WO2018049713A1 - 一种基于区块链技术一致性算法的数据管理方法及系统 - Google Patents

一种基于区块链技术一致性算法的数据管理方法及系统 Download PDF

Info

Publication number
WO2018049713A1
WO2018049713A1 PCT/CN2016/103441 CN2016103441W WO2018049713A1 WO 2018049713 A1 WO2018049713 A1 WO 2018049713A1 CN 2016103441 W CN2016103441 W CN 2016103441W WO 2018049713 A1 WO2018049713 A1 WO 2018049713A1
Authority
WO
WIPO (PCT)
Prior art keywords
node
blockchain
network
nodes
data
Prior art date
Application number
PCT/CN2016/103441
Other languages
English (en)
French (fr)
Inventor
王文欢
尚书丞
杨炯
Original Assignee
弗洛格(武汉)信息科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 弗洛格(武汉)信息科技有限公司 filed Critical 弗洛格(武汉)信息科技有限公司
Publication of WO2018049713A1 publication Critical patent/WO2018049713A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L63/00Network architectures or network communication protocols for network security
    • H04L63/12Applying verification of the received information
    • H04L63/123Applying verification of the received information received data contents, e.g. message integrity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/30Public key, i.e. encryption algorithm being computationally infeasible to invert or user's encryption keys not requiring secrecy
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/32Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials
    • H04L9/3247Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials involving digital signatures

Definitions

  • the invention relates to the field of blockchain technology, and in particular to a data management method and system based on a blockchain technology consistency algorithm.
  • blockchain is often used for the storage of transactional data.
  • Commonly used consistency algorithms such as workload proof (POW), equity certificate (POS), and authorized equity certificate (DPOS) are all considered in the application scenario of transactional data.
  • the benefit distribution is obtained from it, so that the whole system continues to run in the positive direction.
  • the conventional consistency algorithms such as workload proof, equity certificate, and authorized equity certificate cannot directly follow the previous mining and trading.
  • the effective monetary incentives are divided into other ways, so they are limited, and the mechanism principle of the previous transaction sharing has become the redundancy of the system.
  • the invention provides a data management method and system based on blockchain technology consistency algorithm, validates the blocks in the blockchain, and constructs an effective positive incentive measure.
  • a data management method based on a blockchain technology consistency algorithm including:
  • each server serves as a node in the network, and one of all nodes in the network is determined as one maintenance node, and the other is used as a common node;
  • the blockchain is configured in each node, and the blockchain includes more Blocks, each block stores a part of data, and the entire blockchain stores a complete set of data;
  • the maintenance node determines, from all the nodes, a first predetermined number of nodes as representative nodes in the network, and configures the sequence and time period in which the representative nodes generate the blocks.
  • a data management system based on a blockchain technology consistency algorithm comprising a plurality of servers, wherein the plurality of servers form a network, and each server serves as a node in the network. And one of the nodes in the whole network is determined as a maintenance node, and the others are used as ordinary nodes;
  • Each node includes:
  • An initialization module configured to initialize a blockchain, wherein each block is configured with the blockchain, the blockchain includes a plurality of blocks, each block stores a part of data, and the entire block chain stores Have a complete set of data;
  • An update module configured to: when a new block broadcast by a node in the representative node is received, and the new block is valid, update the initial blockchain according to the new block;
  • the maintenance node further includes:
  • a representative node determining module configured to determine, from all the nodes, a first predetermined number of nodes as representative nodes in the network
  • a configuration module configured to configure a sequence and a time period of the generated node by the representative node.
  • the invention provides a data management method and system based on a blockchain technology consistency algorithm, which validates the blocks generated by nodes in the network to ensure data security, and in addition, in order to improve the whole network block
  • the overall efficiency of the chain describes a data consistency algorithm rule that can be applied to the blockchain: Participated proof of public good (PPOPG), which defines a rule for nodes in the network to generate blocks.
  • POPG Participated proof of public good
  • the overall efficiency of the blockchain has been improved, and effective positive incentives have been constructed to ensure the good operation of the entire network system.
  • Embodiment 1 is a flowchart of a data management method based on a blockchain technology consistency algorithm of Embodiment 1;
  • FIG. 2 is a block diagram of a data management system based on a blockchain technology consistency algorithm of Embodiment 2.
  • Embodiment 1 A data management method based on a blockchain technology consistency algorithm.
  • the data management method based on the blockchain technology consistency algorithm provided in this embodiment includes:
  • each server serves as a node in the network, and one of all nodes in the network is determined as one maintenance node, and the other is used as a common node;
  • each block is configured with the blockchain, the blockchain includes a plurality of blocks, each block stores a part of data, and the entire blockchain stores a complete set of data;
  • the maintenance node determines, from all the nodes, a first predetermined number of nodes as representative nodes in the network, and configures the sequence and time period in which the representative nodes generate the blocks.
  • each server acts as a node in the network, and one of the nodes in the network is determined as one maintenance node, and the other nodes are used as ordinary nodes.
  • the maintenance node is mainly responsible for all the networks. Node management and maintenance.
  • each node in the network is configured with a blockchain for initialization, block
  • the chain contains multiple blocks, each of which stores a part of the data, and the entire block chain stores a complete set of data.
  • the maintenance node comprehensively sorts all nodes according to the computing power of the node, the network transmission status, the stability and security of the node server, and the first predetermined number of nodes ranked first.
  • a representative node in the entire network that is, the representative nodes of the entire network are not static, but dynamically changed.
  • the maintenance node in the network periodically sorts all the nodes according to the above conditions, and determines the first predetermined number of nodes in which the top ranking is the representative node in the whole network. For example, the maintenance node will sort 1000 nodes in the whole network every hour, and determine the top 100 nodes in the whole network as the representative nodes in the whole network. Then, basically every hour, the representative nodes in the network It is change, which can ensure the performance of the representative nodes in the whole network is better, ensure the stability of the entire network, and ensure the reasonable decentralization of the entire network.
  • the maintenance node After determining the representative nodes in the network for a certain period of time, the maintenance node configures the order and time period in which the representative nodes generate the blocks. When a node in the representative node generates a new block, it broadcasts to the whole network. When it is determined that the new block is valid, the node in the whole network updates the initial block chain according to the new block.
  • the specific method for determining whether a new block is valid is: when a node in a representative node generates a new block at a certain moment, broadcasts to the entire network, and other representative nodes that receive the new block verify whether the new block is valid, For example, whether the current block generator is correct, whether the node that generates the block is a representative node, and whether the time segment is a generated block for the representative node, whether the data generation rule of the block itself is correct, and the data storage format is included. Is it correct, the encryption verification rules are correct, and whether it is correctly connected to the previous block.
  • the representative node When the verification is valid, the representative node stores the new block; when the representative node of the other representative nodes exceeds the second predetermined number (usually half of the representative nodes) stores the new block, the block is determined to be a valid block.
  • the nodes in the entire network store the new block and update the current blockchain.
  • the representative nodes determined by the integrated sorting for a certain period of time will also be regularly performed. For example, when the representative node often has an abnormality, such as generating an error block, the generated block broadcast is not timely, the node server is often dropped, or the new block is not stored in time, the maintenance node will remove the representative node and re-select The new representative node replaces it, usually by selecting the first predetermined number of subsequent nodes instead of the representative node, so that the first predetermined number of representative nodes are maintained in the network. At the same time, the maintenance node sends an alarm message to the replaced node to remind itself to optimize.
  • an abnormality such as generating an error block
  • the generated block broadcast is not timely
  • the node server is often dropped, or the new block is not stored in time
  • the maintenance node will remove the representative node and re-select The new representative node replaces it, usually by selecting the first predetermined number of subsequent nodes instead of the representative node, so that the first predetermined number of representative
  • the contribution value of each node in the whole network is specifically: separately counting the online duration of each node in the entire network, that is, the time when the node joins the network to the current total online duration, and the online duration of the node as the representative node.
  • the node is selected as the representative node until the time is no longer selected as the sum of the online duration of the representative node, the amount of the block generated by the node, that is, the total number of blocks generated when the node is the representative node, and the total number of blocks generated by the node.
  • the amount of data the capacity of the data stored in the block generated when the node acts as a representative node.
  • Node contribution value online duration of the node / total network duration * first contribution coefficient + online duration of the node as the representative node / total network duration * second contribution coefficient + block amount generated by the node / blockchain Total amount of blocks * Third contribution coefficient + Data amount of the block generated by the node / Total capacity of data stored in the block chain * Fourth contribution coefficient.
  • the contribution value of each data provider is calculated.
  • the data in the blockchain corresponds to the identifier information of the data provider. According to the identifier information of the data provider, the data in the blockchain can be divided into units of the data provider, and each data provider is correspondingly obtained. The data provided and these numbers According to which block is stored.
  • the specific method for calculating the contribution value of each data provider is: counting the quantity of valid sample data provided by each data provider and the number of samples provided by each data provider in different scenarios to play a practical role;
  • Contribution value of the data provider number of valid sample data provided by the data provider / total number of valid samples in the blockchain * fifth contribution coefficient + number of samples provided by the data provider in scenario 1 to play a practical role
  • Quantity * contribution coefficient of scene 2 +... + the number of samples provided by the data provider to play a practical role in scene n / the total number of samples that play a role in the blockchain under scene n * the contribution coefficient of scene n, where n is a positive integer.
  • the first contribution coefficient, the second contribution coefficient, the third contribution coefficient, the fourth contribution coefficient, and the fifth contribution coefficient, and the contribution coefficient under the scene 1, and the contribution coefficient under the scene 2 until the contribution coefficient under the scene n can be Configure the actual situation.
  • the quantitative index corresponding to each node is calculated according to the totalization index of the entire network system and the contribution value of each node in the network; According to the totalization index of the entire network system and the contribution value of each data provider, the quantitative index corresponding to each data provider is calculated.
  • the quantification of the network system can be the return on social investment or the efficiency of the entire network system.
  • Embodiment 2 A data management system based on a blockchain technology consistency algorithm.
  • the data management system based on the blockchain technology consistency algorithm provided in this embodiment a plurality of servers, the plurality of servers forming a network, each server as a node in the network, and one of the nodes of the entire network is determined as one of the maintenance nodes 2, and the other as the ordinary node 1;
  • Each node includes:
  • the initialization module 11 is configured to initialize a blockchain, wherein each block is configured with the blockchain, the blockchain includes a plurality of blocks, and each block stores a part of data, and the entire block chain is Store a complete set of data;
  • the updating module 12 is configured to: when receiving a new block broadcast by a node in the representative node, and the new block is valid, update the initial blockchain according to the new block;
  • the maintenance node 2 further includes:
  • a representative node determining module 21 configured to determine, from all the nodes, a first predetermined number of nodes as representative nodes in the network;
  • the configuration module 22 is configured to configure the sequence and time period in which the representative node generates the blocks.
  • the representative node determining module 21 is specifically configured to:
  • All nodes including the maintenance node in the whole network are comprehensively sorted according to computing power, network transmission status, server stability and security, and a predetermined number of nodes ranked first are used as representative nodes in the network.
  • the representative node determining module 21 is further configured to:
  • the validity verification of the new block is specifically: when a node in the representative node generates a new block, broadcasts to the entire network, and other representative nodes that receive the new block verify whether the new block is Valid, when valid, other representative nodes store the new block;
  • the block is determined to be a valid block, and the nodes in the entire network store the new block, and the current block chain is performed. Update.
  • the maintenance node 2 further includes:
  • the node contribution value calculation module 23 is configured to calculate a contribution value of each node in the entire network. Calculating the contribution value of each node in the whole network is specifically: separately counting the online duration of each node in the whole network, the online duration of the node as the representative node, the amount of the block generated by the node, and the data generated by the node. the amount;
  • Node contribution value online duration of the node / total network duration * first contribution coefficient + online duration of the node as the representative node / total network duration * second contribution coefficient + block amount generated by the node / blockchain Total amount of blocks * Third contribution coefficient + Data amount of the block generated by the node / Total capacity of data stored in the block chain * Fourth contribution coefficient.
  • the maintenance node 2 further includes a data provider contribution value calculation module 24 for calculating a contribution value of each data provider for the data provider corresponding to the data in the entire blockchain.
  • the data provider calculates the contribution value of each data provider as follows: the number of valid sample data provided by each data provider and the number of samples provided by each data provider in different scenarios;
  • Contribution value of the data provider number of valid sample data provided by the data provider / total number of valid samples in the blockchain * fifth contribution coefficient + number of samples provided by the data provider in scenario 1 to play a practical role
  • Quantity * contribution coefficient of scene 2 +... + the number of samples provided by the data provider to play a practical role in scene n / the total number of samples that play a role in the blockchain under scene n * the contribution coefficient of scene n, where n is a positive integer.
  • the quantitative index corresponding to each node is calculated; and, according to the totalization index of the entire network system and the contribution value of each data provider, the calculation is obtained.
  • a quantitative indicator corresponding to each data provider can be the return on social investment or the efficiency of the entire network system.
  • the invention provides a data management method and system based on a blockchain technology consistency algorithm, which validates the generated blocks of nodes in the network, ensures the security of data in the entire blockchain, and dynamically adjusts the network.
  • the representative node in the real-time optimizes the entire network system to ensure the stability of the entire network system and reasonable decentralization.
  • a description can be applied to the blockchain.
  • Data Consistency Algorithm Rules Participated proof of public good (PPOPG), which defines a rule for nodes in the network to generate blocks, improves the overall efficiency of the blockchain, and builds effective positive incentives. To ensure that the entire network system works well.
  • the description with reference to the terms “first embodiment”, “example”, “specific example”, or “some examples” and the like means that the specific method, device or feature described in connection with the embodiment or example is included in In at least one embodiment or example of the invention.
  • the schematic representation of the above terms is not necessarily directed to the same embodiment or example.
  • the particular features, methods, devices, or characteristics described may be combined in a suitable manner in any one or more embodiments or examples.
  • various embodiments or examples described in the specification, as well as features of various embodiments or examples may be combined and combined.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computing Systems (AREA)
  • Computer Hardware Design (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Information Retrieval, Db Structures And Fs Structures Therefor (AREA)

Abstract

一种基于区块链技术一致性算法的数据管理方法及系统,所述的方法包括:所有参与的服务器组成一个网络成为网络中的节点(S1);初始化区块链,每一个节点中均配置有该区块链,区块链中包含多个区块,整个区块链中存储有整套数据(S2);从所有的节点中确定代表节点,并配置代表节点产生区块的顺序和时间段(S3);当节点产生新区块后,广播到全网中,当确定该新区块为有效时,全网中的节点根据该新区块,对初始区块链进行更新(S4)。描述了一种可应用到区块链中的数据一致性算法规则:公益参与证明机制,简称PPOPG,其定义了一种网络中节点产生区块的规则,提高了区块链的整体效率,另外,构建了有效的正向激励措施,保证整个网络系统良好运行。

Description

一种基于区块链技术一致性算法的数据管理方法及系统 技术领域
本发明涉及区块链技术领域,具体涉及一种基于区块链技术一致性算法的数据管理方法及系统。
背景技术
目前区块链常用于交易型数据的存储,其常用的一致性算法如工作量证明(POW)、股权证明(POS)、授权股权证明(DPOS)等均以交易型数据的应用场景来考虑,依据交易本身带有的货币价值属性,从中得到利益分成,使得整个系统持续正向的运行下去。但当区块链应用到非交易型数据中时,由于没有直接体现货币价值,以往的如工作量证明、股权证明、授权股权证明等常用的一致性算法由于不能直接按照之前的挖矿、交易分成等方式进行有效的货币激励,所以受到了局限,同时之前的交易分成的机制原理也成为了系统的冗余。
发明内容
本发明提供了一种基于区块链技术一致性算法的数据管理方法及系统,对区块链中的区块进行有效性验证,构建了一套有效的正向激励措施。
本发明解决上述技术问题的技术方案如下:提供了一种基于区块链技术一致性算法的数据管理方法,包括:
S1,所有参与的服务器组成一个网络,每一个服务器作为网络中的一个节点,从网络中所有节点中确定一个作为维护节点,其它的作为普通节点;
S2,初始化区块链,每一个节点中均配置有该区块链,区块链中包含多 个区块,每个区块中存储有一部分数据,整个区块链中存储有整套数据;
S3,维护节点从所有的节点中确定第一预定数量的节点作为网络中的代表节点,并配置所述代表节点产生区块的顺序和时间段;
S4,当代表节点中的一个节点产生新区块后,广播到全网中,当确定该新区块为有效时,全网中的节点根据该新区块,对初始区块链进行更新。
为了解决本发明的技术问题,还提供了一种基于区块链技术一致性算法的数据管理系统,包括多个服务器,所述多个服务器组成一个网络,每一个服务器作为网络中的一个节点,并从全网所有的节点中确定一个作为维护节点,其它的作为普通节点;
每一个节点中均包括:
初始化模块,用于初始化区块链,其中,每一个节点中均配置有该区块链,区块链中包含多个区块,每个区块中存储有一部分数据,整个区块链中存储有整套数据;
更新模块,用于当接收到代表节点中的一个节点广播的新区块,且该新区块为有效时,根据该新区块对初始区块链进行更新;
所述维护节点还包括:
代表节点确定模块,用于从所有的节点中确定第一预定数量的节点作为网络中的代表节点;
配置模块,用于配置所述代表节点产生区块的顺序和时间段。
本发明提供的一种基于区块链技术一致性算法的数据管理方法及系统,对网络中的节点产生的区块进行有效性验证,保证了数据的安全性,另外,为了提高全网区块链的整体效率,描述了一种可应用到区块链中的数据一致性算法规则:公益参与证明机制Participated proof of public good(PPOPG),其定义了一种网络中节点产生区块的规则,提高了区块链的整体效率,构建了有效的正向激励措施,保证整个网络系统良好运行。
附图说明
图1为实施例1的一种基于区块链技术一致性算法的数据管理方法流程图;
图2为实施例2的一种基于区块链技术一致性算法的数据管理系统框图。
具体实施方式
以下结合附图对本发明的原理和特征进行描述,所举实例只用于解释本发明,并非用于限定本发明的范围。
实施例1、一种基于区块链技术一致性算法的数据管理方法。
参见图1,本实施例提供的基于区块链技术一致性算法的数据管理方法包括:
S1,所有参与的服务器组成一个网络,每一个服务器作为网络中的一个节点,从网络中所有节点中确定一个作为维护节点,其它的作为普通节点;
S2,初始化区块链,每一个节点中均配置有该区块链,区块链中包含多个区块,每个区块中存储有一部分数据,整个区块链中存储有整套数据;
S3,维护节点从所有的节点中确定第一预定数量的节点作为网络中的代表节点,并配置所述代表节点产生区块的顺序和时间段;
S4,当代表节点中的一个节点产生新区块后,广播到全网中,当确定该新区块为有效时,全网中的节点根据该新区块,对初始区块链进行更新。
下面对上述步骤进行具体介绍。
初始将所有参与其中的服务器组成一个网络,每一个服务器作为网络中的一个节点,并从网络的所有节点中确定一个作为维护节点,其它的节点作为普通节点,维护节点主要负责对全网中所有节点的管理和维护。
初始化区块链,网络中的每一个节点均配置有给初始化的区块链,区块 链中包含有多个区块,每一个区块中存储有一部分数据,整个区块链中存储有整套数据。
对于整个网络中的所有节点,维护节点将所有的节点按照节点的运算能力、网络传输状况、节点服务器的稳定性和安全性作为考量进行综合排序,将排序靠前的第一预定数量的节点作为整个网络中的代表节点。需要说明的是,本实施例设置代表节点的淘汰机制,即全网的代表节点不是一成不变的,而是动态变化的。网络中的维护节点会定期对所有的节点进行按照上述的条件进行综合排序,并确定其中排序靠前的第一预定数量的节点作为全网中的代表节点。比如,维护节点会每隔一小时对全网中的1000个节点进行排序,确定排序靠前的100个节点作为全网中的代表节点,那么,基本上每隔一小时,网络中的代表节点是变化的,这样可以保证整个网络中的代表节点的性能比较好,保证整个网络的稳定性,也保证整个网络的合理去中心化。
当在某一时间段确定了网络中的代表节点后,维护节点配置这些代表节点产生区块的顺序和时间段。当代表节点中的一个节点产生新区块后,广播到全网中,当确定该新区块为有效时,全网中的节点根据该新区块,对初始区块链进行更新。确定新区块是否为有效的具体方法是:当在某一时刻某代表节点中的一个节点产生新区块后,广播到全网中,接收到该新区块的其它代表节点验证该新区块是否有效,比如,当前区块的产生者是否正确,包括产生该区块的节点是否为代表节点以及本时间段是否为该代表节点产生区块,区块本身的数据生成规则是否正确,包含数据的存储格式是否正确,加密验证规则是否正确,是否和上一个区块衔接正确。当验证有效时,代表节点存储该新区块;当其它代表节点中超过第二预定数量(通常为代表节点中的一半)的代表节点存储了该新区块后,该区块被确定为有效区块,全网中的节点均存储该新区块,对当前区块链进行更新。
此外,对于一定时间段通过综合排序确定的代表节点,也会定期进行优 化,比如,当代表节点经常出现异常,如产生错误区块、产生的区块广播不及时、节点服务器经常掉线或者存储新区块不及时等情况,维护节点会剔除该代表节点,重新选拨新代表节点将其替代,通常是选择第一预定数量的后面一个节点代替该代表节点,使得网络中保持第一预定数量的代表节点。同时,维护节点发送报警信息给被代替的节点,提醒其自身进行优化。
本实施例为了激励网络中的每一个节点能够更好的参与网络,提升优化自身,计算全网中的每一个节点的贡献值,当节点的贡献值大时,能够促进节点的参与,当节点的贡献值小时,促进节点进行自身的提升优化。其中,计算全网的每一个节点的贡献值具体为:分别统计全网中每一个节点的在线时长,即节点加入网络的时刻到当前的总在线时长、该节点作为代表节点的在线时长,该节点被选为代表节点直至当次不再选为代表节点在线时长的总和、该节点产生的区块量,即节点作为代表节点时,产生的区块的总数量,以及该节点产生区块的数据量,节点作为代表节点时,产生的区块中存储数据的容量。
每一个节点的贡献值为:
节点贡献值=该节点在线时长/全网总时长*第一贡献系数+该节点作为代表节点的在线时长/全网总时长*第二贡献系数+该节点产生的区块量/区块链中区块的总量*第三贡献系数+该节点产生区块的数据量/区块链中存储数据的总容量*第四贡献系数。
通过上述方式将全网中的每一个节点的节点贡献值计算出来后,可促进各节点的积极参与以及对自身的优化提升。另外,对于整个区块链中的数据对应的数据提供者,为了激励个数据提供者更积极的参与数据的贡献,通过计算每一个数据提供者的贡献值。其中,区块链中的数据均对应有数据提供者的标识信息,根据数据提供者的标识信息,可以数据提供者为单位,将区块链中的数据进行划分,得到每一个数据提供者对应提供的数据以及这些数 据存储于哪一个区块。其中,计算每一个数据提供者的贡献值的具体方法为:统计每一个数据提供者提供的有效样本数据数量以及在不同场景下每一个数据提供者提供的发挥实际作用的样本数量;
每一个数据提供者的贡献值为:
数据提供者的贡献值=数据提供者提供的有效样本数据数量/区块链中总的有效样本数量*第五贡献系数+在场景1下该数据提供者提供的发挥实际作用的样本数量/在场景1下区块链中发挥作用的样本总数量*场景1的贡献系数+在场景2下该数据提供者提供的发挥实际作用的样本数量/在场景2下区块链中发挥作用的样本总数量*场景2的贡献系数+…+在场景n下该数据提供者提供的发挥实际作用的样本数量/在场景n下区块链中发挥作用的样本总数量*场景n的贡献系数,其中,n为正整数。
上述的第一贡献系数、第二贡献系数、第三贡献系数、第四贡献系数和第五贡献系数,以及场景1下的贡献系数、场景2下的贡献系数直到场景n下的贡献系数可根据实际情况进行配置。
上述计算了每一个节点的贡献者以及每一个数据提供者的贡献值后,根据整个网络系统的总量化指标和网络中各节点的贡献值,计算得到每一个节点对应的量化指标;以及,根据整个网络系统的总量化指标和各数据提供者的贡献值,计算得到每一个数据提供者对应的量化指标。其中,网络系统的量化可以为社会投资回报率或者整个网络系统的效率。通过计算每一个节点或者数据提供者的量化指标,将所有节点、数据提供者对整个行业、社会的贡献进行量化,根据节点、数据提供者的“贡献值”进行排名,说明其在整体中作出的贡献大小,起到荣誉上的激励,促进节点及数据提供者的参与、自身优化的积极性,起到对节点和数据提供者正向激励的目的。
实施例2、一种基于区块链技术一致性算法的数据管理系统。
参见图2,本实施例提供的基于区块链技术一致性算法的数据管理系统 包括多个服务器,所述多个服务器组成一个网络,每一个服务器作为网络中的一个节点,并从全网所有的节点中确定一个作为维护节点2,其它的作为普通节点1;
每一个节点中均包括:
初始化模块11,用于初始化区块链,其中,每一个节点中均配置有该区块链,区块链中包含多个区块,每个区块中存储有一部分数据,整个区块链中存储有整套数据;
更新模块12,用于当接收到代表节点中的一个节点广播的新区块,且该新区块为有效时,根据该新区块对初始区块链进行更新;
所述维护节点2还包括:
代表节点确定模块21,用于从所有的节点中确定第一预定数量的节点作为网络中的代表节点;
配置模块22,用于配置所述代表节点产生区块的顺序和时间段。
其中,所述代表节点确定模块21具体用于:
将全网中包括维护节点在内的所有节点按照运算能力、网络传输状况、服务器稳定性和安全性进行综合排序,将排序靠前的预定数量的节点作为网络中的代表节点。
所述代表节点确定模块21还用于:
定期对全网中所有的节点进行综合排序,并按照综合排序重新确定靠前的第一预定数量的节点作为网络中的代表节点。
在节点存储更新新区块时,对新区块的有效性验证具体为:当代表节点中的一个节点产生新区块后,广播到全网中,接收到该新区块的其它代表节点验证该新区块是否有效,当有效时,其它代表节点存储该新区块;
当其它代表节点中超过第二预定数量的代表节点存储了该新区块后,该区块被确定为有效区块,全网中的节点均存储该新区块,对当前区块链进行 更新。
所述维护节点2还包括:
节点贡献值计算模块23,用于计算全网中的每一个节点的贡献值。计算全网中的每一个节点的贡献值具体为:分别统计全网中每一个节点的在线时长、该节点作为代表节点的在线时长、该节点产生的区块量以及该节点产生区块的数据量;
每一个节点的贡献值为:
节点贡献值=该节点在线时长/全网总时长*第一贡献系数+该节点作为代表节点的在线时长/全网总时长*第二贡献系数+该节点产生的区块量/区块链中区块的总量*第三贡献系数+该节点产生区块的数据量/区块链中存储数据的总容量*第四贡献系数。
以及维护节点2还包括数据提供者贡献值计算模块24,用于针对整个区块链中的数据对应的数据提供者,计算每一个数据提供者的贡献值。数据提供者计算每一个数据提供者的贡献值具体为:统计每一个数据提供者提供的有效样本数据数量以及在不同场景下每一个数据提供者提供的发挥实际作用的样本数量;
每一个数据提供者的贡献值为:
数据提供者的贡献值=数据提供者提供的有效样本数据数量/区块链中总的有效样本数量*第五贡献系数+在场景1下该数据提供者提供的发挥实际作用的样本数量/在场景1下区块链中发挥作用的样本总数量*场景1的贡献系数+在场景2下该数据提供者提供的发挥实际作用的样本数量/在场景2下区块链中发挥作用的样本总数量*场景2的贡献系数+…+在场景n下该数据提供者提供的发挥实际作用的样本数量/在场景n下区块链中发挥作用的样本总数量*场景n的贡献系数,其中,n为正整数。
另外,计算了每一个节点的贡献者以及每一个数据提供者的贡献值后, 根据整个网络系统的总量化指标和网络中各节点的贡献值,计算得到每一个节点对应的量化指标;以及,根据整个网络系统的总量化指标和各数据提供者的贡献值,计算得到每一个数据提供者对应的量化指标。其中,网络系统的量化可以为社会投资回报率或者整个网络系统的效率。通过计算每一个节点或者数据提供者的量化指标,将所有节点、数据提供者对整个行业、社会的贡献进行量化,根据节点、数据提供者的“贡献值”进行排名,说明其在整体中作出的贡献大小,起到荣誉上的激励,促进节点及数据提供者的参与、自身优化的积极性,实现了区块链中数据的基于“公益参与证明机制(PPOPG,Participated proof of public good)”的一致性算法,特别适用于对非交易性数据的一致性算法。
本发明提供的一种基于区块链技术一致性算法的数据管理方法及系统,对网络中的节点产生的区块进行有效性验证,保证了整个区块链中数据的安全性;动态调整网络中的代表节点,实时优化整个网络系统,保证整个网络系统的稳定性以及合理的去中心化;另外,为了提高全网区块链的整体效率,描述了一种可应用到区块链中的数据一致性算法规则:公益参与证明机制Participated proof of public good(PPOPG),其定义了一种网络中节点产生区块的规则,提高了区块链的整体效率,构建了有效的正向激励措施,保证整个网络系统良好运行。
在本说明书的描述中,参考术语“实施例一”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体方法、装置或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、方法、装置或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种基于区块链技术一致性算法的数据管理方法,其特征在于,包括:
    S1,所有参与的服务器组成一个网络,每一个服务器作为网络中的一个节点,从网络中的所有节点中确定一个作为维护节点,其它的作为普通节点;
    S2,初始化区块链,每一个节点中均配置有该区块链,区块链中包含多个区块,每个区块中存储有一部分数据,整个区块链中存储有整套数据;
    S3,维护节点从所有的节点中确定第一预定数量的节点作为网络中的代表节点,并配置所述代表节点产生区块的顺序和时间段;
    S4,当代表节点中的一个节点产生新区块后,广播到全网中,当确定该新区块为有效时,全网中的节点根据该新区块,对初始区块链进行更新。
  2. 如权利要求1所述的基于区块链技术一致性算法的数据管理方法,其特征在于,所述步骤S3从所有的节点中确定第一预定数量的节点作为网络中的代表节点具体包括:
    维护节点将全网中包括维护节点在内的所有节点按照运算能力、网络传输状况、服务器稳定性和安全性进行综合排序,将排序靠前的预定数量的节点作为网络中的代表节点。
  3. 如权利要求2所述的基于区块链技术一致性算法的数据管理方法,其特征在于,维护节点定期对全网中所有的节点进行综合排序,并按照综合排序重新确定靠前的第一预定数量的节点作为网络中的代表节点。
  4. 如权利要求3所述的基于区块链技术一致性算法的数据管理方法,其特征在于,所述步骤S4具体包括:
    当代表节点中的一个节点产生新区块后,广播到全网中,接收到该新区块的其它代表节点验证该新区块是否有效,当有效时,其它代表节点存储该 新区块;
    当其它代表节点中超过第二预定数量的代表节点存储了该新区块后,该区块被确定为有效区块,全网中的节点均存储该新区块,对当前区块链进行更新。
  5. 如权利要求1-4任一项所述的基于区块链技术一致性算法的数据管理方法,其特征在于,还包括:
    计算全网中的每一个节点的贡献值,其中,分别统计全网中每一个节点的在线时长、该节点作为代表节点的在线时长、该节点产生的区块量以及该节点产生区块的数据量;
    每一个节点的贡献值为:
    节点贡献值=该节点在线时长/全网总时长*第一贡献系数+该节点作为代表节点的在线时长/全网总时长*第二贡献系数+该节点产生的区块量/区块链中区块的总量*第三贡献系数+该节点产生区块的数据量/区块链中存储数据的总容量*第四贡献系数。
  6. 如权利要求5所述的基于区块链技术一致性算法的数据管理方法,其特征在于,还包括:
    根据区块链中存储的数据中携带的数据提供者的标识信息,针对整个区块链中的数据对应的数据提供者,计算每一个数据提供者的贡献值,其中,统计每一个数据提供者提供的有效样本数据数量以及在不同场景下每一个数据提供者提供的发挥实际作用的样本数量;
    每一个数据提供者的贡献值为:
    数据提供者的贡献值=数据提供者提供的有效样本数据数量/区块链中总的有效样本数量*第五贡献系数+在场景1下该数据提供者提供的发挥实际作用的样本数量/在场景1下区块链中发挥作用的样本总数量*场景1的贡献系数+在场景2下该数据提供者提供的发挥实际作用的样本数量/在场景2 下区块链中发挥作用的样本总数量*场景2的贡献系数+…+在场景n下该数据提供者提供的发挥实际作用的样本数量/在场景n下区块链中发挥作用的样本总数量*场景n的贡献系数,其中,n为正整数。
  7. 如权利要求6所述的基于区块链技术一致性算法的数据管理方法,其特征在于,还包括:
    根据整个网络系统的总量化指标和网络中各节点的贡献值,计算得到每一个节点对应的量化指标;以及,
    根据整个网络系统的总量化指标和各数据提供者的贡献值,计算得到每一个数据提供者对应的量化指标。
  8. 一种基于区块链技术一致性算法的数据管理系统,其特征在于,包括多个服务器,所述多个服务器组成一个网络,每一个服务器作为网络中的一个节点,并从全网所有的节点中确定一个作为维护节点,其它的作为普通节点;
    每一个节点中均包括:
    初始化模块,用于初始化区块链,其中,每一个节点中均配置有该区块链,区块链中包含多个区块,每个区块中存储有一部分数据,整个区块链中存储有整套数据;
    更新模块,用于当接收到代表节点中的一个节点广播的新区块,且该新区块为有效时,根据该新区块对初始区块链进行更新;
    所述维护节点还包括:
    代表节点确定模块,用于从所有的节点中确定第一预定数量的节点作为网络中的代表节点;
    配置模块,用于配置所述代表节点产生区块的顺序和时间段。
  9. 如权利要求8所述的基于区块链技术一致性算法的数据管理系统,其特征在于,所述维护节点还包括:
    节点贡献值计算模块,用于计算全网中的每一个节点的贡献值。
  10. 如权利要求9所述的基于区块链技术一致性算法的数据管理系统,其特征在于,所述维护节点还包括:
    数据提供者贡献值计算模块,用于针对整个区块链中的数据对应的数据提供者,计算每一个数据提供者的贡献值。
PCT/CN2016/103441 2016-09-19 2016-10-26 一种基于区块链技术一致性算法的数据管理方法及系统 WO2018049713A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610831486.2A CN106357405A (zh) 2016-09-19 2016-09-19 一种基于区块链技术一致性算法的数据管理方法及系统
CN201610831486.2 2016-09-19

Publications (1)

Publication Number Publication Date
WO2018049713A1 true WO2018049713A1 (zh) 2018-03-22

Family

ID=57859680

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/103441 WO2018049713A1 (zh) 2016-09-19 2016-10-26 一种基于区块链技术一致性算法的数据管理方法及系统

Country Status (2)

Country Link
CN (1) CN106357405A (zh)
WO (1) WO2018049713A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3779693A4 (en) * 2018-08-01 2021-06-02 Advanced New Technologies Co., Ltd. METHOD AND DEVICE FOR DATA PROCESSING AND CLIENT

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106951185B (zh) * 2017-03-01 2019-12-06 武汉爱宁智慧科技有限公司 一种基于区块链技术的健康检测数据管理系统及方法
CN106878000B (zh) * 2017-03-06 2020-02-21 中钞信用卡产业发展有限公司杭州区块链技术研究院 一种联盟链共识方法及系统
CN107104816A (zh) * 2017-03-07 2017-08-29 阿里巴巴集团控股有限公司 一种信息变更监控方法和装置
CA3055428A1 (en) * 2017-03-09 2018-09-13 Magnus Skraastad GULBRANDSEN Core network access provider
CN107391557B (zh) * 2017-03-24 2020-10-16 北京瑞卓喜投科技发展有限公司 针对设置链外勘误表的区块链串行查询方法及系统
CN107124443B (zh) * 2017-03-28 2020-04-28 丽水北斗区块链科技有限责任公司 基于区块链的数据分析方法及装置
CN108737336B (zh) * 2017-04-18 2021-01-15 中国移动通信有限公司研究院 基于区块链的威胁行为处理方法及装置、设备及存储介质
CN107274184A (zh) * 2017-05-11 2017-10-20 上海点融信息科技有限责任公司 基于零知识证明的区块链数据处理
WO2018209543A1 (zh) * 2017-05-16 2018-11-22 北京大学深圳研究生院 一种多层级区块链系统之间索引与链拓扑结构的维护方法
CN108959280B (zh) * 2017-05-17 2021-08-06 中国移动通信有限公司研究院 一种存储虚拟资源关联信息的方法及装置
CN107247749B (zh) 2017-05-25 2020-08-25 创新先进技术有限公司 一种数据库状态确定方法、一致性验证方法及装置
CN107291856B (zh) * 2017-06-08 2020-02-14 上海畴珉软件开发服务中心 一种基于大数据技术的血液制品分发方法及系统
CN110348242B (zh) * 2017-06-12 2021-01-15 腾讯科技(深圳)有限公司 业务请求处理方法及装置
CN107197036A (zh) * 2017-06-22 2017-09-22 广东网金控股股份有限公司 一种基于区块链的信息一致处理方法及终端
CN107580030B (zh) * 2017-08-18 2021-03-02 重庆邮电大学 一种数据管理方法、装置及服务器
CN109428892B (zh) * 2017-09-01 2021-12-28 埃森哲环球解决方案有限公司 多阶段可重写区块链
CN107734502B (zh) * 2017-09-07 2020-02-21 京信通信系统(中国)有限公司 基于区块链的微基站通信管理方法、系统及设备
CN107679765A (zh) * 2017-10-25 2018-02-09 芜湖市纯至网络科技有限公司 一种轨道交通系统中大数据权重管理方法
CN108171578A (zh) * 2017-12-27 2018-06-15 邵美 一种基于区块链交易网络的地址排名系统及其构建方法
CN108111312B (zh) * 2017-12-28 2019-09-27 电子科技大学 一种基于区块链的智能终端安全通信方法
CN108182636A (zh) * 2018-01-30 2018-06-19 杨显波 基于贡献的区块链共识机制
CN108446976B (zh) * 2018-02-07 2019-05-24 平安科技(深圳)有限公司 一种公积金转移方法、计算机可读存储介质及终端设备
CN108510275A (zh) * 2018-04-08 2018-09-07 众安信息技术服务有限公司 用于跟进公益项目的进展情况的方法及计算机可读存储介质
CN108805409B (zh) * 2018-05-08 2022-02-08 武汉大学 一种基于区块链的关键基础设备信息管理方法
CN111030802B (zh) * 2018-05-16 2020-12-29 腾讯科技(深圳)有限公司 图数据的计算任务发布方法、装置、设备和存储介质
CN110677373B (zh) * 2018-07-02 2021-12-31 上海旺链信息科技有限公司 一种区块链的物联网设备的安全判定方法、判定系统及存储介质
CN109039847A (zh) * 2018-08-07 2018-12-18 广州三牛信息科技有限公司 一种利用dmt解决区块链全网消息一致性问题的方法及装置
CN109034804B (zh) * 2018-08-08 2021-11-02 苏州酷外文化传媒有限公司 基于区块链的航拍激励管理方法及系统
WO2020042926A1 (zh) * 2018-08-28 2020-03-05 白杰 区块链公链的维护方法、装置、节点及区块链公链
CN110868308B (zh) * 2018-08-28 2022-04-01 傲为有限公司 一种区块链网络接入方法及系统
CN109472625A (zh) * 2018-11-19 2019-03-15 上海中信信息发展股份有限公司 追溯参与方贡献度的评价方法及系统
CN110011974B (zh) * 2019-03-07 2021-08-10 港融科技有限公司 区块链的记账方法、装置、终端和计算机可读存储介质
CN110011981B (zh) * 2019-03-15 2021-06-29 湖北工程学院 一种基于区块链的可信云存储方法及系统
CN110049109B (zh) * 2019-03-26 2022-04-01 湖南天河国云科技有限公司 区块链共享存储的核算方法、系统和计算机可读存储介质
KR102191803B1 (ko) * 2019-05-31 2020-12-16 주식회사 엠티에스컴퍼니 블록체인에 의한 행위정보 증명 방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150262137A1 (en) * 2014-03-17 2015-09-17 Coinbase, Inc. Off-block chain transactions in combination with on-block chain transactions
CN105404701A (zh) * 2015-12-31 2016-03-16 浙江图讯科技股份有限公司 一种基于对等网络的异构数据库同步方法
CN105488665A (zh) * 2015-11-25 2016-04-13 布比(北京)网络技术有限公司 一种去中心化的交易方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105701372B (zh) * 2015-12-18 2019-04-09 布比(北京)网络技术有限公司 一种区块链身份构建及验证方法
CN105719185B (zh) * 2016-01-22 2019-02-15 杭州复杂美科技有限公司 区块链的数据对比及共识方法
CN106203178B (zh) * 2016-08-26 2018-11-20 杨鹏 一种区块链的写入权限分配方法及系统
CN106339639A (zh) * 2016-08-30 2017-01-18 弗洛格(武汉)信息科技有限公司 基于区块链的学分成绩管理方法及系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150262137A1 (en) * 2014-03-17 2015-09-17 Coinbase, Inc. Off-block chain transactions in combination with on-block chain transactions
CN105488665A (zh) * 2015-11-25 2016-04-13 布比(北京)网络技术有限公司 一种去中心化的交易方法
CN105404701A (zh) * 2015-12-31 2016-03-16 浙江图讯科技股份有限公司 一种基于对等网络的异构数据库同步方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3779693A4 (en) * 2018-08-01 2021-06-02 Advanced New Technologies Co., Ltd. METHOD AND DEVICE FOR DATA PROCESSING AND CLIENT
US11233878B2 (en) 2018-08-01 2022-01-25 Advanced New Technologies Co., Ltd. Data processing method, apparatus, and client device

Also Published As

Publication number Publication date
CN106357405A (zh) 2017-01-25

Similar Documents

Publication Publication Date Title
WO2018049713A1 (zh) 一种基于区块链技术一致性算法的数据管理方法及系统
Liao et al. Digital twin consensus for blockchain-enabled intelligent transportation systems in smart cities
US20200274694A1 (en) Methods and Systems for a Heterogeneous Multi-Chain Framework
CN112534774A (zh) 分散的防止欺诈的安全措施
CN112740252A (zh) 使用智能合约的区块链交易安全性
CN109921909A (zh) 基于贡献证明的区块链共识方法及装置
US20200272618A1 (en) Distributed ledger technology
KR20210001896A (ko) 블록체인 기술을 기반으로 하여 피투피 방식의 전력거래를 중개하는 시스템
Hu et al. Delegated proof of reputation consensus mechanism for blockchain-enabled distributed carbon emission trading system
Wang et al. A trusted consensus fusion scheme for decentralized collaborated learning in massive IoT domain
CN112597240B (zh) 一种基于联盟链的联邦学习的数据处理方法与系统
Lee et al. Project management model based on consistency strategy for blockchain platform
CN116366669A (zh) 一种适用于众包系统的基于信誉值分权制衡的共识方法
CN110278091B (zh) 一种物联网区块链共识方法
Pandey et al. Minimizing the communication cost of aggregation in publish/subscribe systems
Song et al. Research on multidimensional trust evaluation mechanism of fintech based on blockchain
Petruzzi et al. Experiments with social capital in multi-agent systems
Hsueh et al. EPoW: Solving blockchain problems economically
WO2019243235A1 (en) Distributed ledger technology
CN113239255A (zh) 异构数据资源的共享方法、装置、计算机设备及介质
Zhao et al. BCTMSSF: a blockchain consensus-based traceability method for supply chain in smart factory
Nasar et al. Hierarchical smart meter data hub initiative for enabling IoT based smart grid in Indonesia
Shen et al. Physical resource management based on complex network theory in 5G network slice trading
Ma et al. A worker selection scheme for vehicle crowdsourcing blockchain
Serjantov et al. On dealing with adversaries fairly

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16916093

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16916093

Country of ref document: EP

Kind code of ref document: A1