WO2018051754A1 - Tempered lens and method for manufacturing tempered lens - Google Patents

Tempered lens and method for manufacturing tempered lens Download PDF

Info

Publication number
WO2018051754A1
WO2018051754A1 PCT/JP2017/030245 JP2017030245W WO2018051754A1 WO 2018051754 A1 WO2018051754 A1 WO 2018051754A1 JP 2017030245 W JP2017030245 W JP 2017030245W WO 2018051754 A1 WO2018051754 A1 WO 2018051754A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
less
reinforced
glass
main surface
Prior art date
Application number
PCT/JP2017/030245
Other languages
French (fr)
Japanese (ja)
Inventor
長嶋 達雄
茂輝 澤村
周作 秋葉
伸一 安間
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Publication of WO2018051754A1 publication Critical patent/WO2018051754A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/42Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating of an organic material and at least one non-metal coating
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C21/00Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/064Glass compositions containing silica with less than 40% silica by weight containing boron
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/064Glass compositions containing silica with less than 40% silica by weight containing boron
    • C03C3/066Glass compositions containing silica with less than 40% silica by weight containing boron containing zinc
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/064Glass compositions containing silica with less than 40% silica by weight containing boron
    • C03C3/068Glass compositions containing silica with less than 40% silica by weight containing boron containing rare earths
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/078Glass compositions containing silica with 40% to 90% silica, by weight containing an oxide of a divalent metal, e.g. an oxide of zinc
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • C03C3/087Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • C03C3/093Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium containing zinc or zirconium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/095Glass compositions containing silica with 40% to 90% silica, by weight containing rare earths
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/097Glass compositions containing silica with 40% to 90% silica, by weight containing phosphorus, niobium or tantalum
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements

Definitions

  • the present invention relates to a reinforced lens, and more particularly to a reinforced lens having a high impact strength and a method for manufacturing the reinforced lens.
  • an imaging glass lens having a small and wide imaging angle of view has been used for applications such as an in-vehicle camera, a robot vision sensor, a surveillance camera, and a wearable camera.
  • an imaging glass lens mounted on an in-vehicle camera or the like is more than an imaging lens of a general camera. It is necessary to have extremely high strength.
  • an in-vehicle camera is required not to cause damage or erosion due to impact or wind pressure associated with traveling of an automobile or sand dust splashed by traveling.
  • the lens thus chemically strengthened deforms due to the formation of a compressive stress layer, and when incorporated in the imaging optical system of the camera, the image formation in the peripheral part away from the optical axis is shifted. There was a problem that the image quality deteriorated.
  • the present invention has been made from the above viewpoint, and an object thereof is to provide a reinforced lens having high impact resistance. It is another object of the present invention to provide a method for manufacturing a reinforced lens having high impact resistance, in which the shape does not change greatly even when chemically strengthened.
  • the present invention is a chemically strengthened lens of a glass lens molded body, wherein the glass contains 30 to 65 mol% of SiO 2 , 10 mol% or more of Li 2 O, 0 to 10 mol% of SrO + BaO, and Li 2 O.
  • a reinforced lens having / (Li 2 O + Na 2 O + K 2 O) of 0.5 or more is provided.
  • the falling ball strength indicated as a height at which the reinforced lens does not break is 80 cm or more. It is preferable that
  • the lens molding has a first main surface and a second main surface facing each other, the lens molding has a diameter of 14 mm, a radius of curvature of the first main surface of 12 mm, and The amount of change in the radius of curvature of the first main surface before and after chemical strengthening when the second main surface is molded to a radius of curvature of 3 mm is preferably 10 ⁇ m or less.
  • the reinforced lens of the present invention preferably has a crack initiation load (CIL) of 100 gf or more.
  • the glass preferably has a glass transition point (Tg) of 500 ° C. to 630 ° C.
  • the reinforced lens of the present invention preferably has a refractive index (nd) of 1.73 to 2.10 and an Abbe number ( ⁇ d) of 15 to 45.
  • the reinforced lens of the present invention preferably has a refractive index (nd) of 1.63 or more and less than 1.73 and an Abbe number ( ⁇ d) of 35 to 55.
  • the reinforced lens of the present invention preferably has a refractive index (nd) of 1.50 or more and less than 1.63 and an Abbe number ( ⁇ d) of 45 to 65.
  • the reinforced lens of the present invention preferably has a water resistance of grade 3 or higher and an acid resistance of grade 3 or higher as measured according to JOGIS06-2008 according to the Japan Optical Glass Industry Association standard.
  • the reinforced lens of the present invention preferably includes an antireflection layer on at least one main surface of the first main surface and the second main surface.
  • the reinforced lens of the present invention preferably includes an antifouling coating layer on at least one main surface of the first main surface and the second main surface.
  • the present invention contains 30 to 65 mol% of SiO 2 , 10 mol% or more of Li 2 O, 0 to 10 mol% of SrO + BaO, and Li 2 O / (Li 2 O + Na 2 O + K 2 O) is 0.5 or more.
  • Mold glass into a lens molding The lens molded body is a reinforced molten salt containing at least sodium nitrate, and the reinforced molten salt contains 25% or more of sodium nitrate in terms of mass%, and contains 95% or more of sodium nitrate and potassium nitrate in total.
  • a reinforced lens having excellent impact resistance can be provided.
  • a method for manufacturing a reinforced lens having high impact resistance it is possible to provide a manufacturing method in which the shape does not change greatly even if chemical strengthening treatment is performed.
  • the reinforced lens of the present invention has a strength that can sufficiently withstand a harsh usage environment without deteriorating the image quality when used for an imaging lens of a vehicle-mounted camera, for example.
  • the strengthening lens of the present invention is a chemically strengthened lens of a glass lens molded body, wherein the glass contains 30 to 65 mol% of SiO 2 , 10 mol% or more of Li 2 O, 0 to 10 mol% of SrO + BaO, and Li 2 O / (Li 2 O + Na 2 O + K 2 O) is 0.5 or more.
  • the reinforced lens of the present invention is obtained by using glass having the above-mentioned predetermined composition as a lens molded body, and chemically strengthening the lens molded body.
  • shape correction is basically not performed after the chemical strengthening process. Therefore, in the chemical strengthening treatment, sufficient impact resistance and mechanical characteristics must be obtained under the condition that the lens shape of the lens molded body obtained by molding does not change greatly. Details of a method of using glass as a lens molded body and a method of chemically strengthening the lens molded body will be described later.
  • the reinforced lens of the present invention is suitably used as a lens disposed on the most object side of an imaging lens such as an in-vehicle camera that requires sufficient strength, for example.
  • An imaging lens such as a vehicle-mounted camera usually has a configuration in which a plurality of lenses are arranged so as to intersect the optical axis from the subject side toward the imaging element. Since lenses other than the lens arranged closest to the subject (hereinafter referred to as “other lenses”) are not directly exposed to the outside, the required intensity is smaller than the lens arranged closest to the subject.
  • FIG. 1 is a cross-sectional view of an example of a reinforced lens according to an embodiment of the present invention.
  • a reinforced lens 10 shown in FIG. 1 is a typical example of a lens disposed on the most object side of a vehicle-mounted camera.
  • the strengthening lens 10 has a first main surface 1 disposed on the subject side and a second main surface 2 facing the first main surface 1.
  • the first main surface 1 is a curved surface having a convex shape on the subject side, and the radius of curvature is R1.
  • the diameter of the reinforced lens 10 is D1.
  • the second main surface 2 has a convex curved surface on the subject side having a diameter D2 at the center, and the radius of curvature of the curved surface is R2.
  • the thickness of the convex portion is T1
  • the distance between the apex of the curved surface of the second main surface 2 and the base portion is indicated by T2.
  • the thickness of the reinforced lens 10 is T1 + T2.
  • the specific size of the reinforced lens 10 is, for example, a diameter D1 of the reinforced lens 10 of 5 to 50 mm, a radius of curvature R1 of the first main surface 1 of 5 to 500 mm, and a diameter of a curved surface of the second main surface 2.
  • D2 is 2 to 40 mm
  • its radius of curvature R2 is 2 to 400 mm
  • the thickness T1 of the convex part is 0.1 to 10 mm
  • the distance T2 between the vertex of the curved surface of the second main surface 2 and the base is 1 to 19 mm, strengthening
  • strengthening The thickness of the lens 10 is 2 to 20 mm.
  • the curvature radius R2 of the curved surface of the second main surface 2 is referred to as the curvature radius R2 of the second main surface 2.
  • the reinforced lens of the present invention is not limited to the reinforced lens having the cross-sectional shape shown in FIG.
  • the reinforced lens of the present invention is a plano-convex reinforced lens mainly for convex lenses, having a curved surface on the first main surface disposed on the subject side, and a second main surface having a planar shape. Also good.
  • the present invention obtains a molded lens by molding glass into a predetermined shape, and has sufficient impact resistance even under chemical strengthening conditions in which the shape does not change greatly.
  • a chemical strengthening treatment can be performed so as to obtain mechanical properties.
  • SiO 2 is contained in an amount of 30 to 65 mol%
  • Li 2 O is contained in an amount of 10 mol% or more
  • SrO + BaO is contained in an amount of 0 to 10 mol%
  • Li 2 O / It is found that the above-mentioned problem can be solved by molding glass having a (Li 2 O + Na 2 O + K 2 O) of 0.5 or more into a lens molded body and subjecting the lens molded body to chemical strengthening treatment under predetermined conditions.
  • the invention has been completed.
  • % when referring to the composition of glass is mol% based on oxide unless otherwise specified.
  • (I) In general, chemical strengthening treatment in a glass molded body is performed by replacing alkali ions having a small ion radius with alkali ions having a large ion radius, so that a compression stress layer (hereinafter referred to as “strengthening layer”) is formed on the surface of the molded body. Is formed, and the impact resistance and mechanical properties are enhanced.
  • Alkali ions have larger ionic radii in the order of Li + , Na + and K + , and in the chemical strengthening treatment, Li + is exchanged with Na + or K + , or Na + is exchanged with K + , The exchange speed is clearly faster in the former.
  • the shape changes as the chemical strengthening time increases and the processing temperature increases. It becomes easy. Further, it was found that even when the chemical strengthening treatment is performed under the same conditions, the shape change is large when Na + is replaced with K + .
  • the glass contains 10 mol% or more of Li 2 O because sufficient impact resistance and mechanical properties can be obtained under chemical strengthening conditions in which the lens shape obtained by molding does not change significantly.
  • Li 2 O is preferably 12% or more, and more preferably 15% or more.
  • Li 2 O in the glass is preferably 30% or less, and more preferably 25% or less.
  • the ratio of Li 2 O content to the total content of alkali metal components Li 2 O + Na 2 O + K 2 O), Li 2 O / (Li 2 O + Na 2 O + K 2 O) Is 0.5 or more.
  • Li 2 O / (Li 2 O + Na 2 O + K 2 O) is more preferably 0.6 or more, and further preferably 0.7 or more.
  • SrO + BaO is 10 mol% or less.
  • SrO and BaO are components that impair the impact resistance and mechanical properties that inhibit the chemical strengthening treatment and increase the specific gravity of the glass. More preferably, it is 8% or less, More preferably, it is 6% or less.
  • SrO and BaO are preferably not included from the viewpoint of impact resistance and mechanical properties, but this purpose is lost for reasons such as increasing the Abbe number, increasing the refractive index, and improving the thermal stability of the glass. You may make it contain in the range which is not.
  • SiO 2 is contained in the range of 30 to 65 mol%.
  • SiO 2 is a glass network former, and if it is less than 30%, impact resistance and mechanical properties deteriorate. Preferably it is 35% or more, more preferably 40% or more. If it exceeds 65%, Tg becomes too high and chemical strengthening treatment cannot be carried out efficiently, and the melting temperature rises and productivity may be impaired. Preferably it is 62% or less, More preferably, it is 60% or less.
  • the reinforced lens of the present invention obtained by molding glass having the above composition into a lens molded body and chemically strengthening it preferably has the following impact resistance.
  • the falling ball strength was used as an index of impact resistance in the present invention.
  • FIG. 2 shows a schematic diagram of the falling ball strength test.
  • the falling ball strength in the present invention means, for example, a height that does not break even if a 64.6 g iron ball 12 is dropped on the center C of the reinforced lens 10 placed on the horizontal surface 11 as shown in FIG.
  • the test starts from a height of 10 cm (h), and if it is not broken, it is raised by 10 cm.
  • the test is terminated and the height (h) immediately before breaking.
  • the reinforced lens of the present invention preferably has a falling ball strength of 80 cm or more (corresponding to 0.5 J).
  • the strengthening lens used for the drop-ball strength test has a predetermined shape, that is, in the strengthening lens shown in FIG. 1, the diameter D1 of the strengthening lens 10 is 14 mm, the radius of curvature R1 on the first principal surface 1 is 12 mm, and the second principal
  • the curved surface diameter D2 of the surface 2 is 5.72 mm, the curvature radius R2 thereof is 3 mm, the convex portion thickness T1 is 1.4 mm, and the distance T2 between the vertex of the curved surface of the second main surface 2 and the base portion is 2.
  • the test reinforced lens is 1 mm, and the thickness of the reinforced lens 10 is 3.5 mm.
  • the lens shape change before and after chemical strengthening is in the following range.
  • the lens shape change before and after chemical strengthening can be measured, for example, by the following method.
  • the lens molded body has a first main surface and a second main surface facing each other, and is molded into a diameter of 14 mm, a radius of curvature of 12 mm of the first main surface, and a radius of curvature of 3 mm of the second main surface.
  • the amount of change in the radius of curvature of the first main surface before and after chemical strengthening is measured. More specifically, the shape of the molded lens used for the chemical strengthening treatment is the same as the shape of the strengthened lens used for the falling ball test.
  • the radius of curvature of the first principal surface of the lens molded body and the reinforced lens obtained by chemical strengthening treatment can be measured, for example, with a 3D measuring device (manufactured by KEYENCE, VR-3200).
  • a 3D measuring device manufactured by KEYENCE, VR-3200.
  • conditions for the chemical strengthening treatment in the test for example, using a strengthened molten salt containing 25% by mass of sodium nitrate and 75% by mass of potassium nitrate with respect to the total amount of the strengthened molten salt, Conditions are mentioned.
  • the amount of change in the radius of curvature on the first main surface before and after the chemical tempering treatment is 10 ⁇ m or less as evaluated in this way.
  • the amount of change in the radius of curvature on the first main surface before and after the chemical strengthening treatment is preferably 5 ⁇ m or less, more preferably 3 ⁇ m or less, and particularly preferably 1 ⁇ m or less.
  • the load of the Vickers indenter at which the occurrence rate of cracks when the indentation is formed using the Vickers indenter is 50% (this load is referred to as crack initiation load (CIL)).
  • CIL crack initiation load
  • the CIL is an index of crack resistance, and the larger the CIL, the less likely it is to crack.
  • the CIL of the reinforced lens of the present invention is preferably 100 gf or more, more preferably 200 gf or more, and further preferably 300 gf or more.
  • the CIL value of the reinforced lens of the present invention refers to the CIL value in an evaluation sample obtained by molding the glass used for the reinforced lens into a plate shape and chemically strengthened, obtained by the following method. .
  • a Vickers hardness tester was used to push the Vickers indenter for 15 seconds on the surface of the evaluation sample that had been mirror-polished on both sides of a 2 mm thick glass plate and then removed the Vickers indenter. Observe. An average value of the number of cracks generated with respect to the indentation load of the Vickers indenter of 100 gf, 200 gf, 300 gf, 500 gf, 1000 gf, and 2000 gf is calculated for each load. The relationship between the load and the number of cracks is calculated by regression using a sigmoid function. From the regression calculation result, the load at which the number of cracks is two can be used as the CIL (gf) of the sample for evaluation. The occurrence rate is 100% when a total of four cracks are generated from all four corners of the indentation.
  • Compressive stress (CS) of the reinforcing layer in the reinforced lens of the present invention is preferably 50 MPa or more, more preferably 100 MPa or more, and further preferably 150 MPa or more.
  • the depth of the reinforcing layer (DOL; Depth of layer) in the reinforced lens of the present invention is preferably 5 ⁇ m or more from the surface. More preferably, it is 10 micrometers or more, More preferably, it is 20 micrometers or more.
  • the thickness of the reinforced layer is preferably 500 ⁇ m or less.
  • the thickness of the reinforcing layer is more preferably 300 ⁇ m or less, and further preferably 200 ⁇ m or less.
  • the CS and DOL of the reinforced lens in the present invention are preferably measured at the central portion of the first main surface of the reinforced lens.
  • CS and DOL for example, measure the retardation of the surface compressive stress layer by passing light through the reinforcing layer on the cross section of the reinforced lens using a birefringence imaging system Abrio (manufactured by Tokyo Instruments), and use the photoelastic constant of the glass. Can be calculated.
  • the reinforced lens of the present invention has a water resistance (RW) of grade 3 or higher measured according to the “Optical Glass Chemical Durability Measurement Method (Powder Method)” (JOGIS06-2008) according to the Japan Optical Glass Industry Association Standard.
  • the acid resistance (RA) is preferably grade 3 or higher.
  • the RW and RA of the reinforced layer and the RW and RA of the glass inside the reinforced lens are strictly different, but in the present invention, there is no great difference that the grade is different. In the invention, both are treated as substantially the same.
  • RW is measured as follows. For a glass powder having a diameter of 420 to 600 ⁇ m, a mass reduction rate (%) when immersed in 80 mL of pure water at 100 ° C. for 1 hour is measured. A predetermined grade is given according to the mass reduction rate. The smaller the numerical value, the better the RW. In the reinforced lens of the present invention, RW is more preferably grade 2 or more, and 1 is particularly preferred.
  • RA is measured as follows. For a glass powder having a diameter of 420 to 600 ⁇ m, a mass reduction ratio (%) when immersed in 80 mL of a 0.01 N nitric acid aqueous solution at 100 ° C. for 1 hour is measured. A predetermined grade is given according to the mass reduction rate. The smaller the numerical value, the better the RA. In the reinforced lens of the present invention, RA is more preferably grade 2 or more, and 1 is particularly preferred.
  • the glass preferably has a specific gravity of 4.0 g / cm 3 or less.
  • the specific gravity of the reinforced layer and the specific gravity of the glass inside the reinforced lens are substantially the same at the first place after the decimal point and are treated as the same. Thereby, when it is set as a reinforced lens, a crack is hard to generate
  • the specific gravity is preferably 3.7 g / cm 3 or less, and more preferably 3.5 g / cm 3 or less.
  • the glass preferably has a glass transition point (Tg) of 500 ° C. or higher and 630 ° C. or lower.
  • Tg glass transition point
  • the Tg of the reinforced layer and the Tg of the glass inside the reinforced lens are substantially the same and are treated as the same.
  • press molding moldability when producing a reinforced lens by precision press molding with high manufacturing efficiency (hereinafter simply referred to as “press molding”) is good.
  • Tg is too low, it is preferable that the temperature is 500 ° C. or higher because compression stress is likely to be relaxed in a reinforced lens having a reinforced layer.
  • the Tg of the glass is preferably 520 to 600 ° C, more preferably 540 to 590 ° C. Tg can be measured by, for example, a thermal expansion method.
  • the Young's modulus refers to the Young's modulus of the glass inside the reinforced lens.
  • the Young's modulus is preferably 80 GPa or more, more preferably 90 GPa or more, still more preferably 95 GPa or more, and still more preferably 100 GPa or more.
  • the refractive index (nd) and Abbe number ( ⁇ d) of the reinforced lens mean the refractive index and Abbe number of the glass inside the reinforced lens. Strictly speaking, the refractive index of the reinforcing layer is different from the refractive index of the glass inside the reinforcing lens, but the numerical value is different to the third place after the decimal point. In the present invention, both are treated as substantially the same.
  • the reinforced lens in the present invention preferably has a refractive index of 1.50 to 2.10, and is divided into three cases according to the specification.
  • ⁇ Strengthened lens of the first specification> The first type of reinforced lens uses a glass lens with a high Abbe number that can shoot a smaller and wider area and that other lenses placed closer to the image sensor can sufficiently correct chromatic aberration. It is a reinforced lens suitable when possible.
  • the reinforced lens of the first specification preferably has a refractive index (nd) in the range of 1.73 to 2.10 and an Abbe number ( ⁇ d) in the range of 15 to 45. More preferably, nd is in the range of 1.75 to 2.00 and ⁇ d is in the range of 20 to 43, and further preferably, nd is in the range of 1.77 to 1.90 and ⁇ d is in the range of 25 to 41.
  • the reinforced lens of the second specification is a glass with a high Abbe number so that the lens arranged on the side closer to the imaging device can sufficiently correct chromatic aberration when photographing a wide range with high resolution and cost.
  • This lens is a reinforced lens that cannot be used with a lens, and is suitable when a low-cost glass or resin lens is used.
  • the reinforced lens of the second specification preferably has a refractive index (nd) of 1.63 or more and less than 1.73 and an Abbe number ( ⁇ d) of 35 to 55. More preferably, nd is in the range of 1.65 to 1.72, and ⁇ d is in the range of 40 to 53, and further preferably, nd is in the range of 1.67 to 1.70, and ⁇ d is in the range of 45 to 51.
  • the third type of reinforced lens is a reinforced lens that is suitable when high resolution is more important than the viewing angle, or when the lens placed closer to the image sensor can only be used from the viewpoint of cost. It is.
  • the reinforced lens of the third specification preferably has a refractive index (nd) of 1.50 or more and less than 1.63 and an Abbe number ( ⁇ d) of 45 to 65. More preferably, nd is in the range of 1.55 to 1.62 and ⁇ d is in the range of 50 to 63, and further preferably, nd is in the range of 1.57 to 1.61 and ⁇ d is in the range of 55 to 61.
  • the glass used for the reinforced lens of the present invention is further expressed in mol% on an oxide basis.
  • SiO 2 30% to 65%
  • Al 2 O 3 0% to 20%
  • B 2 O 3 0% to 40%
  • P 2 O 5 0% to 20%
  • MgO 0% to 20%
  • CaO 0% to 20%
  • SrO 0% to 10%
  • BaO 0% to 10%
  • ZnO 0% to 20%
  • TiO 2 : 0% to 20%
  • ZrO 2 0% to 15%
  • K 2 O: 0% to 5% Nb 2 O 5 : 0% to 30%
  • Ln 2 O 3 0% to 20%
  • La 2 O 3 : 0% to 20%
  • Y 2 O 3 0% to 20%
  • Gd 2 O 3 0% to 20%
  • the glass used for the reinforced lens of the first specification of the present invention may further include mol% based on oxide.
  • SiO 2 30% to 55%
  • Al 2 O 3 0% to 5%
  • B 2 O 3 0% to 40%
  • P 2 O 5 0% to 20%
  • MgO 0% to 10%
  • CaO 0% to 10%
  • SrO 0% to 10%
  • BaO 0% to 10%
  • ZnO 0% to 20%
  • ZrO 2 0% to 15%
  • Li 2 O + Na 2 O + K 2 O: 10% to 30% Li 2 O: 10% to 30%, Na 2 O: 0% to 15%
  • Nb 2 O 5 : 0% to 30%
  • Ln 2 O 3 0% to 20%
  • La 2 O 3 : 0% to 20%
  • Y 2 O 3 0% to 20%
  • the glass used for the reinforced lens of the second specification of the present invention is further oxide-based.
  • SiO 2 30% to 60%
  • Al 2 O 3 0% to 10%
  • B 2 O 3 0% to 20%
  • P 2 O 5 0% to 20%
  • MgO 0% to 20%
  • CaO 0% to 20%
  • SrO 0% to 10%
  • BaO 0% to 10%
  • ZnO 0% to 20%
  • TiO 2 0% to 5%
  • ZrO 2 0% to 15%
  • Li 2 O + Na 2 O + K 2 O: 10% to 30% Li 2 O: 10% to 30%, Na 2 O: 0% to 10%
  • Nb 2 O 5 0% to 15%
  • Ln 2 O 3 0% to 20%
  • La 2 O 3 : 0% to 20%
  • Y 2 O 3 0% to 20%
  • the glass used for the reinforced lens of the third specification of the present invention is further oxide-based.
  • SiO 2 30% to 65%
  • Al 2 O 3 0% to 20%
  • B 2 O 3 0% to 40%
  • P 2 O 5 0% to 20%
  • MgO 0% to 20%
  • CaO 0% to 20%
  • SrO 0% to 10%
  • BaO 0% to 10%
  • ZnO 0% to 20%
  • TiO 2 0% to 5%
  • ZrO 2 0% to 10%
  • Li 2 O + Na 2 O + K 2 O: 10% to 25% Li 2 O: 10% to 20%, Na 2 O: 0% to 10%
  • K 2 O 0% to 5%
  • Nb 2 O 5 0% to 10%
  • Ln 2 O 3 0% to 10%
  • La 2 O 3 0% to 10%
  • Y 2 O 3 :
  • the glass used for the reinforced lenses of the first to third specifications will be described below.
  • the glass used in the present invention is not limited to the composition of the glass used for the reinforced lenses of the first to third specifications as long as the obtained reinforced lens has the characteristics described above, but is preferably in the following range. .
  • “substantially does not contain” means that it is not contained except for inevitable impurities.
  • the content of inevitable impurities is 0.1% or less in the present invention. Preferably it is 0.05% or less, More preferably, it is 0.02% or less.
  • SiO 2 is an essential component in a glass network former, and if it is less than 30%, impact resistance and mechanical properties are lowered. Preferably it is 35% or more, more preferably 40% or more. If it exceeds 55%, the refractive index may decrease. Preferably it is 54% or less, More preferably, it is 52% or less.
  • Al 2 O 3 is an optional component.
  • Al 2 O 3 is a component that improves chemical durability and improves impact resistance and mechanical properties, but when Al 2 O 3 increases, the refractive index decreases, Tg increases too much, glass May be easily devitrified. Preferably it is 3% or less, More preferably, it is 2% or less.
  • B 2 O 3 is an optional component.
  • B 2 O 3 is a component that lowers the Tg, improves the thermal stability of the glass, and improves impact resistance and mechanical properties. However, if the amount of B 2 O 3 is large, the refractive index decreases. There is a risk that chemical durability tends to decrease. Preferably it is 30% or less, more preferably 20% or less.
  • P 2 O 5 is an optional component.
  • P 2 O 5 is a component that lowers the Tg and is a component for adjusting the Abbe number. However, if the amount of P 2 O 5 is large, the refractive index, impact resistance, and mechanical properties are likely to be lowered. Preferably it is 10% or less, More preferably, it is 4% or less, More preferably, it is 2% or less. Most preferably, P 2 O 5 is not substantially contained.
  • MgO is an optional component.
  • MgO is a component that improves the meltability of glass, suppresses devitrification, and adjusts optical constants such as the Abbe number and refractive index of glass.
  • the amount of MgO increases, devitrification is promoted.
  • it is 5% or less, More preferably, it is 3% or less.
  • CaO is an optional component.
  • CaO is a component that suppresses devitrification and adjusts optical constants such as the Abbe number and refractive index of glass.
  • the amount of CaO is large, the chemical strengthening treatment is hindered, and the impact resistance and mechanical properties are likely to deteriorate. Therefore, when CaO is contained, it is preferably 5% or less, more preferably 3% or less.
  • SrO is an optional component.
  • SrO is a component that suppresses devitrification and adjusts optical constants such as the Abbe number and refractive index of glass.
  • the amount of SrO is large, the impact resistance and mechanical properties, which impede the chemical strengthening treatment and increase the specific gravity of the glass, are significantly reduced. Therefore, when SrO is contained, it is preferably 5% or less, more preferably 3% or less, and further preferably 2% or less. Most preferably, SrO is not substantially contained.
  • BaO is an optional component.
  • BaO is a component that suppresses devitrification and adjusts optical constants such as the Abbe number and refractive index of glass.
  • the amount of BaO is large, the impact resistance and mechanical properties that inhibit the chemical strengthening treatment and increase the specific gravity of the glass are remarkably lowered. Therefore, when BaO is contained, it is preferably 5% or less, more preferably 3% or less, and further preferably 2% or less. Most preferably, BaO is not substantially contained.
  • ZnO is an optional component that adjusts optical constants such as the Abbe number and refractive index of glass to improve mechanical properties.
  • optical constants such as the Abbe number and refractive index of glass.
  • it is 15% or less, More preferably, it is 10% or less, More preferably, it is 5% or less.
  • TiO 2 is an optional component, and can be expected to increase the refractive index of the glass and improve the mechanical properties. On the other hand, when TiO 2 is too much, it is easy to be colored, the transmittance is lowered, and in order to reduce the Abbe number, it is preferably 10% or less, more preferably 5% or less, and further preferably 3% or less. When TiO 2 is contained, it is preferably 0.5% or more, more preferably 1% or more, and further preferably 1.5% or more.
  • ZrO 2 is an optional component, and is a component that increases the refractive index of the glass and increases the chemical durability of the glass. Inclusion of ZrO 2 can be expected to improve mechanical properties. On the other hand, when there is too much ZrO 2 , devitrification tends to occur, so it is preferably 15% or less, more preferably 10% or less, and even more preferably 5% or less. When ZrO 2 is contained, it is preferably 0.5% or more, more preferably 1% or more, and further preferably 2% or more.
  • Li 2 O is an essential component and is contained at 10% or more. In order to make the chemical strengthening treatment efficient, Li 2 O is preferably 12% or more, more preferably 15% or more. Further, from the viewpoint of suppressing stress relaxation in the chemically strengthened glass due to devitrification and a decrease in Tg, Li 2 O in the glass is preferably 30% or less, more preferably 25% or less.
  • Na 2 O is an optional component that suppresses devitrification, lowers Tg, and enhances the efficiency of replacement with K + when the strengthened molten salt is a mixed salt of sodium nitrate and potassium nitrate. If it is too high, impact resistance and mechanical properties are likely to deteriorate. Preferably it is 15% or less, More preferably, it is 10% or less.
  • Na 2 O is contained, it is preferably 1.5% or more, more preferably 2% or more, and further preferably 2.5% or more.
  • K 2 O is an optional component and is a component that improves the meltability of the glass and suppresses devitrification. However, if it is too much, impact resistance and mechanical properties are likely to deteriorate. Preferably it is 5% or less, More preferably, it is 3% or less.
  • Nb 2 O 5 is an optional component that increases the refractive index of glass and can be expected to improve impact resistance and mechanical properties. On the other hand, if Nb 2 O 5 is too much, it tends to be devitrified, and the transmittance is lowered. In order to reduce the Abbe number, it is preferably 30% or less, more preferably 25% or less, and further preferably 20% or less. is there. When Nb 2 O 5 is contained, it is preferably 5% or more, more preferably 7% or more, and further preferably 10% or more.
  • La 2 O 3 is an optional component.
  • La 2 O 3 is a component that does not reduce the Abbe number for improving the refractive index of the glass, so it can be used for adjusting the optical constant, etc., but it is lost if the amount of La 2 O 3 is too large. It becomes easy to see through, the specific gravity increases, and the impact resistance and mechanical properties are lowered. Therefore, if containing La 2 O 3, preferably 20% or less, more preferably 15% or less.
  • Y 2 O 3 is an optional component.
  • Y 2 O 3 is a component that improves the refractive index of glass and can be expected to improve mechanical properties. However, if the amount of Y 2 O 3 is too large, it tends to be devitrified. Therefore, when they contain Y 2 O 3, preferably 20% or less, more preferably 15% or less.
  • Gd 2 O 3 is an optional component.
  • Gd 2 O 3 is a component that does not reduce the Abbe number for improving the refractive index of the glass, so it can be used for adjustment of the optical constant, etc., but it is lost if the amount of Gd 2 O 3 is too large. It becomes easy to see through, the specific gravity increases, and the impact resistance and mechanical properties are lowered. Therefore, if containing Gd 2 O 3, preferably 20% or less, more preferably 15% or less.
  • Ln 2 O 3 (Ln is at least one selected from the group consisting of Y, La, Gd, Yb, and Lu. That is, Ln 2 O 3 is La 2 O 3 + Y 2 O 3 + Gd 2 O 3 Is an optional component. Ln 2 O 3 is a component that improves the refractive index of the glass. However, if the amount of Ln 2 O 3 is too large, it tends to devitrify. Therefore, if containing Ln 2 O 3, preferably 20% or less, more preferably 15% or less.
  • Ta 2 O 5 is an optional component.
  • Ta 2 O 5 is a component that improves the refractive index of the glass. However, if the amount of Ta 2 O 5 is too large, it tends to devitrify and the specific gravity also increases. Therefore, if containing Ta 2 O 5, preferably 20% or less, more preferably 15% or less.
  • WO 3 is an optional component.
  • WO 3 is a component that improves the refractive index of the glass and improves the thermal stability of the glass. However, if the amount of WO 3 is too large, it tends to devitrify, reduce the Abbe number, and increase the specific gravity. . Therefore, if containing WO 3, preferably 20% or less, more preferably 15% or less.
  • Bi 2 O 3 and TeO 2 may be contained in less than 10%. These are not essential components, but can be expected to increase the refractive index and improve the meltability. When these components are contained, the total content is preferably 5% or less, and more preferably 3% or less.
  • As 2 O 3 is a harmful chemical substance, it tends to be refrained from use in recent years, and measures for environmental measures are required. Therefore, when importance is placed on the environmental impact, it is preferable that the substance is not substantially contained except for inevitable mixing.
  • Sb 2 O 3 and SnO 2 are not essential components, but can be added for the purpose of adjusting refractive index characteristics, improving meltability, suppressing coloring, improving transmittance, clarifying, and improving chemical durability.
  • the total content is preferably 1% or less, and more preferably 0.5% or less.
  • F is contained.
  • F is not essential, it can be added for the purpose of improving meltability, improving transmittance, improving clarity, and the like.
  • the content ratio is preferably 5% or less, and more preferably 3% or less.
  • SiO 2 is an essential component in a glass network former, and if it is less than 30%, impact resistance and mechanical properties are lowered. Preferably it is 35% or more, more preferably 40% or more. If it exceeds 60%, the refractive index may decrease. Preferably it is 58% or less, More preferably, it is 56% or less.
  • Al 2 O 3 is an optional component.
  • Al 2 O 3 is a component that improves chemical durability and improves impact resistance and mechanical properties, but when Al 2 O 3 increases, the refractive index decreases, Tg increases too much, glass May be easily devitrified. Preferably it is 5% or less, More preferably, it is 3% or less.
  • B 2 O 3 is an optional component.
  • B 2 O 3 is a component that lowers the Tg, improves the thermal stability of the glass, and improves impact resistance and mechanical properties. However, if the amount of B 2 O 3 is large, the refractive index decreases. There is a risk that chemical durability tends to decrease. Preferably it is 20% or less, More preferably, it is 15% or less.
  • P 2 O 5 is an optional component.
  • P 2 O 5 is a component that lowers the Tg and is a component for adjusting the Abbe number. However, if the amount of P 2 O 5 is large, the refractive index, impact resistance, and mechanical properties are likely to be lowered. Preferably it is 20% or less, More preferably, it is 15% or less, More preferably, it is 10% or less. Most preferably, P 2 O 5 is not substantially contained.
  • SiO 2 + Al 2 O 3 + B 2 O 3 + P 2 O 5 is 30% or more and less than 65%.
  • the Abbe number becomes small.
  • it is 35% or more, more preferably 40% or more.
  • the refractive index is low.
  • it is 62% or less, More preferably, it is 60% or less.
  • MgO is an optional component.
  • MgO is a component that improves the meltability of glass, suppresses devitrification, and adjusts optical constants such as the Abbe number and refractive index of glass.
  • the amount of MgO increases, devitrification is promoted. Preferably it is 15% or less, More preferably, it is 10% or less.
  • CaO is an optional component.
  • CaO is a component that suppresses devitrification and adjusts optical constants such as the Abbe number and refractive index of glass.
  • the amount of CaO is large, the chemical strengthening treatment is hindered, and the impact resistance and mechanical properties are likely to deteriorate. Therefore, when CaO is contained, it is preferably 15% or less, more preferably 10% or less.
  • SrO is an optional component.
  • SrO is a component that suppresses devitrification and adjusts optical constants such as the Abbe number and refractive index of glass.
  • the amount of SrO is large, the impact resistance and mechanical properties, which impede the chemical strengthening treatment and increase the specific gravity of the glass, are significantly reduced. Therefore, when SrO is contained, it is preferably 8% or less, more preferably 5% or less, and further preferably 3% or less.
  • BaO is an optional component.
  • BaO is a component that suppresses devitrification and adjusts optical constants such as the Abbe number and refractive index of glass.
  • the amount of BaO is large, the impact resistance and mechanical properties that inhibit the chemical strengthening treatment and increase the specific gravity of the glass are remarkably lowered. Therefore, when BaO is contained, it is preferably 8% or less, more preferably 5% or less, and further preferably 3% or less.
  • ZnO is an optional component that adjusts optical constants such as the Abbe number and refractive index of glass to improve mechanical properties.
  • optical constants such as the Abbe number and refractive index of glass.
  • it is 15% or less, More preferably, it is 10% or less, More preferably, it is 5% or less.
  • TiO 2 is an optional component, and can be expected to increase the refractive index of the glass and improve the mechanical properties. On the other hand, when TiO 2 is too much, it is easy to be colored, the transmittance is lowered, and in order to reduce the Abbe number, it is preferably 5% or less, more preferably 3% or less, and further preferably 2% or less.
  • ZrO 2 is an optional component, and is a component that increases the refractive index of the glass and increases the chemical durability of the glass. Inclusion of ZrO 2 can be expected to improve mechanical properties. On the other hand, if there is too much ZrO 2 , devitrification tends to occur, so it is preferably 10% or less, more preferably 5% or less, and even more preferably 3% or less. When ZrO 2 is contained, it is preferably 0.5% or more, more preferably 1% or more, and further preferably 2% or more.
  • Li 2 O is an essential component and is contained at 10% or more. In order to make the chemical strengthening treatment efficient, Li 2 O is preferably 12% or more, more preferably 15% or more. Further, from the viewpoint of suppressing stress relaxation in the chemically strengthened glass due to devitrification and a decrease in Tg, Li 2 O in the glass is preferably 30% or less, more preferably 25% or less.
  • the value obtained by dividing B 2 O 3 by Li 2 O, B 2 O 3 / Li 2 O, is preferably 0.75 or less, more preferably 0.7 or less. If it exceeds 0.75, the volatilization of the glass becomes intense when the glass is melted, and the variation in the refractive index when the reinforced lens is made increases. More preferably, it is 0.6 or less, More preferably, it is 0.5 or less.
  • Na 2 O is an optional component that suppresses devitrification, lowers Tg, and enhances the efficiency of replacement with K + when the strengthened molten salt is a mixed salt of sodium nitrate and potassium nitrate. If it is too high, the refractive index will be low, the Abbe number will be small, and the impact resistance and mechanical properties will tend to deteriorate. Preferably it is 10% or less, More preferably, it is 5% or less. When Na 2 O is contained, it is preferably 1.5% or more, more preferably 2% or more, and further preferably 2.5% or more.
  • K 2 O is an optional component that improves the meltability of the glass and suppresses devitrification. However, if it is too much, the refractive index decreases, the Abbe number decreases, and the impact resistance. And mechanical properties are likely to deteriorate. Preferably it is 5% or less, More preferably, it is 3% or less.
  • Nb 2 O 5 is an optional component that increases the refractive index of glass and can be expected to improve impact resistance and mechanical properties. On the other hand, if Nb 2 O 5 is too much, it tends to be devitrified, and the transmittance is lowered. In order to reduce the Abbe number, it is preferably 15% or less, more preferably 12% or less, and even more preferably 10% or less. is there.
  • La 2 O 3 is an optional component.
  • La 2 O 3 is a component that does not reduce the Abbe number for improving the refractive index of the glass, so it can be used for adjusting the optical constant, etc., but it is lost if the amount of La 2 O 3 is too large. It becomes easy to see through, the specific gravity increases, and the impact resistance and mechanical properties are lowered. Therefore, if containing La 2 O 3, preferably 20% or less, more preferably 15% or less.
  • Y 2 O 3 is an optional component.
  • Y 2 O 3 is a component that improves the refractive index of glass and can be expected to improve mechanical properties. However, if the amount of Y 2 O 3 is too large, it tends to be devitrified. Therefore, when they contain Y 2 O 3, preferably 10% or less, more preferably 5% or less.
  • Gd 2 O 3 is an optional component.
  • Gd 2 O 3 is a component that does not reduce the Abbe number for improving the refractive index of the glass, so it can be used for adjustment of the optical constant, etc., but it is lost if the amount of Gd 2 O 3 is too large. It becomes easy to see through, the specific gravity increases, and the impact resistance and mechanical properties are lowered. Therefore, if containing Gd 2 O 3, preferably 10% or less, more preferably 5% or less.
  • Ln 2 O 3 (Ln is at least one selected from the group consisting of Y, La, Gd, Yb, and Lu. That is, Ln 2 O 3 is La 2 O 3 + Y 2 O 3 + Gd 2 O 3 Is an optional component. Ln 2 O 3 is a component that improves the refractive index of the glass. However, if the amount of Ln 2 O 3 is too large, it tends to devitrify. Therefore, if containing Ln 2 O 3, preferably 20% or less, more preferably 15% or less.
  • Ta 2 O 5 is an optional component.
  • Ta 2 O 5 is a component that improves the refractive index of the glass. However, if the amount of Ta 2 O 5 is too large, it tends to devitrify and the specific gravity also increases. Therefore, if containing Ta 2 O 5, preferably 10% or less, more preferably 5% or less.
  • WO 3 is an optional component.
  • WO 3 is a component that improves the refractive index of the glass and improves the thermal stability of the glass. However, if the amount of WO 3 is too large, it tends to devitrify, reduce the Abbe number, and increase the specific gravity. . Therefore, if containing WO 3, preferably 10% or less, more preferably 5% or less.
  • the glass used for the reinforced lens of the second specification contains Bi 2 O 3 , TeO 2 , Sb 2 O 3 , SnO 2 , and F in addition to the above components in the same manner as the glass used for the reinforced lens of the first specification. May be.
  • the content ratio of these components can be the same as that of the glass used for the reinforced lens of the first specification including the preferred embodiment.
  • SiO 2 is an essential component in a glass network former, and if it is less than 30%, impact resistance and mechanical properties are lowered. Preferably it is 35% or more, more preferably 40% or more. If it exceeds 65%, Tg tends to be too high. Preferably it is 63% or less, More preferably, it is 62% or less.
  • Al 2 O 3 is an optional component.
  • Al 2 O 3 is a component that improves chemical durability and improves impact resistance and mechanical properties, but when Al 2 O 3 increases, Tg becomes too high and the glass tends to devitrify. There is a fear. Preferably it is 15% or less, More preferably, it is 13% or less.
  • B 2 O 3 is an optional component.
  • B 2 O 3 is a component that lowers the Tg, improves the thermal stability of the glass, and improves impact resistance and mechanical properties. However, if the amount of B 2 O 3 is large, chemical durability is increased. It tends to decrease. Preferably it is 40% or less, More preferably, it is 35% or less.
  • P 2 O 5 is an optional component.
  • P 2 O 5 is a component that lowers the Tg and is a component that increases the Abbe number. However, if the amount of P 2 O 5 is large, impact resistance and mechanical properties are likely to deteriorate. Preferably it is 20% or less, More preferably, it is 15% or less.
  • SiO 2 + Al 2 O 3 + B 2 O 3 + P 2 O 5 is 65% or more and less than 80%.
  • the Abbe number becomes small.
  • it is 66% or more, More preferably, it is 67% or more.
  • melting of the glass becomes difficult.
  • it is 78% or less, More preferably, it is 76% or less.
  • MgO is an optional component.
  • MgO is a component that improves the meltability of glass, suppresses devitrification, and adjusts optical constants such as the Abbe number and refractive index of glass.
  • the amount of MgO increases, devitrification is promoted. Preferably it is 15% or less, More preferably, it is 10% or less.
  • CaO is an optional component.
  • CaO is a component that suppresses devitrification and adjusts optical constants such as the Abbe number and refractive index of glass.
  • the amount of CaO is large, the chemical strengthening treatment is hindered, and the impact resistance and mechanical properties are likely to deteriorate. Therefore, when CaO is contained, it is preferably 15% or less, more preferably 10% or less.
  • SrO is an optional component.
  • SrO is a component that suppresses devitrification and adjusts optical constants such as the Abbe number and refractive index of glass.
  • the amount of SrO is large, the impact resistance and mechanical properties, which impede the chemical strengthening treatment and increase the specific gravity of the glass, are significantly reduced. Therefore, when SrO is contained, it is preferably 8% or less, more preferably 5% or less, and further preferably 3% or less.
  • BaO is an optional component.
  • BaO is a component that suppresses devitrification and adjusts optical constants such as the Abbe number and refractive index of glass.
  • the amount of BaO is large, the impact resistance and mechanical properties that inhibit the chemical strengthening treatment and increase the specific gravity of the glass are remarkably lowered. Therefore, when BaO is contained, it is preferably 8% or less, more preferably 5% or less, and further preferably 3% or less.
  • ZnO is an optional component that adjusts optical constants such as the Abbe number and refractive index of glass to improve mechanical properties.
  • optical constants such as the Abbe number and refractive index of glass.
  • it is 15% or less, More preferably, it is 10% or less, More preferably, it is 5% or less.
  • TiO 2 is an optional component, and can be expected to increase the refractive index of the glass and improve the mechanical properties. On the other hand, when TiO 2 is too much, it is easy to be colored, the transmittance is lowered, and in order to reduce the Abbe number, it is preferably 5% or less, more preferably 3% or less, and further preferably 2% or less.
  • ZrO 2 is an optional component, and is a component that increases the refractive index of the glass and increases the chemical durability of the glass. Inclusion of ZrO 2 can be expected to improve mechanical properties. On the other hand, if there is too much ZrO 2 , devitrification tends to occur, so it is preferably 10% or less, more preferably 5% or less, and even more preferably 3% or less. When ZrO 2 is contained, it is preferably 0.5% or more, more preferably 1% or more, and further preferably 2% or more.
  • Li 2 O is an essential component and is contained at 10% or more. In order to make the chemical strengthening treatment efficient, Li 2 O is preferably 11% or more, more preferably 12% or more. Further, from the viewpoint of suppressing stress relaxation in the chemically strengthened glass due to devitrification and Tg reduction, Li 2 O in the glass is preferably 20% or less, more preferably 18% or less.
  • Na 2 O is an optional component that suppresses devitrification, lowers Tg, and enhances the efficiency of replacement with K + when the strengthened molten salt is a mixed salt of sodium nitrate and potassium nitrate. If it is too high, the Abbe number becomes small, and the impact resistance and mechanical properties are likely to deteriorate. Preferably it is 10% or less, More preferably, it is 5% or less. When Na 2 O is contained, it is preferably 1.5% or more, more preferably 2% or more, and further preferably 2.5% or more.
  • K 2 O is an optional component that improves the meltability of the glass and suppresses devitrification. However, if it is too large, the Abbe number decreases, impact resistance and mechanical properties decrease. Easy to do. Preferably it is 5% or less, More preferably, it is 3% or less.
  • Nb 2 O 5 is an optional component that increases the refractive index of glass and can be expected to improve impact resistance and mechanical properties. On the other hand, if Nb 2 O 5 is too much, it tends to be devitrified, and the transmittance is lowered. In order to reduce the Abbe number, it is preferably 10% or less, more preferably 8% or less, and further preferably 5% or less. is there.
  • La 2 O 3 is an optional component.
  • La 2 O 3 is a component that does not reduce the Abbe number for improving the refractive index of the glass, so it can be used for adjusting the optical constant, etc., but it is lost if the amount of La 2 O 3 is too large. It becomes easy to see through, the specific gravity increases, and the impact resistance and mechanical properties are lowered. Therefore, if containing La 2 O 3, preferably 10% or less, more preferably 8% or, more preferably not more than 5%.
  • Y 2 O 3 is an optional component.
  • Y 2 O 3 is a component that improves the refractive index of glass and can be expected to improve mechanical properties. However, if the amount of Y 2 O 3 is too large, it tends to be devitrified. Therefore, when they contain Y 2 O 3, preferably 5% or less, more preferably 3% or less.
  • Gd 2 O 3 is an optional component.
  • Gd 2 O 3 is a component that does not reduce the Abbe number for improving the refractive index of the glass, so it can be used for adjustment of the optical constant, etc., but it is lost if the amount of Gd 2 O 3 is too large. It becomes easy to see through, the specific gravity increases, and the impact resistance and mechanical properties are lowered. Therefore, if containing Gd 2 O 3, preferably 5% or less, more preferably 3% or less.
  • Ln 2 O 3 (Ln is at least one selected from the group consisting of Y, La, Gd, Yb, and Lu. That is, Ln 2 O 3 is La 2 O 3 + Y 2 O 3 + Gd 2 O 3 Is an optional component. Ln 2 O 3 is a component that improves the refractive index of the glass. However, if the amount of Ln 2 O 3 is too large, it tends to devitrify. Therefore, if containing Ln 2 O 3, preferably 10% or less, more preferably 5% or less.
  • Ta 2 O 5 is an optional component.
  • Ta 2 O 5 is a component that improves the refractive index of the glass. However, if the amount of Ta 2 O 5 is too large, it tends to devitrify and the specific gravity also increases. Therefore, if containing Ta 2 O 5, preferably 5% or less, more preferably 3% or less.
  • WO 3 is an optional component.
  • WO 3 is a component that improves the refractive index of the glass and improves the thermal stability of the glass. However, if the amount of WO 3 is too large, it tends to devitrify, reduce the Abbe number, and increase the specific gravity. . Therefore, if containing WO 3, preferably 5% or less, more preferably 3% or less.
  • TiO 2 + Nb 2 O 5 + WO 3 is 10% or less. If it exceeds 10%, the Abbe number becomes small. More preferably, it is 8% or less, More preferably, it is 5% or less.
  • the glass used for the strengthened lens of the third specification contains Bi 2 O 3 , TeO 2 , Sb 2 O 3 , SnO 2 , and F in addition to the above components in the same manner as the glass used for the strengthened lens of the first specification. May be.
  • the content ratio of these components can be the same as that of the glass used for the reinforced lens of the first specification including the preferred embodiment.
  • the reinforced lens of this invention can be manufactured by the method including the following process A and process B, for example.
  • Step A 30 to 65 mol% of SiO 2 , 10 mol% or more of Li 2 O, 0 to 10 mol% of SrO + BaO, and Li 2 O / (Li 2 O + Na 2 O + K 2 O) is 0.5 or more Mold glass into a lens molding.
  • Step B The lens molding is subjected to chemical strengthening treatment. Thereby, a reinforced lens excellent in impact resistance and mechanical properties is produced.
  • the chemical strengthening treatment can be performed by a conventionally known method. Specifically, the lens molding is brought into contact with a melt of an alkali metal salt containing an alkali metal ion having an ionic radius larger than that of the alkali metal ion in the lens molding by immersion or the like.
  • the reinforced lens of the present invention in which the metal ions having a small ion radius are replaced with the metal ions having a large ion radius only in the surface layer portion of the lens molding, and the surface layer portion is given compressive stress.
  • the chemical strengthening treatment of the lens molded body in the step B is a strengthened molten salt containing at least sodium nitrate, and the strengthened molten salt contains 25% or more of sodium nitrate in terms of mass%.
  • a strengthened molten salt containing 95% or more of sodium nitrate and potassium nitrate hereinafter referred to as “strengthened molten salt (X)”
  • the chemical strengthening treatment temperature is T (unit: ° C.)
  • the treatment time is t.
  • process B2 the chemical strengthening treatment process according to the production method of the present invention is referred to as process B2.
  • the lens molded body obtained in the above step A can be made into a strengthened lens with almost no change in shape.
  • the amount of change in the radius of curvature of the first main surface before and after the chemical strengthening treatment in the lens molded body having a predetermined shape can be set to 10 ⁇ m or less by the above method.
  • the amount of change is preferably 5 ⁇ m or less, more preferably 3 ⁇ m or less, and particularly preferably 1 ⁇ m or less.
  • ⁇ Process A (Lens molding process)>
  • raw materials are weighed so as to have the predetermined glass composition and mixed uniformly.
  • the prepared mixture is put into a platinum crucible, a quartz crucible or an alumina crucible and roughly melted. Thereafter, it is placed in a gold crucible, platinum crucible, platinum alloy crucible or iridium crucible and melted at a temperature range of 1200 to 1400 ° C. for 2 to 10 hours, clarified and homogenized by degassing, stirring, etc.
  • a glass ingot or further molding is performed to produce a lens preform.
  • a lens molded body can be produced using means such as reheat press molding or precision press molding. That is, after the glass raw material is melted, a lens molded body is produced by a direct press method, or a preform for mold press molding is produced, and after the reheat press molding is performed on the preform, polishing is performed.
  • reheat press molding for example, by performing precision press molding on a preform produced by polishing, to produce a lens molded body, or by directly polishing from the optical glass ingot to form a lens
  • the body can be made.
  • the means for producing the lens molded body is not limited to these means.
  • the chemical strengthening treatment in the present invention is characterized in that sufficient impact resistance and mechanical properties can be obtained under chemical strengthening conditions in which the lens shape of the lens molded body obtained by molding does not change greatly, and the exchange of main alkali metal ions Is the replacement of Li + ions with Na + ions.
  • step B2 chemical strengthening treatment is performed using the strengthened molten salt (X) under conditions of a chemical strengthening treatment temperature T (unit: ° C.) and a treatment time t (unit: time) that satisfy the above formula (1). .
  • the strengthened molten salt (X) As the melt of the alkali metal salt used for the chemical strengthening treatment, the strengthened molten salt (X) is used. Unless otherwise specified, the content of each component is expressed as a percentage by mass with respect to the total amount of the strengthened molten salt (X).
  • Sodium nitrate is essential in the strengthened molten salt (X).
  • the content of sodium nitrate in the strengthened molten salt (X) is 25% or more.
  • the content of sodium nitrate is preferably 30% or more, more preferably 50% or more.
  • the upper limit of the content of sodium nitrate is 100%, preferably 95% or less, more preferably 90% or less.
  • Potassium nitrate is mainly strengthened because the rate at which K + in the molten molten salt (X) is ion exchanged with Li or Na in the glass is slower than the ion exchange between Li + ions and Na + ions. It is not an ion but an optional component. Potassium nitrate, the freezing point depression, lowering the melting point of the reinforcing molten salt (X), and as the lithium nitrate, is not that difficult and enhanced too much content, further Li + ions and Na + ions Since ion exchange, ion exchange of Na + ions and K + ions and mutual diffusion are promoted and strengthening can be promoted more than sodium nitrate single molten salt, they may be mixed.
  • the content of potassium nitrate in the reinforced molten salt (X) is preferably 10% or more, and more preferably 20% or more.
  • the content of potassium nitrate is 75% or less in relation to the content of sodium nitrate. If the content exceeds 75%, the ion exchange rate may be slow.
  • the content of potassium nitrate is preferably 70% or less, more preferably 50% or less.
  • the total amount of sodium nitrate and potassium nitrate is 95% or more.
  • the total amount is preferably 98% or more, more preferably 99% or more.
  • the strengthened molten salt (X) used for the chemical strengthening treatment of the lens molded body consists essentially of the above components, but may contain other components as required while maintaining the above essential composition range.
  • other components include sodium sulfate, potassium sulfate, sodium chloride, potassium chloride, calcium sulfate, strontium sulfate, barium sulfate, calcium sulfate, strontium chloride, and barium chloride, and other alkali sulfates, alkali chlorides, and alkaline earths. Examples thereof include sulfates and alkaline earth chlorides.
  • the content of these other components in the strengthened molten salt (X) is 5% or less, preferably 1% or less. If it is in the said range, another component has an effect which prevents volatilization in melt
  • the heating temperature of the strengthened molten salt (X), that is, the chemical strengthening treatment temperature is T (unit: ° C.)
  • the immersion time of the lens molded body in the strengthened molten salt (X), that is, the processing time is
  • T and t are processes satisfying the above formula (1), that is, 30000 ⁇ T 1.8 ⁇ t 0.5 ⁇ 50000.
  • the lens molded body obtained by using the predetermined glass in the step A is subjected to a chemical strengthening treatment using a strengthened molten salt (X) under the conditions where T and t satisfy the above formula (1).
  • the reinforced lens obtained in this way is a reinforced lens that has sufficient impact resistance and has little shape change due to chemical strengthening treatment. That is, the lens is a reinforced lens that can be evaluated by the above method and has a falling ball strength of 80 cm or more and a change amount of the radius of curvature of the first main surface of 10 ⁇ m or less.
  • T 1.8 ⁇ t 0.5 In the reinforced lens obtained when T 1.8 ⁇ t 0.5 is 30000 or less, sufficient impact resistance and mechanical properties cannot be obtained. Further, if T 1.8 ⁇ t 0.5 is 50000 or more, the lens shape, particularly the radius of curvature of the first main surface, greatly changes.
  • the chemical strengthening treatment temperature T is preferably less than (Tg-100) ° C. of the glass constituting the lens molding. If the chemical strengthening treatment temperature T is (Tg-100) ° C. or more, there is a possibility that the strengthened lens of the present invention cannot be obtained without sufficient strengthening of the molded lens body even if ion exchange occurs due to stress relaxation. is there.
  • the treatment time t is preferably 0.25 hours or more. If it is less than 0.25 hours, when the immersion time is too short and a large number of lens molded bodies are arranged side by side and subjected to chemical strengthening treatment, unevenness may be caused in some places.
  • the chemical strengthening treatment step of the lens molded body in the step B2 may include the following (1) preheating step before the immersion treatment of the lens molded body in the reinforced molten salt (X). You may have the following (2) cooling and washing
  • a sample holder dedicated to the lens molded body is prepared, and the sample holder in which a large number of the lens molded bodies obtained in the process A are arranged is continuously used in the preheating furnace and the reinforced molten salt (X).
  • It may be a step in which a preheating step, a chemical strengthening treatment step, a cooling step, and a washing step are successively performed by passing through the filled strengthening tank, cooling tank, and washing tank.
  • the lens molded body is preheated so that the temperature of the lens molded body is equal to or higher than the melting point of the reinforced molten salt (X). It is preferable to keep it. This prevents solidification of the molten salt on the surface of the lens molded body when immersed in the reinforced molten salt (X), reduces the ion exchange rate, and uneven distribution in the glass surface of the surface layer portion to which compressive stress is applied. It is for suppressing becoming.
  • the preheating temperature of the lens molding is preferably less than 400 ° C, more preferably 350 ° C or less. If it is 400 ° C. or higher, the shape may change due to the influence of residual stress during preheating or due to nonuniformity of the glass in-plane temperature at the point of contact with the sample holder.
  • the reinforced lens of the present invention in which the lens molded body is immersed in the reinforced molten salt (X) under the above-described predetermined conditions to form a reinforced layer having a compressive stress applied to the lens molded body. can get.
  • the reinforced lens is usually pulled up from the reinforced molten salt (X) and gradually cooled.
  • the reinforced lens pulled up from the reinforced molten salt (X) is kept waiting for 30 seconds to 2 minutes, and after the tempered lens temperature becomes 300 ° C. or lower, the reinforced lens is brought into contact with the refrigerant. It is preferable to cool rapidly.
  • the cooling rate of the reinforced lens is preferably 100 ° C./min or more.
  • 4000 degrees C / min or less is preferable and 3000 degrees C / min or less is more preferable.
  • the reinforced molten salt (X) adhering to the reinforced lens also undergoes ion exchange only at the contact point in the cooling process, and the reinforced lens is given compressive stress. Since the in-plane distribution of the layers becomes non-uniform, the shape of the obtained reinforced lens, particularly the radius of curvature of the first main surface, may change significantly.
  • the shape of the reinforced lens may change significantly.
  • the reinforced lens may be broken by a heat shock. Further, the shape of the reinforced lens, particularly the radius of curvature of the first main surface, may change greatly.
  • the cleaning liquid is not particularly limited, but a cleaning liquid that has high solubility of the strengthened molten salt (X) and is suitable for cleaning the strengthened lens is selected. For example, in the case of washing in a continuous washing line of a plurality of tanks, after the ion exchange water and IPA (isopropyl alcohol) washing, a drying process is performed.
  • IPA isopropyl alcohol
  • a reinforced lens having sufficient impact resistance and little shape change due to chemical strengthening treatment can be obtained.
  • the first main surface and the second main surface of the reinforced lens are not re-polished after the chemical strengthening treatment step of the B2 step. This is because, according to the manufacturing method of the present invention, the shape of the reinforced lens is sufficiently stable even if the reinforced lens is not re-polished after the chemical strengthening treatment step of the B2 step.
  • the reinforcing lens side surface may be subjected to centering processing or the like as necessary.
  • the reinforced lens of the present invention may include an antireflection layer and / or an antifouling coating layer on at least one main surface of the first main surface and the second main surface.
  • the antireflection layer is provided in order to improve the transmittance by preventing reflection of light incident on the reinforced lens and to efficiently use incident light.
  • the antifouling coating layer can be expected to have functions such as improvement of surface hardness, scratch resistance, and wear resistance, as well as suppression of deterioration in image quality of the camera due to adhesion of dirt such as sebum oil, raindrops, and dust.
  • the reinforced lens produced as described above when the reinforced lens is a lens arranged closest to the subject side of the imaging lens and the first main surface is a main surface arranged on the subject side, at least the first main surface Preferably, an antireflection layer and an antifouling coating layer are formed.
  • the antireflection layer and the antifouling coating layer are usually provided in this order from the reinforced lens side. The same applies to the second main surface.
  • the types and forming methods of the constituent materials for the antireflection layer and antifouling coating layer are shown below.
  • the antireflection layer and the antifouling coating layer are formed by coating the first main surface and / or the second main surface of the reinforced lens obtained after the step B2.
  • Antireflection layer is formed by silica, titania, niobium oxide, tantalum pentoxide, yttria, nitridation formed by sputtering method, vacuum deposition method, ion beam method, ion plating method, plasma CVD method, etc.
  • the thickness of the antireflection layer is usually in the range of 100 to 600 nm.
  • the antireflection layer may be provided on the first main surface and the second main surface of the reinforced lens.
  • the antireflection layer preferably has a reflectance of 1% or less over, for example, 420 to 750 nm.
  • Antifouling coating layer is formed by sputtering, vacuum deposition, ion beam method, ion plating method, plasma CVD method or the like, titania, tin oxide, tungsten oxide, strontium titanate, etc. And a silicate-based, silicone-based, fluorinated methacrylate-based, or fluorine-containing organic compound film containing the photocatalytic metal fine particles formed by a sol-gel method, a coating method, or the like.
  • the thickness of the antifouling coating layer is in the range of 100 to 2000 nm.
  • the antifouling coating layer is not particularly required to be provided on the second main surface, but may be formed on the second main surface when formed by dip coating or the like among the application methods.
  • the reinforced lens produced in this way is useful for various camera applications, and in particular, it is suitably used for applications exposed to harsh environments such as an imaging lens used for a vehicle-mounted camera.
  • the reinforced lens of the present invention described above is a reinforced lens having high impact resistance, and is suitable for an imaging lens used for a vehicle-mounted camera exposed to a harsh environment. Further, according to the production method of the present invention, the lens is a reinforced lens having excellent impact resistance and mechanical properties, and also having good acid resistance and water resistance, and the shape does not change greatly even after chemical strengthening treatment. A lens can be obtained.
  • the raw materials were weighed so as to have chemical compositions shown in Tables 1 to 6 (mol% in terms of oxide).
  • high-purity raw materials used for ordinary lenses such as oxides, hydroxides, carbonates, nitrates, fluorides, hydroxides, and metaphosphate compounds are selected as raw materials for each component. Used.
  • the weighed raw materials are uniformly mixed, put in a platinum crucible with an internal volume of about 300 mL, melted at about 1400 ° C. for about 2 hours, stirred and kept at 1400 ° C. for 0.5 hour for clarification, and the temperature reaches about 650 ° C.
  • the glass was slowly cooled at about 0.5 ° C./min to obtain a glass of length 50 mm ⁇ width 100 mm ⁇ thickness 15 mm.
  • nitrate of NaNO 3 to KNO 3 is 100: 0 nitrate (hereinafter referred to as “100Na”), 75:25 nitrate (hereinafter referred to as “75Na25K”), 50:50 nitrate (hereinafter referred to as “100Na”).
  • “50Na50K”) and 0: 100 nitrate (hereinafter, “100K”) are prepared, heated to 400 ° C., and melted into melts of glass for 30 minutes each. Immersion and chemical strengthening treatment were performed to obtain an evaluation sample for CIL evaluation test. In addition, for 0: 100 nitrate, an evaluation sample for CIL evaluation test obtained by immersion for 4 hours was also prepared. The size of the obtained sample for evaluation was 20 mm ⁇ 20 mm ⁇ 2 mm (thickness).
  • the glass transition point (Tg), refractive index (nd), Abbe number ( ⁇ d), specific gravity (d), Young's modulus (E), devitrification temperature, water resistance (RW), acid resistance of the above glass are as follows. Sex (RA) was measured. Among these physical properties, the refractive index (nd), Abbe number ( ⁇ d), specific gravity (d), water resistance (RW), acid resistance (RA) are as described above when the reinforced lens after chemical strengthening is used. It is substantially the same as refractive index (nd), Abbe number ( ⁇ d), specific gravity (d), water resistance (RW), and acid resistance (RA).
  • the crack initiation load was measured as follows for the evaluation sample in which glass was molded into a plate shape and chemically strengthened.
  • the CIL of the reinforced lens refers to the CIL of the glass plate measured in this way.
  • Tg A glass sample processed into a cylindrical shape having a diameter of 5 mm and a length of 20 mm, and a temperature rising rate of 5 ° C./min by a thermal expansion method using a thermomechanical analyzer (trade name: TMA4000SA, manufactured by Bruker AXS) Measured with
  • Nd Glass was processed into a triangular prism having a side of 30 mm and a thickness of 10 mm, and measured with a refractometer (manufactured by Kalnew, instrument name: KPR-2000).
  • ⁇ nd: nd of a glass prism melted at 1200 to 1400 ° C. for 2 hours to obtain the triangular prism and a glass prism melted at the same temperature for 6 hours to obtain the triangular prism were measured by the above method, and the refraction Rate differences were evaluated.
  • ⁇ d (nd ⁇ 1) / (nF ⁇ nC).
  • Specific gravity The ratio between the mass of the glass sample and the mass of 4 ° C. pure water of the same volume under a pressure of 101.325 kPa (standard atmospheric pressure) is displayed as SG, and JIS Z8807 (1976, in liquid) It measured according to the measuring method to weigh.
  • RW Measured according to the measuring method (powder method) of chemical durability of JOGIS06-2008 optical glass. Specifically, when the glass was made into a glass powder having a diameter of 420 to 600 ⁇ m using an alumina mortar and pestle, the mass reduction ratio (%) when immersed in 80 mL of pure water at 100 ° C. for 1 hour was measured. If the mass reduction ratio is less than 0.05 (%), it is grade 1, if it is 0.05 or more and less than 0.10 (%), it is grade 2, and if it is 0.10 or more and less than 0.25 (%), it is grade 3, 0.25 or more and 0. Less than .60 (%) was grade 4, 0.60 or more and less than 1.10 (%), grade 5 and 1.10 (%) or more, grade 6.
  • RA Measured according to the measuring method (powder method) of chemical durability of JOGIS06-2008 optical glass. Specifically, when the glass was made into a glass powder having a diameter of 420 to 600 ⁇ m using an alumina mortar and pestle, the mass reduction ratio (%) when immersed in 80 mL of a 0.01 N nitric acid aqueous solution at 100 ° C. for 1 hour. ) was measured.
  • Grade 1 if the mass reduction rate is less than 0.20 (%), Grade 2 if it is less than 0.20 and less than 0.35 (%), Grade 3, if it is less than 0.35 and less than 0.65 (%), 0.65 or more and 1 Less than .20 (%), grade 4, 1.20 or more and less than 2.20 (%), grade 5, and 2.20 (%) or more, grade 6.
  • CIL measured by the method described above. When the CIL value was 2000 gf or more, it was expressed as “> 2000”.
  • CIL 100Na-05h the CIL of the glass plate after chemical strengthening treatment at 400 ° C. and 100Na for 30 minutes was expressed as CIL 100Na-05h . The conditions were similarly indicated for the CIL of the glass plate chemically treated under other conditions.
  • Tables 1 to 6 The results are shown in Tables 1 to 6 together with the glass composition.
  • Tables 1-6 Examples 1-31, 41-46 are Examples, Examples 32-35, 37-40 are Comparative Examples, and Example 36 is a Reference Example. “-” In the table means unmeasured.
  • the glass of Example 1 in the glass of Table 7, the glass of Example 1, 7, 16, 18, 23, 25, 42, 44 corresponding to the said Example, and the glass of Example 35, 36, 38 corresponding to a comparative example
  • the raw materials are weighed so as to have the chemical compositions shown in Tables 1 to 6, mixed in the same manner as described above, placed in a platinum crucible having an internal volume of about 700 mL, melted at 1200 to 1400 ° C. for about 6 hours, and stirred.
  • a lens molded body having a thickness of 3.5 mm was processed.
  • the shape of the lens molding was measured with a 3D measuring device (manufactured by KEYENCE, VR-3200).
  • the obtained lens molding was subjected to chemical strengthening treatment under various conditions shown in Table 7 to obtain a strengthened lens.
  • the chemical strengthening treatment includes nitrate with a mass% of NaNO 3 to KNO 3 of 75:25 (indicated as “75% NaNO 3 + 25% KNO 3 ” in Table 7), and nitrate of 0: 100 (in Table 7, “ 100% KNO 3 ”) was prepared, and strengthening was performed at the chemical strengthening treatment temperature T (unit: ° C.) and the treatment time t (unit: time) shown in Table 7.
  • Table 7 also shows T 1.8 ⁇ t 0.5 .
  • Example 7-C Using the glass of Example 7, Example 16, and Example 25, a lens molded body was obtained in the same manner as described above, and the obtained lens molded body was obtained by adding 400% at 30 ° C. with nitrate of NaNO 3 to KNO 3 of 75: 25% by mass. Reinforced lenses were obtained.
  • a total of 7 layers of SiO 2 and Si 3 N 4 are alternately laminated on the first main surface by a sputtering process to form an antireflection layer with a total thickness of 0.5 ⁇ m.
  • a reinforced lens with an antireflection layer was obtained.
  • the reflectance was 1% or less over 420 to 750 nm.
  • the falling ball strength was also evaluated for the three types of reinforced lenses with an antireflection layer. The results are shown in Table 7 in Example 7-C, Example 16-C, and Example 25-C.
  • Falling ball strength [cm] measured by the method described above.
  • Change in shape before and after chemical strengthening The amount of change [ ⁇ m] in the radius of curvature of the first principal surface of the molded lens and the strengthened lens was calculated by the method described above.
  • the glass in each Example are both the Li 2 O and containing at least 10 mol%, and Li 2 O / (Li 2 O + Na 2 O + K 2 O) ⁇ 0.5, SrO + BaO is less 10 mol%, SiO 2 30 Since it is ⁇ 65 mol%, CIL has a high strength of 100 gf or more.
  • CIL is any one of CIL 100Na-0.5h , CIL 75Na25K-0.5h , CIL 50Na50K-0.5h , that is, any of CIL of a glass plate chemically strengthened using reinforced molten salt (X). May be 100 gf or more.
  • Example 34 glass in which B 2 O 3 / Li 2 O greatly exceeds 0.75 has a high ⁇ nd of 0.003 or more and a process margin at the time of manufacture is narrow.
  • the strengthened lens using the glass of this example of Examples 1, 7, 16, 18, 23, 25, 42, 44 is nitrate (strengthened molten salt (X)) in which the mass% of NaNO 3 to KNO 3 is 75:25. ),
  • the falling ball strength is 80 cm or more even under the chemical strengthening condition at 400 ° C. for 30 minutes, and the shape change is suppressed to 10 ⁇ m or less.
  • the tempering time is extended or the tempering temperature is increased to 500 ° C. with the reinforced lens using the glass of Examples 7 and 16, the shape change becomes large. This is because T 1.8 ⁇ t 0.5 is out of the range of the production method of the present invention.
  • the falling ball strength is 80 cm or less in the chemical tempering treatment at 400 ° C. for 30 minutes.
  • the shape change is 10 ⁇ m or more, and it can be seen that the shape change is large despite the slow K ion strengthening speed.
  • the reinforced lens using the glass of Example 7 when the tempering time is extended to 4 hours at 100% KNO 3 and 400 ° C., the falling ball strength reaches 80 cm or more, but the shape change is further increased.
  • the processing time is such that the shape does not change greatly even when chemically strengthened. It can be seen that a reinforced lens having sufficiently high impact resistance and a high refractive index can be obtained.
  • Example 35 CIL is less than 100 gf.
  • Example 36 CIL 100K-4h is 100 gf or more, but any of CIL 100Na-0.5h , CIL 75Na25K-0.5h , and CIL 50Na50K-0.5h does not satisfy the condition of 100 gf or more.
  • the falling ball strength is 75% NaNO 3 + 25% KNO 3 strengthened molten salt or 100% KNO 3 strengthened molten salt at 400 ° C. for a strengthening time of 30 minutes.
  • the falling ball strength is more than 80 cm at 100% KNO 3 at 400 ° C. for 4 hours strengthening time, but the shape change due to strengthening is 10 ⁇ m. Become super.
  • the glass of Example 37 has Li 2 O / (Li 2 O + Na 2 O + K 2 O) of less than 0.5, the efficiency of chemical strengthening is poor, and the CIL is less than 100 gf, so the falling ball strength is less than 80 cm. It is guessed. In Examples 38 to 40, SrO + BaO is more than 10 mol%, the chemical strengthening efficiency is poor, and the CIL is less than 100 gf. Therefore, it is estimated that the falling ball strength is less than 80 cm. When the glass of Example 38 was made into a reinforced lens, it was a 75% NaNO 3 + 25% KNO 3 reinforced molten salt, and even when tempered at 400 ° C. for 30 minutes, the falling ball strength was as low as 10 cm.
  • the reinforced lens of the present invention is excellent in impact resistance, and has a strength that can sufficiently withstand harsh usage environments without deterioration in image quality when used for an imaging lens of an in-vehicle camera, for example. It is. Therefore, it is suitable for an imaging lens used for a vehicle-mounted camera that is exposed to a harsh environment. In addition to in-vehicle cameras, it is also suitable for applications such as robot vision sensors, surveillance cameras, and wearable cameras.
  • a reinforced lens having high impact resistance and suppressed shape change due to chemical strengthening treatment can be obtained.

Abstract

Provided is a tempered lens having high impact resistance. Also provided is a method for manufacturing a tempered lens having high impact resistance, wherein a chemical tempering treatment does not significantly change the shape of the lens. The tempered lens is a chemically tempered lens of a lens molded body of a glass, wherein the glass contains 30-65 mol% of SiO2, 10 mol% or more of Li2O, and 0-10 mol% of SrO+BaO, and Li2O/(Li2O+Na2O+K2O) is at least 0.5. The method for manufacturing a tempered lens comprises the steps of: molding a glass having the above composition into a lens molded body; and performing a chemical tempering treatment, under conditions satisfying a predetermined treatment temperature and treatment time, on the lens molded body by using a tempered molten salt containing at least sodium nitrate, the tempered molten salt containing 25 mass% or more of sodium nitrate and 95 mass% or more total of sodium nitrate and potassium nitrate.

Description

強化レンズおよび強化レンズの製造方法Reinforcement lens and method for manufacturing the reinforcement lens
 本発明は強化レンズに関し、詳しくは衝撃強度の高い強化レンズおよび強化レンズの製造方法に関する。 The present invention relates to a reinforced lens, and more particularly to a reinforced lens having a high impact strength and a method for manufacturing the reinforced lens.
 従来、車載用カメラ、ロボット用視覚センサー、監視カメラ、ウェアラブルカメラなどの用途に、小型で撮像画角の広い撮像ガラスレンズが用いられている。 Conventionally, an imaging glass lens having a small and wide imaging angle of view has been used for applications such as an in-vehicle camera, a robot vision sensor, a surveillance camera, and a wearable camera.
 また、自動車やロボットおよび監視カメラは、高速移動するあるいは過酷な環境で使用されることが想定されるため、車載用カメラ等に搭載される撮像ガラスレンズは、一般的なカメラの撮像レンズよりも、極めて高強度であることが必要とされる。例えば、車載用カメラは、自動車の走行に伴う衝撃や風圧、走行により跳ね上げられた砂塵による傷損や浸食等の生じないことが求められる。さらに、酸性雨や、洗車などの際に使用される洗剤やワックスなどの薬剤による表面劣化や変質の少ないことも重要である。 In addition, since automobiles, robots, and surveillance cameras are assumed to move at high speeds or be used in harsh environments, an imaging glass lens mounted on an in-vehicle camera or the like is more than an imaging lens of a general camera. It is necessary to have extremely high strength. For example, an in-vehicle camera is required not to cause damage or erosion due to impact or wind pressure associated with traveling of an automobile or sand dust splashed by traveling. Furthermore, it is also important that there is little surface degradation or alteration due to chemicals such as acid rain, detergents and waxes used in car washing.
 ウェアラブルカメラの場合もユーザーが誤って落としたり、皮脂や砂ぼこり等の汚れを拭いたり、といったシーンが想定されるため、車載カメラ用レンズ同様に、高い耐衝撃性や機械的強度が求められる。 In the case of wearable cameras, it is assumed that the user accidentally drops or wipes dirt such as sebum and sand dust, so high impact resistance and mechanical strength are required, similar to in-vehicle camera lenses.
 このような、高い耐衝撃性や機械的強度を得るために、化学強化処理を施したレンズが開示されている。(例えば、特許文献1参照。)。 In order to obtain such high impact resistance and mechanical strength, a lens subjected to chemical strengthening treatment is disclosed. (For example, refer to Patent Document 1).
特開2000-226227号公報JP 2000-226227 A
 しかしながら、このように化学強化されたレンズは、圧縮応力層の形成によって、レンズの形状が変形し、カメラの撮像光学系に組み込んだ際、特に光軸から離れた周辺部の結像がズレて、画質が低下するという課題があった。 However, the lens thus chemically strengthened deforms due to the formation of a compressive stress layer, and when incorporated in the imaging optical system of the camera, the image formation in the peripheral part away from the optical axis is shifted. There was a problem that the image quality deteriorated.
 本発明は、上述のような観点からなされたものであり、耐衝撃性が高い強化レンズを提供することを目的とする。また、耐衝撃性が高い強化レンズを製造する方法において、化学強化処理しても形状が大きく変化しない製造方法を提供することを目的とする。 The present invention has been made from the above viewpoint, and an object thereof is to provide a reinforced lens having high impact resistance. It is another object of the present invention to provide a method for manufacturing a reinforced lens having high impact resistance, in which the shape does not change greatly even when chemically strengthened.
 本発明は、ガラスのレンズ成型体の化学強化レンズであって、前記ガラスは、SiOを30~65mol%、LiOを10mol%以上、SrO+BaOを0~10mol%含有し、かつLiO/(LiO+NaO+KO)が0.5以上である強化レンズを提供する。 The present invention is a chemically strengthened lens of a glass lens molded body, wherein the glass contains 30 to 65 mol% of SiO 2 , 10 mol% or more of Li 2 O, 0 to 10 mol% of SrO + BaO, and Li 2 O. A reinforced lens having / (Li 2 O + Na 2 O + K 2 O) of 0.5 or more is provided.
 本発明の強化レンズは、水平面に載置された前記強化レンズの中心に向けて64.6gの鉄球を落下させた場合に、前記強化レンズが破壊しない高さとして示される落球強度が80cm以上であることが好ましい。 In the reinforced lens of the present invention, when a 64.6 g iron ball is dropped toward the center of the reinforced lens placed on a horizontal plane, the falling ball strength indicated as a height at which the reinforced lens does not break is 80 cm or more. It is preferable that
 本発明の強化レンズにおいて、前記レンズ成型体は、互いに対向する第1の主面および第2の主面を有し、前記レンズ成型体を直径14mm、前記第1の主面の曲率半径12mm並びに前記第2の主面の曲率半径3mmに成型したときの、化学強化前後での前記第1の主面の曲率半径の変化量が10μm以下であることが好ましい。 In the reinforced lens of the present invention, the lens molding has a first main surface and a second main surface facing each other, the lens molding has a diameter of 14 mm, a radius of curvature of the first main surface of 12 mm, and The amount of change in the radius of curvature of the first main surface before and after chemical strengthening when the second main surface is molded to a radius of curvature of 3 mm is preferably 10 μm or less.
 本発明の強化レンズは、クラックイニシエーションロード(CIL)が100gf以上であることが好ましい。
 本発明の強化レンズにおいて、前記ガラスは、ガラス転移点(Tg)が500℃~630℃であることが好ましい。
 本発明の強化レンズは、屈折率(nd)が1.73~2.10、アッベ数(νd)が15~45であることが好ましい。
 本発明の強化レンズは、屈折率(nd)が1.63以上1.73未満、アッベ数(νd)が35~55であることが好ましい。
 本発明の強化レンズは、屈折率(nd)が1.50以上1.63未満、アッベ数(νd)が45~65であることが好ましい。
The reinforced lens of the present invention preferably has a crack initiation load (CIL) of 100 gf or more.
In the reinforced lens of the present invention, the glass preferably has a glass transition point (Tg) of 500 ° C. to 630 ° C.
The reinforced lens of the present invention preferably has a refractive index (nd) of 1.73 to 2.10 and an Abbe number (νd) of 15 to 45.
The reinforced lens of the present invention preferably has a refractive index (nd) of 1.63 or more and less than 1.73 and an Abbe number (νd) of 35 to 55.
The reinforced lens of the present invention preferably has a refractive index (nd) of 1.50 or more and less than 1.63 and an Abbe number (νd) of 45 to 65.
 本発明の強化レンズは、日本光学硝子工業会規格によるJOGIS06-2008に準拠して測定される耐水性が等級3以上であり、耐酸性が等級3以上であることが好ましい。
 本発明の強化レンズは、第1の主面および第2の主面の少なくとも一方の主面上に反射防止層を備えることが好ましい。
 本発明の強化レンズは、第1の主面および第2の主面の少なくとも一方の主面上に防汚コーティング層を備えることが好ましい。
The reinforced lens of the present invention preferably has a water resistance of grade 3 or higher and an acid resistance of grade 3 or higher as measured according to JOGIS06-2008 according to the Japan Optical Glass Industry Association standard.
The reinforced lens of the present invention preferably includes an antireflection layer on at least one main surface of the first main surface and the second main surface.
The reinforced lens of the present invention preferably includes an antifouling coating layer on at least one main surface of the first main surface and the second main surface.
 本発明は、SiOを30~65mol%、LiOを10mol%以上、SrO+BaOを0~10mol%含有し、かつLiO/(LiO+NaO+KO)が0.5以上であるガラスをレンズ成型体に成型し、
 該レンズ成型体を、少なくとも硝酸ナトリウムを含む強化溶融塩であり、前記強化溶融塩は質量%表示で硝酸ナトリウムを25%以上、かつ硝酸ナトリウムと硝酸カリウムを合量で95%以上含有する強化溶融塩を用いて、化学強化処理温度をT(単位:℃)、処理時間をt(単位:時間)としたときに、下記式(1)を満たす条件で化学強化処理する強化レンズの製造方法を提供する。
      30000<T1.8×t0.5<50000   式(1)
The present invention contains 30 to 65 mol% of SiO 2 , 10 mol% or more of Li 2 O, 0 to 10 mol% of SrO + BaO, and Li 2 O / (Li 2 O + Na 2 O + K 2 O) is 0.5 or more. Mold glass into a lens molding,
The lens molded body is a reinforced molten salt containing at least sodium nitrate, and the reinforced molten salt contains 25% or more of sodium nitrate in terms of mass%, and contains 95% or more of sodium nitrate and potassium nitrate in total. Is used to provide a method for manufacturing a reinforced lens that is chemically strengthened under conditions satisfying the following formula (1), where T (unit: ° C.) is the chemical strengthening temperature and t (unit: time) is the processing time. To do.
30000 <T 1.8 × t 0.5 <50000 Formula (1)
 本発明によれば、耐衝撃性に優れた強化レンズを提供できる。また、本発明によれば、耐衝撃性が高い強化レンズを製造する方法において、化学強化処理しても形状が大きく変化しない製造方法を提供できる。本発明の強化レンズは、例えば、車載用カメラの撮像レンズ等に用いた場合に、画質が低下することなく、過酷な使用環境にも充分耐えうる強度を有するものである。 According to the present invention, a reinforced lens having excellent impact resistance can be provided. In addition, according to the present invention, in a method for manufacturing a reinforced lens having high impact resistance, it is possible to provide a manufacturing method in which the shape does not change greatly even if chemical strengthening treatment is performed. The reinforced lens of the present invention has a strength that can sufficiently withstand a harsh usage environment without deteriorating the image quality when used for an imaging lens of a vehicle-mounted camera, for example.
本発明の実施形態の強化レンズの一例の断面図である。It is sectional drawing of an example of the reinforced lens of embodiment of this invention. 本発明において強化レンズの落球強度を評価する方法を示す概略図である。It is the schematic which shows the method of evaluating the falling ball intensity | strength of a reinforced lens in this invention.
 以下、本発明の実施形態について説明する。
[強化レンズ]
 本発明の強化レンズは、ガラスのレンズ成型体の化学強化レンズであって、前記ガラスは、SiOを30~65mol%、LiOを10mol%以上、SrO+BaOを0~10mol%含有し、かつLiO/(LiO+NaO+KO)が0.5以上である。
Hereinafter, embodiments of the present invention will be described.
[Strengthened lens]
The strengthening lens of the present invention is a chemically strengthened lens of a glass lens molded body, wherein the glass contains 30 to 65 mol% of SiO 2 , 10 mol% or more of Li 2 O, 0 to 10 mol% of SrO + BaO, and Li 2 O / (Li 2 O + Na 2 O + K 2 O) is 0.5 or more.
 本発明の強化レンズは、上記所定の組成を有するガラスをレンズ成型体とし、該レンズ成型体を化学強化処理して得られる。このようにして得られる本発明の強化レンズにおいては、化学強化処理後、基本的に形状補正は行わない。よって、上記化学強化処理は、成型により得られたレンズ成型体のレンズ形状が大きく変化しない条件で十分に耐衝撃性と機械的特性が得られなければならない。なお、ガラスをレンズ成型体とする方法および該レンズ成型体を化学強化処理する方法の詳細については後述する。 The reinforced lens of the present invention is obtained by using glass having the above-mentioned predetermined composition as a lens molded body, and chemically strengthening the lens molded body. In the reinforced lens of the present invention thus obtained, shape correction is basically not performed after the chemical strengthening process. Therefore, in the chemical strengthening treatment, sufficient impact resistance and mechanical characteristics must be obtained under the condition that the lens shape of the lens molded body obtained by molding does not change greatly. Details of a method of using glass as a lens molded body and a method of chemically strengthening the lens molded body will be described later.
 本発明の強化レンズは、例えば、十分な強度が要求される車載用カメラ等の撮像レンズの最も被写体側に配されるレンズとして好適に用いられる。車載用カメラ等の撮像レンズは、通常、被写体側から撮像素子に向かって光軸と交差するように複数枚のレンズが配置された構成を有する。最も被写体側に配されるレンズ以外(以下、「その他のレンズ」)は、外部に直接、晒されることがないため、最も被写体側に配されるレンズに比べて要求される強度は小さい。 The reinforced lens of the present invention is suitably used as a lens disposed on the most object side of an imaging lens such as an in-vehicle camera that requires sufficient strength, for example. An imaging lens such as a vehicle-mounted camera usually has a configuration in which a plurality of lenses are arranged so as to intersect the optical axis from the subject side toward the imaging element. Since lenses other than the lens arranged closest to the subject (hereinafter referred to as “other lenses”) are not directly exposed to the outside, the required intensity is smaller than the lens arranged closest to the subject.
 本発明における強化レンズの形状は、特に制限されず、使用される装置や用途に応じて適宜選択される。図1は本発明の実施形態の強化レンズの一例の断面図である。図1に示す強化レンズ10は、車載用カメラの最も被写体側に配されるレンズの典型例である。強化レンズ10は、被写体側に配される第1の主面1と第1の主面1に対向する第2の主面2を有する。第1の主面1は被写体側に凸形状の曲面であり曲率半径はR1である。強化レンズ10の直径はD1である。第2の主面2は中央部に直径D2の被写体側に凸形状の曲面を有し、該曲面の曲率半径はR2である。図1に示す強化レンズ10において、凸部の厚みがT1であり、第2の主面2の曲面の頂点と基部の距離がT2で示される。強化レンズ10の厚みはT1+T2をいう。 The shape of the reinforced lens in the present invention is not particularly limited, and is appropriately selected according to the device used and the application. FIG. 1 is a cross-sectional view of an example of a reinforced lens according to an embodiment of the present invention. A reinforced lens 10 shown in FIG. 1 is a typical example of a lens disposed on the most object side of a vehicle-mounted camera. The strengthening lens 10 has a first main surface 1 disposed on the subject side and a second main surface 2 facing the first main surface 1. The first main surface 1 is a curved surface having a convex shape on the subject side, and the radius of curvature is R1. The diameter of the reinforced lens 10 is D1. The second main surface 2 has a convex curved surface on the subject side having a diameter D2 at the center, and the radius of curvature of the curved surface is R2. In the reinforced lens 10 shown in FIG. 1, the thickness of the convex portion is T1, and the distance between the apex of the curved surface of the second main surface 2 and the base portion is indicated by T2. The thickness of the reinforced lens 10 is T1 + T2.
 具体的な強化レンズ10の大きさは、例えば、強化レンズ10の直径D1が5~50mm、第1の主面1における曲率半径R1が5~500mm、第2の主面2が有する曲面の直径D2が2~40mm、その曲率半径R2が2~400mm、凸部の厚みT1が0.1~10mmであり、第2の主面2の曲面の頂点と基部の距離T2が1~19mm、強化レンズ10の厚みが2~20mmである。なお、以下の説明において第2の主面2が有する曲面の曲率半径R2を、第2の主面2の曲率半径R2という。 The specific size of the reinforced lens 10 is, for example, a diameter D1 of the reinforced lens 10 of 5 to 50 mm, a radius of curvature R1 of the first main surface 1 of 5 to 500 mm, and a diameter of a curved surface of the second main surface 2. D2 is 2 to 40 mm, its radius of curvature R2 is 2 to 400 mm, the thickness T1 of the convex part is 0.1 to 10 mm, and the distance T2 between the vertex of the curved surface of the second main surface 2 and the base is 1 to 19 mm, strengthening The thickness of the lens 10 is 2 to 20 mm. In the following description, the curvature radius R2 of the curved surface of the second main surface 2 is referred to as the curvature radius R2 of the second main surface 2.
 なお、本発明の強化レンズは図1に示す断面形状の強化レンズに限定されない。本発明の強化レンズは凸型レンズを主に対象とし、被写体側に配される第1の主面に曲面をもち、第2の主面が平面形状である平凸形状の強化レンズであってもよい。 Note that the reinforced lens of the present invention is not limited to the reinforced lens having the cross-sectional shape shown in FIG. The reinforced lens of the present invention is a plano-convex reinforced lens mainly for convex lenses, having a curved surface on the first main surface disposed on the subject side, and a second main surface having a planar shape. Also good.
 本発明は、このような形状の強化レンズを得るために、ガラスを所定の形状に成型してレンズ成型体を得、その形状が大きく変化しない化学強化条件であっても十分に耐衝撃性と機械的特性が得られるように化学強化処理が行えるものである。 In order to obtain a reinforced lens having such a shape, the present invention obtains a molded lens by molding glass into a predetermined shape, and has sufficient impact resistance even under chemical strengthening conditions in which the shape does not change greatly. A chemical strengthening treatment can be performed so as to obtain mechanical properties.
 本発明者らは、上記課題を解決するために鋭意研究を重ねた結果、SiOを30~65mol%、LiOを10mol%以上、SrO+BaOを0~10mol%含有し、かつLiO/(LiO+NaO+KO)が0.5以上であるガラスをレンズ成型体に成型し、該レンズ成型体を所定の条件で化学強化処理することで、上記課題を解決できることを見出し、本発明を完成するに到った。本明細書においてガラスの組成を言う場合の%は、特に断りのない限り酸化物基準のmol%である。 As a result of intensive studies to solve the above problems, the present inventors have found that SiO 2 is contained in an amount of 30 to 65 mol%, Li 2 O is contained in an amount of 10 mol% or more, SrO + BaO is contained in an amount of 0 to 10 mol%, and Li 2 O / It is found that the above-mentioned problem can be solved by molding glass having a (Li 2 O + Na 2 O + K 2 O) of 0.5 or more into a lens molded body and subjecting the lens molded body to chemical strengthening treatment under predetermined conditions. The invention has been completed. In the present specification,% when referring to the composition of glass is mol% based on oxide unless otherwise specified.
 (I)一般にガラスの成型体における化学強化処理は、イオン半径の小さいアルカリイオンがイオン半径の大きいアルカリイオンに交換されることで、成型体の表面に圧縮応力層(以下、「強化層」ともいう。)が形成され、耐衝撃性や機械的特性が強化される処理である。アルカリイオンは、Li、Na、Kの順にイオン半径が大きく、化学強化処理においては、LiがNaまたはKに交換されるか、NaがKに交換されるが、その交換速度は前者の方が明らかに速い。 (I) In general, chemical strengthening treatment in a glass molded body is performed by replacing alkali ions having a small ion radius with alkali ions having a large ion radius, so that a compression stress layer (hereinafter referred to as “strengthening layer”) is formed on the surface of the molded body. Is formed, and the impact resistance and mechanical properties are enhanced. Alkali ions have larger ionic radii in the order of Li + , Na + and K + , and in the chemical strengthening treatment, Li + is exchanged with Na + or K + , or Na + is exchanged with K + , The exchange speed is clearly faster in the former.
 レンズ成型体のような3次元構造を持つ、とりわけ断面方向に非対称な形状をもつガラスの成型体を化学強化処理する場合、化学強化処理時間が長く、処理温度が高くなるに従い、形状が変化しやすくなる。また、化学強化処理が同条件の場合もNaがKに交換される場合、形状変化が大きいことを見出した。成型により得られたレンズ形状が大きく変化しない化学強化条件で十分に耐衝撃性と機械的特性が得られるため、本発明では、ガラスはLiOを10mol%以上含有する。化学強化処理を効率的にするため、LiOは12%以上が好ましく、15%以上がさらに好ましい。また、失透およびTgの低下による化学強化ガラスにおける応力緩和を抑制する観点から、ガラスにおけるLiOは30%以下が好ましく、25%以下がより好ましい。 When a glass molding having a three-dimensional structure, such as a lens molding, having an asymmetric shape in the cross-sectional direction is chemically strengthened, the shape changes as the chemical strengthening time increases and the processing temperature increases. It becomes easy. Further, it was found that even when the chemical strengthening treatment is performed under the same conditions, the shape change is large when Na + is replaced with K + . In the present invention, the glass contains 10 mol% or more of Li 2 O because sufficient impact resistance and mechanical properties can be obtained under chemical strengthening conditions in which the lens shape obtained by molding does not change significantly. In order to make the chemical strengthening treatment efficient, Li 2 O is preferably 12% or more, and more preferably 15% or more. Further, from the viewpoint of suppressing stress relaxation in chemically strengthened glass due to devitrification and Tg reduction, Li 2 O in the glass is preferably 30% or less, and more preferably 25% or less.
 (II)レンズ成型体を構成するガラスにおいて、アルカリ金属成分の合計含有量(LiO+NaO+KO)に対するLiO含有量の割合、LiO/(LiO+NaO+KO)は0.5以上である。LiO/(LiO+NaO+KO)を0.5以上とすることで、LiがNaまたはKに交換される効率を高めることができる。該割合は0.6以上がより好ましく、0.7以上がさらに好ましい。 (II) In the glass constituting the lens molding, the ratio of Li 2 O content to the total content of alkali metal components (Li 2 O + Na 2 O + K 2 O), Li 2 O / (Li 2 O + Na 2 O + K 2 O) Is 0.5 or more. By setting Li 2 O / (Li 2 O + Na 2 O + K 2 O) to 0.5 or more, the efficiency with which Li + is exchanged with Na + or K + can be increased. The ratio is more preferably 0.6 or more, and further preferably 0.7 or more.
 (III)レンズ成型体を構成するガラスにおいて、SrO+BaOは10mol%以下である。SrOおよびBaOは、化学強化処理を阻害し、かつガラスの比重を大きくする、耐衝撃性や機械的特性を悪化させる成分である。より好ましくは8%以下、さらに好ましくは6%以下である。SrOおよびBaOは、耐衝撃性や機械的特性の観点からは含有させないことが好ましいが、アッベ数を上げる、屈折率を上げる、ガラスの熱的安定性を向上させる等の理由から本目的を損なわない範囲で含有させてもよい。 (III) In the glass constituting the lens molding, SrO + BaO is 10 mol% or less. SrO and BaO are components that impair the impact resistance and mechanical properties that inhibit the chemical strengthening treatment and increase the specific gravity of the glass. More preferably, it is 8% or less, More preferably, it is 6% or less. SrO and BaO are preferably not included from the viewpoint of impact resistance and mechanical properties, but this purpose is lost for reasons such as increasing the Abbe number, increasing the refractive index, and improving the thermal stability of the glass. You may make it contain in the range which is not.
 (IV)ガラスにおいて、SiOは30~65mol%の範囲で含有される。SiOはガラスのネットワークフォーマーであり、30%未満では耐衝撃性や機械的特性が低下する。好ましくは35%以上、より好ましくは40%以上である。65%超ではTgが高くなり過ぎて効率的に化学強化処理ができなくなる、溶解温度が上がり生産性が損なわれる等のおそれがある。好ましくは62%以下、より好ましくは60%以下である。 (IV) In the glass, SiO 2 is contained in the range of 30 to 65 mol%. SiO 2 is a glass network former, and if it is less than 30%, impact resistance and mechanical properties deteriorate. Preferably it is 35% or more, more preferably 40% or more. If it exceeds 65%, Tg becomes too high and chemical strengthening treatment cannot be carried out efficiently, and the melting temperature rises and productivity may be impaired. Preferably it is 62% or less, More preferably, it is 60% or less.
 上記組成のガラスをレンズ成型体に成型し、化学強化処理して得られる本発明の強化レンズは、以下の耐衝撃性を有することが好ましい。本発明における耐衝撃性の指標として、落球強度を用いた。図2に落球強度試験の概略図を示す。 The reinforced lens of the present invention obtained by molding glass having the above composition into a lens molded body and chemically strengthening it preferably has the following impact resistance. The falling ball strength was used as an index of impact resistance in the present invention. FIG. 2 shows a schematic diagram of the falling ball strength test.
 本発明における落球強度とは、例えば、図2に示すように、水平面11に載置された強化レンズ10の中心Cに64.6gの鉄球12を落下させても破壊しない高さを意味し、試験は10cmの高さ(h)から開始し、割れなければ10cmずつ上げていき、強化レンズが割れた、もしくはクラックが入った時点で試験を終了させ、破壊する直前の高さ(h)を落球強度とした。 The falling ball strength in the present invention means, for example, a height that does not break even if a 64.6 g iron ball 12 is dropped on the center C of the reinforced lens 10 placed on the horizontal surface 11 as shown in FIG. The test starts from a height of 10 cm (h), and if it is not broken, it is raised by 10 cm. When the reinforced lens is broken or cracked, the test is terminated and the height (h) immediately before breaking. Was the falling ball strength.
 本発明の強化レンズは、落球強度が80cm以上(0.5Jに相当)であるのが好ましい。落球強度の試験に用いる強化レンズは、所定の形状、すなわち、図1に示す強化レンズにおいて、強化レンズ10の直径D1が14mm、第1の主面1における曲率半径R1が12mm、第2の主面2が有する曲面の直径D2が5.72mm、その曲率半径R2が3mm、凸部の厚みT1が1.4mmであり、第2の主面2の曲面の頂点と基部の距離T2が2.1mm、強化レンズ10の厚みが3.5mmである試験用強化レンズとする。 The reinforced lens of the present invention preferably has a falling ball strength of 80 cm or more (corresponding to 0.5 J). The strengthening lens used for the drop-ball strength test has a predetermined shape, that is, in the strengthening lens shown in FIG. 1, the diameter D1 of the strengthening lens 10 is 14 mm, the radius of curvature R1 on the first principal surface 1 is 12 mm, and the second principal The curved surface diameter D2 of the surface 2 is 5.72 mm, the curvature radius R2 thereof is 3 mm, the convex portion thickness T1 is 1.4 mm, and the distance T2 between the vertex of the curved surface of the second main surface 2 and the base portion is 2. The test reinforced lens is 1 mm, and the thickness of the reinforced lens 10 is 3.5 mm.
 上記組成のガラスをレンズ成型体に成型し化学強化処理して得られる本発明の強化レンズにおいては、化学強化前後におけるレンズ形状変化は以下の範囲にあることが好ましい。化学強化前後におけるレンズ形状変化は、例えば、以下の方法で測定できる。 In the reinforced lens of the present invention obtained by molding glass having the above composition into a lens molded body and chemically strengthening it, it is preferable that the lens shape change before and after chemical strengthening is in the following range. The lens shape change before and after chemical strengthening can be measured, for example, by the following method.
 レンズ成型体として、互いに対向する第1の主面および第2の主面を有し、直径14mm、第1の主面の曲率半径12mm並びに第2の主面の曲率半径3mmに成型したときの、化学強化前後での第1の主面の曲率半径の変化量を測定する。より具体的には、化学強化処理に用いるレンズ成型体の形状は、上記落球試験に用いる強化レンズの形状と同じ形状である。 The lens molded body has a first main surface and a second main surface facing each other, and is molded into a diameter of 14 mm, a radius of curvature of 12 mm of the first main surface, and a radius of curvature of 3 mm of the second main surface. The amount of change in the radius of curvature of the first main surface before and after chemical strengthening is measured. More specifically, the shape of the molded lens used for the chemical strengthening treatment is the same as the shape of the strengthened lens used for the falling ball test.
 レンズ成型体および化学強化処理して得られる強化レンズの第1の主面の曲率半径は、例えば、3D計測機(KEYENCE社製、VR-3200)で測定できる。なお、試験の際の化学強化処理の条件としては、例えば、強化溶融塩全量に対して硝酸ナトリウムを25%質量、硝酸カリウムを75質量%含有する強化溶融塩を用いて、400℃、1時間の条件が挙げられる。 The radius of curvature of the first principal surface of the lens molded body and the reinforced lens obtained by chemical strengthening treatment can be measured, for example, with a 3D measuring device (manufactured by KEYENCE, VR-3200). In addition, as conditions for the chemical strengthening treatment in the test, for example, using a strengthened molten salt containing 25% by mass of sodium nitrate and 75% by mass of potassium nitrate with respect to the total amount of the strengthened molten salt, Conditions are mentioned.
 本発明における強化レンズは、このようにして評価される、化学強化処理前後における第1の主面における曲率半径の変化量が10μm以下であることが好ましい。第1の主面における曲率半径の変化量が10μm超では、化学強化処理後に研磨等による形状補正をしないと、カメラの撮像光学系に組み込んだ際、特に光軸から離れた周辺部の結像がズレて、画質が低下するおそれがある。さらに形状補正のために研磨を施すと、化学強化処理により得られた強化層が失われ、耐衝撃性と機械的特性の向上も期待できなくなるおそれがある。化学強化処理前後における第1の主面における曲率半径の変化量は、好ましくは5μm以下、さらに好ましくは3μm以下、特に好ましくは1μm以下である。 In the reinforced lens of the present invention, it is preferable that the amount of change in the radius of curvature on the first main surface before and after the chemical tempering treatment is 10 μm or less as evaluated in this way. When the amount of change in the radius of curvature on the first main surface exceeds 10 μm, if the shape correction by polishing or the like is not performed after the chemical strengthening process, the image is formed particularly in the peripheral part away from the optical axis when incorporated in the imaging optical system of the camera. May shift and the image quality may deteriorate. Further, when polishing is performed for shape correction, the reinforcing layer obtained by the chemical strengthening treatment is lost, and it may be impossible to expect improvement in impact resistance and mechanical properties. The amount of change in the radius of curvature on the first main surface before and after the chemical strengthening treatment is preferably 5 μm or less, more preferably 3 μm or less, and particularly preferably 1 μm or less.
 さらに、本発明の強化レンズにおける強度の指標として、ビッカース圧子を用いて圧痕を形成した際のクラックの発生率が50%となるビッカース圧子の荷重(該荷重を、クラックイニシエーションロード(CIL)という。)を用いることができる。 Furthermore, as an index of strength in the reinforced lens of the present invention, the load of the Vickers indenter at which the occurrence rate of cracks when the indentation is formed using the Vickers indenter is 50% (this load is referred to as crack initiation load (CIL)). ) Can be used.
 CILはクラック耐性の指標であり、CILが大きいほどクラックの生じにくいことを示す。本発明の強化レンズのCILは、100gf以上が好ましく、200gf以上がより好ましく、300gf以上がさらに好ましい。 CIL is an index of crack resistance, and the larger the CIL, the less likely it is to crack. The CIL of the reinforced lens of the present invention is preferably 100 gf or more, more preferably 200 gf or more, and further preferably 300 gf or more.
 なお、本明細書において、本発明の強化レンズのCILの値は、以下の方法で求めた、該強化レンズに用いるガラスを板状に成型し化学強化処理した評価用サンプルにおけるCILの値をいう。 In the present specification, the CIL value of the reinforced lens of the present invention refers to the CIL value in an evaluation sample obtained by molding the glass used for the reinforced lens into a plate shape and chemically strengthened, obtained by the following method. .
 厚さ2mmのガラス板の両面を鏡面研磨した後に強化処理をした評価用サンプルの表面に、ビッカース硬度試験機にて、ビッカース圧子を15秒間押し込んだ後にビッカース圧子をはずし、15秒後に圧痕付近を観測する。100gf、200gf、300gf、500gf、1000gf、2000gfのビッカース圧子の押し込み荷重に対して発生したクラック本数の平均値を荷重ごとに算出する。荷重とクラック本数との関係を、シグモイド関数を用いて回帰計算し、回帰計算結果から、クラック本数が2本となる荷重を評価用サンプルのCIL(gf)とすることができる。圧痕の4隅の全てから合計4本のクラックが発生する場合を発生率100%とする。 A Vickers hardness tester was used to push the Vickers indenter for 15 seconds on the surface of the evaluation sample that had been mirror-polished on both sides of a 2 mm thick glass plate and then removed the Vickers indenter. Observe. An average value of the number of cracks generated with respect to the indentation load of the Vickers indenter of 100 gf, 200 gf, 300 gf, 500 gf, 1000 gf, and 2000 gf is calculated for each load. The relationship between the load and the number of cracks is calculated by regression using a sigmoid function. From the regression calculation result, the load at which the number of cracks is two can be used as the CIL (gf) of the sample for evaluation. The occurrence rate is 100% when a total of four cracks are generated from all four corners of the indentation.
 本発明の強化レンズにおける強化層の圧縮応力(CS;Compressive stress)は、好ましくは50MPa以上、より好ましくは100MPa以上、さらに好ましくは150MPa以上である。  Compressive stress (CS) of the reinforcing layer in the reinforced lens of the present invention is preferably 50 MPa or more, more preferably 100 MPa or more, and further preferably 150 MPa or more.
 本発明の強化レンズにおける強化層の深さ(DOL;Depth of layer)は、表面から5μm以上であることが好ましい。より好ましくは10μm以上、さらに好ましくは20μm以上である。強化レンズの形状を考慮すると、強化層の厚みは500μm以下が好ましい。強化層の厚みは、より好ましくは300μm以下、さらに好ましくは200μm以下である。本発明における強化レンズのCS並びにDOLは、強化レンズの第1の主面中央部において測定することが好ましい。 The depth of the reinforcing layer (DOL; Depth of layer) in the reinforced lens of the present invention is preferably 5 μm or more from the surface. More preferably, it is 10 micrometers or more, More preferably, it is 20 micrometers or more. Considering the shape of the reinforced lens, the thickness of the reinforced layer is preferably 500 μm or less. The thickness of the reinforcing layer is more preferably 300 μm or less, and further preferably 200 μm or less. The CS and DOL of the reinforced lens in the present invention are preferably measured at the central portion of the first main surface of the reinforced lens.
 CS及びDOLは、例えば、複屈折イメージングシステムAbrio(東京インスツルメンツ社製)により、強化レンズ断面の強化層に光を通すことで表面圧縮応力層のリタデーションを計測し、ガラスの光弾性定数を用いて、算出できる。 CS and DOL, for example, measure the retardation of the surface compressive stress layer by passing light through the reinforcing layer on the cross section of the reinforced lens using a birefringence imaging system Abrio (manufactured by Tokyo Instruments), and use the photoelastic constant of the glass. Can be calculated.
 本発明の強化レンズは日本光学硝子工業会規格による「光学ガラスの化学的耐久性の測定方法(粉末法)」(JOGIS06-2008)に準拠して測定される耐水性(RW)が等級3以上であり、耐酸性(RA)が等級3以上であることが好ましい。なお、本発明の強化レンズにおいては強化層のRW、RAと強化レンズ内部のガラスのRW、RAとは厳密には異なるが、本発明においては等級が異なるほどの大きな差はないものとして、本発明において両者は実質的に同じとして扱う。 The reinforced lens of the present invention has a water resistance (RW) of grade 3 or higher measured according to the “Optical Glass Chemical Durability Measurement Method (Powder Method)” (JOGIS06-2008) according to the Japan Optical Glass Industry Association Standard. The acid resistance (RA) is preferably grade 3 or higher. In the reinforced lens of the present invention, the RW and RA of the reinforced layer and the RW and RA of the glass inside the reinforced lens are strictly different, but in the present invention, there is no great difference that the grade is different. In the invention, both are treated as substantially the same.
 RWは、具体的には、次のように測定される。直径が420~600μmのガラス粉末について、100℃の純水80mL中に1時間浸漬したときの質量減少割合(%)を測定する。質量減少割合に応じて、所定の等級が付される。等級は数値の小さい方が、RWが良好であることを示す。本発明の強化レンズはRWが等級2以上であることがより好ましく、1が特に好ましい。 Specifically, RW is measured as follows. For a glass powder having a diameter of 420 to 600 μm, a mass reduction rate (%) when immersed in 80 mL of pure water at 100 ° C. for 1 hour is measured. A predetermined grade is given according to the mass reduction rate. The smaller the numerical value, the better the RW. In the reinforced lens of the present invention, RW is more preferably grade 2 or more, and 1 is particularly preferred.
 RAは、具体的には、次のように測定される。直径が420~600μmのガラス粉末について、100℃の0.01規定の硝酸水溶液80mL中に1時間浸漬した時の質量減少割合(%)を測定する。質量減少割合に応じて、所定の等級が付される。等級は数値の小さい方がRAの良好であることを示す。本発明の強化レンズはRAが等級2以上であることがより好ましく、1が特に好ましい。 Specifically, RA is measured as follows. For a glass powder having a diameter of 420 to 600 μm, a mass reduction ratio (%) when immersed in 80 mL of a 0.01 N nitric acid aqueous solution at 100 ° C. for 1 hour is measured. A predetermined grade is given according to the mass reduction rate. The smaller the numerical value, the better the RA. In the reinforced lens of the present invention, RA is more preferably grade 2 or more, and 1 is particularly preferred.
 本発明の強化レンズにおいてガラスは、比重が4.0g/cm以下であることが好ましい。なお、本発明の強化レンズにおいては、強化層の比重と強化レンズ内部のガラスの比重とは、小数点以下第1位ではほぼ同等であり、同じものとして扱う。これにより、強化レンズとした場合にクラックが発生しにくい。そのため、クラックを起点とする割れの生じにくい高強度の強化レンズが得られる。比重は、3.7g/cm以下であることが好ましく、3.5g/cm以下であることがより好ましい。 In the reinforced lens of the present invention, the glass preferably has a specific gravity of 4.0 g / cm 3 or less. In the reinforced lens of the present invention, the specific gravity of the reinforced layer and the specific gravity of the glass inside the reinforced lens are substantially the same at the first place after the decimal point and are treated as the same. Thereby, when it is set as a reinforced lens, a crack is hard to generate | occur | produce. Therefore, a high-strength reinforced lens that hardly causes cracks starting from cracks can be obtained. The specific gravity is preferably 3.7 g / cm 3 or less, and more preferably 3.5 g / cm 3 or less.
 本発明の強化レンズにおいてガラスは、ガラス転移点(Tg)が500℃以上630℃以下であるのが好ましい。本発明の強化レンズにおいては強化層のTgと、強化レンズ内部のガラスのTgとは、ほぼ同等であり、同じものとして扱う。ガラスが、630℃以下の低いTgを有することで、例えば、強化レンズを製造効率の高い精密プレス成型(以下、単に「プレス成型」という。)によって生産する際の成型性が良好である。また、Tgは低すぎると強化層を有する強化レンズにおいて圧縮応力の緩和が起きやすいため500℃以上であることが好ましい。ガラスのTgは、好ましくは520~600℃、さらに好ましくは、540~590℃である。Tgは、例えば熱膨張法により測定することができる。 In the reinforced lens of the present invention, the glass preferably has a glass transition point (Tg) of 500 ° C. or higher and 630 ° C. or lower. In the reinforced lens of the present invention, the Tg of the reinforced layer and the Tg of the glass inside the reinforced lens are substantially the same and are treated as the same. When glass has a low Tg of 630 ° C. or lower, for example, moldability when producing a reinforced lens by precision press molding with high manufacturing efficiency (hereinafter simply referred to as “press molding”) is good. In addition, if Tg is too low, it is preferable that the temperature is 500 ° C. or higher because compression stress is likely to be relaxed in a reinforced lens having a reinforced layer. The Tg of the glass is preferably 520 to 600 ° C, more preferably 540 to 590 ° C. Tg can be measured by, for example, a thermal expansion method.
 本発明において、ヤング率は強化レンズ内部のガラスのヤング率をいう。ヤング率は、好ましくは80GPa以上、より好ましくは90GPa以上、さらに好ましくは95GPa以上、よりさらに好ましくは100GPa以上である。 In the present invention, the Young's modulus refers to the Young's modulus of the glass inside the reinforced lens. The Young's modulus is preferably 80 GPa or more, more preferably 90 GPa or more, still more preferably 95 GPa or more, and still more preferably 100 GPa or more.
 本発明において、強化レンズの屈折率(nd)とアッベ数(νd)は、強化レンズ内部のガラスの屈折率とアッベ数を意味する。厳密的には強化層の屈折率と強化レンズ内部のガラスの屈折率とは異なるが、小数点以下第3位で数値が異なる程度であり、本発明において両者は実質的に同じとして扱う。 In the present invention, the refractive index (nd) and Abbe number (νd) of the reinforced lens mean the refractive index and Abbe number of the glass inside the reinforced lens. Strictly speaking, the refractive index of the reinforcing layer is different from the refractive index of the glass inside the reinforcing lens, but the numerical value is different to the third place after the decimal point. In the present invention, both are treated as substantially the same.
 本発明における強化レンズは、屈折率が1.50~2.10であることが好ましく、仕様により3つの場合に分けられる。
<第一の仕様の強化レンズ>
 第一の仕様の強化レンズは、より小型で広い範囲を撮影し、かつより撮像素子に近い側に配されるその他のレンズが色収差を十分に補正できるようなアッベ数の高いガラス製レンズを使用できる場合に好適な強化レンズである。第一の仕様の強化レンズは、屈折率(nd)が1.73~2.10、アッベ数(νd)が15~45の範囲が好ましい。より好ましくはndが1.75~2.00、νdが20~43の範囲、さらに好ましくは、ndが1.77~1.90、νdが25~41の範囲である。
The reinforced lens in the present invention preferably has a refractive index of 1.50 to 2.10, and is divided into three cases according to the specification.
<Strengthened lens of the first specification>
The first type of reinforced lens uses a glass lens with a high Abbe number that can shoot a smaller and wider area and that other lenses placed closer to the image sensor can sufficiently correct chromatic aberration. It is a reinforced lens suitable when possible. The reinforced lens of the first specification preferably has a refractive index (nd) in the range of 1.73 to 2.10 and an Abbe number (νd) in the range of 15 to 45. More preferably, nd is in the range of 1.75 to 2.00 and νd is in the range of 20 to 43, and further preferably, nd is in the range of 1.77 to 1.90 and νd is in the range of 25 to 41.
<第二の仕様の強化レンズ>
 第二の仕様の強化レンズは、高解像度かつ広い範囲を撮影する場合や、コストの観点から、より撮像素子に近い側に配されるレンズが色収差を十分に補正できるようなアッベ数の高いガラス製レンズを使用できず、コストの低いガラス製もしくは樹脂製レンズを使用する場合に好適な強化レンズである。第二の仕様の強化レンズは、屈折率(nd)が1.63以上1.73未満、アッベ数(νd)が35~55の範囲が好ましい。より好ましくはndが1.65~1.72、νdが40~53の範囲、さらに好ましくは、ndが1.67~1.70、νdが45~51の範囲である。
<Strengthened lens of the second specification>
The reinforced lens of the second specification is a glass with a high Abbe number so that the lens arranged on the side closer to the imaging device can sufficiently correct chromatic aberration when photographing a wide range with high resolution and cost. This lens is a reinforced lens that cannot be used with a lens, and is suitable when a low-cost glass or resin lens is used. The reinforced lens of the second specification preferably has a refractive index (nd) of 1.63 or more and less than 1.73 and an Abbe number (νd) of 35 to 55. More preferably, nd is in the range of 1.65 to 1.72, and νd is in the range of 40 to 53, and further preferably, nd is in the range of 1.67 to 1.70, and νd is in the range of 45 to 51.
<第三の仕様の強化レンズ>
 第三の仕様の強化レンズは、視野角よりも高解像度を重視する場合や、コストの観点から、より撮像素子に近い側に配されるレンズが樹脂製レンズしか使用できない場合に好適な強化レンズである。第三の仕様の強化レンズは、屈折率(nd)が1.50以上1.63未満、アッベ数(νd)が45~65の範囲が好ましい。より好ましくはndが1.55~1.62、νdが50~63の範囲、さらに好ましくは、ndが1.57~1.61、νdが55~61の範囲である。
<Third specification reinforced lens>
The third type of reinforced lens is a reinforced lens that is suitable when high resolution is more important than the viewing angle, or when the lens placed closer to the image sensor can only be used from the viewpoint of cost. It is. The reinforced lens of the third specification preferably has a refractive index (nd) of 1.50 or more and less than 1.63 and an Abbe number (νd) of 45 to 65. More preferably, nd is in the range of 1.55 to 1.62 and νd is in the range of 50 to 63, and further preferably, nd is in the range of 1.57 to 1.61 and νd is in the range of 55 to 61.
 本発明の強化レンズの屈折率が1.50~2.10であるためには、本発明の強化レンズに用いるガラスは、さらに、酸化物基準のmol%表示で、
 SiO: 30%~65%、
 Al: 0%~20%、
 B: 0%~40%、
 P: 0%~20%、
 MgO: 0%~20%、
 CaO: 0%~20%、
 SrO: 0%~10%、
 BaO: 0%~10%、
 ZnO: 0%~20%、
 TiO: 0%~20%、
 ZrO: 0%~15%、
 LiO+NaO+KO: 10%~30%、
 LiO: 10%~30%、
 NaO: 0%~15%、
 KO: 0%~5%、
 Nb: 0%~30%、
 Ln: 0%~20%、
 La: 0%~20%、
 Y: 0%~20%、
 Gd: 0%~20%、
 Ta: 0%~20%、
 WO:  0%~20% を含有することが好ましい。
 上記においてLnは、La+Y+Gdを示す。以下の記載においても同様である。
In order for the refractive index of the reinforced lens of the present invention to be 1.50 to 2.10, the glass used for the reinforced lens of the present invention is further expressed in mol% on an oxide basis.
SiO 2 : 30% to 65%,
Al 2 O 3 : 0% to 20%,
B 2 O 3 : 0% to 40%,
P 2 O 5 : 0% to 20%,
MgO: 0% to 20%,
CaO: 0% to 20%,
SrO: 0% to 10%,
BaO: 0% to 10%,
ZnO: 0% to 20%,
TiO 2 : 0% to 20%,
ZrO 2 : 0% to 15%,
Li 2 O + Na 2 O + K 2 O: 10% to 30%,
Li 2 O: 10% to 30%,
Na 2 O: 0% to 15%,
K 2 O: 0% to 5%,
Nb 2 O 5 : 0% to 30%,
Ln 2 O 3 : 0% to 20%,
La 2 O 3 : 0% to 20%,
Y 2 O 3 : 0% to 20%,
Gd 2 O 3 : 0% to 20%,
Ta 2 O 5 : 0% to 20%,
WO 3 : It is preferable to contain 0% to 20%.
Ln 2 O 3 in the above shows the La 2 O 3 + Y 2 O 3 + Gd 2 O 3. The same applies to the following description.
 本発明の第一の仕様の強化レンズの屈折率が1.73~2.10であるためには、本発明の第一の仕様の強化レンズに用いるガラスは、さらに、酸化物基準のmol%表示で、
 SiO: 30%~55%、
 Al: 0%~5%、
 B: 0%~40%、
 P: 0%~20%、
 MgO: 0%~10%、
 CaO: 0%~10%、
 SrO: 0%~10%、
 BaO: 0%~10%、
 ZnO: 0%~20%、
 TiO: 0%~20%、
 ZrO: 0%~15%、
 LiO+NaO+KO: 10%~30%、
 LiO: 10%~30%、
 NaO: 0%~15%、
 KO: 0%~5%、
 Nb: 0%~30%、
 Ln: 0%~20%、
 La: 0%~20%、
 Y: 0%~20%、
 Gd: 0%~20%、
 Ta: 0%~20%、
 WO:  0%~20%
 を含有することが好ましい。
In order for the refractive index of the reinforced lens of the first specification of the present invention to be 1.73 to 2.10, the glass used for the reinforced lens of the first specification of the present invention may further include mol% based on oxide. In the display,
SiO 2 : 30% to 55%,
Al 2 O 3 : 0% to 5%,
B 2 O 3 : 0% to 40%,
P 2 O 5 : 0% to 20%,
MgO: 0% to 10%,
CaO: 0% to 10%,
SrO: 0% to 10%,
BaO: 0% to 10%,
ZnO: 0% to 20%,
TiO 2 : 0% to 20%,
ZrO 2 : 0% to 15%,
Li 2 O + Na 2 O + K 2 O: 10% to 30%,
Li 2 O: 10% to 30%,
Na 2 O: 0% to 15%,
K 2 O: 0% to 5%,
Nb 2 O 5 : 0% to 30%,
Ln 2 O 3 : 0% to 20%,
La 2 O 3 : 0% to 20%,
Y 2 O 3 : 0% to 20%,
Gd 2 O 3 : 0% to 20%,
Ta 2 O 5 : 0% to 20%,
WO 3: 0% ~ 20%
It is preferable to contain.
 また、本発明の第二の仕様の強化レンズの屈折率が1.63以上1.73未満であるためには、本発明の第二の仕様の強化レンズに用いるガラスはさらに、酸化物基準のmol%表示で、
 SiO: 30%~60%、
 Al: 0%~10%、
 B: 0%~20%、
 P: 0%~20%、
 MgO: 0%~20%、
 CaO: 0%~20%、
 SrO: 0%~10%、
 BaO: 0%~10%、
 ZnO: 0%~20%、
 TiO: 0%~5%、
 ZrO: 0%~15%、
 LiO+NaO+KO: 10%~30%、
 LiO: 10%~30%、
 NaO: 0%~10%、
 KO: 0%~5%、
 Nb: 0%~15%、
 Ln: 0%~20%、
 La: 0%~20%、
 Y: 0%~10%、
 Gd: 0%~10%、
 Ta: 0%~10%、
 WO:  0%~10%
 を含有し、SiO+Al+B+Pが30%以上65%未満であることが好ましい。第二の仕様の強化レンズに用いるガラスは、B/LiOが0.75以下さらには0.7以下であるのが好ましい。
In addition, in order for the refractive index of the reinforced lens of the second specification of the present invention to be 1.63 or more and less than 1.73, the glass used for the reinforced lens of the second specification of the present invention is further oxide-based. In mol% display
SiO 2 : 30% to 60%,
Al 2 O 3 : 0% to 10%,
B 2 O 3 : 0% to 20%,
P 2 O 5 : 0% to 20%,
MgO: 0% to 20%,
CaO: 0% to 20%,
SrO: 0% to 10%,
BaO: 0% to 10%,
ZnO: 0% to 20%,
TiO 2 : 0% to 5%,
ZrO 2 : 0% to 15%,
Li 2 O + Na 2 O + K 2 O: 10% to 30%,
Li 2 O: 10% to 30%,
Na 2 O: 0% to 10%,
K 2 O: 0% to 5%,
Nb 2 O 5 : 0% to 15%,
Ln 2 O 3 : 0% to 20%,
La 2 O 3 : 0% to 20%,
Y 2 O 3 : 0% to 10%
Gd 2 O 3 : 0% to 10%,
Ta 2 O 5 : 0% to 10%,
WO 3 : 0% to 10%
Contains, it is preferable SiO 2 + Al 2 O 3 + B 2 O 3 + P 2 O 5 is less than 65% to 30%. The glass used for the reinforced lens of the second specification preferably has B 2 O 3 / Li 2 O of 0.75 or less, and more preferably 0.7 or less.
 また、本発明の第三の仕様の強化レンズの屈折率が1.50以上1.63未満であるためには、本発明の第三の仕様の強化レンズに用いるガラスはさらに、酸化物基準のmol%表示で、
 SiO: 30%~65%、
 Al: 0%~20%、
 B: 0%~40%、
 P: 0%~20%、
 MgO: 0%~20%、
 CaO: 0%~20%、
 SrO: 0%~10%、
 BaO: 0%~10%、
 ZnO: 0%~20%、
 TiO: 0%~5%、
 ZrO: 0%~10%、
 LiO+NaO+KO: 10%~25%、
 LiO: 10%~20%、
 NaO: 0%~10%、
 KO: 0%~5%、
 Nb: 0%~10%、
 Ln: 0%~10%、
 La: 0%~10%、
 Y: 0%~5%、
 Gd: 0%~5%、
 Ta: 0%~5%、
 WO:  0%~5%
 を含有し、SiO+Al+B+Pが65%以上80%未満かつ、TiO+Nb+WOが10%以下であることが好ましい。
In addition, in order for the refractive index of the reinforced lens of the third specification of the present invention to be 1.50 or more and less than 1.63, the glass used for the reinforced lens of the third specification of the present invention is further oxide-based. In mol% display
SiO 2 : 30% to 65%,
Al 2 O 3 : 0% to 20%,
B 2 O 3 : 0% to 40%,
P 2 O 5 : 0% to 20%,
MgO: 0% to 20%,
CaO: 0% to 20%,
SrO: 0% to 10%,
BaO: 0% to 10%,
ZnO: 0% to 20%,
TiO 2 : 0% to 5%,
ZrO 2 : 0% to 10%,
Li 2 O + Na 2 O + K 2 O: 10% to 25%,
Li 2 O: 10% to 20%,
Na 2 O: 0% to 10%,
K 2 O: 0% to 5%,
Nb 2 O 5 : 0% to 10%,
Ln 2 O 3 : 0% to 10%,
La 2 O 3 : 0% to 10%,
Y 2 O 3 : 0% to 5%,
Gd 2 O 3 : 0% to 5%,
Ta 2 O 5 : 0% to 5%,
WO 3 : 0% to 5%
Containing, SiO 2 + Al 2 O 3 + B 2 O 3 + P 2 O 5 and is 65% and less than 80%, it is preferred TiO 2 + Nb 2 O 5 + WO 3 is 10% or less.
 以下に、第一~第三の仕様の強化レンズに用いられるガラスについて説明する。なお、本発明に用いるガラスは、得られる強化レンズが上記した特性を有する限り、第一~第三の仕様の強化レンズに用いられるガラスの組成に限定されないが、以下の範囲であることが好ましい。また、それぞれのガラスにおいて、「実質的に含有しない」とは、不可避不純物を除き含有しないことを意味する。不可避不純物の含有量は、本発明において0.1%以下である。好ましくは0.05%以下、より好ましくは0.02%以下である。 The glass used for the reinforced lenses of the first to third specifications will be described below. The glass used in the present invention is not limited to the composition of the glass used for the reinforced lenses of the first to third specifications as long as the obtained reinforced lens has the characteristics described above, but is preferably in the following range. . In each glass, “substantially does not contain” means that it is not contained except for inevitable impurities. The content of inevitable impurities is 0.1% or less in the present invention. Preferably it is 0.05% or less, More preferably, it is 0.02% or less.
<第一の仕様の強化レンズに用いられるガラス>
 以下、第一の仕様の強化レンズに用いられるガラスの組成について説明する。
 SiOはガラスのネットワークフォーマーで必須成分であり、30%未満では耐衝撃性や機械的特性が低下する。好ましくは35%以上、より好ましくは40%以上である。55%超では屈折率が低下するおそれがある。好ましくは54%以下、より好ましくは52%以下である。
<Glass used for reinforced lenses of the first specification>
Hereinafter, the composition of the glass used for the reinforced lens of the first specification will be described.
SiO 2 is an essential component in a glass network former, and if it is less than 30%, impact resistance and mechanical properties are lowered. Preferably it is 35% or more, more preferably 40% or more. If it exceeds 55%, the refractive index may decrease. Preferably it is 54% or less, More preferably, it is 52% or less.
 Alは、任意成分である。Alは、化学的耐久性を向上させ、耐衝撃性や機械的特性を向上させる成分であるが、Alが多くなると、屈折率が低くなる、Tgが高くなりすぎる、ガラスが失透し易くなるおそれがある。好ましくは3%以下、より好ましくは2%以下である。 Al 2 O 3 is an optional component. Al 2 O 3 is a component that improves chemical durability and improves impact resistance and mechanical properties, but when Al 2 O 3 increases, the refractive index decreases, Tg increases too much, glass May be easily devitrified. Preferably it is 3% or less, More preferably, it is 2% or less.
 Bは、任意成分である。Bは、Tgを低くし、ガラスの熱的安定性を向上させ、耐衝撃性や機械的特性を向上させる成分であるが、Bの量が多いと屈折率が低下し易い、化学的耐久性が低下するおそれがある。好ましくは30%以下、より好ましくは20%以下である。 B 2 O 3 is an optional component. B 2 O 3 is a component that lowers the Tg, improves the thermal stability of the glass, and improves impact resistance and mechanical properties. However, if the amount of B 2 O 3 is large, the refractive index decreases. There is a risk that chemical durability tends to decrease. Preferably it is 30% or less, more preferably 20% or less.
 Pは、任意成分である。Pは、Tgを低くする成分であり、アッベ数を調整するための成分であるが、Pの量が多いと屈折率、耐衝撃性や機械的特性が低下し易い。好ましくは10%以下、より好ましくは4%以下、さらに好ましくは2%以下である。Pは、実質的に含有されないことが最も好ましい。 P 2 O 5 is an optional component. P 2 O 5 is a component that lowers the Tg and is a component for adjusting the Abbe number. However, if the amount of P 2 O 5 is large, the refractive index, impact resistance, and mechanical properties are likely to be lowered. Preferably it is 10% or less, More preferably, it is 4% or less, More preferably, it is 2% or less. Most preferably, P 2 O 5 is not substantially contained.
 MgOは、任意成分である。MgOは、ガラスの溶融性を向上させ、失透を抑制し、ガラスのアッベ数や屈折率等の光学恒数を調整する成分である。一方、MgOの量が多くなると、かえって失透を促進してしまう。好ましくは5%以下、より好ましくは3%以下である。 MgO is an optional component. MgO is a component that improves the meltability of glass, suppresses devitrification, and adjusts optical constants such as the Abbe number and refractive index of glass. On the other hand, when the amount of MgO increases, devitrification is promoted. Preferably it is 5% or less, More preferably, it is 3% or less.
 CaOは、任意成分である。CaOは、失透を抑制し、ガラスのアッベ数や屈折率等の光学恒数を調整する成分である。一方、CaOの量が多いと、化学強化処理を阻害し、耐衝撃性や機械的特性が低下し易い。そのため、CaOが含有される場合には、好ましくは5%以下、より好ましくは3%以下である。 CaO is an optional component. CaO is a component that suppresses devitrification and adjusts optical constants such as the Abbe number and refractive index of glass. On the other hand, when the amount of CaO is large, the chemical strengthening treatment is hindered, and the impact resistance and mechanical properties are likely to deteriorate. Therefore, when CaO is contained, it is preferably 5% or less, more preferably 3% or less.
 SrOは、任意成分である。SrOは、失透を抑制し、ガラスのアッベ数や屈折率等の光学恒数を調整する成分である。一方、SrOの量が多いと、化学強化処理を阻害し、かつガラスの比重を大きくする、耐衝撃性や機械的特性を著しく低下させる。そのため、SrOが含有される場合には、好ましくは5%以下、より好ましくは3%以下、さらに好ましくは2%以下である。SrOは、実質的に含有されないことが最も好ましい。 SrO is an optional component. SrO is a component that suppresses devitrification and adjusts optical constants such as the Abbe number and refractive index of glass. On the other hand, if the amount of SrO is large, the impact resistance and mechanical properties, which impede the chemical strengthening treatment and increase the specific gravity of the glass, are significantly reduced. Therefore, when SrO is contained, it is preferably 5% or less, more preferably 3% or less, and further preferably 2% or less. Most preferably, SrO is not substantially contained.
 BaOは、任意成分である。BaOは、失透を抑制し、ガラスのアッベ数や屈折率等の光学恒数を調整する成分である。一方、BaOの量が多いと、化学強化処理を阻害し、かつガラスの比重を大きくする、耐衝撃性や機械的特性を著しく低下させる。そのため、BaOが含有される場合には、好ましくは5%以下、より好ましくは3%以下、さらに好ましくは2%以下である。BaOは、実質的に含有されないことが最も好ましい。 BaO is an optional component. BaO is a component that suppresses devitrification and adjusts optical constants such as the Abbe number and refractive index of glass. On the other hand, when the amount of BaO is large, the impact resistance and mechanical properties that inhibit the chemical strengthening treatment and increase the specific gravity of the glass are remarkably lowered. Therefore, when BaO is contained, it is preferably 5% or less, more preferably 3% or less, and further preferably 2% or less. Most preferably, BaO is not substantially contained.
 ZnOは、任意成分であり、ガラスのアッベ数や屈折率等の光学恒数を調整し、機械的特性を向上させる成分である。一方、ZnOの量が多いと失透し易くなるため、好ましくは15%以下、より好ましくは10%以下、さらに好ましくは5%以下である。 ZnO is an optional component that adjusts optical constants such as the Abbe number and refractive index of glass to improve mechanical properties. On the other hand, since it will become easy to devitrify when there is much quantity of ZnO, Preferably it is 15% or less, More preferably, it is 10% or less, More preferably, it is 5% or less.
 TiOは、任意成分であり、ガラスの屈折率を高め、機械的特性の向上も期待できる。一方、TiOは多すぎると着色しやすく、透過率が低下する、また、アッベ数を小さくするため、好ましくは10%以下、より好ましくは5%以下、さらに好ましくは3%以下である。TiOを含有する場合、好ましくは0.5%以上、より好ましくは1%以上、さらに好ましくは1.5%以上である。 TiO 2 is an optional component, and can be expected to increase the refractive index of the glass and improve the mechanical properties. On the other hand, when TiO 2 is too much, it is easy to be colored, the transmittance is lowered, and in order to reduce the Abbe number, it is preferably 10% or less, more preferably 5% or less, and further preferably 3% or less. When TiO 2 is contained, it is preferably 0.5% or more, more preferably 1% or more, and further preferably 1.5% or more.
 ZrOは、任意成分であり、ガラスの屈折率を高め、ガラスの化学的耐久性を高める成分である。ZrOを含有することで、機械的特性の向上も期待できる。一方、ZrOが多すぎると、失透しやすくなるため、好ましくは15%以下、より好ましくは10%以下、さらに好ましくは5%以下である。ZrOを含有する場合、好ましくは0.5%以上、より好ましくは1%以上、さらに好ましくは2%以上である。 ZrO 2 is an optional component, and is a component that increases the refractive index of the glass and increases the chemical durability of the glass. Inclusion of ZrO 2 can be expected to improve mechanical properties. On the other hand, when there is too much ZrO 2 , devitrification tends to occur, so it is preferably 15% or less, more preferably 10% or less, and even more preferably 5% or less. When ZrO 2 is contained, it is preferably 0.5% or more, more preferably 1% or more, and further preferably 2% or more.
 LiOは必須成分であり、10%以上含有する。化学強化処理を効率的にするため、LiOは好ましくは12%以上、より好ましくは15%以上である。また、失透およびTgの低下による化学強化ガラスにおける応力緩和を抑制する観点から、ガラスにおけるLiOは好ましくは30%以下、より好ましくは25%以下である。 Li 2 O is an essential component and is contained at 10% or more. In order to make the chemical strengthening treatment efficient, Li 2 O is preferably 12% or more, more preferably 15% or more. Further, from the viewpoint of suppressing stress relaxation in the chemically strengthened glass due to devitrification and a decrease in Tg, Li 2 O in the glass is preferably 30% or less, more preferably 25% or less.
 NaOは任意成分であり、失透を抑制し、Tgを低くするとともに、強化溶融塩が硝酸ナトリウムと硝酸カリウムの混合塩の場合、Kに交換される効率を高める成分であるが、多すぎると、耐衝撃性や機械的特性が低下し易い。好ましくは15%以下、より好ましくは10%以下である。NaOを含有する場合、好ましくは1.5%以上、より好ましくは2%以上、さらに好ましくは2.5%以上である。 Na 2 O is an optional component that suppresses devitrification, lowers Tg, and enhances the efficiency of replacement with K + when the strengthened molten salt is a mixed salt of sodium nitrate and potassium nitrate. If it is too high, impact resistance and mechanical properties are likely to deteriorate. Preferably it is 15% or less, More preferably, it is 10% or less. When Na 2 O is contained, it is preferably 1.5% or more, more preferably 2% or more, and further preferably 2.5% or more.
 KOは任意成分であり、ガラスの溶融性を向上させる成分であるとともに、失透を抑制する成分であるが、多すぎると、耐衝撃性や機械的特性が低下し易い。好ましくは5%以下、より好ましくは3%以下である。 K 2 O is an optional component and is a component that improves the meltability of the glass and suppresses devitrification. However, if it is too much, impact resistance and mechanical properties are likely to deteriorate. Preferably it is 5% or less, More preferably, it is 3% or less.
 アルカリ金属成分の合計含有量(RO=LiO+NaO+KO)は10~30%である。30%超ではTgが低下する、耐酸性および耐水性が低下するおそれがある。好ましくは28%以下、より好ましくは25%以下である。また、ROに対するLiO含有量LiO/(LiO+NaO+KO)は0.5以上である。LiO/(LiO+NaO+KO)を0.5以上とすることで、LiがNaまたはKに交換される効率を高めることができる。0.6以上がより好ましく、0.7以上がさらに好ましい。 The total content of alkali metal components (R 2 O = Li 2 O + Na 2 O + K 2 O) is 10 to 30%. If it exceeds 30%, Tg may decrease, and acid resistance and water resistance may decrease. Preferably it is 28% or less, More preferably, it is 25% or less. Further, Li 2 O content relative to R 2 O Li 2 O / ( Li 2 O + Na 2 O + K 2 O) is 0.5 or more. By setting Li 2 O / (Li 2 O + Na 2 O + K 2 O) to 0.5 or more, the efficiency with which Li + is exchanged with Na + or K + can be increased. 0.6 or more is more preferable, and 0.7 or more is more preferable.
 Nbは、任意成分であり、ガラスの屈折率を高め、耐衝撃性、機械的特性の向上も期待できる成分である。一方、Nbは多すぎると失透し易く、また、透過率が低下する、アッベ数を小さくするため、好ましくは30%以下、より好ましくは25%以下、さらに好ましくは20%以下である。Nbを含有する場合、好ましくは5%以上、より好ましくは7%以上、さらに好ましくは10%以上である。 Nb 2 O 5 is an optional component that increases the refractive index of glass and can be expected to improve impact resistance and mechanical properties. On the other hand, if Nb 2 O 5 is too much, it tends to be devitrified, and the transmittance is lowered. In order to reduce the Abbe number, it is preferably 30% or less, more preferably 25% or less, and further preferably 20% or less. is there. When Nb 2 O 5 is contained, it is preferably 5% or more, more preferably 7% or more, and further preferably 10% or more.
 Laは、任意成分である。Laは、ガラスの屈折率を向上させる割に、アッベ数を小さくしない成分であるため、光学恒数の調整等に用いることができるが、Laの量が多すぎると失透し易くなる、比重が大きくなる、さらに耐衝撃性、機械的特性が低下する。そのため、Laを含有する場合、好ましくは20%以下、より好ましくは15%以下である。 La 2 O 3 is an optional component. La 2 O 3 is a component that does not reduce the Abbe number for improving the refractive index of the glass, so it can be used for adjusting the optical constant, etc., but it is lost if the amount of La 2 O 3 is too large. It becomes easy to see through, the specific gravity increases, and the impact resistance and mechanical properties are lowered. Therefore, if containing La 2 O 3, preferably 20% or less, more preferably 15% or less.
 Yは、任意成分である。Yは、ガラスの屈折率を向上させる成分であり、機械的特性の向上も期待できるが、Yの量が多すぎると失透し易くなる。そのため、Yを含有する場合、好ましくは20%以下、より好ましくは15%以下である。 Y 2 O 3 is an optional component. Y 2 O 3 is a component that improves the refractive index of glass and can be expected to improve mechanical properties. However, if the amount of Y 2 O 3 is too large, it tends to be devitrified. Therefore, when they contain Y 2 O 3, preferably 20% or less, more preferably 15% or less.
 Gdは、任意成分である。Gdは、ガラスの屈折率を向上させる割に、アッベ数を小さくしない成分であるため、光学恒数の調整等に用いることができるが、Gdの量が多すぎると失透し易くなる、比重が大きくなる、さらに耐衝撃性、機械的特性が低下する。そのため、Gdを含有する場合、好ましくは20%以下、より好ましくは15%以下である。 Gd 2 O 3 is an optional component. Gd 2 O 3 is a component that does not reduce the Abbe number for improving the refractive index of the glass, so it can be used for adjustment of the optical constant, etc., but it is lost if the amount of Gd 2 O 3 is too large. It becomes easy to see through, the specific gravity increases, and the impact resistance and mechanical properties are lowered. Therefore, if containing Gd 2 O 3, preferably 20% or less, more preferably 15% or less.
 Ln(LnはY、La、Gd、Yb、およびLuからなる群より選択される1種以上である。すなわち、Lnは、La+Y+Gdを示す。)は、任意成分である。Lnは、ガラスの屈折率を向上させる成分だが、Lnの量が多すぎると失透し易くなる。そのため、Lnを含有する場合、好ましくは20%以下、より好ましくは15%以下である。 Ln 2 O 3 (Ln is at least one selected from the group consisting of Y, La, Gd, Yb, and Lu. That is, Ln 2 O 3 is La 2 O 3 + Y 2 O 3 + Gd 2 O 3 Is an optional component. Ln 2 O 3 is a component that improves the refractive index of the glass. However, if the amount of Ln 2 O 3 is too large, it tends to devitrify. Therefore, if containing Ln 2 O 3, preferably 20% or less, more preferably 15% or less.
 Taは、任意成分である。Taは、ガラスの屈折率を向上させる成分であるが、Taの量が多すぎると失透し易くなり、比重も大きくなる。そのため、Taを含有する場合、好ましくは20%以下、より好ましくは15%以下である。 Ta 2 O 5 is an optional component. Ta 2 O 5 is a component that improves the refractive index of the glass. However, if the amount of Ta 2 O 5 is too large, it tends to devitrify and the specific gravity also increases. Therefore, if containing Ta 2 O 5, preferably 20% or less, more preferably 15% or less.
 WOは、任意成分である。WOは、ガラスの屈折率を向上させ、ガラスの熱的安定性を向上させる成分であるが、WOの量が多すぎると失透し易くなり、アッベ数を小さくし、比重も大きくなる。そのため、WOを含有する場合、好ましくは20%以下、より好ましくは15%以下である。 WO 3 is an optional component. WO 3 is a component that improves the refractive index of the glass and improves the thermal stability of the glass. However, if the amount of WO 3 is too large, it tends to devitrify, reduce the Abbe number, and increase the specific gravity. . Therefore, if containing WO 3, preferably 20% or less, more preferably 15% or less.
 その他成分として、Bi、TeOを10%未満で含有してもよい。これらは必須の成分ではないが、屈折率を高くし、溶融性の向上も期待できる。これらの成分を含有させる場合、合計で、5%以下が好ましく、3%以下がより好ましい。 As other components, Bi 2 O 3 and TeO 2 may be contained in less than 10%. These are not essential components, but can be expected to increase the refractive index and improve the meltability. When these components are contained, the total content is preferably 5% or less, and more preferably 3% or less.
 Asは、有害な化学物質であるため、近年使用を控える傾向にあり、環境対策上の措置が必要とされる。したがって、環境上の影響を重視する場合には、不可避な混入を除き、実質的に含有されないことが好ましい。 Since As 2 O 3 is a harmful chemical substance, it tends to be refrained from use in recent years, and measures for environmental measures are required. Therefore, when importance is placed on the environmental impact, it is preferable that the substance is not substantially contained except for inevitable mixing.
 さらに、SbおよびSnOのうちの少なくとも一種が含有されることが好ましい。これらは必須の成分ではないが、屈折率特性の調整、溶融性の向上、着色の抑制、透過率の向上、清澄、化学的耐久性の向上などの目的で添加することができる。これらの成分を含有させる場合、含有割合は合計で、1%以下が好ましく、0.5%以下がより好ましい。 Furthermore, it is preferable that at least one of Sb 2 O 3 and SnO 2 is contained. These are not essential components, but can be added for the purpose of adjusting refractive index characteristics, improving meltability, suppressing coloring, improving transmittance, clarifying, and improving chemical durability. When these components are contained, the total content is preferably 1% or less, and more preferably 0.5% or less.
 さらに、Fが含有されることが好ましい。Fは必須ではないが、溶融性の向上、透過率の向上、清澄性向上などの目的で添加することができる。Fを含有させる場合、含有割合は5%以下が好ましく、3%以下がより好ましい。 Furthermore, it is preferable that F is contained. Although F is not essential, it can be added for the purpose of improving meltability, improving transmittance, improving clarity, and the like. When F is contained, the content ratio is preferably 5% or less, and more preferably 3% or less.
<第二の仕様の強化レンズに用いられるガラス>
 以下、第二の仕様の強化レンズに用いられるガラスの組成について説明する。
 SiOはガラスのネットワークフォーマーで必須成分であり、30%未満では耐衝撃性や機械的特性が低下する。好ましくは35%以上、より好ましくは40%以上である。60%超では屈折率が低下するおそれがある。好ましくは58%以下、より好ましくは56%以下である。
<Glass used for reinforced lenses of the second specification>
Hereinafter, the composition of the glass used for the reinforced lens of the second specification will be described.
SiO 2 is an essential component in a glass network former, and if it is less than 30%, impact resistance and mechanical properties are lowered. Preferably it is 35% or more, more preferably 40% or more. If it exceeds 60%, the refractive index may decrease. Preferably it is 58% or less, More preferably, it is 56% or less.
 Alは、任意成分である。Alは、化学的耐久性を向上させ、耐衝撃性や機械的特性を向上させる成分であるが、Alが多くなると、屈折率が低くなる、Tgが高くなりすぎる、ガラスが失透し易くなるおそれがある。好ましくは5%以下、より好ましくは3%以下である。 Al 2 O 3 is an optional component. Al 2 O 3 is a component that improves chemical durability and improves impact resistance and mechanical properties, but when Al 2 O 3 increases, the refractive index decreases, Tg increases too much, glass May be easily devitrified. Preferably it is 5% or less, More preferably, it is 3% or less.
 Bは、任意成分である。Bは、Tgを低くし、ガラスの熱的安定性を向上させ、耐衝撃性や機械的特性を向上させる成分であるが、Bの量が多いと屈折率が低下し易い、化学的耐久性が低下するおそれがある。好ましくは20%以下、より好ましくは15%以下である。 B 2 O 3 is an optional component. B 2 O 3 is a component that lowers the Tg, improves the thermal stability of the glass, and improves impact resistance and mechanical properties. However, if the amount of B 2 O 3 is large, the refractive index decreases. There is a risk that chemical durability tends to decrease. Preferably it is 20% or less, More preferably, it is 15% or less.
 Pは、任意成分である。Pは、Tgを低くする成分であり、アッベ数を調整するための成分であるが、Pの量が多いと屈折率、耐衝撃性や機械的特性が低下し易い。好ましくは20%以下、より好ましくは15%以下、さらに好ましくは10%以下である。Pは、実質的に含有されないことが最も好ましい。 P 2 O 5 is an optional component. P 2 O 5 is a component that lowers the Tg and is a component for adjusting the Abbe number. However, if the amount of P 2 O 5 is large, the refractive index, impact resistance, and mechanical properties are likely to be lowered. Preferably it is 20% or less, More preferably, it is 15% or less, More preferably, it is 10% or less. Most preferably, P 2 O 5 is not substantially contained.
 SiO+Al+B+Pは30%以上65%未満である。SiO+Al+B+Pが30%未満では、アッベ数が小さくなる。好ましくは35%以上、より好ましくは40%以上である。一方で65%以上では屈折率が低くなる。好ましくは62%以下、より好ましくは60%以下である。 SiO 2 + Al 2 O 3 + B 2 O 3 + P 2 O 5 is 30% or more and less than 65%. When SiO 2 + Al 2 O 3 + B 2 O 3 + P 2 O 5 is less than 30%, the Abbe number becomes small. Preferably it is 35% or more, more preferably 40% or more. On the other hand, at 65% or more, the refractive index is low. Preferably it is 62% or less, More preferably, it is 60% or less.
 MgOは、任意成分である。MgOは、ガラスの溶融性を向上させ、失透を抑制し、ガラスのアッベ数や屈折率等の光学恒数を調整する成分である。一方、MgOの量が多くなると、かえって失透を促進してしまう。好ましくは15%以下、より好ましくは10%以下である。 MgO is an optional component. MgO is a component that improves the meltability of glass, suppresses devitrification, and adjusts optical constants such as the Abbe number and refractive index of glass. On the other hand, when the amount of MgO increases, devitrification is promoted. Preferably it is 15% or less, More preferably, it is 10% or less.
 CaOは、任意成分である。CaOは、失透を抑制し、ガラスのアッベ数や屈折率等の光学恒数を調整する成分である。一方、CaOの量が多いと、化学強化処理を阻害し、耐衝撃性や機械的特性が低下し易い。そのため、CaOが含有される場合には、好ましくは15%以下、より好ましくは10%以下である。 CaO is an optional component. CaO is a component that suppresses devitrification and adjusts optical constants such as the Abbe number and refractive index of glass. On the other hand, when the amount of CaO is large, the chemical strengthening treatment is hindered, and the impact resistance and mechanical properties are likely to deteriorate. Therefore, when CaO is contained, it is preferably 15% or less, more preferably 10% or less.
 SrOは、任意成分である。SrOは、失透を抑制し、ガラスのアッベ数や屈折率等の光学恒数を調整する成分である。一方、SrOの量が多いと、化学強化処理を阻害し、かつガラスの比重を大きくする、耐衝撃性や機械的特性を著しく低下させる。そのため、SrOが含有される場合には、好ましくは8%以下、より好ましくは5%以下、さらに好ましくは3%以下である。 SrO is an optional component. SrO is a component that suppresses devitrification and adjusts optical constants such as the Abbe number and refractive index of glass. On the other hand, if the amount of SrO is large, the impact resistance and mechanical properties, which impede the chemical strengthening treatment and increase the specific gravity of the glass, are significantly reduced. Therefore, when SrO is contained, it is preferably 8% or less, more preferably 5% or less, and further preferably 3% or less.
 BaOは、任意成分である。BaOは、失透を抑制し、ガラスのアッベ数や屈折率等の光学恒数を調整する成分である。一方、BaOの量が多いと、化学強化処理を阻害し、かつガラスの比重を大きくする、耐衝撃性や機械的特性を著しく低下させる。そのため、BaOが含有される場合には、好ましくは8%以下、より好ましくは5%以下、さらに好ましくは3%以下である。 BaO is an optional component. BaO is a component that suppresses devitrification and adjusts optical constants such as the Abbe number and refractive index of glass. On the other hand, when the amount of BaO is large, the impact resistance and mechanical properties that inhibit the chemical strengthening treatment and increase the specific gravity of the glass are remarkably lowered. Therefore, when BaO is contained, it is preferably 8% or less, more preferably 5% or less, and further preferably 3% or less.
 ZnOは、任意成分であり、ガラスのアッベ数や屈折率等の光学恒数を調整し、機械的特性を向上させる成分である。一方、ZnOの量が多いと失透し易くなるため、好ましくは15%以下、より好ましくは10%以下、さらに好ましくは5%以下である。 ZnO is an optional component that adjusts optical constants such as the Abbe number and refractive index of glass to improve mechanical properties. On the other hand, since it will become easy to devitrify when there is much quantity of ZnO, Preferably it is 15% or less, More preferably, it is 10% or less, More preferably, it is 5% or less.
 TiOは、任意成分であり、ガラスの屈折率を高め、機械的特性の向上も期待できる。一方、TiOは多すぎると着色しやすく、透過率が低下する、また、アッベ数を小さくするため、好ましくは5%以下、より好ましくは3%以下、さらに好ましくは2%以下である。 TiO 2 is an optional component, and can be expected to increase the refractive index of the glass and improve the mechanical properties. On the other hand, when TiO 2 is too much, it is easy to be colored, the transmittance is lowered, and in order to reduce the Abbe number, it is preferably 5% or less, more preferably 3% or less, and further preferably 2% or less.
 ZrOは、任意成分であり、ガラスの屈折率を高め、ガラスの化学的耐久性を高める成分である。ZrOを含有することで、機械的特性の向上も期待できる。一方、ZrOが多すぎると、失透しやすくなるため、好ましくは10%以下、より好ましくは5%以下、さらに好ましくは3%以下である。ZrOを含有する場合、好ましくは0.5%以上、より好ましくは1%以上、さらに好ましくは2%以上である。 ZrO 2 is an optional component, and is a component that increases the refractive index of the glass and increases the chemical durability of the glass. Inclusion of ZrO 2 can be expected to improve mechanical properties. On the other hand, if there is too much ZrO 2 , devitrification tends to occur, so it is preferably 10% or less, more preferably 5% or less, and even more preferably 3% or less. When ZrO 2 is contained, it is preferably 0.5% or more, more preferably 1% or more, and further preferably 2% or more.
 LiOは必須成分であり、10%以上含有する。化学強化処理を効率的にするため、LiOは好ましくは12%以上、より好ましくは15%以上である。また、失透およびTgの低下による化学強化ガラスにおける応力緩和を抑制する観点から、ガラスにおけるLiOは好ましくは30%以下、より好ましくは25%以下である。 Li 2 O is an essential component and is contained at 10% or more. In order to make the chemical strengthening treatment efficient, Li 2 O is preferably 12% or more, more preferably 15% or more. Further, from the viewpoint of suppressing stress relaxation in the chemically strengthened glass due to devitrification and a decrease in Tg, Li 2 O in the glass is preferably 30% or less, more preferably 25% or less.
 BをLiOで除した値、B/LiOは0.75以下さらには0.7以下であることが好ましい。0.75超では、ガラスの溶解時にガラスの揮散が激しくなり、強化レンズにした際の屈折率のバラツキが大きくなる。より好ましくは0.6以下、さらに好ましくは0.5以下である。 The value obtained by dividing B 2 O 3 by Li 2 O, B 2 O 3 / Li 2 O, is preferably 0.75 or less, more preferably 0.7 or less. If it exceeds 0.75, the volatilization of the glass becomes intense when the glass is melted, and the variation in the refractive index when the reinforced lens is made increases. More preferably, it is 0.6 or less, More preferably, it is 0.5 or less.
 NaOは任意成分であり、失透を抑制し、Tgを低くするとともに、強化溶融塩が硝酸ナトリウムと硝酸カリウムの混合塩の場合、Kに交換される効率を高める成分であるが、多すぎると、屈折率が低くなる、アッベ数が小さくなる、耐衝撃性や機械的特性が低下し易い。好ましくは10%以下、より好ましくは5%以下である。NaOを含有する場合、好ましくは1.5%以上、より好ましくは2%以上、さらに好ましくは2.5%以上である。 Na 2 O is an optional component that suppresses devitrification, lowers Tg, and enhances the efficiency of replacement with K + when the strengthened molten salt is a mixed salt of sodium nitrate and potassium nitrate. If it is too high, the refractive index will be low, the Abbe number will be small, and the impact resistance and mechanical properties will tend to deteriorate. Preferably it is 10% or less, More preferably, it is 5% or less. When Na 2 O is contained, it is preferably 1.5% or more, more preferably 2% or more, and further preferably 2.5% or more.
 KOは任意成分であり、ガラスの溶融性を向上させる成分であるとともに、失透を抑制する成分であるが、多すぎると、屈折率が低くなる、アッベ数が小さくなる、耐衝撃性や機械的特性が低下し易い。好ましくは5%以下、より好ましくは3%以下である。 K 2 O is an optional component that improves the meltability of the glass and suppresses devitrification. However, if it is too much, the refractive index decreases, the Abbe number decreases, and the impact resistance. And mechanical properties are likely to deteriorate. Preferably it is 5% or less, More preferably, it is 3% or less.
 アルカリ金属成分の合計含有量(RO=LiO+NaO+KO)は10~30%である。30%超ではTgが低下する、耐酸性および耐水性が低下するおそれがある。好ましくは28%以下、より好ましくは25%以下である。また、ROに対するLiO含有量LiO/(LiO+NaO+KO)は0.5以上である。LiO/(LiO+NaO+KO)を0.5以上とすることで、LiがNaまたはKに交換される効率を高めることができる。0.6以上がより好ましく、0.7以上がさらに好ましい。 The total content of alkali metal components (R 2 O = Li 2 O + Na 2 O + K 2 O) is 10 to 30%. If it exceeds 30%, Tg may decrease, and acid resistance and water resistance may decrease. Preferably it is 28% or less, More preferably, it is 25% or less. Further, Li 2 O content relative to R 2 O Li 2 O / ( Li 2 O + Na 2 O + K 2 O) is 0.5 or more. By setting Li 2 O / (Li 2 O + Na 2 O + K 2 O) to 0.5 or more, the efficiency with which Li + is exchanged with Na + or K + can be increased. 0.6 or more is more preferable, and 0.7 or more is more preferable.
 Nbは、任意成分であり、ガラスの屈折率を高め、耐衝撃性、機械的特性の向上も期待できる成分である。一方、Nbは多すぎると失透し易く、また、透過率が低下する、アッベ数を小さくするため、好ましくは15%以下、より好ましくは12%以下、さらに好ましくは10%以下である。 Nb 2 O 5 is an optional component that increases the refractive index of glass and can be expected to improve impact resistance and mechanical properties. On the other hand, if Nb 2 O 5 is too much, it tends to be devitrified, and the transmittance is lowered. In order to reduce the Abbe number, it is preferably 15% or less, more preferably 12% or less, and even more preferably 10% or less. is there.
 Laは、任意成分である。Laは、ガラスの屈折率を向上させる割に、アッベ数を小さくしない成分であるため、光学恒数の調整等に用いることができるが、Laの量が多すぎると失透し易くなる、比重が大きくなる、さらに耐衝撃性、機械的特性が低下する。そのため、Laを含有する場合、好ましくは20%以下、より好ましくは15%以下である。 La 2 O 3 is an optional component. La 2 O 3 is a component that does not reduce the Abbe number for improving the refractive index of the glass, so it can be used for adjusting the optical constant, etc., but it is lost if the amount of La 2 O 3 is too large. It becomes easy to see through, the specific gravity increases, and the impact resistance and mechanical properties are lowered. Therefore, if containing La 2 O 3, preferably 20% or less, more preferably 15% or less.
 Yは、任意成分である。Yは、ガラスの屈折率を向上させる成分であり、機械的特性の向上も期待できるが、Yの量が多すぎると失透し易くなる。そのため、Yを含有する場合、好ましくは10%以下、より好ましくは5%以下である。 Y 2 O 3 is an optional component. Y 2 O 3 is a component that improves the refractive index of glass and can be expected to improve mechanical properties. However, if the amount of Y 2 O 3 is too large, it tends to be devitrified. Therefore, when they contain Y 2 O 3, preferably 10% or less, more preferably 5% or less.
 Gdは、任意成分である。Gdは、ガラスの屈折率を向上させる割に、アッベ数を小さくしない成分であるため、光学恒数の調整等に用いることができるが、Gdの量が多すぎると失透し易くなる、比重が大きくなる、さらに耐衝撃性、機械的特性が低下する。そのため、Gdを含有する場合、好ましくは10%以下、より好ましくは5%以下である。 Gd 2 O 3 is an optional component. Gd 2 O 3 is a component that does not reduce the Abbe number for improving the refractive index of the glass, so it can be used for adjustment of the optical constant, etc., but it is lost if the amount of Gd 2 O 3 is too large. It becomes easy to see through, the specific gravity increases, and the impact resistance and mechanical properties are lowered. Therefore, if containing Gd 2 O 3, preferably 10% or less, more preferably 5% or less.
 Ln(LnはY、La、Gd、Yb、およびLuからなる群より選択される1種以上である。すなわち、Lnは、La+Y+Gdを示す。)は、任意成分である。Lnは、ガラスの屈折率を向上させる成分だが、Lnの量が多すぎると失透し易くなる。そのため、Lnを含有する場合、好ましくは20%以下、より好ましくは15%以下である。 Ln 2 O 3 (Ln is at least one selected from the group consisting of Y, La, Gd, Yb, and Lu. That is, Ln 2 O 3 is La 2 O 3 + Y 2 O 3 + Gd 2 O 3 Is an optional component. Ln 2 O 3 is a component that improves the refractive index of the glass. However, if the amount of Ln 2 O 3 is too large, it tends to devitrify. Therefore, if containing Ln 2 O 3, preferably 20% or less, more preferably 15% or less.
 Taは、任意成分である。Taは、ガラスの屈折率を向上させる成分であるが、Taの量が多すぎると失透し易くなり、比重も大きくなる。そのため、Taを含有する場合、好ましくは10%以下、より好ましくは5%以下である。 Ta 2 O 5 is an optional component. Ta 2 O 5 is a component that improves the refractive index of the glass. However, if the amount of Ta 2 O 5 is too large, it tends to devitrify and the specific gravity also increases. Therefore, if containing Ta 2 O 5, preferably 10% or less, more preferably 5% or less.
 WOは、任意成分である。WOは、ガラスの屈折率を向上させ、ガラスの熱的安定性を向上させる成分であるが、WOの量が多すぎると失透し易くなり、アッベ数を小さくし、比重も大きくなる。そのため、WOを含有する場合、好ましくは10%以下、より好ましくは5%以下である。 WO 3 is an optional component. WO 3 is a component that improves the refractive index of the glass and improves the thermal stability of the glass. However, if the amount of WO 3 is too large, it tends to devitrify, reduce the Abbe number, and increase the specific gravity. . Therefore, if containing WO 3, preferably 10% or less, more preferably 5% or less.
 第二の仕様の強化レンズに用いられるガラスは、上記成分以外にBi、TeO、Sb、SnO、Fを第一の仕様の強化レンズに用いられるガラスと同様に含有してもよい。これら成分の含有割合は好ましい態様を含めて第一の仕様の強化レンズに用いられるガラスと同様にできる。 The glass used for the reinforced lens of the second specification contains Bi 2 O 3 , TeO 2 , Sb 2 O 3 , SnO 2 , and F in addition to the above components in the same manner as the glass used for the reinforced lens of the first specification. May be. The content ratio of these components can be the same as that of the glass used for the reinforced lens of the first specification including the preferred embodiment.
<第三の仕様の強化レンズに用いられるガラス>
 以下、第三の仕様の強化レンズに用いられるガラスの組成について説明する。
 SiOはガラスのネットワークフォーマーで必須成分であり、30%未満では耐衝撃性や機械的特性が低下する。好ましくは35%以上、より好ましくは40%以上である。65%超ではTgが高くなりすぎるおそれがある。好ましくは63%以下、より好ましくは62%以下である。
<Glass used for reinforced lenses of the third specification>
Hereinafter, the composition of the glass used for the reinforced lens of the third specification will be described.
SiO 2 is an essential component in a glass network former, and if it is less than 30%, impact resistance and mechanical properties are lowered. Preferably it is 35% or more, more preferably 40% or more. If it exceeds 65%, Tg tends to be too high. Preferably it is 63% or less, More preferably, it is 62% or less.
 Alは、任意成分である。Alは、化学的耐久性を向上させ、耐衝撃性や機械的特性を向上させる成分であるが、Alが多くなると、Tgが高くなりすぎる、ガラスが失透し易くなるおそれがある。好ましくは15%以下、より好ましくは13%以下である。 Al 2 O 3 is an optional component. Al 2 O 3 is a component that improves chemical durability and improves impact resistance and mechanical properties, but when Al 2 O 3 increases, Tg becomes too high and the glass tends to devitrify. There is a fear. Preferably it is 15% or less, More preferably, it is 13% or less.
 Bは、任意成分である。Bは、Tgを低くし、ガラスの熱的安定性を向上させ、耐衝撃性や機械的特性を向上させる成分であるが、Bの量が多いと化学的耐久性が低下し易い。好ましくは40%以下、より好ましくは35%以下である。 B 2 O 3 is an optional component. B 2 O 3 is a component that lowers the Tg, improves the thermal stability of the glass, and improves impact resistance and mechanical properties. However, if the amount of B 2 O 3 is large, chemical durability is increased. It tends to decrease. Preferably it is 40% or less, More preferably, it is 35% or less.
 Pは、任意成分である。Pは、Tgを低くする成分であり、アッベ数を大きくするための成分であるが、Pの量が多いと耐衝撃性や機械的特性が低下し易い。好ましくは20%以下、より好ましくは15%以下である。 P 2 O 5 is an optional component. P 2 O 5 is a component that lowers the Tg and is a component that increases the Abbe number. However, if the amount of P 2 O 5 is large, impact resistance and mechanical properties are likely to deteriorate. Preferably it is 20% or less, More preferably, it is 15% or less.
 SiO+Al+B+Pは65%以上80%未満である。SiO+Al+B+Pが65%未満では、アッベ数が小さくなる。好ましくは66%以上、より好ましくは67%以上である。一方で80%以上ではガラスの溶解が難しくなる。好ましくは78%以下、より好ましくは76%以下である。 SiO 2 + Al 2 O 3 + B 2 O 3 + P 2 O 5 is 65% or more and less than 80%. When SiO 2 + Al 2 O 3 + B 2 O 3 + P 2 O 5 is less than 65%, the Abbe number becomes small. Preferably it is 66% or more, More preferably, it is 67% or more. On the other hand, at 80% or more, melting of the glass becomes difficult. Preferably it is 78% or less, More preferably, it is 76% or less.
 MgOは、任意成分である。MgOは、ガラスの溶融性を向上させ、失透を抑制し、ガラスのアッベ数や屈折率等の光学恒数を調整する成分である。一方、MgOの量が多くなると、かえって失透を促進してしまう。好ましくは15%以下、より好ましくは10%以下である。 MgO is an optional component. MgO is a component that improves the meltability of glass, suppresses devitrification, and adjusts optical constants such as the Abbe number and refractive index of glass. On the other hand, when the amount of MgO increases, devitrification is promoted. Preferably it is 15% or less, More preferably, it is 10% or less.
 CaOは、任意成分である。CaOは、失透を抑制し、ガラスのアッベ数や屈折率等の光学恒数を調整する成分である。一方、CaOの量が多いと、化学強化処理を阻害し、耐衝撃性や機械的特性が低下し易い。そのため、CaOが含有される場合には、好ましくは15%以下、より好ましくは10%以下である。 CaO is an optional component. CaO is a component that suppresses devitrification and adjusts optical constants such as the Abbe number and refractive index of glass. On the other hand, when the amount of CaO is large, the chemical strengthening treatment is hindered, and the impact resistance and mechanical properties are likely to deteriorate. Therefore, when CaO is contained, it is preferably 15% or less, more preferably 10% or less.
 SrOは、任意成分である。SrOは、失透を抑制し、ガラスのアッベ数や屈折率等の光学恒数を調整する成分である。一方、SrOの量が多いと、化学強化処理を阻害し、かつガラスの比重を大きくする、耐衝撃性や機械的特性を著しく低下させる。そのため、SrOが含有される場合には、好ましくは8%以下、より好ましくは5%以下、さらに好ましくは3%以下である。 SrO is an optional component. SrO is a component that suppresses devitrification and adjusts optical constants such as the Abbe number and refractive index of glass. On the other hand, if the amount of SrO is large, the impact resistance and mechanical properties, which impede the chemical strengthening treatment and increase the specific gravity of the glass, are significantly reduced. Therefore, when SrO is contained, it is preferably 8% or less, more preferably 5% or less, and further preferably 3% or less.
 BaOは、任意成分である。BaOは、失透を抑制し、ガラスのアッベ数や屈折率等の光学恒数を調整する成分である。一方、BaOの量が多いと、化学強化処理を阻害し、かつガラスの比重を大きくする、耐衝撃性や機械的特性を著しく低下させる。そのため、BaOが含有される場合には、好ましくは8%以下、より好ましくは5%以下、さらに好ましくは3%以下である。 BaO is an optional component. BaO is a component that suppresses devitrification and adjusts optical constants such as the Abbe number and refractive index of glass. On the other hand, when the amount of BaO is large, the impact resistance and mechanical properties that inhibit the chemical strengthening treatment and increase the specific gravity of the glass are remarkably lowered. Therefore, when BaO is contained, it is preferably 8% or less, more preferably 5% or less, and further preferably 3% or less.
 ZnOは、任意成分であり、ガラスのアッベ数や屈折率等の光学恒数を調整し、機械的特性を向上させる成分である。一方、ZnOの量が多いと失透し易くなるため、好ましくは15%以下、より好ましくは10%以下、さらに好ましくは5%以下である。 ZnO is an optional component that adjusts optical constants such as the Abbe number and refractive index of glass to improve mechanical properties. On the other hand, since it will become easy to devitrify when there is much quantity of ZnO, Preferably it is 15% or less, More preferably, it is 10% or less, More preferably, it is 5% or less.
 TiOは、任意成分であり、ガラスの屈折率を高め、機械的特性の向上も期待できる。一方、TiOは多すぎると着色しやすく、透過率が低下する、また、アッベ数を小さくするため、好ましくは5%以下、より好ましくは3%以下、さらに好ましくは2%以下である。 TiO 2 is an optional component, and can be expected to increase the refractive index of the glass and improve the mechanical properties. On the other hand, when TiO 2 is too much, it is easy to be colored, the transmittance is lowered, and in order to reduce the Abbe number, it is preferably 5% or less, more preferably 3% or less, and further preferably 2% or less.
 ZrOは、任意成分であり、ガラスの屈折率を高め、ガラスの化学的耐久性を高める成分である。ZrOを含有することで、機械的特性の向上も期待できる。一方、ZrOが多すぎると、失透しやすくなるため、好ましくは10%以下、より好ましくは5%以下、さらに好ましくは3%以下である。ZrOを含有する場合、好ましくは0.5%以上、より好ましくは1%以上、さらに好ましくは2%以上である。 ZrO 2 is an optional component, and is a component that increases the refractive index of the glass and increases the chemical durability of the glass. Inclusion of ZrO 2 can be expected to improve mechanical properties. On the other hand, if there is too much ZrO 2 , devitrification tends to occur, so it is preferably 10% or less, more preferably 5% or less, and even more preferably 3% or less. When ZrO 2 is contained, it is preferably 0.5% or more, more preferably 1% or more, and further preferably 2% or more.
 LiOは必須成分であり、10%以上含有する。化学強化処理を効率的にするため、LiOは好ましくは11%以上、より好ましくは12%以上である。また、失透およびTgの低下による化学強化ガラスにおける応力緩和を抑制する観点から、ガラスにおけるLiOは好ましくは20%以下、より好ましくは18%以下である。 Li 2 O is an essential component and is contained at 10% or more. In order to make the chemical strengthening treatment efficient, Li 2 O is preferably 11% or more, more preferably 12% or more. Further, from the viewpoint of suppressing stress relaxation in the chemically strengthened glass due to devitrification and Tg reduction, Li 2 O in the glass is preferably 20% or less, more preferably 18% or less.
 NaOは任意成分であり、失透を抑制し、Tgを低くするとともに、強化溶融塩が硝酸ナトリウムと硝酸カリウムの混合塩の場合、Kに交換される効率を高める成分であるが、多すぎると、アッベ数が小さくなる、耐衝撃性や機械的特性が低下し易い。好ましくは10%以下、より好ましくは5%以下である。NaOを含有する場合、好ましくは1.5%以上、より好ましくは2%以上、さらに好ましくは2.5%以上である。 Na 2 O is an optional component that suppresses devitrification, lowers Tg, and enhances the efficiency of replacement with K + when the strengthened molten salt is a mixed salt of sodium nitrate and potassium nitrate. If it is too high, the Abbe number becomes small, and the impact resistance and mechanical properties are likely to deteriorate. Preferably it is 10% or less, More preferably, it is 5% or less. When Na 2 O is contained, it is preferably 1.5% or more, more preferably 2% or more, and further preferably 2.5% or more.
 KOは任意成分であり、ガラスの溶融性を向上させる成分であるとともに、失透を抑制する成分であるが、多すぎると、アッベ数が小さくなる、耐衝撃性や機械的特性が低下し易い。好ましくは5%以下、より好ましくは3%以下である。 K 2 O is an optional component that improves the meltability of the glass and suppresses devitrification. However, if it is too large, the Abbe number decreases, impact resistance and mechanical properties decrease. Easy to do. Preferably it is 5% or less, More preferably, it is 3% or less.
 アルカリ金属成分の合計含有量(RO=LiO+NaO+KO)は10~25%である。25%超ではアッベ数が小さくなる、耐酸性および耐水性が低下するおそれがある。好ましくは20%以下、より好ましくは18%以下、さらに好ましくは15%以下である。また、ROに対するLiO含有量LiO/(LiO+NaO+KO)は0.5以上である。LiO/(LiO+NaO+KO)を0.5以上とすることで、LiがNaまたはKに交換される効率を高めることができる。0.6以上がより好ましく、0.7以上がさらに好ましい。 The total content of alkali metal components (R 2 O = Li 2 O + Na 2 O + K 2 O) is 10 to 25%. If it exceeds 25%, the Abbe number will be small, and the acid resistance and water resistance may be reduced. Preferably it is 20% or less, More preferably, it is 18% or less, More preferably, it is 15% or less. Further, Li 2 O content relative to R 2 O Li 2 O / ( Li 2 O + Na 2 O + K 2 O) is 0.5 or more. By setting Li 2 O / (Li 2 O + Na 2 O + K 2 O) to 0.5 or more, the efficiency with which Li + is exchanged with Na + or K + can be increased. 0.6 or more is more preferable, and 0.7 or more is more preferable.
 Nbは、任意成分であり、ガラスの屈折率を高め、耐衝撃性、機械的特性の向上も期待できる成分である。一方、Nbは多すぎると失透し易く、また、透過率が低下する、アッベ数を小さくするため、好ましくは10%以下、より好ましくは8%以下、さらに好ましくは5%以下である。 Nb 2 O 5 is an optional component that increases the refractive index of glass and can be expected to improve impact resistance and mechanical properties. On the other hand, if Nb 2 O 5 is too much, it tends to be devitrified, and the transmittance is lowered. In order to reduce the Abbe number, it is preferably 10% or less, more preferably 8% or less, and further preferably 5% or less. is there.
 Laは、任意成分である。Laは、ガラスの屈折率を向上させる割に、アッベ数を小さくしない成分であるため、光学恒数の調整等に用いることができるが、Laの量が多すぎると失透し易くなる、比重が大きくなる、さらに耐衝撃性、機械的特性が低下する。そのため、Laを含有する場合、好ましくは10%以下、より好ましくは8%以、さらに好ましくは5%以下である。 La 2 O 3 is an optional component. La 2 O 3 is a component that does not reduce the Abbe number for improving the refractive index of the glass, so it can be used for adjusting the optical constant, etc., but it is lost if the amount of La 2 O 3 is too large. It becomes easy to see through, the specific gravity increases, and the impact resistance and mechanical properties are lowered. Therefore, if containing La 2 O 3, preferably 10% or less, more preferably 8% or, more preferably not more than 5%.
 Yは、任意成分である。Yは、ガラスの屈折率を向上させる成分であり、機械的特性の向上も期待できるが、Yの量が多すぎると失透し易くなる。そのため、Yを含有する場合、好ましくは5%以下、より好ましくは3%以下である。 Y 2 O 3 is an optional component. Y 2 O 3 is a component that improves the refractive index of glass and can be expected to improve mechanical properties. However, if the amount of Y 2 O 3 is too large, it tends to be devitrified. Therefore, when they contain Y 2 O 3, preferably 5% or less, more preferably 3% or less.
 Gdは、任意成分である。Gdは、ガラスの屈折率を向上させる割に、アッベ数を小さくしない成分であるため、光学恒数の調整等に用いることができるが、Gdの量が多すぎると失透し易くなる、比重が大きくなる、さらに耐衝撃性、機械的特性が低下する。そのため、Gdを含有する場合、好ましくは5%以下、より好ましくは3%以下である。 Gd 2 O 3 is an optional component. Gd 2 O 3 is a component that does not reduce the Abbe number for improving the refractive index of the glass, so it can be used for adjustment of the optical constant, etc., but it is lost if the amount of Gd 2 O 3 is too large. It becomes easy to see through, the specific gravity increases, and the impact resistance and mechanical properties are lowered. Therefore, if containing Gd 2 O 3, preferably 5% or less, more preferably 3% or less.
 Ln(LnはY、La、Gd、Yb、およびLuからなる群より選択される1種以上である。すなわち、Lnは、La+Y+Gdを示す。)は、任意成分である。Lnは、ガラスの屈折率を向上させる成分だが、Lnの量が多すぎると失透し易くなる。そのため、Lnを含有する場合、好ましくは10%以下、より好ましくは5%以下である。 Ln 2 O 3 (Ln is at least one selected from the group consisting of Y, La, Gd, Yb, and Lu. That is, Ln 2 O 3 is La 2 O 3 + Y 2 O 3 + Gd 2 O 3 Is an optional component. Ln 2 O 3 is a component that improves the refractive index of the glass. However, if the amount of Ln 2 O 3 is too large, it tends to devitrify. Therefore, if containing Ln 2 O 3, preferably 10% or less, more preferably 5% or less.
 Taは、任意成分である。Taは、ガラスの屈折率を向上させる成分であるが、Taの量が多すぎると失透し易くなり、比重も大きくなる。そのため、Taを含有する場合、好ましくは5%以下、より好ましくは3%以下である。 Ta 2 O 5 is an optional component. Ta 2 O 5 is a component that improves the refractive index of the glass. However, if the amount of Ta 2 O 5 is too large, it tends to devitrify and the specific gravity also increases. Therefore, if containing Ta 2 O 5, preferably 5% or less, more preferably 3% or less.
 WOは、任意成分である。WOは、ガラスの屈折率を向上させ、ガラスの熱的安定性を向上させる成分であるが、WOの量が多すぎると失透し易くなり、アッベ数を小さくし、比重も大きくなる。そのため、WOを含有する場合、好ましくは5%以下、より好ましくは3%以下である。 WO 3 is an optional component. WO 3 is a component that improves the refractive index of the glass and improves the thermal stability of the glass. However, if the amount of WO 3 is too large, it tends to devitrify, reduce the Abbe number, and increase the specific gravity. . Therefore, if containing WO 3, preferably 5% or less, more preferably 3% or less.
 TiO+Nb+WOは、10%以下である。10%超ではアッベ数が小さくなる。より好ましくは8%以下、さらに好ましくは5%以下である。 TiO 2 + Nb 2 O 5 + WO 3 is 10% or less. If it exceeds 10%, the Abbe number becomes small. More preferably, it is 8% or less, More preferably, it is 5% or less.
 第三の仕様の強化レンズに用いられるガラスは、上記成分以外にBi、TeO、Sb、SnO、Fを第一の仕様の強化レンズに用いられるガラスと同様に含有してもよい。これら成分の含有割合は好ましい態様を含めて第一の仕様の強化レンズに用いられるガラスと同様にできる。 The glass used for the strengthened lens of the third specification contains Bi 2 O 3 , TeO 2 , Sb 2 O 3 , SnO 2 , and F in addition to the above components in the same manner as the glass used for the strengthened lens of the first specification. May be. The content ratio of these components can be the same as that of the glass used for the reinforced lens of the first specification including the preferred embodiment.
[強化レンズの製造方法]
 本発明の強化レンズは、例えば以下の工程A、工程Bを含む方法により製造できる。
(工程A)SiOを30~65mol%、LiOを10mol%以上、SrO+BaOを0~10mol%含有し、かつLiO/(LiO+NaO+KO)が0.5以上であるガラスをレンズ成型体に成型する。
[Method of manufacturing reinforced lens]
The reinforced lens of this invention can be manufactured by the method including the following process A and process B, for example.
(Step A) 30 to 65 mol% of SiO 2 , 10 mol% or more of Li 2 O, 0 to 10 mol% of SrO + BaO, and Li 2 O / (Li 2 O + Na 2 O + K 2 O) is 0.5 or more Mold glass into a lens molding.
(工程B)該レンズ成型体に化学強化処理を施す。
 これにより、耐衝撃性と機械的特性に優れた強化レンズが作製される。化学強化処理は、従来公知の方法によって行うことができる。具体的には、レンズ成型体中のアルカリ金属イオンに比べて大きなイオン半径を有するアルカリ金属イオンを含むアルカリ金属塩の融液に、浸漬などによってレンズ成型体を接触させる。これにより、レンズ成型体の表層部のみで小さなイオン半径の金属イオンが大きなイオン半径の金属イオンと置換され、表層部に圧縮応力が付与された本発明の強化レンズが得られる。
(Step B) The lens molding is subjected to chemical strengthening treatment.
Thereby, a reinforced lens excellent in impact resistance and mechanical properties is produced. The chemical strengthening treatment can be performed by a conventionally known method. Specifically, the lens molding is brought into contact with a melt of an alkali metal salt containing an alkali metal ion having an ionic radius larger than that of the alkali metal ion in the lens molding by immersion or the like. As a result, the reinforced lens of the present invention in which the metal ions having a small ion radius are replaced with the metal ions having a large ion radius only in the surface layer portion of the lens molding, and the surface layer portion is given compressive stress.
 ここで、本発明の製造方法においては、上記工程Bにおけるレンズ成型体の化学強化処理を、少なくとも硝酸ナトリウムを含む強化溶融塩であり、前記強化溶融塩は質量%表示で硝酸ナトリウムを25%以上、かつ硝酸ナトリウムと硝酸カリウムを合量で95%以上含有する強化溶融塩(以下、強化溶融塩(X)という。)を用いて、化学強化処理温度をT(単位:℃)、処理時間をt(単位:時間)としたときに、下記式(1)を満たす条件で行う。以下、本発明の製造方法による化学強化処理工程を、工程B2という。
 30000<T1.8×t0.5<50000  式(1)
Here, in the manufacturing method of the present invention, the chemical strengthening treatment of the lens molded body in the step B is a strengthened molten salt containing at least sodium nitrate, and the strengthened molten salt contains 25% or more of sodium nitrate in terms of mass%. And a strengthened molten salt containing 95% or more of sodium nitrate and potassium nitrate (hereinafter referred to as “strengthened molten salt (X)”), the chemical strengthening treatment temperature is T (unit: ° C.), and the treatment time is t. When (unit: time), it is performed under conditions that satisfy the following formula (1). Hereinafter, the chemical strengthening treatment process according to the production method of the present invention is referred to as process B2.
30000 <T 1.8 × t 0.5 <50000 Formula (1)
 化学強化処理を工程B2により上記条件で行うことにより、上記工程Aで得られるレンズ成型体を、形状変化を殆ど起こすことなく強化レンズとすることができる。具体的には、上記方法で所定の形状のレンズ成型体における化学強化処理前後の第1の主面の曲率半径の変化量を10μm以下とすることができる。該変化量は好ましくは5μm以下、さらに好ましくは3μm以下、特に好ましくは1μm以下である。以下、本発明の製造方法の各工程について説明する。 By performing the chemical strengthening treatment in the above-described conditions in the step B2, the lens molded body obtained in the above step A can be made into a strengthened lens with almost no change in shape. Specifically, the amount of change in the radius of curvature of the first main surface before and after the chemical strengthening treatment in the lens molded body having a predetermined shape can be set to 10 μm or less by the above method. The amount of change is preferably 5 μm or less, more preferably 3 μm or less, and particularly preferably 1 μm or less. Hereinafter, each process of the manufacturing method of this invention is demonstrated.
<工程A(レンズ成型体の作製工程)>
 レンズ成型体を作製するには、まず上記所定のガラス組成となるように原料を秤量し、均一に混合する。作製した混合物を白金坩堝、石英坩堝またはアルミナ坩堝に投入して粗溶融する。その後、金坩堝、白金坩堝、白金合金坩堝またはイリジウム坩堝に入れて1200~1400℃の温度範囲で2~10時間溶融し、脱泡、撹拌などにより清澄、均質化を行った後、金型に鋳込んで徐冷することにより、ガラスインゴットや、さらに成型加工がされてレンズプリフォームが作製される。
<Process A (Lens molding process)>
In order to produce a lens molded body, first, raw materials are weighed so as to have the predetermined glass composition and mixed uniformly. The prepared mixture is put into a platinum crucible, a quartz crucible or an alumina crucible and roughly melted. Thereafter, it is placed in a gold crucible, platinum crucible, platinum alloy crucible or iridium crucible and melted at a temperature range of 1200 to 1400 ° C. for 2 to 10 hours, clarified and homogenized by degassing, stirring, etc. By casting and gradually cooling, a glass ingot or further molding is performed to produce a lens preform.
 上記で作製されたレンズプリフォームに対しては、例えばリヒートプレス成型や精密プレス成型等の手段を用いて、レンズ成型体を作製することができる。すなわち、上記ガラス原料の溶融後、直接ダイレクトプレス法によりレンズ成型体を作製したり、モールドプレス成型用のプリフォームを作製し、このプリフォームに対してリヒートプレス成型を行った後で研磨加工を行ってレンズ成型体を作製したり、例えば研磨加工を行って作製したプリフォームに対して精密プレス成型を行ってレンズ成型体を作製したり、上記光学ガラスインゴットから直接研磨加工することによりレンズ成型体を作製することができる。なお、レンズ成型体を作製する手段は、これらの手段に限定されない。 For the lens preform produced above, a lens molded body can be produced using means such as reheat press molding or precision press molding. That is, after the glass raw material is melted, a lens molded body is produced by a direct press method, or a preform for mold press molding is produced, and after the reheat press molding is performed on the preform, polishing is performed. To produce a lens molded body, for example, by performing precision press molding on a preform produced by polishing, to produce a lens molded body, or by directly polishing from the optical glass ingot to form a lens The body can be made. The means for producing the lens molded body is not limited to these means.
<工程B2(レンズ成型体の化学強化処理工程)>
 本発明における化学強化処理は、成型により得られたレンズ成型体のレンズ形状が大きく変化しない化学強化条件で十分に耐衝撃性と機械的特性が得られることを特徴とし、主たるアルカリ金属イオンの交換は、LiイオンからNaイオンへの置換である。工程B2においては、上記強化溶融塩(X)を用いて、上記式(1)を満たす化学強化処理温度T(単位:℃)、処理時間t(単位:時間)の条件で化学強化処理を行う。
<Process B2 (Lens Molded Body Chemical Strengthening Process)>
The chemical strengthening treatment in the present invention is characterized in that sufficient impact resistance and mechanical properties can be obtained under chemical strengthening conditions in which the lens shape of the lens molded body obtained by molding does not change greatly, and the exchange of main alkali metal ions Is the replacement of Li + ions with Na + ions. In step B2, chemical strengthening treatment is performed using the strengthened molten salt (X) under conditions of a chemical strengthening treatment temperature T (unit: ° C.) and a treatment time t (unit: time) that satisfy the above formula (1). .
(強化溶融塩(X))
 化学強化処理に用いるアルカリ金属塩の融液としては、強化溶融塩(X)を用いる。なお、特に断らない限り各成分の含有量は強化溶融塩(X)全量に対する質量百分率で表示する。
(Strengthened molten salt (X))
As the melt of the alkali metal salt used for the chemical strengthening treatment, the strengthened molten salt (X) is used. Unless otherwise specified, the content of each component is expressed as a percentage by mass with respect to the total amount of the strengthened molten salt (X).
(1)硝酸ナトリウム
 硝酸ナトリウムは、強化溶融塩(X)において必須である。強化溶融塩(X)における硝酸ナトリウムの含有量は25%以上である。硝酸ナトリウムの含有量は好ましくは30%以上、より好ましくは50%以上である。硝酸ナトリウムの含有量の上限は100%であり、好ましくは95%以下、より好ましくは90%以下である。
(1) Sodium nitrate Sodium nitrate is essential in the strengthened molten salt (X). The content of sodium nitrate in the strengthened molten salt (X) is 25% or more. The content of sodium nitrate is preferably 30% or more, more preferably 50% or more. The upper limit of the content of sodium nitrate is 100%, preferably 95% or less, more preferably 90% or less.
(2)硝酸カリウム
 硝酸カリウムは、強化溶融塩(X)中でのKがガラス中のLiやNaとイオン交換される速度が前記LiイオンとNaイオンのイオン交換に比べ遅いため、主たる強化イオンではなく任意成分である。硝酸カリウムは、凝固点降下により、強化溶融塩(X)の融点を下げ、かつ硝酸リチウムのように、含有量を多くしすぎると強化されにくくなるということがない、さらにLiイオンとNaイオンのイオン交換、NaイオンとKイオンのイオン交換と相互拡散を促し、硝酸ナトリウム単一溶融塩よりも強化の促進が期待できるため混合してもよい。
(2) Potassium nitrate Potassium nitrate is mainly strengthened because the rate at which K + in the molten molten salt (X) is ion exchanged with Li or Na in the glass is slower than the ion exchange between Li + ions and Na + ions. It is not an ion but an optional component. Potassium nitrate, the freezing point depression, lowering the melting point of the reinforcing molten salt (X), and as the lithium nitrate, is not that difficult and enhanced too much content, further Li + ions and Na + ions Since ion exchange, ion exchange of Na + ions and K + ions and mutual diffusion are promoted and strengthening can be promoted more than sodium nitrate single molten salt, they may be mixed.
 強化溶融塩(X)における硝酸カリウムの含有量は10%以上が好ましく、20%以上がより好ましい。硝酸カリウムの含有量は、硝酸ナトリウムの含有量との関係から75%以下である。含有量が75%超では、イオン交換速度が遅くなるおそれがある。硝酸カリウムの含有量は、好ましくは70%以下、より好ましくは50%以下である。 The content of potassium nitrate in the reinforced molten salt (X) is preferably 10% or more, and more preferably 20% or more. The content of potassium nitrate is 75% or less in relation to the content of sodium nitrate. If the content exceeds 75%, the ion exchange rate may be slow. The content of potassium nitrate is preferably 70% or less, more preferably 50% or less.
 硝酸ナトリウムと硝酸カリウムの合量は95%以上である。該合量は、好ましくは98%以上、さらに好ましくは99%以上である。
(3)硝酸リチウム
 強化溶融塩(X)において、硝酸リチウムは任意成分である。硝酸リチウムの含有量は、5%超ではレンズ成型体中のNaイオンやKイオンがLiイオンとの交換を促進され強化されにくくなるため、5%以下である。また、得られる強化レンズの表層部が圧縮層ではなく引張り層になり、レンズ成型体よりも強度が小さくなるおそれがある。そのため、硝酸リチウムの含有量は、好ましくは3%以下、より好ましくは2%以下、さらに好ましくは1%以下である。
The total amount of sodium nitrate and potassium nitrate is 95% or more. The total amount is preferably 98% or more, more preferably 99% or more.
(3) Lithium nitrate In the strengthened molten salt (X), lithium nitrate is an optional component. If the content of lithium nitrate exceeds 5%, Na + ions and K + ions in the molded lens body are promoted to exchange with Li + ions and are not easily strengthened. Moreover, the surface layer part of the reinforced lens obtained becomes a tension layer instead of a compression layer, and the strength may be smaller than that of the lens molding. Therefore, the content of lithium nitrate is preferably 3% or less, more preferably 2% or less, and still more preferably 1% or less.
 レンズ成型体の化学強化処理に用いる強化溶融塩(X)は本質的に上記成分からなるが、上記必須の組成範囲を保持した上で必要に応じて、その他成分を含有してもよい。その他の成分としては、たとえば、硫酸ナトリウム、硫酸カリウム、塩化ナトリウム、塩化カリウム、硫酸カルシウム、硫酸ストロンチウム、硫酸バリウム、塩化カルシウム、塩化ストロンチウムおよび塩化バリウム等のアルカリ硫酸塩、アルカリ塩化塩、アルカリ土類硫酸塩、並びにアルカリ土類塩化塩などが挙げられる。 The strengthened molten salt (X) used for the chemical strengthening treatment of the lens molded body consists essentially of the above components, but may contain other components as required while maintaining the above essential composition range. Examples of other components include sodium sulfate, potassium sulfate, sodium chloride, potassium chloride, calcium sulfate, strontium sulfate, barium sulfate, calcium sulfate, strontium chloride, and barium chloride, and other alkali sulfates, alkali chlorides, and alkaline earths. Examples thereof include sulfates and alkaline earth chlorides.
 これらのその他成分の強化溶融塩(X)における含有量は5%以下であり、1%以下が好ましい。当該範囲内であれば、その他の成分は、強化溶融塩(X)の溶解中における揮散を防ぐ効果がある。また、5%超では化学強化処理を行う際、強化が入りにくくなる。 The content of these other components in the strengthened molten salt (X) is 5% or less, preferably 1% or less. If it is in the said range, another component has an effect which prevents volatilization in melt | dissolution of strengthening molten salt (X). On the other hand, if it exceeds 5%, it is difficult to perform strengthening when chemical strengthening treatment is performed.
(化学強化処理温度および処理時間)
 本発明における化学強化処理は、強化溶融塩(X)の加熱温度、すなわち化学強化処理温度をT(単位:℃)、強化溶融塩(X)へのレンズ成型体の浸漬時間、すなわち処理時間をt(単位:時間)としたとき、Tとtが上記式(1)、すなわち、30000<T1.8×t0.5<50000の関係を満たす処理である。
(Chemical strengthening treatment temperature and treatment time)
In the chemical strengthening treatment in the present invention, the heating temperature of the strengthened molten salt (X), that is, the chemical strengthening treatment temperature is T (unit: ° C.), and the immersion time of the lens molded body in the strengthened molten salt (X), that is, the processing time is When t (unit: time) is used, T and t are processes satisfying the above formula (1), that is, 30000 <T 1.8 × t 0.5 <50000.
 本発明の製造方法により、工程Aで所定のガラスを用いて得られたレンズ成型体を、強化溶融塩(X)を用いて、Tとtが上記式(1)を満たす条件で化学強化処理して得られる強化レンズは、十分な耐衝撃性を有するとともに化学強化処理による形状変化が少ない強化レンズである。すなわち、上記方法で評価される、落球強度が80cm以上、かつ、第1の主面の曲率半径の変化量が10μm以下を両立できる強化レンズである。 Using the manufacturing method of the present invention, the lens molded body obtained by using the predetermined glass in the step A is subjected to a chemical strengthening treatment using a strengthened molten salt (X) under the conditions where T and t satisfy the above formula (1). The reinforced lens obtained in this way is a reinforced lens that has sufficient impact resistance and has little shape change due to chemical strengthening treatment. That is, the lens is a reinforced lens that can be evaluated by the above method and has a falling ball strength of 80 cm or more and a change amount of the radius of curvature of the first main surface of 10 μm or less.
 T1.8×t0.5が30000以下であると得られる強化レンズにおいて、十分な耐衝撃性と機械的特性が得られない。また、T1.8×t0.5が50000以上であると、レンズ形状、特に第1の主面における曲率半径が大きく変化する。 In the reinforced lens obtained when T 1.8 × t 0.5 is 30000 or less, sufficient impact resistance and mechanical properties cannot be obtained. Further, if T 1.8 × t 0.5 is 50000 or more, the lens shape, particularly the radius of curvature of the first main surface, greatly changes.
 化学強化処理温度Tは、レンズ成型体を構成するガラスの(Tg-100)℃未満であることが好ましい。化学強化処理温度Tが(Tg-100)℃以上であると、応力緩和により、イオン交換は生じてもレンズ成型体に十分な強化が入らずに、本発明の強化レンズが得られないおそれがある。 The chemical strengthening treatment temperature T is preferably less than (Tg-100) ° C. of the glass constituting the lens molding. If the chemical strengthening treatment temperature T is (Tg-100) ° C. or more, there is a possibility that the strengthened lens of the present invention cannot be obtained without sufficient strengthening of the molded lens body even if ion exchange occurs due to stress relaxation. is there.
 処理時間tは、0.25時間以上であることが好ましい。0.25時間未満では、浸漬時間が短すぎてレンズ成型体を多数個並べて化学強化処理する場合、場所により強化にムラが生じるおそれがある。 The treatment time t is preferably 0.25 hours or more. If it is less than 0.25 hours, when the immersion time is too short and a large number of lens molded bodies are arranged side by side and subjected to chemical strengthening treatment, unevenness may be caused in some places.
 なお、工程B2のレンズ成型体の化学強化処理工程は、上記強化溶融塩(X)へのレンズ成型体の浸漬処理を行う前に、以下の(1)予熱工程を有してもよく、浸漬処理の後に以下の(2)冷却、洗浄工程を有してもよい。 In addition, the chemical strengthening treatment step of the lens molded body in the step B2 may include the following (1) preheating step before the immersion treatment of the lens molded body in the reinforced molten salt (X). You may have the following (2) cooling and washing | cleaning processes after a process.
 すなわち、工程B2は、例えば、レンズ成型体専用のサンプルホルダーを準備し、工程Aで得られたレンズ成型体を多数個配置したサンプルホルダーが、連続的に予熱炉、強化溶融塩(X)で満たされた強化槽、冷却槽、洗浄槽を通過することで予熱工程、化学強化処理工程、冷却、洗浄工程が連続して行われる工程であってもよい。 That is, in the process B2, for example, a sample holder dedicated to the lens molded body is prepared, and the sample holder in which a large number of the lens molded bodies obtained in the process A are arranged is continuously used in the preheating furnace and the reinforced molten salt (X). It may be a step in which a preheating step, a chemical strengthening treatment step, a cooling step, and a washing step are successively performed by passing through the filled strengthening tank, cooling tank, and washing tank.
(1)予熱工程
 レンズ成型体はさらに、強化溶融塩(X)に浸漬する前に、レンズ成型体の温度が強化溶融塩(X)の融点以上の温度となるように、レンズ成型体を予熱しておくことが好ましい。これは、強化溶融塩(X)に浸漬する際のレンズ成型体の表面における溶融塩の凝固を防ぎ、イオン交換速度の低下や、圧縮応力が付与された表層部のガラス面内分布が不均一になることを抑制するためである。
(1) Preheating step Before the lens molded body is further immersed in the reinforced molten salt (X), the lens molded body is preheated so that the temperature of the lens molded body is equal to or higher than the melting point of the reinforced molten salt (X). It is preferable to keep it. This prevents solidification of the molten salt on the surface of the lens molded body when immersed in the reinforced molten salt (X), reduces the ion exchange rate, and uneven distribution in the glass surface of the surface layer portion to which compressive stress is applied. It is for suppressing becoming.
 レンズ成型体の予熱温度は400℃未満であることが好ましく、350℃以下がより好ましい。400℃以上では、予熱時に残留応力の影響や、サンプルホルダーとの接触箇所などにおけるガラス面内温度の不均一により、形状が変化してしまうおそれがある。 The preheating temperature of the lens molding is preferably less than 400 ° C, more preferably 350 ° C or less. If it is 400 ° C. or higher, the shape may change due to the influence of residual stress during preheating or due to nonuniformity of the glass in-plane temperature at the point of contact with the sample holder.
(2)冷却、洗浄工程
 レンズ成型体を強化溶融塩(X)に上記所定の条件で浸漬することで、レンズ成型体に圧縮応力が付与された強化層が形成された本発明の強化レンズが得られる。強化レンズは通常、強化溶融塩(X)から引き上げられ徐冷される。
(2) Cooling and washing step The reinforced lens of the present invention in which the lens molded body is immersed in the reinforced molten salt (X) under the above-described predetermined conditions to form a reinforced layer having a compressive stress applied to the lens molded body. can get. The reinforced lens is usually pulled up from the reinforced molten salt (X) and gradually cooled.
 なお、上記において徐冷のかわりに、強化溶融塩(X)から引き上げた強化レンズを30秒から2分待機させて、強化レンズの温度が300℃以下になった後に、強化レンズを冷媒に接触させて急冷することが好ましい。強化レンズの冷却速度は、100℃/分以上が好ましい。また、4000℃/分以下が好ましく、3000℃/分以下がより好ましい。 In the above, instead of gradual cooling, the reinforced lens pulled up from the reinforced molten salt (X) is kept waiting for 30 seconds to 2 minutes, and after the tempered lens temperature becomes 300 ° C. or lower, the reinforced lens is brought into contact with the refrigerant. It is preferable to cool rapidly. The cooling rate of the reinforced lens is preferably 100 ° C./min or more. Moreover, 4000 degrees C / min or less is preferable and 3000 degrees C / min or less is more preferable.
 強化レンズの冷却速度が100℃/分未満であると、冷却過程においても強化レンズ上に付着した強化溶融塩(X)によって、その接触箇所のみイオン交換が進行し、圧縮応力が付与された強化層のガラス面内分布が不均一になるため、得られる強化レンズの形状、特に第1の主面における曲率半径が大きく変化するおそれがある。 When the cooling rate of the reinforced lens is less than 100 ° C./min, the reinforced molten salt (X) adhering to the reinforced lens also undergoes ion exchange only at the contact point in the cooling process, and the reinforced lens is given compressive stress. Since the in-plane distribution of the layers becomes non-uniform, the shape of the obtained reinforced lens, particularly the radius of curvature of the first main surface, may change significantly.
 また、強化レンズの冷却速度が4000℃/分超であると強化レンズの形状、特に第1の主面における曲率半径が大きく変化するおそれがある。また、待機を経ずに冷媒と接触させて急冷するとヒートショックにより強化レンズが割れる可能性がある。さらに強化レンズの形状、特に第1の主面における曲率半径が大きく変化するおそれがある。 Also, if the cooling rate of the reinforced lens exceeds 4000 ° C./min, the shape of the reinforced lens, particularly the curvature radius on the first main surface, may change significantly. In addition, if the lens is brought into contact with a coolant without waiting to be cooled rapidly, the reinforced lens may be broken by a heat shock. Further, the shape of the reinforced lens, particularly the radius of curvature of the first main surface, may change greatly.
 冷却後ないしは冷却過程において、強化レンズに付着した強化溶融塩(X)を落とすため、超音波洗浄することが好ましい。洗浄液は特に限定されないが、強化溶融塩(X)の溶解度が高く、強化レンズの洗浄に適した洗浄液が選択される。例えば、複数槽の連続した洗浄ラインで洗浄する場合、イオン交換水、IPA(イソプロピルアルコール)洗浄後、乾燥工程を経るなどがあげられる。 In order to drop the strengthened molten salt (X) adhering to the strengthening lens after cooling or during the cooling process, ultrasonic cleaning is preferable. The cleaning liquid is not particularly limited, but a cleaning liquid that has high solubility of the strengthened molten salt (X) and is suitable for cleaning the strengthened lens is selected. For example, in the case of washing in a continuous washing line of a plurality of tanks, after the ion exchange water and IPA (isopropyl alcohol) washing, a drying process is performed.
 このようにして本発明の製造方法において、十分な耐衝撃性を有するとともに化学強化処理による形状変化が少ない強化レンズが得られる。本発明の製造方法においては、B2工程の化学強化処理工程後に、強化レンズの第1の主面および第2の主面を再研磨しないことが好ましい。本発明の製造方法によれば、B2工程の化学強化処理工程後に強化レンズを再研磨しなくても、強化レンズの形状が十分に安定しているためである。一方で、強化レンズ側面に関しては、必要に応じ、芯取り加工などを施してもよい。 Thus, in the manufacturing method of the present invention, a reinforced lens having sufficient impact resistance and little shape change due to chemical strengthening treatment can be obtained. In the manufacturing method of the present invention, it is preferable that the first main surface and the second main surface of the reinforced lens are not re-polished after the chemical strengthening treatment step of the B2 step. This is because, according to the manufacturing method of the present invention, the shape of the reinforced lens is sufficiently stable even if the reinforced lens is not re-polished after the chemical strengthening treatment step of the B2 step. On the other hand, the reinforcing lens side surface may be subjected to centering processing or the like as necessary.
 本発明の強化レンズは、第1の主面および第2の主面の少なくとも一方の主面上に反射防止層および/または防汚コーティング層を備えていてもよい。反射防止層は強化レンズに入射した光の反射を防止することにより透過率を向上させ、効率よく入射光を利用するために設けられる。また、防汚コーティング層には、皮脂油、雨滴、塵等の汚れの付着によるカメラの撮像画質低下を抑制するとともに、表面硬度の向上や耐擦傷性、耐摩耗性等の機能が期待できる。 The reinforced lens of the present invention may include an antireflection layer and / or an antifouling coating layer on at least one main surface of the first main surface and the second main surface. The antireflection layer is provided in order to improve the transmittance by preventing reflection of light incident on the reinforced lens and to efficiently use incident light. In addition, the antifouling coating layer can be expected to have functions such as improvement of surface hardness, scratch resistance, and wear resistance, as well as suppression of deterioration in image quality of the camera due to adhesion of dirt such as sebum oil, raindrops, and dust.
 上記で作製された強化レンズにおいて、強化レンズが撮像レンズの最も被写体側に配されるレンズであり、第1の主面が被写体側に配される主面である場合、少なくとも第1の主面には、反射防止層と防汚コーティング層が形成されることが好ましい。反射防止層と防汚コーティング層の両方が設けられている場合、通常、強化レンズ側から反射防止層、防汚コーティング層の順に設けられる。第2の主面の場合も同様である。反射防止層、防汚コーティング層の構成材料の種類と形成方法を以下に示す。なお、反射防止層、防汚コーティング層の形成は、上記B2工程後、得られた強化レンズの第1の主面および/または第2の主面へのコート処理により行う。 In the reinforced lens produced as described above, when the reinforced lens is a lens arranged closest to the subject side of the imaging lens and the first main surface is a main surface arranged on the subject side, at least the first main surface Preferably, an antireflection layer and an antifouling coating layer are formed. When both the antireflection layer and the antifouling coating layer are provided, the antireflection layer and the antifouling coating layer are usually provided in this order from the reinforced lens side. The same applies to the second main surface. The types and forming methods of the constituent materials for the antireflection layer and antifouling coating layer are shown below. The antireflection layer and the antifouling coating layer are formed by coating the first main surface and / or the second main surface of the reinforced lens obtained after the step B2.
(C1)反射防止層の形成
 反射防止層は、スパッタリング法、真空蒸着法、イオンビーム法、イオンプレーティング法、プラズマCVD法等により形成したシリカ、チタニア、酸化ニオブ、五酸化タンタル、イットリア、窒化ケイ素、ケイ素酸窒化物、アルミニウム酸窒化物、サイアロン、フッ化マグネシウム、ジルコニア、アルミナ等の1層以上の膜や、ゾルゲル法、塗布法等により形成したシリケート系、シリコーン系、フッ化メタクリレート系の膜等から構成される。反射防止層の厚みは、通常、100~600nmの範囲である。反射防止層は、強化レンズの第1の主面および第2の主面上に設けてもよい。反射防止層は、例えば、420~750nmにわたって、反射率が1%以下であるのが好ましい。
(C1) Formation of antireflection layer Antireflection layer is formed by silica, titania, niobium oxide, tantalum pentoxide, yttria, nitridation formed by sputtering method, vacuum deposition method, ion beam method, ion plating method, plasma CVD method, etc. One or more layers of silicon, silicon oxynitride, aluminum oxynitride, sialon, magnesium fluoride, zirconia, alumina, etc., silicate-based, silicone-based, fluorinated methacrylate-based films formed by sol-gel method, coating method, etc. It is composed of a film or the like. The thickness of the antireflection layer is usually in the range of 100 to 600 nm. The antireflection layer may be provided on the first main surface and the second main surface of the reinforced lens. The antireflection layer preferably has a reflectance of 1% or less over, for example, 420 to 750 nm.
(C2)防汚コーティング層の形成
 防汚コーティング層は、スパッタリング法、真空蒸着法、イオンビーム法、イオンプレーティング法、プラズマCVD法等により形成したチタニア、酸化スズ、酸化タングステン、チタン酸ストロンチウム等の光触媒膜や、ゾルゲル法、塗布法等により形成した前記光触媒金属微粒子を含有したシリケート系、シリコーン系、フッ化メタクリレート系やフッ素含有有機化合物の膜から構成される。防汚コーティング層の厚みは、100~2000nmの範囲である。防汚コーティング層は、特に第2の主面上に設ける必要はないが、塗布法の中でも浸漬コート等で形成する場合は第2の主面上に形成されてもよい。
(C2) Formation of antifouling coating layer Antifouling coating layer is formed by sputtering, vacuum deposition, ion beam method, ion plating method, plasma CVD method or the like, titania, tin oxide, tungsten oxide, strontium titanate, etc. And a silicate-based, silicone-based, fluorinated methacrylate-based, or fluorine-containing organic compound film containing the photocatalytic metal fine particles formed by a sol-gel method, a coating method, or the like. The thickness of the antifouling coating layer is in the range of 100 to 2000 nm. The antifouling coating layer is not particularly required to be provided on the second main surface, but may be formed on the second main surface when formed by dip coating or the like among the application methods.
 このようにして作製される強化レンズは、様々なカメラ用途に有用であるが、その中でも特に、車載用カメラに用いられる撮像レンズ等、過酷な環境に曝される用途に好適に用いられる。 The reinforced lens produced in this way is useful for various camera applications, and in particular, it is suitably used for applications exposed to harsh environments such as an imaging lens used for a vehicle-mounted camera.
 以上説明した本発明の強化レンズは、耐衝撃性が高い強化レンズであって、過酷な環境に曝される車載用カメラに用いられる撮像レンズ等に好適である。また、本発明の製造方法によれば、耐衝撃性と機械的特性に優れ、さらには、耐酸性、耐水性も良好な強化レンズであって、化学強化処理しても形状が大きく変化しない強化レンズを得ることができる。 The reinforced lens of the present invention described above is a reinforced lens having high impact resistance, and is suitable for an imaging lens used for a vehicle-mounted camera exposed to a harsh environment. Further, according to the production method of the present invention, the lens is a reinforced lens having excellent impact resistance and mechanical properties, and also having good acid resistance and water resistance, and the shape does not change greatly even after chemical strengthening treatment. A lens can be obtained.
 表1~6に示す化学組成(酸化物換算のmol%)となるように原料を秤量した。原料は、いずれも、各成分の原料として各々相当する酸化物、水酸化物、炭酸塩、硝酸塩、フッ化物、水酸化物、メタリン酸化合物等の通常のレンズに使用される高純度原料を選定して使用した。 The raw materials were weighed so as to have chemical compositions shown in Tables 1 to 6 (mol% in terms of oxide). As raw materials, high-purity raw materials used for ordinary lenses such as oxides, hydroxides, carbonates, nitrates, fluorides, hydroxides, and metaphosphate compounds are selected as raw materials for each component. Used.
 秤量した原料を均一に混合し、内容積約300mLの白金ルツボ内に入れて、約1400℃で約2時間溶融、撹拌後、1400℃で0.5時間清澄のため保持し、およそ650℃に予熱した縦50mm×横100mmの長方形のモールドに鋳込み後、約0.5℃/分で徐冷して縦50mm×横100mm×厚み15mmのガラスを得た。 The weighed raw materials are uniformly mixed, put in a platinum crucible with an internal volume of about 300 mL, melted at about 1400 ° C. for about 2 hours, stirred and kept at 1400 ° C. for 0.5 hour for clarification, and the temperature reaches about 650 ° C. After casting into a preheated rectangular mold having a length of 50 mm and a width of 100 mm, the glass was slowly cooled at about 0.5 ° C./min to obtain a glass of length 50 mm × width 100 mm × thickness 15 mm.
 上記で得られたガラスを約20mm×20mm×2mm(厚み)の大きさに板状に加工し、20mm×20mmの面を、CeO2を用いて鏡面研磨を行いCIL評価試験用のガラスの板状成型体とした。次に以下の化学強化処理を行った。すなわち、NaNO対KNOの質量%が100:0の硝酸塩(以下、「100Na」と示す。)、75:25の硝酸塩(以下、「75Na25K」と示す。)、50:50の硝酸塩(以下、「50Na50K」と示す。)、0:100の硝酸塩(以下、「100K」と示す。)をそれぞれ準備し、400℃に加熱し溶融した融液に、ガラスの板状成型体をそれぞれ30分浸漬し、化学強化処理を行ってCIL評価試験用の評価用サンプルを得た。また、0:100の硝酸塩においては、4時間浸漬して得たCIL評価試験用の評価用サンプルも準備した。得られた評価用サンプルのサイズは、20mm×20mm×2mm(厚み)であった。 The glass obtained above is processed into a plate shape having a size of about 20 mm × 20 mm × 2 mm (thickness), and the surface of 20 mm × 20 mm is mirror-polished with CeO 2 to be a glass plate for CIL evaluation test A shaped molded body was obtained. Next, the following chemical strengthening treatment was performed. That is, nitrate of NaNO 3 to KNO 3 is 100: 0 nitrate (hereinafter referred to as “100Na”), 75:25 nitrate (hereinafter referred to as “75Na25K”), 50:50 nitrate (hereinafter referred to as “100Na”). , “50Na50K”) and 0: 100 nitrate (hereinafter, “100K”) are prepared, heated to 400 ° C., and melted into melts of glass for 30 minutes each. Immersion and chemical strengthening treatment were performed to obtain an evaluation sample for CIL evaluation test. In addition, for 0: 100 nitrate, an evaluation sample for CIL evaluation test obtained by immersion for 4 hours was also prepared. The size of the obtained sample for evaluation was 20 mm × 20 mm × 2 mm (thickness).
 なお、400℃、30分間の化学強化処理のT1.8×t0.5は、34134であり、400℃、4時間の化学強化処理のT1.8×t0.5は96547である。 Incidentally, 400 ℃, T 1.8 × t 0.5 chemical strengthening treatment of 30 minutes is 34134, 400 ℃, T 1.8 × t 0.5 chemical strengthening treatment of 4 hours is a 96547 .
[評価]
 上記のガラスについて以下の方法で、ガラス転移点(Tg)、屈折率(nd)、アッベ数(νd)、比重(d)、ヤング率(E)、失透温度、耐水性(RW)、耐酸性(RA)を測定した。これらの物性のうち、屈折率(nd)、アッベ数(νd)、比重(d)、耐水性(RW)、耐酸性(RA)は、上記のとおり化学強化後の強化レンズとした際の、屈折率(nd)、アッベ数(νd)、比重(d)、耐水性(RW)、耐酸性(RA)と実質的に同じである。
[Evaluation]
The glass transition point (Tg), refractive index (nd), Abbe number (νd), specific gravity (d), Young's modulus (E), devitrification temperature, water resistance (RW), acid resistance of the above glass are as follows. Sex (RA) was measured. Among these physical properties, the refractive index (nd), Abbe number (νd), specific gravity (d), water resistance (RW), acid resistance (RA) are as described above when the reinforced lens after chemical strengthening is used. It is substantially the same as refractive index (nd), Abbe number (νd), specific gravity (d), water resistance (RW), and acid resistance (RA).
 また、上記のとおりガラスを板状に成型し化学強化処理した評価用サンプルについて、クラックイニシエーションロード(CIL)を次のように測定した。本発明においては強化レンズのCILは、このようにして測定されるガラス板のCILをいう。 In addition, as described above, the crack initiation load (CIL) was measured as follows for the evaluation sample in which glass was molded into a plate shape and chemically strengthened. In the present invention, the CIL of the reinforced lens refers to the CIL of the glass plate measured in this way.
 Tg:直径5mm、長さ20mmの円柱状に加工したガラスのサンプルについて、熱機械分析装置(ブルカー・エイエックスエス社製、商品名:TMA4000SA)で熱膨張法により5℃/分の昇温速度で測定した。 Tg: A glass sample processed into a cylindrical shape having a diameter of 5 mm and a length of 20 mm, and a temperature rising rate of 5 ° C./min by a thermal expansion method using a thermomechanical analyzer (trade name: TMA4000SA, manufactured by Bruker AXS) Measured with
 nd:ガラスを一辺が30mm、厚さが10mmの三角形状プリズムに加工し、屈折率計(Kalnew社製、機器名:KPR-2000)により測定した。 Nd: Glass was processed into a triangular prism having a side of 30 mm and a thickness of 10 mm, and measured with a refractometer (manufactured by Kalnew, instrument name: KPR-2000).
 Δnd:ガラスを1200~1400℃で2時間溶融して上記三角形状プリズムとしたものと、前記と同じ温度で6時間溶融して上記三角形状プリズムとしたもののndを上記方法で測定し、その屈折率の差を評価した。 Δnd: nd of a glass prism melted at 1200 to 1400 ° C. for 2 hours to obtain the triangular prism and a glass prism melted at the same temperature for 6 hours to obtain the triangular prism were measured by the above method, and the refraction Rate differences were evaluated.
 νd:ndと同様にしてnC、nFを測定し、νd=(nd-1)/(nF-nC)から算出した。 Νd: nC and nF were measured in the same manner as nd, and calculated from νd = (nd−1) / (nF−nC).
 比重:ガラスのサンプルの質量と、圧力101.325kPa(標準気圧)のもとにおける、それと同体積の4℃の純水の質量との比をSGとして表示し、JIS Z8807(1976、液中で秤量する測定方法)に準じて測定した。 Specific gravity: The ratio between the mass of the glass sample and the mass of 4 ° C. pure water of the same volume under a pressure of 101.325 kPa (standard atmospheric pressure) is displayed as SG, and JIS Z8807 (1976, in liquid) It measured according to the measuring method to weigh.
 E:20mm×20mm×10mmのブロック状のガラスのサンプルについて、超音波精密板厚計(OLYMPUS社製、MODEL 38DL PLUS)を用いて測定を行った(単位:GPa)。 E: About the sample of the block-shaped glass of 20 mm x 20 mm x 10 mm, it measured using the ultrasonic precision board thickness meter (The product made by OLYMPUS, MODEL 38DL PLUS) (unit: GPa).
 RW:JOGIS06-2008光学ガラスの化学的耐久性の測定方法(粉末法)に準拠して測定した。具体的には、ガラスをアルミナの乳鉢と乳棒により直径が420~600μmのガラス粉末としたものについて、100℃の純水80mL中に1時間浸漬した時の質量減少割合(%)を測定した。質量減少割合が0.05(%)未満では等級1、0.05以上0.10(%)未満では等級2、0.10以上0.25(%)未満では等級3、0.25以上0.60(%)未満では等級4、0.60以上1.10(%)未満では等級5、1.10(%)以上では等級6とした。 RW: Measured according to the measuring method (powder method) of chemical durability of JOGIS06-2008 optical glass. Specifically, when the glass was made into a glass powder having a diameter of 420 to 600 μm using an alumina mortar and pestle, the mass reduction ratio (%) when immersed in 80 mL of pure water at 100 ° C. for 1 hour was measured. If the mass reduction ratio is less than 0.05 (%), it is grade 1, if it is 0.05 or more and less than 0.10 (%), it is grade 2, and if it is 0.10 or more and less than 0.25 (%), it is grade 3, 0.25 or more and 0. Less than .60 (%) was grade 4, 0.60 or more and less than 1.10 (%), grade 5 and 1.10 (%) or more, grade 6.
 RA:JOGIS06-2008光学ガラスの化学的耐久性の測定方法(粉末法)に準拠して測定した。具体的には、ガラスをアルミナの乳鉢と乳棒により直径が420~600μmのガラス粉末としたものについて、100℃の0.01規定の硝酸水溶液80mL中に1時間浸漬した時の質量減少割合(%)を測定した。質量減少割合が0.20(%)未満では等級1、0.20以上0.35(%)未満では等級2、0.35以上0.65(%)未満では等級3、0.65以上1.20(%)未満では等級4、1.20以上2.20(%)未満では等級5、2.20(%)以上では等級6とした。 RA: Measured according to the measuring method (powder method) of chemical durability of JOGIS06-2008 optical glass. Specifically, when the glass was made into a glass powder having a diameter of 420 to 600 μm using an alumina mortar and pestle, the mass reduction ratio (%) when immersed in 80 mL of a 0.01 N nitric acid aqueous solution at 100 ° C. for 1 hour. ) Was measured. Grade 1 if the mass reduction rate is less than 0.20 (%), Grade 2 if it is less than 0.20 and less than 0.35 (%), Grade 3, if it is less than 0.35 and less than 0.65 (%), 0.65 or more and 1 Less than .20 (%), grade 4, 1.20 or more and less than 2.20 (%), grade 5, and 2.20 (%) or more, grade 6.
 CIL:上述した方法で測定した。CILの値が2000gf以上の場合は、「>2000」と表記した。表1~6において、400℃、100Naで30分の化学強化処理後のガラス板のCILをCIL100Na-05hと表記した。他の条件で化学強化処理したガラス板のCILも同様に条件を表記した。 CIL: measured by the method described above. When the CIL value was 2000 gf or more, it was expressed as “> 2000”. In Tables 1 to 6, the CIL of the glass plate after chemical strengthening treatment at 400 ° C. and 100Na for 30 minutes was expressed as CIL 100Na-05h . The conditions were similarly indicated for the CIL of the glass plate chemically treated under other conditions.
 結果をガラスの組成とあわせて表1~6に示す。表1~6において、例1~31、41~46は実施例、例32~35、37~40は比較例、例36は参考例である。表中の「-」は未測定を意味する。 The results are shown in Tables 1 to 6 together with the glass composition. In Tables 1-6, Examples 1-31, 41-46 are Examples, Examples 32-35, 37-40 are Comparative Examples, and Example 36 is a Reference Example. “-” In the table means unmeasured.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 また、表7に記載のガラスにおいては、上記実施例に相当する例1、7、16、18、23、25、42、44のガラスと、比較例に相当する例35、36、38のガラスをそれぞれ表1~6に記載の化学組成となるように原料を秤量し、上記同様の手法で混合、内容積約700mLの白金ルツボ内に入れて、1200~1400℃で約6時間溶融、撹拌、清澄後、1200~1400℃で0.5時間保持し、およそ650℃に予熱した縦100mm×横150mmの長方形のモールドに鋳込み後、約0.2℃/分で徐冷して縦100mm×横150mm×厚み40mmのガラスを得、スライス、研磨を経て、図1に示すような断面形状を持つ直径D1が14mm、第1の主面1における曲率半径R1が12mm、第2の主面2が有する曲面の直径D2が5.72mm、その曲率半径R2が3mm、凸部の厚みT1が1.4mmであり、第2の主面2の曲面の頂点と基部の距離T2が2.1mm、強化レンズ10の厚みが3.5mmであるレンズ成型体を加工した。レンズ成型体の形状を3D計測機(KEYENCE社製、VR-3200)で測定した。 Moreover, in the glass of Table 7, the glass of Example 1, 7, 16, 18, 23, 25, 42, 44 corresponding to the said Example, and the glass of Example 35, 36, 38 corresponding to a comparative example The raw materials are weighed so as to have the chemical compositions shown in Tables 1 to 6, mixed in the same manner as described above, placed in a platinum crucible having an internal volume of about 700 mL, melted at 1200 to 1400 ° C. for about 6 hours, and stirred. After fining, hold at 1200-1400 ° C for 0.5 hour, cast into a rectangular mold of 100mm length × 150mm width preheated to approximately 650 ° C, and then slowly cool at about 0.2 ° C / min to 100mm length A glass having a width of 150 mm and a thickness of 40 mm is obtained, and after slicing and polishing, a diameter D1 having a cross-sectional shape as shown in FIG. 1 is 14 mm, a radius of curvature R1 in the first main surface 1 is 12 mm, and a second main surface 2 Curved surface The diameter D2 is 5.72 mm, the curvature radius R2 is 3 mm, the thickness T1 of the convex portion is 1.4 mm, the distance T2 between the apex of the curved surface of the second main surface 2 and the base is 2.1 mm, and the reinforced lens 10 A lens molded body having a thickness of 3.5 mm was processed. The shape of the lens molding was measured with a 3D measuring device (manufactured by KEYENCE, VR-3200).
 得られたレンズ成型体を表7に示す種々の条件で化学強化処理して強化レンズを得た。化学強化処理は、NaNO対KNOの質量%が75:25の硝酸塩(表7中、「75%NaNO+25%KNO」と示す。)、0:100の硝酸塩(表7中、「100%KNO」と示す。)をそれぞれ準備し、表7に示す化学強化処理温度T(単位:℃)、処理時間t(単位:時間)で強化を行った。表7にT1.8×t0.5を併せて示す。 The obtained lens molding was subjected to chemical strengthening treatment under various conditions shown in Table 7 to obtain a strengthened lens. The chemical strengthening treatment includes nitrate with a mass% of NaNO 3 to KNO 3 of 75:25 (indicated as “75% NaNO 3 + 25% KNO 3 ” in Table 7), and nitrate of 0: 100 (in Table 7, “ 100% KNO 3 ”) was prepared, and strengthening was performed at the chemical strengthening treatment temperature T (unit: ° C.) and the treatment time t (unit: time) shown in Table 7. Table 7 also shows T 1.8 × t 0.5 .
 強化前には400℃でキープした電気炉に10分間入れ、予熱してから強化溶融塩にて所定の強化条件で強化し、強化後は自然放冷し、十分に冷めてからイオン交換水で10分間超音波洗浄し、乾燥して強化レンズとした。強化レンズの形状を上記同様の3D計測機で測定した後、落球強度を評価した。結果を表7に示す。 Prior to strengthening, put in an electric furnace kept at 400 ° C for 10 minutes, preheat and then strengthen with reinforced molten salt under the specified strengthening conditions. It was ultrasonically cleaned for 10 minutes and dried to obtain a reinforced lens. After measuring the shape of the reinforced lens with the same 3D measuring instrument as described above, the falling ball strength was evaluated. The results are shown in Table 7.
 例7、例16、例25のガラスを使用し、上記同様にしてレンズ成型体を得、得られたレンズ成型体をNaNO対KNOの質量%が75:25の硝酸塩で400℃、30分強化して強化レンズを得た。得られた強化レンズについて、超音波洗浄後、スパッタプロセスにより第一の主面にSiO、Siを交互に合計7層積層して合計膜厚が0.5μmの反射防止層を形成し反射防止層付き強化レンズを得た。いずれの反射防止層付き強化レンズにおいても、反射率は420~750nmにわたって、1%以下であった。前記3種類の反射防止層付き強化レンズにおいても、落球強度を評価した。結果を表6中、例7-C、例16-C、例25-Cに示す。 Using the glass of Example 7, Example 16, and Example 25, a lens molded body was obtained in the same manner as described above, and the obtained lens molded body was obtained by adding 400% at 30 ° C. with nitrate of NaNO 3 to KNO 3 of 75: 25% by mass. Reinforced lenses were obtained. For the reinforced lens obtained, after ultrasonic cleaning, a total of 7 layers of SiO 2 and Si 3 N 4 are alternately laminated on the first main surface by a sputtering process to form an antireflection layer with a total thickness of 0.5 μm. A reinforced lens with an antireflection layer was obtained. In any reinforced lens with an antireflection layer, the reflectance was 1% or less over 420 to 750 nm. The falling ball strength was also evaluated for the three types of reinforced lenses with an antireflection layer. The results are shown in Table 7 in Example 7-C, Example 16-C, and Example 25-C.
 落球強度[cm]:上述した方法で測定した。
 化学強化前後における形状変化:上述した方法でレンズ成型体と強化レンズの第1の主面の曲率半径の変化量[μm]を算出した。
Falling ball strength [cm]: measured by the method described above.
Change in shape before and after chemical strengthening: The amount of change [μm] in the radius of curvature of the first principal surface of the molded lens and the strengthened lens was calculated by the method described above.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 上記各実施例のガラスは、いずれも、LiOを10mol%以上含有し、かつLiO/(LiO+NaO+KO)≧0.5、SrO+BaOが10mol%以下、SiOが30~65mol%であるため、CILは100gf以上の高い強度を有する。なお、CILは、CIL100Na-0.5h、CIL75Na25K-0.5h、CIL50Na50K-0.5hのいずれか、すなわち強化溶融塩(X)を用いて化学強化処理されたガラス板のCILのいずれかが100gf以上であればよい。 The glass in each Example are both the Li 2 O and containing at least 10 mol%, and Li 2 O / (Li 2 O + Na 2 O + K 2 O) ≧ 0.5, SrO + BaO is less 10 mol%, SiO 2 30 Since it is ˜65 mol%, CIL has a high strength of 100 gf or more. CIL is any one of CIL 100Na-0.5h , CIL 75Na25K-0.5h , CIL 50Na50K-0.5h , that is, any of CIL of a glass plate chemically strengthened using reinforced molten salt (X). May be 100 gf or more.
 なお、B/LiOが0.75を大きく上回る例34ガラスは、Δndが0.003以上と高く、製造時のプロセスマージンが狭いことが想定される。 In addition, it is assumed that Example 34 glass in which B 2 O 3 / Li 2 O greatly exceeds 0.75 has a high Δnd of 0.003 or more and a process margin at the time of manufacture is narrow.
 また、例1、7、16、18、23、25、42、44の本実施例ガラスを用いた強化レンズはNaNO対KNOの質量%が75:25の硝酸塩(強化溶融塩(X))を用いた400℃、30分の化学強化条件でも落球強度が80cm以上であり、かつ形状変化は10μm以下に抑えられている。一方で例7、16ガラスを用いた強化レンズで強化時間を延ばしたり、強化温度を500℃まで上げたりすると、形状変化が大きくなる。これは、T1.8×t0.5が本発明の製造方法の範囲外であることによる。 In addition, the strengthened lens using the glass of this example of Examples 1, 7, 16, 18, 23, 25, 42, 44 is nitrate (strengthened molten salt (X)) in which the mass% of NaNO 3 to KNO 3 is 75:25. ), The falling ball strength is 80 cm or more even under the chemical strengthening condition at 400 ° C. for 30 minutes, and the shape change is suppressed to 10 μm or less. On the other hand, when the tempering time is extended or the tempering temperature is increased to 500 ° C. with the reinforced lens using the glass of Examples 7 and 16, the shape change becomes large. This is because T 1.8 × t 0.5 is out of the range of the production method of the present invention.
 また、強化溶融塩(X)ではない100%KNOの強化溶融塩を用いた例7のガラスを用いた強化レンズの場合、400℃、30分の化学強化処理では落球強度が80cm以下であり、形状変化は10μm以上と、Kイオンの強化スピードが遅いのにもかかわらず形状変化は大きいことが分かる。例7のガラスを用いた強化レンズは、一方で、100%KNO、400℃で、強化時間を4時間まで延ばすと、落球強度は80cm以上に達するが、形状変化はさらに大きくなる。 Further, in the case of a reinforced lens using the glass of Example 7 using a reinforced molten salt of 100% KNO 3 which is not a reinforced molten salt (X), the falling ball strength is 80 cm or less in the chemical tempering treatment at 400 ° C. for 30 minutes. The shape change is 10 μm or more, and it can be seen that the shape change is large despite the slow K ion strengthening speed. On the other hand, in the reinforced lens using the glass of Example 7, when the tempering time is extended to 4 hours at 100% KNO 3 and 400 ° C., the falling ball strength reaches 80 cm or more, but the shape change is further increased.
 このように、表7の結果から例1、7、16、18、23、25、42、44の本実施例のガラスを用いれば、化学強化処理しても形状が大きく変化しない程度の処理時間で十分に耐衝撃性が高く、かつ屈折率の高い強化レンズが得られることが分かる。 In this way, from the results of Table 7, if the glasses of Examples 1, 7, 16, 18, 23, 25, 42, and 44 of this example are used, the processing time is such that the shape does not change greatly even when chemically strengthened. It can be seen that a reinforced lens having sufficiently high impact resistance and a high refractive index can be obtained.
 比較例である例32~34は、SiOが30mol%未満であるため、CILは100gf未満であり、落球強度は80cm未満であると推測される。
 また、例35(比較例)、例36(参考例)のガラスは、LiOが10mol%未満であり、化学強化の効率が悪く、例35ではCILは100gf未満である。例36ではCIL100K-4hは100gf以上であるが、CIL100Na-0.5h、CIL75Na25K-0.5h、CIL50Na50K-0.5hのいずれかで100gf以上となる条件は満たしていない。例36のガラスを用いた強化レンズの場合、落球強度は、75%NaNO+25%KNOの強化溶融塩や100%KNOの強化溶融塩で、400℃において、30分の強化時間では、落球強度が80cm未満であり、例7のガラスを用いた強化レンズ同様、100%KNOで400℃において、4時間の強化時間では、落球強度は80cm超であるが、強化による形状変化は10μm超となってしまう。
In Comparative Examples 32 to 34, since SiO 2 is less than 30 mol%, CIL is estimated to be less than 100 gf and falling ball strength is estimated to be less than 80 cm.
Further, the glasses of Example 35 (Comparative Example) and Example 36 (Reference Example) have Li 2 O of less than 10 mol% and poor chemical strengthening efficiency. In Example 35, CIL is less than 100 gf. In Example 36, CIL 100K-4h is 100 gf or more, but any of CIL 100Na-0.5h , CIL 75Na25K-0.5h , and CIL 50Na50K-0.5h does not satisfy the condition of 100 gf or more. In the case of the strengthened lens using the glass of Example 36, the falling ball strength is 75% NaNO 3 + 25% KNO 3 strengthened molten salt or 100% KNO 3 strengthened molten salt at 400 ° C. for a strengthening time of 30 minutes. Like the reinforced lens using the glass of Example 7 having a falling ball strength of less than 80 cm, the falling ball strength is more than 80 cm at 100% KNO 3 at 400 ° C. for 4 hours strengthening time, but the shape change due to strengthening is 10 μm. Become super.
 例37のガラスは、LiO/(LiO+NaO+KO)が0.5未満であり、化学強化の効率が悪く、CILは100gf未満であることから、落球強度は80cm未満であると推測される。例38~40ガラスは、SrO+BaOが10mol%超であり、化学強化の効率が悪く、CILは100gf未満であることから、落球強度は80cm未満であると推測される。例38のガラスを強化レンズにした時、75%NaNO+25%KNOの強化溶融塩で、400℃で30分強化しても落球強度は10cmと低い値を示した。 The glass of Example 37 has Li 2 O / (Li 2 O + Na 2 O + K 2 O) of less than 0.5, the efficiency of chemical strengthening is poor, and the CIL is less than 100 gf, so the falling ball strength is less than 80 cm. It is guessed. In Examples 38 to 40, SrO + BaO is more than 10 mol%, the chemical strengthening efficiency is poor, and the CIL is less than 100 gf. Therefore, it is estimated that the falling ball strength is less than 80 cm. When the glass of Example 38 was made into a reinforced lens, it was a 75% NaNO 3 + 25% KNO 3 reinforced molten salt, and even when tempered at 400 ° C. for 30 minutes, the falling ball strength was as low as 10 cm.
 よって、本発明の強化レンズは、耐衝撃性に優れ、例えば、車載用カメラの撮像レンズ等に用いた場合に、画質が低下することなく、過酷な使用環境にも充分耐えうる強度を有するものである。そのため、過酷な環境に曝される車載用カメラに用いられる撮像レンズ等に好適である。また、車載用カメラ以外にも、ロボット用視覚センサー、監視カメラ、ウェアラブルカメラなどの用途にも適している。 Therefore, the reinforced lens of the present invention is excellent in impact resistance, and has a strength that can sufficiently withstand harsh usage environments without deterioration in image quality when used for an imaging lens of an in-vehicle camera, for example. It is. Therefore, it is suitable for an imaging lens used for a vehicle-mounted camera that is exposed to a harsh environment. In addition to in-vehicle cameras, it is also suitable for applications such as robot vision sensors, surveillance cameras, and wearable cameras.
 また、本発明の強化レンズの製造方法によれば、耐衝撃性が高く、かつ化学強化処理による形状変化が抑えられた強化レンズが得られる。 Further, according to the method for manufacturing a reinforced lens of the present invention, a reinforced lens having high impact resistance and suppressed shape change due to chemical strengthening treatment can be obtained.
10…強化レンズ、1…第1の主面、2…第2の主面、11…水平面、12…鉄球。 DESCRIPTION OF SYMBOLS 10 ... Reinforcement lens, 1 ... 1st main surface, 2 ... 2nd main surface, 11 ... Horizontal surface, 12 ... Iron ball.

Claims (18)

  1.  ガラスのレンズ成型体の化学強化レンズであって、前記ガラスは、SiOを30~65mol%、LiOを10mol%以上、SrO+BaOを0~10mol%含有し、かつLiO/(LiO+NaO+KO)が0.5以上である強化レンズ。 A chemically strengthened lens of a glass lens molded body, wherein the glass contains 30 to 65 mol% of SiO 2 , 10 mol% or more of Li 2 O, 0 to 10 mol% of SrO + BaO, and Li 2 O / (Li 2 A reinforced lens in which O + Na 2 O + K 2 O) is 0.5 or more.
  2.  水平面に載置された前記強化レンズの中心に向けて64.6gの鉄球を落下させた場合に、前記強化レンズが破壊しない高さとして示される落球強度が80cm以上である請求項1記載の強化レンズ。 2. The falling ball strength indicated as a height at which the strengthening lens does not break when a 64.6 g iron ball is dropped toward the center of the strengthening lens placed on a horizontal plane is 80 cm or more. Reinforced lens.
  3.  前記レンズ成型体は、互いに対向する第1の主面および第2の主面を有し、前記レンズ成型体を直径14mm、前記第1の主面の曲率半径12mm並びに前記第2の主面の曲率半径3mmに成型したときの、化学強化前後での前記第1の主面の曲率半径の変化量が10μm以下である、請求項1または2記載の強化レンズ。 The lens molding has a first main surface and a second main surface facing each other. The lens molding has a diameter of 14 mm, a radius of curvature of the first main surface of 12 mm, and the second main surface. 3. The reinforced lens according to claim 1, wherein the amount of change in the radius of curvature of the first main surface before and after chemical strengthening when molded to a radius of curvature of 3 mm is 10 μm or less.
  4.  前記強化レンズは、クラックイニシエーションロード(CIL)が100gf以上である請求項1~3のいずれかに記載の強化レンズ。 The reinforced lens according to any one of claims 1 to 3, wherein the reinforced lens has a crack initiation load (CIL) of 100 gf or more.
  5.  前記ガラスは、ガラス転移点(Tg)が500℃~630℃である請求項1~4いずれかに記載の強化レンズ。 The reinforced lens according to any one of claims 1 to 4, wherein the glass has a glass transition point (Tg) of 500 ° C to 630 ° C.
  6.  前記強化レンズは、屈折率(nd)が1.73~2.10、アッベ数(νd)が15~45である請求項1~5のいずれかに記載の強化レンズ。 6. The reinforced lens according to claim 1, wherein the reinforced lens has a refractive index (nd) of 1.73 to 2.10 and an Abbe number (νd) of 15 to 45.
  7.  前記強化レンズは、屈折率(nd)が1.63以上1.73未満、アッベ数(νd)が35~55である請求項1~5のいずれかに記載の強化レンズ。 The reinforced lens according to any one of claims 1 to 5, wherein the reinforced lens has a refractive index (nd) of 1.63 or more and less than 1.73 and an Abbe number (νd) of 35 to 55.
  8.  前記強化レンズは、屈折率(nd)が1.50以上1.63未満、アッベ数(νd)が45~65である請求項1~5のいずれかに記載の強化レンズ。 6. The reinforced lens according to claim 1, wherein the reinforced lens has a refractive index (nd) of 1.50 or more and less than 1.63 and an Abbe number (νd) of 45 to 65.
  9.  前記ガラスは、酸化物基準のmol%表示で、
     SiO: 30%~65%、
     Al: 0%~20%、
     B: 0%~40%、
     P: 0%~20%、
     MgO: 0%~20%、
     CaO: 0%~20%、
     SrO: 0%~10%、
     BaO: 0%~10%、
     ZnO: 0%~20%、
     TiO: 0%~20%、
     ZrO: 0%~15%、
     LiO+NaO+KO: 10%~30%、
     LiO: 10%~30%、
     NaO: 0%~15%、
     KO: 0%~5%、
     Nb: 0%~30%、
     Ln: 0%~20%、
     La: 0%~20%、
     Y: 0%~20%、
     Gd: 0%~20%、
     Ta: 0%~20%、
     WO:  0%~20%
     を含有する請求項6~8のいずれかに記載の強化レンズ。
    The glass is expressed in mol% based on oxide,
    SiO 2 : 30% to 65%,
    Al 2 O 3 : 0% to 20%,
    B 2 O 3 : 0% to 40%,
    P 2 O 5 : 0% to 20%,
    MgO: 0% to 20%,
    CaO: 0% to 20%,
    SrO: 0% to 10%,
    BaO: 0% to 10%,
    ZnO: 0% to 20%,
    TiO 2 : 0% to 20%,
    ZrO 2 : 0% to 15%,
    Li 2 O + Na 2 O + K 2 O: 10% to 30%,
    Li 2 O: 10% to 30%,
    Na 2 O: 0% to 15%,
    K 2 O: 0% to 5%,
    Nb 2 O 5 : 0% to 30%,
    Ln 2 O 3 : 0% to 20%,
    La 2 O 3 : 0% to 20%,
    Y 2 O 3 : 0% to 20%,
    Gd 2 O 3 : 0% to 20%,
    Ta 2 O 5 : 0% to 20%,
    WO 3: 0% ~ 20%
    The reinforced lens according to any one of claims 6 to 8, comprising:
  10.  前記ガラスは、酸化物基準のmol%表示で、
     SiO: 30%~55%、
     Al: 0%~5%、
     B: 0%~40%、
     P: 0%~20%、
     MgO: 0%~10%、
     CaO: 0%~10%、
     SrO: 0%~10%、
     BaO: 0%~10%、
     ZnO: 0%~20%、
     TiO: 0%~20%、
     ZrO: 0%~15%、
     LiO+NaO+KO: 10%~30%、
     LiO: 10%~30%、
     NaO: 0%~15%、
     KO: 0%~5%、
     Nb: 0%~30%、
     Ln: 0%~20%、
     La: 0%~20%、
     Y: 0%~20%、
     Gd: 0%~20%、
     Ta: 0%~20%、
     WO:  0%~20%
     を含有する請求項6に記載の強化レンズ。
    The glass is expressed in mol% based on oxide,
    SiO 2 : 30% to 55%,
    Al 2 O 3 : 0% to 5%,
    B 2 O 3 : 0% to 40%,
    P 2 O 5 : 0% to 20%,
    MgO: 0% to 10%,
    CaO: 0% to 10%,
    SrO: 0% to 10%,
    BaO: 0% to 10%,
    ZnO: 0% to 20%,
    TiO 2 : 0% to 20%,
    ZrO 2 : 0% to 15%,
    Li 2 O + Na 2 O + K 2 O: 10% to 30%,
    Li 2 O: 10% to 30%,
    Na 2 O: 0% to 15%,
    K 2 O: 0% to 5%,
    Nb 2 O 5 : 0% to 30%,
    Ln 2 O 3 : 0% to 20%,
    La 2 O 3 : 0% to 20%,
    Y 2 O 3 : 0% to 20%,
    Gd 2 O 3 : 0% to 20%,
    Ta 2 O 5 : 0% to 20%,
    WO 3: 0% ~ 20%
    The reinforced lens according to claim 6, comprising:
  11.  前記ガラスは、酸化物基準のmol%表示で、
     SiO: 30%~60%、
     Al: 0%~10%、
     B: 0%~20%、
     P: 0%~20%、
     MgO: 0%~20%、
     CaO: 0%~20%、
     SrO: 0%~10%、
     BaO: 0%~10%、
     ZnO: 0%~20%、
     TiO: 0%~5%、
     ZrO: 0%~15%、
     LiO+NaO+KO: 10%~30%、
     LiO: 10%~30%、
     NaO: 0%~10%、
     KO: 0%~5%、
     Nb: 0%~15%、
     Ln: 0%~20%、
     La: 0%~20%、
     Y: 0%~10%、
     Gd: 0%~10%、
     Ta: 0%~10%、
     WO:  0%~10%
     を含有し、SiO+Al+B+Pが30%以上65%未満である請求項7に記載の強化レンズ。
    The glass is expressed in mol% based on oxide,
    SiO 2 : 30% to 60%,
    Al 2 O 3 : 0% to 10%,
    B 2 O 3 : 0% to 20%,
    P 2 O 5 : 0% to 20%,
    MgO: 0% to 20%,
    CaO: 0% to 20%,
    SrO: 0% to 10%,
    BaO: 0% to 10%,
    ZnO: 0% to 20%,
    TiO 2 : 0% to 5%,
    ZrO 2 : 0% to 15%,
    Li 2 O + Na 2 O + K 2 O: 10% to 30%,
    Li 2 O: 10% to 30%,
    Na 2 O: 0% to 10%,
    K 2 O: 0% to 5%,
    Nb 2 O 5 : 0% to 15%,
    Ln 2 O 3 : 0% to 20%,
    La 2 O 3 : 0% to 20%,
    Y 2 O 3 : 0% to 10%
    Gd 2 O 3 : 0% to 10%,
    Ta 2 O 5 : 0% to 10%,
    WO 3 : 0% to 10%
    The reinforced lens according to claim 7, comprising: SiO 2 + Al 2 O 3 + B 2 O 3 + P 2 O 5 of 30% or more and less than 65%.
  12.  前記ガラスは、B/LiOが0.75以下である請求項7または11に記載の強化レンズ。 The glass is reinforced lens according to claim 7 or 11 B 2 O 3 / Li 2 O is 0.75 or less.
  13.  前記ガラスは、B/LiOが0.7以下である請求項7または11に記載の強化レンズ。 The glass is reinforced lens according to claim 7 or 11 B 2 O 3 / Li 2 O is 0.7 or less.
  14.  前記ガラスは、酸化物基準のmol%表示で、
     SiO: 30%~65%、
     Al: 0%~20%、
     B: 0%~40%、
     P: 0%~20%、
     MgO: 0%~20%、
     CaO: 0%~20%、
     SrO: 0%~10%、
     BaO: 0%~10%、
     ZnO: 0%~20%、
     TiO: 0%~5%、
     ZrO: 0%~10%、
     LiO+NaO+KO: 10%~25%、
     LiO: 10%~20%、
     NaO: 0%~10%、
     KO: 0%~5%、
     Nb: 0%~10%、
     Ln: 0%~10%、
     La: 0%~10%、
     Y: 0%~5%、
     Gd: 0%~5%、
     Ta: 0%~5%、
     WO:  0%~5%
     を含有し、SiO+Al+B+Pが65%以上80%未満かつ、TiO+Nb+WOが10%以下である請求項8に記載の強化レンズ。
    The glass is expressed in mol% based on oxide,
    SiO 2 : 30% to 65%,
    Al 2 O 3 : 0% to 20%,
    B 2 O 3 : 0% to 40%,
    P 2 O 5 : 0% to 20%,
    MgO: 0% to 20%,
    CaO: 0% to 20%,
    SrO: 0% to 10%,
    BaO: 0% to 10%,
    ZnO: 0% to 20%,
    TiO 2 : 0% to 5%,
    ZrO 2 : 0% to 10%,
    Li 2 O + Na 2 O + K 2 O: 10% to 25%,
    Li 2 O: 10% to 20%,
    Na 2 O: 0% to 10%,
    K 2 O: 0% to 5%,
    Nb 2 O 5 : 0% to 10%,
    Ln 2 O 3 : 0% to 10%,
    La 2 O 3 : 0% to 10%,
    Y 2 O 3 : 0% to 5%,
    Gd 2 O 3 : 0% to 5%,
    Ta 2 O 5 : 0% to 5%,
    WO 3 : 0% to 5%
    The reinforced lens according to claim 8, wherein SiO 2 + Al 2 O 3 + B 2 O 3 + P 2 O 5 is 65% or more and less than 80% and TiO 2 + Nb 2 O 5 + WO 3 is 10% or less.
  15.  前記強化レンズは、日本光学硝子工業会規格によるJOGIS06-2008に準拠して測定される耐水性が等級3以上であり、耐酸性が等級3以上である請求項1~14のいずれかに記載の強化レンズ。 The reinforced lens has a water resistance measured according to JOGIS06-2008 according to the Japan Optical Glass Industry Association standard of grade 3 or higher and an acid resistance of grade 3 or higher. Reinforced lens.
  16.  前記強化レンズは、第1の主面および第2の主面の少なくとも一方の主面上に反射防止層を備える請求項1~15のいずれかに記載の強化レンズ。 The reinforced lens according to any one of claims 1 to 15, wherein the reinforced lens includes an antireflection layer on at least one main surface of the first main surface and the second main surface.
  17.  前記強化レンズは、第1の主面および第2の主面の少なくとも一方の主面上に防汚コーティング層を備える請求項1~16のいずれかに記載の強化レンズ。 The reinforced lens according to any one of claims 1 to 16, wherein the reinforced lens includes an antifouling coating layer on at least one of the first main surface and the second main surface.
  18.  SiOを30~65mol%、LiOを10mol%以上、SrO+BaOを0~10mol%含有し、かつLiO/(LiO+NaO+KO)が0.5以上であるガラスをレンズ成型体に成型し、
     該レンズ成型体を、少なくとも硝酸ナトリウムを含む強化溶融塩であり、前記強化溶融塩は質量%表示で硝酸ナトリウムを25%以上、かつ硝酸ナトリウムと硝酸カリウムを合量で95%以上含有する強化溶融塩を用いて、化学強化処理温度をT(単位:℃)、処理時間をt(単位:時間)としたときに、下記式(1)を満たす条件で化学強化処理する強化レンズの製造方法。
          30000<T1.8×t0.5<50000   式(1)
    Lens molding of glass containing 30 to 65 mol% of SiO 2 , 10 mol% or more of Li 2 O, 0 to 10 mol% of SrO + BaO, and Li 2 O / (Li 2 O + Na 2 O + K 2 O) of 0.5 or more Molded into the body,
    The lens molded body is a reinforced molten salt containing at least sodium nitrate, and the reinforced molten salt contains 25% or more of sodium nitrate in terms of mass%, and contains 95% or more of sodium nitrate and potassium nitrate in total. A method for manufacturing a reinforced lens, in which the chemical strengthening treatment is performed under the condition satisfying the following formula (1) when the chemical strengthening treatment temperature is T (unit: ° C.) and the treatment time is t (unit: time).
    30000 <T 1.8 × t 0.5 <50000 Formula (1)
PCT/JP2017/030245 2016-09-14 2017-08-24 Tempered lens and method for manufacturing tempered lens WO2018051754A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016179818 2016-09-14
JP2016-179818 2016-09-14

Publications (1)

Publication Number Publication Date
WO2018051754A1 true WO2018051754A1 (en) 2018-03-22

Family

ID=61619187

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/030245 WO2018051754A1 (en) 2016-09-14 2017-08-24 Tempered lens and method for manufacturing tempered lens

Country Status (1)

Country Link
WO (1) WO2018051754A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110655322A (en) * 2018-06-29 2020-01-07 Hoya株式会社 Reheating pressing glass material, polishing glass, and method for producing same
WO2021193176A1 (en) * 2020-03-24 2021-09-30 株式会社 オハラ Chemically strengthened optical glass
CN115010363A (en) * 2022-06-01 2022-09-06 河北光兴半导体技术有限公司 High-refractive-index glass composition, high-refractive-index glass, and preparation method and application thereof
WO2023026715A1 (en) * 2021-08-27 2023-03-02 株式会社 オハラ Chemically strengthened optical glass

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58145638A (en) * 1982-02-20 1983-08-30 シヨツト・グラスヴエルケ Optical and ophthalmic glass with refractive index 1.56, abbe's no 40 and density 2.70 g/cm3
JPS6364941A (en) * 1986-09-05 1988-03-23 Nippon Sheet Glass Co Ltd Glass composition for light-collecting lens
JPS63288930A (en) * 1987-05-22 1988-11-25 Canon Inc Glass composition for distributed index lens
JPH01133956A (en) * 1987-11-20 1989-05-26 Canon Inc Glass composition for distributed refractive index lens
JP2002121048A (en) * 2000-10-11 2002-04-23 Nippon Sheet Glass Co Ltd Mother glass composition for index distributed lens
JP2004250279A (en) * 2003-02-19 2004-09-09 Nippon Sheet Glass Co Ltd Glass composition for preform of graded index-type lens, graded index-type lens using the same, and method for producing the lens
JP2012240907A (en) * 2011-05-24 2012-12-10 Ohara Inc Optical glass, preform and optical element
JP2015206880A (en) * 2014-04-18 2015-11-19 旭硝子株式会社 Optical element, and manufacturing method of optical element

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58145638A (en) * 1982-02-20 1983-08-30 シヨツト・グラスヴエルケ Optical and ophthalmic glass with refractive index 1.56, abbe's no 40 and density 2.70 g/cm3
JPS6364941A (en) * 1986-09-05 1988-03-23 Nippon Sheet Glass Co Ltd Glass composition for light-collecting lens
JPS63288930A (en) * 1987-05-22 1988-11-25 Canon Inc Glass composition for distributed index lens
JPH01133956A (en) * 1987-11-20 1989-05-26 Canon Inc Glass composition for distributed refractive index lens
JP2002121048A (en) * 2000-10-11 2002-04-23 Nippon Sheet Glass Co Ltd Mother glass composition for index distributed lens
JP2004250279A (en) * 2003-02-19 2004-09-09 Nippon Sheet Glass Co Ltd Glass composition for preform of graded index-type lens, graded index-type lens using the same, and method for producing the lens
JP2012240907A (en) * 2011-05-24 2012-12-10 Ohara Inc Optical glass, preform and optical element
JP2015206880A (en) * 2014-04-18 2015-11-19 旭硝子株式会社 Optical element, and manufacturing method of optical element

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110655322A (en) * 2018-06-29 2020-01-07 Hoya株式会社 Reheating pressing glass material, polishing glass, and method for producing same
WO2021193176A1 (en) * 2020-03-24 2021-09-30 株式会社 オハラ Chemically strengthened optical glass
WO2023026715A1 (en) * 2021-08-27 2023-03-02 株式会社 オハラ Chemically strengthened optical glass
CN115010363A (en) * 2022-06-01 2022-09-06 河北光兴半导体技术有限公司 High-refractive-index glass composition, high-refractive-index glass, and preparation method and application thereof

Similar Documents

Publication Publication Date Title
JP6879215B2 (en) Optical glass
US20210179479A1 (en) Optical glass and optical component
JP6321312B1 (en) Optical glass and optical components
CN107082562B (en) Optical glass, optical element, and preform for precision press molding
JP6922741B2 (en) Optical glass
WO2018051754A1 (en) Tempered lens and method for manufacturing tempered lens
US11964904B2 (en) Glass substrate with antireflection film, and optical member
JP5445197B2 (en) Near-infrared cut filter glass and method for producing near-infrared cut filter glass
US20200325063A1 (en) Optical glass and optical member
JP5919595B2 (en) Optical glass, optical element and preform
JP2010024101A (en) Optical glass, glass molded product and optical device
JP2015094785A (en) Optical element
JP2002211947A (en) Matrix glass composition for gradient index lens
JPWO2019082616A1 (en) Optical glass, optics and wearables

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17850658

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 17850658

Country of ref document: EP

Kind code of ref document: A1