WO2018051684A1 - Microgrid operation device and microgrid operation method - Google Patents

Microgrid operation device and microgrid operation method Download PDF

Info

Publication number
WO2018051684A1
WO2018051684A1 PCT/JP2017/028732 JP2017028732W WO2018051684A1 WO 2018051684 A1 WO2018051684 A1 WO 2018051684A1 JP 2017028732 W JP2017028732 W JP 2017028732W WO 2018051684 A1 WO2018051684 A1 WO 2018051684A1
Authority
WO
WIPO (PCT)
Prior art keywords
power demand
microgrid
power
dropout
demand device
Prior art date
Application number
PCT/JP2017/028732
Other languages
French (fr)
Japanese (ja)
Inventor
正剛 今林
渡辺 雅浩
亮介 中村
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2018051684A1 publication Critical patent/WO2018051684A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/70Smart grids as climate change mitigation technology in the energy generation sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/12Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation

Definitions

  • the present invention relates to a microgrid operation apparatus and a microgrid operation method.
  • independent operation of the microgrid means that the breaker at the connection point between the microgrid and the power system is opened, and power supply to the microgrid area is continued using the generator in the microgrid as a power supply source. .
  • the microgrid closes the circuit breaker while the power system is in a healthy state. During this time, power consumed by the microgrid is provided by power supplied from an external system and power supplied from a generator in the microgrid.
  • the power system suddenly fails.
  • the microgrid shifts to the independent operation by opening the circuit breaker at the connection point with the power system and shutting off the microgrid area and the commercial system (power system).
  • the frequency and voltage in the microgrid greatly fluctuate due to the loss of power supplied from the external system (commercial system) and the fluctuation of the power used by the power demanding equipment. To do. Due to the fluctuation of the frequency and voltage, there is a problem that the power demand equipment in the microgrid stops, the fluctuation of the voltage and frequency is amplified, and the private power generation equipment stops.
  • Non-Patent Document 1 A technique described in Non-Patent Document 1 has been proposed as an example of a technique for reducing fluctuations in frequency and voltage immediately after the transition to independent operation of a microgrid.
  • the generator in-house power generation equipment
  • the external system commercial system
  • the generator is controlled so that the tidal current with the external system (commercial system) becomes zero, and immediately after self-sustaining transition with a storage battery
  • the technology which compensates the supply and demand balance of is described. By applying this technology, it is possible to reduce the sudden change in the power demand for the generator (in-house power generation facility) in the microgrid, and there is an advantage that the generator does not stop immediately after the microgrid is operated independently.
  • Patent Document 1 As a similar technique, a technique disclosed in Patent Document 1 has been proposed.
  • an electromagnetic wave that causes lightning is measured with a distance detector until the distance to the thunder, and when the distance lightning approaches the private power generation facility up to a predetermined distance, the generated power of the private power generation facility is larger than the load power.
  • a plurality of loads one that disconnects from a power system after performing load interruption and independently operates a private power generation facility is disclosed.
  • the self-sustained operation determination device compares the self-generated power of the private power generation facility with the load power when lightning approaches a predetermined distance, and if the self-generated power is smaller than the load power, When the load shutoff command is given and the self-generated power is larger than the load power, the autonomous operation determination device gives the disconnection control command to the disconnection control device, and loads are applied in order from the preset low priority load. It is stated that it will be blocked.
  • Non-Patent Document 1 and Patent Document 1 the determination about the drop-off of the power demand equipment is not performed, and the voltage and / or frequency fluctuates due to the drop-off of the power demand equipment, and further power There is a risk that demand equipment will drop off and private power generation facilities will be shut down.
  • the present invention provides a microgrid operation apparatus and a microgrid operation method capable of favorably shifting to a self-sustained operation by avoiding a large-scale stoppage of the power demand equipment and a stop of the private power generation facility by suppressing power demand equipment in advance.
  • I will provide a.
  • a microgrid operation device is a device for transitioning a microgrid from a grid-operated operation to a self-sustained operation with a commercial system without any power failure.
  • a system state prediction unit for predicting the system state of the power supply, and at least a dropout condition during a self-sustaining operation is determined based on a dropout condition including frequency fluctuation and / or voltage fluctuation stored for each power demand device in the grid of the microgrid
  • a control method formulating unit that selects a power demand device that suppresses the available power using the frequency variation and / or voltage variation, and performs the suppression of the selected power demand device before the transition to the independent operation; It is characterized by providing.
  • the microgrid operation method is a method for transitioning the microgrid from a grid-operated operation with a commercial system to a self-sustained operation without a power failure, and predicts the current grid state of the microgrid from measurement data. And determining at least a dropout during a self-sustaining operation based on a dropout condition including frequency fluctuation and / or voltage fluctuation stored for each power demanding device in the grid of the microgrid, and using the frequency fluctuation and / or voltage fluctuation. It is characterized by selecting a power demand device to be suppressed so that usable power becomes large, and performing the suppression of the selected power demand device before the transition to the independent operation.
  • a microgrid operation apparatus and a microgrid operation method capable of satisfactorily shifting to a self-sustained operation by avoiding a mass stoppage of power demand equipment and a stop of private power generation facilities by suppressing power demand equipment in advance.
  • FIG. 1 It is a schematic block diagram of the microgrid operation apparatus which concerns on one Example of this invention. It is a functional block diagram of the microgrid operation apparatus shown in FIG. 1, and a block diagram of a microgrid system provided with it. It is a structural example of a microgrid. It is a figure which shows the interconnection operation state of a microgrid, and the independent operation of a microgrid. It is a figure explaining an example of the omission conditions of an electric power demand apparatus. It is a figure which shows the data structure of the electric power demand apparatus drop condition database shown in FIG. It is a figure which shows a micro grid driving
  • FIG. 3 is a configuration example of a microgrid.
  • the microgrid area system 100 includes a private power generation facility 110, a protection device 120 that protects the private power generation facility, a plurality of power demand equipment groups (L001, L002, L003, L004), and a power demand equipment group L001.
  • Protection device 121 for protecting power protection device 122 for protecting power demand device group L002, protection device 123 for protecting power demand device group L003, protection device 124 for protecting power demand device group L004, commercial system (power system) 200 And a circuit breaker 130 for connecting to or disconnecting from the commercial system (power system) 200 via the connection line 140.
  • N indicates a node, the node N004 is connected to the power demand equipment group L001, and a protection device 121 that protects the power demand equipment group L001 is disposed between the node N004 and the node N003.
  • the node N006 is connected to the power demand device group L002, and a protection device 122 that protects the power demand device group L002 is disposed between the node N006 and the node N005.
  • the node N008 is connected to the power demand device group L003, and a protection device 123 that protects the power demand device group L003 is disposed between the node N008 and the node N007.
  • the node N010 is connected to the power demand device group L004, and a protection device 124 that protects the power demand device group L004 is arranged between the node N010 and the node N009.
  • Node N012 is connected to interconnection line 140, and circuit breaker 130 is arranged between nodes N012 and N011.
  • the node N001 is connected to the private power generation facility 110 via a protection device 120 that protects the private power generation facility.
  • each of the demand equipment groups (L001, L002, L003, L004) has the same power fluctuation characteristics and stop conditions for voltage and frequency fluctuations. .
  • FIG. 4 is a diagram showing a connected operation state of the microgrid and an independent operation of the microgrid.
  • the microgrid regional system 100 is a commercial system (power system). ) It is in the state of the interconnection operation that operates in conjunction with 200.
  • power system power system
  • power system power system
  • the microgrid regional system 100 is a commercial system (power The system is in a self-sustaining operation state in which it is operated independently from 200). During the self-sustained operation, it is impossible to purchase power from the commercial system (power system) 200 via the interconnection line 140, so the power supply source is only power generation by the private power generation facility 110.
  • the commercial system (power system) 200 suddenly fails during a grid operation.
  • the commercial grid (power grid) 200 is blacked out, the microgrid regional grid 100 opens the circuit breaker 130 and shifts to a self-sustaining operation.
  • the voltage and frequency in the microgrid regional system 100 vary greatly. This voltage and frequency variation is caused by the following three factors. (1) Sudden loss of purchased electricity (2) Changes in the amount of power used by power demand equipment (3) Omission of power demand equipment due to voltage and frequency fluctuations In order to eliminate these three factors, in this embodiment, the power demand equipment having the following two features is removed before the commercial grid (power grid) 200 fails. Use suppression methods.
  • (B) Electric power demand equipment that easily falls off By suppressing in advance the power demanding equipment having the above two features (a) and (b), the amount of purchased power is reduced in advance, and the sudden change at the time of transition to the independent operation shown in the above factor (1) The fluctuations in voltage and frequency due to loss of purchased power can be suppressed.
  • the fluctuation of the power consumption of the power demand equipment shown in the above factor (2) and the further voltage and frequency fluctuations in the microgrid regional system 100 due to the drop of the power demand equipment due to the above factor (3) are suppressed. It becomes possible to do.
  • a power demand device to be suppressed is selected from a plurality of power demand devices belonging to the demand device group L001 and the power demand device group L004.
  • strain 100 and a frequency can be made small, and a power demand apparatus and the private power generation equipment 110 stop. Risk is reduced.
  • the amount of power demanding equipment that can be used is reduced.
  • the plurality of power demand devices belonging to the power demand device group L001 and the power demand device group L004 if the number of power demand devices to be suppressed is small, the amount of power demand devices that can be used increases, but in the microgrid regional system 100 Voltage and frequency fluctuations increase, and the risk of shutting down the power demand equipment and the private power generation facility 110 increases.
  • FIG. 1 is a schematic configuration diagram of a microgrid operation apparatus according to an embodiment of the present invention.
  • a microgrid operating device 10 includes a display device 11 such as an LCD or an organic EL display, an input device 12 such as a keyboard or a mouse, a CPU 13, a communication device 14, a RAM (Random Access Memory) 15, a power demand.
  • a device characteristic database 16, a power demand device dropout condition database 17, a power demand device restraint condition database 18, a microgrid region system analysis database 19, and a program data storage database 20 are provided, which are interconnected via an internal bus 21. Has been.
  • the CPU 13 reads out various programs from the program data storage database 20 via the internal bus 21, executes instructions for image data to be displayed, or stores them in various databases described in detail later via the internal bus 21.
  • RAM (Random Access Memory) 15 is characteristic data of power demand equipment, drop-out condition data of power demand equipment and restraint condition data of power demand equipment, system analysis model data in the microgrid area system 100, determination result of control method, This is a memory for temporarily storing data and the like representing the calculation results of the voltage and frequency waveform after the transition to the independent operation.
  • the CPU 13 generates necessary image data based on these data stored in the RAM 15 and transfers the image data to the display device 11 via the internal bus 21.
  • the display device 11 displays the image data transferred from the CPU 13 on a display screen (not shown).
  • the power demand equipment characteristic database 16 stores power consumption characteristics by voltage and frequency for each power demand equipment constituting each power demand equipment group (L001 to L004), and power when a certain time width has passed (when a predetermined time has passed). Stores data indicating the actual data of the fluctuation amount.
  • the power demand equipment drop condition database 17 stores power demand equipment drop conditions due to frequency fluctuation and / or voltage fluctuation in association with the type of power demand equipment and the amount of power used.
  • the power consumption equipment drop-off conditions differ for each power demand equipment depending on the voltage and / or frequency conditions.
  • FIG. 5 shows the operation range for each voltage and frequency of the general-purpose low-voltage three-phase squirrel-cage induction motor.
  • Non-Patent Document 2 when a rated frequency of 60 Hz is used as a reference, 60 Hz is normalized as 1.00. In the region outside the hatched portion, that is, in the boundary region where the frequency (pu) is 0.95 to 1.03 and the voltage (pu) is 0.90 to 1.10, the area is short. If it is time, it is an area where the power demand device may be operated. Further, in the shaded area, that is, in the area where the frequency (pu) is 0.98 to 1.02 and the voltage (pu) is 0.95 to 1.05, it is always This is the area where power demand equipment continues to operate.
  • the power demand device restraint condition database 18 stores data indicating whether restraint is possible and whether dropout is possible for each power demand device.
  • the data indicating whether or not suppression is possible includes, for example, the time that can be suppressed for the power demand device.
  • the system analysis database 19 in the microgrid area stores data relating to facilities constituting the power system in the microgrid area system 100 such as lines (resistance, reactance, capacitance to ground) and generators (capacity, transient reactance, etc.). ing. By using these data, it is possible to calculate the power flow of the power system in the microgrid area system 100 and the behavior of the private power generation equipment 110, and to grasp the frequency fluctuation and / or voltage fluctuation at the time of shifting to the independent operation. Can do.
  • the program data storage database 20 stores a system analysis model creation program PR1, a system calculation program PR2, and a demand device (power demand device) control method determination program PR3. These programs are read and executed by the CPU 13 as needed via the internal bus 21.
  • FIG. 2 is a functional block diagram of the microgrid operation apparatus shown in FIG. 1 and a configuration diagram of a microgrid system including the functional block diagram.
  • the microgrid operation apparatus 10 includes a current system state prediction unit 23, a device demand fluctuation prediction unit 24, an independent time zone system state calculation unit 25, a device dropout determination unit 26, a control method formulation unit 27, power Demand equipment characteristic database 16, power demand equipment dropout condition database 17, power demand equipment restraint condition database 18, system analysis database 19 in microgrid area, and microgrid operable area database 22 are provided.
  • the microgrid operation apparatus 10, the command transmission 31, the power demand device 32, the generator 33, the renewable energy 34, the sensor 35, the circuit breaker 130, and the interconnection 140 constitute a microgrid system.
  • the generator 33 and the renewable energy 34 constitute the private power generation facility 110 shown in FIG. 3 described above.
  • the renewable energy 34 for example, a solar power generation device, an air volume power generation device, a biomass power generation device, or the like is used.
  • the generator 33 for example, cogeneration is used.
  • the current system state prediction unit 23 is based on data measured and collected by the sensor 35, such as the power demand device 32, the generator 33, the active power output of the renewable energy 34, the reactive power output, the voltage at the connection end, and the current. Then, the voltage distribution and power flow state of the current microgrid regional system 100 are obtained. The current system state prediction unit 23 outputs the obtained voltage distribution and power flow state of the current microgrid regional system 100 to the in-self-time-time system state calculation unit 25.
  • the current system state prediction unit 23 is realized, for example, when the CPU 13 illustrated in FIG. 1 reads and executes the system calculation program PR2 stored in the program data storage database 20 via the internal bus 21.
  • the equipment demand fluctuation prediction unit 24 is stored in the power demand equipment characteristic database 16, after a certain time width based on the actual data of the power fluctuation amount when a certain time width elapses (when a predetermined time elapses) ( Predict power fluctuations for each power demanding device after a further predetermined time elapses, and calculate the power fluctuations for each power demanding device after a certain predicted time span (after a further predetermined time elapses) To the unit 25.
  • the in-stand-time system state calculation unit 25 stores the power fluctuation for each power demanding device after a further certain time width (after the elapse of a further predetermined time) input from the equipment demand fluctuation prediction unit 24, in the power demanding equipment characteristic database 16.
  • Microgrid area such as voltage (frequency, reactance, ground capacitance) and generator (capacity, transient reactance, etc.) stored in the grid analysis database 19 in the microgrid area, voltage and frequency characteristics for each stored power demand device
  • the frequency fluctuation is transiently calculated at a unit time interval (in a predetermined cycle).
  • the in-stand-time system state calculation unit 25 outputs the voltage and frequency fluctuations at the time of shifting to the independent operation at every unit time interval (predetermined period) to the device dropout determination unit 26 and the control method formulation unit 27. .
  • the equipment dropout determination unit 26 stores the voltage and frequency fluctuations at each power demand equipment end and a power demand equipment dropout condition database 17 inputted in units of unit time (predetermined period) inputted from the in-standtime system state calculation unit 25. It is determined whether or not the power demand device is dropped based on the power demand device drop condition due to the frequency fluctuation and / or voltage fluctuation stored in association with the type of power demand equipment and the amount of power used. The data of the power demand device determined to be dropped is output to the in-self-time-time system state calculation unit 25 and is reflected in the above-described processing in the in-self-time-time system state calculation unit 25.
  • the in-self-time-time system state calculation unit 25 sets the power consumption of the power demand device corresponding to the power loss data of the power demand device input from the device loss determination unit 26 to zero, and the voltage and frequency in the next unit time unit. Perform the calculation of the fluctuations.
  • the device dropout determination unit 26 executes processing in parallel with the independence time zone system state calculation unit 25.
  • the control method formulation unit 27 stores the voltage and frequency fluctuation of each power demanding device at every unit time interval (predetermined period) and the power demanding device suppression condition database 18 input from the in-standtime system state calculation unit 25. Based on the data indicating whether or not each stored power demand device can be suppressed and whether or not it can be dropped, the power demand device to be suppressed before the shift to the independent operation is obtained.
  • FIG. 6 is a diagram showing a data structure of the power demand equipment dropout condition database 17 shown in FIG.
  • the power demand equipment drop condition database 17 includes a “symbol” column for identifying the power demand equipment group shown in FIG. 3, and a “power demand equipment” indicating the type of power demand equipment belonging to the power demand equipment group.
  • the power demanding equipment group L001 “L001” in the “symbol” field, “inverter a” in the “type of power demand equipment” field, “0.54 MW” in the “power consumption” field, and In the “dropout condition” column, “ ⁇ 0.30 Hz ⁇ f ⁇ +0.30 Hz” is stored as a possible range (allowable frequency fluctuation range) of the frequency fluctuation ⁇ f that can avoid the dropout during the transition to the independent operation. ing.
  • the inverter a is described, but actually, the power demanding equipment group L001 includes a plurality of inverters a. The same applies to other power demanding equipment groups.
  • the dropout condition As an example of the “dropout condition”, a case where the range (allowable frequency fluctuation range) of the frequency fluctuation ⁇ f that can avoid the dropout during the transition to the independent operation is specified is shown.
  • the voltage fluctuation range (allowable voltage fluctuation range) that can avoid the dropout during the transition to the independent operation may be defined as the dropout condition. It is desirable to specify both the allowable frequency fluctuation range and the allowable voltage fluctuation range as the “drop-off condition”, and it is also possible to define only one of the allowable frequency fluctuation range or the allowable voltage fluctuation range. good.
  • the microgrid operable region database 22 stores the voltage and frequency range in which the private power generation facility 110 can continue to operate, and the operating state of the voltage and frequency that can be taken when shifting to the independent operation. . Further, the microgrid operable region database 22 is obtained by the most severe voltage, frequency value, and control method formulation unit 27 at the time of transition to the independent operation obtained by the above-described autonomous state system state calculation unit 25. The power demand equipment to be suppressed before the transition to the independent operation is suppressed, and the most severe voltage and frequency values when the microgrid regional system 100 is controlled are stored.
  • FIG. 7 is a diagram showing a microgrid operable region. In FIG.
  • the frequency is plotted on the horizontal axis and the voltage is plotted on the vertical axis, and the private power generation facility operable region 41 is shown in the shaded region.
  • the pre-control severest condition 42 that is, when the control by the microgrid operation apparatus 10 is not performed before the transition to the independent operation, the vehicle deviates from the private power generation facility operable region 41.
  • the control by the microgrid operation apparatus 10 is executed before the transition to the most severe condition 43 after the control, that is, the self-sustained operation, it is shown that it falls within the private power generation facility operable region 41. .
  • FIG. 8 is a diagram showing a processing flow of the control method formulation unit that constitutes the microgrid operation apparatus shown in FIG.
  • the control method formulating unit 27 determines that each power demanding device end at every unit time interval (predetermined period) at the time of shifting to the independent operation from the independent state system state calculation unit 25. Frequency fluctuations and voltage fluctuations are acquired.
  • step S102 the control method formulation unit 27 selects a power demand device that is a target to be suppressed before shifting to the independent operation.
  • the power demand device to be controlled is a power demand device having any one of the following four characteristics. (1) Electricity demand equipment connected to a point with large fluctuations in voltage and frequency (2) Electricity demand equipment that easily falls off due to voltage fluctuation (3) Electricity demand equipment that easily falls off due to frequency fluctuations (4) Power Demand Equipment with Large Fluctuation in Power Use
  • Step S103 the control method formulation unit 27 determines the power demand equipment combination to be suppressed from the power demand equipment that is the suppression target selected in Step S102. .
  • the control method formulation unit 27 sets “1” as the number N of combinations of power demanding devices to be suppressed (step S104), and sends a suppression command transmission 31 (FIG. 2) to the power demanding devices corresponding to the combination. Is output.
  • the in-stand-time in-system system state calculation unit 25 After controlling the microgrid area system 100, the in-stand-time in-system system state calculation unit 25 performs the operation for each power demanding device after a certain time width (after the elapse of a further predetermined time) input from the device demand fluctuation prediction unit 24.
  • the control method formulation unit 27 acquires frequency fluctuations and voltage fluctuations at each power demanding device end for each unit time interval (predetermined period) after the control of the microgrid regional grid 100 from the independent time zone grid state calculation unit 25 ( Step S105).
  • step S105 and step S106 are executed again.
  • the process proceeds to step S108.
  • step S108 the control method formulation unit 27 determines whether or not the number N of combinations of power demand devices to be suppressed has reached m. As a result of the determination, if the number N of combinations of power demand devices to be suppressed is less than m, the process proceeds to step S107, and the processes from step S105 to step S108 are executed again as described above. On the other hand, if the number N of combinations of power demand devices to be suppressed reaches m as a result of the determination, the process proceeds to step S109.
  • step S109 the control method formulation unit 27 obtains the total amount of power used by the suppressed power demand device, and stores it in a storage unit (not shown) together with the suppressed power demand device.
  • the control method formulation unit 27 is a self-supporting unit that minimizes the total amount of power consumption of the suppressed power demand devices stored in a predetermined storage area of the storage unit (not shown) or the microgrid operable area database 22.
  • a combination of power demand devices to be suppressed before shifting to operation is determined as a control method of the microgrid regional system 100 at the time of shifting to independent operation.
  • the processing flow by the control method formulation unit 27 that constitutes the microgrid operation device 10 shown in FIG. 8 minimizes the amount of power demand equipment to be suppressed at the time of transition to independent operation, and the power demand equipment that should be prevented from dropping out. It is possible to create a control system for the microgrid area system 100 that can avoid dropping or stopping the private power generation facility 110.
  • the control method formulation unit 27 causes the frequency variation and voltage at each power demanding device end in units of unit time (predetermined cycle) when the system state calculation unit 25 in the independent time zone shifts to the independent operation.
  • the control method formulation unit 27 causes the frequency variation and voltage at each power demanding device end in units of unit time (predetermined cycle) when the system state calculation unit 25 in the independent time zone shifts to the independent operation.
  • control method formulation unit 27 acquires only the frequency fluctuation of each power demanding device end at every unit time interval (predetermined period) at the time of transition to the independent operation from the independent state time zone system state calculation unit 25. Also good. Instead of this, the control method formulation unit 27 receives only voltage fluctuations at the ends of each power demanding device at unit time intervals (predetermined period) when the system state calculation unit 25 in the independent time zone shifts to the independent operation. It is good also as a structure which acquires.
  • FIG. 9 is a diagram illustrating a time variation of frequency variation in the microgrid of the comparative example
  • FIG. 10 is a diagram illustrating a time variation of frequency variation in the microgrid when the microgrid operation apparatus according to the present embodiment is used.
  • the microgrid regional system 100 assumes a configuration example of the microgrid shown in FIG. 3 described above.
  • the power consumption amount of the power demand device group L001 is 0.54 MW
  • the power consumption amount of the power demand device group L002 is 0.25 MW
  • the power consumption of the demand equipment group L003 is 0.70 MW
  • the power consumption of the power demand equipment group L004 is 0.51 MW.
  • the total amount of power used by the power demand equipment groups L001 to L004 is 2.00 MW, and 0.40 MW of power is purchased from the commercial system (power system) 200 via the interconnection line 140 to obtain 1.60 MW. Is supplied by the private power generation facility 110.
  • time is plotted on the horizontal axis and frequency variation is plotted on the vertical axis, and the time variation of the frequency variation in the comparative example is shown when shifting to a self-sustained operation without suppressing power demand equipment.
  • the frequency fluctuation ⁇ f has decreased to ⁇ 3.0 Hz.
  • the inverter b belonging to the power demand equipment group L003 falls off because it is outside the range of “ ⁇ 0.42 Hz ⁇ f ⁇ +0.42 Hz” which is the drop condition of the power demand equipment group L003. Yes. Due to the dropout of the inverter b belonging to the power demand equipment group L003, the frequency fluctuation is further increased, and there is a possibility that the private power generation facility 110 stops and the transition to the independent operation fails.
  • the time is plotted on the horizontal axis and the frequency variation is plotted on the vertical axis, and control is performed in advance to stop the inverter a belonging to the power demand equipment group L001, which is an easily demanded power demand equipment, and a transition is made to independent operation.
  • the time change of the frequency fluctuation at the time of using the microgrid operation apparatus 10 which concerns on a present Example at the time of doing is shown.
  • the frequency fluctuation is caused by stopping the inverter a belonging to the power demand device group L001 which is a power demand device that is likely to drop out in advance before the shift to the independent operation (suppression of the power demand device). It can be seen that the power demand equipment can be prevented from falling off, and the operation can be shifted to the independent operation.
  • FIG. 11 is a diagram illustrating a state of the power demanding equipment and the private power generation facility that continue to operate in the above-described comparative example and this example.
  • the private power generation facility 110 is stopped and the power supply source in the microgrid regional system 100 is lost.
  • the amount of power used by the inverter a belonging to the power demand device group L001 is determined by controlling the inverter a belonging to the power demand device group L001 in advance and shifting to the independent operation. 0.54 MW is suppressed, and 1.46 MW, which is the total amount of power used by the power demanding devices belonging to the remaining power demanding device groups L002 to L004, is supplied from the private power generation facility 110 that is continuously operated.
  • the control method formulation unit 27 configuring the microgrid operation apparatus 10 performs the above-described FIG.
  • it may be configured to reconnect any of the power demanding devices that have been regarded as the devices to be suppressed until the self-sustained operation.
  • a combination of power demand devices set in advance in step S103 is added and the processing up to step S110 is executed, or the total number of combinations of power demand devices is increased to steps S103 to S110.
  • a microgrid operation device capable of avoiding a large-scale stoppage of power demand equipment and a stop of private power generation facilities by suppressing power demand equipment in advance, and making a good transition to independent operation, and It is possible to provide a microgrid operation method.
  • the amount of restraint of the power demanding equipment at the time of transition to the self-sustained operation can be minimized, so that the power demanding equipment that should be avoided from falling off or the private power generation facility from being stopped can be avoided.
  • a grid area system control method can be created.
  • the combination of suppression target devices (the combination of power demand devices to be suppressed) in step S103 is determined in the processing flow of the control method formulation unit 27 configuring the microgrid operation apparatus 10 illustrated in FIG.
  • the device selection method is different from that of the first embodiment.
  • Other configurations are the same as those of the above-described first embodiment, and steps other than step S102 and step S103 illustrated in FIG. 8 are the same as those of the first embodiment.
  • control method formulation unit 27 executes steps S102 and S103. However, in this embodiment, the control method formulation unit 27 executes the next step after executing step S101. Step S103 shown is executed. In step S103, the control method formulation unit 27 determines all possible combinations of control devices as combinations of power demand devices that are to be suppressed.
  • a combination of all possible control devices is a combination of all control devices such that the amount of power used by the power demand device is less than the rated output of the private power generation facility.
  • the reason for excluding the combination of control devices that exceed the rated output of the private power generation facility from the combination of power demanding devices that should be controlled is that when the power demand in the microgrid area system 100 exceeds the rated output of the private power generation facility, This is because the balance between supply and demand in the microgrid regional system 100 collapses and the private power generation facilities stop.
  • SYMBOLS 10 Micro grid operation apparatus, 11 ... Display apparatus, 12 ... Input device, 13 ... CPU, 14 ... Communication apparatus, 15 ... RAM, 16 ... Electric power demand apparatus characteristic Database, 17 ... Power demand equipment dropout condition database, 18 ... Power demand equipment restraint condition database, 19 ... Microgrid system analysis database, 20 ... Program data storage database, 21 ... Internal bus , 22 ... Microgrid operable region database, 23 ... Current system state prediction unit, 24 ... Equipment demand fluctuation prediction unit, 25 ... Independent time zone system state calculation unit, 26 ... Equipment dropout Judgment part, 27 ... Control method formulation part, 31 ... Command transmission, 32 ... Electric power demand equipment, 33 ... Generator, 34 ...

Abstract

Provided are a microgrid operation device and a microgrid operation method with which a large-scale stoppage of power demand devices and a stoppage of private power generation equipment can be prevented and a transition to independent operation can be performed suitably by curtailing power demand devices in advance. The microgrid operation device 10 is equipped with: a current system status prediction unit 23 that predicts the current microgrid system status on the basis of measurement data; and a control method formulation unit 27 that determines a dropout during independent operation on the basis of a dropout condition that at least includes frequency fluctuations and/or a voltage fluctuations stored for each power demand device 32 in the microgrid system, uses the frequency fluctuations and the voltage fluctuations to select a power demand device to be curtailed so as to increase the usable power, and curtails the selected power demand device before a transition to independent operation.

Description

マイクログリッド運用装置及びマイクログリッド運用方法Microgrid operation apparatus and microgrid operation method
 本発明は、マイクログリッド運用装置及びマイクログリッド運用方法に関する。 The present invention relates to a microgrid operation apparatus and a microgrid operation method.
 近年、電力系統の停電リスクが増大したことに伴い、マイクログリッドを自立運用することにより、当該地域で電力供給を継続するニーズが高まっている。マイクログリッドの自立運用とは、マイクログリッドと電力系統との連系点の遮断器を開放し、マイクログリッド内の発電機を電力供給源としてマイクログリッド地域内への電力供給を継続することである。一般的に、マイクログリッドは電力系統が健全状態である間は連系点の遮断器を閉じている。そして、この間、マイクログリッドで消費される電力は、外部系統からの供給電力とマイクログリッド内の発電機からの供給電力でまかなわれる。ここで、電力系統が突然停電した場合を考える。このとき、マイクログリッドは、電力系統との連系点の遮断器を開き、マイクログリッド地域と商用系統(電力系統)を遮断することにより自立運用へ移行する。しかし、自立運用移行直後には、外部系統(商用系統)から供給されていた電力が喪失されること、及び電力需要機器の使用電力が変動することにより、マイクログリッド内の周波数と電圧が大きく変動する。この周波数と電圧の変動が原因で、マイクログリッド内の電力需要機器が停止し、電圧と周波数の変動を増幅させ、自家発電設備が停止するという課題がある。 In recent years, with the increasing risk of power outages in the power system, there is a growing need to continue supplying power in the area by operating the microgrid independently. Independent operation of the microgrid means that the breaker at the connection point between the microgrid and the power system is opened, and power supply to the microgrid area is continued using the generator in the microgrid as a power supply source. . In general, the microgrid closes the circuit breaker while the power system is in a healthy state. During this time, power consumed by the microgrid is provided by power supplied from an external system and power supplied from a generator in the microgrid. Here, consider a case where the power system suddenly fails. At this time, the microgrid shifts to the independent operation by opening the circuit breaker at the connection point with the power system and shutting off the microgrid area and the commercial system (power system). However, immediately after the transition to independent operation, the frequency and voltage in the microgrid greatly fluctuate due to the loss of power supplied from the external system (commercial system) and the fluctuation of the power used by the power demanding equipment. To do. Due to the fluctuation of the frequency and voltage, there is a problem that the power demand equipment in the microgrid stops, the fluctuation of the voltage and frequency is amplified, and the private power generation equipment stops.
 マイクログリッドの自立運用移行直後の周波数と電圧の変動を小さくするための技術の一例として、非特許文献1に記載される技術が提案されている。非特許文献1には、マイクログリッドの自立移行準備として、外部系統(商用系統)との連系点潮流がゼロになるように発電機(自家発電設備)を制御し、かつ蓄電池で自立移行直後の需給バランスを補償する技術が記載されている。本技術の適用により、マイクログリッド内の発電機(自家発電設備)に対する電力需要の急変を小さくすることができるため、マイクログリッドの自立運用直後において発電機が停止しないというメリットがある。 
 また、同様の技術として特許文献1に示す技術が提案されている。特許文献1には、遠雷までの距離を雷が生じる電磁波を遠雷検知装置により測定し、遠雷が自家発電設備に所定距離まで接近したら、自家発電設備の発電電力が負荷電力より大きくなるように、複数の負荷のうち負荷遮断を行った後に電力系統と解列して自家発電設備を単独運転するものが開示されている。また、特許文献1では、自立運転判断装置は、雷が所定距離まで接近すると自家発電設備の自家発発電と負荷電力を比較し、自家発発電が負荷電力よりも小さい場合には負荷遮断装置に負荷遮断指令を与え、一方、自家発発電が負荷電力よりも大きい場合は、自立運転判断装置が解列制御装置へ解列制御指令を与え、予め設定された優先順位の低い負荷から順に負荷を遮断する旨記載されている。
A technique described in Non-Patent Document 1 has been proposed as an example of a technique for reducing fluctuations in frequency and voltage immediately after the transition to independent operation of a microgrid. In Non-Patent Document 1, as a preparation for self-sustaining transition of a microgrid, the generator (in-house power generation equipment) is controlled so that the tidal current with the external system (commercial system) becomes zero, and immediately after self-sustaining transition with a storage battery The technology which compensates the supply and demand balance of is described. By applying this technology, it is possible to reduce the sudden change in the power demand for the generator (in-house power generation facility) in the microgrid, and there is an advantage that the generator does not stop immediately after the microgrid is operated independently.
As a similar technique, a technique disclosed in Patent Document 1 has been proposed. In Patent Document 1, an electromagnetic wave that causes lightning is measured with a distance detector until the distance to the thunder, and when the distance lightning approaches the private power generation facility up to a predetermined distance, the generated power of the private power generation facility is larger than the load power. Among a plurality of loads, one that disconnects from a power system after performing load interruption and independently operates a private power generation facility is disclosed. Further, in Patent Document 1, the self-sustained operation determination device compares the self-generated power of the private power generation facility with the load power when lightning approaches a predetermined distance, and if the self-generated power is smaller than the load power, When the load shutoff command is given and the self-generated power is larger than the load power, the autonomous operation determination device gives the disconnection control command to the disconnection control device, and loads are applied in order from the preset low priority load. It is stated that it will be blocked.
特開2005―006414号公報JP 2005-006414 A
 しかしながら、非特許文献1及び特許文献1に記載される構成では、電力需要機器の脱落についての判定は行っておらず、電力需要機器の脱落により、電圧及び/又は周波数が変動し、更なる電力需要機器の脱落と自家発電設備の停止が生じる虞がある。 However, in the configurations described in Non-Patent Document 1 and Patent Document 1, the determination about the drop-off of the power demand equipment is not performed, and the voltage and / or frequency fluctuates due to the drop-off of the power demand equipment, and further power There is a risk that demand equipment will drop off and private power generation facilities will be shut down.
 そこで、本発明は、事前の電力需要機器の抑制により、電力需要機器の大量停止と自家発電設備の停止を回避し、自立運転への移行を良好に行い得るマイクログリッド運用装置及びマイクログリッド運用方法を提供する。 Accordingly, the present invention provides a microgrid operation apparatus and a microgrid operation method capable of favorably shifting to a self-sustained operation by avoiding a large-scale stoppage of the power demand equipment and a stop of the private power generation facility by suppressing power demand equipment in advance. I will provide a.
 上記課題を解決するため、本発明に係るマイクログリッド運用装置は、マイクログリッドを商用系統との連系運転から自立運転に無停電で移行するための装置であって、計測データから現在のマイクログリッドの系統状態を予測する現在系統状態予測部と、少なくともマイクログリッドの系統内の電力需要機器毎に格納される周波数変動及び/又は電圧変動を含む脱落条件に基づき自立運転時における脱落を判定し、前記周波数変動及び/又は電圧変動を用いて使用可能な電力が大きくなるように抑制する電力需要機器を選定し、当該選定された電力需要機器の抑制を自立運転移行前に行う制御方式策定部と、を備えることを特徴とする。 
 また、本発明に係るマイクログリッド運用方法は、マイクログリッドを商用系統との連系運転から自立運転に無停電で移行するための方法であって、計測データから現在のマイクログリッドの系統状態を予測し、少なくともマイクログリッドの系統内の電力需要機器毎に格納される周波数変動及び/又は電圧変動を含む脱落条件に基づき自立運転時における脱落を判定し、前記周波数変動及び/又は電圧変動を用いて使用可能な電力が大きくなるように抑制する電力需要機器を選定し、当該選定された電力需要機器の抑制を自立運転移行前に行うことを特徴とする。
In order to solve the above-mentioned problems, a microgrid operation device according to the present invention is a device for transitioning a microgrid from a grid-operated operation to a self-sustained operation with a commercial system without any power failure. A system state prediction unit for predicting the system state of the power supply, and at least a dropout condition during a self-sustaining operation is determined based on a dropout condition including frequency fluctuation and / or voltage fluctuation stored for each power demand device in the grid of the microgrid, A control method formulating unit that selects a power demand device that suppresses the available power using the frequency variation and / or voltage variation, and performs the suppression of the selected power demand device before the transition to the independent operation; It is characterized by providing.
In addition, the microgrid operation method according to the present invention is a method for transitioning the microgrid from a grid-operated operation with a commercial system to a self-sustained operation without a power failure, and predicts the current grid state of the microgrid from measurement data. And determining at least a dropout during a self-sustaining operation based on a dropout condition including frequency fluctuation and / or voltage fluctuation stored for each power demanding device in the grid of the microgrid, and using the frequency fluctuation and / or voltage fluctuation. It is characterized by selecting a power demand device to be suppressed so that usable power becomes large, and performing the suppression of the selected power demand device before the transition to the independent operation.
 本発明によれば、事前の電力需要機器の抑制により、電力需要機器の大量停止と自家発電設備の停止を回避し、自立運転への移行を良好に行い得るマイクログリッド運用装置及びマイクログリッド運用方法を提供することが可能となる。 
 上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
According to the present invention, a microgrid operation apparatus and a microgrid operation method capable of satisfactorily shifting to a self-sustained operation by avoiding a mass stoppage of power demand equipment and a stop of private power generation facilities by suppressing power demand equipment in advance. Can be provided.
Problems, configurations, and effects other than those described above will be clarified by the following description of embodiments.
本発明の一実施例に係るマイクログリッド運用装置の概略構成図である。It is a schematic block diagram of the microgrid operation apparatus which concerns on one Example of this invention. 図1に示すマイクログリッド運用装置の機能ブロック図及びそれを備えるマイクログリッドシステムの構成図である。It is a functional block diagram of the microgrid operation apparatus shown in FIG. 1, and a block diagram of a microgrid system provided with it. マイクログリッドの構成例である。It is a structural example of a microgrid. マイクログリッドの連系運転状態とマイクログリッドの自立運転を示す図である。It is a figure which shows the interconnection operation state of a microgrid, and the independent operation of a microgrid. 電力需要機器の脱落条件の一例を説明する図である。It is a figure explaining an example of the omission conditions of an electric power demand apparatus. 図1に示す電力需要機器脱落条件データベースのデータ構造を示す図である。It is a figure which shows the data structure of the electric power demand apparatus drop condition database shown in FIG. マイクログリッド運転可能領域を示す図である。It is a figure which shows a micro grid driving | operation possible area | region. 図2に示すマイクログリッド運用装置を構成する制御方式策定部の処理フローを示す図である。It is a figure which shows the processing flow of the control system formulation part which comprises the microgrid operation apparatus shown in FIG. 比較例のマイクログリッドにおける周波数変動の時間変化を示す図である。It is a figure which shows the time change of the frequency fluctuation | variation in the microgrid of a comparative example. 本実施例に係るマイクログリッド運用装置を用いた場合のマイクログリッドにおける周波数変動の時間変化を示す図である。It is a figure which shows the time change of the frequency fluctuation in a microgrid at the time of using the microgrid operation apparatus which concerns on a present Example. 比較例及び本実施例における運転継続する電力需要機器及び自家発電設備の状態を示す図である。It is a figure which shows the state of the electric power demand apparatus and private power generation equipment which continue an operation | movement in a comparative example and a present Example.
 以下、図面を用いて本発明の実施例について説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 先ず、本発明の一実施例に係るマイクログリッド運用装置が適用されるマイクログリッドの構成について説明する。 
 図3は、マイクログリッドの構成例である。図3に示すように、マイクログリッド地域系統100は、自家発電設備110、自家発電設備を保護する保護装置120、複数の電力需要機器群(L001,L002,L003,L004)、電力需要機器群L001を保護する保護装置121、電力需要機器群L002を保護する保護装置122、電力需要機器群L003を保護する保護装置123、電力需要機器群L004を保護する保護装置124、商用系統(電力系統)200に接続される連系線140、及び、連系線140を介して商用系統(電力系統)200への接続又は切断を行う遮断器130を備える。 
 Nはノードであることを示し、ノードN004は電力需要機器群L001に接続され、ノードN004とノードN003との間に電力需要機器群L001を保護する保護装置121が配されている。ノードN006は電力需要機器群L002に接続され、ノードN006とノードN005との間に電力需要機器群L002を保護する保護装置122が配されている。また、ノードN008は電力需要機器群L003に接続され、ノードN008とノードN007との間に電力需要機器群L003を保護する保護装置123が配されている。ノードN010は電力需要機器群L004に接続され、ノードN010とノードN009との間に電力需要機器群L004を保護する保護装置124が配されている。ノードN012は連系線140に接続され、ノードN012とノードN011の間に遮断器130が配されている。また、ノードN001は自家発電設備を保護する保護装置120を介して自家発電設備110に接続されている。なお、図3では、説明を簡略化するため、各需要機器群(L001,L002,L003,L004)は、電力変動特性と、電圧と周波数の変動に対する停止条件とが同一である場合を想定する。
First, a configuration of a microgrid to which a microgrid operation apparatus according to an embodiment of the present invention is applied will be described.
FIG. 3 is a configuration example of a microgrid. As shown in FIG. 3, the microgrid area system 100 includes a private power generation facility 110, a protection device 120 that protects the private power generation facility, a plurality of power demand equipment groups (L001, L002, L003, L004), and a power demand equipment group L001. Protection device 121 for protecting power, protection device 122 for protecting power demand device group L002, protection device 123 for protecting power demand device group L003, protection device 124 for protecting power demand device group L004, commercial system (power system) 200 And a circuit breaker 130 for connecting to or disconnecting from the commercial system (power system) 200 via the connection line 140.
N indicates a node, the node N004 is connected to the power demand equipment group L001, and a protection device 121 that protects the power demand equipment group L001 is disposed between the node N004 and the node N003. The node N006 is connected to the power demand device group L002, and a protection device 122 that protects the power demand device group L002 is disposed between the node N006 and the node N005. In addition, the node N008 is connected to the power demand device group L003, and a protection device 123 that protects the power demand device group L003 is disposed between the node N008 and the node N007. The node N010 is connected to the power demand device group L004, and a protection device 124 that protects the power demand device group L004 is arranged between the node N010 and the node N009. Node N012 is connected to interconnection line 140, and circuit breaker 130 is arranged between nodes N012 and N011. The node N001 is connected to the private power generation facility 110 via a protection device 120 that protects the private power generation facility. In FIG. 3, in order to simplify the description, it is assumed that each of the demand equipment groups (L001, L002, L003, L004) has the same power fluctuation characteristics and stop conditions for voltage and frequency fluctuations. .
 図4は、マイクログリッドの連系運転状態とマイクログリッドの自立運転を示す図である。図4の上図に示すように、ノードN011と連系線140に接続されるノードN012との間に配される遮断器130が閉じているとき、マイクログリッド地域系統100は商用系統(電力系統)200と連系して運転する連系運転の状態にある。連系運転時における電力の供給源は、連系線140を介した商用系統(電力系統)200からの買電と、自家発電設備110による発電の2つである。一方、図4の下図に示すように、ノードN011と連系線140に接続されるノードN012との間に配される遮断器130が開いているとき、マイクログリッド地域系統100は商用系統(電力系統)200から自立して運転する自立運転の状態にある。自立運転時においては、連系線140を介した商用系統(電力系統)200からの買電が不可能なため、電力の供給源は自家発電設備110による発電のみとなる。 FIG. 4 is a diagram showing a connected operation state of the microgrid and an independent operation of the microgrid. As shown in the upper diagram of FIG. 4, when the circuit breaker 130 disposed between the node N011 and the node N012 connected to the interconnection line 140 is closed, the microgrid regional system 100 is a commercial system (power system). ) It is in the state of the interconnection operation that operates in conjunction with 200. There are two power supply sources during the interconnected operation: power purchase from the commercial system (power system) 200 via the interconnecting line 140 and power generation by the private power generation facility 110. On the other hand, as shown in the lower diagram of FIG. 4, when the circuit breaker 130 arranged between the node N011 and the node N012 connected to the interconnection line 140 is open, the microgrid regional system 100 is a commercial system (power The system is in a self-sustaining operation state in which it is operated independently from 200). During the self-sustained operation, it is impossible to purchase power from the commercial system (power system) 200 via the interconnection line 140, so the power supply source is only power generation by the private power generation facility 110.
 ここで、連系運転時において突然商用系統(電力系統)200が停電した場合を想定する。商用系統(電力系統)200が停電すると、マイクログリッド地域系統100は遮断器130を開き、自立運転に移行する。自立運転に移行した時、マイクログリッド地域系統100内の電圧と周波数が大きく変動する。この電圧及び周波数の変動は以下の3つの要因により生ずる。 
 (1)急な買電電力の喪失 
 (2)電力需要機器の使用電力量の変動 
 (3)電圧及び周波数変動による電力需要機器の脱落
 これら3つの要因を解消するため、本実施例では以下の2つの特徴を有する電力需要機器を、商用系統(電力系統)200が停電する前に抑制する方法を用いる。 
 (a)使用電力量の変動が大きい電力需要機器 
 (b)脱落し易い電力需要機器 
これら上記(a)及び(b)の2つの特徴を有する電力需要機器を事前に抑制することで、事前に買電電力量を減らし、上記要因(1)に示した自立運転への移行時の急な買電電力の喪失による電圧及び周波数の変動を抑制できる。また、上記要因(2)に示した電力需要機器の使用電力量の変動、及び上記要因(3)による電力需要機器の脱落によるマイクログリッド地域系統100内での更なる電圧及び周波数の変動を抑制することが可能となる。
Here, it is assumed that the commercial system (power system) 200 suddenly fails during a grid operation. When the commercial grid (power grid) 200 is blacked out, the microgrid regional grid 100 opens the circuit breaker 130 and shifts to a self-sustaining operation. When shifting to a self-sustained operation, the voltage and frequency in the microgrid regional system 100 vary greatly. This voltage and frequency variation is caused by the following three factors.
(1) Sudden loss of purchased electricity
(2) Changes in the amount of power used by power demand equipment
(3) Omission of power demand equipment due to voltage and frequency fluctuations In order to eliminate these three factors, in this embodiment, the power demand equipment having the following two features is removed before the commercial grid (power grid) 200 fails. Use suppression methods.
(A) Electric power demand equipment with large fluctuations in power consumption
(B) Electric power demand equipment that easily falls off
By suppressing in advance the power demanding equipment having the above two features (a) and (b), the amount of purchased power is reduced in advance, and the sudden change at the time of transition to the independent operation shown in the above factor (1) The fluctuations in voltage and frequency due to loss of purchased power can be suppressed. In addition, the fluctuation of the power consumption of the power demand equipment shown in the above factor (2) and the further voltage and frequency fluctuations in the microgrid regional system 100 due to the drop of the power demand equipment due to the above factor (3) are suppressed. It becomes possible to do.
 例えば、図3に示す電力需要機器群L001が脱落し易い電力需要機器群であり、且つ、電力需要機器群L004(図3)が使用電力量の変動が大きい電力需要機器群である場合、電力需要機器群L001及び電力需要機器群L004に属する複数の電力需要機器の中から抑制すべき電力需要機器を選択する。なお、電力需要機器群L001及び電力需要機器群L004に属する全ての電力需要機器を抑制すると、マイクログリッド地域系統100内の電圧及び周波数の変動を小さくでき、電力需要機器及び自家発電設備110の停止リスクが小さくなる。しかし、この場合、利用できる電力需要機器の量が少なくなってしまう。一方、電力需要機器群L001及び電力需要機器群L004に属する複数の電力需要機器のうち、抑制する電力需要機器が少ないと、利用できる電力需要機器の量は多くなるものの、マイクログリッド地域系統100内の電圧及び周波数の変動が大きくなり、電力需要機器及び自家発電設備110の停止リスクが大きくなる。 For example, when the power demand device group L001 shown in FIG. 3 is a power demand device group that is easy to drop out, and the power demand device group L004 (FIG. 3) is a power demand device group with large fluctuations in the amount of power used, A power demand device to be suppressed is selected from a plurality of power demand devices belonging to the demand device group L001 and the power demand device group L004. In addition, if all the power demand apparatuses which belong to the power demand apparatus group L001 and the power demand apparatus group L004 are suppressed, the fluctuation | variation of the voltage in the microgrid area system | strain 100 and a frequency can be made small, and a power demand apparatus and the private power generation equipment 110 stop. Risk is reduced. However, in this case, the amount of power demanding equipment that can be used is reduced. On the other hand, among the plurality of power demand devices belonging to the power demand device group L001 and the power demand device group L004, if the number of power demand devices to be suppressed is small, the amount of power demand devices that can be used increases, but in the microgrid regional system 100 Voltage and frequency fluctuations increase, and the risk of shutting down the power demand equipment and the private power generation facility 110 increases.
 図1は本発明の一実施例に係るマイクログリッド運用装置の概略構成図である。図1に示すように、マイクログリッド運用装置10は、LCDや有機ELディスプレイ等の表示装置11、キーボードやマウス等の入力装置12、CPU13、通信装置14、RAM(ランダムアクセスメモリ)15、電力需要機器特性データベース16、電力需要機器脱落条件データベース17、電力需要機器抑制条件データベース18、マイクログリッド域内系統解析データベース19、及び、プログラムデータ格納データベース20を備え、これらは内部バス21を介して相互に接続されている。 FIG. 1 is a schematic configuration diagram of a microgrid operation apparatus according to an embodiment of the present invention. As shown in FIG. 1, a microgrid operating device 10 includes a display device 11 such as an LCD or an organic EL display, an input device 12 such as a keyboard or a mouse, a CPU 13, a communication device 14, a RAM (Random Access Memory) 15, a power demand. A device characteristic database 16, a power demand device dropout condition database 17, a power demand device restraint condition database 18, a microgrid region system analysis database 19, and a program data storage database 20 are provided, which are interconnected via an internal bus 21. Has been.
 ここで、CPU13は、内部バス21を介してプログラムデータ格納データベース20より各種プログラムを読み出し実行し表示すべき画像データの指示、或は、内部バス21を介して詳細後述する各種データベースに格納されるデータの検索等を行う。RAM(ランダムアクセスメモリ)15は、電力需要機器の特性データ、電力需要機器の脱落条件データや電力需要機器の抑制条件データ、マイクログリッド地域系統100内の系統解析モデルデータや制御方式の決定結果、自立運転への移行後の電圧及び周波数波形の演算結果を表すデータ等、を一時的に格納するメモリである。CPU13は、RAM15に格納されるこれらのデータに基づき、必要な画像データを生成して、内部バス21を介して表示装置11へ上記画像データを転送する。表示装置11は、CPU13より転送された画像データを図示しない表示画面に表示する。 Here, the CPU 13 reads out various programs from the program data storage database 20 via the internal bus 21, executes instructions for image data to be displayed, or stores them in various databases described in detail later via the internal bus 21. Search data. RAM (Random Access Memory) 15 is characteristic data of power demand equipment, drop-out condition data of power demand equipment and restraint condition data of power demand equipment, system analysis model data in the microgrid area system 100, determination result of control method, This is a memory for temporarily storing data and the like representing the calculation results of the voltage and frequency waveform after the transition to the independent operation. The CPU 13 generates necessary image data based on these data stored in the RAM 15 and transfers the image data to the display device 11 via the internal bus 21. The display device 11 displays the image data transferred from the CPU 13 on a display screen (not shown).
 電力需要機器特性データベース16は、各電力需要機器群(L001~L004)を構成する電力需要機器毎の電圧、周波数による消費電力特性と、ある時間幅が経過した時(所定時間経過時)の電力変動量の実績データを示すデータを格納する。 
 電力需要機器脱落条件データベース17は、周波数変動及び/又は電圧変動による電力需要機器の脱落条件を、電力需要機器の種類及び使用電力量と紐づけて格納している。電力需要機器の脱落条件は、電圧及び/又は周波数の条件によって電力需要機器毎に異なる。電力需要機器の脱落条件の一例として、一般用低圧三相かご形誘導電動機の電圧と周波数毎の運転可能領域を図5に示す。図5は非特許文献2に記載のものである。図5では、例えば、定格周波数60Hzを基準とした場合、60Hzを1.00として正規化した値を示している。斜線部の外側の領域、すなわち、周波数(p.u.)が0.95から1.03であり、且つ、電圧(p.u.)が0.90から1.10の境界領域では、短時間であれば電力需要機器を運転しても良い領域である。また、斜線部の領域、すなわち、周波数(p.u.)が0.98から1.02であり、且つ、電圧(p.u.)が0.95から1.05の領域内では、常に電力需要機器を運転継続する領域である。
The power demand equipment characteristic database 16 stores power consumption characteristics by voltage and frequency for each power demand equipment constituting each power demand equipment group (L001 to L004), and power when a certain time width has passed (when a predetermined time has passed). Stores data indicating the actual data of the fluctuation amount.
The power demand equipment drop condition database 17 stores power demand equipment drop conditions due to frequency fluctuation and / or voltage fluctuation in association with the type of power demand equipment and the amount of power used. The power consumption equipment drop-off conditions differ for each power demand equipment depending on the voltage and / or frequency conditions. As an example of the conditions for dropping off the power demand equipment, FIG. 5 shows the operation range for each voltage and frequency of the general-purpose low-voltage three-phase squirrel-cage induction motor. FIG. 5 is described in Non-Patent Document 2. In FIG. 5, for example, when a rated frequency of 60 Hz is used as a reference, 60 Hz is normalized as 1.00. In the region outside the hatched portion, that is, in the boundary region where the frequency (pu) is 0.95 to 1.03 and the voltage (pu) is 0.90 to 1.10, the area is short. If it is time, it is an area where the power demand device may be operated. Further, in the shaded area, that is, in the area where the frequency (pu) is 0.98 to 1.02 and the voltage (pu) is 0.95 to 1.05, it is always This is the area where power demand equipment continues to operate.
 電力需要機器抑制条件データベース18は、電力需要機器毎に、抑制可否及び脱落可否を示すデータを格納する。抑制可否を示すデータとして、例えば、電力需要機器に対する抑制可能な時間が含まれる。 
 マイクログリッド域内系統解析データベース19は、線路(抵抗、リアクタンス、対地静電容量)や発電機(容量、過渡リアクタンスなど)などのマイクログリッド地域系統100内の電力系統を構成する設備に関するデータを格納している。これらのデータを用いることで、マイクログリッド地域系統100内の電力系統の潮流計算や自家発電設備110の挙動計算が可能となり、自立運転への移行時の周波数変動及び/又は電圧変動を把握することができる。 
 プログラムデータ格納データベース20には、系統解析モデル作成プログラムPR1、系統計算プログラムPR2、需要機器(電力需要機器)制御方法決定プログラムPR3を格納する。これらのプログラムは、内部バス21を介して必要に応じてCPU13により読み出され実行される。
The power demand device restraint condition database 18 stores data indicating whether restraint is possible and whether dropout is possible for each power demand device. The data indicating whether or not suppression is possible includes, for example, the time that can be suppressed for the power demand device.
The system analysis database 19 in the microgrid area stores data relating to facilities constituting the power system in the microgrid area system 100 such as lines (resistance, reactance, capacitance to ground) and generators (capacity, transient reactance, etc.). ing. By using these data, it is possible to calculate the power flow of the power system in the microgrid area system 100 and the behavior of the private power generation equipment 110, and to grasp the frequency fluctuation and / or voltage fluctuation at the time of shifting to the independent operation. Can do.
The program data storage database 20 stores a system analysis model creation program PR1, a system calculation program PR2, and a demand device (power demand device) control method determination program PR3. These programs are read and executed by the CPU 13 as needed via the internal bus 21.
 図2は、図1に示すマイクログリッド運用装置の機能ブロック図及びそれを備えるマイクログリッドシステムの構成図である。図2に示すように、マイクログリッド運用装置10は、現在系統状態予測部23、機器需要変動予測部24、自立時域内系統状態計算部25、機器脱落判定部26、制御方式策定部27、電力需要機器特性データベース16、電力需要機器脱落条件データベース17、電力需要機器抑制条件データベース18、マイクログリッド域内系統解析データベース19、及び、マイクログリッド運転可能領域データベース22を備える。このマイクログリッド運用装置10、指令送信31、電力需要機器32、発電機33、再生可能エネルギー34、センサ35、遮断器130、及び連系線140にて、マイクログリッドシステムが構成される。ここで、発電機33及び再生可能エネルギー34は、上述の図3に示した自家発電設備110を構成する。再生可能エネルギー34として、例えば、太陽光発電装置、風量発電装置、或はバイオマス発電装置などが用いられる。また、発電機33として、例えば、コジェネレーションなどが用いられる。 FIG. 2 is a functional block diagram of the microgrid operation apparatus shown in FIG. 1 and a configuration diagram of a microgrid system including the functional block diagram. As shown in FIG. 2, the microgrid operation apparatus 10 includes a current system state prediction unit 23, a device demand fluctuation prediction unit 24, an independent time zone system state calculation unit 25, a device dropout determination unit 26, a control method formulation unit 27, power Demand equipment characteristic database 16, power demand equipment dropout condition database 17, power demand equipment restraint condition database 18, system analysis database 19 in microgrid area, and microgrid operable area database 22 are provided. The microgrid operation apparatus 10, the command transmission 31, the power demand device 32, the generator 33, the renewable energy 34, the sensor 35, the circuit breaker 130, and the interconnection 140 constitute a microgrid system. Here, the generator 33 and the renewable energy 34 constitute the private power generation facility 110 shown in FIG. 3 described above. As the renewable energy 34, for example, a solar power generation device, an air volume power generation device, a biomass power generation device, or the like is used. As the generator 33, for example, cogeneration is used.
 現在系統状態予測部23は、センサ35により計測され収集される、電力需要機器32、発電機33、再生可能エネルギー34の有効電力出力、無効電力出力、接続端の電圧、電流などのデータに基づき、現在のマイクログリッド地域系統100の電圧分布及び潮流状態を求める。現在系統状態予測部23は、求めた現在のマイクログリッド地域系統100の電圧分布及び潮流状態を自立時域内系統状態計算部25へ出力する。なお、現在系統状態予測部23は、例えば、図1に示したCPU13が、内部バス21を介してプログラムデータ格納データベース20に格納される系統計算プログラムPR2を読み出し実行することで実現される。 The current system state prediction unit 23 is based on data measured and collected by the sensor 35, such as the power demand device 32, the generator 33, the active power output of the renewable energy 34, the reactive power output, the voltage at the connection end, and the current. Then, the voltage distribution and power flow state of the current microgrid regional system 100 are obtained. The current system state prediction unit 23 outputs the obtained voltage distribution and power flow state of the current microgrid regional system 100 to the in-self-time-time system state calculation unit 25. The current system state prediction unit 23 is realized, for example, when the CPU 13 illustrated in FIG. 1 reads and executes the system calculation program PR2 stored in the program data storage database 20 via the internal bus 21.
 機器需要変動予測部24は、電力需要機器特性データベース16に格納されている、ある時間幅が経過した時(所定時間経過時)の電力変動量の実績データに基づき、更なるある時間幅後(更なる所定時間経過後)の電力需要機器毎の電力変動を予測し、予測した更なるある時間幅後(更なる所定時間経過後)の電力需要機器毎の電力変動を自立時域内系統状態計算部25へ出力する。 The equipment demand fluctuation prediction unit 24 is stored in the power demand equipment characteristic database 16, after a certain time width based on the actual data of the power fluctuation amount when a certain time width elapses (when a predetermined time elapses) ( Predict power fluctuations for each power demanding device after a further predetermined time elapses, and calculate the power fluctuations for each power demanding device after a certain predicted time span (after a further predetermined time elapses) To the unit 25.
 自立時域内系統状態計算部25は、機器需要変動予測部24より入力される更なるある時間幅後(更なる所定時間経過後)の電力需要機器毎の電力変動、電力需要機器特性データベース16に格納された電力需要機器毎の電圧と周波数特性、マイクログリッド域内系統解析データベース19に格納される線路(抵抗、リアクタンス、対地静電容量)や発電機(容量、過渡リアクタンスなど)などのマイクログリッド地域系統100内の電力系統を構成する設備に関するデータ、及び、現在系統状態予測部23より入力される現在のマイクログリッド地域系統100の電圧分布及び潮流状態に基づき、自立運転への移行時における電圧、周波数の変動を単位時間刻み毎に(所定の周期で)過渡計算する。自立時域内系統状態計算部25は、求めた単位時間刻み毎(所定の周期)の自立運転への移行時における電圧、周波数の変動を、機器脱落判定部26及び制御方式策定部27へ出力する。 The in-stand-time system state calculation unit 25 stores the power fluctuation for each power demanding device after a further certain time width (after the elapse of a further predetermined time) input from the equipment demand fluctuation prediction unit 24, in the power demanding equipment characteristic database 16. Microgrid area such as voltage (frequency, reactance, ground capacitance) and generator (capacity, transient reactance, etc.) stored in the grid analysis database 19 in the microgrid area, voltage and frequency characteristics for each stored power demand device Based on the data relating to the facilities constituting the power system in the system 100, and the current voltage distribution and power flow state of the microgrid area system 100 input from the current system state prediction unit 23, the voltage at the time of transition to the autonomous operation, The frequency fluctuation is transiently calculated at a unit time interval (in a predetermined cycle). The in-stand-time system state calculation unit 25 outputs the voltage and frequency fluctuations at the time of shifting to the independent operation at every unit time interval (predetermined period) to the device dropout determination unit 26 and the control method formulation unit 27. .
 機器脱落判定部26は、自立時域内系統状態計算部25より入力される単位時間刻み毎(所定の周期)の各電力需要機器端の電圧と周波数変動、及び、電力需要機器脱落条件データベース17に電力需要機器の種類及び使用電力量と紐づけて格納されている周波数変動及び/又は電圧変動による電力需要機器の脱落条件に基づき電力需要機器の脱落を判定する。脱落と判定された電力需要機器のデータは、自立時域内系統状態計算部25へ出力され、自立時域内系統状態計算部25における上述の処理に反映される。すなわち、自立時域内系統状態計算部25は、機器脱落判定部26より入力される電力需要機器の脱落データに対応する電力需要機器の使用電力量をゼロとして、次の単位時間刻みにおける電圧、周波数の変動の計算を実行する。なお、機器脱落判定部26は、自立時域内系統状態計算部25と並列に処理を実行する。 The equipment dropout determination unit 26 stores the voltage and frequency fluctuations at each power demand equipment end and a power demand equipment dropout condition database 17 inputted in units of unit time (predetermined period) inputted from the in-standtime system state calculation unit 25. It is determined whether or not the power demand device is dropped based on the power demand device drop condition due to the frequency fluctuation and / or voltage fluctuation stored in association with the type of power demand equipment and the amount of power used. The data of the power demand device determined to be dropped is output to the in-self-time-time system state calculation unit 25 and is reflected in the above-described processing in the in-self-time-time system state calculation unit 25. That is, the in-self-time-time system state calculation unit 25 sets the power consumption of the power demand device corresponding to the power loss data of the power demand device input from the device loss determination unit 26 to zero, and the voltage and frequency in the next unit time unit. Perform the calculation of the fluctuations. The device dropout determination unit 26 executes processing in parallel with the independence time zone system state calculation unit 25.
 制御方式策定部27は、自立時域内系統状態計算部25より入力される単位時間刻み毎(所定の周期)の各電力需要機器端の電圧と周波数変動、及び、電力需要機器抑制条件データベース18に格納される電力需要機器毎の抑制可否と脱落可否を示すデータに基づき、自立運転への移行前に抑制する電力需要機器を求める。 The control method formulation unit 27 stores the voltage and frequency fluctuation of each power demanding device at every unit time interval (predetermined period) and the power demanding device suppression condition database 18 input from the in-standtime system state calculation unit 25. Based on the data indicating whether or not each stored power demand device can be suppressed and whether or not it can be dropped, the power demand device to be suppressed before the shift to the independent operation is obtained.
 ここで、電力需要機器脱落条件データベース17のデータ構造について説明する。図6は、図1に示す電力需要機器脱落条件データベース17のデータ構造を示す図である。図6に示すように、電力需要機器脱落条件データベース17は、図3に示した電力需要機器群を特定する「記号」欄、電力需要機器群に属する電力需要機器の種類を示す「電力需要機器の種類」欄、電力需要機器群に属する電力需要機器の使用電力量を示す「使用電力量」欄、及び、電力需要機器群に属する電力需要機器の脱落条件を示す「脱落条件」欄をテーブル形式にて格納している。例えば、電力需要機器群L001については、「記号」欄には「L001」、「電力需要機器の種類」欄には「インバータa」、「使用電力量」欄には「0.54MW」、及び「脱落条件」欄には自立運転への移行時における脱落を回避し得る周波数変動Δfの取り得る範囲(許容される周波数変動幅)として「―0.30Hz<Δf<+0.30Hz」が格納されている。なお、ここでは、電力需要機器群L001について、説明を簡略化するため、インバータaとのみ記載しているが、実際には、電力需要機器群L001は、インバータaが複数設置されている。これは、他の電力需要機器群についても同様である。 Here, the data structure of the power demand equipment dropout condition database 17 will be described. FIG. 6 is a diagram showing a data structure of the power demand equipment dropout condition database 17 shown in FIG. As shown in FIG. 6, the power demand equipment drop condition database 17 includes a “symbol” column for identifying the power demand equipment group shown in FIG. 3, and a “power demand equipment” indicating the type of power demand equipment belonging to the power demand equipment group. Table of “Type of” column, “Amount of power used” column that indicates the amount of power used by power-demanding devices belonging to the group of power-demanding devices, and column of “Omitment condition” that indicates the dropping conditions of power-demanding devices belonging to the group of power-demanding devices Stored in the format. For example, for the power demand equipment group L001, “L001” in the “symbol” field, “inverter a” in the “type of power demand equipment” field, “0.54 MW” in the “power consumption” field, and In the “dropout condition” column, “−0.30 Hz <Δf <+0.30 Hz” is stored as a possible range (allowable frequency fluctuation range) of the frequency fluctuation Δf that can avoid the dropout during the transition to the independent operation. ing. Here, in order to simplify the description of the power demanding equipment group L001, only the inverter a is described, but actually, the power demanding equipment group L001 includes a plurality of inverters a. The same applies to other power demanding equipment groups.
 また、図6に示すように、電力需要機器群L002については、「記号」欄には「L002」、「電力需要機器の種類」欄には「誘導電動機」、「使用電力量」欄には「0.25MW」、及び「脱落条件」欄には「―0.30Hz<Δf<+0.18Hz」が格納されている。電力需要機器群L003については、「記号」欄には「L003」、「電力需要機器の種類」欄には「インバータb」、「使用電力量」欄には「0.70MW」、及び「脱落条件」欄には「―0.42Hz<Δf<+0.42Hz」が格納されている。電力需要機器群L004については、「記号」欄には「L004」、「電力需要機器の種類」欄には「その他」、「使用電力量」欄には「0.51MW」、及び「脱落条件」欄には「脱落しない」が格納されている。 Further, as shown in FIG. 6, for the power demand equipment group L002, “L002” is displayed in the “symbol” column, “induction motor” is displayed in the “type of power demand equipment” column, and “power consumption” column is displayed. “−0.30 Hz <Δf <+0.18 Hz” is stored in the “0.25 MW” and “dropout condition” columns. For the power demand equipment group L003, “L003” in the “symbol” field, “inverter b” in the “type of power demand equipment” field, “0.70 MW” in the “power consumption” field, and “drop off” In the “condition” column, “−0.42 Hz <Δf <+0.42 Hz” is stored. For the power demand equipment group L004, “L004” in the “symbol” field, “other” in the “type of power demand equipment” field, “0.51 MW” in the “power consumption” field, and “dropout condition” "Do not drop off" is stored in the "" column.
 なお、図6では、「脱落条件」として、自立運転への移行時における脱落を回避し得る周波数変動Δfの取り得る範囲(許容される周波数変動幅)を規定する場合を一例として示すが、これに限られず、自立運転への移行時における脱落を回避し得る電圧変動の取り得る範囲(許容される電圧変動幅)を脱落条件として規定しても良い。「脱落条件」として、許容される周波数変動幅及び許容される電圧変動幅の双方を規定することが望ましく、許容される周波数変動幅又は許容される電圧変動幅の一方のみを規定する構成としても良い。 In FIG. 6, as an example of the “dropout condition”, a case where the range (allowable frequency fluctuation range) of the frequency fluctuation Δf that can avoid the dropout during the transition to the independent operation is specified is shown. However, the voltage fluctuation range (allowable voltage fluctuation range) that can avoid the dropout during the transition to the independent operation may be defined as the dropout condition. It is desirable to specify both the allowable frequency fluctuation range and the allowable voltage fluctuation range as the “drop-off condition”, and it is also possible to define only one of the allowable frequency fluctuation range or the allowable voltage fluctuation range. good.
 ここで、図2に戻り、マイクログリッド運転可能領域データベース22は、自家発電設備110が運転継続可能な電圧及び周波数範囲及び、自立運転への移行時において取り得る電圧及び周波数の運転状態を格納する。また、マイクログリッド運転可能領域データベース22は、上述の自立時域内系統状態計算部25により求められた自立運転への移行時における最も過酷な電圧、周波数の値、及び、制御方式策定部27により求められた自立運転への移行前に抑制する電力需要機器を抑制し、マイクログリッド地域系統100を制御したときの最も過酷な電圧と周波数の値を格納している。図7は、マイクログリッド運転可能領域を示す図である。図7では、周波数を横軸に電圧を縦軸に取り、斜線部の領域にて、自家発電設備運転可能領域41を示している。制御前最過酷条件42、すなわち、自立運転への移行前にマイクログリッド運用装置10による制御を行わない場合においては、自家発電設備運転可能領域41内から逸脱する。これに対し、制御後最過酷条件43、すなわち、自立運転への移行前にマイクログリッド運用装置10による制御を実行した場合においては、自家発電設備運転可能領域41内に収まることが示されている。 Here, referring back to FIG. 2, the microgrid operable region database 22 stores the voltage and frequency range in which the private power generation facility 110 can continue to operate, and the operating state of the voltage and frequency that can be taken when shifting to the independent operation. . Further, the microgrid operable region database 22 is obtained by the most severe voltage, frequency value, and control method formulation unit 27 at the time of transition to the independent operation obtained by the above-described autonomous state system state calculation unit 25. The power demand equipment to be suppressed before the transition to the independent operation is suppressed, and the most severe voltage and frequency values when the microgrid regional system 100 is controlled are stored. FIG. 7 is a diagram showing a microgrid operable region. In FIG. 7, the frequency is plotted on the horizontal axis and the voltage is plotted on the vertical axis, and the private power generation facility operable region 41 is shown in the shaded region. In the pre-control severest condition 42, that is, when the control by the microgrid operation apparatus 10 is not performed before the transition to the independent operation, the vehicle deviates from the private power generation facility operable region 41. On the other hand, when the control by the microgrid operation apparatus 10 is executed before the transition to the most severe condition 43 after the control, that is, the self-sustained operation, it is shown that it falls within the private power generation facility operable region 41. .
 次にマイクログリッド運用装置10を構成する制御方式策定部27の処理フローについて説明する。図8は、図2に示すマイクログリッド運用装置を構成する制御方式策定部の処理フローを示す図である。 
 図8に示すように、ステップS101では、制御方式策定部27は、自立時域内系統状態計算部25より、自立運転への移行時における単位時間刻み毎(所定の周期)の各電力需要機器端の周波数変動及び電圧変動を取得する。
Next, the processing flow of the control method formulation unit 27 constituting the microgrid operation apparatus 10 will be described. FIG. 8 is a diagram showing a processing flow of the control method formulation unit that constitutes the microgrid operation apparatus shown in FIG.
As shown in FIG. 8, in step S <b> 101, the control method formulating unit 27 determines that each power demanding device end at every unit time interval (predetermined period) at the time of shifting to the independent operation from the independent state system state calculation unit 25. Frequency fluctuations and voltage fluctuations are acquired.
 ステップS102では、制御方式策定部27は、自立運転への移行前に抑制する対象となる電力需要機器を選定する。ここで、抑制対象となる電力需要機器は、以下の4つの特徴のうち、何れかの特徴を有する電力需要機器である。 
 (1)電圧、周波数の変動が大きな点に接続されている電力需要機器 
 (2)電圧変動によって脱落し易い電力需要機器 
 (3)周波数変動によって脱落し易い電力需要機器 
 (4)使用電力量の変動が大きい電力需要機器
 ステップS103では、制御方式策定部27は、ステップS102にて選定された抑制対象となった電力需要機器から、抑制する電力需要機器組み合わせを決定する。ここで、決定された抑制する電力需要機器組み合わせ数Nは、N=1,2,・・・mとする。 
 次に、制御方式策定部27は抑制する電力需要機器の組み合わせ数Nに「1」を設定し(ステップS104)、当該組み合わせに対応する電力需要機器に対し、抑制の指令送信31(図2)を出力する。
In step S102, the control method formulation unit 27 selects a power demand device that is a target to be suppressed before shifting to the independent operation. Here, the power demand device to be controlled is a power demand device having any one of the following four characteristics.
(1) Electricity demand equipment connected to a point with large fluctuations in voltage and frequency
(2) Electricity demand equipment that easily falls off due to voltage fluctuation
(3) Electricity demand equipment that easily falls off due to frequency fluctuations
(4) Power Demand Equipment with Large Fluctuation in Power Use In Step S103, the control method formulation unit 27 determines the power demand equipment combination to be suppressed from the power demand equipment that is the suppression target selected in Step S102. . Here, the determined number N of power demand device combinations to be suppressed is N = 1, 2,... M.
Next, the control method formulation unit 27 sets “1” as the number N of combinations of power demanding devices to be suppressed (step S104), and sends a suppression command transmission 31 (FIG. 2) to the power demanding devices corresponding to the combination. Is output.
 マイクログリッド地域系統100を制御した後、自立時域内系統状態計算部25は、機器需要変動予測部24より入力される更なるある時間幅後(更なる所定時間経過後)の電力需要機器毎の電力変動、電力需要機器特性データベース16に格納された電力需要機器毎の電圧と周波数特性、マイクログリッド域内系統解析データベース19に格納される線路(抵抗、リアクタンス、対地静電容量)や発電機(容量、過渡リアクタンスなど)などのマイクログリッド地域系統100内の電力系統を構成する設備に関するデータ、及び、現在系統状態予測部23より入力される現在のマイクログリッド地域系統100の電圧分布及び潮流状態に基づき、自立運転への移行時における電圧、周波数の変動を単位時間刻み毎に(所定の周期で)過渡計算する。制御方式策定部27は、自立時域内系統状態計算部25よりマイクログリッド地域系統100の制御後の単位時間刻み毎(所定の周期)の各電力需要機器端の周波数変動及び電圧変動を取得する(ステップS105)。 After controlling the microgrid area system 100, the in-stand-time in-system system state calculation unit 25 performs the operation for each power demanding device after a certain time width (after the elapse of a further predetermined time) input from the device demand fluctuation prediction unit 24. Power fluctuation, voltage and frequency characteristics for each power demand device stored in the power demand equipment characteristic database 16, lines (resistance, reactance, ground capacitance) and generator (capacity) stored in the microgrid system analysis database 19 , Transient reactance, etc.) based on data relating to facilities constituting the power system in the microgrid area system 100 and the current voltage distribution and power flow state of the microgrid area system 100 input from the current system state prediction unit 23. , Transient voltage and frequency fluctuations at unit time intervals (with a predetermined period) Calculated to. The control method formulation unit 27 acquires frequency fluctuations and voltage fluctuations at each power demanding device end for each unit time interval (predetermined period) after the control of the microgrid regional grid 100 from the independent time zone grid state calculation unit 25 ( Step S105).
 ステップS106では、制御方式策定部27は、ステップS105にて取得されたマイクログリッド地域系統100の制御後の単位時間刻み毎(所定の周期)の各電力需要機器端の周波数変動及び電圧変動が、電力需要機器抑制条件データベース18に格納される、電力需要機器毎の抑制可否及び脱落可否を示すデータ(条件)に違反していないか判定する。換言すれば、制御方式策定部27は機器抑制条件の制約を判定する。判定の結果、抑制可否及び脱落可否を示すデータ(条件)に違反している場合、ステップS107にて、抑制する電力需要機器組み合わせ数Nを「N=N+1」(1インクリメント)しステップS105へ戻り、再びステップS105及びステップS106の処理を実行する。一方、判定の結果、抑制可否及び脱落可否を示すデータ(条件)に違反していない場合には、ステップS108へ進む。 In step S106, the control method formulation unit 27 performs frequency fluctuations and voltage fluctuations at each power demanding device end for each unit time interval (predetermined period) after the control of the microgrid regional system 100 acquired in step S105. It is determined whether or not the data (conditions) stored in the power demand equipment restraint condition database 18 indicating the restraint propriety and dropout feasibility for each power demand equipment are violated. In other words, the control method formulation unit 27 determines restrictions on the device suppression condition. As a result of the determination, if the data (conditions) indicating whether or not suppression is possible or not is violated, in step S107, the number N of power demand equipment combinations to be suppressed is “N = N + 1” (increment by 1), and the process returns to step S105. Then, the processing of step S105 and step S106 is executed again. On the other hand, if the result of determination is that there is no violation of the data (conditions) indicating whether suppression is possible and whether it is possible to drop out, the process proceeds to step S108.
 ステップS108では、制御方式策定部27は、抑制する電力需要機器の組み合わせ数Nがmに達したか否かを判定する。判定の結果、抑制する電力需要機器の組み合わせ数Nがm未満の場合、ステップS107へ進み、上述のように再び、ステップS105からステップS108の処理を実行する。一方、判定の結果、抑制する電力需要機器の組み合わせ数Nがmに達した場合、ステップS109へ進む。 In step S108, the control method formulation unit 27 determines whether or not the number N of combinations of power demand devices to be suppressed has reached m. As a result of the determination, if the number N of combinations of power demand devices to be suppressed is less than m, the process proceeds to step S107, and the processes from step S105 to step S108 are executed again as described above. On the other hand, if the number N of combinations of power demand devices to be suppressed reaches m as a result of the determination, the process proceeds to step S109.
 ステップS109では、制御方式策定部27は、抑制した電力需要機器の使用電力量の総和を求め、抑制した電力需要機器と共に図示しない記憶部に格納する。なお、求めた抑制した電力需要機器の使用電力量の総和と抑制した電力需要機器を、マイクログリッド運転可能領域データベース22の所定の記憶領域に格納するよう構成しても良い。 In step S109, the control method formulation unit 27 obtains the total amount of power used by the suppressed power demand device, and stores it in a storage unit (not shown) together with the suppressed power demand device. In addition, you may comprise so that the total of the used electric energy of the calculated | required electric power demand apparatus and the suppressed electric power demand apparatus may be stored in the predetermined | prescribed storage area of the microgrid operable area | region database 22. FIG.
 ステップS110では、制御方式策定部27は、図示しない記憶部又はマイクログリッド運転可能領域データベース22の所定の記憶領域に格納される、抑制した電力需要機器の使用電力量の総和が最小となる、自立運転への移行前に抑制する電力需要機器の組み合わせを、自立運転への移行時におけるマイクログリッド地域系統100の制御方式として決定する。 
 図8に示す、マイクログリッド運用装置10を構成する制御方式策定部27による処理フローにより、自立運転への移行時における電力需要機器の抑制量を最小にして、脱落を回避すべき電力需要機器の脱落、或は自家発電設備110の停止を回避し得るマイクログリッド地域系統100の制御方式を作成できる。 
 なお、上述のステップS102において抑制対象機器として選定可能な電力需要機器としては、例えば、家電製品を例とした場合、照明、エアコン等であり、冷蔵庫等は常時稼働させる必要があるため抑制対象機器から除外される。 
 また、ステップS101では、制御方式策定部27が、自立時域内系統状態計算部25より、自立運転への移行時における単位時間刻み毎(所定の周期)の各電力需要機器端の周波数変動及び電圧変動を取得する構成としたが、これに限られるものではない。例えば、制御方式策定部27が、自立時域内系統状態計算部25より、自立運転への移行時における単位時間刻み毎(所定の周期)の各電力需要機器端の周波数変動のみを取得する構成としても良い。また、これに代えて、制御方式策定部27が、自立時域内系統状態計算部25より、自立運転への移行時における単位時間刻み毎(所定の周期)の各電力需要機器端の電圧変動のみを取得する構成としても良い。
In step S110, the control method formulation unit 27 is a self-supporting unit that minimizes the total amount of power consumption of the suppressed power demand devices stored in a predetermined storage area of the storage unit (not shown) or the microgrid operable area database 22. A combination of power demand devices to be suppressed before shifting to operation is determined as a control method of the microgrid regional system 100 at the time of shifting to independent operation.
The processing flow by the control method formulation unit 27 that constitutes the microgrid operation device 10 shown in FIG. 8 minimizes the amount of power demand equipment to be suppressed at the time of transition to independent operation, and the power demand equipment that should be prevented from dropping out. It is possible to create a control system for the microgrid area system 100 that can avoid dropping or stopping the private power generation facility 110.
In addition, as an electric power demand apparatus which can be selected as a suppression object apparatus in the above-mentioned step S102, for example, in the case of home appliances, it is lighting, an air conditioner, etc., and since a refrigerator or the like needs to be constantly operated, the suppression object apparatus Excluded from.
Further, in step S101, the control method formulation unit 27 causes the frequency variation and voltage at each power demanding device end in units of unit time (predetermined cycle) when the system state calculation unit 25 in the independent time zone shifts to the independent operation. Although it is set as the structure which acquires a fluctuation | variation, it is not restricted to this. For example, as a configuration in which the control method formulation unit 27 acquires only the frequency fluctuation of each power demanding device end at every unit time interval (predetermined period) at the time of transition to the independent operation from the independent state time zone system state calculation unit 25. Also good. Instead of this, the control method formulation unit 27 receives only voltage fluctuations at the ends of each power demanding device at unit time intervals (predetermined period) when the system state calculation unit 25 in the independent time zone shifts to the independent operation. It is good also as a structure which acquires.
 図9は、比較例のマイクログリッドにおける周波数変動の時間変化を示す図であり、図10は、本実施例に係るマイクログリッド運用装置を用いた場合のマイクログリッドにおける周波数変動の時間変化を示す図である。図9及び図10のいずれにおいても、マイクログリッド地域系統100は、上述の図3に示したマイクログリッドの構成例を想定している。図6に示すように、電力需要機器脱落条件データベース17には、電力需要機器群L001の使用電力量は0.54MWであり、電力需要機器群L002の使用電力量は0.25MWであり、電力需要機器群L003の使用電力量は0.70MWであり、電力需要機器群L004の使用電力量は0.51MWである。従って、電力需要機器群L001~L004の使用電力量の総和は2.00MWであり、商用系統(電力系統)200から連系線140を介して0.40MWの電力を買電し、1.60MWの電力を自家発電設備110の発電でまかなっているとする。 FIG. 9 is a diagram illustrating a time variation of frequency variation in the microgrid of the comparative example, and FIG. 10 is a diagram illustrating a time variation of frequency variation in the microgrid when the microgrid operation apparatus according to the present embodiment is used. It is. 9 and 10, the microgrid regional system 100 assumes a configuration example of the microgrid shown in FIG. 3 described above. As shown in FIG. 6, in the power demand device dropout condition database 17, the power consumption amount of the power demand device group L001 is 0.54 MW, the power consumption amount of the power demand device group L002 is 0.25 MW, The power consumption of the demand equipment group L003 is 0.70 MW, and the power consumption of the power demand equipment group L004 is 0.51 MW. Accordingly, the total amount of power used by the power demand equipment groups L001 to L004 is 2.00 MW, and 0.40 MW of power is purchased from the commercial system (power system) 200 via the interconnection line 140 to obtain 1.60 MW. Is supplied by the private power generation facility 110.
 図9では、横軸に時間、縦軸に周波数変動を取り、電力需要機器の抑制をすることなく自立運転へ移行した場合の、比較例における周波数変動の時間変化を示している。図9に示すように、自立運転への移行後、周波数変動Δfが―3.0Hzまで低下している。図6に示す電力需要機器脱落条件データベース17に格納される、自立運転への移行時における脱落を回避し得る周波数変動Δfの取り得る範囲(許容される周波数変動幅)としての「脱落条件」のうち、電力需要機器群L001の脱落条件である「―0.30Hz<Δf<+0.30Hz」及び電力需要機器群L002の脱落条件である「―0.30Hz<Δf<+0.18Hz」の範囲外であることから、電力需要機器群L001に属するインバータa及び電力需要機器群L002に属する誘導電動機が脱落している。これら、電力需要機器群L001に属するインバータa及び電力需要機器群L002に属する誘導電動機の脱落により、周波数変動が急激に上昇し、基準より4.2Hz大きくなっている。この周波数変動の上昇により、電力需要機器群L003の脱落条件である「―0.42Hz<Δf<+0.42Hz」の範囲外であることから、電力需要機器群L003に属するインバータbが脱落している。この電力需要機器群L003に属するインバータbの脱落により、周波数変動は更に上昇しており、自家発電設備110が停止して自立運転への移行に失敗する虞がある。 In FIG. 9, time is plotted on the horizontal axis and frequency variation is plotted on the vertical axis, and the time variation of the frequency variation in the comparative example is shown when shifting to a self-sustained operation without suppressing power demand equipment. As shown in FIG. 9, after the shift to the independent operation, the frequency fluctuation Δf has decreased to −3.0 Hz. The “drop-off condition” as a possible range (allowable frequency fluctuation range) of the frequency fluctuation Δf stored in the power demand equipment drop-out condition database 17 shown in FIG. 6 and capable of avoiding the drop-out during the transition to the independent operation. Out of the range of “−0.30 Hz <Δf <+0.30 Hz” which is the dropout condition of the power demand equipment group L001 and “−0.30 Hz <Δf <+0.18 Hz” which is the dropout condition of the power demand equipment group L002. Therefore, the inverter a belonging to the power demand device group L001 and the induction motor belonging to the power demand device group L002 are missing. Due to the dropout of the inverter a belonging to the power demanding equipment group L001 and the induction motor belonging to the power demanding equipment group L002, the frequency fluctuation increases rapidly, and is 4.2 Hz larger than the reference. Due to this increase in frequency fluctuation, the inverter b belonging to the power demand equipment group L003 falls off because it is outside the range of “−0.42 Hz <Δf <+0.42 Hz” which is the drop condition of the power demand equipment group L003. Yes. Due to the dropout of the inverter b belonging to the power demand equipment group L003, the frequency fluctuation is further increased, and there is a possibility that the private power generation facility 110 stops and the transition to the independent operation fails.
 次に図10では、横軸に時間、縦軸に周波数変動を取り、脱落し易い電力需要機器である電力需要機器群L001に属するインバータaを事前に停止する制御をして、自立運転へ移行した場合の、本実施例に係るマイクログリッド運用装置10を用いた場合の周波数変動の時間変化を示している。図10に示されるように、自立運転へ移行前に、事前に脱落し易い電力需要機器である電力需要機器群L001に属するインバータaを停止(電力需要機器の抑制)したことにより、周波数変動が小さく抑えられ、電力需要機器の脱落を防止でき、自立運転への移行ができていることがわかる。 Next, in FIG. 10, the time is plotted on the horizontal axis and the frequency variation is plotted on the vertical axis, and control is performed in advance to stop the inverter a belonging to the power demand equipment group L001, which is an easily demanded power demand equipment, and a transition is made to independent operation. The time change of the frequency fluctuation at the time of using the microgrid operation apparatus 10 which concerns on a present Example at the time of doing is shown. As shown in FIG. 10, the frequency fluctuation is caused by stopping the inverter a belonging to the power demand device group L001 which is a power demand device that is likely to drop out in advance before the shift to the independent operation (suppression of the power demand device). It can be seen that the power demand equipment can be prevented from falling off, and the operation can be shifted to the independent operation.
 図11は、上述の比較例及び本実施例における運転継続する電力需要機器及び自家発電設備の状態を示す図である。図11に示すように、電力需要機器の抑制をすることなく自立運転へ移行した比較例においては、自家発電設備110が停止し、マイクログリッド地域系統100内における電力の供給源が喪失する。これにより、電力需要機器群L001~L004に属する全ての電力需要機器は、使用不可能となる。これに対し本実施例では、電力需要機器群L001に属するインバータaを事前に停止する制御をして、自立運転へ移行することにより、電力需要機器群L001に属するインバータaの使用電力量である0.54MWが抑制され、残りの電力需要機器群L002~L004に属する電力需要機器の使用電力量の総和である1.46MWが、運転継続される自家発電設備110より給電される。 FIG. 11 is a diagram illustrating a state of the power demanding equipment and the private power generation facility that continue to operate in the above-described comparative example and this example. As shown in FIG. 11, in the comparative example shifted to the independent operation without suppressing the power demanding equipment, the private power generation facility 110 is stopped and the power supply source in the microgrid regional system 100 is lost. As a result, all power demanding devices belonging to the power demanding device groups L001 to L004 become unusable. On the other hand, in the present embodiment, the amount of power used by the inverter a belonging to the power demand device group L001 is determined by controlling the inverter a belonging to the power demand device group L001 in advance and shifting to the independent operation. 0.54 MW is suppressed, and 1.46 MW, which is the total amount of power used by the power demanding devices belonging to the remaining power demanding device groups L002 to L004, is supplied from the private power generation facility 110 that is continuously operated.
 なお、図10に示したように、自立運転への移行後において周波数変動の時間変化が低く安定している場合において、マイクログリッド運用装置10を構成する制御方式策定部27が、上述の図8に示す処理フローを再度実行することにより、自立運転時において、それまで抑制対象機器とされていた電力需要機器のうちいずれかを再接続するよう構成しても良い。この場合、例えば、ステップS103にて予め設定された電力需要機器の組み合わせを追加しステップS110までの処理を実行する、或は、電力需要機器の組み合わせの総数を増加し、ステップS103~ステップS110までの処理を実行することにより、抑制対象機器となる電力需要機器を減少させ、再接続させる電力需要機器を求める構成とすれば良い。 As shown in FIG. 10, when the time change of the frequency fluctuation is low and stable after the transition to the self-sustaining operation, the control method formulation unit 27 configuring the microgrid operation apparatus 10 performs the above-described FIG. By executing again the processing flow shown in Fig. 5, it may be configured to reconnect any of the power demanding devices that have been regarded as the devices to be suppressed until the self-sustained operation. In this case, for example, a combination of power demand devices set in advance in step S103 is added and the processing up to step S110 is executed, or the total number of combinations of power demand devices is increased to steps S103 to S110. By executing this process, it is possible to reduce the number of power demand devices that are devices to be suppressed and obtain a power demand device to be reconnected.
 以上のとおり本実施例によれば、事前の電力需要機器の抑制により、電力需要機器の大量停止と自家発電設備の停止を回避し、自立運転への移行を良好に行い得るマイクログリッド運用装置及びマイクログリッド運用方法を提供することが可能となる。 
 また、本実施例によれば、自立運転への移行時における電力需要機器の抑制量を最小にして、脱落を回避すべき電力需要機器の脱落、或は自家発電設備の停止を回避し得るマイクログリッド地域系統の制御方式を作成できる。 
As described above, according to the present embodiment, a microgrid operation device capable of avoiding a large-scale stoppage of power demand equipment and a stop of private power generation facilities by suppressing power demand equipment in advance, and making a good transition to independent operation, and It is possible to provide a microgrid operation method.
In addition, according to the present embodiment, the amount of restraint of the power demanding equipment at the time of transition to the self-sustained operation can be minimized, so that the power demanding equipment that should be avoided from falling off or the private power generation facility from being stopped can be avoided. A grid area system control method can be created.
 本実施例では、上述の図8に示したマイクログリッド運用装置10を構成する制御方式策定部27の処理フローのうち、ステップS103における抑制対象機器の組み合わせ(抑制する電力需要機器の組み合わせ)を決定する、機器選定方法が上述の実施例1と異なる。その他の構成は上述の実施例1と同様であり、また、図8に示すステップS102及びステップS103以外の各ステップについては実施例1と同様であるため、以下では説明を省略する。 In the present embodiment, the combination of suppression target devices (the combination of power demand devices to be suppressed) in step S103 is determined in the processing flow of the control method formulation unit 27 configuring the microgrid operation apparatus 10 illustrated in FIG. The device selection method is different from that of the first embodiment. Other configurations are the same as those of the above-described first embodiment, and steps other than step S102 and step S103 illustrated in FIG. 8 are the same as those of the first embodiment.
 図8に示した上述の実施例1においては、ステップS102及びステップS103を制御方式策定部27が実行する構成としたが、本実施例では、制御方式策定部27は、ステップS101実行後に次に示すスッテプS103を実行する。ステップS103では、制御方式策定部27は、抑制対象とすべき電力需要機器の組み合わせとして、取り得る全ての制御機器の組み合わせを決定する。ここで、「取り得る全ての制御機器の組み合わせ」とは、電力需要機器の使用電力量が自家発電設備の定格出力を下回るような、全ての制御機器の組合せである。自家発電設備の定格出力を上回る制御機器の組合せを、抑制対象とすべき電力需要機器の組み合わせから除外する理由は、マイクログリッド地域系統100内の需要電力が自家発電設備の定格出力を超える場合、マイクログリッド地域系統100内の需給バランスが崩壊し、自家発電設備が停止するためである。 In the above-described first embodiment shown in FIG. 8, the control method formulation unit 27 executes steps S102 and S103. However, in this embodiment, the control method formulation unit 27 executes the next step after executing step S101. Step S103 shown is executed. In step S103, the control method formulation unit 27 determines all possible combinations of control devices as combinations of power demand devices that are to be suppressed. Here, “a combination of all possible control devices” is a combination of all control devices such that the amount of power used by the power demand device is less than the rated output of the private power generation facility. The reason for excluding the combination of control devices that exceed the rated output of the private power generation facility from the combination of power demanding devices that should be controlled is that when the power demand in the microgrid area system 100 exceeds the rated output of the private power generation facility, This is because the balance between supply and demand in the microgrid regional system 100 collapses and the private power generation facilities stop.
 以上の通り本実施例によれば、実施例1の効果に加え、抑制機器の組合せ(抑制する電力需要機器の組み合わせ)を最適に決定することが可能となる。これにより、以降の計算で使用電力が最大となり、且つマイクログリッド地域系統内の停電を防止し得るマイクログリッド運用方法を決定することが可能となる。 As described above, according to the present embodiment, in addition to the effects of the first embodiment, it is possible to optimally determine a combination of suppression devices (a combination of power demand devices). As a result, it is possible to determine a microgrid operation method that maximizes power consumption in subsequent calculations and that can prevent a power failure in the microgrid regional system.
 なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。 In addition, this invention is not limited to the above-mentioned Example, Various modifications are included. For example, the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described.
10・・・マイクログリッド運用装置,11・・・表示装置,12・・・入力装置,13・・・CPU,14・・・通信装置,15・・・RAM,16・・・電力需要機器特性データベース,17・・・電力需要機器脱落条件データベース,18・・・電力需要機器抑制条件データベース,19・・・マイクログリッド域内系統解析データベース,20・・・プログラムデータ格納データベース,21・・・内部バス,22・・・マイクログリッド運転可能領域データベース,23・・・現在系統状態予測部,24・・・機器需要変動予測部,25・・・自立時域内系統状態計算部,26・・・機器脱落判定部,27・・・制御方式策定部,31・・・指令送信,32・・・電力需要機器,33・・・発電機,34・・・再生可能エネルギー,35・・・センサ,41・・・自家発電設備運転可能領域,42・・・制御前最過酷条件,43・・・制御後最過酷条件,100・・・マイクログリッド地域系統,110・・・自家発電設備,120,121,122,123,124・・・保護装置,130・・・遮断器,140・・・連系線,200・・・商用系統,N・・・ノード,L・・・電力需要機器群 DESCRIPTION OF SYMBOLS 10 ... Micro grid operation apparatus, 11 ... Display apparatus, 12 ... Input device, 13 ... CPU, 14 ... Communication apparatus, 15 ... RAM, 16 ... Electric power demand apparatus characteristic Database, 17 ... Power demand equipment dropout condition database, 18 ... Power demand equipment restraint condition database, 19 ... Microgrid system analysis database, 20 ... Program data storage database, 21 ... Internal bus , 22 ... Microgrid operable region database, 23 ... Current system state prediction unit, 24 ... Equipment demand fluctuation prediction unit, 25 ... Independent time zone system state calculation unit, 26 ... Equipment dropout Judgment part, 27 ... Control method formulation part, 31 ... Command transmission, 32 ... Electric power demand equipment, 33 ... Generator, 34 ... Renewable energy 35 ... sensor, 41 ... operating power generation facility operable region, 42 ... the most severe condition before control, 43 ... the most severe condition after control, 100 ... micro grid area system, 110 ... Private power generation equipment, 120, 121, 122, 123, 124 ... protection device, 130 ... circuit breaker, 140 ... interconnection line, 200 ... commercial system, N ... node, L ...・ Electric power demand equipment group

Claims (20)

  1.  マイクログリッドを商用系統との連系運転から自立運転に無停電で移行するための装置であって、計測データから現在のマイクログリッドの系統状態を予測する現在系統状態予測部と、少なくともマイクログリッドの系統内の電力需要機器毎に格納される周波数変動及び/又は電圧変動を含む脱落条件に基づき自立運転時における脱落を判定し、前記周波数変動及び/又は電圧変動を用いて使用可能な電力が大きくなるように抑制する電力需要機器を選定し、当該選定された電力需要機器の抑制を自立運転移行前に行う制御方式策定部と、を備えることを特徴とするマイクログリッド運用装置。 This is a device for transitioning the grid from the grid operation to the autonomous operation without any power failure. The current grid status prediction unit predicts the grid status of the current grid from the measurement data. Based on the dropout conditions including frequency fluctuations and / or voltage fluctuations stored for each power demand device in the system, the dropout in the independent operation is determined, and the power that can be used is large by using the frequency fluctuations and / or voltage fluctuations. And a control method formulation unit that selects a power demand device to be suppressed so that the selected power demand device is suppressed before shifting to a self-sustaining operation.
  2.  請求項1に記載のマイクログリッド運用装置において、
     周波数変動及び/又は電圧変動による前記電力需要機器の脱落条件を、電力需要機器の種類及び使用電力量と紐づけて格納する電力需要機器脱落条件データベースと、
     少なくとも、前記現在系統状態予測部による現在のマイクログリッドの系統状態に基づき、自立運転時における周波数変動及び/又は電圧変動を求める自立時域内系統状態計算部と、を備えることを特徴とするマイクログリッド運用装置。
    In the microgrid operation device according to claim 1,
    A power demand equipment dropout condition database for storing the power demand equipment dropout conditions due to frequency fluctuations and / or voltage fluctuations in association with the type of power demand equipment and the amount of power used;
    A microgrid comprising: a self-time-time system state calculation unit that obtains a frequency variation and / or a voltage variation during a self-sustained operation based on at least the current microgrid system state by the current system state prediction unit; Operational device.
  3.  請求項2に記載のマイクログリッド運用装置において、
     前記自立時域内系統状態計算部により求められる自立運転時における周波数変動及び/又は電圧変動と、前記電力需要機器脱落条件データベースに格納される周波数変動及び/又は電圧変動による前記電力需要機器の脱落条件に基づき、電力需要機器の脱落を判定する機器脱落判定部を有することを特徴とするマイクログリッド運用装置。
    In the microgrid operation device according to claim 2,
    Frequency fluctuation and / or voltage fluctuation at the time of self-sustained operation determined by the system state calculation unit in the independent time zone, and the power demand equipment dropout condition due to the frequency fluctuation and / or voltage fluctuation stored in the power demand equipment dropout condition database A microgrid operation apparatus comprising a device dropout determination unit that determines whether a power demand device is dropped based on the above.
  4.  請求項3に記載のマイクログリッド運用装置において、
     電力需要機器毎に、抑制可否及び脱落可否を示すデータを格納すると共に、前記抑制可否を示すデータは前記電力需要機器に対する抑制可能な時間を含む電力需要機器抑制条件データベースを備え、
     前記制御方式策定部は、前記自立時域内系統状態計算部により求められる自立運転時における周波数変動及び/又は電圧変動と、前記電力需要機器抑制条件データベースに格納される前記抑制可否及び脱落可否を示すデータに基づき、抑制する電力需要機器を選定することを特徴とするマイクログリッド運用装置。
    In the microgrid operation device according to claim 3,
    For each power demand device, storing data indicating whether or not suppression is possible and whether or not it is possible to drop off, and the data indicating whether or not suppression is provided with a power demand device suppression condition database including time that can be suppressed for the power demand device,
    The control method formulation unit indicates the frequency variation and / or voltage variation at the time of the independent operation calculated by the independent time zone system state calculation unit, and the suppression availability and dropout availability stored in the power demand device suppression condition database. A microgrid operation apparatus characterized by selecting a power demand device to be suppressed based on data.
  5.  請求項3に記載のマイクログリッド運用装置において、
     前記制御方式策定部は、自立運転への移行時における周波数変動及び/又は電圧変動が大きな点に接続される電力需要機器を、抑制する電力需要機器として選定することを特徴とするマイクログリッド運用装置。
    In the microgrid operation device according to claim 3,
    The control method formulation unit selects, as a power demand device, a power demand device connected to a point where frequency fluctuation and / or voltage fluctuation at the time of shifting to a self-sustained operation is large. .
  6.  請求項3に記載のマイクログリッド運用装置において、
     前記制御方式策定部は、自立運転への移行時における周波数変動によって脱落し易い電力需要機器を、抑制する電力需要機器として選定することを特徴とするマイクログリッド運用装置。
    In the microgrid operation device according to claim 3,
    The microgrid operation apparatus characterized in that the control method formulating unit selects, as a power demand device, a power demand device that easily falls off due to a frequency fluctuation at the time of transition to independent operation.
  7.  請求項3に記載のマイクログリッド運用装置において、
     前記制御方式策定部は、自立運転への移行時における電圧変動によって脱落し易い電力需要機器を、抑制する電力需要機器として選定することを特徴とするマイクログリッド運用装置。
    In the microgrid operation device according to claim 3,
    The microgrid operation apparatus characterized in that the control method formulating unit selects, as a power demand device, a power demand device that easily drops due to a voltage fluctuation at the time of shifting to a self-sustaining operation.
  8.  請求項3に記載のマイクログリッド運用装置において、
     前記制御方式策定部は、自立運転への移行時における使用電力量の変動が大きい電力需要機器を、抑制する電力需要機器として選定することを特徴とするマイクログリッド運用装置。
    In the microgrid operation device according to claim 3,
    The microgrid operation apparatus, wherein the control method formulation unit selects a power demand device having a large fluctuation in power consumption when shifting to a self-sustaining operation as a power demand device to be suppressed.
  9.  請求項4に記載のマイクログリッド運用装置において、
     前記機器脱落判定部は、前記電力需要機器脱落条件データベースに格納される周波数変動及び/又は電圧変動による前記電力需要機器の脱落条件に基づき、電力需要機器としての誘導電動機の脱落判定を行うことを特徴とするマイクログリッド運用装置。
    In the microgrid operation device according to claim 4,
    The equipment drop-off determination unit performs drop-out determination of an induction motor as a power demand device based on a drop condition of the power demand device due to frequency variation and / or voltage variation stored in the power demand device drop condition database. A featured microgrid operation device.
  10.  請求項5に記載のマイクログリッド運用装置において、
     前記機器脱落判定部は、前記電力需要機器脱落条件データベースに格納される周波数変動及び/又は電圧変動による前記電力需要機器の脱落条件に基づき、電力需要機器としての誘導電動機の脱落判定を行うことを特徴とするマイクログリッド運用装置。
    In the microgrid operation device according to claim 5,
    The equipment drop-off determination unit performs drop-out determination of an induction motor as a power demand device based on a drop condition of the power demand device due to frequency variation and / or voltage variation stored in the power demand device drop condition database. A featured microgrid operation device.
  11.  請求項6に記載のマイクログリッド運用装置において、
     前記機器脱落判定部は、前記電力需要機器脱落条件データベースに格納される周波数変動及び/又は電圧変動による前記電力需要機器の脱落条件に基づき、電力需要機器としての誘導電動機の脱落判定を行うことを特徴とするマイクログリッド運用装置。
    In the microgrid operation device according to claim 6,
    The equipment drop-off determination unit performs drop-out determination of an induction motor as a power demand device based on a drop condition of the power demand device due to frequency variation and / or voltage variation stored in the power demand device drop condition database. A featured microgrid operation device.
  12.  請求項7に記載のマイクログリッド運用装置において、
     前記機器脱落判定部は、前記電力需要機器脱落条件データベースに格納される周波数変動及び/又は電圧変動による前記電力需要機器の脱落条件に基づき、電力需要機器としての誘導電動機の脱落判定を行うことを特徴とするマイクログリッド運用装置。
    In the microgrid operation device according to claim 7,
    The equipment drop-off determination unit performs drop-out determination of an induction motor as a power demand device based on a drop condition of the power demand device due to frequency variation and / or voltage variation stored in the power demand device drop condition database. A featured microgrid operation device.
  13.  請求項4に記載のマイクログリッド運用装置において、
     前記機器脱落判定部は、前記電力需要機器脱落条件データベースに格納される周波数変動及び/又は電圧変動による前記電力需要機器の脱落条件に基づき、電力需要機器としてのインバータの脱落判定を行うことを特徴とするマイクログリッド運用装置。
    In the microgrid operation device according to claim 4,
    The device dropout determination unit performs dropout determination of an inverter as a power demand device based on a dropout condition of the power demand device due to frequency variation and / or voltage variation stored in the power demand device dropout condition database. A microgrid operation device.
  14.  請求項5に記載のマイクログリッド運用装置において、
     前記機器脱落判定部は、前記電力需要機器脱落条件データベースに格納される周波数変動及び/又は電圧変動による前記電力需要機器の脱落条件に基づき、電力需要機器としてのインバータの脱落判定を行うことを特徴とするマイクログリッド運用装置。
    In the microgrid operation device according to claim 5,
    The device dropout determination unit performs dropout determination of an inverter as a power demand device based on a dropout condition of the power demand device due to frequency variation and / or voltage variation stored in the power demand device dropout condition database. A microgrid operation device.
  15.  請求項6に記載のマイクログリッド運用装置において、
     前記機器脱落判定部は、前記電力需要機器脱落条件データベースに格納される周波数変動及び/又は電圧変動による前記電力需要機器の脱落条件に基づき、電力需要機器としてのインバータの脱落判定を行うことを特徴とするマイクログリッド運用装置。
    In the microgrid operation device according to claim 6,
    The device dropout determination unit performs dropout determination of an inverter as a power demand device based on a dropout condition of the power demand device due to frequency variation and / or voltage variation stored in the power demand device dropout condition database. A microgrid operation device.
  16.  マイクログリッドを商用系統との連系運転から自立運転に無停電で移行するための方法であって、計測データから現在のマイクログリッドの系統状態を予測し、少なくともマイクログリッドの系統内の電力需要機器毎に格納される周波数変動及び/又は電圧変動を含む脱落条件に基づき自立運転時における脱落を判定し、前記周波数変動及び/又は電圧変動を用いて使用可能な電力が大きくなるように抑制する電力需要機器を選定し、当該選定された電力需要機器の抑制を自立運転移行前に行うことを特徴とするマイクログリッド運用方法。 This is a method for uninterruptible transition from grid-connected operation to commercial grid operation to commercial grid, and predicts the current grid status of the grid from the measurement data, and at least power demand equipment in the grid grid Power that determines dropout during self-sustained operation based on dropout conditions including frequency fluctuation and / or voltage fluctuation stored every time, and suppresses the power that can be used to increase using the frequency fluctuation and / or voltage fluctuation. A microgrid operation method comprising: selecting a demand device and performing suppression of the selected power demand device before transition to independent operation.
  17.  請求項16に記載のマイクログリッド運用方法において、
     周波数変動及び/又は電圧変動による前記電力需要機器の脱落条件を電力需要機器の種類及び使用電力量と紐づけて格納する電力需要機器脱落条件データベースを参照し、自立運転時における電力需要機器の脱落を判定することを特徴とするマイクログリッド運用方法。
    The microgrid operation method according to claim 16, wherein
    Referring to the power demand equipment dropout condition database that stores the power demand equipment dropout conditions associated with frequency fluctuations and / or voltage fluctuations in association with the types of power demand equipment and the amount of power used, the power demand equipment dropouts during autonomous operation A method of operating a microgrid, characterized by determining
  18.  請求項17に記載のマイクログリッド運用方法において、
     電力需要機器毎に、抑制可否及び脱落可否を示すデータを格納すると共に、前記抑制可否を示すデータは前記電力需要機器に対する抑制可能な時間を含む電力需要機器抑制条件データベースを参照し、
     自立運転時における周波数変動及び/又は電圧変動と、前記電力需要機器抑制条件データベースに格納される前記抑制可否及び脱落可否を示すデータに基づき、抑制する電力需要機器を選定することを特徴とするマイクログリッド運用方法。
    The microgrid operation method according to claim 17,
    For each power demand device, storing data indicating whether or not suppression is possible and whether or not it is possible to drop off, and the data indicating whether or not suppression is referred to a power demand device suppression condition database including time that can be suppressed for the power demand device,
    A power demand device to be suppressed is selected based on frequency variation and / or voltage variation during self-sustained operation and data indicating the suppression availability and dropout availability stored in the power demand device suppression condition database. Grid operation method.
  19.  請求項17に記載のマイクログリッド運用方法において、
     自立運転への移行時における周波数変動及び/又は電圧変動が大きな点に接続される電力需要機器を、抑制する電力需要機器として選定することを特徴とするマイクログリッド運用方法。
    The microgrid operation method according to claim 17,
    A method for operating a microgrid, comprising: selecting a power demand device connected to a point having a large frequency fluctuation and / or voltage fluctuation at the time of transition to independent operation as a power demand device to be suppressed.
  20.  請求項17に記載のマイクログリッド運用方法において、
     自立運転への移行時における周波数変動によって脱落し易い電力需要機器を、抑制する電力需要機器として選定することを特徴とするマイクログリッド運用方法。
    The microgrid operation method according to claim 17,
    A method for operating a microgrid characterized by selecting, as a power demand device, a power demand device that easily falls off due to frequency fluctuations when shifting to a self-sustaining operation.
PCT/JP2017/028732 2016-09-13 2017-08-08 Microgrid operation device and microgrid operation method WO2018051684A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016178322A JP2019221006A (en) 2016-09-13 2016-09-13 Micro grid operation apparatus and micro grid operation method
JP2016-178322 2016-09-13

Publications (1)

Publication Number Publication Date
WO2018051684A1 true WO2018051684A1 (en) 2018-03-22

Family

ID=61619573

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/028732 WO2018051684A1 (en) 2016-09-13 2017-08-08 Microgrid operation device and microgrid operation method

Country Status (2)

Country Link
JP (1) JP2019221006A (en)
WO (1) WO2018051684A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021027640A (en) * 2019-08-01 2021-02-22 住友電気工業株式会社 Power control device, power control method, and computer program
JP7372673B2 (en) 2020-01-28 2023-11-01 公立大学法人公立諏訪東京理科大学 Microgrid power system, control device, and microgrid power control method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000184602A (en) * 1998-12-11 2000-06-30 Nissin Electric Co Ltd Distributed power source unit
JP2013225956A (en) * 2012-04-20 2013-10-31 Mitsubishi Electric Corp System stabilization method and system stabilization device
JP2014239588A (en) * 2013-06-06 2014-12-18 パナソニック株式会社 Power supply system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000184602A (en) * 1998-12-11 2000-06-30 Nissin Electric Co Ltd Distributed power source unit
JP2013225956A (en) * 2012-04-20 2013-10-31 Mitsubishi Electric Corp System stabilization method and system stabilization device
JP2014239588A (en) * 2013-06-06 2014-12-18 パナソニック株式会社 Power supply system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021027640A (en) * 2019-08-01 2021-02-22 住友電気工業株式会社 Power control device, power control method, and computer program
JP7354657B2 (en) 2019-08-01 2023-10-03 住友電気工業株式会社 Power control device, power control method, and computer program
JP7372673B2 (en) 2020-01-28 2023-11-01 公立大学法人公立諏訪東京理科大学 Microgrid power system, control device, and microgrid power control method

Also Published As

Publication number Publication date
JP2019221006A (en) 2019-12-26

Similar Documents

Publication Publication Date Title
El-Bidairi et al. Optimal sizing of Battery Energy Storage Systems for dynamic frequency control in an islanded microgrid: A case study of Flinders Island, Australia
Uriarte et al. Microgrid ramp rates and the inertial stability margin
Sayed et al. SCADA and smart energy grid control automation
Cai et al. A hierarchical multi-agent control scheme for a black start-capable microgrid
Abdulraheem et al. Power system frequency stability and control: Survey
US10411480B2 (en) Reconfiguration of the reactive power loop of a wind power plant
JP6541672B2 (en) System and method for error monitoring and handling in a control system
JP5076157B2 (en) Distributed power supply system and system voltage stabilization method using this system
Liu et al. Model-free fast frequency control support with energy storage system
JP2015080401A (en) Methods and systems for controlling electric network
CN105556779A (en) Apparatus and method for providing power interface
Mohajeryami et al. Modeling of deadband function of governor model and its effect on frequency Response characteristics
WO2013079360A2 (en) Controlling an electrical grid with islanded operation
Pinceti et al. Design criteria for a power management system for microgrids with renewable sources
JP6609520B2 (en) Microgrid control apparatus and method
Gyawali et al. Power management of double-fed induction generator-based wind power system with integrated smart energy storage having superconducting magnetic energy storage/fuel-cell/electrolyser
Cetinkaya et al. On&off-grid hybrid microgrid design and dynamic analysis
US20220147004A1 (en) Methods and systems for automatically configuring an electrical micronetwork
WO2018051684A1 (en) Microgrid operation device and microgrid operation method
Eissa et al. Emergency frequency control by using heavy thermal conditioning loads in commercial buildings at smart grids
Mnguni et al. An approach for a multi-stage under-frequency based load shedding scheme for a power system network
Baalbergen et al. Outline of a new hierarchical agent-based voltage instability protection system
WO2017097379A1 (en) Load shedding in a microgrid
Alefy et al. Improvement in two adjacent microgrids frequency using the AC-to-AC converter based on sugeno fuzzy control scheme
Graditi et al. SOC-based BESS control logic for dynamic frequency regulation in microgrids with renewables

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17850590

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17850590

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP