WO2018051644A1 - Control system and control method for hybrid construction machine - Google Patents

Control system and control method for hybrid construction machine Download PDF

Info

Publication number
WO2018051644A1
WO2018051644A1 PCT/JP2017/027050 JP2017027050W WO2018051644A1 WO 2018051644 A1 WO2018051644 A1 WO 2018051644A1 JP 2017027050 W JP2017027050 W JP 2017027050W WO 2018051644 A1 WO2018051644 A1 WO 2018051644A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluid pressure
regenerative
regeneration
motor
actuator
Prior art date
Application number
PCT/JP2017/027050
Other languages
French (fr)
Japanese (ja)
Inventor
祐弘 江川
Original Assignee
Kyb株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyb株式会社 filed Critical Kyb株式会社
Priority to KR1020187025538A priority Critical patent/KR20180110037A/en
Priority to CN201780018214.3A priority patent/CN109790860A/en
Publication of WO2018051644A1 publication Critical patent/WO2018051644A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2221Control of flow rate; Load sensing arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B21/00Common features of fluid actuator systems; Fluid-pressure actuator systems or details thereof, not covered by any other group of this subclass
    • F15B21/14Energy-recuperation means
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2058Electric or electro-mechanical or mechanical control devices of vehicle sub-units
    • E02F9/2091Control of energy storage means for electrical energy, e.g. battery or capacitors
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2264Arrangements or adaptations of elements for hydraulic drives
    • E02F9/2271Actuators and supports therefor and protection therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/2053Type of pump
    • F15B2211/20546Type of pump variable capacity

Definitions

  • the present invention relates to a control system and control method for a hybrid construction machine.
  • JP2015-137752A discloses a hybrid construction machine in which an engine and a rotating electric machine driven by electric power of a power storage unit are used together as a power source.
  • regenerative control is performed in which the regenerative motor is rotationally driven by the hydraulic fluid recirculated from the actuator, and the electric power regenerated by the rotating electrical machine connected to the regenerative motor is charged in the power storage unit.
  • the assist control for supplying hydraulic oil to the actuator from the assist pump connected to the rotating electric machine and the regenerative motor is performed. Done.
  • the present invention aims to improve the durability of a power storage unit of a hybrid construction machine.
  • a control system for a hybrid construction machine includes a variable displacement fluid pressure pump that supplies a working fluid to a fluid pressure actuator, and a working fluid returned from the fluid pressure actuator or the fluid pressure pump.
  • a regenerative motor that is rotationally driven by the working fluid supplied from the regenerative motor, a rotating electrical machine coupled to the regenerative motor, a power storage unit that stores electric power generated by the rotating electrical machine, and a fluid pressure pump to the regenerative motor
  • a control unit that controls supply of a working fluid, and the control unit determines that the charge amount of the power storage unit is smaller than a first predetermined amount when the fluid pressure actuator is not operating. Is the flow rate of the working fluid supplied from the fluid pressure pump to the regenerative motor when the fluid pressure actuator is operating. Controlling the fluid pressure pump such that the above flow rate of the working fluid discharged from the body pressure pump.
  • a variable displacement fluid pressure pump for supplying a working fluid to a fluid pressure actuator, a working fluid recirculated from the fluid pressure actuator, or a working fluid supplied from the fluid pressure pump
  • a control method for controlling a hybrid construction machine comprising: a regenerative motor that is rotationally driven by the motor; a rotary electric machine that is coupled to the regenerative motor; and a power storage unit that stores electric power generated by the rotary electric machine. And detecting the charge amount of the power storage unit, the fluid pressure actuator is not operating, and the detected charge amount of the power storage unit is smaller than a first predetermined amount, The flow rate of the working fluid supplied from the fluid pressure pump to the regenerative motor is set so that the fluid flows when the fluid pressure actuator is operating. The above flow rate of the working fluid discharged from the pump.
  • FIG. 1 is a circuit diagram showing a control system for a hybrid construction machine according to an embodiment of the present invention.
  • FIG. 2 is a flowchart of regenerative control during non-operation in the hybrid construction machine control system.
  • FIG. 3 is a graph for explaining non-operation regenerative control in the control system of the hybrid construction machine.
  • FIG. 4 shows a part of a circuit diagram of a modification of the control system for the hybrid construction machine according to the embodiment of the present invention.
  • the hydraulic excavator includes first and second main pumps 71 and 72 as fluid pressure pumps.
  • the first and second main pumps 71 and 72 are variable displacement pumps capable of adjusting the tilt angle of the swash plate.
  • the first and second main pumps 71 and 72 are driven by the engine 73 and rotate coaxially.
  • the engine 73 is provided with a generator 74 that generates power using the remaining power of the engine 73.
  • the electric power generated by the generator 74 is charged to the battery 26 as a power storage unit via the charger 25.
  • the charger 25 can charge the battery 26 with electric power even when connected to a normal household power supply 27.
  • the capacitor 26 is constituted by an electric double layer capacitor.
  • the battery 26 includes a temperature sensor 26 a that detects the temperature of the battery 26, a voltage sensor (not shown) that detects the voltage of the battery 26, and a current sensor (not shown) that detects the current value supplied to the battery 26. Are provided.
  • the temperature sensor 26a outputs an electrical signal corresponding to the detected temperature of the battery 26 to the controller 90 as a control unit.
  • the battery 26 may be a secondary battery such as a lithium ion battery or a nickel metal hydride battery.
  • the hydraulic fluid discharged from the first main pump 71 is supplied to the first circuit system 75.
  • the first circuit system 75 includes an operation valve 2 that controls the swing motor 76, an operation valve 3 that controls an arm cylinder (not shown), and a boom second speed operation valve that controls the boom cylinder 77 in order from the upstream side. 4, an operation valve 5 that controls a preliminary attachment (not shown), and an operation valve 6 that controls a first travel motor (not shown) for left travel.
  • the swing motor 76, the arm cylinder, the boom cylinder 77, the hydraulic equipment connected to the spare attachment, and the first traveling motor correspond to fluid pressure actuators (hereinafter simply referred to as “actuators”).
  • the operation valves 2 to 6 control the operation of each actuator by controlling the flow rate of the discharged oil supplied from the first main pump 71 to each actuator.
  • Each of the operation valves 2 to 6 is operated by a pilot pressure supplied when the operator of the excavator manually operates the operation lever.
  • the operation valves 2 to 6 are connected to the first main pump 71 through a neutral flow path 7 and a parallel flow path 8 that are parallel to each other.
  • a first supply pressure sensor 63 that detects the pressure of hydraulic fluid supplied from the first main pump 71 to the neutral flow path 7 is provided on the upstream side of the operation valve 2 in the neutral flow path 7. Further, on the upstream side of the operation valve 2 in the neutral flow path 7, the main relief valve 65 opens when the operating hydraulic pressure of the neutral flow path 7 exceeds a predetermined main relief pressure, and keeps the operating hydraulic pressure below the main relief pressure. Is provided.
  • an on-off valve 9 having a solenoid connected to the controller 90 and capable of shutting off the hydraulic oil in the neutral flow path 7 is provided.
  • the on-off valve 9 is kept fully open in the normal state.
  • the on-off valve 9 is switched to a closed state by a command from the controller 90.
  • a pilot pressure generating mechanism 10 for generating a pilot pressure is provided on the downstream side of the on-off valve 9 in the neutral flow path 7.
  • the pilot pressure generating mechanism 10 generates a high pilot pressure if the flow rate of the passing hydraulic oil is large, and generates a low pilot pressure if the flow rate of the passing hydraulic fluid is small.
  • the neutral flow path 7 guides all or part of the hydraulic oil discharged from the first main pump 71 to the tank when all the operation valves 2 to 6 are in the neutral position or in the vicinity of the neutral position. In this case, since the flow rate passing through the pilot pressure generating mechanism 10 increases, a high pilot pressure is generated.
  • the pilot pressure generating mechanism 10 generates a pilot pressure corresponding to the flow rate of the hydraulic oil in the neutral flow path 7. That is, the pilot pressure generation mechanism 10 generates a pilot pressure corresponding to the operation amount of the operation valves 2 to 6.
  • a pilot flow path 11 is connected to the pilot pressure generating mechanism 10.
  • the pilot pressure generated by the pilot pressure generating mechanism 10 is guided to the pilot flow path 11.
  • the pilot pressure generation mechanism 10 is connected via a pilot flow path 11 to a regulator 12 that controls the discharge capacity (tilt angle of the swash plate) of the first main pump 71.
  • the regulator 12 controls the tilt angle of the swash plate of the first main pump 71 in proportion to the pilot pressure of the pilot flow path 11 (proportional constant is a negative number). Thereby, the regulator 12 controls the amount of push-off per one rotation of the first main pump 71. That is, the discharge amount of the first main pump 71 changes according to the pilot pressure in the pilot flow path 11.
  • the tilt angle of the first main pump 71 becomes maximum. At this time, the push-out amount per rotation of the first main pump 71 is maximized.
  • the pilot flow path 11 is provided with a first pressure sensor 13 that detects the pressure of the pilot flow path 11.
  • the pressure detected by the first pressure sensor 13 is output to the controller 90 as a pressure signal.
  • the hydraulic fluid discharged from the second main pump 72 is supplied to the second circuit system 78.
  • the second circuit system 78 includes, in order from the upstream side, an operation valve 14 that controls a second traveling motor (not shown) for right traveling, an operation valve 15 that controls a bucket cylinder (not shown), and a boom cylinder 77. And an arm second speed operation valve 17 for controlling an arm cylinder (not shown).
  • actuators fluid pressure actuators
  • the operation valves 14 to 17 control the operation of each actuator by controlling the flow rate of the discharge oil supplied from the second main pump 72 to each actuator.
  • the operation valves 14 to 17 are operated by pilot pressure supplied when the operator of the hydraulic excavator manually operates the operation lever.
  • the operation valves 14 to 16 are connected to the second main pump 72 through the neutral flow path 18 and the parallel flow path 19 which are parallel to each other.
  • a second supply pressure sensor 64 that detects the pressure of hydraulic oil supplied from the second main pump 72 to the neutral flow path 18 is provided on the upstream side of the operation valve 14 in the neutral flow path 18. Further, on the upstream side of the operation valve 14 in the neutral flow path 18, the main relief valve 66 is opened when the hydraulic pressure of the neutral flow path 18 exceeds a predetermined main relief pressure, and keeps the hydraulic pressure below the main relief pressure. Is provided.
  • the main relief valves 65 and 66 may be provided in at least one of the first circuit system 75 and the second circuit system 78.
  • the main relief valve When the main relief valve is provided in only one of the first circuit system 75 and the second circuit system 78, the main relief valve from which the hydraulic oil is the same from the other of the first circuit system 75 and the second circuit system 78 Connected to be led to.
  • the main relief valve when a single main relief valve is provided, the main relief valve is shared by the first circuit system 75 and the second circuit system 78. In this case, only one supply pressure sensor is provided and is shared by the first circuit system 75 and the second circuit system 78.
  • an on-off valve 21 having a solenoid connected to the controller 90 and capable of shutting off the hydraulic oil in the neutral flow path 18 is provided.
  • the on-off valve 21 is kept fully open in the normal state.
  • the on-off valve 21 is switched to a closed state by a command from the controller 90.
  • a pilot pressure generating mechanism 20 for generating pilot pressure is provided on the downstream side of the on-off valve 21 in the neutral flow path 18.
  • the pilot pressure generating mechanism 20 has the same function as the pilot pressure generating mechanism 10 on the first main pump 71 side.
  • a pilot flow path 22 is connected to the pilot pressure generating mechanism 20.
  • the pilot pressure generated by the pilot pressure generating mechanism 20 is guided to the pilot flow path 22.
  • the pilot pressure generation mechanism 20 is connected to the regulator 23 that controls the discharge capacity (tilt angle of the swash plate) of the second main pump 72 via the pilot flow path 22.
  • the regulator 23 controls the tilt angle of the swash plate of the second main pump 72 in proportion to the pilot pressure of the pilot flow path 22 (proportional constant is a negative number). Thereby, the regulator 23 controls the amount of push-off per rotation of the second main pump 72. In other words, the discharge amount of the second main pump changes according to the pilot pressure in the pilot flow path 22.
  • the tilt angle of the second main pump 72 is maximized. At this time, the push-out amount per rotation of the second main pump 72 is maximized.
  • the pilot flow path 22 is provided with a second pressure sensor 24 that detects the pressure of the pilot flow path 22.
  • the pressure detected by the second pressure sensor 24 is output to the controller 90 as a pressure signal.
  • the actuator ports of the operation valve 2 are connected to flow paths 28 and 29 communicating with the turning motor 76.
  • Relief valves 30 and 31 are connected to the flow paths 28 and 29, respectively.
  • the actuator ports of the operation valve 16 are connected to flow paths 32 and 35 communicating with the boom cylinder 77.
  • the actuator port is closed, and the boom cylinder 77 is maintained in a stopped state.
  • the boom second speed operation valve 4 of the first circuit system 75 is switched in conjunction with the operation valve 16 according to the operation amount of the boom operation lever.
  • An electromagnetic proportional throttle valve 36 whose opening degree is controlled by a controller 90 is provided in the flow path 32 connecting the piston side chamber 33 of the boom cylinder 77 and the operation valve 16. The electromagnetic proportional throttle valve 36 maintains the fully open position in the normal state.
  • the hybrid construction machine control system 100 includes a regenerative device that performs regenerative control for recovering the energy of hydraulic oil discharged from the swing motor 76 and the boom cylinder 77. Below, the regeneration apparatus is demonstrated.
  • the regeneration control by the regeneration device is executed by the controller 90.
  • the controller 90 includes a CPU (central processing unit) that executes regenerative control, a ROM (read-only memory) that stores control programs and setting values necessary for processing operations of the CPU, and information detected by various sensors. RAM (random access memory) for temporarily storing.
  • the flow paths 28 and 29 connected to the turning motor 76 are connected to the turning regeneration flow path 47 for guiding the hydraulic oil from the turning motor 76 to the regeneration motor 88 for regeneration.
  • Each of the flow paths 28 and 29 is provided with check valves 48 and 49 that allow only the flow of hydraulic oil to the swivel regeneration flow path 47.
  • the swivel regeneration channel 47 is connected to the regeneration motor 88 through the merge regeneration channel 46.
  • the regenerative motor 88 is a variable capacity motor that can adjust the tilt angle of the swash plate, and is connected so as to rotate coaxially with a motor generator 91 as a rotating electric machine that also serves as a generator.
  • the regenerative motor 88 is rotationally driven by hydraulic oil that is discharged from the turning motor 76 and the boom cylinder 77 and recirculated through the merging regenerative flow path 46.
  • the regenerative motor 88 is also rotationally driven by directly supplying hydraulic oil discharged from the first and second main pumps 71 and 72 as will be described later.
  • the tilt angle of the swash plate of the regenerative motor 88 is controlled by the tilt angle controller 38.
  • the tilt angle controller 38 is controlled by an output signal from the controller 90.
  • the regenerative motor 88 can drive the motor generator 91 to rotate.
  • the motor generator 91 functions as a generator, the generated regenerative power is charged to the battery 26 via the inverter 92.
  • the regenerative motor 88 and the motor generator 91 may be directly connected or may be connected via a speed reducer.
  • a suction flow path 61 Upstream of the regenerative motor 88 is a suction flow path 61 that sucks up the hydraulic oil from the tank to the regenerative flow path 46 and supplies it to the regenerative motor 88 when the supply amount of the hydraulic oil to the regenerative motor 88 becomes insufficient.
  • the suction channel 61 is provided with a check valve 61a that allows only the flow of hydraulic oil from the tank to the merged regeneration channel 46.
  • the regenerative flow path 47 is provided with an electromagnetic switching valve 50 that is switch-controlled by a signal output from the controller 90.
  • a pressure sensor 51 is provided between the electromagnetic switching valve 50 and the check valves 48 and 49 to detect a turning pressure when the turning motor 76 is turning or a brake pressure when the turning operation is performed. The pressure detected by the pressure sensor 51 is output to the controller 90 as a pressure signal.
  • the hydraulic oil discharged by the pump action of the turning motor 76 is a check valve. It flows into the swivel regeneration passage 47 through 48 and 49 and is guided to the regeneration motor 88.
  • a safety valve 52 is provided on the downstream side of the electromagnetic switching valve 50 in the turning regeneration flow path 47.
  • the safety valve 52 prevents the swing motor 76 from running away by maintaining the pressure in the flow paths 28 and 29 when an abnormality occurs in the electromagnetic switching valve 50 of the swing regeneration flow path 47, for example.
  • the controller 90 determines that the detected pressure of the pressure sensor 51 is equal to or higher than the rotation regeneration start pressure, the controller 90 excites the solenoid of the electromagnetic switching valve 50. As a result, the electromagnetic switching valve 50 is switched to the open position and the swivel regeneration is started.
  • the controller 90 determines that the detected pressure of the pressure sensor 51 is less than the turning regeneration start pressure, the controller 90 de-energizes the solenoid of the electromagnetic switching valve 50. As a result, the electromagnetic switching valve 50 is switched to the closed position and the turning regeneration is stopped.
  • the boom regenerative flow path 53 branched from between the piston side chamber 33 and the electromagnetic proportional throttle valve 36 is connected to the flow path 32.
  • the boom regenerative flow path 53 is a flow path for guiding the return hydraulic oil from the piston side chamber 33 to the regenerative motor 88.
  • the swivel regenerative flow path 47 and the boom regenerative flow path 53 are joined and connected to the merge regenerative flow path 46.
  • the boom regenerative flow path 53 is provided with an electromagnetic switching valve 54 that is switched and controlled by a signal output from the controller 90.
  • the electromagnetic switching valve 54 is switched to the closed position (the state shown in the figure) when the solenoid is not excited, and the boom regenerative flow path 53 is shut off.
  • the electromagnetic switching valve 54 is switched to the open position when the solenoid is excited, and allows only the flow of hydraulic oil from the piston side chamber 33 to the merging regenerative flow path 46 by opening the boom regenerative flow path 53.
  • the controller 90 determines whether the operator is about to extend or contract the boom cylinder 77 based on the detection result of a sensor (not shown) that detects the operation direction of the operation valve 16 and the operation amount thereof. To do.
  • the controller 90 determines the extension operation of the boom cylinder 77
  • the controller 90 keeps the electromagnetic proportional throttle valve 36 in the fully open position, which is the normal state, and keeps the electromagnetic switching valve 54 in the closed position.
  • the controller 90 determines the contraction operation of the boom cylinder 77
  • the controller 90 calculates the contraction speed of the boom cylinder 77 requested by the operator according to the operation amount of the operation valve 16, and closes the electromagnetic proportional throttle valve 36 to electromagnetically.
  • the switching valve 54 is switched to the open position. As a result, the entire amount of return hydraulic oil from the boom cylinder 77 is guided to the regenerative motor 88, and boom regeneration is executed.
  • the assist pump 89 is driven by the energy regenerated by the regenerative control described above, and the assist control assists the outputs of the first main pump 71 and the second main pump 72 by the energy of the hydraulic oil discharged from the assist pump 89. Will be described.
  • the assist pump 89 is a variable displacement pump that can adjust the tilt angle of the swash plate, and rotates coaxially with the regenerative motor 88 and the motor generator 91.
  • the assist pump 89 can be driven to rotate by the driving force when the motor generator 91 is used as an electric motor and the driving force by the regenerative motor 88.
  • the rotation speed of the assist pump 89 that is, the rotation speed of the motor generator 91 to which the assist pump 89 is coupled is controlled by a controller 90 connected to the inverter 92.
  • the tilt angle of the swash plate of the assist pump 89 is controlled by the tilt angle controller 37.
  • the tilt angle controller 37 is controlled by an output signal from the controller 90.
  • the discharge flow path 39 of the assist pump 89 branches into a first assist flow path 40 that merges with the discharge side of the first main pump 71 and a second assist flow path 41 that merges with the discharge side of the second main pump 72. Is done.
  • a high pressure selection switching valve 42 is interposed in the branch portion.
  • the first assist flow path 40 is provided with a first check valve 44 that allows only the flow of hydraulic oil from the discharge flow path 39 to the discharge side of the first main pump 71
  • the second assist flow path 41 includes A second check valve 45 that permits only the flow of hydraulic oil from the discharge flow path 39 to the discharge side of the second main pump 72 is provided.
  • the high-pressure selection switching valve 42 is a 3-port, 3-position spool type switching valve.
  • the high pressure selection switching valve 42 is provided with pilot chambers 42a and 42b facing both ends of the spool.
  • the hydraulic oil in the first assist passage 40 on the first main pump 71 side is supplied from the first check valve 44 to the one pilot chamber 42a through the first pilot passage 43a.
  • the hydraulic fluid in the second assist passage 41 on the second main pump 72 side is supplied from the second check valve 45 to the other pilot chamber 42b through the second pilot passage 43b.
  • Each pilot passage 43a, 43b is provided with a damping throttle (not shown) in order to prevent the spool of the high pressure selection switching valve 42 from moving suddenly.
  • the high pressure selection switching valve 42 is held in a neutral position by centering springs provided at both ends of the spool. In a state where the high pressure selection switching valve 42 is held at the neutral position, the discharge oil of the assist pump 89 is equally distributed to the first assist flow path 40 and the second assist flow path 41.
  • the high pressure selection switching valve 42 cuts off the communication between the discharge flow path 39 and the second assist flow path 41, and the discharge flow It is switched to the first switching position where the path 39 and the first assist channel 40 communicate with each other.
  • the high-pressure selection switching valve 42 blocks communication between the discharge passage 39 and the first assist passage 40, The discharge channel 39 and the second assist channel 41 are switched to the second switching position.
  • the high-pressure selection switching valve 42 selects the high-pressure channel out of the first assist channel 40 and the second assist channel 41 and supplies the discharge oil of the assist pump 89. Further, depending on the differential pressure between the one pilot chamber 42a and the other pilot chamber 42b, the high pressure selection switching valve 42 is positioned between the neutral position and the first switching position, or between the neutral position and the second switching position. May be held at an intermediate position. In this case, a large amount of discharge oil is supplied to the flow path with higher pressure, and a small amount of discharge oil is supplied to the flow path with lower pressure.
  • the assist pump 89 When the assist pump 89 is rotated by the driving force of the motor generator 91, the assist pump 89 assists the output of at least one of the first main pump 71 and the second main pump 72.
  • the extent to which of the first main pump 71 and the second main pump 72 is assisted is automatically determined by the high pressure selection switching valve 42 without requiring a proportional electromagnetic throttle valve or the like controlled by the controller 90.
  • the assist pump 89 when the assist pump 89 is rotated by the driving force of the motor generator 91, hydraulic oil is supplied to the regenerative motor 88 through the merged regenerative flow path 46, and when the regenerative motor 88 rotates, the rotational force of the regenerative motor 88 is Acts as an assisting force for the motor generator 91. Therefore, the power consumption of the motor generator 91 that rotates the assist pump 89 can be reduced by the amount of the rotational force of the regenerative motor 88.
  • the regenerative motor 88 When the regenerative motor 88 is used as a drive source and the motor generator 91 is used as a generator, the tilt angle of the swash plate of the assist pump 89 is set to zero, and the assist pump 89 is almost in a no-load state.
  • the surplus hydraulic oil discharged from the first and second main pumps 71 and 72 is directly supplied to the regenerative motor 88 without passing through each actuator, thereby regenerating the energy of the hydraulic oil.
  • the surplus flow rate regeneration control will be described.
  • the surplus flow rate regeneration control is executed by the controller 90 similarly to the turning regeneration control and the boom regeneration control.
  • the first main pump regenerative flow path branched from the first assist flow path 40 communicating with the discharge side of the first main pump 71 in order to directly guide the hydraulic oil discharged from the first main pump 71 to the regenerative motor 88. 55 is provided.
  • One end of the first main pump regenerative flow path 55 is connected to the first main pump 71 side from the first check valve 44 of the first assist flow path 40, and the other end is joined via the merge flow path 57.
  • the second main pump branched from the second assist passage 41 communicating with the discharge side of the second main pump 72 in order to directly guide the hydraulic oil discharged from the second main pump 72 to the regenerative motor 88.
  • a regenerative flow path 56 is provided.
  • One end of the second main pump regenerative flow path 56 is connected to the second main pump 72 side from the second check valve 45 of the second assist flow path 41, and the other end is joined through the merge flow path 57. Connected to.
  • the merging channel 57 is provided with a check valve 60 that allows only the flow of hydraulic oil from the first and second main pumps 71, 72 toward the merging regeneration channel 46.
  • Solenoid valves 58 and 59 are provided in the first and second main pump regeneration channels 55 and 56, respectively.
  • the solenoid valves 58 and 59 have a solenoid connected to the controller 90. When the solenoid is not energized, the solenoid valves 58 and 59 are switched to the closed position (the position shown in the figure), and when the solenoid is energized, the solenoid valves 58 and 59 are switched to the open position.
  • the controller 90 determines that the detected value of the first supply pressure sensor 63 has substantially reached the main relief pressure of the main relief valve 65, the controller 90 excites the solenoid of the solenoid valve 58. As a result, the electromagnetic valve 58 is switched to the open position, and excess hydraulic oil discharged from the first main pump 71 and discharged to the tank through the main relief valve 65 joins through the first main pump regenerative flow path 55. The energy is recovered by the regenerative motor 88 after being guided to the regenerative flow path 46.
  • the controller 90 excites the solenoid of the electromagnetic valve 59.
  • the electromagnetic valve 59 is switched to the open position, and excess hydraulic oil discharged from the second main pump 72 and discharged to the tank through the main relief valve 66 joins through the second main pump regenerative flow path 56.
  • the energy is recovered by the regenerative motor 88 after being guided to the regenerative flow path 46.
  • Non-operation-time regenerative control is performed by the controller 90 to supply the hydraulic oil discharged from the first and second main pumps 71 and 72 directly to the regenerative motor 88 and regenerate the energy of the hydraulic oil.
  • the above-described assist control is executed when the voltage of the battery 26 is low, the voltage of the battery 26 becomes near the lower limit of use voltage, and as a result, the durability of the battery 26 may be reduced.
  • the time during which each actuator is not operated is short, the voltage of the battery 26 cannot be sufficiently increased, and it may be unavoidable that the battery 26 is overdischarged.
  • the regenerative motor 88 is supplied from the first and second main pumps 71 and 72 in order to quickly increase the voltage of the battery 26 even when the time when each actuator is not operated is short.
  • the flow rate of the hydraulic oil supplied to is increased so as to be equal to or higher than the flow rates of the hydraulic oil discharged from the first and second main pumps 71 and 72 when each actuator is operating.
  • FIG. 2 is a flowchart when the non-operation regenerative control is executed
  • FIG. 3 is a diagram showing the relationship between the non-operation regenerative control and the voltage of the battery 26.
  • the controller 90 excites the solenoid of the electromagnetic valve 58 to switch the electromagnetic valve 58 to the open position and excites the solenoid of the on-off valve 9 when the conditions for executing non-operation regenerative control to be described later are met. Then, the on-off valve 9 is switched to the closed position. When the on-off valve 9 is switched to the closed position, the flow of hydraulic oil to the pilot pressure generating mechanism 10 is blocked, so the pilot pressure becomes zero and the tilt angle of the first main pump 71, that is, the discharge amount is Maximum. The hydraulic oil discharged from the first main pump 71 is guided to the merging regenerative flow path 46 through the first main pump regenerative flow path 55, and the energy is recovered by the regenerative motor 88.
  • the controller 90 can maximize the discharge amount of the second main pump 72 and guide the hydraulic oil discharged from the second main pump 72 to the regenerative motor 88 through the second main pump regenerative flow path 56. is there.
  • the hydraulic oil discharged from the first and second main pumps 71 and 72 controlled to maximize the discharge amount is guided to the regenerative motor 88 via the electromagnetic valves 58 and 59 and is regenerated.
  • the motor generator 91 is rotated together with the motor 88.
  • the electric power generated in the motor generator 91 can be increased by increasing the torque command value to the motor generator 91 according to the flow rate of the hydraulic oil supplied to the regenerative motor 88.
  • the electric power generated by the motor generator 91 is quickly charged into the battery 26 via the inverter 92.
  • the first and second main pumps 71 and 72 are controlled so that the discharge amount is maximized. Therefore, even when the actuators are not operated for a short time, The voltage can be increased rapidly.
  • the discharge amount of only one of the first and second main pumps 71 and 72 is maximized.
  • the regenerative motor 88 is supplied from both the first and second main pumps 71 and 72. Therefore, the regenerative motor 88 connected to the motor generator 91 is driven with the maximum tilt angle or high motor efficiency, and the electric power generated in the motor generator 91 is quickly and efficiently generated. Can be increased.
  • the pilot pressure is made zero by closing the on-off valves 9 and 21, and instead of the configuration in which the discharge amount of the first and second main pumps 71 and 72 is maximized, the first and second main pumps 71 and 72
  • the tilt angle may be electrically controlled to maximize the discharge amount of the first and second main pumps 71 and 72 or maximize the pump efficiency.
  • the tilt angles of the first and second main pumps 71 and 72 are electrically controlled, respectively, and the discharge amounts of the first and second main pumps 71 and 72 are adjusted in accordance with the capacity of the regenerative motor 88. May be. Even in these cases, the flow rate of the hydraulic oil supplied from both the first and second main pumps 71 and 72 to the regenerative motor 88 increases, so that the regenerative motor 88 connected to the motor generator 91 is tilted. It is driven with the maximum turning angle or high motor efficiency, and the electric power generated in the motor generator 91 can be increased quickly and efficiently.
  • step S11 the controller 90 determines whether or not each actuator is operated by the operator. Whether or not each actuator is operated is determined based on the displacement of each of the operation valves 2 to 6 and 14 to 17 and the displacement of each operation lever operated by the operator.
  • the parameters used for the determination in this step are not limited to the displacements of the operation valves 2 to 6, 14 to 17, and any parameters can be used as long as they change in relation to the operation of each actuator. For example, it may be the pressure of the hydraulic oil in the pipe connected to each actuator.
  • step S11 If it is determined in step S11 that each actuator is operated, the process proceeds to step S12, and when regeneration by non-operation regeneration control has already been executed (when the non-operation regeneration flag is “1”). ), The regeneration is stopped and the non-operational regeneration flag is set to “0”. When regeneration by non-operation regeneration control is not executed, that is, when the non-operation regeneration flag is “0”, the state in which regeneration is not executed is continued.
  • step S11 If it is determined in step S11 that each actuator is not operated, the process proceeds to step S13, and the devices constituting the regenerative device, such as the motor generator 91, the inverter 92, the capacitor 26, the temperature sensor 26a, and the regenerative motor 88 are processed. Is detected, and it is determined whether or not regeneration can be normally executed.
  • the devices constituting the regenerative device such as the motor generator 91, the inverter 92, the capacitor 26, the temperature sensor 26a, and the regenerative motor 88 are processed. Is detected, and it is determined whether or not regeneration can be normally executed.
  • step S13 when it is determined that there is an abnormality in the devices constituting the regenerative device and regeneration cannot be normally performed, the process proceeds to step S14.
  • step S14 the same control as in step S12 is executed.
  • step S13 If it is determined in step S13 that there is no abnormality in the devices constituting the regeneration device and regeneration can be normally performed, the process proceeds to step S15.
  • step S15 it is determined whether or not the voltage value Vc indicating the charge amount of the battery 26 is equal to or higher than the regeneration stop voltage Vmax as the second predetermined amount.
  • the regeneration stop voltage Vmax is set to a value lower than the use upper limit voltage Vmax0 of the battery 26 as shown in FIG.
  • the regeneration stop voltage Vmax may be the same value as the voltage at which regeneration is stopped when turning regeneration control or boom regeneration control is performed. However, in this case, if turning regeneration control or boom regeneration control is performed in a state where the voltage of the battery 26 becomes the regeneration stop voltage Vmax, almost no regeneration is performed, and the energy of the hydraulic oil cannot be recovered. The system efficiency of the hybrid construction machine may be reduced. For this reason, it is preferable that the regeneration stop voltage Vmax is set to a value lower than a voltage at which regeneration is stopped when turning regeneration control or boom regeneration control is performed.
  • the capacitor 26 by the swing regeneration control or the boom regeneration control is predicted.
  • the regeneration stop voltage Vmax may be changed as appropriate in anticipation of an increase in voltage.
  • Step S15 when it is determined that the voltage value Vc of the battery 26 is equal to or higher than the regenerative stop voltage Vmax, the process proceeds to Step 16.
  • step 16 when regeneration by the non-operation regeneration control has already been executed, the regeneration is stopped and the non-operation regeneration flag is set to “0”.
  • step 16 when regeneration by non-operation regenerative control is not executed, that is, when the non-operation regenerative flag is “0”, the voltage value Vc of the battery 26 is high, and the non-operation regenerative control is still being performed. Since there is no need to execute, the state where regeneration is not executed is continued.
  • step S15 If it is determined in step S15 that the voltage value Vc of the battery 26 is less than the regenerative stop voltage Vmax, the process proceeds to step 17.
  • step S17 it is determined whether or not the voltage value Vc of the battery 26 is equal to or lower than the regeneration start voltage Vmin as the first predetermined amount.
  • the regeneration start voltage Vmin is set to a value higher than the use lower limit voltage Vmin0 of the battery 26 as shown in FIG.
  • the voltage of the battery 26 immediately after the charging is stopped decreases by the amount of the current I multiplied by the internal resistance R (T) that changes according to the internal temperature T of the battery 26. That is, when the difference between the regeneration stop voltage Vmax and the regeneration start voltage Vmin is smaller than the value obtained by multiplying the internal resistance R (T) by the current I, the voltage of the battery 26 after being charged to become the regeneration stop voltage Vmax is Since the voltage drop is smaller than the regeneration start voltage Vmin, the regeneration control is started again at the same time as the regeneration control is stopped.
  • the regeneration start voltage Vmin is obtained by multiplying the internal resistance R (T) that changes according to the internal temperature T of the battery 26 by the current I supplied to the battery 26, and the regeneration stop voltage Vmax. It is preferable that the voltage value is updated at any time to a value smaller than the voltage value subtracted from. Note that the characteristic of the internal resistance R (T) changes according to the amount of charge (SOC) of the battery 26 and the internal temperature T of the battery 26, so the characteristic of the internal resistance R (T) is stored in the controller 90. Thus, it is possible to predict how much voltage drop will occur based on the detection values of the temperature sensor 26a and the current sensor.
  • step S17 If it is determined in step S17 that the voltage value Vc of the battery 26 is equal to or lower than the regeneration start voltage Vmin, the process proceeds to step 18 to start regeneration by the non-operation-time regeneration control and set the non-operation-time regeneration flag to “1”.
  • the controller 90 excites the solenoid of the electromagnetic valve 58 to switch the electromagnetic valve 58 to the open position, and excites the solenoid of the on-off valve 9 to close the on-off valve 9 to the closed position. Switch to. When the on-off valve 9 is switched to the closed position, the flow of hydraulic oil to the pilot pressure generating mechanism 10 is blocked, so the pilot pressure becomes zero and the tilt angle of the first main pump 71, that is, the discharge amount is Maximum.
  • the hydraulic oil discharged from the first main pump 71 is guided to the merging regenerative flow path 46 through the first main pump regenerative flow path 55, and the energy is recovered by the regenerative motor 88.
  • the voltage value Vc of the battery 26 rises to the regeneration stop voltage Vmax after the regeneration by the non-operation regeneration control is started, the regeneration by the non-operation regeneration control is stopped in step S15 as described above.
  • step S17 If it is determined in step S17 that the voltage value Vc of the battery 26 is larger than the regeneration start voltage Vmin, the process proceeds to step 19 to determine whether or not the non-operation time regeneration flag is “1”, that is, non-operation time regeneration control. It is determined whether or not regeneration by is being performed.
  • step S19 If it is determined in step S19 that the non-operation time regeneration flag is “1”, the process proceeds to step 20, and if it is determined that the non-operation time regeneration flag is not “1”, the process proceeds to step 21.
  • step 20 the voltage value Vc of the battery 26 is greater than the regeneration start voltage Vmin and less than the regeneration stop voltage Vmax. Further, since the non-operation time regeneration flag is “1”, regeneration by the non-operation time regeneration control is being executed. That is, the battery 26 is being charged along the arrow indicated by A in FIG. 3 by the non-operation regeneration control. Therefore, in step 20, regeneration is continued and the non-operation time regeneration flag remains “1”.
  • the voltage value Vc of the battery 26 is greater than the regeneration start voltage Vmin and less than the regeneration stop voltage Vmax, but the non-operation time regeneration flag is not “1” but “0”. For this reason, regeneration by non-operation regeneration control is not performed. That is, the storage battery 26 is in the region indicated by B in FIG. 3, and there is no need to execute the non-operation-time regenerative control, so that the non-operation-time regenerative flag remains “0” and regeneration is not executed. To continue. Such a situation can occur, for example, when the voltage value Vc of the battery 26 when the regeneration by the swing regeneration control or the boom regeneration control is finished is larger than the regeneration start voltage Vmin and less than the regeneration stop voltage Vmax.
  • the voltage value Vc of the battery 26 while each actuator is not being operated is changed from the regeneration start voltage Vmin sufficiently higher than the use lower limit voltage Vmin0 to the use upper limit voltage Vmax0. Is maintained within a certain range up to a sufficiently lower regenerative stop voltage Vmax. For this reason, even if the assist control is executed, the voltage value Vc of the battery 26 is reduced to the use lower limit voltage Vmin0 and the battery 26 is prevented from being overdischarged, and the turning regeneration control and the boom regeneration control are performed. Even if it is executed, the voltage value Vc of the battery 26 is suppressed to the use upper limit voltage Vmax0 and the battery 26 is prevented from being overcharged.
  • the regeneration stop voltage Vmax is set to a value lower than the voltage at which regeneration is stopped when turning regeneration control or boom regeneration control is performed, turning regeneration control or boom regeneration control is performed. Since the energy of the hydraulic oil can be sufficiently recovered, the system efficiency of the hybrid construction machine can be improved.
  • the first and second controlled so that the discharge amount is maximized when the voltage value Vc of the battery 26 when each actuator is not operated is smaller than the regeneration start voltage Vmin. Hydraulic fluid is supplied from the main pumps 71 and 72 to the regenerative motor 88. For this reason, even if the time when each actuator is not operated is short, the voltage of the battery 26 can be quickly increased. As a result, the capacitor 26 is prevented from being overdischarged, and the durability of the capacitor 26 can be improved.
  • the solenoid valves 58 and 59 and the on / off valves 9 and 21 that are operated when the non-operation regenerative control is performed are directly controlled to open and close by the controller 90.
  • the solenoid valves 58 and 59 and the on-off valves 9 and 21 are changed to valve bodies that open and close when pilot pressure is supplied, and a single solenoid valve that supplies pilot pressure to these is provided separately.
  • the controller 90 may control the supply of pilot pressure by the electromagnetic valve.
  • the voltage value Vc of the battery 26 is used as the charge amount of the battery 26, and it is determined whether or not to perform the non-operation-time regenerative control based on the voltage value Vc.
  • the charge rate (SOC, State Of Charge) of the battery 26 may be used as the charge amount of the battery 26, and it may be determined whether or not to perform non-operation-time regenerative control based on the charge rate.
  • the hydraulic oil discharged from the first and second main pumps 71 and 72 is supplied to the regenerative motor 88 through the electromagnetic valves 58 and 59 provided in the first and second main pump regenerative flow paths 55 and 56.
  • a flow path capable of communicating the parallel flow path 8 and the first main pump regenerative flow path 55 is formed in the boom second speed operation valve 4. 4 may be configured to supply hydraulic oil discharged from the first main pump 71 to the regenerative motor 88.
  • the boom second speed operation valve 4 when the pilot pressure source PP is supplied to the pilot chamber 4a through the electromagnetic valve 58a, the boom second speed operation valve 4 includes the branch flow path 8a branched from the parallel flow path 8 and the first main pump regeneration. The position is switched to the position where the flow path 55 communicates.
  • the control system 100 for the hybrid construction machine can be made compact.
  • the flow paths and the like at other switching positions of the boom second speed operation valve 4 are not shown.
  • the control system 100 of the hybrid construction machine includes variable capacity type first and second main pumps 71 and 72 that supply a working fluid to an actuator, and hydraulic oil or first and second main pumps 71 and 72 that are recirculated from the actuator.
  • a regenerative motor 88 that is rotationally driven by hydraulic oil supplied from the motor, a motor generator 91 that is coupled to the regenerative motor 88, a capacitor 26 that stores the power generated by the motor generator 91, and the regenerative motor 88 and the motor generator 91.
  • An assist pump 89 that is connected and capable of supplying hydraulic oil to the actuator, and a controller 90 that controls the supply of hydraulic oil from the first and second main pumps 71 and 72 to the regenerative motor 88.
  • the voltage of the battery 26 is If it is determined that it is smaller than the regeneration start voltage Vmin, the flow rate of the hydraulic oil supplied from the first and second main pumps 71 and 72 to the regeneration motor 88 is the first and first when the actuator is operating.
  • the first and second main pumps 71 and 72 are controlled so as to be equal to or higher than the flow rate of the hydraulic oil discharged from the two main pumps 71 and 72.
  • the hydraulic oil supplied from the first and second main pumps 71 and 72 to the regenerative motor 88 is reduced.
  • the first and second main pumps 71 and 72 are controlled so that the flow rate is equal to or higher than the flow rate of hydraulic oil discharged from the first and second main pumps 71 and 72 when the actuator is operating. Since hydraulic oil having a relatively large flow rate is supplied to the regenerative motor 88 in this way, the voltage of the battery 26 can be quickly increased even if the time during which each actuator is not operated is short. As a result, the voltage of the battery 26 when each actuator is not operated is maintained in a state higher than the regeneration start voltage Vmin, and the battery 26 is prevented from being overdischarged. Can be improved.
  • the controller 90 determines that the voltage of the battery 26 is smaller than the regeneration start voltage Vmin when the actuator is not operating, and then reaches the regenerative stop voltage Vmax where the voltage of the battery 26 is larger than the regeneration start voltage Vmin. Until it is determined that the flow rate of the hydraulic oil supplied from the first and second main pumps 71 and 72 to the regenerative motor 88 is discharged from the first and second main pumps 71 and 72 when the actuator is operating.
  • the first and second main pumps 71 and 72 are controlled so as to be equal to or higher than the flow rate of the hydraulic oil.
  • the regenerative motor 88 is switched from the first and second main pumps 71 and 72.
  • a relatively large flow rate of hydraulic oil is supplied.
  • the state where the hydraulic oil having a relatively large flow rate is supplied to the regenerative motor 88 is continued.
  • the voltage of the battery 26 can be quickly increased.
  • the voltage of the battery 26 when each actuator is not operated is maintained in a state higher than the regeneration start voltage Vmin, and the battery 26 is prevented from being overdischarged. Can be improved.
  • the regeneration start voltage Vmin is smaller than a value obtained by subtracting, from the regeneration stop voltage Vmax, a value obtained by multiplying the internal resistance R (T) that changes according to the internal temperature T of the capacitor 26 by the current I supplied to the capacitor 26. Value.
  • the regeneration start voltage Vmin is set to a value smaller than a value obtained by subtracting the value obtained by multiplying the internal resistance R (T) of the capacitor 26 by the current I supplied to the capacitor 26 from the regeneration stop voltage Vmax. For this reason, even if the voltage of the battery 26 immediately after stopping the charge decreases according to the internal resistance R (T) of the battery 26, the regeneration control is stopped and the regeneration control is prevented from being started again at the same time. can do. Further, the regenerative control when each actuator is not operated can be performed by setting the difference between the regenerative start voltage Vmin and the regenerative stop voltage Vmax as small as possible while considering the internal resistance R (T) of the battery 26. It can be completed in a short time, and it becomes easy to keep the voltage of the battery 26 within a certain range.
  • controller 90 determines a failure of the devices constituting the control system 100, and when the failure is determined, the capacitor 26 is not charged when the actuator is not operating.
  • variable capacity type first and second main pumps 71 and 72 for supplying hydraulic oil to the actuator and the hydraulic oil recirculated from the actuator or the hydraulic oil supplied from the first and second main pumps 71 and 72 are used.
  • a regenerative motor 88 that is rotationally driven, a motor generator 91 that is coupled to the regenerative motor 88, a capacitor 26 that stores the power generated by the motor generator 91, and the regenerative motor 88 and the motor generator 91 that are connected to the actuator as hydraulic fluid.
  • a control method for controlling a hybrid construction machine including an assist pump 89 that can supply the battery detects the operating state of the actuator, detects the voltage of the battery 26, detects that the actuator is not operating, and the detected battery 26 Is smaller than the regeneration start voltage Vmin,
  • the flow rate of hydraulic fluid supplied from the first and second main pumps 71 and 72 to the regenerative motor 88 is greater than the flow rate of hydraulic fluid discharged from the first and second main pumps 71 and 72 when the actuator is operating.
  • the hydraulic oil supplied from the first and second main pumps 71 and 72 to the regeneration motor 88 when the voltage value Vc of the battery 26 when each actuator is not operated is smaller than the regeneration start voltage Vmin, the hydraulic oil supplied from the first and second main pumps 71 and 72 to the regeneration motor 88.
  • the first and second main pumps 71 and 72 are controlled so that the flow rate becomes equal to or higher than the flow rate of hydraulic oil discharged from the first and second main pumps 71 and 72 when the actuator is operating. Since hydraulic oil having a relatively large flow rate is supplied to the regenerative motor 88 in this way, the voltage of the battery 26 can be quickly increased even if the time during which each actuator is not operated is short. As a result, the voltage of the battery 26 when each actuator is not operated is maintained in a state higher than the regeneration start voltage Vmin, and the battery 26 is prevented from being overdischarged. Can be improved.

Abstract

A control system (100) for a hybrid construction machine is provided with main pumps (71, 72), a regenerative motor (88) that is rotated by a working fluid, a motor generator (91) connected to the regenerative motor (88), an electricity storage device (26), and a controller (90). When an actuator is not being operated and the voltage of the electricity storage device (26) is determined to be less than the regeneration start voltage (Vmin), the controller (90) controls the main pumps (71, 72) so that the flow of the working fluid supplied from the main pumps (71, 72) to the regenerative motor (88) is equal to or greater than the flow of the working fluid discharged from the main pumps (71, 72) when the actuator is being operated.

Description

ハイブリッド建設機械の制御システム及び制御方法Control system and control method for hybrid construction machine
 本発明は、ハイブリッド建設機械の制御システム及び制御方法に関するものである。 The present invention relates to a control system and control method for a hybrid construction machine.
 JP2015-137752Aには、エンジンと、蓄電部の電力によって駆動される回転電機と、が動力源として併用されるハイブリッド建設機械が開示されている。このハイブリッド建設機械では、アクチュエータから還流される作動油によって回生モータが回転駆動され、回生モータに連結される回転電機で回生された電力が蓄電部に充電される回生制御が行われる。また、このハイブリッド建設機械では、エンジンにより駆動されるメインポンプからアクチュエータに作動油を供給することに加えて、回転電機及び回生モータに連結されたアシストポンプからアクチュエータに作動油を供給するアシスト制御が行われる。 JP2015-137752A discloses a hybrid construction machine in which an engine and a rotating electric machine driven by electric power of a power storage unit are used together as a power source. In this hybrid construction machine, regenerative control is performed in which the regenerative motor is rotationally driven by the hydraulic fluid recirculated from the actuator, and the electric power regenerated by the rotating electrical machine connected to the regenerative motor is charged in the power storage unit. Further, in this hybrid construction machine, in addition to supplying hydraulic oil to the actuator from the main pump driven by the engine, the assist control for supplying hydraulic oil to the actuator from the assist pump connected to the rotating electric machine and the regenerative motor is performed. Done.
 JP2015-137752Aに記載されたハイブリッド建設機械では、蓄電部の電圧が低いときにアシスト制御が行われると、蓄電部が過放電状態となり、蓄電部の耐久性が低下するおそれがある。このような問題に対して、アクチュエータが操作されていない間に蓄電部に充電し、蓄電部の電圧を高めておくことが考えられる。しかしながら、アクチュエータが操作されていない時間が短いと、蓄電部の電圧を十分に高めることができず、蓄電部が過放電状態となることが避けられないおそれがある。 In the hybrid construction machine described in JP2015-137752A, if assist control is performed when the voltage of the power storage unit is low, the power storage unit may be in an overdischarged state, and the durability of the power storage unit may be reduced. In order to solve such a problem, it is conceivable to charge the power storage unit while the actuator is not operated to increase the voltage of the power storage unit. However, if the actuator is not operated for a short time, the voltage of the power storage unit cannot be sufficiently increased, and the power storage unit may be in an overdischarged state.
 本発明は、ハイブリッド建設機械の蓄電部の耐久性を向上させることを目的とする。 The present invention aims to improve the durability of a power storage unit of a hybrid construction machine.
 本発明のある態様によれば、ハイブリッド建設機械の制御システムは、流体圧アクチュエータに作動流体を供給する可変容量型の流体圧ポンプと、前記流体圧アクチュエータから還流される作動流体または前記流体圧ポンプから供給される作動流体によって回転駆動される回生モータと、前記回生モータに連結される回転電機と、前記回転電機によって発電された電力を貯める蓄電部と、前記流体圧ポンプから前記回生モータへの作動流体の供給を制御する制御部と、を備え、前記制御部は、前記流体圧アクチュエータが作動していないときに、前記蓄電部の充電量が第1所定量よりも小さいと判定した場合には、前記流体圧ポンプから前記回生モータに供給される作動流体の流量が、前記流体圧アクチュエータが作動しているときに前記流体圧ポンプから吐出される作動流体の流量以上となるように前記流体圧ポンプを制御する。 According to an aspect of the present invention, a control system for a hybrid construction machine includes a variable displacement fluid pressure pump that supplies a working fluid to a fluid pressure actuator, and a working fluid returned from the fluid pressure actuator or the fluid pressure pump. A regenerative motor that is rotationally driven by the working fluid supplied from the regenerative motor, a rotating electrical machine coupled to the regenerative motor, a power storage unit that stores electric power generated by the rotating electrical machine, and a fluid pressure pump to the regenerative motor A control unit that controls supply of a working fluid, and the control unit determines that the charge amount of the power storage unit is smaller than a first predetermined amount when the fluid pressure actuator is not operating. Is the flow rate of the working fluid supplied from the fluid pressure pump to the regenerative motor when the fluid pressure actuator is operating. Controlling the fluid pressure pump such that the above flow rate of the working fluid discharged from the body pressure pump.
 本発明の別のある態様によれば、流体圧アクチュエータに作動流体を供給する可変容量型の流体圧ポンプと、前記流体圧アクチュエータから還流される作動流体または前記流体圧ポンプから供給される作動流体によって回転駆動される回生モータと、前記回生モータに連結される回転電機と、前記回転電機によって発電された電力を貯める蓄電部と、を備えるハイブリッド建設機械を制御する制御方法は、前記流体圧アクチュエータの作動状態を検知するとともに前記蓄電部の充電量を検出し、前記流体圧アクチュエータが作動しておらず、検出された前記蓄電部の充電量が第1所定量よりも小さい場合には、前記流体圧ポンプから前記回生モータに供給される作動流体の流量を、前記流体圧アクチュエータが作動しているときに前記流体圧ポンプから吐出される作動流体の流量以上とする。 According to another aspect of the present invention, a variable displacement fluid pressure pump for supplying a working fluid to a fluid pressure actuator, a working fluid recirculated from the fluid pressure actuator, or a working fluid supplied from the fluid pressure pump A control method for controlling a hybrid construction machine comprising: a regenerative motor that is rotationally driven by the motor; a rotary electric machine that is coupled to the regenerative motor; and a power storage unit that stores electric power generated by the rotary electric machine. And detecting the charge amount of the power storage unit, the fluid pressure actuator is not operating, and the detected charge amount of the power storage unit is smaller than a first predetermined amount, The flow rate of the working fluid supplied from the fluid pressure pump to the regenerative motor is set so that the fluid flows when the fluid pressure actuator is operating. The above flow rate of the working fluid discharged from the pump.
図1は、本発明の実施形態に係るハイブリッド建設機械の制御システムを示す回路図である。FIG. 1 is a circuit diagram showing a control system for a hybrid construction machine according to an embodiment of the present invention. 図2は、ハイブリッド建設機械の制御システムにおける非操作時回生制御のフローチャートである。FIG. 2 is a flowchart of regenerative control during non-operation in the hybrid construction machine control system. 図3は、ハイブリッド建設機械の制御システムにおける非操作時回生制御を説明するためのグラフである。FIG. 3 is a graph for explaining non-operation regenerative control in the control system of the hybrid construction machine. 図4は、本発明の実施形態に係るハイブリッド建設機械の制御システムの変形例の回路図の一部分を示したものである。FIG. 4 shows a part of a circuit diagram of a modification of the control system for the hybrid construction machine according to the embodiment of the present invention.
 以下、図面を参照して、本発明の実施形態について説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 まず、図1を参照して、本発明の実施形態に係るハイブリッド建設機械の制御システム100の全体構成について説明する。本実施形態では、ハイブリッド建設機械が油圧ショベルである場合について説明する。油圧ショベルでは、作動流体として作動油が用いられる。 First, an overall configuration of a control system 100 for a hybrid construction machine according to an embodiment of the present invention will be described with reference to FIG. In the present embodiment, a case where the hybrid construction machine is a hydraulic excavator will be described. In hydraulic excavators, hydraulic oil is used as the working fluid.
 油圧ショベルは、流体圧ポンプとしての第1,第2メインポンプ71,72を備える。第1,第2メインポンプ71,72は、斜板の傾転角を調整可能な可変容量型ポンプである。第1,第2メインポンプ71,72は、エンジン73によって駆動されて同軸回転する。 The hydraulic excavator includes first and second main pumps 71 and 72 as fluid pressure pumps. The first and second main pumps 71 and 72 are variable displacement pumps capable of adjusting the tilt angle of the swash plate. The first and second main pumps 71 and 72 are driven by the engine 73 and rotate coaxially.
 エンジン73には、エンジン73の余力を利用して発電する発電機74が設けられる。発電機74で発電された電力は、充電器25を介して蓄電部としての蓄電器26に充電される。充電器25は、通常の家庭用の電源27に接続された場合にも、蓄電器26に電力を充電することができる。 The engine 73 is provided with a generator 74 that generates power using the remaining power of the engine 73. The electric power generated by the generator 74 is charged to the battery 26 as a power storage unit via the charger 25. The charger 25 can charge the battery 26 with electric power even when connected to a normal household power supply 27.
 蓄電器26は、電気二重層キャパシタによって構成される。蓄電器26には、蓄電器26の温度を検出する温度センサ26aと、蓄電器26の電圧を検出する電圧センサ(図示省略)と、蓄電器26に供給される電流値を検出する電流センサ(図示省略)と、が設けられる。温度センサ26aは、検出した蓄電器26の温度に応じた電気信号を制御部としてのコントローラ90に出力する。なお、蓄電器26は、リチウムイオン電池やニッケル水素電池等の二次電池であってもよい。 The capacitor 26 is constituted by an electric double layer capacitor. The battery 26 includes a temperature sensor 26 a that detects the temperature of the battery 26, a voltage sensor (not shown) that detects the voltage of the battery 26, and a current sensor (not shown) that detects the current value supplied to the battery 26. Are provided. The temperature sensor 26a outputs an electrical signal corresponding to the detected temperature of the battery 26 to the controller 90 as a control unit. Note that the battery 26 may be a secondary battery such as a lithium ion battery or a nickel metal hydride battery.
 第1メインポンプ71から吐出される作動油は、第1回路系統75に供給される。第1回路系統75は、上流側から順に、旋回モータ76を制御する操作弁2と、アームシリンダ(図示省略)を制御する操作弁3と、ブームシリンダ77を制御するブーム2速用の操作弁4と、予備用アタッチメント(図示省略)を制御する操作弁5と、左走行用の第1走行用モータ(図示省略)を制御する操作弁6と、を有する。これらの旋回モータ76,アームシリンダ,ブームシリンダ77,予備用アタッチメントに接続される油圧機器,及び第1走行用モータが、流体圧アクチュエータ(以下、単に「アクチュエータ」と称する。)に該当する。 The hydraulic fluid discharged from the first main pump 71 is supplied to the first circuit system 75. The first circuit system 75 includes an operation valve 2 that controls the swing motor 76, an operation valve 3 that controls an arm cylinder (not shown), and a boom second speed operation valve that controls the boom cylinder 77 in order from the upstream side. 4, an operation valve 5 that controls a preliminary attachment (not shown), and an operation valve 6 that controls a first travel motor (not shown) for left travel. The swing motor 76, the arm cylinder, the boom cylinder 77, the hydraulic equipment connected to the spare attachment, and the first traveling motor correspond to fluid pressure actuators (hereinafter simply referred to as “actuators”).
 各操作弁2~6は、第1メインポンプ71から各アクチュエータへ供給される吐出油の流量を制御して、各アクチュエータの動作を制御する。各操作弁2~6は、油圧ショベルのオペレータが操作レバーを手動操作することに伴って供給されるパイロット圧によって操作される。 The operation valves 2 to 6 control the operation of each actuator by controlling the flow rate of the discharged oil supplied from the first main pump 71 to each actuator. Each of the operation valves 2 to 6 is operated by a pilot pressure supplied when the operator of the excavator manually operates the operation lever.
 各操作弁2~6は、互いに並列な中立流路7とパラレル流路8とを通じて第1メインポンプ71に接続されている。中立流路7における操作弁2の上流側には、第1メインポンプ71から中立流路7に供給される作動油の圧力を検出する第1供給圧力センサ63が設けられる。また、中立流路7における操作弁2の上流側には、中立流路7の作動油圧が所定のメインリリーフ圧を超えると開弁して、作動油圧をメインリリーフ圧以下に保つメインリリーフ弁65が設けられる。 The operation valves 2 to 6 are connected to the first main pump 71 through a neutral flow path 7 and a parallel flow path 8 that are parallel to each other. A first supply pressure sensor 63 that detects the pressure of hydraulic fluid supplied from the first main pump 71 to the neutral flow path 7 is provided on the upstream side of the operation valve 2 in the neutral flow path 7. Further, on the upstream side of the operation valve 2 in the neutral flow path 7, the main relief valve 65 opens when the operating hydraulic pressure of the neutral flow path 7 exceeds a predetermined main relief pressure, and keeps the operating hydraulic pressure below the main relief pressure. Is provided.
 中立流路7における操作弁6の下流側には、コントローラ90に接続されるソレノイドを有し中立流路7の作動油を遮断可能な開閉弁9が設けられる。開閉弁9は、ノーマル状態で全開状態を保つ。開閉弁9は、コントローラ90の指令によって閉状態に切り換えられる。 On the downstream side of the operation valve 6 in the neutral flow path 7, an on-off valve 9 having a solenoid connected to the controller 90 and capable of shutting off the hydraulic oil in the neutral flow path 7 is provided. The on-off valve 9 is kept fully open in the normal state. The on-off valve 9 is switched to a closed state by a command from the controller 90.
 中立流路7における開閉弁9の下流側には、パイロット圧を生成するためのパイロット圧生成機構10が設けられる。パイロット圧生成機構10は、通過する作動油の流量が多ければ高いパイロット圧を生成し、通過する作動油の流量が少なければ低いパイロット圧を生成する。 A pilot pressure generating mechanism 10 for generating a pilot pressure is provided on the downstream side of the on-off valve 9 in the neutral flow path 7. The pilot pressure generating mechanism 10 generates a high pilot pressure if the flow rate of the passing hydraulic oil is large, and generates a low pilot pressure if the flow rate of the passing hydraulic fluid is small.
 中立流路7は、操作弁2~6の全てが中立位置又は中立位置近傍にある場合には、第1メインポンプ71から吐出された作動油の全部又は一部をタンクに導く。この場合、パイロット圧生成機構10を通過する流量が多くなるため、高いパイロット圧が生成される。 The neutral flow path 7 guides all or part of the hydraulic oil discharged from the first main pump 71 to the tank when all the operation valves 2 to 6 are in the neutral position or in the vicinity of the neutral position. In this case, since the flow rate passing through the pilot pressure generating mechanism 10 increases, a high pilot pressure is generated.
 一方、操作弁2~6がフルストロークの状態に切り換えられると、中立流路7が閉ざされて作動油の流通がなくなる。この場合、パイロット圧生成機構10を通過する流量がほとんどなくなり、パイロット圧はゼロを保つことになる。ただし、操作弁2~6の操作量によっては、第1メインポンプ71から吐出された作動油の一部がアクチュエータに導かれ、残りが中立流路7からタンクに導かれることになる。そのため、パイロット圧生成機構10は、中立流路7の作動油の流量に応じたパイロット圧を生成する。つまり、パイロット圧生成機構10は、操作弁2~6の操作量に応じたパイロット圧を生成する。 On the other hand, when the operation valves 2 to 6 are switched to the full stroke state, the neutral flow path 7 is closed and the working oil does not flow. In this case, the flow rate passing through the pilot pressure generating mechanism 10 is almost eliminated, and the pilot pressure is kept at zero. However, depending on the operation amount of the operation valves 2 to 6, a part of the hydraulic oil discharged from the first main pump 71 is guided to the actuator, and the rest is guided from the neutral flow path 7 to the tank. Therefore, the pilot pressure generating mechanism 10 generates a pilot pressure corresponding to the flow rate of the hydraulic oil in the neutral flow path 7. That is, the pilot pressure generation mechanism 10 generates a pilot pressure corresponding to the operation amount of the operation valves 2 to 6.
 パイロット圧生成機構10にはパイロット流路11が接続される。パイロット流路11には、パイロット圧生成機構10にて生成されたパイロット圧が導かれる。パイロット圧生成機構10は、パイロット流路11を介して、第1メインポンプ71の吐出容量(斜板の傾転角)を制御するレギュレータ12に接続される。 A pilot flow path 11 is connected to the pilot pressure generating mechanism 10. The pilot pressure generated by the pilot pressure generating mechanism 10 is guided to the pilot flow path 11. The pilot pressure generation mechanism 10 is connected via a pilot flow path 11 to a regulator 12 that controls the discharge capacity (tilt angle of the swash plate) of the first main pump 71.
 レギュレータ12は、パイロット流路11のパイロット圧と比例(比例定数は負の数)して第1メインポンプ71の斜板の傾転角を制御する。これにより、レギュレータ12は、第1メインポンプ71の1回転当たりの押し除け量を制御する。即ち、第1メインポンプ71の吐出量は、パイロット流路11のパイロット圧に応じて変化する。操作弁2~6がフルストロークに切り換えられて中立流路7の流れがなくなり、パイロット流路11のパイロット圧がゼロになれば、第1メインポンプ71の傾転角が最大になる。このとき、第1メインポンプ71の1回転当たりの押し除け量は最大になる。 The regulator 12 controls the tilt angle of the swash plate of the first main pump 71 in proportion to the pilot pressure of the pilot flow path 11 (proportional constant is a negative number). Thereby, the regulator 12 controls the amount of push-off per one rotation of the first main pump 71. That is, the discharge amount of the first main pump 71 changes according to the pilot pressure in the pilot flow path 11. When the operation valves 2 to 6 are switched to the full stroke so that the flow of the neutral flow path 7 disappears and the pilot pressure in the pilot flow path 11 becomes zero, the tilt angle of the first main pump 71 becomes maximum. At this time, the push-out amount per rotation of the first main pump 71 is maximized.
 パイロット流路11には、パイロット流路11の圧力を検出する第1圧力センサ13が設けられる。第1圧力センサ13によって検出された圧力は、圧力信号としてコントローラ90に出力される。 The pilot flow path 11 is provided with a first pressure sensor 13 that detects the pressure of the pilot flow path 11. The pressure detected by the first pressure sensor 13 is output to the controller 90 as a pressure signal.
 第2メインポンプ72から吐出される作動油は、第2回路系統78に供給される。第2回路系統78は、上流側から順に、右走行用の第2走行用モータ(図示省略)を制御する操作弁14と、バケットシリンダ(図示省略)を制御する操作弁15と、ブームシリンダ77を制御する操作弁16と、アームシリンダ(図示省略)を制御するアーム2速用の操作弁17と、を有する。これらの第2走行用モータ,バケットシリンダ,ブームシリンダ77,及びアームシリンダが、流体圧アクチュエータ(以下、単に「アクチュエータ」と称する。)に該当する。 The hydraulic fluid discharged from the second main pump 72 is supplied to the second circuit system 78. The second circuit system 78 includes, in order from the upstream side, an operation valve 14 that controls a second traveling motor (not shown) for right traveling, an operation valve 15 that controls a bucket cylinder (not shown), and a boom cylinder 77. And an arm second speed operation valve 17 for controlling an arm cylinder (not shown). These second traveling motor, bucket cylinder, boom cylinder 77, and arm cylinder correspond to fluid pressure actuators (hereinafter simply referred to as “actuators”).
 各操作弁14~17は、第2メインポンプ72から各アクチュエータへ供給される吐出油の流量を制御して、各アクチュエータの動作を制御する。各操作弁14~17は、油圧ショベルのオペレータが操作レバーを手動操作することに伴って供給されるパイロット圧によって操作される。 The operation valves 14 to 17 control the operation of each actuator by controlling the flow rate of the discharge oil supplied from the second main pump 72 to each actuator. The operation valves 14 to 17 are operated by pilot pressure supplied when the operator of the hydraulic excavator manually operates the operation lever.
 各操作弁14~16は、互いに並列な中立流路18とパラレル流路19とを通じて第2メインポンプ72に接続されている。中立流路18における操作弁14の上流側には、第2メインポンプ72から中立流路18に供給される作動油の圧力を検出する第2供給圧力センサ64が設けられる。また、中立流路18における操作弁14の上流側には、中立流路18の作動油圧が所定のメインリリーフ圧を超えると開弁して、作動油圧をメインリリーフ圧以下に保つメインリリーフ弁66が設けられる。 The operation valves 14 to 16 are connected to the second main pump 72 through the neutral flow path 18 and the parallel flow path 19 which are parallel to each other. A second supply pressure sensor 64 that detects the pressure of hydraulic oil supplied from the second main pump 72 to the neutral flow path 18 is provided on the upstream side of the operation valve 14 in the neutral flow path 18. Further, on the upstream side of the operation valve 14 in the neutral flow path 18, the main relief valve 66 is opened when the hydraulic pressure of the neutral flow path 18 exceeds a predetermined main relief pressure, and keeps the hydraulic pressure below the main relief pressure. Is provided.
 なお、メインリリーフ弁65,66は、第1回路系統75と第2回路系統78との少なくともいずれか一方に設けられればよい。第1回路系統75と第2回路系統78とのうち一方のみにメインリリーフ弁が設けられる場合には、第1回路系統75と第2回路系統78との他方からも作動油が同じメインリリーフ弁に導かれるように接続される。このように、単一のメインリリーフ弁が設けられる場合には、メインリリーフ弁は、第1回路系統75と第2回路系統78とで共用される。また、この場合には、供給圧力センサも1つだけ設けられ、第1回路系統75と第2回路系統78とで共用される。 The main relief valves 65 and 66 may be provided in at least one of the first circuit system 75 and the second circuit system 78. When the main relief valve is provided in only one of the first circuit system 75 and the second circuit system 78, the main relief valve from which the hydraulic oil is the same from the other of the first circuit system 75 and the second circuit system 78 Connected to be led to. Thus, when a single main relief valve is provided, the main relief valve is shared by the first circuit system 75 and the second circuit system 78. In this case, only one supply pressure sensor is provided and is shared by the first circuit system 75 and the second circuit system 78.
 中立流路18における操作弁17の下流側には、コントローラ90に接続されるソレノイドを有し中立流路18の作動油を遮断可能な開閉弁21が設けられる。開閉弁21は、ノーマル状態で全開状態を保つ。開閉弁21は、コントローラ90の指令によって閉状態に切り換えられる。 On the downstream side of the operation valve 17 in the neutral flow path 18, an on-off valve 21 having a solenoid connected to the controller 90 and capable of shutting off the hydraulic oil in the neutral flow path 18 is provided. The on-off valve 21 is kept fully open in the normal state. The on-off valve 21 is switched to a closed state by a command from the controller 90.
 中立流路18における開閉弁21の下流側には、パイロット圧を生成するためのパイロット圧生成機構20が設けられる。パイロット圧生成機構20は、第1メインポンプ71側のパイロット圧生成機構10と同じ機能を有するものである。 A pilot pressure generating mechanism 20 for generating pilot pressure is provided on the downstream side of the on-off valve 21 in the neutral flow path 18. The pilot pressure generating mechanism 20 has the same function as the pilot pressure generating mechanism 10 on the first main pump 71 side.
 パイロット圧生成機構20にはパイロット流路22が接続される。パイロット流路22には、パイロット圧生成機構20にて生成されたパイロット圧が導かれる。パイロット圧生成機構20は、パイロット流路22を介して、第2メインポンプ72の吐出容量(斜板の傾転角)を制御するレギュレータ23に接続される。 A pilot flow path 22 is connected to the pilot pressure generating mechanism 20. The pilot pressure generated by the pilot pressure generating mechanism 20 is guided to the pilot flow path 22. The pilot pressure generation mechanism 20 is connected to the regulator 23 that controls the discharge capacity (tilt angle of the swash plate) of the second main pump 72 via the pilot flow path 22.
 レギュレータ23は、パイロット流路22のパイロット圧と比例(比例定数は負の数)して第2メインポンプ72の斜板の傾転角を制御する。これにより、レギュレータ23は、第2メインポンプ72の1回転当たりの押し除け量を制御する。即ち、第2メインポンプの吐出量は、パイロット流路22のパイロット圧に応じて変化する。操作弁14~17がフルストロークに切り換えられて中立流路18の流れがなくなり、パイロット流路22のパイロット圧がゼロになれば、第2メインポンプ72の傾転角が最大になる。このとき、第2メインポンプ72の1回転当たりの押し除け量は最大になる。 The regulator 23 controls the tilt angle of the swash plate of the second main pump 72 in proportion to the pilot pressure of the pilot flow path 22 (proportional constant is a negative number). Thereby, the regulator 23 controls the amount of push-off per rotation of the second main pump 72. In other words, the discharge amount of the second main pump changes according to the pilot pressure in the pilot flow path 22. When the operation valves 14 to 17 are switched to the full stroke so that the flow of the neutral flow path 18 is eliminated and the pilot pressure in the pilot flow path 22 becomes zero, the tilt angle of the second main pump 72 is maximized. At this time, the push-out amount per rotation of the second main pump 72 is maximized.
 パイロット流路22には、パイロット流路22の圧力を検出する第2圧力センサ24が設けられる。第2圧力センサ24によって検出された圧力は、圧力信号としてコントローラ90に出力される。 The pilot flow path 22 is provided with a second pressure sensor 24 that detects the pressure of the pilot flow path 22. The pressure detected by the second pressure sensor 24 is output to the controller 90 as a pressure signal.
 次に、旋回モータ76について説明する。 Next, the turning motor 76 will be described.
 操作弁2のアクチュエータポートには、旋回モータ76に連通する流路28,29が接続される。流路28,29には、それぞれリリーフ弁30,31が接続される。操作弁2が中立位置に保たれているときには、アクチュエータポートは閉じられており、旋回モータ76は停止状態を維持する。 The actuator ports of the operation valve 2 are connected to flow paths 28 and 29 communicating with the turning motor 76. Relief valves 30 and 31 are connected to the flow paths 28 and 29, respectively. When the operation valve 2 is maintained at the neutral position, the actuator port is closed, and the swing motor 76 is maintained in a stopped state.
 旋回モータ76が停止している状態にて、操作弁2が中立位置から一方に切り換えられると、流路28が第1メインポンプ71に接続され、流路29がタンクに連通する。これにより、流路28から作動油が供給されて旋回モータ76が一方向に回転すると共に、旋回モータ76からの戻り油が流路29を通じてタンクに戻される。操作弁2が他方に切り換えられると、流路29が第1メインポンプ71に接続され、流路28がタンクに連通する。これにより、流路29から作動油が供給されて旋回モータ76が他方向に回転すると共に、旋回モータ76からの戻り油が流路28を通じてタンクに戻される。 When the operation valve 2 is switched from the neutral position to one while the turning motor 76 is stopped, the flow path 28 is connected to the first main pump 71, and the flow path 29 communicates with the tank. As a result, hydraulic oil is supplied from the flow path 28 and the swing motor 76 rotates in one direction, and return oil from the swing motor 76 is returned to the tank through the flow path 29. When the operation valve 2 is switched to the other, the flow path 29 is connected to the first main pump 71, and the flow path 28 communicates with the tank. As a result, hydraulic oil is supplied from the flow path 29 and the turning motor 76 rotates in the other direction, and return oil from the turning motor 76 is returned to the tank through the flow path 28.
 次に、ブームシリンダ77について説明する。 Next, the boom cylinder 77 will be described.
 操作弁16のアクチュエータポートには、ブームシリンダ77に連通する流路32,35が接続される。操作弁16が中立位置に保たれているときには、アクチュエータポートは閉じられており、ブームシリンダ77は停止状態を維持する。 The actuator ports of the operation valve 16 are connected to flow paths 32 and 35 communicating with the boom cylinder 77. When the operation valve 16 is maintained at the neutral position, the actuator port is closed, and the boom cylinder 77 is maintained in a stopped state.
 ブームシリンダ77が停止している状態にて、操作弁16が中立位置から一方に切り換えられると、第2メインポンプ72から吐出された作動油が流路32を通じてブームシリンダ77のピストン側室33に供給されると共に、ロッド側室34からの戻り油が流路35を通じてタンクに戻される。これにより、ブームシリンダ77は伸長する。操作弁16が他方に切り換えられると、第2メインポンプ72から吐出された作動油が流路35を通じてブームシリンダ77のロッド側室34に供給されると共に、ピストン側室33からの戻り油が流路32を通じてタンクに戻される。これにより、ブームシリンダ77は収縮する。 When the operation valve 16 is switched from the neutral position to one side while the boom cylinder 77 is stopped, the hydraulic oil discharged from the second main pump 72 is supplied to the piston side chamber 33 of the boom cylinder 77 through the flow path 32. At the same time, the return oil from the rod side chamber 34 is returned to the tank through the flow path 35. As a result, the boom cylinder 77 extends. When the operation valve 16 is switched to the other side, the hydraulic oil discharged from the second main pump 72 is supplied to the rod side chamber 34 of the boom cylinder 77 through the flow path 35 and the return oil from the piston side chamber 33 is flow path 32. Through the tank. Thereby, the boom cylinder 77 contracts.
 第1回路系統75のブーム2速用の操作弁4は、ブーム操作レバーの操作量に応じて操作弁16と連動して切り換えられる。ブームシリンダ77のピストン側室33と操作弁16とを接続する流路32には、コントローラ90によって開度が制御される電磁比例絞り弁36が設けられる。電磁比例絞り弁36はノーマル状態で全開位置を保つ。 The boom second speed operation valve 4 of the first circuit system 75 is switched in conjunction with the operation valve 16 according to the operation amount of the boom operation lever. An electromagnetic proportional throttle valve 36 whose opening degree is controlled by a controller 90 is provided in the flow path 32 connecting the piston side chamber 33 of the boom cylinder 77 and the operation valve 16. The electromagnetic proportional throttle valve 36 maintains the fully open position in the normal state.
 ハイブリッド建設機械の制御システム100は、旋回モータ76及びブームシリンダ77から排出される作動油のエネルギを回収する回生制御を実行する回生装置を備える。以下では、その回生装置について説明する。 The hybrid construction machine control system 100 includes a regenerative device that performs regenerative control for recovering the energy of hydraulic oil discharged from the swing motor 76 and the boom cylinder 77. Below, the regeneration apparatus is demonstrated.
 回生装置による回生制御は、コントローラ90によって実行される。コントローラ90は、回生制御を実行するCPU(中央演算処理装置)と、CPUの処理動作に必要な制御プログラムや設定値等が記憶されたROM(リードオンリメモリ)と、各種センサが検出した情報を一時的に記憶するRAM(ランダムアクセスメモリ)と、を備える。 The regeneration control by the regeneration device is executed by the controller 90. The controller 90 includes a CPU (central processing unit) that executes regenerative control, a ROM (read-only memory) that stores control programs and setting values necessary for processing operations of the CPU, and information detected by various sensors. RAM (random access memory) for temporarily storing.
 まず、旋回モータ76からの作動油を利用してエネルギ回生を行う旋回回生制御について説明する。 First, turning regeneration control that performs energy regeneration using hydraulic oil from the turning motor 76 will be described.
 旋回モータ76に接続される流路28,29は、旋回モータ76からの作動油を回生用の回生モータ88に導くための旋回回生流路47に接続される。流路28,29のそれぞれには、旋回回生流路47への作動油の流れのみを許容するチェック弁48,49が設けられる。旋回回生流路47は、合流回生流路46を通じて回生モータ88に接続される。 The flow paths 28 and 29 connected to the turning motor 76 are connected to the turning regeneration flow path 47 for guiding the hydraulic oil from the turning motor 76 to the regeneration motor 88 for regeneration. Each of the flow paths 28 and 29 is provided with check valves 48 and 49 that allow only the flow of hydraulic oil to the swivel regeneration flow path 47. The swivel regeneration channel 47 is connected to the regeneration motor 88 through the merge regeneration channel 46.
 回生モータ88は、斜板の傾転角が調整可能な可変容量型モータであり、発電機兼用の回転電機としてのモータジェネレータ91と同軸回転するように連結されている。回生モータ88は、旋回モータ76やブームシリンダ77から排出され合流回生流路46を通じて還流される作動油によって回転駆動される。また、回生モータ88は、後述のように第1,第2メインポンプ71,72から吐出された作動油が直接供給されることによっても回転駆動される。回生モータ88の斜板の傾転角は、傾転角制御器38にて制御される。傾転角制御器38は、コントローラ90の出力信号にて制御される。 The regenerative motor 88 is a variable capacity motor that can adjust the tilt angle of the swash plate, and is connected so as to rotate coaxially with a motor generator 91 as a rotating electric machine that also serves as a generator. The regenerative motor 88 is rotationally driven by hydraulic oil that is discharged from the turning motor 76 and the boom cylinder 77 and recirculated through the merging regenerative flow path 46. The regenerative motor 88 is also rotationally driven by directly supplying hydraulic oil discharged from the first and second main pumps 71 and 72 as will be described later. The tilt angle of the swash plate of the regenerative motor 88 is controlled by the tilt angle controller 38. The tilt angle controller 38 is controlled by an output signal from the controller 90.
 回生モータ88は、モータジェネレータ91を回転駆動可能である。モータジェネレータ91が発電機として機能した場合には、発電された回生電力はインバータ92を介して蓄電器26に充電される。回生モータ88とモータジェネレータ91とは、直接連結されてもよいし、減速機を介して連結されてもよい。 The regenerative motor 88 can drive the motor generator 91 to rotate. When the motor generator 91 functions as a generator, the generated regenerative power is charged to the battery 26 via the inverter 92. The regenerative motor 88 and the motor generator 91 may be directly connected or may be connected via a speed reducer.
 回生モータ88の上流には、回生モータ88への作動油の供給量が充分でなくなった場合に、タンクから合流回生流路46に作動油を吸い上げて回生モータ88へ供給する吸上流路61が接続される。吸上流路61には、タンクから合流回生流路46への作動油の流れのみを許容するチェック弁61aが設けられる。 Upstream of the regenerative motor 88 is a suction flow path 61 that sucks up the hydraulic oil from the tank to the regenerative flow path 46 and supplies it to the regenerative motor 88 when the supply amount of the hydraulic oil to the regenerative motor 88 becomes insufficient. Connected. The suction channel 61 is provided with a check valve 61a that allows only the flow of hydraulic oil from the tank to the merged regeneration channel 46.
 旋回回生流路47には、コントローラ90から出力される信号にて切り換え制御される電磁切換弁50が設けられる。電磁切換弁50とチェック弁48,49との間には、旋回モータ76の旋回動作時の旋回圧力又はブレーキ動作時のブレーキ圧力を検出する圧力センサ51が設けられる。圧力センサ51にて検出された圧力は、圧力信号としてコントローラ90に出力される。 The regenerative flow path 47 is provided with an electromagnetic switching valve 50 that is switch-controlled by a signal output from the controller 90. A pressure sensor 51 is provided between the electromagnetic switching valve 50 and the check valves 48 and 49 to detect a turning pressure when the turning motor 76 is turning or a brake pressure when the turning operation is performed. The pressure detected by the pressure sensor 51 is output to the controller 90 as a pressure signal.
 流路28,29を通じて供給される作動油によって旋回モータ76が旋回している際に操作弁2が中立位置に切り換えられるブレーキ動作時には、旋回モータ76のポンプ作用によって吐出された作動油がチェック弁48,49を通じて旋回回生流路47に流入し、回生モータ88に導かれる。 During a brake operation in which the operation valve 2 is switched to the neutral position when the turning motor 76 is turning by the hydraulic oil supplied through the flow paths 28 and 29, the hydraulic oil discharged by the pump action of the turning motor 76 is a check valve. It flows into the swivel regeneration passage 47 through 48 and 49 and is guided to the regeneration motor 88.
 旋回回生流路47における電磁切換弁50の下流側には、安全弁52が設けられる。安全弁52は、例えば旋回回生流路47の電磁切換弁50などに異常が生じた場合に、流路28,29の圧力を維持して旋回モータ76が逸走することを防止するものである。 A safety valve 52 is provided on the downstream side of the electromagnetic switching valve 50 in the turning regeneration flow path 47. The safety valve 52 prevents the swing motor 76 from running away by maintaining the pressure in the flow paths 28 and 29 when an abnormality occurs in the electromagnetic switching valve 50 of the swing regeneration flow path 47, for example.
 コントローラ90は、圧力センサ51の検出圧力が旋回回生開始圧力以上になったと判定した場合には、電磁切換弁50のソレノイドを励磁する。これにより、電磁切換弁50が開位置に切り換わって旋回回生が開始される。コントローラ90は、圧力センサ51の検出圧力が旋回回生開始圧力未満になったと判定した場合には、電磁切換弁50のソレノイドを非励磁にする。これにより、電磁切換弁50が閉位置に切り換わって旋回回生が停止する。 When the controller 90 determines that the detected pressure of the pressure sensor 51 is equal to or higher than the rotation regeneration start pressure, the controller 90 excites the solenoid of the electromagnetic switching valve 50. As a result, the electromagnetic switching valve 50 is switched to the open position and the swivel regeneration is started. When the controller 90 determines that the detected pressure of the pressure sensor 51 is less than the turning regeneration start pressure, the controller 90 de-energizes the solenoid of the electromagnetic switching valve 50. As a result, the electromagnetic switching valve 50 is switched to the closed position and the turning regeneration is stopped.
 次に、ブームシリンダ77からの作動油を利用してエネルギ回生を行うブーム回生制御について説明する。 Next, boom regeneration control for performing energy regeneration using hydraulic oil from the boom cylinder 77 will be described.
 流路32には、ピストン側室33と電磁比例絞り弁36との間から分岐するブーム回生流路53が接続される。ブーム回生流路53は、ピストン側室33からの戻り作動油を回生モータ88に導くための流路である。旋回回生流路47とブーム回生流路53とは合流して合流回生流路46に接続される。 The boom regenerative flow path 53 branched from between the piston side chamber 33 and the electromagnetic proportional throttle valve 36 is connected to the flow path 32. The boom regenerative flow path 53 is a flow path for guiding the return hydraulic oil from the piston side chamber 33 to the regenerative motor 88. The swivel regenerative flow path 47 and the boom regenerative flow path 53 are joined and connected to the merge regenerative flow path 46.
 ブーム回生流路53には、コントローラ90から出力される信号にて切り換え制御される電磁切換弁54が設けられる。電磁切換弁54は、ソレノイドが非励磁のときに閉位置(図示の状態)に切り換えられ、ブーム回生流路53を遮断する。電磁切換弁54は、ソレノイドが励磁されたときに開位置に切り換えられ、ブーム回生流路53を開通してピストン側室33から合流回生流路46への作動油の流れのみを許容する。 The boom regenerative flow path 53 is provided with an electromagnetic switching valve 54 that is switched and controlled by a signal output from the controller 90. The electromagnetic switching valve 54 is switched to the closed position (the state shown in the figure) when the solenoid is not excited, and the boom regenerative flow path 53 is shut off. The electromagnetic switching valve 54 is switched to the open position when the solenoid is excited, and allows only the flow of hydraulic oil from the piston side chamber 33 to the merging regenerative flow path 46 by opening the boom regenerative flow path 53.
 コントローラ90は、操作弁16の操作方向とその操作量とを検出するセンサ(図示省略)の検出結果に基づいて、オペレータがブームシリンダ77を伸長させようとしているか、又は収縮させようとしているかを判定する。コントローラ90は、ブームシリンダ77の伸長動作を判定すると、電磁比例絞り弁36をノーマル状態である全開位置に保つと共に、電磁切換弁54を閉位置に保つ。一方、コントローラ90は、ブームシリンダ77の収縮動作を判定すると、操作弁16の操作量に応じてオペレータが求めているブームシリンダ77の収縮速度を演算すると共に、電磁比例絞り弁36を閉じて電磁切換弁54を開位置に切り換える。これにより、ブームシリンダ77からの戻り作動油の全量が回生モータ88に導かれ、ブーム回生が実行される。 The controller 90 determines whether the operator is about to extend or contract the boom cylinder 77 based on the detection result of a sensor (not shown) that detects the operation direction of the operation valve 16 and the operation amount thereof. To do. When the controller 90 determines the extension operation of the boom cylinder 77, the controller 90 keeps the electromagnetic proportional throttle valve 36 in the fully open position, which is the normal state, and keeps the electromagnetic switching valve 54 in the closed position. On the other hand, when the controller 90 determines the contraction operation of the boom cylinder 77, the controller 90 calculates the contraction speed of the boom cylinder 77 requested by the operator according to the operation amount of the operation valve 16, and closes the electromagnetic proportional throttle valve 36 to electromagnetically. The switching valve 54 is switched to the open position. As a result, the entire amount of return hydraulic oil from the boom cylinder 77 is guided to the regenerative motor 88, and boom regeneration is executed.
 次に、上述の回生制御によって回生されたエネルギによりアシストポンプ89を駆動し、アシストポンプ89から吐出される作動油のエネルギによって第1メインポンプ71及び第2メインポンプ72の出力をアシストするアシスト制御について説明する。 Next, the assist pump 89 is driven by the energy regenerated by the regenerative control described above, and the assist control assists the outputs of the first main pump 71 and the second main pump 72 by the energy of the hydraulic oil discharged from the assist pump 89. Will be described.
 アシストポンプ89は、斜板の傾転角が調整可能な可変容量型ポンプであり、回生モータ88及びモータジェネレータ91と同軸回転する。モータジェネレータ91を電動モータとして使用したときの駆動力と、回生モータ88による駆動力と、によってアシストポンプ89を回転駆動させることが可能である。アシストポンプ89の回転数、すなわち、アシストポンプ89が連結されるモータジェネレータ91の回転数は、インバータ92に接続されたコントローラ90によって制御される。また、アシストポンプ89の斜板の傾転角は、傾転角制御器37にて制御される。傾転角制御器37は、コントローラ90の出力信号にて制御される。 The assist pump 89 is a variable displacement pump that can adjust the tilt angle of the swash plate, and rotates coaxially with the regenerative motor 88 and the motor generator 91. The assist pump 89 can be driven to rotate by the driving force when the motor generator 91 is used as an electric motor and the driving force by the regenerative motor 88. The rotation speed of the assist pump 89, that is, the rotation speed of the motor generator 91 to which the assist pump 89 is coupled is controlled by a controller 90 connected to the inverter 92. The tilt angle of the swash plate of the assist pump 89 is controlled by the tilt angle controller 37. The tilt angle controller 37 is controlled by an output signal from the controller 90.
 アシストポンプ89の吐出流路39は、第1メインポンプ71の吐出側に合流する第1アシスト流路40と、第2メインポンプ72の吐出側に合流する第2アシスト流路41と、に分岐される。分岐部には、高圧選択切換弁42が介装される。第1アシスト流路40には、吐出流路39から第1メインポンプ71の吐出側への作動油の流れのみを許容する第1チェック弁44が設けられ、第2アシスト流路41には、吐出流路39から第2メインポンプ72の吐出側への作動油の流れのみを許容する第2チェック弁45が設けられる。 The discharge flow path 39 of the assist pump 89 branches into a first assist flow path 40 that merges with the discharge side of the first main pump 71 and a second assist flow path 41 that merges with the discharge side of the second main pump 72. Is done. A high pressure selection switching valve 42 is interposed in the branch portion. The first assist flow path 40 is provided with a first check valve 44 that allows only the flow of hydraulic oil from the discharge flow path 39 to the discharge side of the first main pump 71, and the second assist flow path 41 includes A second check valve 45 that permits only the flow of hydraulic oil from the discharge flow path 39 to the discharge side of the second main pump 72 is provided.
 高圧選択切換弁42は、3ポート3位置のスプール式の切換弁である。高圧選択切換弁42には、スプールの両端に臨んでパイロット室42a,42bがそれぞれ設けられる。一方のパイロット室42aには、第1チェック弁44より第1メインポンプ71側の第1アシスト流路40内の作動油が第1パイロット通路43aを通じて供給される。他方のパイロット室42bには、第2チェック弁45より第2メインポンプ72側の第2アシスト流路41内の作動油が第2パイロット通路43bを通じて供給される。各パイロット通路43a,43bには、高圧選択切換弁42のスプールが急激に移動することを防止するために、図示しない減衰用絞りが設けられる。 The high-pressure selection switching valve 42 is a 3-port, 3-position spool type switching valve. The high pressure selection switching valve 42 is provided with pilot chambers 42a and 42b facing both ends of the spool. The hydraulic oil in the first assist passage 40 on the first main pump 71 side is supplied from the first check valve 44 to the one pilot chamber 42a through the first pilot passage 43a. The hydraulic fluid in the second assist passage 41 on the second main pump 72 side is supplied from the second check valve 45 to the other pilot chamber 42b through the second pilot passage 43b. Each pilot passage 43a, 43b is provided with a damping throttle (not shown) in order to prevent the spool of the high pressure selection switching valve 42 from moving suddenly.
 高圧選択切換弁42は、スプールの両端に設けられるセンタリングスプリングによって中立位置に保持される。高圧選択切換弁42が、中立位置に保持されている状態では、アシストポンプ89の吐出油は、第1アシスト流路40及び第2アシスト流路41に按分して供給される。 The high pressure selection switching valve 42 is held in a neutral position by centering springs provided at both ends of the spool. In a state where the high pressure selection switching valve 42 is held at the neutral position, the discharge oil of the assist pump 89 is equally distributed to the first assist flow path 40 and the second assist flow path 41.
 一方のパイロット室42aのパイロット圧が他方のパイロット室42bのパイロット圧より高い場合には、高圧選択切換弁42は、吐出流路39と第2アシスト流路41との連通を遮断し、吐出流路39と第1アシスト流路40とを連通させる第1切換位置に切り換えられる。そして、他方のパイロット室42bのパイロット圧が一方のパイロット室42aのパイロット圧より高い場合には、高圧選択切換弁42は、吐出流路39と第1アシスト流路40との連通を遮断し、吐出流路39と第2アシスト流路41とを連通させる第2切換位置に切り換えられる。 When the pilot pressure in one pilot chamber 42a is higher than the pilot pressure in the other pilot chamber 42b, the high pressure selection switching valve 42 cuts off the communication between the discharge flow path 39 and the second assist flow path 41, and the discharge flow It is switched to the first switching position where the path 39 and the first assist channel 40 communicate with each other. When the pilot pressure in the other pilot chamber 42b is higher than the pilot pressure in the one pilot chamber 42a, the high-pressure selection switching valve 42 blocks communication between the discharge passage 39 and the first assist passage 40, The discharge channel 39 and the second assist channel 41 are switched to the second switching position.
 つまり、高圧選択切換弁42は、第1アシスト流路40と第2アシスト流路41とのうち、高圧の方の流路を選択してアシストポンプ89の吐出油を供給している。また、一方のパイロット室42aと他方のパイロット室42bとの差圧によっては、高圧選択切換弁42は、中立位置と第1切換位置との中間の位置、または、中立位置と第2切換位置との中間の位置に保持される場合もある。この場合、圧力が高い方の流路には多量の吐出油が供給され、圧力が低い方の流路には少量の吐出油が供給されることになる。 That is, the high-pressure selection switching valve 42 selects the high-pressure channel out of the first assist channel 40 and the second assist channel 41 and supplies the discharge oil of the assist pump 89. Further, depending on the differential pressure between the one pilot chamber 42a and the other pilot chamber 42b, the high pressure selection switching valve 42 is positioned between the neutral position and the first switching position, or between the neutral position and the second switching position. May be held at an intermediate position. In this case, a large amount of discharge oil is supplied to the flow path with higher pressure, and a small amount of discharge oil is supplied to the flow path with lower pressure.
 モータジェネレータ91の駆動力によってアシストポンプ89が回転すると、アシストポンプ89は、第1メインポンプ71及び第2メインポンプ72の少なくとも一方の出力をアシストする。第1メインポンプ71及び第2メインポンプ72のいずれをどの程度アシストするかは、コントローラ90によって制御される比例電磁絞り弁等を要することなく、高圧選択切換弁42によって自動的に決定される。 When the assist pump 89 is rotated by the driving force of the motor generator 91, the assist pump 89 assists the output of at least one of the first main pump 71 and the second main pump 72. The extent to which of the first main pump 71 and the second main pump 72 is assisted is automatically determined by the high pressure selection switching valve 42 without requiring a proportional electromagnetic throttle valve or the like controlled by the controller 90.
 また、モータジェネレータ91の駆動力によってアシストポンプ89が回転している際に、合流回生流路46を通じて回生モータ88に作動油が供給され、回生モータ88が回転すると、回生モータ88の回転力は、モータジェネレータ91に対するアシスト力として作用する。したがって、回生モータ88の回転力の分だけ、アシストポンプ89を回転駆動させるモータジェネレータ91の消費電力を少なくすることができる。なお、回生モータ88が駆動源となりモータジェネレータ91が発電機として使用される際には、アシストポンプ89の斜板の傾転角がゼロに設定され、アシストポンプ89はほぼ無負荷状態となる。 Further, when the assist pump 89 is rotated by the driving force of the motor generator 91, hydraulic oil is supplied to the regenerative motor 88 through the merged regenerative flow path 46, and when the regenerative motor 88 rotates, the rotational force of the regenerative motor 88 is Acts as an assisting force for the motor generator 91. Therefore, the power consumption of the motor generator 91 that rotates the assist pump 89 can be reduced by the amount of the rotational force of the regenerative motor 88. When the regenerative motor 88 is used as a drive source and the motor generator 91 is used as a generator, the tilt angle of the swash plate of the assist pump 89 is set to zero, and the assist pump 89 is almost in a no-load state.
 次に、第1,第2メインポンプ71,72から吐出され、余剰となった作動油を、各アクチュエータを介することなく、回生モータ88に直接的に供給することで作動油のエネルギを回生する余剰流量回生制御について説明する。余剰流量回生制御は、旋回回生制御及びブーム回生制御と同様にコントローラ90によって実行される。 Next, the surplus hydraulic oil discharged from the first and second main pumps 71 and 72 is directly supplied to the regenerative motor 88 without passing through each actuator, thereby regenerating the energy of the hydraulic oil. The surplus flow rate regeneration control will be described. The surplus flow rate regeneration control is executed by the controller 90 similarly to the turning regeneration control and the boom regeneration control.
 第1メインポンプ71から吐出された作動油を回生モータ88に直接的に導くために、第1メインポンプ71の吐出側に連通する第1アシスト流路40から分岐する第1メインポンプ回生流路55が設けられる。第1メインポンプ回生流路55は、一端が第1アシスト流路40の第1チェック弁44より第1メインポンプ71側に接続され、他端が合流流路57を介して合流回生流路46に接続される。同様に、第2メインポンプ72から吐出された作動油を回生モータ88に直接的に導くために、第2メインポンプ72の吐出側に連通する第2アシスト流路41から分岐する第2メインポンプ回生流路56が設けられる。第2メインポンプ回生流路56は、一端が第2アシスト流路41の第2チェック弁45より第2メインポンプ72側に接続され、他端が合流流路57を介して合流回生流路46に接続される。合流流路57には、第1,第2メインポンプ71,72から合流回生流路46に向かう作動油の流れのみを許容するチェック弁60が設けられる。 The first main pump regenerative flow path branched from the first assist flow path 40 communicating with the discharge side of the first main pump 71 in order to directly guide the hydraulic oil discharged from the first main pump 71 to the regenerative motor 88. 55 is provided. One end of the first main pump regenerative flow path 55 is connected to the first main pump 71 side from the first check valve 44 of the first assist flow path 40, and the other end is joined via the merge flow path 57. Connected to. Similarly, the second main pump branched from the second assist passage 41 communicating with the discharge side of the second main pump 72 in order to directly guide the hydraulic oil discharged from the second main pump 72 to the regenerative motor 88. A regenerative flow path 56 is provided. One end of the second main pump regenerative flow path 56 is connected to the second main pump 72 side from the second check valve 45 of the second assist flow path 41, and the other end is joined through the merge flow path 57. Connected to. The merging channel 57 is provided with a check valve 60 that allows only the flow of hydraulic oil from the first and second main pumps 71, 72 toward the merging regeneration channel 46.
 第1,第2メインポンプ回生流路55,56には、それぞれ電磁弁58,59が設けられる。電磁弁58,59は、コントローラ90に接続されるソレノイドを有し、ソレノイドが非励磁のときには、閉位置(図示の位置)に切り換えられ、ソレノイドが励磁されたときに開位置に切り換えられる。 Solenoid valves 58 and 59 are provided in the first and second main pump regeneration channels 55 and 56, respectively. The solenoid valves 58 and 59 have a solenoid connected to the controller 90. When the solenoid is not energized, the solenoid valves 58 and 59 are switched to the closed position (the position shown in the figure), and when the solenoid is energized, the solenoid valves 58 and 59 are switched to the open position.
 コントローラ90は、第1供給圧力センサ63の検出値がメインリリーフ弁65のメインリリーフ圧にほぼ達していると判定した場合には、電磁弁58のソレノイドを励磁する。これにより、電磁弁58が開位置に切り換えられ、第1メインポンプ71から吐出されメインリリーフ弁65を通じてタンクに排出されていた余剰の作動油は、第1メインポンプ回生流路55を通って合流回生流路46に導かれ、回生モータ88によりそのエネルギが回収される。 When the controller 90 determines that the detected value of the first supply pressure sensor 63 has substantially reached the main relief pressure of the main relief valve 65, the controller 90 excites the solenoid of the solenoid valve 58. As a result, the electromagnetic valve 58 is switched to the open position, and excess hydraulic oil discharged from the first main pump 71 and discharged to the tank through the main relief valve 65 joins through the first main pump regenerative flow path 55. The energy is recovered by the regenerative motor 88 after being guided to the regenerative flow path 46.
 同様に、コントローラ90は、第2供給圧力センサ64の検出値がメインリリーフ弁66のメインリリーフ圧にほぼ達していると判定した場合には、電磁弁59のソレノイドを励磁する。これにより、電磁弁59が開位置に切り換えられ、第2メインポンプ72から吐出されメインリリーフ弁66を通じてタンクに排出されていた余剰の作動油は、第2メインポンプ回生流路56を通って合流回生流路46に導かれ、回生モータ88によりそのエネルギが回収される。 Similarly, when it is determined that the detected value of the second supply pressure sensor 64 has substantially reached the main relief pressure of the main relief valve 66, the controller 90 excites the solenoid of the electromagnetic valve 59. As a result, the electromagnetic valve 59 is switched to the open position, and excess hydraulic oil discharged from the second main pump 72 and discharged to the tank through the main relief valve 66 joins through the second main pump regenerative flow path 56. The energy is recovered by the regenerative motor 88 after being guided to the regenerative flow path 46.
 このように、第1,第2メインポンプ71,72から吐出された余剰の作動油は、電磁弁58,59を経由して回生モータ88に導かれる。回生モータ88は、モータジェネレータ91を回転駆動して発電させ、モータジェネレータ91にて発電された電力は、インバータ92を介して蓄電器26に充電される。これにより、第1,第2メインポンプ71,72から吐出される余剰の作動油による余剰流量回生が実行される。 Thus, surplus hydraulic oil discharged from the first and second main pumps 71 and 72 is guided to the regenerative motor 88 via the electromagnetic valves 58 and 59. Regenerative motor 88 rotates motor generator 91 to generate electric power, and the electric power generated by motor generator 91 is charged in battery 26 via inverter 92. Thereby, the excessive flow volume regeneration by the excess hydraulic fluid discharged from the 1st, 2nd main pumps 71 and 72 is performed.
 さらに本実施形態では、上述の余剰流量回生制御に用いられる第1,第2メインポンプ回生流路55,56や電磁弁58,59等を利用して、各アクチュエータが操作されていないときに、第1,第2メインポンプ71,72から吐出された作動油を回生モータ88に直接的に供給し、作動油のエネルギを回生する非操作時回生制御がコントローラ90によって実行される。 Furthermore, in this embodiment, when each actuator is not operated using the first and second main pump regenerative flow passages 55 and 56 and the electromagnetic valves 58 and 59 used for the above-described excessive flow rate regenerative control, Non-operation-time regenerative control is performed by the controller 90 to supply the hydraulic oil discharged from the first and second main pumps 71 and 72 directly to the regenerative motor 88 and regenerate the energy of the hydraulic oil.
 ここで、蓄電器26の電圧が低いときに上述のアシスト制御が実行されると、蓄電器26の電圧が使用下限電圧近傍となり、結果として蓄電器26の耐久性が低下するおそれがある。このような事態を回避するためには、アシスト制御が行われる前、すなわち、各アクチュエータが操作されていない間に蓄電器26に充電し、蓄電器26の電圧を高めておく必要がある。しかしながら、各アクチュエータが操作されていない時間が短いと、蓄電器26の電圧を十分に高めることができず、蓄電器26が過放電状態となることを避けられないおそれがある。 Here, if the above-described assist control is executed when the voltage of the battery 26 is low, the voltage of the battery 26 becomes near the lower limit of use voltage, and as a result, the durability of the battery 26 may be reduced. In order to avoid such a situation, it is necessary to charge the battery 26 and increase the voltage of the battery 26 before the assist control is performed, that is, while each actuator is not operated. However, if the time during which each actuator is not operated is short, the voltage of the battery 26 cannot be sufficiently increased, and it may be unavoidable that the battery 26 is overdischarged.
 そこで、非操作時回生制御では、各アクチュエータが操作されていない時間が短い場合であっても蓄電器26の電圧を速やかに上昇させるために、第1,第2メインポンプ71,72から回生モータ88に供給される作動油の流量を各アクチュエータが作動しているときに第1,第2メインポンプ71,72から吐出される作動油の流量以上となるように増大させている。 Therefore, in the non-operation regenerative control, the regenerative motor 88 is supplied from the first and second main pumps 71 and 72 in order to quickly increase the voltage of the battery 26 even when the time when each actuator is not operated is short. The flow rate of the hydraulic oil supplied to is increased so as to be equal to or higher than the flow rates of the hydraulic oil discharged from the first and second main pumps 71 and 72 when each actuator is operating.
 以下に、図1から図3を参照し、非操作時回生制御について説明する。図2は、非操作時回生制御が実行される際のフローチャートであり、図3は、非操作時回生制御と蓄電器26の電圧との関連性を示した図である。 The regenerative control during non-operation will be described below with reference to FIGS. FIG. 2 is a flowchart when the non-operation regenerative control is executed, and FIG. 3 is a diagram showing the relationship between the non-operation regenerative control and the voltage of the battery 26.
 コントローラ90は、後述する非操作時回生制御を実行するための条件が揃うと、電磁弁58のソレノイドを励磁して、電磁弁58を開位置に切り換えるとともに、開閉弁9のソレノイドを励磁して、開閉弁9を閉位置に切り換える。開閉弁9が閉位置に切り換えられたことで、パイロット圧生成機構10への作動油の流入が遮断されるため、パイロット圧がゼロとなり、第1メインポンプ71の傾転角、すなわち吐出量は最大となる。第1メインポンプ71から吐出された作動油は、第1メインポンプ回生流路55を通って合流回生流路46に導かれ、回生モータ88によりそのエネルギが回収される。 The controller 90 excites the solenoid of the electromagnetic valve 58 to switch the electromagnetic valve 58 to the open position and excites the solenoid of the on-off valve 9 when the conditions for executing non-operation regenerative control to be described later are met. Then, the on-off valve 9 is switched to the closed position. When the on-off valve 9 is switched to the closed position, the flow of hydraulic oil to the pilot pressure generating mechanism 10 is blocked, so the pilot pressure becomes zero and the tilt angle of the first main pump 71, that is, the discharge amount is Maximum. The hydraulic oil discharged from the first main pump 71 is guided to the merging regenerative flow path 46 through the first main pump regenerative flow path 55, and the energy is recovered by the regenerative motor 88.
 同様に、コントローラ90は、第2メインポンプ72の吐出量を最大とし、第2メインポンプ72から吐出された作動油を、第2メインポンプ回生流路56を通じて回生モータ88に導くことが可能である。 Similarly, the controller 90 can maximize the discharge amount of the second main pump 72 and guide the hydraulic oil discharged from the second main pump 72 to the regenerative motor 88 through the second main pump regenerative flow path 56. is there.
 このように、吐出量が最大となるように制御された第1,第2メインポンプ71,72から吐出された作動油は、電磁弁58,59を経由して回生モータ88に導かれ、回生モータ88とともにモータジェネレータ91を回転駆動させる。このとき、モータジェネレータ91へのトルク指令値を、回生モータ88に供給される作動油の流量に応じて大きくすることによって、モータジェネレータ91において発電される電力を増大させることができる。モータジェネレータ91にて発電された電力は、インバータ92を介して蓄電器26に速やかに充電される。このように、非操作時回生制御では、吐出量が最大となるように第1,第2メインポンプ71,72が制御されるため、各アクチュエータが操作されていない時間が短くとも、蓄電器26の電圧を急速に上昇させることができる。 In this way, the hydraulic oil discharged from the first and second main pumps 71 and 72 controlled to maximize the discharge amount is guided to the regenerative motor 88 via the electromagnetic valves 58 and 59 and is regenerated. The motor generator 91 is rotated together with the motor 88. At this time, the electric power generated in the motor generator 91 can be increased by increasing the torque command value to the motor generator 91 according to the flow rate of the hydraulic oil supplied to the regenerative motor 88. The electric power generated by the motor generator 91 is quickly charged into the battery 26 via the inverter 92. As described above, in the non-operation regenerative control, the first and second main pumps 71 and 72 are controlled so that the discharge amount is maximized. Therefore, even when the actuators are not operated for a short time, The voltage can be increased rapidly.
 なお、第1,第2メインポンプ71,72の両方の吐出量を最大とすることに代えて、第1,第2メインポンプ71,72のうちの何れか一方のみの吐出量が最大となるように制御してもよい。この場合、他方のポンプの傾転角は最小の状態に維持され、その吐出量はアクチュエータが操作されていないときの流量であるスタンバイ流量となる。このように、第1,第2メインポンプ71,72の何れか一方の吐出量を最大とした場合であっても、第1,第2メインポンプ71,72の両方から回生モータ88に供給される作動油の流量が増大するため、モータジェネレータ91に連結される回生モータ88は、傾転角が最大またはモータ効率が高い状態で駆動され、モータジェネレータ91において発電される電力を速やかに効率的に増大させることができる。 Instead of maximizing the discharge amounts of both the first and second main pumps 71 and 72, the discharge amount of only one of the first and second main pumps 71 and 72 is maximized. You may control as follows. In this case, the tilt angle of the other pump is maintained in a minimum state, and the discharge amount becomes a standby flow rate that is a flow rate when the actuator is not operated. Thus, even when the discharge amount of one of the first and second main pumps 71 and 72 is maximized, the regenerative motor 88 is supplied from both the first and second main pumps 71 and 72. Therefore, the regenerative motor 88 connected to the motor generator 91 is driven with the maximum tilt angle or high motor efficiency, and the electric power generated in the motor generator 91 is quickly and efficiently generated. Can be increased.
 また、開閉弁9,21を閉じることによってパイロット圧をゼロとし、第1,第2メインポンプ71,72の吐出量を最大とする構成に代えて、第1,第2メインポンプ71,72の傾転角をそれぞれ電気的に制御し、第1,第2メインポンプ71,72の吐出量を最大、または、ポンプ効率を最高とする構成としてもよい。また、第1,第2メインポンプ71,72の両方の吐出量を最大とした場合、供給された作動油のエネルギを回生モータ88によって回収させるには、容量が大きい回生モータ88を用意する必要がある。このため、第1,第2メインポンプ71,72の傾転角をそれぞれ電気的に制御し、回生モータ88の容量に合せて、第1,第2メインポンプ71,72の吐出量を調整してもよい。これらの場合であっても、第1,第2メインポンプ71,72の両方から回生モータ88に供給される作動油の流量が増大するため、モータジェネレータ91に連結される回生モータ88は、傾転角が最大またはモータ効率が高い状態で駆動され、モータジェネレータ91において発電される電力を速やかに効率的に増大させることができる。 Further, the pilot pressure is made zero by closing the on-off valves 9 and 21, and instead of the configuration in which the discharge amount of the first and second main pumps 71 and 72 is maximized, the first and second main pumps 71 and 72 The tilt angle may be electrically controlled to maximize the discharge amount of the first and second main pumps 71 and 72 or maximize the pump efficiency. In addition, when the discharge amounts of both the first and second main pumps 71 and 72 are maximized, it is necessary to prepare a regenerative motor 88 having a large capacity in order to recover the energy of the supplied hydraulic oil by the regenerative motor 88. There is. Therefore, the tilt angles of the first and second main pumps 71 and 72 are electrically controlled, respectively, and the discharge amounts of the first and second main pumps 71 and 72 are adjusted in accordance with the capacity of the regenerative motor 88. May be. Even in these cases, the flow rate of the hydraulic oil supplied from both the first and second main pumps 71 and 72 to the regenerative motor 88 increases, so that the regenerative motor 88 connected to the motor generator 91 is tilted. It is driven with the maximum turning angle or high motor efficiency, and the electric power generated in the motor generator 91 can be increased quickly and efficiently.
 続いて、コントローラ90によって実行される非操作時回生制御について、図2に示されるフローチャートを参照して具体的に説明する。 Subsequently, the non-operation regenerative control executed by the controller 90 will be specifically described with reference to a flowchart shown in FIG.
 最初に、ステップS11において、コントローラ90は、オペレータによって各アクチュエータが操作されているか否かを判定する。各アクチュエータが操作されているか否かは、各操作弁2~6,14~17の変位やオペレータによって操作される各操作レバーの変位に基づいて判定される。なお、本ステップにおいて判定に用いられるパラメータとしては、各操作弁2~6,14~17の変位等に限定されず、各アクチュエータの操作に関連して変化するものであればどのようなものであってもよく、例えば、各アクチュエータに接続される配管内の作動油の圧力であってもよい。 First, in step S11, the controller 90 determines whether or not each actuator is operated by the operator. Whether or not each actuator is operated is determined based on the displacement of each of the operation valves 2 to 6 and 14 to 17 and the displacement of each operation lever operated by the operator. The parameters used for the determination in this step are not limited to the displacements of the operation valves 2 to 6, 14 to 17, and any parameters can be used as long as they change in relation to the operation of each actuator. For example, it may be the pressure of the hydraulic oil in the pipe connected to each actuator.
 ステップS11において、各アクチュエータが操作されていると判定された場合には、ステップS12に進み、非操作時回生制御による回生がすでに実行されているとき(非操作時回生フラグが「1」のとき)には回生を停止させ、非操作時回生フラグを「0」とする。非操作時回生制御による回生が実行されていないとき、すなわち、非操作時回生フラグが「0」である場合には、回生が実行されない状態を継続させる。 If it is determined in step S11 that each actuator is operated, the process proceeds to step S12, and when regeneration by non-operation regeneration control has already been executed (when the non-operation regeneration flag is “1”). ), The regeneration is stopped and the non-operational regeneration flag is set to “0”. When regeneration by non-operation regeneration control is not executed, that is, when the non-operation regeneration flag is “0”, the state in which regeneration is not executed is continued.
 ステップS11において、各アクチュエータが操作されていないと判定された場合には、ステップS13に進み、回生装置を構成する機器、例えば、モータジェネレータ91やインバータ92、蓄電器26、温度センサ26a、回生モータ88の傾転角制御器38等の異常を検知し、回生を正常に実行することが可能か否かを判定する。 If it is determined in step S11 that each actuator is not operated, the process proceeds to step S13, and the devices constituting the regenerative device, such as the motor generator 91, the inverter 92, the capacitor 26, the temperature sensor 26a, and the regenerative motor 88 are processed. Is detected, and it is determined whether or not regeneration can be normally executed.
 ステップS13において、回生装置を構成する機器に異常があり回生を正常に実行することできないと判定された場合には、ステップS14に進む。ステップS14ではステップS12と同じ制御が実行される。 In step S13, when it is determined that there is an abnormality in the devices constituting the regenerative device and regeneration cannot be normally performed, the process proceeds to step S14. In step S14, the same control as in step S12 is executed.
 ステップS13において、回生装置を構成する機器に異常がなく、回生を正常に実行することできると判定された場合には、ステップS15に進む。ステップS15では、蓄電器26の充電量を示す電圧値Vcが第2所定量としての回生停止電圧Vmax以上であるか否かが判定される。 If it is determined in step S13 that there is no abnormality in the devices constituting the regeneration device and regeneration can be normally performed, the process proceeds to step S15. In step S15, it is determined whether or not the voltage value Vc indicating the charge amount of the battery 26 is equal to or higher than the regeneration stop voltage Vmax as the second predetermined amount.
 ここで、回生停止電圧Vmaxは、図3に示されるように、蓄電器26の使用上限電圧Vmax0よりも低い値に設定される。回生停止電圧Vmaxは、旋回回生制御やブーム回生制御が行われる際に回生が停止される電圧と同じ値であってもよい。但し、この場合には、蓄電器26の電圧が回生停止電圧Vmaxとなった状態で旋回回生制御やブーム回生制御が行われると、ほとんど回生が行われず、作動油のエネルギを回収することができないため、ハイブリッド建設機械のシステム効率が低下するおそれがある。このため、回生停止電圧Vmaxは、旋回回生制御やブーム回生制御が行われる際に回生が停止される電圧よりも低い値に設定されることが好ましい。なお、旋回回生制御またはブーム回生制御が実行され作動油のエネルギが回生された場合にどの程度蓄電器26の電圧が上昇するかが予測される場合には、旋回回生制御またはブーム回生制御による蓄電器26の電圧の上昇分を見越して回生停止電圧Vmaxを適宜変更してもよい。 Here, the regeneration stop voltage Vmax is set to a value lower than the use upper limit voltage Vmax0 of the battery 26 as shown in FIG. The regeneration stop voltage Vmax may be the same value as the voltage at which regeneration is stopped when turning regeneration control or boom regeneration control is performed. However, in this case, if turning regeneration control or boom regeneration control is performed in a state where the voltage of the battery 26 becomes the regeneration stop voltage Vmax, almost no regeneration is performed, and the energy of the hydraulic oil cannot be recovered. The system efficiency of the hybrid construction machine may be reduced. For this reason, it is preferable that the regeneration stop voltage Vmax is set to a value lower than a voltage at which regeneration is stopped when turning regeneration control or boom regeneration control is performed. In the case where it is predicted how much the voltage of the capacitor 26 will increase when the swing regeneration control or the boom regeneration control is executed and the energy of the hydraulic oil is regenerated, the capacitor 26 by the swing regeneration control or the boom regeneration control is predicted. The regeneration stop voltage Vmax may be changed as appropriate in anticipation of an increase in voltage.
 ステップS15において、蓄電器26の電圧値Vcが回生停止電圧Vmax以上であると判定された場合には、ステップ16に進む。ステップ16では、非操作時回生制御による回生がすでに実行されている場合には回生を停止させ、非操作時回生フラグを「0」とする。非操作時回生制御による回生が実行されていない場合、すなわち、非操作時回生フラグが「0」である場合には、蓄電器26の電圧値Vcが高い状態であり、まだ非操作時回生制御を実行する必要性がないため、回生が実行されない状態を継続させる。 In Step S15, when it is determined that the voltage value Vc of the battery 26 is equal to or higher than the regenerative stop voltage Vmax, the process proceeds to Step 16. In step 16, when regeneration by the non-operation regeneration control has already been executed, the regeneration is stopped and the non-operation regeneration flag is set to “0”. When regeneration by non-operation regenerative control is not executed, that is, when the non-operation regenerative flag is “0”, the voltage value Vc of the battery 26 is high, and the non-operation regenerative control is still being performed. Since there is no need to execute, the state where regeneration is not executed is continued.
 ステップS15において、蓄電器26の電圧値Vcが回生停止電圧Vmax未満であると判定された場合には、ステップ17に進む。ステップS17では、蓄電器26の電圧値Vcが第1所定量としての回生開始電圧Vmin以下であるか否かが判定される。 If it is determined in step S15 that the voltage value Vc of the battery 26 is less than the regenerative stop voltage Vmax, the process proceeds to step 17. In step S17, it is determined whether or not the voltage value Vc of the battery 26 is equal to or lower than the regeneration start voltage Vmin as the first predetermined amount.
 ここで、回生開始電圧Vminは、図3に示されるように、蓄電器26の使用下限電圧Vmin0よりも高い値に設定される。また、通常、充電を停止した直後の蓄電器26の電圧は、蓄電器26の内部温度Tに応じて変化する内部抵抗R(T)に電流Iを乗じた分だけ降下する。つまり、回生停止電圧Vmaxと回生開始電圧Vminとの差分が内部抵抗R(T)に電流Iを乗じた値よりも小さいと、充電されて回生停止電圧Vmaxとなった後の蓄電器26の電圧は、電圧降下によって回生開始電圧Vminよりも小さくなるため、回生制御が停止されると同時に再び回生制御が開始されることになる。このような現象を避けるために、回生開始電圧Vminは、蓄電器26の内部温度Tに応じて変化する内部抵抗R(T)に蓄電器26に供給される電流Iを乗じた値を回生停止電圧Vmaxから差し引いた電圧値よりも小さい値に随時更新されることが好ましい。なお、内部抵抗R(T)の特性は、蓄電器26の充電量(SOC)や蓄電器26の内部温度Tに応じて変化するため、内部抵抗R(T)の特性をコントローラ90に記憶させておくことで、温度センサ26aと電流センサの検出値に基づいて、どの程度の電圧降下が生じるかを予測することが可能である。 Here, the regeneration start voltage Vmin is set to a value higher than the use lower limit voltage Vmin0 of the battery 26 as shown in FIG. In general, the voltage of the battery 26 immediately after the charging is stopped decreases by the amount of the current I multiplied by the internal resistance R (T) that changes according to the internal temperature T of the battery 26. That is, when the difference between the regeneration stop voltage Vmax and the regeneration start voltage Vmin is smaller than the value obtained by multiplying the internal resistance R (T) by the current I, the voltage of the battery 26 after being charged to become the regeneration stop voltage Vmax is Since the voltage drop is smaller than the regeneration start voltage Vmin, the regeneration control is started again at the same time as the regeneration control is stopped. In order to avoid such a phenomenon, the regeneration start voltage Vmin is obtained by multiplying the internal resistance R (T) that changes according to the internal temperature T of the battery 26 by the current I supplied to the battery 26, and the regeneration stop voltage Vmax. It is preferable that the voltage value is updated at any time to a value smaller than the voltage value subtracted from. Note that the characteristic of the internal resistance R (T) changes according to the amount of charge (SOC) of the battery 26 and the internal temperature T of the battery 26, so the characteristic of the internal resistance R (T) is stored in the controller 90. Thus, it is possible to predict how much voltage drop will occur based on the detection values of the temperature sensor 26a and the current sensor.
 ステップS17において、蓄電器26の電圧値Vcが回生開始電圧Vmin以下であると判定されると、ステップ18に進み、非操作時回生制御による回生を開始し、非操作時回生フラグを「1」とする。具体的には、上述のように、コントローラ90は、電磁弁58のソレノイドを励磁して、電磁弁58を開位置に切り換えるとともに、開閉弁9のソレノイドを励磁して、開閉弁9を閉位置に切り換える。開閉弁9が閉位置に切り換えられたことで、パイロット圧生成機構10への作動油の流入が遮断されるため、パイロット圧がゼロとなり、第1メインポンプ71の傾転角、すなわち吐出量は最大となる。第1メインポンプ71から吐出された作動油は、第1メインポンプ回生流路55を通って合流回生流路46に導かれ、回生モータ88によりそのエネルギが回収される。なお、非操作時回生制御による回生が開始された後、蓄電器26の電圧値Vcが回生停止電圧Vmaxまで上昇すると、上述のようにステップS15にて非操作時回生制御による回生が停止される。 If it is determined in step S17 that the voltage value Vc of the battery 26 is equal to or lower than the regeneration start voltage Vmin, the process proceeds to step 18 to start regeneration by the non-operation-time regeneration control and set the non-operation-time regeneration flag to “1”. To do. Specifically, as described above, the controller 90 excites the solenoid of the electromagnetic valve 58 to switch the electromagnetic valve 58 to the open position, and excites the solenoid of the on-off valve 9 to close the on-off valve 9 to the closed position. Switch to. When the on-off valve 9 is switched to the closed position, the flow of hydraulic oil to the pilot pressure generating mechanism 10 is blocked, so the pilot pressure becomes zero and the tilt angle of the first main pump 71, that is, the discharge amount is Maximum. The hydraulic oil discharged from the first main pump 71 is guided to the merging regenerative flow path 46 through the first main pump regenerative flow path 55, and the energy is recovered by the regenerative motor 88. When the voltage value Vc of the battery 26 rises to the regeneration stop voltage Vmax after the regeneration by the non-operation regeneration control is started, the regeneration by the non-operation regeneration control is stopped in step S15 as described above.
 ステップS17において、蓄電器26の電圧値Vcが回生開始電圧Vminより大きいと判定された場合には、ステップ19に進み、非操作時回生フラグが「1」か否か、すなわち、非操作時回生制御による回生が実行中であるか否かが判定される。 If it is determined in step S17 that the voltage value Vc of the battery 26 is larger than the regeneration start voltage Vmin, the process proceeds to step 19 to determine whether or not the non-operation time regeneration flag is “1”, that is, non-operation time regeneration control. It is determined whether or not regeneration by is being performed.
 ステップS19において、非操作時回生フラグが「1」であると判定されると、ステップ20に進み、非操作時回生フラグが「1」ではないと判定されると、ステップ21に進む。 If it is determined in step S19 that the non-operation time regeneration flag is “1”, the process proceeds to step 20, and if it is determined that the non-operation time regeneration flag is not “1”, the process proceeds to step 21.
 ステップ20に進んだとき、蓄電器26の電圧値Vcは、回生開始電圧Vminより大きく、且つ回生停止電圧Vmax未満である。さらに、非操作時回生フラグが「1」であることから非操作時回生制御による回生が実行中である。つまり、蓄電器26は、非操作時回生制御によって、図3のAで示される矢印に沿って充電されている最中である。このため、ステップ20では、回生を継続させ、非操作時回生フラグを「1」のままとする。 When the routine proceeds to step 20, the voltage value Vc of the battery 26 is greater than the regeneration start voltage Vmin and less than the regeneration stop voltage Vmax. Further, since the non-operation time regeneration flag is “1”, regeneration by the non-operation time regeneration control is being executed. That is, the battery 26 is being charged along the arrow indicated by A in FIG. 3 by the non-operation regeneration control. Therefore, in step 20, regeneration is continued and the non-operation time regeneration flag remains “1”.
 一方で、ステップ21に進んだとき、蓄電器26の電圧値Vcは、回生開始電圧Vminより大きく、且つ回生停止電圧Vmax未満であるが、非操作時回生フラグは「1」ではなく「0」であることから非操作時回生制御による回生は実行されていない。つまり、蓄電器26は、図3のBで示される領域にあり、まだ非操作時回生制御を実行する必要性がないため、非操作時回生フラグを「0」のままとし、回生が実行されない状態を継続させる。このような状況は、例えば、旋回回生制御やブーム回生制御による回生が終了したときの蓄電器26の電圧値Vcが回生開始電圧Vminより大きく回生停止電圧Vmax未満であった場合に起こり得る。 On the other hand, when the routine proceeds to step 21, the voltage value Vc of the battery 26 is greater than the regeneration start voltage Vmin and less than the regeneration stop voltage Vmax, but the non-operation time regeneration flag is not “1” but “0”. For this reason, regeneration by non-operation regeneration control is not performed. That is, the storage battery 26 is in the region indicated by B in FIG. 3, and there is no need to execute the non-operation-time regenerative control, so that the non-operation-time regenerative flag remains “0” and regeneration is not executed. To continue. Such a situation can occur, for example, when the voltage value Vc of the battery 26 when the regeneration by the swing regeneration control or the boom regeneration control is finished is larger than the regeneration start voltage Vmin and less than the regeneration stop voltage Vmax.
 このように、非操作時回生制御が行われることによって、各アクチュエータが操作されていない間の蓄電器26の電圧値Vcは、使用下限電圧Vmin0よりも十分に高い回生開始電圧Vminから使用上限電圧Vmax0よりも十分に低い回生停止電圧Vmaxまでの一定の範囲内に保持される。このため、アシスト制御が実行されたとしても蓄電器26の電圧値Vcが使用下限電圧Vmin0にまで低下して蓄電器26が過放電状態となることが抑制されるとともに、旋回回生制御やブーム回生制御が実行されたとしても蓄電器26の電圧値Vcが使用上限電圧Vmax0にまで上昇して蓄電器26が過充電状態となることが抑制される。また、回生停止電圧Vmaxを、旋回回生制御やブーム回生制御が行われる際に回生が停止される電圧よりも低い値に設定しておけば、旋回回生制御やブーム回生制御が行われた際に作動油のエネルギを十分に回収することができるため、ハイブリッド建設機械のシステム効率を向上させることができる。 Thus, by performing the non-operation regeneration control, the voltage value Vc of the battery 26 while each actuator is not being operated is changed from the regeneration start voltage Vmin sufficiently higher than the use lower limit voltage Vmin0 to the use upper limit voltage Vmax0. Is maintained within a certain range up to a sufficiently lower regenerative stop voltage Vmax. For this reason, even if the assist control is executed, the voltage value Vc of the battery 26 is reduced to the use lower limit voltage Vmin0 and the battery 26 is prevented from being overdischarged, and the turning regeneration control and the boom regeneration control are performed. Even if it is executed, the voltage value Vc of the battery 26 is suppressed to the use upper limit voltage Vmax0 and the battery 26 is prevented from being overcharged. Also, if the regeneration stop voltage Vmax is set to a value lower than the voltage at which regeneration is stopped when turning regeneration control or boom regeneration control is performed, turning regeneration control or boom regeneration control is performed. Since the energy of the hydraulic oil can be sufficiently recovered, the system efficiency of the hybrid construction machine can be improved.
 以上の実施形態によれば、以下に示す効果を奏する。 According to the above embodiment, the following effects are obtained.
 ハイブリッド建設機械の制御システム100では、各アクチュエータが操作されていないときの蓄電器26の電圧値Vcが回生開始電圧Vminよりも小さい場合、吐出量が最大となるように制御された第1,第2メインポンプ71,72から回生モータ88に作動油が供給される。このため、各アクチュエータが操作されていない時間が短くとも、蓄電器26の電圧を速やかに上昇させることが可能となる。この結果、蓄電器26が過放電状態となることが抑制され、蓄電器26の耐久性を向上させることができる。 In the control system 100 of the hybrid construction machine, the first and second controlled so that the discharge amount is maximized when the voltage value Vc of the battery 26 when each actuator is not operated is smaller than the regeneration start voltage Vmin. Hydraulic fluid is supplied from the main pumps 71 and 72 to the regenerative motor 88. For this reason, even if the time when each actuator is not operated is short, the voltage of the battery 26 can be quickly increased. As a result, the capacitor 26 is prevented from being overdischarged, and the durability of the capacitor 26 can be improved.
 次に、上記実施形態の変形例について説明する。 Next, a modification of the above embodiment will be described.
 上記実施形態では、非操作時回生制御が行われる際に操作される電磁弁58,59や開閉弁9,21は、コントローラ90によって直接開閉制御されている。これに代えて、電磁弁58,59及び開閉弁9,21をパイロット圧が供給されることによって開閉する形式の弁体に変更し、これらにパイロット圧を供給する単一の電磁弁を別途設け、この電磁弁によるパイロット圧の供給をコントローラ90により制御する構成としてもよい。 In the above embodiment, the solenoid valves 58 and 59 and the on / off valves 9 and 21 that are operated when the non-operation regenerative control is performed are directly controlled to open and close by the controller 90. Instead, the solenoid valves 58 and 59 and the on-off valves 9 and 21 are changed to valve bodies that open and close when pilot pressure is supplied, and a single solenoid valve that supplies pilot pressure to these is provided separately. The controller 90 may control the supply of pilot pressure by the electromagnetic valve.
 また、上記実施形態では、蓄電器26の電圧値Vcを蓄電器26の充電量とし、電圧値Vcに基づいて非操作時回生制御を実行するか否かが判定されている。これに代えて、蓄電器26の充電率(SOC,State Of Charge)を蓄電器26の充電量とし、充電率に基づいて非操作時回生制御を実行するか否かが判定されてもよい。 In the above embodiment, the voltage value Vc of the battery 26 is used as the charge amount of the battery 26, and it is determined whether or not to perform the non-operation-time regenerative control based on the voltage value Vc. Instead of this, the charge rate (SOC, State Of Charge) of the battery 26 may be used as the charge amount of the battery 26, and it may be determined whether or not to perform non-operation-time regenerative control based on the charge rate.
 また、上記実施形態では、第1,第2メインポンプ71,72から吐出された作動油は、第1,第2メインポンプ回生流路55,56に設けられる電磁弁58,59を通じて回生モータ88に供給される。これに代えて、例えば、図4に示すように、ブーム2速用の操作弁4内にパラレル流路8と第1メインポンプ回生流路55とを連通可能な流路を形成し、操作弁4の切り換えによって、第1メインポンプ71から吐出された作動油を回生モータ88に供給する構成としてもよい。 In the above embodiment, the hydraulic oil discharged from the first and second main pumps 71 and 72 is supplied to the regenerative motor 88 through the electromagnetic valves 58 and 59 provided in the first and second main pump regenerative flow paths 55 and 56. To be supplied. Instead, for example, as shown in FIG. 4, a flow path capable of communicating the parallel flow path 8 and the first main pump regenerative flow path 55 is formed in the boom second speed operation valve 4. 4 may be configured to supply hydraulic oil discharged from the first main pump 71 to the regenerative motor 88.
 図4において、ブーム2速用の操作弁4は、電磁弁58aを通じてパイロット圧源PPがパイロット室4aに供給されると、パラレル流路8から分岐された分岐流路8aと第1メインポンプ回生流路55とを連通させる位置に切り換えられる。このように、既存の操作弁2~6,14~17を利用することにより、ハイブリッド建設機械の制御システム100をコンパクト化することができる。なお、図4では、ブーム2速用の操作弁4の他の切換位置における流路等については省略して示している。 In FIG. 4, when the pilot pressure source PP is supplied to the pilot chamber 4a through the electromagnetic valve 58a, the boom second speed operation valve 4 includes the branch flow path 8a branched from the parallel flow path 8 and the first main pump regeneration. The position is switched to the position where the flow path 55 communicates. Thus, by using the existing operation valves 2 to 6 and 14 to 17, the control system 100 for the hybrid construction machine can be made compact. In FIG. 4, the flow paths and the like at other switching positions of the boom second speed operation valve 4 are not shown.
 以下、本発明の実施形態の構成、作用、及び効果をまとめて説明する。 Hereinafter, the configuration, operation, and effect of the embodiment of the present invention will be described together.
 ハイブリッド建設機械の制御システム100は、アクチュエータに作動流体を供給する可変容量型の第1,第2メインポンプ71,72と、アクチュエータから還流される作動油または第1,第2メインポンプ71,72から供給される作動油によって回転駆動される回生モータ88と、回生モータ88に連結されるモータジェネレータ91と、モータジェネレータ91によって発電された電力を貯める蓄電器26と、回生モータ88及びモータジェネレータ91に連結され、アクチュエータに作動油を供給可能なアシストポンプ89と、第1,第2メインポンプ71,72から回生モータ88への作動油の供給を制御するコントローラ90と、を備え、コントローラ90は、アクチュエータが作動していないときに、蓄電器26の電圧が回生開始電圧Vminよりも小さいと判定した場合には、第1,第2メインポンプ71,72から回生モータ88に供給される作動油の流量が、アクチュエータが作動しているときに第1,第2メインポンプ71,72から吐出される作動油の流量以上となるように第1,第2メインポンプ71,72を制御する。 The control system 100 of the hybrid construction machine includes variable capacity type first and second main pumps 71 and 72 that supply a working fluid to an actuator, and hydraulic oil or first and second main pumps 71 and 72 that are recirculated from the actuator. A regenerative motor 88 that is rotationally driven by hydraulic oil supplied from the motor, a motor generator 91 that is coupled to the regenerative motor 88, a capacitor 26 that stores the power generated by the motor generator 91, and the regenerative motor 88 and the motor generator 91. An assist pump 89 that is connected and capable of supplying hydraulic oil to the actuator, and a controller 90 that controls the supply of hydraulic oil from the first and second main pumps 71 and 72 to the regenerative motor 88. When the actuator is not operating, the voltage of the battery 26 is If it is determined that it is smaller than the regeneration start voltage Vmin, the flow rate of the hydraulic oil supplied from the first and second main pumps 71 and 72 to the regeneration motor 88 is the first and first when the actuator is operating. The first and second main pumps 71 and 72 are controlled so as to be equal to or higher than the flow rate of the hydraulic oil discharged from the two main pumps 71 and 72.
 この構成では、各アクチュエータが操作されていないときの蓄電器26の電圧値Vcが回生開始電圧Vminよりも小さい場合、第1,第2メインポンプ71,72から回生モータ88に供給される作動油の流量が、アクチュエータが作動しているときに第1,第2メインポンプ71,72から吐出される作動油の流量以上となるように第1,第2メインポンプ71,72が制御される。このように比較的大きい流量の作動油が回生モータ88に供給されるため、各アクチュエータが操作されていない時間が短くとも、蓄電器26の電圧を速やかに上昇させることが可能となる。この結果、各アクチュエータが操作されていないときの蓄電器26の電圧が回生開始電圧Vminよりも高い状態に保持され、蓄電器26が過放電状態となることが抑制されるため、蓄電器26の耐久性を向上させることができる。 In this configuration, when the voltage value Vc of the battery 26 when each actuator is not operated is smaller than the regenerative start voltage Vmin, the hydraulic oil supplied from the first and second main pumps 71 and 72 to the regenerative motor 88 is reduced. The first and second main pumps 71 and 72 are controlled so that the flow rate is equal to or higher than the flow rate of hydraulic oil discharged from the first and second main pumps 71 and 72 when the actuator is operating. Since hydraulic oil having a relatively large flow rate is supplied to the regenerative motor 88 in this way, the voltage of the battery 26 can be quickly increased even if the time during which each actuator is not operated is short. As a result, the voltage of the battery 26 when each actuator is not operated is maintained in a state higher than the regeneration start voltage Vmin, and the battery 26 is prevented from being overdischarged. Can be improved.
 また、コントローラ90は、アクチュエータが作動していないときに、蓄電器26の電圧が回生開始電圧Vminよりも小さいと判定されてから蓄電器26の電圧が回生開始電圧Vminよりも大きい回生停止電圧Vmaxに至ったと判定されるまで、第1,第2メインポンプ71,72から回生モータ88に供給される作動油の流量が、アクチュエータが作動しているときに第1,第2メインポンプ71,72から吐出される作動油の流量以上となるように第1,第2メインポンプ71,72を制御する。 In addition, the controller 90 determines that the voltage of the battery 26 is smaller than the regeneration start voltage Vmin when the actuator is not operating, and then reaches the regenerative stop voltage Vmax where the voltage of the battery 26 is larger than the regeneration start voltage Vmin. Until it is determined that the flow rate of the hydraulic oil supplied from the first and second main pumps 71 and 72 to the regenerative motor 88 is discharged from the first and second main pumps 71 and 72 when the actuator is operating. The first and second main pumps 71 and 72 are controlled so as to be equal to or higher than the flow rate of the hydraulic oil.
 この構成では、蓄電器26の電圧が回生開始電圧Vminよりも小さいと判定されてから蓄電器26の電圧が回生停止電圧Vmaxに至るまでは、第1,第2メインポンプ71,72から回生モータ88に比較的大きい流量の作動油が供給される。つまり、アクチュエータが作動していないときに蓄電器26への充電が行われている間は、比較的大きい流量の作動油が回生モータ88に供給される状態が継続される。このため、各アクチュエータが操作されていない時間が短くとも、蓄電器26の電圧を速やかに上昇させることが可能となる。この結果、各アクチュエータが操作されていないときの蓄電器26の電圧が回生開始電圧Vminよりも高い状態に保持され、蓄電器26が過放電状態となることが抑制されるため、蓄電器26の耐久性を向上させることができる。 In this configuration, from the time when it is determined that the voltage of the battery 26 is smaller than the regeneration start voltage Vmin to the time when the voltage of the battery 26 reaches the regeneration stop voltage Vmax, the regenerative motor 88 is switched from the first and second main pumps 71 and 72. A relatively large flow rate of hydraulic oil is supplied. In other words, while the battery 26 is being charged when the actuator is not operating, the state where the hydraulic oil having a relatively large flow rate is supplied to the regenerative motor 88 is continued. For this reason, even if the time when each actuator is not operated is short, the voltage of the battery 26 can be quickly increased. As a result, the voltage of the battery 26 when each actuator is not operated is maintained in a state higher than the regeneration start voltage Vmin, and the battery 26 is prevented from being overdischarged. Can be improved.
 また、回生開始電圧Vminは、蓄電器26の内部温度Tに応じて変化する内部抵抗R(T)に蓄電器26に供給される電流Iを乗じた値を回生停止電圧Vmaxから差し引いた値よりも小さい値である。 Further, the regeneration start voltage Vmin is smaller than a value obtained by subtracting, from the regeneration stop voltage Vmax, a value obtained by multiplying the internal resistance R (T) that changes according to the internal temperature T of the capacitor 26 by the current I supplied to the capacitor 26. Value.
 この構成では、回生開始電圧Vminが、蓄電器26の内部抵抗R(T)に蓄電器26に供給される電流Iを乗じた値を回生停止電圧Vmaxから差し引いた値よりも小さい値に設定される。このため、充電を停止した直後の蓄電器26の電圧が、蓄電器26の内部抵抗R(T)に応じて降下したとしても、回生制御が停止されると同時に再び回生制御が開始されることを防止することができる。また、蓄電器26の内部抵抗R(T)を考慮しつつ、回生開始電圧Vminと回生停止電圧Vmaxとの差をできるだけ小さく設定しておくことで、各アクチュエータが操作されていないときの回生制御を短時間で終了させることが可能となり、蓄電器26の電圧を一定の範囲内に保持することが容易となる。 In this configuration, the regeneration start voltage Vmin is set to a value smaller than a value obtained by subtracting the value obtained by multiplying the internal resistance R (T) of the capacitor 26 by the current I supplied to the capacitor 26 from the regeneration stop voltage Vmax. For this reason, even if the voltage of the battery 26 immediately after stopping the charge decreases according to the internal resistance R (T) of the battery 26, the regeneration control is stopped and the regeneration control is prevented from being started again at the same time. can do. Further, the regenerative control when each actuator is not operated can be performed by setting the difference between the regenerative start voltage Vmin and the regenerative stop voltage Vmax as small as possible while considering the internal resistance R (T) of the battery 26. It can be completed in a short time, and it becomes easy to keep the voltage of the battery 26 within a certain range.
 また、コントローラ90は、制御システム100を構成する装置の故障を判定し、故障が判定された場合は、アクチュエータが作動していないときに、蓄電器26への充電を行わない。 In addition, the controller 90 determines a failure of the devices constituting the control system 100, and when the failure is determined, the capacitor 26 is not charged when the actuator is not operating.
 この構成では、制御システム100を構成する装置の故障が判定された場合は、蓄電器26への充電が停止される。このように、制御システム100を構成する装置に何らかの異常が発生した場合、蓄電器26への充電が停止されることで、制御システム100の安全性を確保することができる。 In this configuration, when it is determined that a device constituting the control system 100 has failed, charging of the battery 26 is stopped. Thus, when some abnormality occurs in the devices constituting the control system 100, the charging of the battery 26 is stopped, so that the safety of the control system 100 can be ensured.
 また、アクチュエータに作動油を供給する可変容量型の第1,第2メインポンプ71,72と、アクチュエータから還流される作動油または第1,第2メインポンプ71,72から供給される作動油によって回転駆動される回生モータ88と、回生モータ88に連結されるモータジェネレータ91と、モータジェネレータ91によって発電された電力を貯める蓄電器26と、回生モータ88及びモータジェネレータ91に連結され、アクチュエータに作動油を供給可能なアシストポンプ89と、を備えるハイブリッド建設機械を制御する制御方法は、アクチュエータの作動状態を検知するとともに蓄電器26の電圧を検出し、アクチュエータが作動しておらず、検出された蓄電器26の電圧が回生開始電圧Vminよりも小さい場合には、第1,第2メインポンプ71,72から回生モータ88に供給される作動油の流量を、アクチュエータが作動しているときに第1,第2メインポンプ71,72から吐出される作動油の流量以上とする。 Further, the variable capacity type first and second main pumps 71 and 72 for supplying hydraulic oil to the actuator and the hydraulic oil recirculated from the actuator or the hydraulic oil supplied from the first and second main pumps 71 and 72 are used. A regenerative motor 88 that is rotationally driven, a motor generator 91 that is coupled to the regenerative motor 88, a capacitor 26 that stores the power generated by the motor generator 91, and the regenerative motor 88 and the motor generator 91 that are connected to the actuator as hydraulic fluid. A control method for controlling a hybrid construction machine including an assist pump 89 that can supply the battery detects the operating state of the actuator, detects the voltage of the battery 26, detects that the actuator is not operating, and the detected battery 26 Is smaller than the regeneration start voltage Vmin, The flow rate of hydraulic fluid supplied from the first and second main pumps 71 and 72 to the regenerative motor 88 is greater than the flow rate of hydraulic fluid discharged from the first and second main pumps 71 and 72 when the actuator is operating. And
 この制御方法では、各アクチュエータが操作されていないときの蓄電器26の電圧値Vcが回生開始電圧Vminよりも小さい場合、第1,第2メインポンプ71,72から回生モータ88に供給される作動油の流量が、アクチュエータが作動しているときに第1,第2メインポンプ71,72から吐出される作動油の流量以上となるように第1,第2メインポンプ71,72が制御される。このように比較的大きい流量の作動油が回生モータ88に供給されるため、各アクチュエータが操作されていない時間が短くとも、蓄電器26の電圧を速やかに上昇させることが可能となる。この結果、各アクチュエータが操作されていないときの蓄電器26の電圧が回生開始電圧Vminよりも高い状態に保持され、蓄電器26が過放電状態となることが抑制されるため、蓄電器26の耐久性を向上させることができる。 In this control method, when the voltage value Vc of the battery 26 when each actuator is not operated is smaller than the regeneration start voltage Vmin, the hydraulic oil supplied from the first and second main pumps 71 and 72 to the regeneration motor 88. The first and second main pumps 71 and 72 are controlled so that the flow rate becomes equal to or higher than the flow rate of hydraulic oil discharged from the first and second main pumps 71 and 72 when the actuator is operating. Since hydraulic oil having a relatively large flow rate is supplied to the regenerative motor 88 in this way, the voltage of the battery 26 can be quickly increased even if the time during which each actuator is not operated is short. As a result, the voltage of the battery 26 when each actuator is not operated is maintained in a state higher than the regeneration start voltage Vmin, and the battery 26 is prevented from being overdischarged. Can be improved.
 以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。 The embodiment of the present invention has been described above. However, the above embodiment only shows a part of application examples of the present invention, and the technical scope of the present invention is limited to the specific configuration of the above embodiment. Absent.
 本願は2016年9月16日に日本国特許庁に出願された特願2016-182114に基づく優先権を主張し、この出願の全ての内容は参照により本明細書に組み込まれる。 This application claims priority based on Japanese Patent Application No. 2016-182114 filed with the Japan Patent Office on September 16, 2016, the entire contents of which are incorporated herein by reference.

Claims (5)

  1.  ハイブリッド建設機械の制御システムであって、
     流体圧アクチュエータに作動流体を供給する可変容量型の流体圧ポンプと、
     前記流体圧アクチュエータから還流される作動流体または前記流体圧ポンプから供給される作動流体によって回転駆動される回生モータと、
     前記回生モータに連結される回転電機と、
     前記回転電機によって発電された電力を貯める蓄電部と、
     前記流体圧ポンプから前記回生モータへの作動流体の供給を制御する制御部と、を備え、
     前記制御部は、前記流体圧アクチュエータが作動していないときに、前記蓄電部の充電量が第1所定量よりも小さいと判定した場合には、前記流体圧ポンプから前記回生モータに供給される作動流体の流量が、前記流体圧アクチュエータが作動しているときに前記流体圧ポンプから吐出される作動流体の流量以上となるように前記流体圧ポンプを制御するハイブリッド建設機械の制御システム。
    A control system for a hybrid construction machine,
    A variable displacement fluid pressure pump for supplying a working fluid to the fluid pressure actuator;
    A regenerative motor that is rotationally driven by a working fluid recirculated from the fluid pressure actuator or a working fluid supplied from the fluid pressure pump;
    A rotating electric machine coupled to the regenerative motor;
    A power storage unit for storing electric power generated by the rotating electrical machine;
    A controller that controls supply of working fluid from the fluid pressure pump to the regenerative motor, and
    When the control unit determines that the charge amount of the power storage unit is smaller than a first predetermined amount when the fluid pressure actuator is not operating, the control unit supplies the regenerative motor from the fluid pressure pump. A control system for a hybrid construction machine that controls the fluid pressure pump so that a flow rate of the working fluid is equal to or higher than a flow rate of the working fluid discharged from the fluid pressure pump when the fluid pressure actuator is operating.
  2.  請求項1に記載のハイブリッド建設機械の制御システムであって、
     前記制御部は、前記流体圧アクチュエータが作動していないときに、前記蓄電部の充電量が前記第1所定量よりも小さいと判定されてから前記蓄電部の充電量が前記第1所定量よりも大きい第2所定量に至ったと判定されるまで、前記流体圧ポンプから前記回生モータに供給される作動流体の流量が、前記流体圧アクチュエータが作動しているときに前記流体圧ポンプから吐出される作動流体の流量以上となるように前記流体圧ポンプを制御するハイブリッド建設機械の制御システム。
    A control system for a hybrid construction machine according to claim 1,
    The control unit determines that the charge amount of the power storage unit is less than the first predetermined amount after the charge amount of the power storage unit is determined to be smaller than the first predetermined amount when the fluid pressure actuator is not operated. Until the second predetermined amount is reached, the flow rate of the working fluid supplied from the fluid pressure pump to the regenerative motor is discharged from the fluid pressure pump when the fluid pressure actuator is operating. A control system for a hybrid construction machine that controls the fluid pressure pump so as to be equal to or higher than a flow rate of the working fluid.
  3.  請求項2に記載のハイブリッド建設機械の制御システムであって、
     前記第1所定量及び前記第2所定量は電圧であり、
     前記第1所定量は、前記蓄電部の内部温度に応じて変化する内部抵抗に前記蓄電部に供給される電流を乗じた値を前記第2所定量から差し引いた値よりも小さい値であるハイブリッド建設機械の制御システム。
    A control system for a hybrid construction machine according to claim 2,
    The first predetermined amount and the second predetermined amount are voltages,
    The first predetermined amount is a hybrid that is smaller than a value obtained by subtracting, from the second predetermined amount, a value obtained by multiplying an internal resistance that changes according to an internal temperature of the power storage unit by a current supplied to the power storage unit. Construction machine control system.
  4.  請求項1に記載のハイブリッド建設機械の制御システムであって、
     前記制御部は、前記制御システムを構成する装置の故障を判定し、故障が判定された場合は、前記流体圧アクチュエータが作動していないときに、前記蓄電部への充電を行わないハイブリッド建設機械の制御システム。
    A control system for a hybrid construction machine according to claim 1,
    The control unit determines a failure of a device constituting the control system, and when the failure is determined, the hybrid construction machine does not charge the power storage unit when the fluid pressure actuator is not operating. Control system.
  5.  流体圧アクチュエータに作動流体を供給する可変容量型の流体圧ポンプと、前記流体圧アクチュエータから還流される作動流体または前記流体圧ポンプから供給される作動流体によって回転駆動される回生モータと、前記回生モータに連結される回転電機と、前記回転電機によって発電された電力を貯める蓄電部と、を備えるハイブリッド建設機械を制御する制御方法であって、
     前記流体圧アクチュエータの作動状態を検知するとともに前記蓄電部の充電量を検出し、
     前記流体圧アクチュエータが作動しておらず、検出された前記蓄電部の充電量が第1所定量よりも小さい場合には、前記流体圧ポンプから前記回生モータに供給される作動流体の流量を、前記流体圧アクチュエータが作動しているときに前記流体圧ポンプから吐出される作動流体の流量以上とするハイブリッド建設機械の制御方法。
    A variable displacement fluid pressure pump for supplying a working fluid to the fluid pressure actuator; a regenerative motor that is rotationally driven by the working fluid recirculated from the fluid pressure actuator or the working fluid supplied from the fluid pressure pump; A control method for controlling a hybrid construction machine comprising: a rotating electrical machine coupled to a motor; and a power storage unit that stores electric power generated by the rotating electrical machine,
    Detecting the operating state of the fluid pressure actuator and detecting the charge amount of the power storage unit;
    When the fluid pressure actuator is not activated and the detected charge amount of the power storage unit is smaller than a first predetermined amount, the flow rate of the working fluid supplied from the fluid pressure pump to the regenerative motor is A control method for a hybrid construction machine, wherein the flow rate of the working fluid discharged from the fluid pressure pump is higher than that when the fluid pressure actuator is operating.
PCT/JP2017/027050 2016-09-16 2017-07-26 Control system and control method for hybrid construction machine WO2018051644A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020187025538A KR20180110037A (en) 2016-09-16 2017-07-26 Control system and control method of hybrid construction machine
CN201780018214.3A CN109790860A (en) 2016-09-16 2017-07-26 The control system and control method of hybrid construction machine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-182114 2016-09-16
JP2016182114A JP2018044658A (en) 2016-09-16 2016-09-16 Control system and control method for hybrid construction machine

Publications (1)

Publication Number Publication Date
WO2018051644A1 true WO2018051644A1 (en) 2018-03-22

Family

ID=61619529

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/027050 WO2018051644A1 (en) 2016-09-16 2017-07-26 Control system and control method for hybrid construction machine

Country Status (4)

Country Link
JP (1) JP2018044658A (en)
KR (1) KR20180110037A (en)
CN (1) CN109790860A (en)
WO (1) WO2018051644A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113423900A (en) * 2019-02-13 2021-09-21 斗山英维高株式会社 Construction machine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010261539A (en) * 2009-05-08 2010-11-18 Kayaba Ind Co Ltd Hybrid construction machine
JP2013002540A (en) * 2011-06-15 2013-01-07 Hitachi Constr Mach Co Ltd Power regeneration device for work machine

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5378061B2 (en) * 2009-05-08 2013-12-25 カヤバ工業株式会社 Control device for hybrid construction machine
JP5511425B2 (en) * 2010-02-12 2014-06-04 カヤバ工業株式会社 Control device for hybrid construction machine
JP5350292B2 (en) * 2010-02-23 2013-11-27 カヤバ工業株式会社 Control device for hybrid construction machine
JP5323753B2 (en) * 2010-03-26 2013-10-23 カヤバ工業株式会社 Construction machine control equipment
KR101928597B1 (en) * 2011-06-15 2018-12-12 히다찌 겐끼 가부시키가이샤 Power regeneration device for work machine
JP6052980B2 (en) * 2012-11-07 2016-12-27 Kyb株式会社 Hybrid construction machine control system
JP6190728B2 (en) * 2014-01-24 2017-08-30 Kyb株式会社 Hybrid construction machine control system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010261539A (en) * 2009-05-08 2010-11-18 Kayaba Ind Co Ltd Hybrid construction machine
JP2013002540A (en) * 2011-06-15 2013-01-07 Hitachi Constr Mach Co Ltd Power regeneration device for work machine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113423900A (en) * 2019-02-13 2021-09-21 斗山英维高株式会社 Construction machine

Also Published As

Publication number Publication date
CN109790860A (en) 2019-05-21
JP2018044658A (en) 2018-03-22
KR20180110037A (en) 2018-10-08

Similar Documents

Publication Publication Date Title
JP5511425B2 (en) Control device for hybrid construction machine
JP5378061B2 (en) Control device for hybrid construction machine
JP5858818B2 (en) Construction machinery
WO2011004881A1 (en) Control device for hybrid construction machine
KR101595584B1 (en) Controller of hybrid construction machine
WO2009119705A1 (en) Controller of hybrid construction machine
WO2009119704A1 (en) Controller of hybrid construction machine
KR101832080B1 (en) Control system of hybrid construction machine
JP5377887B2 (en) Control device for hybrid construction machine
JP5908371B2 (en) Control device for hybrid construction machine
WO2015045891A1 (en) Control system of hybrid construction machine
WO2015111305A1 (en) Control system for hybrid construction machine
JP5197479B2 (en) Hybrid construction machinery
JP2016109271A (en) Hydraulic driving system of construction machine
WO2018051644A1 (en) Control system and control method for hybrid construction machine
KR101649438B1 (en) Construction machine, and controller
WO2017204040A1 (en) Control system for hybrid construction machine
JP5639943B2 (en) Power storage device and hybrid construction machine
JP6401668B2 (en) Control system and control method for hybrid construction machine
JP2015178863A (en) Control system of hybrid construction machine
JP6043157B2 (en) Hybrid construction machine control system
JP2015172428A (en) Control system of hybrid construction machine
JP5197478B2 (en) Hybrid construction machinery

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20187025538

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020187025538

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17850550

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17850550

Country of ref document: EP

Kind code of ref document: A1