WO2018049492A1 - Method for producing an expandable heart valve stent from a polyurethane membrane and polyurethane membrane valve stent that can be implanted using a catheter in adult and pediatric patients - Google Patents

Method for producing an expandable heart valve stent from a polyurethane membrane and polyurethane membrane valve stent that can be implanted using a catheter in adult and pediatric patients Download PDF

Info

Publication number
WO2018049492A1
WO2018049492A1 PCT/BR2017/000078 BR2017000078W WO2018049492A1 WO 2018049492 A1 WO2018049492 A1 WO 2018049492A1 BR 2017000078 W BR2017000078 W BR 2017000078W WO 2018049492 A1 WO2018049492 A1 WO 2018049492A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyurethane
stent
valve
prosthesis
catheter
Prior art date
Application number
PCT/BR2017/000078
Other languages
French (fr)
Portuguese (pt)
Inventor
Miguel Angel MALUF
Original Assignee
Maluf Miguel Angel
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maluf Miguel Angel filed Critical Maluf Miguel Angel
Publication of WO2018049492A1 publication Critical patent/WO2018049492A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
    • A61F2/2412Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body with soft flexible valve members, e.g. tissue valves shaped like natural valves
    • A61F2/2415Manufacturing methods
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
    • A61F2/2412Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body with soft flexible valve members, e.g. tissue valves shaped like natural valves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
    • A61F2/2412Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body with soft flexible valve members, e.g. tissue valves shaped like natural valves
    • A61F2/2418Scaffolds therefor, e.g. support stents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0058Additional features; Implant or prostheses properties not otherwise provided for
    • A61F2250/006Additional features; Implant or prostheses properties not otherwise provided for modular

Definitions

  • the main object of the present invention is to propose a method indicated to serve as a method of obtaining a cardiac valve stent model made from a synthetic membrane, type polyurethane to be employed in medical (surgical) procedures such as aim to solve problems of anatomical and functional problems related to cardiac malformations and acquired heart disease in humans in the following situations:
  • the cardiac prosthesis contains a structure polyurethane, which has desirable characteristics such as: biostability and biocompatibility with the recipient organism, as well as being efficient and resistant to fatigue, calcification, thrombosis and infection, in order to fulfill the biological function of the natural anatomical structure to be replaced. .
  • polyurethane as Material Group consisting of macromolecules with urethane bonding over and over, usually result of the reaction of isocyanate with hydroxyl groups, both di or polyfunctional.
  • isocyanate with hydroxyl groups, both di or polyfunctional.
  • polyurethane chain configuration can range from regular or random to junction or cross, which will determine the physical properties of the synthesized material. Therefore one should be encouraged to the chain segments when it is desired to obtain products with specific properties, being factors directly linked to the type of raw material employed.
  • FIG. 1 Stent design: Consisting of a pre-molded, laser-cut cobalt chrome mesh.
  • the stent receives polishing and a polytetrafluoroethylene bath to reduce the chance of thrombus formation.
  • the stems have particle physical characteristics: they are flexible when subjected to fluid flow under pressure, reducing the wear of the membrane applied over the stent.
  • FIG. 2 Valve stent design: A thin 0.2 to 0.3 mm polyurethane membrane (1) was applied over the ostentate forming three flexible cusps without the use of sutures and a maximum opening mechanism equal to the diameter. larger stent 22 mm and hermetic closure at the base of the stems, mimicking the human aortic and pulmonary sigmoid valves. There is a limit of application of polyurethane (2), 6 mm from the lower edge of the stent, keeping this segment of the cobalt chrome mesh (3) free of polyurethane, exposing a surface suitable for stent attachment in the patient's valve annulus.
  • Figure 3 Drawing of the balloon catheter (1), integrated by a tube of two lumens: one distal and one lateral.
  • the distal lumen path allows guidewire advancement to advance valve stent guidance.
  • the lateral lumen will allow to inflate the balloon (2) with constant pressure, expanding the polyurethane valve stent (3), with increasing diameters of 12 to 22 mm.
  • the balloon 6 is positioned within the stent; then subjected to a reduction in diameter from 22 mm to 5 mm to be conditioned in the catheter.
  • a sheath covers the entire length of the catheter to facilitate progression in the peripheral vessels to the heart.
  • Figure 3 a The balloon.allowing the expansion with uniform diameter of the stems (1) ⁇ 2 to 3 mm larger expansion of the ring (2), for better fixation in the patient's valve ring, avoiding mobilization or embolization.
  • the balloon has been designed to provide an exact diameter of 12 to 22 mm, maintaining a pressure set in accordance with the non-permeable balloon material. Stent valve expansion can be performed with balloons of increasing diameter, following the patient's growth, without the need for replacement of the prosthesis.
  • the chosen balloon (12 to 22 mm) is positioned inside the valve stent, while the stent is reduced in diameter by a procedure called crimping, using a device called a crimping mechanism, which has a closing mechanism by means of a crimp. diaphragm, to symmetrically reduce the stent.
  • FIG. 4 The drawing shows the release mechanism of the polyurethane valve stent, conditioned in the catheter. After retracting the sheath (1), the valve stent (2) is ready, ready for balloon expansion (3). Radiopaque markings at the ends of the stent and balloon allow placement of the prosthesis in the heart valve ring under treatment.
  • FIG. 5 The drawing shows the stent implantation mechanism by balloon expansion (1), using a saline pressure injection, using a pressure syringe or insufflator, which generates pressures from various atmospheres. as the resistance to expansion expands, delivering varying volumes depending on the size of the balloon. Inflation begins immediately after the prosthesis delivery catheter 6 is actuated, expanding the stent rods (2) and opening the polyunethane valve (3). In order to visualize the position of the stent graft and the balloon in the valve ring by X-ray, platinum / iridium radiopaque markers were ligated according to stent length.
  • FIG. 6 The use of the Pear Balloon Catheter (1) allows the expansion of the lower stent bonnet (2), turning the mesh for better fixation in the valve ring (3). [026] The possibility of expanding the valve prosthesis, in the late postoperative evolution of the patient, allows this prosthesis to be implanted in children without replacement until the addicted age.
  • the expansion procedure can be performed by percutaneous approach, avoiding classical thoracotomy in reoperations for valve replacement, provided that the polyurethane prosthesis remains functional over the years.
  • Figure 7 Drawing showing the stenf valve at 4 different times for its clinical use: 12 mm (1), 15 mm (2), 18 mm (3) and 22 mm (4) in diameter.
  • Figure 8 Drawing Showing the polyurethane valve stent at 4 different times for its clinical use: 12 mm (1), 15 mm (2), 18 mm (3) and 22 mm (4) in diameter.
  • Patients with dysfunctional prosthesis may be submitted to polyurethane valve stent implantation and positioned inside the old prosthesis: Procedure called Implantevaive in vafve.
  • the polyurethane valve stent can be implanted into any dysfunctioning heart valve: Mrtral, Tricuspid, Aortic, and Pulmonary, or positioned within tubular prostheses with or without a valve.

Abstract

Patent relating to an expandable polyurethane heart valve prosthesis. Constructed from a malleable stent containing the heart valve prosthesis, formed of three polyurethane strips adhered to fabric with three chromium-cobalt rods, which can be administered inside a catheter and implanted by percutaneous puncture. The polyurethane is applied in liquid state, forming a thin film which will form the three movable strips, without the use of stitches. The known properties of polyurethane for medical use will provide the prosthesis with durability, fatigue strength and resistance to calcification, which are indispensable features for use thereof in pediatric patients. The option of expanding the valve prosthesis, as the patient grows, enables said prothesis to be implanted in children, without the need for replacement until adulthood. The expansion procedure can be performed using a percutaneous approach, without the need for another operation, as long as the polyurethane prosthesis continues working, over the years. The development of said heart valve prosthesis can be considered a sustainable project, as long as it benefits patients, the environment and the popular economy.

Description

"MÉTODO PARA OBTER UM STENT VÁLVULA CARDÍACA EXPANSÍVEL, A  "METHOD FOR OBTAINING AN EXPANSIBLE HEART VALVE STENT,
PARTIR DE MEMBRANA DE POLIURETANO E STENT VÁLVULA DE MEMBRANA DE POLIURETANO, PARA  FROM POLYURETHANE MEMBRANE AND STENT POLYURETHANE MEMBRANE VALVE TO
IMPLANTE POR CATETER EM PACIENTES ADULTOS E PEDIÁTRICOS".  CATHETER IMPLANTS IN ADULT AND PEDIATRIC PATIENTS ".
[001] A presente patente de invenção tem como objetivos principais propor um método indicado a servir de método de obtenção de modelo de stent válvula cardíaca feita a partir de membrana sintética, tipo poliuretano a ser empregada em procedimentos médicos (cirúrgico) tais como os que visam a resolução de problemas de problemas anatómicos e funcionais relacionados as malformações cardíacas e doenças cardíacas adquiridas, em seres humanos, nas seguintes situações: The main object of the present invention is to propose a method indicated to serve as a method of obtaining a cardiac valve stent model made from a synthetic membrane, type polyurethane to be employed in medical (surgical) procedures such as aim to solve problems of anatomical and functional problems related to cardiac malformations and acquired heart disease in humans in the following situations:
[002] Estenose com obstrução parcial das válvulas do coração, comprometendo a abertura da mesma ou obstrução total, caracterizado pela ausência da válvula cardíaca e interferindo na passagem do fluxo sanguíneo. Stenosis with partial obstruction of the heart valves, compromising its opening or total obstruction, characterized by the absence of the heart valve and interfering with the passage of blood flow.
[003] Insuficiência ou ausência congénita de algumas válvulas do coração, com fechamento parcial, comprometendo o fechamento das válvulas cardíacas. [004] Insufficiency or congenital absence of some heart valves, with partial closure, compromising the closing of the heart valves. [004]
É também um dos objetivos da presente invenção, a proteção á prótese cardíaca: "STENT VÁLVULA CARDÍACO [EXPANSÍVEL" contida dentro de um dispositivo (stent) expansível. A prótese e obtida a partir de uma estrutura de poliuretano, a qual apresenta características desejáveis, tais como: bioestabiiidade e biocompatibtiidade com o organismo receptor, além de ser eficiente e resistente a fadiga, calcificação, trombose e infecção, no sentido de cumprira função biológica da estrutura anatómica natural a que se destina substituir. It is also an object of the present invention to protect the cardiac prosthesis: "STENT [EXPANSIBLE] HEART VALVE" contained within an expandable stent. The prosthesis is obtained from a structure polyurethane, which has desirable characteristics such as: biostability and biocompatibility with the recipient organism, as well as being efficient and resistant to fatigue, calcification, thrombosis and infection, in order to fulfill the biological function of the natural anatomical structure to be replaced. .
1. POLIURETANOS 1.1 Origem e Utilização no mercado. 1. Polyurethanes 1.1 Origin and Market Use.
[005] Em 1848 o químico francês Charles Adolphe Wurtz, descobriu que os grupos Isocianatos reagiam quantitativamente com os grupos hidnoxí/as primárias dando origem a grupos uretanos. Por quase um século essas reaçoes se limitaram a simples experimentos de laboratóricAté que em 1Θ37 o alemão Dr. Otto Bayer e colaboradores levaram o poliuretano à escala industrial. In 1848 French chemist Charles Adolphe Wurtz discovered that the Isocyanate groups reacted quantitatively with the primary hydroxy groups giving rise to urethane groups. For almost a century these reactions were limited to simple laboratory experiments. Until 1Θ37 the German Dr. Otto Bayer and colleagues took polyurethane on an industrial scale.
[006] Atualmente o poliuretano tem sido usado em diversas áreas da industria devido à possibilidade de obter esse polímero com uma grande diversidade de propriedades físicas, sendo possível obter infinitas variações de características, peia combinação de matéria prima diferentes propriedades químicas, como por exemplo, a escolha entre os diversos tipos de isocianatos aromáticos ealiféticos encontrados no mercado. Currently polyurethane has been used in various areas of industry due to the possibility of obtaining this polymer with a great diversity of physical properties, being possible to obtain infinite variations of characteristics, by the combination of different raw material chemical properties, for example, the choice between the various types of aromatic isocyanates found in the market.
1- Matéria prima e preparação de poliuretano (PU) 1- Polyurethane (PU) raw material and preparation
[007] Podemos definir poliuretano comoGrupo de Materiais compostos por macromoléculas confendqá ligação uretano repetidas vezes, geralmente resultado da reação de isocianato com grupos hidroxílas, ambos dí ou polifuncionais. Veja a seguir a reação genética: [007] We can define polyurethane as Material Group consisting of macromolecules with urethane bonding over and over, usually result of the reaction of isocyanate with hydroxyl groups, both di or polyfunctional. Here's the genetic reaction:
[008] Reação genética de obtenção de poliuretanoA configuração da cadeia depoliuretano pode variar entre regular ou aleatóriajinaar ou cruzada, o que determinara as propriedades físicas do material sintetizado. Por isso deve-se ficar alento aos seguimentos de cadeia quando se deseja obter produtos com propriedades específicas, sendo fatores diretamente ligados ao tipo de matéria prima empregada. [008] Polyurethane Obtaining Genetic ReactionThe polyurethane chain configuration can range from regular or random to junction or cross, which will determine the physical properties of the synthesized material. Therefore one should be encouraged to the chain segments when it is desired to obtain products with specific properties, being factors directly linked to the type of raw material employed.
2- Siant Expansível 2- Siant Expandable
[009] O sistema do stant expansível para implante de prótese valvar cardiaca. [009] The expandable stant system for heart valve prosthesis implantation.
MODELO MODEL
PRÓTESE VALVULAR CARDÍACA EXPANSÍVEL DEEXPANSIBLE HEART VALVE PROSTHESIS
POLIURETANO POLYURETHANE
[010] A presente invenção será descritacom referência as figuras abaixo relacionadas e classificadascomo modelo de "Prótese valvular cardiaca expansível de poliuretano". [010] The present invention will be described with reference to the figures below and classified as a "Expandable Polyurethane Heart Valve Prosthesis" model.
[011] Os desenhos anexados mostram as diferentes etapas na construção da prótese de poliuretano, baseada nas características anatómicas de um estudo de Angio Tomografia Computadorizada da valva aórtica humana. [012] Figura 1: Desenho do stent: Constituído por uma malha de cromo cobalto, pré-moldado ecortado com laser. Forman parte do stent: anel (1) com 12,5 mm de altura e 3 hastes flexíveis (2) com 12,5 mm de altura, altura total 25 mm. [011] The accompanying drawings show the different steps in the construction of the polyurethane prosthesis, based on the anatomical features of a CT study of the human aortic valve. [012] Figure 1: Stent design: Consisting of a pre-molded, laser-cut cobalt chrome mesh. Forman stent part: ring (1) 12.5 mm high and 3 flexible rods (2) 12.5 mm high, total height 25 mm.
[013] Diâmetro: Em posição "aberta"mantem o mesmo diâmetro uniforme com a sua base de implantação, na estrutura metálica: 22 mm e em posiçãoTechada": 5 mm. [013] Diameter: In the "open" position, maintain the same uniform diameter with its base in the metal frame: 22 mm and in the "Closed" position: 5 mm.
[014] O programa a ser utilizado parao desenho desta prótese, será gerado através de Software Sotid Work; este programa de computador gera uma malha paramétrica e sólida. [014] The program to be used for the design of this prosthesis will be generated through Software Sotid Work; This computer program generates a parametric and solid mesh.
[015] O stent recebe polimento e um banho de polítetrafluoroetileno, para reduzir a chancede formação de trombos.As hastes tem características físicasparticuiares: são flexíveis quando submetidas a passagem defluxo de fluidos a pressão, reduzindo o desgaste damembrana aplicada sobre o stent. [015] The stent receives polishing and a polytetrafluoroethylene bath to reduce the chance of thrombus formation. The stems have particle physical characteristics: they are flexible when subjected to fluid flow under pressure, reducing the wear of the membrane applied over the stent.
[016] Figura 2: Desenho do stent válvula: Uma fina membrana de poliuretano (1), de 0,2 a 0,3 mm foi aplicada sobre ostent formando três cúspides flexíveis, sem uso de suturas ecom mecanismo de abertura máxima igual ao diâmetro maior do stent 22 mm e fechamento hermético no nível da base das hastes, imitando as válvulas sigmoideas aórtica e pulmonar humanas. Existe um limite de aplicação do poliuretano (2), há 6 mm da borda inferior do stent, mantendo este segmento da malha de cromo cobalto (3) livre de poliuretano, expondo uma superfície apta para a fixação do stent no anel valvular do paciente. [017] Figura 3: Desenho do Cateter balão(1), integrado por um tubo de dois lúmens: um distai e outro lateral. A via do lúmen distai, permite o avanço do fio guia, pára avançar o guiar do stent válvula. O lúmen lateral permitirá insuflar o balão (2), com pressão constante, expandindo o stent válvula de poliuretano (3), com diâmetros crescentes de 12 a 22 mm. [016] Figure 2: Valve stent design: A thin 0.2 to 0.3 mm polyurethane membrane (1) was applied over the ostentate forming three flexible cusps without the use of sutures and a maximum opening mechanism equal to the diameter. larger stent 22 mm and hermetic closure at the base of the stems, mimicking the human aortic and pulmonary sigmoid valves. There is a limit of application of polyurethane (2), 6 mm from the lower edge of the stent, keeping this segment of the cobalt chrome mesh (3) free of polyurethane, exposing a surface suitable for stent attachment in the patient's valve annulus. [017] Figure 3: Drawing of the balloon catheter (1), integrated by a tube of two lumens: one distal and one lateral. The distal lumen path allows guidewire advancement to advance valve stent guidance. The lateral lumen will allow to inflate the balloon (2) with constant pressure, expanding the polyurethane valve stent (3), with increasing diameters of 12 to 22 mm.
[018] O balão 6 posicionado dentro do stent; a seguir submetido a redução do seu diâmetro de 22 mm para 5 mm, para ser condicionado no cateter. Uma vainha cobre toda a extensão do cateter para facilitar a progressão nos vasos periféricos, até o coração. The balloon 6 is positioned within the stent; then subjected to a reduction in diameter from 22 mm to 5 mm to be conditioned in the catheter. A sheath covers the entire length of the catheter to facilitate progression in the peripheral vessels to the heart.
[019] Figura 3 a: O balão.permrtindo a expansão com diâmetro uniforme das hastes (1) ø expansão de 2 a 3 mm maior do anel (2), para melhor fixaçãono anel valvar do paciente, evitando mobilização ou embolização. [019] Figure 3 a: The balloon.allowing the expansion with uniform diameter of the stems (1) ø 2 to 3 mm larger expansion of the ring (2), for better fixation in the patient's valve ring, avoiding mobilization or embolization.
[020] O balão foi concebido paraproporcionar diâmetro exato de 12 a 22 mm, mantendopressão estabelecida de acordo com o material do balãosemidefbrmável. A expansão do stent válvula, pode ser realizado com balões de diâmetro crescente, acompanhando o crescimento do paciente, sem a necessidade de substituição da prótese. [020] The balloon has been designed to provide an exact diameter of 12 to 22 mm, maintaining a pressure set in accordance with the non-permeable balloon material. Stent valve expansion can be performed with balloons of increasing diameter, following the patient's growth, without the need for replacement of the prosthesis.
[021] O balão escolhido (12 até 22 mm) é posicionado dentro do stent válvula, enquanto o stent é submetido a redução do seu diâmetro, mediante o procedimento chamado de crimpagem, utilizando um equipamento denominado crimpador, que possui um mecanismo de fechamento mediante diafragma, para reduzir simetricamente o stent. FUNCIONAMENTO DE MECANISMO DO STENT VÁLVULA DE POLIURETANO [021] The chosen balloon (12 to 22 mm) is positioned inside the valve stent, while the stent is reduced in diameter by a procedure called crimping, using a device called a crimping mechanism, which has a closing mechanism by means of a crimp. diaphragm, to symmetrically reduce the stent. STENT MECHANISM OPERATION OF POLYURETHANE VALVE
[022] Figura 4: O desenho mostrao mecanismo de liberação do stent válvula de poliuretano, condicionado no cateter. Após recuar a vainha (1), fica exposto o stent válvula (2), pronto para a expansão do balão (3). Marcas radiopacas nos extremos do stent e do balão permitem posicionar a prótese no anel da válvula cardíaca em tratamento. [022] Figure 4: The drawing shows the release mechanism of the polyurethane valve stent, conditioned in the catheter. After retracting the sheath (1), the valve stent (2) is ready, ready for balloon expansion (3). Radiopaque markings at the ends of the stent and balloon allow placement of the prosthesis in the heart valve ring under treatment.
(023] Figura 5: O desenho mostra o mecanismo de implante do stent, mediante a expansão do balão (1), utilizando uma injeção à pressão de soro fisiológico, mediante o uso de seringa de pressão ou insuflador, que gera pressões de várias atmosferas, conforme a resistência imposta a expansão, entregando volumes variáveis, conformeo tamanho do balão. A insuflação começa imediatamente após o cateter de entrega da prótese 6 acionado, expandindo as hastes do stent (2) e abrindo a válvula de poliunetano(3). A fim de visualizar a posição da endoprótese e o balão no anel valvar por raios X, marcadores radiopacos de platina / irídio foram ligados de acordo com o comprimento do stent (023] Figure 5: The drawing shows the stent implantation mechanism by balloon expansion (1), using a saline pressure injection, using a pressure syringe or insufflator, which generates pressures from various atmospheres. as the resistance to expansion expands, delivering varying volumes depending on the size of the balloon. Inflation begins immediately after the prosthesis delivery catheter 6 is actuated, expanding the stent rods (2) and opening the polyunethane valve (3). In order to visualize the position of the stent graft and the balloon in the valve ring by X-ray, platinum / iridium radiopaque markers were ligated according to stent length.
[024] Dois marcadores adicionais sobre a haste do cateter proximal foram colocados para ajudar a posicionar o cateter de dilatação, no anel valvar do paciento (4), em relação a ponta cateter guia (5). [024] Two additional markers on the proximal catheter shaft were placed to help position the dilating catheter in the patient's valve ring (4) relative to the guide catheter tip (5).
[025] Figura 6: O emprego de Cateter Balão em forma de Pera (1), permite a expansão da bonda inferior do stent (2), virando a malha para melhor fixação no anel valvar (3). [026] A possibilidade de expandir a prótese valvar, na evolução pos- opertória tardia do paciente, permite que esta prótese seja implantada em crianças, sem necessidade de substituição, até a idade adutta. [025] Figure 6: The use of the Pear Balloon Catheter (1) allows the expansion of the lower stent bonnet (2), turning the mesh for better fixation in the valve ring (3). [026] The possibility of expanding the valve prosthesis, in the late postoperative evolution of the patient, allows this prosthesis to be implanted in children without replacement until the addicted age.
[027] O procedimento de expansão pode ser realizado mediante a abordagem percutânea, evitando a toracotomia clássica, nas reoperações para substituição valvar, desde que a prótese de poliuretano se mantenha funcionante com o passar dos anos. [027] The expansion procedure can be performed by percutaneous approach, avoiding classical thoracotomy in reoperations for valve replacement, provided that the polyurethane prosthesis remains functional over the years.
[028] Figura 7: Desenho mostrando o stenf válvula, em 4 momentos diferentes para sua utilização clínica: 12 mm (1), 15 mm (2), 18 mm (3) e 22 mm (4) de diâmetro. [028] Figure 7: Drawing showing the stenf valve at 4 different times for its clinical use: 12 mm (1), 15 mm (2), 18 mm (3) and 22 mm (4) in diameter.
[029] Figura 8: Desenho Mostrando o stent válvula de poliuretano, em 4 momentos diferentes para seu uso clinico: 12 mm (1), 15 mm (2), 18 mm (3) e 22 mm (4) de diâmetro. [029] Figure 8: Drawing Showing the polyurethane valve stent at 4 different times for its clinical use: 12 mm (1), 15 mm (2), 18 mm (3) and 22 mm (4) in diameter.
[030] Indicações: Paciente com prótese com disfunção poderão ser submetidos a implante de stent válvula de poliuretano, sendo posicionando por dentro da prótese antiga: Procedimento denominado Implantevaive in vafve. O stent válvula de poliuretano pode ser implantado em qualquerposição das válvulas cardíacas que apresentem disfunção:Mrtral, Tricúspide, Aórtica e Pulmonar, ou posicionado dentro de próteses tubulares com ou sem válvula. [030] Indications: Patients with dysfunctional prosthesis may be submitted to polyurethane valve stent implantation and positioned inside the old prosthesis: Procedure called Implantevaive in vafve. The polyurethane valve stent can be implanted into any dysfunctioning heart valve: Mrtral, Tricuspid, Aortic, and Pulmonary, or positioned within tubular prostheses with or without a valve.
[031] Trata-se de um Projeto Sustentável: beneficiando aos Pacientes: Será oferecida uma prótese confiável, duradoura, com menor risco de disfunçao,para implante em adultos e crianças, mediante um procedimento mais simples, menor risco cirúrgico. Menortempo de permanência em UTI, e Intemação Hospitalar. [031] This is a Sustainable Project: benefiting Patients: A reliable, durable, lower risk of dysfunction prosthesis will be offered for implantation in adults and children through a simpler procedure and lower surgical risk. Shortest ICU stay, and Hospital Information.
[032] Meio Ambiente: Não será necessário a manipulação de tecido animal, nem soluções químicas para a preservação da prótese, que será esterilizada com Radiação Gama. [032] Environment: No manipulation of animal tissue or chemical solutions will be necessary to preserve the prosthesis, which will be sterilized with Gamma Radiation.
[033] Produto Económico: A fabricação pode realizar-se em grande escala, portanto de baixo custo e de grande valor agregado. [033] Economic Product: Manufacturing can be carried out on a large scale, therefore of low cost and high added value.
[034] Valor Cientifico: Poderão ser fabricados vários modelos diferentes, conforme as necessidades de cada paciente. [034] Scientific Value: Several different models can be manufactured according to the needs of each patient.
[035] Satisfação Social: trata-se de um produto nacional, avaliado pelo método científico (Cirurgia Experimental) e podendo obter certificação na ANVISA, para colocá-lo ao alcance de qualquer cidadão. [035] Social Satisfaction: It is a national product, evaluated by the scientific method (Experimental Surgery) and can obtain certification by ANVISA, to make it available to any citizen.

Claims

REIVINDICAÇÃO "MÉTODO PARA OBTER UM STENT VÁLVULA CARDÍACA EXPANSÍVEL A PARTIR DE MEMBRANA DE POLIURETANO E STENT VÁLVULA DE MEMBRANA DE POLIURETANO, PARA IMPLANTE POR CATETER, EM PACIENTES ADULTOS E PEDIÁTRICOS". Constituído por uma malha de cromo cobalto, pré-moldado, cortada com laser, polida e submetida a banho de politetrafíiiometileno. Forman parle do stent (Figurai) anel (1) com 12,5 mm de altura e 3 hastes flexíveis (2) com 12,5 mm de altura, altura total 25 mm. Construção de um stent valvular cardíaco expansível de poliuretano sem a utilização de linhas de sutura na ligação das três finas lacinhas ao anel valvar, com abertura ampla e fechamento sem deixar vazamento central. Formação de uma fina membrana de poliuretano (Figura 2) (1), de 0,2 a 0,3 mm, aplicada sobre o stent formando três cúspides flexíveis, imitando as válvulas sigmoideas aórtica e pulmonar humanas. Existe um limita de aplicação do poliuretano (2), há 6 mm da borda inferior do stent, mantendo este segmento da malha de cromo cobalto (3) livre de poliuretano, expondo uma superfície apta para a fixação do stent no anel valvar do paciente. O cateter balão (Figura 3, 3 a), permite a expansão uniformes das hastes CLAIM "METHOD FOR OBTAINING AN EXPANDABLE HEART VALVE STENT FROM POLYURETHANE MEMBRANE AND POLYURETHANE MEMBRANE VALVE STENT, FOR IMPLANTATION BY CATHETER, IN ADULT AND PEDIATRIC PATIENTS". Consisting of a pre-molded cobalt chrome mesh, cut with a laser, polished and subjected to a polytetrafoamethylene bath. Form the stent (Figure 1) with a ring (1) 12.5 mm high and 3 flexible rods (2) 12.5 mm high, total height 25 mm. Construction of an expandable polyurethane heart valve stent without the use of suture lines to connect the three thin loops to the valve ring, with wide opening and closing without leaving a central leak. Formation of a thin polyurethane membrane (Figure 2) (1), measuring 0.2 to 0.3 mm, applied to the stent, forming three flexible cusps, imitating the human aortic and pulmonary sigmoid valves. There is a polyurethane application limit (2), 6 mm from the lower edge of the stent, keeping this segment of the cobalt chrome mesh (3) free of polyurethane, exposing a surface suitable for fixing the stent to the patient's valve ring. The balloon catheter (Figure 3, 3a) allows uniform expansion of the rods
(1) e expansão de 2 a 3 mm maior do anei (2), para melhor frxação no anel valvar do paciente, evitando mobilização ou embolização. O balão foi concebido para proporcionar diâmetro exato de 12 a 22 mm, mantendo pressão estabelecida de acordo com o material do balão semideforrnãvel. A expansão do stent válvula, pode ser realizado com balões de diâmetro crescente, acompanhando o crescimento do paciente, sem a necessidade de substituição da prótese. O mecanismo de liberação do stent válvula de poliuretano, condicionado no cateter. Após recuar a vainha (Figura 4) (1), fica exposto o stent válvula (2), pronto para a expansão do balão (3). Marcas radiopacas nos extremos do stent e do balão permitem posicionar a prótese no anei da válvula cardíaca em tratamento. O cateter balão (Figura 5) em forma de pera (1), permite a expansão da borda inferior do stent (Figura 8)(1) and 2 to 3 mm greater expansion of the ring (2), for better flxation on the patient's valve ring, avoiding mobilization or embolization. The balloon was designed to provide an exact diameter of 12 to 22 mm, maintaining an established pressure according to the material of the semi-deformable balloon. Expansion of the valve stent can be performed with balloons of increasing diameter, following the patient's growth, without the need to replace the prosthesis. The stent release mechanism is a polyurethane valve, conditioned in the catheter. After withdrawing the vane (Figure 4) (1), the valve stent (2) is exposed, ready for balloon expansion (3). Radiopaque marks at the ends of the stent and balloon allow positioning the prosthesis in the ring of the heart valve being treated. The pear-shaped balloon catheter (Figure 5) (1) allows expansion of the lower edge of the stent (Figure 8)
(2) , virando externamente a malha para melhor fixação no anel vaivar (3), evitando movimentação, rotação ou embolização. Os stents podem ser expandidos com diâmetros de: (Figura 7) 12 mm (1), 15 mm (2), 18 mm (3) e 22 mm (4), assim como os stent válvula de poliuretano, para seu uso clínico, com diâmetros: (Figura 8), 12 mm (1), 15 mm (2), 18 mm (3) e 22 mm (4).Trata- se de um Projeto Sustentável: beneficiando aos Pacientes: Será oferecida uma prótese confiávef, duradoura, com menor risco de disfunção, para implante em adultos e crianças, mediante um procedimento mais simples, menor risco cirúrgico. Menor tempo de permanência em UTI, e Internação Hospitalar. Meio Ambiente: Não será necessário a manipulação de tecido animal, nem soluções químicas para a preservação da prótese, que será esterilizada com Radiação Gama. Produto Económico: A fabricação pode realizar-se em grande escala, portanto de baixo custo e de grande valor agregado. Valor Científico: Poderão ser fabricados vários modelos diferentes, conforme as necessidades de cada paciente. Satisfação Social: trata-se de um produto nacional, avaliado pelo método científico (Cirurgia Experimental) e podendo obter certificação na AN VI SA, para colocá-lo ao alcance de qualquer cidadão. (2) , externally turning the mesh for better fixation in the vaivar ring (3), avoiding movement, rotation or embolization. The stents can be expanded with diameters of: (Figure 7) 12 mm (1), 15 mm (2), 18 mm (3) and 22 mm (4), as well as the polyurethane valve stent, for clinical use, with diameters: (Figure 8), 12 mm (1), 15 mm (2), 18 mm (3) and 22 mm (4). This is a Sustainable Project: benefiting Patients: A reliable prosthesis will be offered, lasting, with lower risk of dysfunction, for implantation in adults and children, through a simpler procedure, lower surgical risk. Shorter length of stay in the ICU and hospital stay. Environment: It will not be necessary to manipulate animal tissue or chemical solutions to preserve the prosthesis, which will be sterilized with Gamma Radiation. Economical Product: Manufacturing can be carried out on a large scale, therefore low cost and with great added value. Scientific Value: Several different models can be manufactured, depending on the needs of each patient. Social Satisfaction: this is a national product, evaluated using the scientific method (Experimental Surgery) and capable of obtaining certification from AN VI SA, to make it within the reach of any citizen.
PCT/BR2017/000078 2016-09-19 2017-07-17 Method for producing an expandable heart valve stent from a polyurethane membrane and polyurethane membrane valve stent that can be implanted using a catheter in adult and pediatric patients WO2018049492A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
BR102016021508-0A BR102016021508A2 (en) 2016-09-19 2016-09-19 METHOD FOR OBTAINING AN EXPANSIBLE HEART VALVE STENT FROM POLYURETHANE MEMBRANE AND STENT POLYURETHANE MEMBRANE VALVE FOR CATHETER IMPLANTS IN ADULT AND PEDIATRIC PATIENTS
BRBR1020160215080 2016-09-19

Publications (1)

Publication Number Publication Date
WO2018049492A1 true WO2018049492A1 (en) 2018-03-22

Family

ID=61619296

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/BR2017/000078 WO2018049492A1 (en) 2016-09-19 2017-07-17 Method for producing an expandable heart valve stent from a polyurethane membrane and polyurethane membrane valve stent that can be implanted using a catheter in adult and pediatric patients

Country Status (2)

Country Link
BR (1) BR102016021508A2 (en)
WO (1) WO2018049492A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023060330A1 (en) * 2021-10-15 2023-04-20 Angel Maluf Miguel Polyurethane-coated, expandable stented valve prosthesis designed with anatomic cusps for implanting by catheter in the pulmonary position in pediatric and adult patients, and method for producing expandable stented valve prosthesis

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4222126A (en) * 1978-12-14 1980-09-16 The United States Of America As Represented By The Secretary Of The Department Of Health, Education & Welfare Unitized three leaflet heart valve
US5411552A (en) * 1990-05-18 1995-05-02 Andersen; Henning R. Valve prothesis for implantation in the body and a catheter for implanting such valve prothesis
US20060276813A1 (en) * 2005-05-20 2006-12-07 The Cleveland Clinic Foundation Apparatus and methods for repairing the function of a diseased valve and method for making same
US20070270944A1 (en) * 2004-04-23 2007-11-22 3F Therapeutics, Inc. Implantable Valve Prosthesis
US20110264207A1 (en) * 2008-02-28 2011-10-27 Phillip Bonhoeffer Prosthetic heart valve systems
US20120296418A1 (en) * 2011-05-20 2012-11-22 Edwards Lifesciences Corporation Encapsulated heart valve
WO2014179782A1 (en) * 2013-05-03 2014-11-06 Medtronic Inc. Prosthetic valves and associated appartuses, systems and methods
US20150196688A1 (en) * 2012-03-12 2015-07-16 Colorado State University Research Foundation Glycosaminoglycan and Synthetic Polymer Material for Blood-Contacting Applications
US20150366664A1 (en) * 2014-06-20 2015-12-24 Edwards Lifesciences Corporation Surgical heart valves identifiable post-implant
BR102015032289A2 (en) * 2015-12-22 2017-06-27 Universidade Federal De São Paulo-Unifesp STENT EXPANSIBLE VALVE

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4222126A (en) * 1978-12-14 1980-09-16 The United States Of America As Represented By The Secretary Of The Department Of Health, Education & Welfare Unitized three leaflet heart valve
US5411552A (en) * 1990-05-18 1995-05-02 Andersen; Henning R. Valve prothesis for implantation in the body and a catheter for implanting such valve prothesis
US20070270944A1 (en) * 2004-04-23 2007-11-22 3F Therapeutics, Inc. Implantable Valve Prosthesis
US20060276813A1 (en) * 2005-05-20 2006-12-07 The Cleveland Clinic Foundation Apparatus and methods for repairing the function of a diseased valve and method for making same
US20110264207A1 (en) * 2008-02-28 2011-10-27 Phillip Bonhoeffer Prosthetic heart valve systems
US20120296418A1 (en) * 2011-05-20 2012-11-22 Edwards Lifesciences Corporation Encapsulated heart valve
US20150196688A1 (en) * 2012-03-12 2015-07-16 Colorado State University Research Foundation Glycosaminoglycan and Synthetic Polymer Material for Blood-Contacting Applications
WO2014179782A1 (en) * 2013-05-03 2014-11-06 Medtronic Inc. Prosthetic valves and associated appartuses, systems and methods
US20150366664A1 (en) * 2014-06-20 2015-12-24 Edwards Lifesciences Corporation Surgical heart valves identifiable post-implant
BR102015032289A2 (en) * 2015-12-22 2017-06-27 Universidade Federal De São Paulo-Unifesp STENT EXPANSIBLE VALVE

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023060330A1 (en) * 2021-10-15 2023-04-20 Angel Maluf Miguel Polyurethane-coated, expandable stented valve prosthesis designed with anatomic cusps for implanting by catheter in the pulmonary position in pediatric and adult patients, and method for producing expandable stented valve prosthesis

Also Published As

Publication number Publication date
BR102016021508A2 (en) 2018-04-03

Similar Documents

Publication Publication Date Title
JP7075129B2 (en) Hydrocephalus treatment methods and systems
US11786366B2 (en) Devices and methods for anchoring transcatheter heart valve
US20230000620A1 (en) Method and apparatus for cardiac valve replacement
CN102497907B (en) Transapical deliverry system for heart valves
JP5095625B2 (en) Transapical heart valve delivery system
CN102497906B (en) Top delivery system is cut for valvular
ES2365880T5 (en) A prosthetic valve assembly
ES2441801T3 (en) Percutaneous valve and supply system
ES2236204T3 (en) BULBIFORM AND STENT VALVE FOR THE TREATMENT OF VASCULAR REFLUX.
EP1928357B1 (en) System and method for delivering a mitral valve repair device
US20070032703A1 (en) Radially expansive surgical instruments for tissue retraction and methods for using the same
WO2018201212A1 (en) Device for releasing a valvular endoprosthesis and valvular endoprosthesis
CN106794064A (en) Prothesis implant body conveying device
CN105916471A (en) Information markers for heart prostheses and methods of using same
CN105263443A (en) Sutureless valve prosthesis delivery device and methods of use thereof
US8968233B2 (en) Arteriovenous shunt having a moveable valve
JP2014124265A (en) Balloon for catheter and catheter
CN113473946A (en) Prosthetic heart valve assembly
CN104379071A (en) Adjustable vascular ring, means for treating SFS syndrome and implantable kit including said ring, mold and method for obtaining such ring
WO2018049492A1 (en) Method for producing an expandable heart valve stent from a polyurethane membrane and polyurethane membrane valve stent that can be implanted using a catheter in adult and pediatric patients
JP2013543415A (en) Controlled inflation of an expandable member during a medical procedure
BR102015032289A2 (en) STENT EXPANSIBLE VALVE
Hunter et al. Glossary of medical devices and procedures: abbreviations, acronyms, and definitions
WO2023155818A1 (en) Presettable artificial biological aortic valve
WO2023060330A1 (en) Polyurethane-coated, expandable stented valve prosthesis designed with anatomic cusps for implanting by catheter in the pulmonary position in pediatric and adult patients, and method for producing expandable stented valve prosthesis

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17849936

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17849936

Country of ref document: EP

Kind code of ref document: A1