WO2018049889A1 - 全息显示设备及全息显示方法 - Google Patents

全息显示设备及全息显示方法 Download PDF

Info

Publication number
WO2018049889A1
WO2018049889A1 PCT/CN2017/092470 CN2017092470W WO2018049889A1 WO 2018049889 A1 WO2018049889 A1 WO 2018049889A1 CN 2017092470 W CN2017092470 W CN 2017092470W WO 2018049889 A1 WO2018049889 A1 WO 2018049889A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
sub
holographic
display
displayed
Prior art date
Application number
PCT/CN2017/092470
Other languages
English (en)
French (fr)
Inventor
石炳川
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US15/749,331 priority Critical patent/US10386789B2/en
Publication of WO2018049889A1 publication Critical patent/WO2018049889A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/04Processes or apparatus for producing holograms
    • G03H1/10Processes or apparatus for producing holograms using modulated reference beam
    • G03H1/12Spatial modulation, e.g. ghost imaging
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/02Details of features involved during the holographic process; Replication of holograms without interference recording
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/04Processes or apparatus for producing holograms
    • G03H1/08Synthesising holograms, i.e. holograms synthesized from objects or objects from holograms
    • G03H1/0841Encoding method mapping the synthesized field into a restricted set of values representative of the modulator parameters, e.g. detour phase coding
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/22Processes or apparatus for obtaining an optical image from holograms
    • G03H1/2294Addressing the hologram to an active spatial light modulator
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/10Processing, recording or transmission of stereoscopic or multi-view image signals
    • H04N13/189Recording image signals; Reproducing recorded image signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/302Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays
    • H04N13/31Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays using parallax barriers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/22Processes or apparatus for obtaining an optical image from holograms
    • G03H1/2249Holobject properties
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/02Details of features involved during the holographic process; Replication of holograms without interference recording
    • G03H2001/0208Individual components other than the hologram
    • G03H2001/0212Light sources or light beam properties
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/02Details of features involved during the holographic process; Replication of holograms without interference recording
    • G03H2001/0208Individual components other than the hologram
    • G03H2001/0224Active addressable light modulator, i.e. Spatial Light Modulator [SLM]
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/22Processes or apparatus for obtaining an optical image from holograms
    • G03H1/2249Holobject properties
    • G03H2001/2284Superimposing the holobject with other visual information
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/22Processes or apparatus for obtaining an optical image from holograms
    • G03H1/2294Addressing the hologram to an active spatial light modulator
    • G03H2001/2297Addressing the hologram to an active spatial light modulator using frame sequential, e.g. for reducing speckle noise
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2240/00Hologram nature or properties
    • G03H2240/20Details of physical variations exhibited in the hologram
    • G03H2240/40Dynamic of the variations
    • G03H2240/42Discrete level

Definitions

  • the present invention relates to the field of display technologies, and in particular, to a holographic display device and a holographic display method.
  • holographic display technology has become a branch of display technology. Since the holographic display technology has all the information that can satisfy the human eye vision, and the user can observe the information displayed by the holographic display technology without using an auxiliary device such as a helmet or glasses, the holographic display technology has gained more and more attention. .
  • the information of the image to be displayed may be lost, resulting in insufficient gradation rendering capability of the holographic image, thereby distorting the holographic display of the image to be displayed.
  • the present invention is directed to the above-mentioned deficiencies in the prior art, and provides a holographic display device and a holographic display method for at least partially solving the problem of display distortion of an image to be displayed.
  • the display device is configured to generate and display a corresponding number of sub-holographic images according to the plurality of sub-display image codes, so that the sub-holographic images are superimposed in a human eye to generate a holographic image of the image to be displayed.
  • the controller is further configured to determine a maximum value N of the base number according to the preset hexadecimal value x and the plurality of gray value G i , and respectively decompose each gray value into N a base number and N weights; generating corresponding N weight groups according to the N bases, and generating corresponding N sub-display image codes according to the N weight groups; wherein each gray value The N bases correspond to the N weights one by one, and each weight group corresponds to the same base.
  • the controller is further configured to determine a maximum gray value G max according to the plurality of gray values G i , and determine the cardinal number according to the maximum gray value G max The maximum value N, wherein N satisfies the following condition: log x G max ⁇ N ⁇ (log x G max )+1.
  • the display device includes a spatial light modulator and a backlight assembly, and the backlight assembly is configured to provide a corresponding N backlight intensities according to the N sub-display image codes, where the N backlight intensities are respectively Describe the respective cardinalities corresponding to each weight group corresponding to the N sub-display image codes;
  • the spatial light modulator is configured to generate corresponding N sub-display images according to the N sub-display image codes, and form and display corresponding N according to the N sub-display images and the N backlight intensities. Holographic image.
  • the controller is further configured to acquire, according to the preset image to be displayed, a plurality of gray values G i of the image to be displayed.
  • the holographic display device further includes an image collector for collecting an image of the object to be displayed and transmitting an image of the object to be displayed to the controller, the controller according to the The display image acquires a plurality of gray values G i .
  • Embodiments of the present invention also provide a holographic display method implemented by a holographic display device including a controller and a display device, wherein the holographic display method includes the following steps:
  • step S1 comprises the following steps:
  • the step S11 comprises the steps of: determining a maximum gray value G max according to the plurality of gray values G i , and determining a maximum number of bases according to the maximum gray value G max A value N, wherein N satisfies the following condition: log x G max ⁇ N ⁇ (log x G max )+1.
  • step S2 comprises the following steps:
  • the corresponding N sub-holographic images are formed and time-divisionally displayed by the display device according to the N sub-display images and the N backlight intensities.
  • step S1 comprises the following steps:
  • step S1 comprises the following steps:
  • the controller acquires a plurality of grayscale values of the image to be displayed, generates a plurality of sub-display image codes according to the plurality of grayscale values, and generates and displays the plurality of display images by using the display device.
  • a holographic image such that the plurality of sub-holographic images are superimposed in the human eye to generate a holographic image of the image to be displayed.
  • the gray level of the holographic image is the same as the gray level of the image to be displayed, and does not cause the object to be displayed.
  • the hologram of the image is distorted. As a result, the gradation rendering capability of the holographic image is enhanced, thereby improving the holographic display effect of the image to be displayed.
  • FIG. 1 is a schematic structural view of a holographic display device according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of a holographic display in accordance with some embodiments of the present invention.
  • FIG. 3 is a schematic structural diagram of a holographic display device according to another embodiment of the present invention.
  • FIG. 4 is a schematic flow chart of a holographic display method according to another embodiment of the present invention.
  • FIG. 5 is a schematic flow chart of forming sub-display image coding in an embodiment of the present invention.
  • controller 2 display device 3, holographic display device 9, backlight assembly 10, spatial light modulator
  • an embodiment of the present invention provides a holographic display device including a controller 1 and a display device 2.
  • the controller 1 is configured to generate a holographic image code according to the image to be displayed, and transmit the holographic image code to the display device 2.
  • the display device 2 generates and displays a hologram image based on the received holographic image encoding.
  • the display device 2 may include a backlight assembly 9 and a spatial light modulator 10.
  • the display gray scale of the spatial light modulator 10 can be 256 levels.
  • the gray level of the single hologram image generated and presented by the display device 2 may be less than or equal to 256 levels.
  • the gradation rendering ability of the holographic image may be insufficient, so that the holographic display of the image to be displayed may be distorted.
  • the holographic display device 3 is capable of generating a plurality of sub-holographic images according to an image to be displayed, and each of the sub-holographic images may superimpose a holographic image that generates an image of the object to be displayed in the human eye.
  • the holographic display device 3 according to the present embodiment increases the gray level of the hologram image with respect to the hologram display device that directly generates and displays a hologram image for human eye reception, thereby enhancing the holographic display effect.
  • the holographic display device 3 includes a controller 1 and a display device 2.
  • N sub-display image codes (Q 1 , Q 2 , . . . , Q N ) to the display device 2.
  • m and N above are all positive integers, and N may be less than or equal to m.
  • the display device 2 is configured to generate a corresponding number of sub-holographic images (P 1 , P 2 , . . . , P N ) according to the sub-display image encodings (Q 1 , Q 2 , . . . , Q N ) such that the The sub-hologram images (P 1 , P 2 , ..., P N ) are superimposed in the human eye to generate a hologram image of the image to be displayed.
  • the display device 2 respectively generates and displays a corresponding number of sub-holographic images (P 1 , P 2 , . . . , P N ) based on the received N sub-display image codes (Q 1 , Q 2 , . . . , Q N ). ), that is, generating a sub-holographic image according to a sub-display image encoding, and the N sub-display image encodings (Q 1 , Q 2 , . . . , Q N ) respectively correspond to N sub-holographic images (P 1 , P 2 , . . . , P N ).
  • Each of the sub-hologram images (P 1 , P 2 , . . . , P N ) is displayed in a time-division manner over the length of the duration of the visual persistence effect, so that a hologram image that generates an image of the object to be displayed can be superimposed in the human eye.
  • the gray level of the holographic image is the same as the gray level of the image to be displayed, and does not cause distortion of the holographic display of the image to be displayed.
  • the gradation rendering capability of the holographic image is enhanced, thereby improving the holographic display effect of the image to be displayed.
  • the controller 1 is specifically configured to determine a maximum value N of the base number according to the preset hexadecimal value x and each gray value G i , and respectively decompose each gray value G i into N bases and corresponding N weights; according to the N bases, generate corresponding N weight groups (H 1 , H 2 , ..., H N ), and generate corresponding N sub-display images according to N weight groups Encoding (which will be further described below); wherein the N bases of the respective gray values G i are in one-to-one correspondence with N weights, and the cardinalities in the same weight group are the same.
  • each weight corresponding to the same cardinality is a weight group, as shown in Table 1 below.
  • the controller 1 is specifically configured to determine a maximum gray value G max according to each gray value G i (G 1 , G 2 , . . . , G m ), and according to G max and a predetermined radix x determines the maximum value N of the number of bases (N is a positive integer), where N satisfies the following condition: log x G max ⁇ N ⁇ (log x G max )+1.
  • the default hexadecimal x can be binary, decimal, and so on.
  • the controller 1 may first determine the number of corresponding bases according to the preset hexadecimal values G i (G 1 , G 2 , . . . , G m ). 1 , n 2 , ..., n m ), and then determine the maximum value N of the number of bases.
  • the controller 1 decomposes each of the gradation values G i (G 1 , G 2 , ..., G m ) into N bases and N weights, respectively. Specifically, each of the gradation value G i have the same cardinality of N (x 0, x 1, ?? , x N-1), each of the gradation value corresponding to the base product G i X i of R i and weights The sum is equal to each gray value G i .
  • the controller 1 generates N weight groups (H 1 , H 2 , ..., H N ) according to N base numbers (x 0 , x 1 , ..., x N-1 ), wherein each weight Each weight in the value group corresponds to the same cardinality. That is, the weight group (H 1 , H 2 , ..., H N ) and the cardinality (x 0 , x 1 , ..., x N-1 ) are in one -to- one correspondence, within each weight group Each includes m weights corresponding to the corresponding cardinalities, as shown in Table 1 below.
  • H N corresponding to base x N-1, the respective weights radix x N-1 corresponding to the weight value set H N, weights group H N comprise weights (R 1 (N-1 ) , R 2 (N-1) , ..., R m (N-1) .
  • the controller 1 sets of N weights (H 1, H 2, ising , H N), to form the corresponding N sub-display image encoding (Q 1, Q 2, ising , Q N), the N weights
  • the value group is in one-to-one correspondence with the N sub-display image codes.
  • the display device 2 includes a spatial light modulator 10 and a backlight assembly 9.
  • the backlight assembly 9 is configured to provide corresponding N backlight intensities according to the N sub-display image codes (Q 1 , Q 2 , . . . , Q N ), and each backlight intensity is encoded for each sub-display image (Q 1 , Q 2 , . ..., Q N )
  • the cardinality corresponding to the weight group (x 0 , x 1 , ..., x N-1 ).
  • the spatial light modulator 10 is configured to generate corresponding N sub-display images according to the N sub-display image codes (Q 1 , Q 2 , . . . , Q N ), and display the image and the backlight intensity according to the N sub-subjects (x 0 , x 1 , ..., x N-1 ), forming and displaying corresponding N sub-hologram images.
  • the display device 2 receives N sub-display image codes (Q 1 , Q 2 , . . . , Q N ), and the backlight assembly 9 provides the N sub-display image codes (Q 1 , Q 2 , . . . , Q N ).
  • the corresponding N backlight intensities that is, the backlight assembly 9 provides N backlight intensities, and the N backlight intensities are in one-to-one correspondence with the N sub-display image codes (Q 1 , Q 2 , . . . , Q N ).
  • the backlight intensity is the cardinality (x 0 , x 1 ,%) corresponding to the weight group (H 1 , H 2 , ..., H N ) corresponding to the sub-display image coding (Q 1 , Q 2 , ..., Q N ). ..., x N-1 ).
  • Image spatial light modulator 10 (Z 1, Z 2, ?? , Z N), and to provide time-sharing based on the N sub display image encoding (Q 1, Q 2, ising , Q N) to form the corresponding N sub-display N sub-display images (Z 1 , Z 2 , ..., Z N ); at the same time, the backlight assembly 9 provides corresponding N backlight intensities (x 0 , x 1 , ..., x N-1 ), thereby N backlight intensities (x 0 , x 1 , ..., x N-1 ) are superimposed with N sub-display images (Z 1 , Z 2 , ..., Z N ) to form and display N sub-holographic images in time division (P 1 , P 2 , ..., P N ).
  • the spatial light modulator 10 can include a liquid crystal display component, a digital micromirror array display component, or a liquid crystal on silicon display component.
  • the holographic display device may directly present a holographic image of the object to be displayed, or may represent a holographic image of the image to be displayed.
  • the image to be displayed is preset in the controller 1, and the controller 1 can acquire a plurality of gray values G i of the image to be displayed according to the preset image to be displayed.
  • the holographic display device further includes an image collector (not shown) for collecting an image of the object to be displayed, and transmitting the image of the object to be displayed through wired communication Or wireless communication is sent to the controller 1, that is, the image collector can be coupled to the controller 1 by means of wired communication or wireless communication.
  • the controller 1 may include a memory for storing the received image of the object to be displayed. Then, the controller 1 acquires a plurality of gray values G i of the image to be displayed.
  • the image collector can be a scanner or a digital camera.
  • the holographic display device that collects the image of the object to be displayed by the image collector in real time can realize synchronous dynamic holographic display.
  • FIGS. 3 and 4 Another embodiment of the present invention provides a holographic display method as shown in FIGS. 3 and 4.
  • the holographic display method includes the following steps S1 and S2.
  • Step S1 acquiring, by the controller, a plurality of gray values G i (G 1 , G 2 , . . . , G m ) of the image to be displayed, according to the gray value G i (G 1 , G 2 , . , G m ) generating a plurality of sub-display image codes Q j (Q 1 , Q 2 , . . . , Q N ), and transmitting the sub-display image codes Q j (Q 1 , Q 2 , . . . , Q N ) To the display device.
  • the controller may acquire a plurality of gray values G i (G 1 , G 2 , . . . , G m ) of the image to be displayed according to a preset image to be displayed, or use an image collector. Acquiring an image of the object to be displayed, and transmitting an image of the object to be displayed to the controller, the controller acquiring a plurality of gray values G i (G 1 , G 2 , . . . , G m of the image of the object to be displayed ).
  • controller generates a plurality of sub-display image codes
  • Step S2 The display device generates and displays a corresponding number of sub-holographic images (P 1 , P 2 , . . . , P N according to the sub display image encoding Q j (Q 1 , Q 2 , . . . , Q N ). ), so that the sub-holographic image (P 1 , P 2 , . . . , P N ) is superimposed in the human eye to generate a holographic image of the image to be displayed.
  • the display device displays an image based on the N sub coding Q j (Q 1, Q 2 , ??, Q N), to form the corresponding N sub-display image (Z 1, Z 2, ising , Z N);
  • the sub-display image codes Q j (Q 1 , Q 2 , . . . , Q N ) provide corresponding N backlight intensities (x 0 , x 1 , . . . , x N-1 ), and each of the backlight intensities corresponds to
  • the sub-display image encodes a base number corresponding to the weight group (H 1 , H 2 , . . . , H N ) corresponding to the Q j (Q 1 , Q 2 , . .
  • N displays the image according to the N sub-sub (Z 1 , Z 2 , ..., Z N ) and N backlight intensities (x 0 , x 1 , ..., x N-1 ), forming and displaying corresponding N sub-holographic images (P 1 , P 2 , ..., P N ).
  • a plurality of sub-display image codes Q j (Q 1 , Q 2 , . . . , Q N are generated by the controller according to the gradation values G i (G 1 , G 2 , . . . , G m ).
  • the flow includes the following steps S11 to S13.
  • Step S11 The controller determines the maximum value N of the base number according to the preset hexadecimal value x and each gray value G i (G 1 , G 2 , . . . , G m ), and respectively respectively respectively respectively the gray value G i (G 1 , G 2 , . . . , G m ) is decomposed into N bases and N weights, wherein the N bases of the respective gray values G i are in one-to-one correspondence with the N weights.
  • the maximum gray value G max can be determined by the controller 1 according to each gray value G i (G 1 , G 2 , . . . , G m ), and the base number is determined according to G max and the preset hexadecimal x.
  • the maximum value N of the number (N is a positive integer), where N satisfies the following condition: log x G max ⁇ N ⁇ (log x G max ) +1.
  • Step S12 The controller generates corresponding N weight groups according to the N base numbers, wherein each weight group corresponds to the same base number.
  • Step S13 Generate, by the controller, corresponding N sub-display image codes according to the N weight groups.
  • the gradation value of the five images to be displayed is obtained by taking the preset hexadecimal as a binary number, and the gradation values are (0, 1, 2, 3, 4). .
  • the gradation 0 is decomposed into a base number (1, 2, 4) and its weight (0, 0, 0)
  • the gradation 1 is decomposed into a base number (1, 2, 4) and its weight (1, 0, 0)
  • grayscale 2 is decomposed into cardinality (1, 2, 4) and its weight (0, 1, 0)
  • grayscale 3 is decomposed into cardinality (1, 2, 4) and its weight (1, 1, 0)
  • the gray scale 4 is decomposed into a base number (1, 2, 4) and its weight (0, 0, 1).
  • Table 1 The cardinality corresponding to each gray value and its weight are shown in Table 1:
  • Each gray value has the same cardinality: 1, 2, 4.
  • the controller 1 generates three weight groups (H 1 , H 2 , H 3 ), each weight group corresponding to the same base number, and each weight group includes five weights.
  • the weight group H 1 corresponds to the base number 1
  • the weights in the weight group H 1 are in the order from the minimum gray value to the maximum gray value (0, 1, 0, 1, 0)
  • the weight group H 2 corresponds to the base 2
  • the weights in the weight group H 2 are (0, 0, 1, 1, 0) in the order from the minimum gray value to the maximum gray value
  • the weight group H 3 corresponds to the base 4,
  • the weights in the weight group H 3 are (0, 0, 0, 0, 1) in order from the minimum gray value to the maximum gray value.
  • the controller 1 according to the set of weights 3 (H 1, H 2, H 3), generates a display image corresponding three sub-coding (Q 1, Q 2, Q 3).
  • Q 1 is (0, 1 , 0, 1 , 0)
  • Q 2 is (0, 0, 1 , 1 , 0)
  • Q 3 is (0, 0, 0, 0, 1 ).
  • the spatial light modulator 10 of the display device 2 generates corresponding three sub-display images (Z 1 , Z 2 , Z 3 ) according to the three sub-display image codes (Q 1 , Q 2 , Q 3 ), and the backlight assembly 9 is based on three sub-pictures.
  • the display image code (Q 1 , Q 2 , Q 3 ) provides corresponding 3 backlight intensities, and the backlight intensity is the weight group corresponding to the corresponding sub-display image codes (Q 1 , Q 2 , Q 3 ) (H 1 , H 2 , H 3 ) corresponds to the cardinality (1, 2, 4).
  • the spatial light modulator 10 provides three sub-display images (Z 1 , Z 2 , Z 3 ) in a time division manner, and the backlight assembly 9 simultaneously provides three corresponding backlight intensities (1, 2, 4), thereby being formed by the spatial light modulator 10.
  • the corresponding three sub-hologram images (P 1 , P 2 , P 3 ) are displayed in time division.
  • the three sub-hologram images (P 1 , P 2 , P 3 ) are superimposed in the human eye to form a hologram image, and the gray value displayed in the hologram image is the same as the gray value of the image to be displayed, both of which are (0, 1). , 2, 3, 4), that is, the gray level of the holographic image is the same as the gray level of the image to be displayed, and does not cause distortion of the holographic display of the object to be displayed.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Holo Graphy (AREA)

Abstract

一种全息显示设备和一种全息显示方法,其中,利用控制器获取待显示物图像的多个灰度值,并根据所述多个灰度值生成多个子显示图像编码,利用显示装置通过所述多个子显示图像编码生成并显示多个子全息图像,以使所述多个子全息图像在人眼中叠加生成待显示物图像的全息图像。该全息图像的灰阶层级与待显示物图像的灰阶层级相同,不会造成待显示物图像的全息显示失真。结果,增强了全息图像的灰度呈现能力,进而提高了待显示物图像的全息显示效果。

Description

全息显示设备及全息显示方法 技术领域
本发明涉及显示技术领域,特别涉及一种全息显示设备及一种全息显示方法。
背景技术
随着显示技术不断的发展,全息显示技术已成为显示技术的一个分支。由于全息显示技术具有能够满足人眼视觉的全部信息,并且用户可以不借助头盔、眼镜等辅助装置就能观察到通过全息显示技术所显示的信息,因此全息显示技术获得了越来越多的关注。
然而,在现有的全息显示设备中,待显示物图像的信息会丢失,导致全息图像的灰度呈现能力不足,从而使待显示物图像的全息显示失真。
发明内容
本发明针对现有技术中存在的上述不足,提供一种全息显示设备和一种全息显示方法,用以至少部分解决待显示物图像的显示失真的问题。
本发明的实施例提供了一种全息显示设备,其包括控制器和显示装置,其中,所述控制器用于获取待显示物图像的多个灰度值Gi,根据所述多个灰度值Gi生成多个子显示图像编码Qj,并将所述多个子显示图像编码发送给所述显示装置,其中i=1,2,……,m,j=1,2,……,N,m和N都为正整数;以及
所述显示装置用于根据所述多个子显示图像编码生成并显示相应数量的子全息图像,以使所述子全息图像在人眼中叠加生成所述待显示物图像的全息图像。
在一个实施例中,所述控制器还用于根据预设进制x和所述多 个灰度值Gi,来确定基数个数的最大值N,分别将每一个灰度值分解为N个基数和N个权值;根据所述N个基数,生成相应的N个权值组,并根据所述N个权值组,生成相应的N个子显示图像编码;其中,每一个灰度值的N个基数与N个权值一一对应,每一个权值组对应于同一个基数。
在一个实施例中,所述控制器还用于根据所述多个灰度值Gi确定最大的灰度值Gmax,并根据所述最大的灰度值Gmax确定所述基数个数的最大值N,其中,N满足以下条件:logxGmax<N≤(logxGmax)+1。
在一个实施例中,所述显示装置包括空间光调制器和背光组件,所述背光组件用于根据所述N个子显示图像编码提供相应的N个背光强度,所述N个背光强度分别为所述N个子显示图像编码对应的各个权值组对应的各个基数;以及
所述空间光调制器用于根据所述N个子显示图像编码,来生成相应的N个子显示图像,并根据所述N个子显示图像和所述N个背光强度,来形成并分时显示相应的N个子全息图像。
在一个实施例中,所述控制器还用于根据预设的待显示物图像,获取所述待显示物图像的多个灰度值Gi
在一个实施例中,所述全息显示设备还包括图像采集器,所述图像采集器用于采集待显示物图像,并将待显示物图像发送给所述控制器,所述控制器根据所述待显示物图像获取多个灰度值Gi
本发明的实施例还提供了一种全息显示方法,其通过包括控制器和显示装置的全息显示设备来实施,其中,所述全息显示方法包括以下步骤:
S1、通过所述控制器获取待显示物图像的多个灰度值Gi,根据所述多个灰度值Gi生成多个子显示图像编码Qj,并将所述多个子显示图像编码发送给所述显示装置,其中i=1,2,……,m,j=1,2,……,N,m和N都为正整数;以及
S2、通过所述显示装置根据所述多个子显示图像编码来生成并显示相应数量的子全息图像,以使所述子全息图像在人眼中叠加生成所述待显示物图像的全息图像。
在一个实施例中,所述步骤S1包括以下步骤:
S11、根据预设进制x和所述多个灰度值Gi,确定基数个数的最大值N,分别将每一个灰度值分解为N个基数和N个权值,其中,每一个灰度值的N个基数与N个权值一一对应;
S12、根据所述N个基数,生成相应的N个权值组,其中,每一个权值组对应于同一个基数;以及
S13、根据所述N个权值组,生成相应的N个子显示图像编码。
在一个实施例中,所述步骤S11包括以下步骤:根据所述多个灰度值Gi确定最大的灰度值Gmax,并根据所述最大的灰度值Gmax确定基数个数的最大值N,其中,N满足以下条件:logxGmax<N≤(logxGmax)+1。
在一个实施例中,所述步骤S2包括以下步骤:
通过所述显示装置根据所述N个子显示图像编码,生成相应的N个子显示图像,并提供相应的N个背光强度,所述N个背光强度分别为所述N个子显示图像编码对应的各个权值组对应的各个基数;以及
通过所述显示装置根据所述N个子显示图像和所述N个背光强度,来形成并分时显示相应的N个子全息图像。
在一个实施例中,所述步骤S1包括以下步骤:
通过所述控制器根据预设的待显示物图像,获取所述待显示物图像的多个灰度值Gi
在一个实施例中,所述步骤S1包括以下步骤:
通过所述全息显示设备所包括的图像采集器,来采集待显示物图像,并将待显示物图像发送给所述控制器,并且通过所述控制器根据所述待显示物图像获取多个灰度值Gi
本发明具有以下有益效果:
在本发明提供的全息显示设备进而全息显示方法,利用控制器获取待显示物图像的多个灰度值,根据所述多个灰度值生成多个子显示图像编码,利用显示装置生成并显示多个子全息图像,以使所述多个子全息图像在人眼中叠加生成待显示物图像的全息图像。该全息图像的灰阶层级和待显示物图像的灰阶层级相同,不会造成待显示物图 像的全息显示失真。结果,增强了全息图像的灰度呈现能力,进而提高了待显示物图像的全息显示效果。
附图说明
图1为根据本发明的一个实施例的全息显示设备的结构示意图;
图2为根据本发明的一些实施例的全息显示的原理图;
图3为本发明的另一个实施例提供的全息显示设备的结构示意图;
图4为本发明的另一个实施例提供的全息显示方法的流程示意图;以及
图5为本发明的实施例中形成子显示图像编码的流程示意图。
附图标记说明:
1、控制器  2、显示装置  3、全息显示设备  9、背光组件  10、空间光调制器
具体实施方式
为使本领域的技术人员更好地理解本发明的技术方案,下面结合附图对本发明提供的一种全息显示设备及一种全息显示方法进行详细描述。
如图1所示,本发明的一个实施例提供了一种全息显示设备,其包括控制器1和显示装置2。控制器1用于根据待显示物图像生成一个全息图像编码,并将该全息图像编码发送给显示装置2。显示装置2基于所收到的全息图像编码来生成并显示一幅全息图像。
显示装置2可以包括背光组件9和空间光调制器10。空间光调制器10的显示灰阶可以为256级。在控制器1生成全息图像编码的过程中,显示装置2生成并呈现的单幅全息图像的灰阶层级可以小于或等于256级。当显示装置2生成并呈现的单幅全息图像的灰阶层级可以小于256级时,全息图像的灰度呈现能力可能不足,从而待显示物图像的全息显示可能失真。
本发明的另一个实施例提供了另一种全息显示设备3,如图2所示。该全息显示设备3能够根据待显示物图像生成多个子全息图像,各子全息图像可以在人眼中叠加生成待显示物图像的全息图像。相对于直接生成并显示一个全息图像供人眼接收的全息显示设备,根据本实施例的全息显示设备3提高了全息图像的灰阶层级,从而增强全息显示效果。
如图3所示,所述全息显示设备3包括控制器1和显示装置2。所述控制器1用于获取待显示物图像的多个灰度值Gi(i=1,2,……,m),根据各灰度值Gi生成多个子显示图像编码Qj(j=1,2,……,N),并将各子显示图像编码发送给显示装置2。待显示物图像中的每个物点对应一个采样颜色,以灰度表示,即待显示物图像的各物点分别对应一个灰度值Gi,i为待显示物图像的物点编号,i=(1,2,……,m),其中m为待显示物图像的物点个数。也就是说,控制器1可以获取待显示物图像的各灰度值Gi(G1,G2,……,Gm),根据灰度值Gi(G1,G2,……,Gm)生成N个子显示图像编码(Q1,Q2,……,QN),并将N个子显示图编码(Q1,Q2,……,QN)发送给显示装置2。应当说明的是,上述的m和N均为正整数,并且N可以小于或等于m。
显示装置2用于根据所述子显示图像编码(Q1,Q2,……,QN)生成相应数量的子全息图像(P1,P2,……,PN),以使所述子全息图像(P1,P2,……,PN)在人眼中叠加生成待显示物图像的全息图像。
换言之,显示装置2根据接收到的N个子显示图像编码(Q1,Q2,……,QN),分别生成并显示相应数量的子全息图像(P1,P2,……,PN),即根据一个子显示图像编码生成一个子全息图像,N个子显示图像编码(Q1,Q2,……,QN)分别对应N个子全息图像(P1,P2,……,PN)。各子全息图像(P1,P2,……,PN)在视觉暂留效应的时长范围内分时显示,从而可以在人眼中叠加生成待显示物图像的一幅全息图像。
本发明利用控制器1获取待显示物图像的多个灰度值Gi,根据多个灰度值Gi(i=1,2,……,m)生成多个子显示图像编码Qj(j=1,2,……,N),利用显示装置2生成并显示多个子全息图像Pj(j=1,2,……,N),以使各子全息图像Pj(j=1,2,……,N)在人眼中 叠加生成待显示物图像的全息图像。该全息图像的灰阶层级和待显示物图像的灰阶层级相同,不会造成待显示物图像的全息显示失真。结果,增强了全息图像的灰度呈现能力,进而提高了待显示物图像的全息显示效果。
在一个示例中,控制器1具体用于,根据预设进制x和各灰度值Gi,确定基数个数的最大值N,分别将各灰度值Gi分解为N个基数和相应的N个权值;根据所述N个基数,生成相应的N个权值组(H1,H2,……,HN),并根据N个权值组,生成相应的N个子显示图像编码(这将在下文中进一步描述);其中,所述各灰度值Gi的N个基数与N个权值一一对应,并且同一权值组内的基数相同。换言之,与同一个基数相对应的各个权值是一个权值组,如下文描述的表1所示。
在一个示例中,控制器1具体用于,根据各灰度值Gi(G1,G2,……,Gm)确定最大的灰度值Gmax,并根据Gmax和预设进制x确定基数个数的最大值N(N为正整数),其中,N满足以下条件:logxGmax<N≤(logxGmax)+1。预设进制x可以为二进制、十进制等。
需要说明的是,控制器1还可以先对获取到的各灰度值Gi(G1,G2,……,Gm)分别根据预设进制x确定相应的基数的个数(n1,n2,……,nm),然后再确定出基数个数的最大值N。
控制器1分别将各灰度值Gi(G1,G2,……,Gm)分解为N个基数和N个权值。具体地,各灰度值Gi具有相同的N个基数(x0,x1,……,xN-1),各灰度值Gi对应的基数Xi及其权值Ri的乘积之和等于各灰度值Gi。例如,i=1时,灰度值G1可以分解为基数(x0,x1,……,xN-1)和权值(R1 0,R1 1,……,R1 (N-1)),基数x0对应的权值为R1 0,基数x1对应的权值为R1 1,基数xN-1对应的权值为R1 (N-1),灰度值G1=x0*R1 0+x1*R1 1+……+xN-1*R1 (N-1)。i=2时,灰度值G2可以分解为基数(x0,x1,……,xN-1)和权值(R2 0,R2 1,……,R2 (N-1)),且G2=x0*R2 0+x1*R2 1+……+xN-1*R2 (N-1)。i=m时,灰度值Gm可以分解为基数(x0,x1,……,xN-1)和权值(Rm 0,Rm 1,……,Rm (N-1)),且Gm=x0*Rm 0+x1*Rm 1+……+xN-1*Rm (N-1)
接下来,控制器1根据N个基数(x0,x1,……,xN-1),生成N 个权值组(H1,H2,……,HN),其中每个权值组内的各个权值对应同一个基数。也就是说,所述权值组(H1,H2,……,HN)和所述基数(x0,x1,……,xN-1)一一对应,各权值组内均包括与对应的基数相对应的m个权值,如下文的表1所示。具体地,权值组H1对应基数x0,权值组H1内的各个权值与基数x0相对应,权值组H1包括权值(R1 0,R2 0,……,Rm 0);权值组H2对应基数x1,权值组H2内的各个权值与基数x1相对应,权值组H2包括权值(R1 1,R2 1,……,Rm 1);HN对应基数xN-1,权值组HN内的各个权值与基数xN-1相对应,权值组HN包括权值(R1 (N-1),R2 (N-1),……,Rm (N-1)
控制器1根据N个权值组(H1,H2,……,HN),生成相应的N个子显示图像编码(Q1,Q2,……,QN),所述N个权值组与所述N个子显示图像编码一一对应。
如图3所示,显示装置2包括空间光调制器10和背光组件9。背光组件9用于,根据N个子显示图像编码(Q1,Q2,……,QN)提供相应的N个背光强度,各背光强度为各子显示图像编码(Q1,Q2,……,QN)对应的权值组对应的基数(x0,x1,……,xN-1)。空间光调制器10用于,根据N个子显示图像编码(Q1,Q2,……,QN),生成相应的N个子显示图像,并根据所述N个子显示图像和背光强度(x0,x1,……,xN-1),形成并显示相应的N个子全息图像。
也就是说,显示装置2接收N个子显示图像编码(Q1,Q2,……,QN),背光组件9根据N个子显示图像编码(Q1,Q2,……,QN)提供相应的N个背光强度,即背光组件9提供N个背光强度,所述N个背光强度与所述N个子显示图像编码(Q1,Q2,……,QN)一一对应。背光强度即为子显示图像编码(Q1,Q2,……,QN)对应的权值组(H1,H2,……,HN)对应的基数(x0,x1,……,xN-1)。
空间光调制器10根据N个子显示图像编码(Q1,Q2,……,QN)生成相应的N个子显示图像(Z1,Z2,……,ZN),并分时提供所述N个子显示图像(Z1,Z2,……,ZN);同时,背光组件9分时提供相应的N个背光强度(x0,x1,……,xN-1),从而N个背光强度(x0,x1,……,xN-1)与N个子显示图像(Z1,Z2,……,ZN)一一叠加, 形成并分时显示N个子全息图像(P1,P2,……,PN)。
由于分时显示多个子全息图像对空间光调制器的刷新频率要求较高,为保证子全息图像根据视觉暂留效应使人眼在感官上等效为一幅全息图像,因此,预设进制x和基数个数的最大值N需要根据空间光调制器的实际刷新频率确定。空间光调制器10可以包括:液晶显示组件、数字微镜阵列显示组件或硅基液晶显示组件。
需要说明的是,所述全息显示设备可以直接呈现待显示物实物的全息图像,也可以呈现待显示物图像的全息图像。当呈现待显示物图像的全息图像时,在控制器1内预设待显示物图像,控制器1可以根据预设的待显示物图像,获取待显示物图像的多个灰度值Gi。当直接呈现待显示物实物的全息图像时,全息显示设备还包括图像采集器(图中未示出),图像采集器用于采集待显示物图像,并将采集到的待显示物图像通过有线通信或无线通信发送给控制器1即,图像采集器可以通过有线通信的方式或无线通信的方式耦接至控制器1。控制器1可以包括用于存储所接收到的待显示物图像的存储器。然后,控制器1获取所述待显示物图像的多个灰度值Gi
图像采集器可以为扫描仪或数字摄像机。通过图像采集器对待显示物实物的图像实时采集的全息显示设备可以实现同步动态全息显示。
基于与前述实施例的全息显示设备相同的构思,本发明的另一个实施例提供了一种全息显示方法,如图3和图4所示。所述全息显示方法包括以下步骤S1和步骤S2。
步骤S1、通过控制器获取待显示物图像的多个灰度值Gi(G1,G2,……,Gm),根据所述灰度值Gi(G1,G2,……,Gm)生成多个子显示图像编码Qj(Q1,Q2,……,QN),并将所述子显示图像编码Qj(Q1,Q2,……,QN)发送给所述显示装置。
具体地,控制器可以根据预设的待显示物图像,获取所述待显示物图像的多个灰度值Gi(G1,G2,……,Gm),或者,利用图像采集器采集待显示物图像,并将待显示物图像发送给所述控制器,所述 控制器获取所述待显示物图像的多个灰度值Gi(G1,G2,……,Gm)。
控制器生成多个子显示图像编码的具体实现方式将在下文结合附图5来详细说明。
步骤S2、所述显示装置根据所述子显示图像编码Qj(Q1,Q2,……,QN)生成并显示相应数量的子全息图像(P1,P2,……,PN),以使所述子全息图像(P1,P2,……,PN)在人眼中叠加生成所述待显示物图像的全息图像。
具体地,显示装置根据N个子显示图像编码Qj(Q1,Q2,……,QN),生成相应的N个子显示图像(Z1,Z2,……,ZN);根据N个子显示图像编码Qj(Q1,Q2,……,QN)提供相应的N个背光强度(x0,x1,……,xN-1),各所述背光强度为对应的所述子显示图像编码Qj(Q1,Q2,……,QN)对应的权值组(H1,H2,……,HN)对应的基数;根据所述N个子显示图像(Z1,Z2,……,ZN)和N个背光强度(x0,x1,……,xN-1),形成并显示相应的N个子全息图像(P1,P2,……,PN)。
通过上述步骤可以看出,通过生成并显示多个子全息图像(P1,P2,……,PN),多个子全息图像(P1,P2,……,PN)在人眼中叠加后生成一幅全息图像,该全息图像的灰度值与相应的待显示物图像的灰度值相同,即该全息图像的灰阶层级和待显示物图像的灰阶层级相同,不会造成待显示物图像的显示失真。
如图5所示,通过所述控制器根据灰度值Gi(G1,G2,……,Gm)生成多个子显示图像编码Qj(Q1,Q2,……,QN)的流程包括以下步骤S11至步骤S13。
步骤S11、通过所述控制器根据预设进制x和各灰度值Gi(G1,G2,……,Gm),确定基数个数的最大值N,分别将各灰度值Gi(G1,G2,……,Gm)分解为N个基数和N个权值,其中,各灰度值Gi的N个基数与N个权值一一对应。
具体地,可以通过控制器1根据各灰度值Gi(G1,G2,……,Gm)确定最大的灰度值Gmax,并根据Gmax和预设进制x确定基数个数的最大值N(N为正整数),其中,N满足以下条件:logxGmax<N≤(logxGmax) +1。
步骤S12、通过所述控制器根据所述N个基数,生成相应的N个权值组,其中每一个权值组对应于同一个基数。
步骤S13、通过所述控制器根据所述N个权值组,生成相应的N个子显示图像编码。
为了清楚说明本发明的技术方案,以下结合附图3通过具体实例对本发明提供的全息显示设备和全息显示方法进行详细说明。
在本实施例中,以预设进制为2进制、获取5个待显示物图像的灰度值为例进行说明,其中,各灰度值为(0,1,2,3,4)。
控制器1确定出最大的灰度值Gmax=4,根据log24<N≤(log24)+1,计算出N=3。因此,将各灰度值(0,1,2,3,4)分别分解为3个基数以及与每一个基数对应的3个权值。具体地,灰度0分解为基数(1,2,4)及其权值(0,0,0),灰度1分解为基数(1,2,4)及其权值(1,0,0),灰度2分解为基数(1,2,4)及其权值(0,1,0),灰度3分解为基数(1,2,4)及其权值(1,1,0),灰度4分解为基数(1,2,4)及其权值(0,0,1)。各灰度值对应的基数及其权值如表1所示:
表1
  基数=4(22) 基数=2(21) 基数=1(20)
灰度值 权值组H3 权值组H2 权值组H1
4 1 0 0
3 0 1 1
2 0 1 0
1 0 0 1
0 0 0 0
各灰度值具有相同的基数:1,2,4。控制器1生成3个权值组(H1,H2,H3),每个权值组对应同一个基数,且各权值组内包括5个权值。具体地,权值组H1对应基数1,权值组H1内的权值按照从最小灰度值到最大灰度值的顺序为(0,1,0,1,0);权值组H2对应 基数2,权值组H2内的权值按照从最小灰度值到最大灰度值的顺序为(0,0,1,1,0);权值组H3对应基数4,权值组H3内的权值按照从最小灰度值到最大灰度值的顺序为(0,0,0,0,1)。
控制器1根据所述3个权值组(H1,H2,H3),来生成相应的3个子显示图像编码(Q1,Q2,Q3)。例如,Q1为(0,1,0,1,0),Q2为(0,0,1,1,0),Q3为(0,0,0,0,1)。
显示装置2的空间光调制器10根据3个子显示图像编码(Q1,Q2,Q3),生成相应的3个子显示图像(Z1,Z2,Z3),背光组件9根据3个子显示图像编码(Q1,Q2,Q3)提供相应的3个背光强度,背光强度为对应的子显示图像编码(Q1,Q2,Q3)对应的权值组(H1,H2,H3)对应的基数(1,2,4)。空间光调制器10分时提供3个子显示图像(Z1,Z2,Z3),背光组件9同时提供3个相应的背光强度(1,2,4),从而由空间光调制器10形成并分时显示相应的3个子全息图像(P1,P2,P3)。
3个子全息图像(P1,P2,P3)在人眼中叠加形成一幅全息图像,该全息图像中显示的灰度值与待显示物图像的灰度值相同,均为(0,1,2,3,4),即该全息图像的灰阶层级和待显示物图像的灰阶层级相同,不会造成待显示物的全息显示失真。
应当理解的是,以上实施方式仅仅是为了说明本发明的原理而采用的示例性实施方式,然而本发明并不局限于此。对于本领域内的普通技术人员而言,在不脱离本发明的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也属于本发明的保护范围。

Claims (12)

  1. 一种全息显示设备,包括控制器和显示装置,其中,
    所述控制器用于获取待显示物图像的多个灰度值Gi,根据所述多个灰度值Gi生成多个子显示图像编码Qj,并将所述多个子显示图像编码发送给所述显示装置,其中i=1,2,……,m,j=1,2,……,N,m和N都为正整数;以及
    所述显示装置用于根据所述多个子显示图像编码生成并显示相应数量的子全息图像,以使所述子全息图像在人眼中叠加生成所述待显示物图像的全息图像。
  2. 根据权利要求1所述的全息显示设备,其中,
    所述控制器还用于根据预设进制x和所述多个灰度值Gi,来确定基数个数的最大值N,分别将每一个灰度值分解为N个基数和N个权值;根据所述N个基数,生成相应的N个权值组,并根据所述N个权值组,生成相应的N个子显示图像编码;其中,每一个灰度值的N个基数与N个权值一一对应,每一个权值组对应于同一个基数。
  3. 根据权利要求2所述的全息显示设备,其中,所述控制器还用于根据所述多个灰度值Gi确定最大的灰度值Gmax,并根据所述最大的灰度值Gmax确定所述基数个数的最大值N,其中,N满足以下条件:logxGmax<N≤(logxGmax)+1。
  4. 根据权利要求2所述的全息显示设备,其中,所述显示装置包括空间光调制器和背光组件,
    所述背光组件用于根据所述N个子显示图像编码提供相应的N个背光强度,所述N个背光强度分别为所述N个子显示图像编码对应的各个权值组对应的各个基数;以及
    所述空间光调制器用于根据所述N个子显示图像编码,来生成相应的N个子显示图像,并根据所述N个子显示图像和所述N个背光 强度,来形成并分时显示相应的N个子全息图像。
  5. 根据权利要求1所述的全息显示设备,其中,所述控制器还用于,根据预设的待显示物图像,获取所述待显示物图像的多个灰度值Gi
  6. 根据权利要求1所述的全息显示设备,其中,所述全息显示设备还包括图像采集器,所述图像采集器用于采集待显示物图像,并将待显示物图像发送给所述控制器,所述控制器根据所述待显示物图像获取多个灰度值Gi
  7. 一种全息显示方法,其通过包括控制器和显示装置的全息显示设备来实施,其中,所述全息显示方法包括以下步骤:
    S1、通过所述控制器获取待显示物图像的多个灰度值Gi,根据所述多个灰度值Gi生成多个子显示图像编码Qj,并将所述多个子显示图像编码发送给所述显示装置,其中i=1,2,……,m,j=1,2,……,N,m和N都为正整数;以及
    S2、通过所述显示装置根据所述多个子显示图像编码来生成并显示相应数量的子全息图像,以使所述子全息图像在人眼中叠加生成所述待显示物图像的全息图像。
  8. 根据权利要求7所述的全息显示方法,其中,所述步骤S1包括以下步骤:
    S11、根据预设进制x和所述多个灰度值Gi,确定基数个数的最大值N,分别将每一个灰度值分解为N个基数和N个权值,其中,每一个灰度值的N个基数与N个权值一一对应;
    S12、根据所述N个基数,生成相应的N个权值组,其中,每一个权值组对应于同一个基数;以及
    S13、根据所述N个权值组,生成相应的N个子显示图像编码。
  9. 根据权利要求8所述的全息显示方法,其中,所述步骤S11包括以下步骤:根据所述多个灰度值Gi确定最大的灰度值Gmax,并根据所述最大的灰度值Gmax确定基数个数的最大值N,其中,N满足以下条件:logxGmax<N≤(logxGmax)+1。
  10. 根据权利要求8所述的全息显示方法,其中,所述步骤S2包括以下步骤:
    通过所述显示装置根据所述N个子显示图像编码,生成相应的N个子显示图像,并提供相应的N个背光强度,所述N个背光强度分别为所述N个子显示图像编码对应的各个权值组对应的各个基数;以及
    通过所述显示装置根据所述N个子显示图像和所述N个背光强度,来形成并分时显示相应的N个子全息图像。
  11. 根据权利要求7所述的全息显示方法,其中,所述步骤S1包括以下步骤:
    通过所述控制器根据预设的待显示物图像,获取所述待显示物图像的多个灰度值Gi
  12. 根据权利要求7所述的全息显示方法,其中,所述步骤S1包括以下步骤:
    通过所述全息显示设备所包括的图像采集器,来采集待显示物图像,并将待显示物图像发送给所述控制器,并且通过所述控制器根据所述待显示物图像获取多个灰度值Gi
PCT/CN2017/092470 2016-09-14 2017-07-11 全息显示设备及全息显示方法 WO2018049889A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/749,331 US10386789B2 (en) 2016-09-14 2017-07-11 Hologram display apparatus and hologram display method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610826827.7A CN106210707B (zh) 2016-09-14 2016-09-14 一种全息显示系统及全息显示方法
CN201610826827.7 2016-09-14

Publications (1)

Publication Number Publication Date
WO2018049889A1 true WO2018049889A1 (zh) 2018-03-22

Family

ID=58067056

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/092470 WO2018049889A1 (zh) 2016-09-14 2017-07-11 全息显示设备及全息显示方法

Country Status (3)

Country Link
US (1) US10386789B2 (zh)
CN (1) CN106210707B (zh)
WO (1) WO2018049889A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106210707B (zh) * 2016-09-14 2018-05-01 京东方科技集团股份有限公司 一种全息显示系统及全息显示方法
CN107340704B (zh) * 2017-01-04 2020-02-07 京东方科技集团股份有限公司 一种全息显示装置
CN113467211B (zh) * 2021-06-24 2022-06-10 浙江大学 一种基于频谱损失函数梯度下降的全息编码方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060171583A1 (en) * 2005-02-01 2006-08-03 Lee Chao H Reducing ghosting in holographic stereograms
CN101477326A (zh) * 2009-02-06 2009-07-08 苏州苏大维格光电科技股份有限公司 多视角图形输入的三维图形直写方法
CN101661265A (zh) * 2009-09-29 2010-03-03 哈尔滨师范大学 数字信息立体显示的多通道全息记录方法
CN103955127A (zh) * 2014-04-17 2014-07-30 中国人民解放军装甲兵工程学院 一种相位调制全视差全息体视图实现方法
CN105892075A (zh) * 2016-06-08 2016-08-24 京东方科技集团股份有限公司 一种全息显示系统及全息显示方法
CN106210707A (zh) * 2016-09-14 2016-12-07 京东方科技集团股份有限公司 一种全息显示系统及全息显示方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE29461E (en) * 1973-08-31 1977-10-25 Nippon Electric Company, Limited Hologram graphic data tablet apparatus using a vernier
CN101496405B (zh) * 2006-08-22 2011-07-20 孙犁 二维和三维显示器
CN101202931B (zh) * 2006-12-11 2010-12-08 广达电脑股份有限公司 三维图像调整装置及其方法
CN101625874B (zh) 2009-07-31 2011-07-20 清华大学 一种多灰阶体全息存储方法
WO2012062681A1 (de) * 2010-11-08 2012-05-18 Seereal Technologies S.A. Anzeigegerät, insbesondere ein head-mounted display, basierend auf zeitlichen und räumlichen multiplexing von hologrammkacheln
CN102654697B (zh) * 2012-04-25 2015-04-15 北京京东方光电科技有限公司 一种全息液晶显示器、立体显示方法及立体显示系统
CN104464608A (zh) * 2013-09-17 2015-03-25 西安光向信息科技有限公司 一种提高led显示屏灰度等级的方法
KR102188636B1 (ko) * 2013-11-28 2020-12-08 삼성전자주식회사 홀로그램 디스플레이를 위한 서브-홀로그램 생성 방법 및 장치
US9465361B2 (en) * 2014-03-31 2016-10-11 Disney Enterprises, Inc. Image based multiview multilayer holographic rendering algorithm
KR102404416B1 (ko) * 2015-07-21 2022-06-07 한국전자통신연구원 홀로그램 영상의 특성 측정 장치 및 방법
CN105120325B (zh) * 2015-09-15 2018-12-14 中国人民解放军信息工程大学 一种信息传输方法及系统
US10154253B2 (en) * 2016-08-29 2018-12-11 Disney Enterprises, Inc. Multi-view displays using images encoded with orbital angular momentum (OAM) on a pixel or image basis

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060171583A1 (en) * 2005-02-01 2006-08-03 Lee Chao H Reducing ghosting in holographic stereograms
CN101477326A (zh) * 2009-02-06 2009-07-08 苏州苏大维格光电科技股份有限公司 多视角图形输入的三维图形直写方法
CN101661265A (zh) * 2009-09-29 2010-03-03 哈尔滨师范大学 数字信息立体显示的多通道全息记录方法
CN103955127A (zh) * 2014-04-17 2014-07-30 中国人民解放军装甲兵工程学院 一种相位调制全视差全息体视图实现方法
CN105892075A (zh) * 2016-06-08 2016-08-24 京东方科技集团股份有限公司 一种全息显示系统及全息显示方法
CN106210707A (zh) * 2016-09-14 2016-12-07 京东方科技集团股份有限公司 一种全息显示系统及全息显示方法

Also Published As

Publication number Publication date
US20190011883A1 (en) 2019-01-10
CN106210707B (zh) 2018-05-01
CN106210707A (zh) 2016-12-07
US10386789B2 (en) 2019-08-20

Similar Documents

Publication Publication Date Title
CN106157869B (zh) 一种显示图像的色偏修正方法、修正装置及显示装置
WO2018049889A1 (zh) 全息显示设备及全息显示方法
CN105590597B (zh) 用于扩大显示装置的动态范围的方法及装置
CN107863081A (zh) 多基色转换方法及其转换器、显示控制方法、显示装置
CN106998454B (zh) 有源视频投影屏幕
US9313374B2 (en) Method and device to enhance image quality in digital video processing systems using dithering
CN1987987A (zh) 驱动液晶显示器件的装置和方法
CN109166558B (zh) 像素信号转换方法及装置
CN105678707B (zh) 一种基于旋转抖动矩阵处理的图像处理方法
CN105100760B (zh) 图像处理方法和用于执行该图像处理方法的图像处理装置
CN106328090B (zh) 液晶显示器的驱动方法及驱动系统
RU2004110226A (ru) Система и способ уменьшения напряжения зрения
CN106485079A (zh) 一种医学影像云处理方法
CN102447945A (zh) 一种图像亮度的jnd值测定方法
CN106328089A (zh) 像素驱动方法
TW200823859A (en) Display method and display apparatus using this method
CN104144332A (zh) 图像色彩调整方法与其电子装置
JP2018059999A (ja) 電子機器、表示装置、及び情報出力方法
US9210390B2 (en) Poly-phase frame modulation system
CN105472366B (zh) 基于心理视觉调制的图像处理方法、装置及显示设备
CN100495516C (zh) 动态图形索引的系统及方法
CN108288448A (zh) 显示驱动系统及其驱动方法和显示装置
CN106331686A (zh) 基于空域心理视觉的图像信息显示系统及方法
CN104835455B (zh) 显示器的控制方法
CN114495771B (zh) 虚拟现实显示设备、主机设备、系统及数据处理方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17850092

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 12/07/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 17850092

Country of ref document: EP

Kind code of ref document: A1