non-invasive subcranial imaging monitoring method and kit

Also Published As

Publication number Publication date
JP2018044800A (en) 2018-03-22

Similar Documents

Publication Publication Date Title
Krug et al. Protein extracts from early embryonic hearts initiate cardiac endothelial cytodifferentiation
WO2018051957A1 (en) Method for making biological sample transparent
Olsson et al. Cranial neural crest cells contribute to connective tissue in cranial muscles in the anuran amphibian, Bombina orientalis
WO2014069519A1 (en) Kit for producing transparentized biological specimen, and method for producing transparentized biological specimen
Mayer-Gostan et al. Distribution of ionocytes in the saccular epithelium of the inner ear of two teleosts (Oncorhynchus mykiss and Scophthalmus maximus)
Pradeep et al. A simple technique for chromosome preparation from embryonic tissues of teleosts for ploidy verification
Wollesen et al. Brain regionalization genes are co-opted into shell field patterning in Mollusca
Kuratani et al. Developmental morphology of branchiomeric nerves in a cat shark, Scyliorhinus torazame, with special reference to rhombomeres, cephalic mesoderm, and distribution patterns of cephalic crest cells
Ballarin et al. A tale of death and life: natural apoptosis in the colonial ascidian Botryllus schlosseri (Urochordata, Ascidiacea)
Berman et al. The influence of the flow of detergent and donor characteristics on the extracellular matrix composition after human pancreas decellularization
JP6878704B2 (en) Composition for immunostaining of clearing large tissues, and immunostaining method for clearing large living tissues
Mayorova et al. On some features of embryonic development and metamorphosis of Aurelia aurita (Cnidaria, Scyphozoa)
US20220317129A1 (en) Method for preparing biological material for microscopy analysis
Wollesen et al. Myogenesis in Aplysia californica (Cooper, 1863)(Mollusca, Gastropoda, Opisthobranchia) with special focus on muscular remodeling during metamorphosis
KR102181811B1 (en) Method for Decellularization of Tissue
JP2023511003A (en) A differentiation method to secure large numbers of oligodendrocytes by degrading 3D organoids prepared from human pluripotent stem cells
Morikawa et al. Expression patterns of HNK-1 carbohydrate and serotonin in sea urchin, amphioxus, and lamprey, with reference to the possible evolutionaryorigin of the neural crest
JP7106114B2 (en) Biological sample clearing method and biological sample clearing agent
Schuster et al. The Chordate Origins of Heart Regeneration
JP2020026975A (en) Transparency method of biological sample, and biological sample decolorizer
Lemanski et al. Creation of chimeric mutant axolotls: a model to study early embryonic heart development in Mexican axolotls
Ishii et al. X‐ray micro‐computed tomography of Xenopus tadpole reveals changes in brain ventricular morphology during telencephalon regeneration
WO2016004563A1 (en) Aqueous tissue clearing solution and uses thereof
Clarke et al. See-Star: a versatile hydrogel-based protocol for clearing large, opaque and calcified marine invertebrates
JP2002300876A (en) Method for expressing extraneous gene in cell forming tissue

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17850859

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17850859

Country of ref document: EP

Kind code of ref document: A1