WO2018048504A1 - Dispositifs et procédés de traitement et de désambiguïsation d'entrées tactiles à l'aide de seuils d'intensité sur la base d'une intensité d'entrée antérieure - Google Patents

Dispositifs et procédés de traitement et de désambiguïsation d'entrées tactiles à l'aide de seuils d'intensité sur la base d'une intensité d'entrée antérieure Download PDF

Info

Publication number
WO2018048504A1
WO2018048504A1 PCT/US2017/041758 US2017041758W WO2018048504A1 WO 2018048504 A1 WO2018048504 A1 WO 2018048504A1 US 2017041758 W US2017041758 W US 2017041758W WO 2018048504 A1 WO2018048504 A1 WO 2018048504A1
Authority
WO
WIPO (PCT)
Prior art keywords
intensity
input
click
decrease
detecting
Prior art date
Application number
PCT/US2017/041758
Other languages
English (en)
Inventor
Nicole M. WELLS
Leah M. GUM
Nicholas A. FAHRNER
Kenneth L. Kocienda
Camille MOUSSETTE
Jean-Pierre Mouilleseaux
Joshua B. KOPIN
Jules K. FENNIS
Original Assignee
Apple Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DKPA201670722A external-priority patent/DK179411B1/en
Application filed by Apple Inc. filed Critical Apple Inc.
Priority to CN201780003364.7A priority Critical patent/CN108174612B/zh
Priority to CN201910352081.4A priority patent/CN110058757B/zh
Priority to CN202210877529.6A priority patent/CN115167745A/zh
Priority to EP17743156.6A priority patent/EP3329356B1/fr
Publication of WO2018048504A1 publication Critical patent/WO2018048504A1/fr

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/048Interaction techniques based on graphical user interfaces [GUI]
    • G06F3/0487Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser
    • G06F3/0488Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser using a touch-screen or digitiser, e.g. input of commands through traced gestures
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/016Input arrangements with force or tactile feedback as computer generated output to the user
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04105Pressure sensors for measuring the pressure or force exerted on the touch surface without providing the touch position

Definitions

  • This relates generally to electronic devices with one or more intensity sensitive input elements, including but not limited to electronic devices with touch-sensitive displays and optionally other input elements to detect intensity of contacts on touch-sensitive surfaces.
  • intensity sensitive input elements including but not limited to touch-sensitive surfaces
  • exemplary intensity sensitive input elements include buttons that include a contact intensity sensor, and touchpads and touchscreen displays that include contact intensity sensors. Touch inputs on such surfaces are used to manipulate user interfaces and user interface objects on a display.
  • Exemplary user interface objects include digital images, video, text, icons, control elements such as buttons and other graphics.
  • Exemplary manipulations include adjusting the position and/or size of one or more user interface objects or activating buttons or opening files/applications represented by user interface objects, scrolling or changing user interfaces within an application or otherwise manipulating user interfaces.
  • Certain manipulations of user interface objects or user interfaces are associated with certain types of touch inputs, which are referred to as gestures.
  • the device is a desktop computer.
  • the device is portable (e.g., a notebook computer, tablet computer, or handheld device).
  • the device is a personal electronic device (e.g., a wearable electronic device, such as a watch).
  • the device has a touchpad.
  • the device has a touch-sensitive display (also known as a "touch screen” or "touch-screen display").
  • the device has a graphical user interface (GUI), one or more processors, memory and one or more modules, programs or sets of instructions stored in the memory for performing multiple functions.
  • GUI graphical user interface
  • the user interacts with the GUI primarily through stylus and/or finger contacts and gestures on the touch-sensitive surface.
  • the functions optionally include image editing, drawing, presenting, word processing, spreadsheet making, game playing, telephoning, video conferencing, e-mailing, instant messaging, workout support, digital photographing, digital videoing, web browsing, digital music playing, note taking, and/or digital video playing. Executable instructions for performing these functions are, optionally, included in a non- transitory computer readable storage medium or other computer program product configured for execution by one or more processors.
  • a method which is performed at an electronic device with a display and an intensity sensitive input element (e.g., a hardware button, a touch-sensitive surface, or a region of a device that is associated with one or more intensity sensors) for detecting intensity of user inputs with the input element, includes detecting a first increase in intensity of an input on the input element that meets a down-click detection criteria, and after detecting the first increase in intensity of the input on the input element, detecting a first decrease in intensity of the contact.
  • an intensity sensitive input element e.g., a hardware button, a touch-sensitive surface, or a region of a device that is associated with one or more intensity sensors
  • the method further includes determining whether the first decrease in intensity of the input meets up-click detection criteria, wherein: for the first decrease in intensity, the up-click detection criteria require that the intensity of the input decrease below a first up-click intensity threshold in order for the up-click detection criteria to be met, and the first up-click intensity threshold is selected based on the intensity of the input during the increase in intensity of the contact that was detected prior to detecting the first decrease in intensity of the input.
  • the method also includes, in accordance with a determination that the first decrease in intensity of the input meets up-click detection criteria, providing first feedback indicating that the first decrease in intensity of the input was recognized as an up-click input, and in accordance with a
  • a method which is performed at an electronic device with a display and an intensity sensitive input element (e.g., a hardware button, a touch-sensitive surface, or a region of a device that is associated with one or more intensity sensors) for detecting intensity of user inputs with the input element, includes detecting a change in intensity of an input on the input element that includes an increase in intensity of the input on the input element followed by a decrease in intensity of the input on the input element; recognizing at least a portion of the change in intensity of the input as a first input event that is associated with a first operation; and after recognizing the first input event, delaying performance of the first operation while monitoring subsequent changes in intensity of the input for a second input event, wherein the delay is limited by a default delay time period.
  • the method further includes, after delaying performance of the first operation: in accordance with a determination that the second input event has been recognized before the default delay time period has elapsed, performing a second operation and forgoing
  • a method which is performed at an electronic device with a display and an intensity sensitive input element (e.g., a hardware button, a touch-sensitive surface, or a region of a device that is associated with one or more intensity sensors) for detecting intensity of user inputs with the input element, includes detecting an input sequence that includes an increase in intensity of an input that corresponds to a first input event.
  • the method further includes, in response to detecting the input sequence: in accordance with a determination that a second input event, including a decrease in intensity of the input after the first input event, is detected within a first time period after the first input event is detected, performing a first operation.
  • the method further includes, in accordance with a determination that the second input event is not detected within a second time period that is longer than the first time period and that the input had a characteristic intensity above a respective intensity threshold between when the first input event was detected and when the second time period elapsed, performing a second operation once the second time period has elapsed, wherein the second time period is determined based at least in part on an intensity of the input after the first input event is detected.
  • the method further includes, in accordance with a determination that the second input event is not detected within a third time period that is longer than the second time period and that the input did not have a characteristic intensity above the respective intensity threshold between when the first input event was detected and when the second time period elapsed, performing the second operation once the third time period has elapsed.
  • an electronic device includes a display, a touch-sensitive surface, optionally one or more sensors to detect intensity of contacts with the touch-sensitive surface, one or more processors, memory, and one or more programs; the one or more programs are stored in the memory and configured to be executed by the one or more processors and the one or more programs include instructions for performing or causing performance of the operations of any of the methods described herein.
  • a computer readable storage medium has stored therein instructions which when executed by an electronic device with a display, a touch- sensitive surface, and optionally one or more sensors to detect intensity of contacts with the touch-sensitive surface, cause the device to perform or cause performance of the operations of any of the methods described herein.
  • a graphical user interface on an electronic device with a display, a touch-sensitive surface, optionally one or more sensors to detect intensity of contacts with the touch-sensitive surface, a memory, and one or more processors to execute one or more programs stored in the memory includes one or more of the elements displayed in any of the methods described herein, which are updated in response to inputs, as described in any of the methods described herein.
  • an electronic device includes: a display, a touch-sensitive surface, and optionally one or more sensors to detect intensity of contacts with the touch-sensitive surface; and means for performing or causing performance of the operations of any of the methods described herein.
  • an information processing apparatus for use in an electronic device with a display and a touch-sensitive surface, and optionally one or more sensors to detect intensity of contacts with the touch-sensitive surface, includes means for performing or causing performance of the operations of any of the methods described herein.
  • Such methods and interfaces may complement or replace conventional methods for processing and disambiguating touch inputs.
  • Figure 1 A is a block diagram illustrating a portable multifunction device with a touch-sensitive display in accordance with some embodiments.
  • Figure IB is a block diagram illustrating example components for event handling in accordance with some embodiments.
  • Figure 1C is a block diagram illustrating a tactile output module in accordance with some embodiments.
  • Figure 2A illustrates a portable multifunction device having a touch screen in accordance with some embodiments.
  • Figures 2B-2C show exploded views of an intensity-sensitive input device in accordance with some embodiments.
  • Figure 3 is a block diagram of an example multifunction device with a display and a touch-sensitive surface in accordance with some embodiments.
  • Figure 4A illustrates an example user interface for a menu of applications on a portable multifunction device in accordance with some embodiments.
  • Figure 4B illustrates an example user interface for a multifunction device with a touch-sensitive surface that is separate from the display in accordance with some embodiments.
  • Figures 4C-4E illustrate examples of dynamic intensity thresholds in accordance with some embodiments.
  • Figures 4F-4G illustrate a set of sample tactile output patterns in accordance with some embodiments.
  • Figures 5 A-5II illustrate example user interfaces and a variety of timeout periods and intensity thresholds used for detecting gestures in accordance with some embodiments.
  • Figures 6A-6F are flow diagrams illustrating a method of processing and disambiguating touch inputs in accordance with some embodiments.
  • Figures 7A-7E are flow diagrams illustrating a method of processing and disambiguating touch inputs in accordance with some embodiments.
  • Figures 8A-8C are flow diagrams illustrating a method of processing and disambiguating touch inputs in accordance with some embodiments.
  • FIGS 9-11 are functional block diagrams of an electronic device in accordance with some embodiments.
  • gestures involve an input having time varying intensity. Distinguishing between such gestures requires analysis of both the intensity of an input on the input element, as well as analysis of timing aspects or features of the input. Furthermore, some users have a "heavier touch" than others, putting more pressure, on average, than other users. Similarly, some users enter gestures at higher speed than other users.
  • one or more intensity thresholds used for detecting a gesture or portions of a gesture, vary in accordance with the intensity of the user's input during one or more preceding portions of the gesture.
  • one or more time periods used in the analysis of a touch input varies in accordance with the intensity of the touch input, thereby enabling faster recognition of certain gestures when predefined criteria are satisfied.
  • haptic feedback also called tactile outputs
  • tactile outputs can be used to facilitate user input, confirm the recognition of various user inputs, and alert the user to the occurrence of various events, various input conditions, and the like.
  • the detection criteria for triggering those tactile outputs vary (e.g., the detection criteria for triggering a long press tactile output may differ from one application to another, or from one context in an application to another context in the same application).
  • Figures 1A-1B, 2, and 3 provide a description of example devices.
  • Figures 4A-4B, and 5A-5II illustrate example user interfaces of an electronic device configured to monitor an input on an intensity sensitive input element and detect various events, such as up-clicks, down-clicks, single clicks, double clicks, deep press inputs, and long press inputs, using a variety of input intensity criteria and timing criteria for fast and efficient determination of user inputs.
  • Figures 6A-6F illustrate a flow diagram of a method of monitoring an input on an intensity sensitive input element, and detecting an up-click and/or a down-click in the monitored input using one or more intensity thresholds that are based on prior input intensity of the input.
  • Figures 7A-7E illustrate a flow diagram of a method of monitoring changes in intensity of an input and applying early-confirmation criteria for recognizing single click inputs, as distinguished from double click inputs, on an expedited basis.
  • Figures 8A-8C illustrate a flow diagram of a method of monitoring changes in intensity of an input and applying intensity-sensitive criteria for recognizing long press inputs on an expedited basis.
  • the user interfaces in Figures 5A-5N are used to illustrate the processes in Figures 6A-6F.
  • the user interfaces in Figures 50-5Y are used to illustrate the processes in Figures 7A-7E.
  • the user interfaces in Figures 5Z-5II are used to illustrate the processes in Figures 8A-8C.
  • first, second, etc. are, in some instances, used herein to describe various elements, these elements should not be limited by these terms. These terms are only used to distinguish one element from another. For example, a first contact could be termed a second contact, and, similarly, a second contact could be termed a first contact, without departing from the scope of the various described embodiments. The first contact and the second contact are both contacts, but they are not the same contact, unless the context clearly indicates otherwise.
  • the device is a portable communications device, such as a mobile telephone, that also contains other functions, such as PDA and/or music player functions.
  • portable multifunction devices include, without limitation, the iPhone®, iPod Touch®, and iPad® devices from Apple Inc. of Cupertino, California.
  • Other portable electronic devices such as laptops or tablet computers with touch-sensitive surfaces (e.g., touch-screen displays and/or touchpads), are, optionally, used.
  • the device is not a portable communications device, but is a desktop computer with a touch- sensitive surface (e.g., a touch-screen display and/or a touchpad).
  • an electronic device that includes a display and a touch-sensitive surface is described. It should be understood, however, that the electronic device optionally includes one or more other physical user-interface devices, such as a physical keyboard, a mouse and/or a joystick.
  • the device typically supports a variety of applications, such as one or more of the following: a note taking application, a drawing application, a presentation application, a word processing application, a website creation application, a disk authoring application, a spreadsheet application, a gaming application, a telephone application, a video conferencing application, an e-mail application, an instant messaging application, a workout support application, a photo management application, a digital camera application, a digital video camera application, a web browsing application, a digital music player application, and/or a digital video player application.
  • applications such as one or more of the following: a note taking application, a drawing application, a presentation application, a word processing application, a website creation application, a disk authoring application, a spreadsheet application, a gaming application, a telephone application, a video conferencing application, an e-mail application, an instant messaging application, a workout support application, a photo management application, a digital camera application, a digital video camera application, a web browsing application, a digital music player application
  • the various applications that are executed on the device optionally use at least one common physical user-interface device, such as the touch-sensitive surface.
  • One or more functions of the touch-sensitive surface as well as corresponding information displayed on the device are, optionally, adjusted and/or varied from one application to the next and/or within a respective application.
  • a common physical architecture (such as the touch- sensitive surface) of the device optionally supports the variety of applications with user interfaces that are intuitive and transparent to the user.
  • FIG. 1 A is a block diagram illustrating portable multifunction device 100 with touch-sensitive display system 112 in accordance with some embodiments.
  • Touch- sensitive display system 112 is sometimes called a "touch screen" for convenience, and is sometimes simply called a touch- sensitive display.
  • Device 100 includes memory 102 (which optionally includes one or more computer readable storage mediums), memory controller 122, one or more processing units (CPUs) 120, peripherals interface 118, RF circuitry 108, audio circuitry 110, speaker 111, microphone 113, input/output (I/O) subsystem 106, other input or control devices 116, and external port 124.
  • Device 100 optionally includes one or more optical sensors 164.
  • Device 100 optionally includes one or more intensity sensors 165 for detecting intensity of contacts on device 100 (e.g., a touch-sensitive surface such as touch- sensitive display system 112 of device 100).
  • Device 100 optionally includes one or more tactile output generators 167 for generating tactile outputs on device 100 (e.g., generating tactile outputs on a touch-sensitive surface such as touch-sensitive display system 112 of device 100 or touchpad 355 of device 300).
  • These components optionally communicate over one or more communication buses or signal lines 103.
  • the term "tactile output” refers to physical displacement of a device relative to a previous position of the device, physical displacement of a component (e.g., a touch-sensitive surface) of a device relative to another component (e.g., housing) of the device, or displacement of the component relative to a center of mass of the device that will be detected by a user with the user's sense of touch.
  • a component e.g., a touch-sensitive surface
  • another component e.g., housing
  • the tactile output generated by the physical displacement will be interpreted by the user as a tactile sensation corresponding to a perceived change in physical characteristics of the device or the component of the device.
  • a touch-sensitive surface e.g., a touch-sensitive display or trackpad
  • movement of a touch-sensitive surface is, optionally, interpreted by the user as a "down click" or "up click" of a physical actuator button.
  • a user will feel a tactile sensation such as an "down click” or “up click” even when there is no movement of a physical actuator button associated with the touch-sensitive surface that is physically pressed (e.g., displaced) by the user's movements.
  • movement of the touch-sensitive surface is, optionally, interpreted or sensed by the user as "roughness" of the touch-sensitive surface, even when there is no change in smoothness of the touch-sensitive surface. While such interpretations of touch by a user will be subject to the individualized sensory perceptions of the user, there are many sensory perceptions of touch that are common to a large majority of users.
  • a tactile output when a tactile output is described as corresponding to a particular sensory perception of a user (e.g., an "up click,” a “down click,” “roughness"), unless otherwise stated, the generated tactile output corresponds to physical displacement of the device or a component thereof that will generate the described sensory perception for a typical (or average) user.
  • Using tactile outputs to provide haptic feedback to a user enhances the operability of the device and makes the user-device interface more efficient (e.g., by helping the user to provide proper inputs and reducing user mistakes when operating/interacting with the device) which, additionally, reduces power usage and improves battery life of the device by enabling the user to use the device more quickly and efficiently.
  • a tactile output pattern specifies characteristics of a tactile output, such as the amplitude of the tactile output, the shape of a movement waveform of the tactile output, the frequency of the tactile output, and/or the duration of the tactile output.
  • the tactile outputs may invoke different haptic sensations in a user holding or touching the device. While the sensation of the user is based on the user's perception of the tactile output, most users will be able to identify changes in waveform, frequency, and amplitude of tactile outputs generated by the device. Thus, the waveform, frequency and amplitude can be adjusted to indicate to the user that different operations have been performed.
  • tactile outputs with tactile output patterns that are designed, selected, and/or engineered to simulate characteristics (e.g., size, material, weight, stiffness, smoothness, etc.); behaviors (e.g., oscillation, displacement, acceleration, rotation, expansion, etc.); and/or interactions (e.g., collision, adhesion, repulsion, attraction, friction, etc.) of objects in a given environment (e.g., a user interface that includes graphical features and objects, a simulated physical environment with virtual boundaries and virtual objects, a real physical environment with physical boundaries and physical objects, and/or a combination of any of the above) will, in some circumstances, provide helpful feedback to users that reduces input errors and increases the efficiency of the user's operation of the device.
  • characteristics e.g., size, material, weight, stiffness, smoothness, etc.
  • behaviors e.g., oscillation, displacement, acceleration, rotation, expansion, etc.
  • interactions e.g., collision, adhesion, repulsion, attraction, friction, etc.
  • tactile outputs are, optionally, generated to correspond to feedback that is unrelated to a simulated physical characteristic, such as an input threshold or a selection of an object. Such tactile outputs will, in some circumstances, provide helpful feedback to users that reduces input errors and increases the efficiency of the user's operation of the device.
  • a tactile output with a suitable tactile output pattern serves as a cue for the occurrence of an event of interest in a user interface or behind the scenes in a device.
  • the events of interest include activation of an affordance (e.g., a real or virtual button, or toggle switch) provided on the device or in a user interface, success or failure of a requested operation, reaching or crossing a boundary in a user interface, entry into a new state, switching of input focus between objects, activation of a new mode, reaching or crossing an input threshold, detection or recognition of a type of input or gesture, etc.
  • an affordance e.g., a real or virtual button, or toggle switch
  • tactile outputs are provided to serve as a warning or an alert for an impending event or outcome that would occur unless a redirection or interruption input is timely detected.
  • Tactile outputs are also used in other contexts to enrich the user experience, improve the accessibility of the device to users with visual or motor difficulties or other accessibility needs, and/or improve efficiency and functionality of the user interface and/or the device.
  • Tactile outputs are optionally accompanied with audio outputs and/or visible user interface changes, which further enhance a user's experience when the user interacts with a user interface and/or the device, and facilitate better conveyance of information regarding the state of the user interface and/or the device, and which reduce input errors and increase the efficiency of the user's operation of the device.
  • Figure 4F provides a set of sample tactile output patterns that may be used, either individually or in combination, either as is or through one or more transformations (e.g., modulation, amplification, truncation, etc.), to create suitable haptic feedback in various scenarios and for various purposes, such as those mentioned above and those described with respect to the user interfaces and methods discussed herein.
  • This example of a palette of tactile outputs shows how a set of three waveforms and eight frequencies can be used to produce an array of tactile output patterns.
  • each of these tactile output patterns is optionally adjusted in amplitude by changing a gain value for the tactile output pattern, as shown, for example for FullTap 80Hz, FullTap 200Hz, MiniTap 80Hz, MiniTap 200Hz, MicroTap 80Hz, and MicroTap 200Hz in Figure 4G, which are each shown with variants having a gain of 1.0, 0.75, 0.5, and 0.25.
  • changing the gain of a tactile output pattern changes the amplitude of the pattern without changing the frequency of the pattern or changing the shape of the waveform.
  • changing the frequency of a tactile output pattern also results in a lower amplitude as some tactile output generators are limited by how much force can be applied to the moveable mass and thus higher frequency movements of the mass are constrained to lower amplitudes to ensure that the acceleration needed to create the waveform does not require force outside of an operational force range of the tactile output generator (e.g., the peak amplitudes of the FullTap at 230Hz, 270Hz, and 300Hz are lower than the amplitudes of the FullTap at 80Hz, 100Hz, 125Hz, and 200Hz).
  • the peak amplitudes of the FullTap at 230Hz, 270Hz, and 300Hz are lower than the amplitudes of the FullTap at 80Hz, 100Hz, 125Hz, and 200Hz.
  • each column shows tactile output patterns that have a particular waveform.
  • the waveform of a tactile output pattern represents the pattern of physical displacements relative to a neutral position (e.g., x ze ro) versus time that an moveable mass goes through to generate a tactile output with that tactile output pattern.
  • a first set of tactile output patterns shown in the left column in Figure 4F e.g., tactile output patterns of a "FullTap" each have a waveform that includes an oscillation with two complete cycles (e.g., an oscillation that starts and ends in a neutral position and crosses the neutral position three times).
  • a second set of tactile output patterns shown in the middle column in Figure 4F each have a waveform that includes an oscillation that includes one complete cycle (e.g., an oscillation that starts and ends in a neutral position and crosses the neutral position one time).
  • a third set of tactile output patterns shown in the right column in Figure 4F e.g., tactile output patterns of a "MicroTap" each have a waveform that includes an oscillation that include one half of a complete cycle (e.g., an oscillation that starts and ends in a neutral position and does not cross the neutral position).
  • the waveform of a tactile output pattern also includes a start buffer and an end buffer that represent the gradual speeding up and slowing down of the moveable mass at the start and at the end of the tactile output.
  • the example waveforms shown in Figure 4F-4G include Xmin and x ma x values which represent the maximum and minimum extent of movement of the moveable mass. For larger electronic devices with larger moveable masses, there may be larger or smaller minimum and maximum extents of movement of the mass.
  • the example shown in Figures 4F-4G describes movement of a mass in 1 dimension, however similar principles would also apply to movement of a moveable mass in two or three dimensions.
  • each tactile output pattern also has a corresponding characteristic frequency that affects the "pitch" of a haptic sensation that is felt by a user from a tactile output with that characteristic frequency.
  • the characteristic frequency represents the number of cycles that are completed within a given period of time (e.g., cycles per second) by the moveable mass of the tactile output generator.
  • a discrete tactile output a discrete output signal (e.g., with 0.5, 1, or 2 cycles) is generated, and the characteristic frequency value specifies how fast the moveable mass needs to move to generate a tactile output with that characteristic frequency.
  • a higher frequency value corresponds to faster movement(s) by the moveable mass, and hence, in general, a shorter time to complete the tactile output (e.g., including the time to complete the required number of cycle(s) for the discrete tactile output, plus a start and an end buffer time).
  • a FullTap with a characteristic frequency of 80Hz takes longer to complete than FullTap with a characteristic frequency of 100Hz (e.g., 35.4ms vs. 28.3ms in Figure 4F).
  • a tactile output with more cycles in its waveform at a respective frequency takes longer to complete than a tactile output with fewer cycles its waveform at the same respective frequency.
  • a FullTap at 150Hz takes longer to complete than a MiniTap at 150Hz (e.g., 19.4ms vs.
  • a MiniTap at 150Hz takes longer to complete than a MicroTap at 150Hz (e.g., 12.8ms vs. 9.4ms).
  • this rule may not apply (e.g., tactile outputs with more cycles but a higher frequency may take a shorter amount of time to complete than tactile outputs with fewer cycles but a lower frequency, and vice versa).
  • a FullTap takes as long as a MiniTap (e.g., 9.9 ms).
  • a tactile output pattern also has a characteristic amplitude that affects the amount of energy that is contained in a tactile signal, or a
  • the characteristic amplitude of a tactile output pattern refers to an absolute or normalized value that represents the maximum displacement of the moveable mass from a neutral position when generating the tactile output.
  • the characteristic amplitude of a tactile output pattern is adjustable, e.g., by a fixed or dynamically determined gain factor (e.g., a value between 0 and 1), in accordance with various conditions (e.g., customized based on user interface contexts and behaviors) and/or preconfigured metrics (e.g., input-based metrics, and/or user-interface- based metrics).
  • an input-based metric measures a characteristic of an input (e.g., a rate of change of a characteristic intensity of a contact in a press input or a rate of movement of the contact across a touch-sensitive surface) during the input that triggers generation of a tactile output.
  • a user-interface-based metric e.g., a speed-across-boundary metric measures a characteristic of a user interface element (e.g., a speed of movement of the element across a hidden or visible boundary in a user interface) during the user interface change that triggers generation of the tactile output.
  • the characteristic amplitude of a tactile output pattern may be modulated by an "envelope" and the peaks of adjacent cycles may have different amplitudes, where one of the waveforms shown above is further modified by multiplication by an envelope parameter that changes over time (e.g., from 0 to 1) to gradually adjust amplitude of portions of the tactile output over time as the tactile output is being generated.
  • envelope parameter that changes over time (e.g., from 0 to 1) to gradually adjust amplitude of portions of the tactile output over time as the tactile output is being generated.
  • a level state e.g., 0 degrees tilt in any axis for 0.5 seconds
  • Crossing over a detent in a scrubber e.g., text size, haptic strength, display brightness, display color temperature
  • Gain max 0.6 time (e.g., 15 min) in sleep alarm
  • Swipe to delete a table row e.g., a document in a document creation/viewing application, a note in a
  • Swipe out notes application, a location in a weather
  • MicroTap application a podcast in a podcast application, a High (270Hz) song in a playlist in a music application, a voice memo in a voice recording application
  • payment e.g., biometric authentication or passcode
  • device 100 is only one example of a portable multifunction device, and that device 100 optionally has more or fewer components than shown, optionally combines two or more components, or optionally has a different configuration or arrangement of the components.
  • the various components shown in Figure 1 A are implemented in hardware, software, firmware, or a combination thereof, including one or more signal processing and/or application specific integrated circuits.
  • Memory 102 optionally includes high-speed random access memory and optionally also includes non-volatile memory, such as one or more magnetic disk storage devices, flash memory devices, or other non-volatile solid-state memory devices. Access to memory 102 by other components of device 100, such as CPU(s) 120 and the peripherals interface 118, is, optionally, controlled by memory controller 122.
  • Peripherals interface 118 can be used to couple input and output peripherals of the device to CPU(s) 120 and memory 102.
  • the one or more processors 120 run or execute various software programs and/or sets of instructions stored in memory 102 to perform various functions for device 100 and to process data.
  • peripherals interface 118, CPU(s) 120, and memory controller 122 are, optionally, implemented on a single chip, such as chip 104. In some other embodiments, they are, optionally, implemented on separate chips.
  • RF (radio frequency) circuitry 108 receives and sends RF signals, also called electromagnetic signals.
  • RF circuitry 108 converts electrical signals to/from electromagnetic signals and communicates with communications networks and other communications devices via the electromagnetic signals.
  • RF circuitry 108 optionally includes well-known circuitry for performing these functions, including but not limited to an antenna system, an RF transceiver, one or more amplifiers, a tuner, one or more oscillators, a digital signal processor, a CODEC chipset, a subscriber identity module (SFM) card, memory, and so forth.
  • RF circuitry 108 optionally communicates with networks, such as the Internet, also referred to as the World
  • WWW Wide Web
  • a wireless network such as a cellular telephone network, a wireless local area network (LAN) and/or a metropolitan area network (MAN), and other devices by wireless communication.
  • the wireless communication optionally uses any of a plurality of communications standards, protocols and technologies, including but not limited to Global System for Mobile Communications (GSM), Enhanced Data GSM
  • EDGE high-speed downlink packet access
  • HSDPA high-speed uplink packet access
  • HUPA high-speed uplink packet access
  • EV-DO Evolution, Data-Only
  • HSPA High-speed Packet Packet Packet Packet Packet Packet Packet Packet Packet Packet Packet Packet Packet Packet Packet Packet Packet Packet Packet Packe, High-speed downlink packet access (HSDPA), high-speed uplink packet access (HSUPA), Evolution, Data-Only (EV-DO), HSPA, HSPA+, Dual-Cell HSPA
  • EDGE high-speed downlink packet access
  • HUPA high-speed uplink packet access
  • EV-DO Evolution, Data-Only
  • HSPA High-speed Packet Packet Packet Packet Packet Packet Packet Packet Packet Packet Packet Packet Packet Packet Packet Packet Packe
  • DC-HSPA long term evolution
  • LTE long term evolution
  • NFC near field communication
  • W-CDMA wideband code division multiple access
  • CDMA code division multiple access
  • TDMA time division multiple access
  • Wi-Fi Wireless Fidelity
  • Wi-MAX voice over Internet Protocol
  • a protocol for e-mail e.g., Internet message access protocol (IMAP) and/or post office protocol (POP)
  • instant messaging e.g., extensible messaging and presence protocol (XMPP), Session Initiation Protocol for Instant Messaging and Presence Leveraging Extensions (SIMPLE), Instant Messaging and Presence Service (IMPS)), and/or Short Message Service (SMS), or any other suitable communication protocol, including communication protocols not yet developed as of the filing date of this document.
  • IMAP Internet message access protocol
  • POP post office protocol
  • XMPP extensible messaging and presence protocol
  • SIMPLE Session Initiation Protocol for Instant Messaging and Presence Leveraging Extensions
  • IMPS Instant Messaging and Presence Service
  • SMS Short Message Service
  • Audio circuitry 1 10, speaker 111, and microphone 113 provide an audio interface between a user and device 100.
  • Audio circuitry 110 receives audio data from peripherals interface 118, converts the audio data to an electrical signal, and transmits the electrical signal to speaker 111.
  • Speaker 111 converts the electrical signal to human-audible sound waves.
  • Audio circuitry 110 also receives electrical signals converted by microphone 113 from sound waves.
  • Audio circuitry 110 converts the electrical signal to audio data and transmits the audio data to peripherals interface 118 for processing. Audio data is, optionally, retrieved from and/or transmitted to memory 102 and/or RF circuitry 108 by peripherals interface 1 18.
  • audio circuitry 110 also includes a headset jack (e.g., 212, Figure 2A). The headset jack provides an interface between audio circuitry 110 and removable audio input/output peripherals, such as output-only headphones or a headset with both output (e.g., a headphone for one or both ears) and input (e.g., a microphone).
  • I/O subsystem 106 couples input/output peripherals on device 100, such as touch-sensitive display system 112 and other input or control devices 116, with peripherals interface 118.
  • I/O subsystem 106 optionally includes display controller 156, optical sensor controller 158, intensity sensor controller 159, haptic feedback controller 161, and one or more input controllers 160 for other input or control devices.
  • the one or more input controllers 160 receive/send electrical signals from/to other input or control devices 116.
  • the other input or control devices 116 optionally include physical buttons (e.g., push buttons, rocker buttons, etc.), dials, slider switches, joysticks, click wheels, and so forth.
  • input controller(s) 160 are, optionally, coupled with any (or none) of the following: a keyboard, infrared port, USB port, stylus, and/or a pointer device such as a mouse.
  • the one or more buttons optionally include an up/down button for volume control of speaker 111 and/or microphone 113.
  • the one or more buttons optionally include a push button (e.g., 206, Figure 2A).
  • Touch-sensitive display system 112 provides an input interface and an output interface between the device and a user.
  • Display controller 156 receives and/or sends electrical signals from/to touch-sensitive display system 112.
  • Touch-sensitive display system 112 displays visual output to the user.
  • the visual output optionally includes graphics, text, icons, video, and any combination thereof (collectively termed "graphics").
  • some or all of the visual output corresponds to user interface objects.
  • the term "affordance” refers to a user-interactive graphical user interface object (e.g., a graphical user interface object that is configured to respond to inputs directed toward the graphical user interface object). Examples of user-interactive graphical user interface objects include, without limitation, a button, slider, icon, selectable menu item, switch, hyperlink, or other user interface control.
  • Touch-sensitive display system 112 has a touch-sensitive surface, sensor or set of sensors that accepts input from the user based on haptic and/or tactile contact.
  • Touch-sensitive display system 112 and display controller 156 (along with any associated modules and/or sets of instructions in memory 102) detect contact (and any movement or breaking of the contact) on touch-sensitive display system 112 and converts the detected contact into interaction with user-interface objects (e.g., one or more soft keys, icons, web pages or images) that are displayed on touch-sensitive display system 112.
  • user-interface objects e.g., one or more soft keys, icons, web pages or images
  • a point of contact between touch-sensitive display system 112 and the user corresponds to a finger of the user or a stylus.
  • Touch-sensitive display system 112 optionally uses LCD (liquid crystal display) technology, LPD (light emitting polymer display) technology, or LED (light emitting diode) technology, although other display technologies are used in other embodiments.
  • LCD liquid crystal display
  • LPD light emitting polymer display
  • LED light emitting diode
  • Touch-sensitive display system 112 and display controller 156 optionally detect contact and any movement or breaking thereof using any of a plurality of touch sensing technologies now known or later developed, including but not limited to capacitive, resistive, infrared, and surface acoustic wave technologies, as well as other proximity sensor arrays or other elements for determining one or more points of contact with touch-sensitive display system 112.
  • touch sensing technologies now known or later developed, including but not limited to capacitive, resistive, infrared, and surface acoustic wave technologies, as well as other proximity sensor arrays or other elements for determining one or more points of contact with touch-sensitive display system 112.
  • projected mutual capacitance sensing technology is used, such as that found in the iPhone®, iPod Touch®, and iPad® from Apple Inc. of Cupertino, California.
  • Touch-sensitive display system 112 optionally has a video resolution in excess of 100 dpi. In some embodiments, the touch screen video resolution is in excess of 400 dpi (e.g., 500 dpi, 800 dpi, or greater).
  • the user optionally makes contact with touch-sensitive display system 112 using any suitable object or appendage, such as a stylus, a finger, and so forth.
  • the user interface is designed to work with finger-based contacts and gestures, which can be less precise than stylus-based input due to the larger area of contact of a finger on the touch screen.
  • the device translates the rough finger-based input into a precise pointer/cursor position or command for performing the actions desired by the user.
  • device 100 in addition to the touch screen, device 100 optionally includes a touchpad (not shown) for activating or deactivating particular functions.
  • the touchpad is a touch-sensitive area of the device that, unlike the touch screen, does not display visual output.
  • the touchpad is, optionally, a touch-sensitive surface that is separate from touch-sensitive display system 112 or an extension of the touch-sensitive surface formed by the touch screen.
  • Device 100 also includes power system 162 for powering the various components.
  • Power system 162 optionally includes a power management system, one or more power sources (e.g., battery, alternating current (AC)), a recharging system, a power failure detection circuit, a power converter or inverter, a power status indicator (e.g., a light- emitting diode (LED)) and any other components associated with the generation,
  • power sources e.g., battery, alternating current (AC)
  • AC alternating current
  • a recharging system e.g., a recharging system
  • a power failure detection circuit e.g., a power failure detection circuit
  • a power converter or inverter e.g., a power converter or inverter
  • a power status indicator e.g., a light- emitting diode (LED)
  • Device 100 optionally also includes one or more optical sensors 164.
  • Optical sensor(s) 164 optionally include charge-coupled device (CCD) or complementary metal-oxide semiconductor (CMOS) phototransistors.
  • CMOS complementary metal-oxide semiconductor
  • Optical sensor(s) 164 receive light from the environment, projected through one or more lens, and converts the light to data representing an image.
  • imaging module 143 also called a camera module
  • optical sensor(s) 164 optionally capture still images and/or video.
  • an optical sensor is located on the back of device 100, opposite touch-sensitive display system 112 on the front of the device, so that the touch screen is enabled for use as a viewfinder for still and/or video image acquisition.
  • another optical sensor is located on the front of the device so that the user's image is obtained (e.g., for selfies, for videoconferencing while the user views the other video conference participants on the touch screen, etc.).
  • Device 100 optionally also includes one or more contact intensity sensors 165.
  • Figure 1A shows a contact intensity sensor coupled with intensity sensor controller 159 in I/O subsystem 106.
  • Contact intensity sensor(s) 165 optionally include one or more piezoresistive strain gauges, capacitive force sensors, electric force sensors, piezoelectric force sensors, optical force sensors, capacitive touch-sensitive surfaces, or other intensity sensors (e.g., sensors used to measure the force (or pressure) of a contact on a touch-sensitive surface).
  • Contact intensity sensor(s) 165 receive contact intensity information (e.g., pressure information or a proxy for pressure information) from the environment.
  • contact intensity information e.g., pressure information or a proxy for pressure information
  • At least one contact intensity sensor is collocated with, or proximate to, a touch-sensitive surface (e.g., touch-sensitive display system 112).
  • a touch-sensitive surface e.g., touch-sensitive display system 112
  • at least one contact intensity sensor is located on the back of device 100, opposite touch-screen display system 112 which is located on the front of device 100.
  • Device 100 optionally also includes one or more proximity sensors 166.
  • Figure 1 A shows proximity sensor 166 coupled with peripherals interface 118.
  • proximity sensor 166 is coupled with input controller 160 in I/O subsystem 106.
  • the proximity sensor turns off and disables touch-sensitive display system 112 when the multifunction device is placed near the user's ear (e.g., when the user is making a phone call).
  • Device 100 optionally also includes one or more tactile output generators 167.
  • FIG. 1 A shows a tactile output generator coupled with haptic feedback controller 161 in I/O subsystem 106.
  • Tactile output generator(s) 167 optionally include one or more
  • Tactile output generator(s) 167 receive tactile feedback generation instructions from haptic feedback module 133 and generates tactile outputs on device 100 that are capable of being sensed by a user of device 100.
  • At least one tactile output generator is collocated with, or proximate to, a touch-sensitive surface (e.g., touch-sensitive display system 112) and, optionally, generates a tactile output by moving the touch-sensitive surface vertically (e.g., in/out of a surface of device 100) or laterally (e.g., back and forth in the same plane as a surface of device 100).
  • at least one tactile output generator sensor is located on the back of device 100, opposite touch-sensitive display system 112, which is located on the front of device 100.
  • Device 100 optionally also includes one or more accelerometers 168.
  • FIG. 1 A shows accelerometer 168 coupled with peripherals interface 118.
  • accelerometer 168 is, optionally, coupled with an input controller 160 in I/O subsystem 106.
  • information is displayed on the touch-screen display in a portrait view or a landscape view based on an analysis of data received from the one or more
  • Device 100 optionally includes, in addition to accelerometer(s) 168, a magnetometer (not shown) and a GPS (or GLONASS or other global navigation system) receiver (not shown) for obtaining information concerning the location and orientation (e.g., portrait or landscape) of device 100.
  • a magnetometer not shown
  • GPS or GLONASS or other global navigation system
  • the software components stored in memory 102 include operating system 126, communication module (or set of instructions) 128, contact/motion module (or set of instructions) 130, graphics module (or set of instructions) 132, haptic feedback module (or set of instructions) 133, text input module (or set of instructions) 134, Global Positioning System (GPS) module (or set of instructions) 135, and applications (or sets of instructions) 136.
  • memory 102 stores instructions for operating system 126, communication module (or set of instructions) 128, contact/motion module (or set of instructions) 130, graphics module (or set of instructions) 132, haptic feedback module (or set of instructions) 133, text input module (or set of instructions) 134, Global Positioning System (GPS) module (or set of instructions) 135, and applications (or sets of instructions) 136.
  • memory 102 stores instructions (or set of instructions) 128, contact/motion module (or set of instructions) 130, graphics module (or set of instructions) 132, haptic feedback module (or set of instructions) 133, text
  • Device/global internal state 157 includes one or more of: active application state, indicating which applications, if any, are currently active; display state, indicating what applications, views or other information occupy various regions of touch-sensitive display system 112; sensor state, including information obtained from the device's various sensors and other input or control devices 116; and location and/or positional information concerning the device's location and/or attitude.
  • Operating system 126 e.g., iOS, Darwin, RTXC, LINUX, UNIX, OS X,
  • WINDOWS or an embedded operating system such as VxWorks
  • VxWorks includes various software components and/or drivers for controlling and managing general system tasks (e.g., memory management, storage device control, power management, etc.) and facilitates communication between various hardware and software components.
  • general system tasks e.g., memory management, storage device control, power management, etc.
  • Communication module 128 facilitates communication with other devices over one or more external ports 124 and also includes various software components for handling data received by RF circuitry 108 and/or external port 124.
  • External port 124 e.g., Universal Serial Bus (USB), FIREWIRE, etc.
  • USB Universal Serial Bus
  • FIREWIRE FireWire
  • the external port is a multi-pin (e.g., 30-pin) connector that is the same as, or similar to and/or compatible with the 30-pin connector used in some iPhone®, iPod Touch®, and iPad® devices from Apple Inc. of Cupertino, California.
  • the external port is a Lightning connector that is the same as, or similar to and/or compatible with the Lightning connector used in some iPhone®, iPod Touch®, and iPad® devices from Apple Inc. of Cupertino, California.
  • Contact/motion module 130 optionally detects contact with touch-sensitive display system 112 (in conjunction with display controller 156) and other touch- sensitive devices (e.g., a touchpad or physical click wheel).
  • Contact/motion module 130 includes various software components for performing various operations related to detection of contact (e.g., by a finger or by a stylus), such as determining if contact has occurred (e.g., detecting a finger-down event), determining an intensity of the contact (e.g., the force or pressure of the contact or a substitute for the force or pressure of the contact), determining if there is movement of the contact and tracking the movement across the touch-sensitive surface (e.g., detecting one or more finger-dragging events), and determining if the contact has ceased (e.g., detecting a finger-up event or a break in contact).
  • Contact/motion module 130 receives contact data from the touch-sensitive surface. Determining movement of the point of contact, which is represented by a series of contact data, optionally includes determining speed (magnitude), velocity (magnitude and direction), and/or an acceleration (a change in magnitude and/or direction) of the point of contact. These operations are, optionally, applied to single contacts (e.g., one finger contacts or stylus contacts) or to multiple simultaneous contacts (e.g., "multitouch'Vmultiple finger contacts). In some embodiments, contact/motion module 130 and display controller 156 detect contact on a touchpad.
  • Contact/motion module 130 optionally detects a gesture input by a user.
  • a gesture is, optionally, detected by detecting a particular contact pattern.
  • detecting a finger tap gesture includes detecting a finger-down event followed by detecting a finger-up (lift off) event at the same position (or substantially the same position) as the finger-down event (e.g., at the position of an icon).
  • detecting a finger swipe gesture on the touch- sensitive surface includes detecting a finger-down event followed by detecting one or more finger-dragging events, and subsequently followed by detecting a finger-up (lift off) event.
  • tap, swipe, drag, and other gestures are optionally detected for a stylus by detecting a particular contact pattern for the stylus.
  • detecting a finger tap gesture depends on the length of time between detecting the finger-down event and the finger-up event, but is independent of the intensity of the finger contact between detecting the finger-down event and the finger-up event.
  • a tap gesture is detected in accordance with a determination that the length of time between the finger- down event and the finger-up event is less than a predetermined value (e.g., less than 0.1, 0.2, 0.3, 0.4 or 0.5 seconds), independent of whether the intensity of the finger contact during the tap meets a given intensity threshold (greater than a nominal contact-detection intensity threshold), such as a light press or deep press intensity threshold.
  • a finger tap gesture can satisfy input criteria that are configured to be met even when the characteristic intensity of a contact does not satisfy a given intensity threshold.
  • the finger contact in a tap gesture typically needs to satisfy a nominal contact-detection intensity threshold, below which the contact is not detected, in order for the finger-down event to be detected.
  • a similar analysis applies to detecting a tap gesture by a stylus or other contact.
  • the nominal contact-detection intensity threshold optionally does not correspond to physical contact between the finger or stylus and the touch sensitive surface.
  • a swipe gesture, a pinch gesture, a depinch gesture, and/or a long press gesture are optionally detected (e.g., on touch-sensitive display system 112) based on the satisfaction of criteria that are independent of intensities of contacts included in the gesture. For example., a swipe gesture is detected based on an amount of movement of one or more contacts; a pinch gesture is detected based on movement of two or more contacts towards each other; a depinch gesture is detected based on movement of two or more contacts away from each other; and a long press gesture is detected based on a duration of the contact on the touch-sensitive surface with less than a threshold amount of movement.
  • the statement that gesture recognition criteria are configured to be met when a contact in a gesture has an intensity below a respective intensity threshold means that the gesture recognition criteria are capable of being satisfied even if the contact(s) in the gesture do not reach the respective intensity threshold. It should be understood, however, that this statement does not preclude the gesture recognition criteria from being satisfied in circumstances where one or more of the contacts in the gesture do reach or exceed the respective intensity threshold.
  • a tap gesture is configured to be detected if the finger-down and finger-up event are detected within a predefined time period, without regard to whether the contact is above or below the respective intensity threshold during the predefined time period, and a swipe gesture is configured to be detected if the contact movement is greater than a predefined magnitude, even if the contact is above the respective intensity threshold at the end of the contact movement.
  • Contact intensity thresholds, duration thresholds, and movement thresholds are, in some circumstances, combined in a variety of different combinations in order to create heuristics for distinguishing two or more different gestures directed to the same input element or region so that multiple different interactions with the same input element are enabled to provide a richer set of user interactions and responses.
  • the statement that a particular set of gesture recognition criteria are configured to be met when a contact in a gesture has an intensity below a respective intensity threshold does not preclude the concurrent evaluation of other intensity-dependent gesture recognition criteria to identify other gestures that do have a criteria that is met when a gesture includes a contact with an intensity above the respective intensity threshold.
  • first gesture recognition criteria for a first gesture - which are configured to be met when a gesture has an intensity below a respective intensity threshold - are in competition with second gesture recognition criteria for a second gesture - which are dependent on the gesture reaching the respective intensity threshold.
  • the gesture is, optionally, not recognized as meeting the first gesture recognition criteria for the first gesture if the second gesture recognition criteria for the second gesture are met first. For example, if a contact reaches the respective intensity threshold before the contact moves by a predefined amount of movement, a deep press gesture is detected rather than a swipe gesture. Conversely, if the contact moves by the predefined amount of movement before the contact reaches the respective intensity threshold, a swipe gesture is detected rather than a deep press gesture.
  • the first gesture recognition criteria for the first gesture are still configured to be met when a contact in the gesture has an intensity below the respective intensity because if the contact stayed below the respective intensity threshold until an end of the gesture (e.g., a swipe gesture with a contact that does not increase to an intensity above the respective intensity threshold), the gesture would have been recognized by the first gesture recognition criteria as a swipe gesture.
  • particular gesture recognition criteria that are configured to be met when an intensity of a contact remains below a respective intensity threshold will (A) in some circumstances ignore the intensity of the contact with respect to the intensity threshold (e.g.
  • the particular gesture recognition criteria e.g., for a long press gesture
  • a competing set of intensity- dependent gesture recognition criteria e.g., for a deep press gesture
  • recognize an input as corresponding to an intensity-dependent gesture e.g., for a long press gesture that is competing with a deep press gesture for recognition.
  • Graphics module 132 includes various known software components for rendering and displaying graphics on touch-sensitive display system 112 or other display, including components for changing the visual impact (e.g., brightness, transparency, saturation, contrast or other visual property) of graphics that are displayed.
  • graphics includes any object that can be displayed to a user, including without limitation text, web pages, icons (such as user-interface objects including soft keys), digital images, videos, animations and the like.
  • graphics module 132 stores data representing graphics to be used. Each graphic is, optionally, assigned a corresponding code. Graphics module 132 receives, from applications etc., one or more codes specifying graphics to be displayed along with, if necessary, coordinate data and other graphic property data, and then generates screen image data to output to display controller 156.
  • Haptic feedback module 133 includes various software components for generating instructions used by tactile output generator(s) 167 to produce tactile outputs at one or more locations on device 100 in response to user interactions with device 100.
  • Text input module 134 which is, optionally, a component of graphics module
  • 132 provides soft keyboards for entering text in various applications (e.g., contacts 137, e-mail 140, IM 141, browser 147, and any other application that needs text input).
  • applications e.g., contacts 137, e-mail 140, IM 141, browser 147, and any other application that needs text input).
  • GPS module 135 determines the location of the device and provides this information for use in various applications (e.g., to telephone 138 for use in location-based dialing, to camera 143 as picture/video metadata, and to applications that provide location- based services such as weather widgets, local yellow page widgets, and map/navigation widgets).
  • applications e.g., to telephone 138 for use in location-based dialing, to camera 143 as picture/video metadata, and to applications that provide location- based services such as weather widgets, local yellow page widgets, and map/navigation widgets).
  • Applications 136 optionally include the following modules (or sets of instructions), or a subset or superset thereof:
  • contacts module 137 (sometimes called an address book or contact list);
  • camera module 143 for still and/or video images
  • calendar module 148 • calendar module 148;
  • widget modules 149 which optionally include one or more of: weather widget 149-1, stocks widget 149-2, calculator widget 149-3, alarm clock widget 149-4, dictionary widget 149-5, and other widgets obtained by the user, as well as user-created widgets 149-6;
  • widget creator module 150 for making user-created widgets 149-6;
  • search module 151 • search module 151;
  • video and music player module 152 which is, optionally, made up of a video player module and a music player module;
  • map module 154 • map module 154;
  • Examples of other applications 136 that are, optionally, stored in memory 102 include other word processing applications, other image editing applications, drawing applications, presentation applications, JAVA-enabled applications, encryption, digital rights management, voice recognition, and voice replication.
  • contacts module 137 includes executable instructions to manage an address book or contact list (e.g., stored in application internal state 192 of contacts module 137 in memory 102 or memory 370), including: adding name(s) to the address book; deleting name(s) from the address book; associating telephone number(s), e-mail address(es), physical address(es) or other information with a name; associating an image with a name; categorizing and sorting names; providing telephone numbers and/or e-mail addresses to initiate and/or facilitate
  • telephone module 138 includes executable instructions to enter a sequence of characters corresponding to a telephone number, access one or more telephone numbers in address book 137, modify a telephone number that has been entered, dial a respective telephone number, conduct a conversation and disconnect or hang up when the conversation is completed.
  • the wireless communication optionally uses any of a plurality of communications standards, protocols and technologies.
  • videoconferencing module 139 includes executable instructions to initiate, conduct, and terminate a video conference between a user and one or more other participants in accordance with user instructions.
  • e-mail client module 140 includes executable instructions to create, send, receive, and manage e-mail in response to user instructions.
  • e-mail client module 140 makes it very easy to create and send e-mails with still or video images taken with camera module 143.
  • the instant messaging module 141 includes executable instructions to enter a sequence of characters corresponding to an instant message, to modify previously entered characters, to transmit a respective instant message (for example, using a Short Message Service (SMS) or
  • SMS Short Message Service
  • MMS Multimedia Message Service
  • XMPP extensible Markup Language
  • SIMPLE Apple Push Notification Service
  • APIs Apple Push Notification Service
  • IMPS Internet-based instant messages
  • transmitted and/or received instant messages optionally include graphics, photos, audio files, video files and/or other attachments as are supported in a MMS and/or an Enhanced Messaging Service (EMS).
  • EMS Enhanced Messaging Service
  • instant messaging refers to both telephony-based messages (e.g., messages sent using SMS or MMS) and Internet-based messages (e.g., messages sent using XMPP, SIMPLE, APNs, or IMPS).
  • workout support module 142 includes executable instructions to create workouts (e.g., with time, distance, and/or calorie burning goals); communicate with workout sensors (in sports devices and smart watches); receive workout sensor data; calibrate sensors used to monitor a workout; select and play music for a workout; and display, store and transmit workout data.
  • camera module 143 includes executable instructions to capture still images or video (including a video stream) and store them into memory 102, modify characteristics of a still image or video, and/or delete a still image or video from memory 102.
  • image management module 144 includes executable instructions to arrange, modify (e.g., edit), or otherwise manipulate, label, delete, present (e.g., in a digital slide show or album), and store still and/or video images.
  • modify e.g., edit
  • present e.g., in a digital slide show or album
  • browser module 147 includes executable instructions to browse the Internet in accordance with user instructions, including searching, linking to, receiving, and displaying web pages or portions thereof, as well as attachments and other files linked to web pages.
  • calendar module 148 includes executable instructions to create, display, modify, and store calendars and data associated with calendars (e.g., calendar entries, to do lists, etc.) in accordance with user instructions.
  • widget modules 149 are mini-applications that are, optionally, downloaded and used by a user (e.g., weather widget 149-1, stocks widget 149-2, calculator widget 149-3, alarm clock widget 149-4, and dictionary widget 149-5) or created by the user (e.g., user-created widget 149-6).
  • a widget includes an HTML
  • a widget includes an XML (Extensible Markup Language) file and a JavaScript file (e.g., Yahoo! Widgets).
  • the widget creator module 150 includes executable
  • search module 151 includes executable instructions to search for text, music, sound, image, video, and/or other files in memory 102 that match one or more search criteria (e.g., one or more user-specified search terms) in accordance with user instructions.
  • search criteria e.g., one or more user-specified search terms
  • video and music player module 152 includes executable instructions that allow the user to download and play back recorded music and other sound files stored in one or more file formats, such as MP3 or AAC files, and executable instructions to display, present or otherwise play back videos (e.g., on touch- sensitive display system 112, or on an external display connected wirelessly or via external port 124).
  • device 100 optionally includes the functionality of an MP3 player, such as an iPod (trademark of Apple Inc.).
  • notes module 153 includes executable instructions to create and manage notes, to do lists, and the like in accordance with user instructions.
  • map module 154 includes executable instructions to receive, display, modify, and store maps and data associated with maps (e.g., driving directions; data on stores and other points of interest at or near a particular location; and other location-based data) in accordance with user instructions.
  • online video module 155 includes executable instructions that allow the user to access, browse, receive (e.g., by streaming and/or download), play back (e.g., on the touch screen 112, or on an external display connected wirelessly or via external port 124), send an e-mail with a link to a particular online video, and otherwise manage online videos in one or more file formats, such as H.264.
  • instant messaging module 141 rather than e-mail client module 140, is used to send a link to a particular online video.
  • modules and applications correspond to a set of executable instructions for performing one or more functions described above and the methods described in this application (e.g., the computer-implemented methods and other information processing methods described herein).
  • modules i.e., sets of instructions
  • memory 102 optionally stores a subset of the modules and data structures identified above.
  • memory 102 optionally stores additional modules and data structures not described above.
  • device 100 is a device where operation of a predefined set of functions on the device is performed exclusively through a touch screen and/or a touchpad.
  • a touch screen and/or a touchpad as the primary input control device for operation of device 100, the number of physical input control devices (such as push buttons, dials, and the like) on device 100 is, optionally, reduced.
  • the predefined set of functions that are performed exclusively through a touch screen and/or a touchpad optionally include navigation between user interfaces.
  • the touchpad when touched by the user, navigates device 100 to a main, home, or root menu from any user interface that is displayed on device 100.
  • a "menu button" is implemented using a touchpad.
  • the menu button is a physical push button or other physical input control device instead of a touchpad.
  • FIG IB is a block diagram illustrating example components for event handling in accordance with some embodiments.
  • memory 102 in Figures 1A or 370 ( Figure 3) includes event sorter 170 (e.g., in operating system 126) and a respective application 136-1 (e.g., any of the aforementioned applications 136, 137-155, 380- 390).
  • event sorter 170 e.g., in operating system 126
  • application 136-1 e.g., any of the aforementioned applications 136, 137-155, 380- 390.
  • Event sorter 170 receives event information and determines the application
  • Event sorter 170 includes event monitor 171 and event dispatcher module 174.
  • application 136-1 includes application internal state 192, which indicates the current application view(s) displayed on touch-sensitive display system 112 when the application is active or executing.
  • device/global internal state 157 is used by event sorter 170 to determine which application(s) is (are) currently active, and application internal state 192 is used by event sorter 170 to determine application views 191 to which to deliver event information.
  • application internal state 192 includes additional information, such as one or more of: resume information to be used when application 136-1 resumes execution, user interface state information that indicates information being displayed or that is ready for display by application 136-1, a state queue for enabling the user to go back to a prior state or view of application 136-1, and a redo/undo queue of previous actions taken by the user.
  • Event monitor 171 receives event information from peripherals interface 118.
  • Event information includes information about a sub-event (e.g., a user touch on touch- sensitive display system 112, as part of a multi-touch gesture).
  • Peripherals interface 118 transmits information it receives from I/O subsystem 106 or a sensor, such as proximity sensor 166, accelerometer(s) 168, and/or microphone 113 (through audio circuitry 110).
  • Information that peripherals interface 118 receives from I/O subsystem 106 includes information from touch-sensitive display system 112 or a touch-sensitive surface.
  • event monitor 171 sends requests to the peripherals interface 118 at predetermined intervals.
  • peripherals interface 118 transmits event information.
  • peripheral interface 118 transmits event information only when there is a significant event (e.g., receiving an input above a predetermined noise threshold and/or for more than a predetermined duration).
  • event sorter 170 also includes a hit view determination module 172 and/or an active event recognizer determination module 173.
  • Hit view determination module 172 provides software procedures for determining where a sub-event has taken place within one or more views, when touch- sensitive display system 112 displays more than one view. Views are made up of controls and other elements that a user can see on the display.
  • FIG. 10 Another aspect of the user interface associated with an application is a set of views, sometimes herein called application views or user interface windows, in which information is displayed and touch-based gestures occur.
  • the application views (of a respective application) in which a touch is detected optionally correspond to programmatic levels within a programmatic or view hierarchy of the application. For example, the lowest level view in which a touch is detected is, optionally, called the hit view, and the set of events that are recognized as proper inputs are, optionally, determined based, at least in part, on the hit view of the initial touch that begins a touch-based gesture.
  • Hit view determination module 172 receives information related to sub-events of a touch-based gesture. When an application has multiple views organized in a hierarchy, hit view determination module 172 identifies a hit view as the lowest view in the hierarchy which should handle the sub-event. In most circumstances, the hit view is the lowest level view in which an initiating sub-event occurs (i.e., the first sub-event in the sequence of sub- events that form an event or potential event). Once the hit view is identified by the hit view determination module, the hit view typically receives all sub-events related to the same touch or input source for which it was identified as the hit view.
  • Active event recognizer determination module 173 determines which view or views within a view hierarchy should receive a particular sequence of sub-events. In some embodiments, active event recognizer determination module 173 determines that only the hit view should receive a particular sequence of sub-events. In other embodiments, active event recognizer determination module 173 determines that all views that include the physical location of a sub-event are actively involved views, and therefore determines that all actively involved views should receive a particular sequence of sub-events. In other embodiments, even if touch sub-events were entirely confined to the area associated with one particular view, views higher in the hierarchy would still remain as actively involved views.
  • Event dispatcher module 174 dispatches the event information to an event recognizer (e.g., event recognizer 180). In embodiments including active event recognizer determination module 173, event dispatcher module 174 delivers the event information to an event recognizer determined by active event recognizer determination module 173. In some embodiments, event dispatcher module 174 stores in an event queue the event information, which is retrieved by a respective event receiver module 182.
  • operating system 126 includes event sorter 170.
  • application 136-1 includes event sorter 170.
  • event sorter 170 is a stand-alone module, or a part of another module stored in memory 102, such as contact/motion module 130.
  • application 136-1 includes a plurality of event handlers
  • Each application view 191 of the application 136-1 includes one or more event recognizers 180.
  • a respective application view 191 includes a plurality of event recognizers 180.
  • one or more of event recognizers 180 are part of a separate module, such as a user interface kit (not shown) or a higher level object from which application 136-1 inherits methods and other properties.
  • a respective event handler 190 includes one or more of: data updater 176, object updater 177, GUI updater 178, and/or event data 179 received from event sorter 170.
  • Event handler 190 optionally utilizes or calls data updater 176, object updater 177 or GUI updater 178 to update the application internal state 192.
  • one or more of the application views 191 includes one or more respective event handlers 190.
  • one or more of data updater 176, object updater 177, and GUI updater 178 are included in a respective application view 191.
  • a respective event recognizer 180 receives event information (e.g., event data 179) from event sorter 170, and identifies an event from the event information.
  • Event recognizer 180 includes event receiver 182 and event comparator 184.
  • event recognizer 180 also includes at least a subset of: metadata 183, and event delivery instructions 188 (which optionally include sub-event delivery instructions).
  • Event receiver 182 receives event information from event sorter 170.
  • the event information includes information about a sub-event, for example, a touch or a touch movement. Depending on the sub-event, the event information also includes additional information, such as location of the sub-event.
  • the event information optionally also includes speed and direction of the sub-event.
  • events include rotation of the device from one orientation to another (e.g., from a portrait orientation to a landscape orientation, or vice versa), and the event
  • information includes corresponding information about the current orientation (also called device attitude) of the device.
  • Event comparator 184 compares the event information to predefined event or sub-event definitions and, based on the comparison, determines an event or sub-event, or determines or updates the state of an event or sub-event.
  • event comparator 184 includes event definitions 186.
  • Event definitions 186 contain definitions of events (e.g., predefined sequences of sub-events), for example, event 1 (187-1), event 2 (187- 2), and others.
  • sub-events in an event 187 include, for example, touch begin, touch end, touch movement, touch cancellation, and multiple touching.
  • the definition for event 1 (187-1) is a double tap on a displayed object.
  • the double tap for example, comprises a first touch (touch begin) on the displayed object for a predetermined phase, a first lift-off (touch end) for a predetermined phase, a second touch (touch begin) on the displayed object for a predetermined phase, and a second lift-off (touch end) for a predetermined phase.
  • the definition for event 2 (187-2) is a dragging on a displayed object.
  • the dragging for example, comprises a touch (or contact) on the displayed object for a predetermined phase, a movement of the touch across touch-sensitive display system 112, and lift-off of the touch (touch end).
  • the event also includes information for one or more associated event handlers 190.
  • event definition 187 includes a definition of an event for a respective user-interface object.
  • event comparator 184 performs a hit test to determine which user-interface object is associated with a sub-event. For example, in an application view in which three user-interface objects are displayed on touch-sensitive display system 112, when a touch is detected on touch-sensitive display system 112, event comparator 184 performs a hit test to determine which of the three user-interface objects is associated with the touch (sub-event). If each displayed object is associated with a respective event handler 190, the event comparator uses the result of the hit test to determine which event handler 190 should be activated. For example, event comparator 184 selects an event handler associated with the sub-event and the object triggering the hit test.
  • the definition for a respective event 187 also includes delayed actions that delay delivery of the event information until after it has been determined whether the sequence of sub-events does or does not correspond to the event recognizer's event type.
  • a respective event recognizer 180 determines that the series of sub- events do not match any of the events in event definitions 186, the respective event recognizer 180 enters an event impossible, event failed, or event ended state, after which it disregards subsequent sub-events of the touch-based gesture. In this situation, other event recognizers, if any, that remain active for the hit view continue to track and process sub- events of an ongoing touch-based gesture.
  • a respective event recognizer 180 includes metadata 183 with configurable properties, flags, and/or lists that indicate how the event delivery system should perform sub-event delivery to actively involved event recognizers.
  • metadata 183 includes configurable properties, flags, and/or lists that indicate how event recognizers interact, or are enabled to interact, with one another.
  • metadata 183 includes configurable properties, flags, and/or lists that indicate whether sub-events are delivered to varying levels in the view or programmatic hierarchy.
  • a respective event recognizer 180 activates event handler 190 associated with an event when one or more particular sub-events of an event are recognized.
  • a respective event recognizer 180 delivers event information associated with the event to event handler 190.
  • Activating an event handler 190 is distinct from sending (and deferred sending) sub-events to a respective hit view.
  • event recognizer 180 throws a flag associated with the recognized event, and event handler 190 associated with the flag catches the flag and performs a predefined process.
  • event delivery instructions 188 include sub-event delivery instructions that deliver event information about a sub-event without activating an event handler. Instead, the sub-event delivery instructions deliver event information to event handlers associated with the series of sub-events or to actively involved views. Event handlers associated with the series of sub-events or with actively involved views receive the event information and perform a predetermined process.
  • data updater 176 creates and updates data used in application 136-1. For example, data updater 176 updates the telephone number used in contacts module 137, or stores a video file used in video player module 152.
  • object updater 177 creates and updates objects used in application 136-1.
  • object updater 177 creates a new user-interface object or updates the position of a user-interface object.
  • GUI updater 178 updates the GUI.
  • GUI updater 178 prepares display information and sends it to graphics module 132 for display on a touch- sensitive display.
  • event handler(s) 190 includes or has access to data updater 176, object updater 177, and GUI updater 178.
  • data updater 176, object updater 177, and GUI updater 178 are included in a single module of a respective application 136-1 or application view 191. In other embodiments, they are included in two or more software modules.
  • event handling of user touches on touch-sensitive displays also applies to other forms of user inputs to operate multifunction devices 100 with input-devices, not all of which are initiated on touch screens.
  • mouse movement and mouse button presses optionally coordinated with single or multiple keyboard presses or holds; contact movements such as taps, drags, scrolls, etc., on touch-pads; pen stylus inputs; movement of the device; oral instructions; detected eye movements; biometric inputs; and/or any combination thereof are optionally utilized as inputs corresponding to sub-events which define an event to be recognized.
  • Figure 1C is a block diagram illustrating a tactile output module in accordance with some embodiments.
  • I/O subsystem 106 e.g., haptic feedback controller 161 ( Figure 1 A) and/or other input controller(s) 160 ( Figure 1 A)
  • peripherals interface 118 includes at least some of the example components shown in Figure 1C.
  • the tactile output module includes haptic feedback module 133.
  • haptic feedback module 133 aggregates and combines tactile outputs for user interface feedback from software applications on the electronic device
  • Haptic feedback module 133 includes one or more of: waveform module 123 (for providing waveforms used for generating tactile outputs), mixer 125 (for mixing waveforms, such as waveforms in different channels), compressor 127 (for reducing or compressing a dynamic range of the waveforms), low-pass filter 129 (for filtering out high frequency signal components in the waveforms), and thermal controller 131 (for adjusting the waveforms in accordance with thermal conditions).
  • waveform module 123 for providing waveforms used for generating tactile outputs
  • mixer 125 for mixing waveforms, such as waveforms in different channels
  • compressor 127 for reducing or compressing a dynamic range of the waveforms
  • low-pass filter 129 for filtering out high frequency signal components in the waveforms
  • thermal controller 131 for adjusting the waveforms in accordance with thermal conditions.
  • haptic feedback module 133 is included in haptic feedback controller 161 ( Figure 1A).
  • a separate unit of haptic feedback module 133 (or a separate implementation of haptic feedback module 133) is also included in an audio controller (e.g., audio circuitry 110, Figure 1 A) and used for generating audio signals.
  • a single haptic feedback module 133 is used for generating audio signals and generating waveforms for tactile outputs.
  • haptic feedback module 133 also includes trigger module 121 (e.g., a software application, operating system, or other software module that determines a tactile output is to be generated and initiates the process for generating the corresponding tactile output).
  • trigger module 121 generates trigger signals for initiating generation of waveforms (e.g., by waveform module 123). For example, trigger module 121 generates trigger signals based on preset timing criteria.
  • trigger module 121 receives trigger signals from outside haptic feedback module 133 (e.g., in some embodiments, haptic feedback module 133 receives trigger signals from hardware input processing module 146 located outside haptic feedback module 133) and relays the trigger signals to other components within haptic feedback module 133 (e.g., waveform module 123) or software applications that trigger operations (e.g., with trigger module 121) based on activation of the hardware input device (e.g., a home button). In some embodiments, trigger module 121 also receives tactile feedback generation instructions (e.g., from haptic feedback module 133, Figures 1 A and 3). In some embodiments, trigger module 121 generates trigger signals in response to haptic feedback module 133 (or trigger module 121 in haptic feedback module 133) receiving tactile feedback instructions (e.g., from haptic feedback module 133, Figures 1A and 3).
  • haptic feedback module 133 receives trigger signals from hardware input processing module 146 located outside haptic feedback module 133 and relays
  • Waveform module 123 receives trigger signals (e.g., from trigger module 121) as an input, and in response to receiving trigger signals, provides waveforms for generation of one or more tactile outputs (e.g., waveforms selected from a predefined set of waveforms designated for use by waveform module 123, such as the waveforms described in greater detail below with reference to Figures 4F-4G).
  • Mixer 125 receives waveforms (e.g., from waveform module 123) as an input, and mixes together the waveforms.
  • mixer 125 when mixer 125 receives two or more waveforms (e.g., a first waveform in a first channel and a second waveform that at least partially overlaps with the first waveform in a second channel) mixer 125 outputs a combined waveform that corresponds to a sum of the two or more waveforms.
  • mixer 125 also modifies one or more waveforms of the two or more waveforms to emphasize particular waveform(s) over the rest of the two or more waveforms (e.g., by increasing a scale of the particular waveform(s) and/or decreasing a scale of the rest of the waveforms).
  • mixer 125 selects one or more waveforms to remove from the combined waveform (e.g., the waveform from the oldest source is dropped when there are waveforms from more than three sources that have been requested to be output concurrently by tactile output generator 167)
  • Compressor 127 receives waveforms (e.g., a combined waveform from mixer
  • compressor 127 reduces the waveforms (e.g., in accordance with physical specifications of tactile output generators 167 ( Figure 1 A) or 357 ( Figure 3)) so that tactile outputs corresponding to the waveforms are reduced.
  • compressor 127 limits the waveforms, such as by enforcing a predefined maximum amplitude for the waveforms. For example, compressor 127 reduces amplitudes of portions of waveforms that exceed a predefined amplitude threshold while maintaining amplitudes of portions of waveforms that do not exceed the predefined amplitude threshold.
  • compressor 127 reduces a dynamic range of the waveforms. In some embodiments, compressor 127 dynamically reduces the dynamic range of the waveforms so that the combined waveforms remain within performance specifications of the tactile output generator 167 (e.g., force and/or moveable mass displacement limits).
  • Low-pass filter 129 receives waveforms (e.g., compressed waveforms from compressor 127) as an input, and filters (e.g., smooths) the waveforms (e.g., removes or reduces high frequency signal components in the waveforms).
  • compressor 127 includes, in compressed waveforms, extraneous signals (e.g., high frequency signal components) that interfere with the generation of tactile outputs and/or exceed performance specifications of tactile output generator 167 when the tactile outputs are generated in accordance with the compressed waveforms.
  • Low-pass filter 129 reduces or removes such extraneous signals in the waveforms.
  • Thermal controller 131 receives waveforms (e.g., filtered waveforms from low-pass filter 129) as an input, and adjusts the waveforms in accordance with thermal conditions of device 100 (e.g., based on internal temperatures detected within device 100, such as the temperature of haptic feedback controller 161, and/or external temperatures detected by device 100). For example, in some cases, the output of haptic feedback controller 161 varies depending on the temperature (e.g. haptic feedback controller 161, in response to receiving same waveforms, generates a first tactile output when haptic feedback controller 161 is at a first temperature and generates a second tactile output when haptic feedback controller 161 is at a second temperature that is distinct from the first temperature).
  • waveforms e.g., filtered waveforms from low-pass filter 129
  • the output of haptic feedback controller 161 varies depending on the temperature (e.g. haptic feedback controller 161, in response to receiving same waveforms, generates a first tactile output when haptic feedback
  • the magnitude (or the amplitude) of the tactile outputs may vary depending on the temperature.
  • the waveforms are modified (e.g., an amplitude of the waveforms is increased or decreased based on the temperature).
  • haptic feedback module 133 (e.g., trigger module 121) is coupled to hardware input processing module 146.
  • other input controlled s) 160 in Figure 1 A includes hardware input processing module 146.
  • hardware input processing module 146 receives inputs from hardware input device 145 (e.g., other input or control devices 116 in Figure 1 A, such as a home button).
  • hardware input device 145 is any input device described herein, such as touch- sensitive display system 112 ( Figure 1A), keyboard/mouse 350 (Figure 3), touchpad 355 ( Figure 3), one of other input or control devices 116 ( Figure 1 A), or an intensity- sensitive home button (e.g., as shown in Figure 2B or a home button with a mechanical actuator as illustrated in Figure 2C).
  • hardware input device 145 consists of an intensity-sensitive home button (e.g., as shown in Figure 2B or a home button with a mechanical actuator as illustrated in Figure 2C), and not touch-sensitive display system 112 (Figure 1A), keyboard/mouse 350 (Figure 3), or touchpad 355 (Figure 3).
  • hardware input processing module 146 in response to inputs from hardware input device 145, provides one or more trigger signals to haptic feedback module 133 to indicate that a user input satisfying predefined input criteria, such as an input corresponding to a "click" of a home button (e.g., a "down click” or an "up click"), has been detected.
  • haptic feedback module 133 provides waveforms that correspond to the "click" of a home button in response to the input corresponding to the "click" of a home button, simulating a haptic feedback of pressing a physical home button.
  • the tactile output module includes haptic feedback controller 161 (e.g., haptic feedback controller 161 in Figure 1A), which controls the generation of tactile outputs.
  • haptic feedback controller 161 is coupled to a plurality of tactile output generators, and selects one or more tactile output generators of the plurality of tactile output generators and sends waveforms to the selected one or more tactile output generators for generating tactile outputs.
  • haptic feedback controller 161 coordinates tactile output requests that correspond to activation of hardware input device 145 and tactile output requests that correspond to software events (e.g., tactile output requests from haptic feedback module 133) and modifies one or more waveforms of the two or more waveforms to emphasize particular waveform(s) over the rest of the two or more waveforms (e.g., by increasing a scale of the particular waveform(s) and/or decreasing a scale of the rest of the waveforms, such as to prioritize tactile outputs that correspond to activations of hardware input device 145 over tactile outputs that correspond to software events).
  • an output of haptic feedback controller 161 is coupled to audio circuitry of device 100 (e.g., audio circuitry 110, Figure 1A), and provides audio signals to audio circuitry of device 100.
  • haptic feedback controller 161 provides both waveforms used for generating tactile outputs and audio signals used for providing audio outputs in conjunction with generation of the tactile outputs.
  • haptic feedback controller 161 modifies audio signals and/or waveforms (used for generating tactile outputs) so that the audio outputs and the tactile outputs are synchronized (e.g., by delaying the audio signals and/or waveforms).
  • haptic feedback controller 161 includes a digital-to-analog converter used for converting digital waveforms into analog signals, which are received by amplifier 163 and/or tactile output generator 167.
  • the tactile output module includes amplifier 163.
  • amplifier 163 receives waveforms (e.g., from haptic feedback controller 161) and amplifies the waveforms prior to sending the amplified waveforms to tactile output generator 167 (e.g., any of tactile output generators 167 ( Figure 1A) or 357 ( Figure 3)).
  • amplifier 163 amplifies the received waveforms to signal levels that are in accordance with physical specifications of tactile output generator 167 (e.g., to a voltage and/or a current required by tactile output generator 167 for generating tactile outputs so that the signals sent to tactile output generator 167 produce tactile outputs that correspond to the waveforms received from haptic feedback controller 161) and sends the amplified waveforms to tactile output generator 167.
  • tactile output generator 167 generates tactile outputs (e.g., by shifting a moveable mass back and forth in one or more dimensions relative to a neutral position of the moveable mass).
  • the tactile output module includes sensor 169, which is coupled to tactile output generator 167.
  • Sensor 169 detects states or state changes (e.g., mechanical position, physical displacement, and/or movement) of tactile output generator 167 or one or more components of tactile output generator 167 (e.g., one or more moving parts, such as a membrane, used to generate tactile outputs).
  • sensor 169 is a magnetic field sensor (e.g., a Hall effect sensor) or other displacement and/or movement sensor.
  • sensor 169 provides information (e.g., a position, a
  • haptic feedback controller 161 adjusts the waveforms output from haptic feedback controller 161 (e.g., waveforms sent to tactile output generator 167, optionally via amplifier 163).
  • FIG. 2A illustrates a portable multifunction device 100 having a touch screen (e.g., touch-sensitive display system 112, Figure 1 A) in accordance with some embodiments.
  • the touch screen optionally displays one or more graphics within user interface (UI) 200.
  • UI user interface
  • a user is enabled to select one or more of the graphics by making a gesture on the graphics, for example, with one or more fingers 202 (not drawn to scale in the figure) or one or more styluses 203 (not drawn to scale in the figure).
  • selection of one or more graphics occurs when the user breaks contact with the one or more graphics.
  • the gesture optionally includes one or more taps, one or more swipes (from left to right, right to left, upward and/or downward) and/or a rolling of a finger (from right to left, left to right, upward and/or downward) that has made contact with device 100.
  • inadvertent contact with a graphic does not select the graphic.
  • a swipe gesture that sweeps over an application icon optionally does not select the
  • Device 100 optionally also includes one or more physical buttons, such as
  • menu button 204 is, optionally, used to navigate to any application 136 in a set of applications that are, optionally executed on device 100.
  • the menu button is implemented as a soft key in a GUI displayed on the touch-screen display.
  • device 100 includes the touch-screen display, menu button 204 (sometimes called home button 204), push button 206 for powering the device on/off and locking the device, volume adjustment button(s) 208, Subscriber Identity Module (SIM) card slot 210, head set jack 212, and docking/charging external port 124.
  • Push button 206 is, optionally, used to turn the power on/off on the device by depressing the button and holding the button in the depressed state for a predefined time interval; to lock the device by depressing the button and releasing the button before the predefined time interval has elapsed; and/or to unlock the device or initiate an unlock process.
  • device 100 also accepts verbal input for activation or deactivation of some functions through microphone 113.
  • Device 100 also, optionally, includes one or more contact intensity sensors 165 for detecting intensity of contacts on touch-sensitive display system 112 and/or one or more tactile output generators 167 for generating tactile outputs for a user of device 100.
  • Figures 2B-2C show exploded views of a first input device suitable for use in the electronic devices shown in Figures 1 A, 2A, 3, and/or 4A (e.g., as home button 204).
  • Figure 2B shows an example of an intensity-sensitive home button with capacitive sensors used to determine a range of intensity values that correspond to force applied to the intensity- sensitive home button.
  • Figure 2C shows an example of a home button with a mechanical switch element.
  • the input device stack 220 includes a cover element 222 and a trim 224.
  • the trim 224 completely surrounds the sides of the cover element 222 and the perimeter of the top surface of the cover element 222.
  • Other embodiments are not limited to this configuration. For example, in one
  • the sides and/or top surface of the cover element 222 can be partially surrounded by the trim 224.
  • the trim 224 can be omitted in other embodiments.
  • Both the cover element 222 and the trim 224 can be formed with any suitable opaque, transparent, and/or translucent material.
  • the cover element 222 can be made of glass, plastic, or sapphire and the trim 224 may be made of a metal or plastic.
  • one or more additional layers can be positioned below the cover element 222.
  • an opaque ink layer can be disposed below the cover element 222 when the cover element 222 is made of a transparent material. The opaque ink layer can conceal the other components in the input device stack 220 so that the other components are not visible through the transparent cover element 222.
  • a first circuit layer 226 can be disposed below the cover element 222. Any suitable circuit layer may be used.
  • the first circuit layer 226 may be a circuit board or a flexible circuit.
  • the first circuit layer 226 can include one or more circuits, signal lines, and/or integrated circuits.
  • the first circuit layer 226 includes a biometric sensor 228. Any suitable type of biometric sensor can be used.
  • the biometric sensor is a capacitive fingerprint sensor that captures at least one fingerprint when a user's finger (or fingers) approaches and/or contacts the cover element 222.
  • the first circuit layer 226 may be attached to the bottom surface of the cover element 222 with an adhesive layer 230.
  • Any suitable adhesive can be used for the adhesive layer.
  • a pressure sensitive adhesive layer may be used as the adhesive layer 230.
  • a compliant layer 232 is disposed below the first circuit layer 226.
  • the compliant layer 232 includes an opening 234 formed in the compliant layer 232.
  • the opening 234 exposes the top surface of the first circuit layer 226 and/or the biometric sensor 228 when the device stack 220 is assembled.
  • the compliant layer 232 is positioned around an interior perimeter of the trim 224 and/or around a peripheral edge of the cover element 222. Although depicted in a circular shape, the compliant layer 232 can have any given shape and/or dimensions, such as a square or oval.
  • the compliant layer 232 is shown as a continuous compliant layer in Figures 2B and 2C, but other embodiments are not limited to this configuration.
  • the compliant layer 232 does not include the opening 234 and the compliant layer 232 extends across at least a portion of the input device stack 220.
  • the compliant layer 232 may extend across the bottom surface of the cover element 222, the bottom surface of the first circuit layer 226, or a portion of the bottom surface of the cover element 222 (e.g., around the peripheral edge of the cover element) and the bottom surface of the first circuit layer 226.
  • a second circuit layer 238 is positioned below the first circuit layer 226.
  • a flexible circuit and a circuit board are examples of a circuit layer that can be used in the second circuit layer 238.
  • the second circuit layer 238 can include a first circuit section 240 and a second circuit section 242.
  • the first and second circuit sections 240, 242 can be electrically connected one another other.
  • the first circuit section 240 can include a first set of one or more intensity sensor components that are included in an intensity sensor.
  • the first circuit section 240 can be electrically connected to the first circuit layer 226.
  • the biometric sensor 228 may be electrically connected to the first circuit section 240 of the second circuit layer 238.
  • the second circuit section 242 can include additional circuitry, such as signal lines, circuit components, integrated circuits, and the like.
  • the second circuit section 242 may include a board-to-board connector 244 to electrically connect the second circuit layer 238 to other circuitry in the electronic device.
  • the second circuit layer 238 can be operably connected to a processing device using the board-to-board connector 244.
  • the second circuit layer 238 may be operably connected to circuitry that transmits signals (e.g., sense signals) received from the intensity sensor component(s) in the first circuit section 240 to a processing device.
  • the second circuit layer 238 may be operably connected to circuitry that provides signals (e.g., drive signals, a reference signal) to the one or more intensity sensor components in the first circuit section 240.
  • the first circuit section 240 of the second circuit layer is the first circuit section 240 of the second circuit layer
  • first circuit layer 226 may be attached to the bottom surface of the first circuit layer 226 using an adhesive layer 236.
  • a die attach film may be used to attach the first circuit section 240 to the bottom surface of the first circuit layer 226.
  • a third circuit layer 246 is disposed below the first circuit section 240 of the second circuit layer 238.
  • the third circuit layer 246 may include a second set of one or more intensity sensor components that are included in an intensity sensor.
  • the third circuit layer 246 is supported by and/or attached to a support element 248.
  • the support element 248 is attached to the trim 224 to produce an enclosure for the other components in the device stack 220.
  • the support element 248 may be attached to the trim 224 using any suitable attachment mechanism.
  • the first set of one or more intensity sensor components in the first circuit section 240 and the second set of one or more intensity sensor components in the third circuit layer 246 together form an intensity sensor.
  • the intensity sensor can use any suitable intensity sensing technology.
  • Example sensing technologies include, but are not limited to, capacitive, piezoelectric, piezoresistive, ultrasonic, and magnetic.
  • the intensity sensor is a capacitive force sensor.
  • the first set of one or more intensity sensor components can include a first set of one or more electrodes 250 and the second set of one or more force sensor components a second set of one or more electrodes 252.
  • each electrode in the first and second sets of one or more electrodes 250, 252 can have any given shape (e.g., rectangles, circles).
  • the one or more electrodes in the first and second sets 250, 252 may be arranged in any given pattern (e.g., one or more rows and one or more columns).
  • Figure 2B and 2C show two electrodes in the first and second sets of one or more electrodes 250, 252.
  • the first and second sets of one or more electrodes 250, 252 may each be a single electrode or multiple discrete electrodes.
  • the second set of one or more electrodes comprises multiple discrete electrodes.
  • the second set of one or more electrodes can be a single electrode and the first set includes multiple discrete electrodes.
  • both the first and second sets of one or more electrodes may each include multiple discrete electrodes.
  • Each electrode in the first set of one or more electrodes 250 is aligned in at least one direction (e.g., vertically) with a respective electrode in the second set of one or more electrodes 252 to produce one or more capacitors.
  • a force input is applied to the cover element 222 (e.g., the input surface of the input device)
  • at least one electrode in the first set 250 moves closer to a respective electrode in the second set 252, which varies the capacitance of the capacitor(s).
  • a capacitance signal sensed from each capacitor represents a capacitance measurement of that capacitor.
  • a processing device (not shown) is configured to receive the capacitance signal(s) and correlate the capacitance signal(s) to an amount of intensity applied to the cover element 222.
  • the force sensor can replace a switch element and different intensity thresholds can be used to determine activation events.
  • a switch element 254 can be positioned below the support element 248.
  • the switch element 254 registers a user input when a force input applied to the cover element 222 exceeds a given amount of force (e.g., a force threshold associated with closing the distance between the first circuit section 240 and the third circuit layer 246).
  • a force threshold associated with closing the distance between the first circuit section 240 and the third circuit layer 246.
  • Any suitable switch element can be used.
  • the switch element 254 may be a dome switch that collapses when the force input applied to the cover element 222 exceeds the force threshold. When collapsed, the dome switch completes a circuit that is detected by a processing device and recognized as a user input (e.g., a selection of an icon, function, or application).
  • the dome switch is arranged such that the apex of the collapsible dome is proximate to the bottom surface of the support plate 248.
  • the base of the collapsible dome can be proximate to the bottom surface of the support plate 248.
  • FIG. 3 is a block diagram of an example multifunction device with a display and a touch-sensitive surface in accordance with some embodiments.
  • Device 300 need not be portable.
  • device 300 is a laptop computer, a desktop computer, a tablet computer, a multimedia player device, a navigation device, an educational device (such as a child's learning toy), a gaming system, or a control device (e.g., a home or industrial controller).
  • Device 300 typically includes one or more processing units (CPU's) 310, one or more network or other communications interfaces 360, memory 370, and one or more communication buses 320 for interconnecting these components.
  • Communication buses 320 optionally include circuitry (sometimes called a chipset) that interconnects and controls communications between system components.
  • Device 300 includes input/output (I/O) interface 330 comprising display 340, which is typically a touch-screen display.
  • I/O interface 330 also optionally includes a keyboard and/or mouse (or other pointing device) 350 and touchpad 355, tactile output generator 357 for generating tactile outputs on device 300 (e.g., similar to tactile output generator(s) 167 described above with reference to Figure 1 A), sensors 359 (e.g., optical, acceleration, proximity, touch-sensitive, and/or contact intensity sensors similar to contact intensity sensor(s) 165 described above with reference to Figure 1 A).
  • sensors 359 e.g., optical, acceleration, proximity, touch-sensitive, and/or contact intensity sensors similar to contact intensity sensor(s) 165 described above with reference to Figure 1 A).
  • Memory 370 includes high-speed random access memory, such as DRAM, SRAM, DDR RAM or other random access solid state memory devices; and optionally includes nonvolatile memory, such as one or more magnetic disk storage devices, optical disk storage devices, flash memory devices, or other non-volatile solid state storage devices. Memory 370 optionally includes one or more storage devices remotely located from CPU(s) 310. In some embodiments, memory 370 stores programs, modules, and data structures analogous to the programs, modules, and data structures stored in memory 102 of portable multifunction device 100 ( Figure 1A), or a subset thereof. Furthermore, memory 370 optionally stores additional programs, modules, and data structures not present in memory 102 of portable multifunction device 100.
  • memory 370 of device 300 optionally stores drawing module 380, presentation module 382, word processing module 384, website creation module 386, disk authoring module 388, and/or spreadsheet module 390, while memory 102 of portable multifunction device 100 ( Figure 1A) optionally does not store these modules.
  • Each of the above identified elements in Figure 3 are, optionally, stored in one or more of the previously mentioned memory devices.
  • Each of the above identified modules corresponds to a set of instructions for performing a function described above.
  • the above identified modules or programs i.e., sets of instructions
  • memory 370 optionally stores a subset of the modules and data structures identified above.
  • memory 370 optionally stores additional modules and data structures not described above.
  • UI user interfaces
  • Figure 4A illustrates an example user interface for a menu of applications on portable multifunction device 100 in accordance with some embodiments. Similar user interfaces are, optionally, implemented on device 300.
  • user interface 400 includes the following elements, or a subset or superset thereof:
  • Tray 408 with icons for frequently used applications such as: o Icon 416 for telephone module 138, labeled “Phone,” which optionally includes an indicator 414 of the number of missed calls or voicemail messages; o Icon 418 for e-mail client module 140, labeled "Mail,” which optionally
  • o Icon 420 for browser module 147, labeled "Browser;” and o Icon 422 for video and music player module 152, also referred to as iPod
  • iPod (trademark of Apple Inc.) module 152, labeled "iPod;” and Icons for other applications, such as:
  • Icon 424 for FM module 141 labeled "Messages;"
  • Icon 426 for calendar module 148 labeled "Calendar;"
  • Icon 428 for image management module 144 labeled "Photos;"
  • Icon 430 for camera module 143 labeled "Camera;"
  • Icon 432 for online video module 155 labeled "Online Video;"
  • Icon 436 for map module 154 labeled "Maps;"
  • Icon 442 for workout support module 142 labeled "Workout Support;"
  • Icon 444 for notes module 153 labeled "Notes;"
  • Icon 446 for a settings application or module, which provides access to settings for device 100 and its various applications 136.
  • icon labels illustrated in Figure 4A are merely examples.
  • icon 422 for video and music player module 152 is labeled "Music" or "Music Player.”
  • Other labels are, optionally, used for various application icons.
  • a label for a respective application icon includes a name of an application corresponding to the respective application icon.
  • a label for a particular application icon is distinct from a name of an application corresponding to the particular application icon.
  • Figure 4B illustrates an example user interface on a device (e.g., device 300, Figure 3) with a touch-sensitive surface 451 (e.g., a tablet or touchpad 355, Figure 3) that is separate from the display 450.
  • Device 300 also, optionally, includes one or more contact intensity sensors (e.g., one or more of sensors 357) for detecting intensity of contacts on touch-sensitive surface 451 and/or one or more tactile output generators 359 for generating tactile outputs for a user of device 300.
  • contact intensity sensors e.g., one or more of sensors 357
  • tactile output generators 359 for generating tactile outputs for a user of device 300.
  • the device detects inputs on a touch-sensitive surface that is separate from the display, as shown in FIG. 4B.
  • the touch-sensitive surface e.g., 451 in Figure 4B
  • the touch-sensitive surface has a primary axis (e.g., 452 in Figure 4B) that corresponds to a primary axis (e.g., 453 in Figure 4B) on the display (e.g., 450).
  • the device detects contacts (e.g., 460 and 462 in Figure 4B) with the touch- sensitive surface 451 at locations that correspond to respective locations on the display (e.g., in Figure 4B, 460 corresponds to 468 and 462 corresponds to 470).
  • user inputs e.g., contacts 460 and 462, and movements thereof
  • the device on the touch- sensitive surface e.g., 451 in Figure 4B
  • manipulate the user interface on the display e.g., 450 in Figure 4B
  • similar methods are, optionally, used for other user interfaces described herein.
  • finger inputs e.g., finger contacts, finger tap gestures, finger swipe gestures, etc.
  • one or more of the finger inputs are replaced with input from another input device (e.g., a stylus input).
  • another input device e.g., a stylus input.
  • multiple user inputs it should be understood that multiple finger contacts, or a combination of finger contacts and stylus input are used simultaneously.
  • the term "intensity" of a contact on a touch-sensitive surface refers to the force or pressure (force per unit area) of a contact (e.g., a finger contact or a stylus contact) on the touch-sensitive surface, or to a substitute (proxy) for the force or pressure of a contact on the touch-sensitive surface.
  • the intensity of a contact has a range of values that includes at least four distinct values and more typically includes hundreds of distinct values (e.g., at least 256). Intensity of a contact is, optionally, determined (or measured) using various approaches and various sensors or combinations of sensors.
  • one or more force sensors underneath or adjacent to the touch-sensitive surface are, optionally, used to measure force at various points on the touch-sensitive surface.
  • force measurements from multiple force sensors are combined (e.g., a weighted average or a sum) to determine an estimated force of a contact.
  • a pressure-sensitive tip of a stylus is, optionally, used to determine a pressure of the stylus on the touch-sensitive surface.
  • the size of the contact area detected on the touch- sensitive surface and/or changes thereto, the capacitance of the touch-sensitive surface proximate to the contact and/or changes thereto, and/or the resistance of the touch- sensitive surface proximate to the contact and/or changes thereto are, optionally, used as a substitute for the force or pressure of the contact on the touch-sensitive surface.
  • the substitute measurements for contact force or pressure are used directly to determine whether an intensity threshold has been exceeded (e.g., the intensity threshold is described in units corresponding to the substitute measurements).
  • the substitute measurements for contact force or pressure are converted to an estimated force or pressure and the estimated force or pressure is used to determine whether an intensity threshold has been exceeded (e.g., the intensity threshold is a pressure threshold measured in units of pressure).
  • intensity of a contact as an attribute of a user input allows for user access to additional device functionality that may otherwise not be readily accessible by the user on a reduced-size device with limited real estate for displaying affordances (e.g., on a touch-sensitive display) and/or receiving user input (e.g., via a touch-sensitive display, a touch-sensitive surface, or a physical/mechanical control such as a knob or a button).
  • contact/motion module 130 uses a set of one or more intensity thresholds to determine whether an operation has been performed by a user (e.g., to determine whether a user has "clicked" on an icon).
  • at least a subset of the intensity thresholds are determined in accordance with software parameters (e.g., the intensity thresholds are not determined by the activation thresholds of particular physical actuators and can be adjusted without changing the physical hardware of device 100).
  • a mouse "click" threshold of a trackpad or touch-screen display can be set to any of a large range of predefined thresholds values without changing the trackpad or touch-screen display hardware.
  • a user of the device is provided with software settings for adjusting one or more of the set of intensity thresholds (e.g., by adjusting individual intensity thresholds and/or by adjusting a plurality of intensity thresholds at once with a system-level click "intensity" parameter).
  • the term "characteristic intensity" of a contact refers to a characteristic of the contact based on one or more intensities of the contact.
  • the characteristic intensity is based on multiple intensity samples.
  • the characteristic intensity is, optionally, based on a predefined number of intensity samples, or a set of intensity samples collected during a predetermined time period (e.g., 0.05, 0.1, 0.2, 0.5, 1, 2, 5, 10 seconds) relative to a predefined event (e.g., after detecting the contact, prior to detecting liftoff of the contact, before or after detecting a start of movement of the contact, prior to detecting an end of the contact, before or after detecting an increase in intensity of the contact, and/or before or after detecting a decrease in intensity of the contact).
  • a predefined time period e.g., 0.05, 0.1, 0.2, 0.5, 1, 2, 5, 10 seconds
  • a characteristic intensity of a contact is, optionally based on one or more of: a maximum value of the intensities of the contact, a mean value of the intensities of the contact, an average value of the intensities of the contact, a top 10 percentile value of the intensities of the contact, a value at the half maximum of the intensities of the contact, a value at the 90 percent maximum of the intensities of the contact, a value produced by low-pass filtering the intensity of the contact over a predefined period or starting at a predefined time, or the like.
  • the duration of the contact is used in determining the characteristic intensity (e.g., when the characteristic intensity is an average of the intensity of the contact over time).
  • the characteristic intensity is compared to a set of one or more intensity thresholds to determine whether an operation has been performed by a user.
  • the set of one or more intensity thresholds may include a first intensity threshold and a second intensity threshold.
  • a contact with a characteristic intensity that does not exceed the first threshold results in a first operation
  • a contact with a characteristic intensity that exceeds the first intensity threshold and does not exceed the second intensity threshold results in a second operation
  • a contact with a characteristic intensity that exceeds the second intensity threshold results in a third operation.
  • a comparison between the characteristic intensity and one or more intensity thresholds is used to determine whether or not to perform one or more operations (e.g., whether to perform a respective option or forgo performing the respective operation) rather than being used to determine whether to perform a first operation or a second operation.
  • a portion of a gesture is identified for purposes of determining a characteristic intensity.
  • a touch-sensitive surface may receive a continuous swipe contact transitioning from a start location and reaching an end location (e.g., a drag gesture), at which point the intensity of the contact increases.
  • the characteristic intensity of the contact at the end location may be based on only a portion of the continuous swipe contact, and not the entire swipe contact (e.g., only the portion of the swipe contact at the end location).
  • a smoothing algorithm may be applied to the intensities of the swipe contact prior to determining the characteristic intensity of the contact.
  • the smoothing algorithm optionally includes one or more of: an unweighted sliding-average smoothing algorithm, a triangular smoothing algorithm, a median filter smoothing algorithm, and/or an exponential smoothing algorithm.
  • these smoothing algorithms eliminate narrow spikes or dips in the intensities of the swipe contact for purposes of determining a characteristic intensity.
  • the user interface figures described herein optionally include various intensity diagrams that show the current intensity of the contact on the touch-sensitive surface relative to one or more intensity thresholds (e.g., a contact detection intensity threshold ITo, a light press intensity threshold IT L , a deep press intensity threshold IT D (e.g., that is at least initially higher than I L ), and/or one or more other intensity thresholds (e.g., an intensity threshold 1 ⁇ 2 that is lower than I L )).
  • intensity thresholds e.g., a contact detection intensity threshold ITo, a light press intensity threshold IT L , a deep press intensity threshold IT D (e.g., that is at least initially higher than I L ), and/or one or more other intensity thresholds (e.g., an intensity threshold 1 ⁇ 2 that is lower than I L )).
  • This intensity diagram is typically not part of the displayed user interface, but is provided to aid in the interpretation of the figures.
  • the light press intensity threshold corresponds to an intensity at which the device will perform operations typically associated with clicking
  • the deep press intensity threshold corresponds to an intensity at which the device will perform operations that are different from operations typically associated with clicking a button of a physical mouse or a trackpad.
  • the device when a contact is detected with a characteristic intensity below the light press intensity threshold (e.g., and above a nominal contact-detection intensity threshold IT 0 below which the contact is no longer detected), the device will move a focus selector in accordance with movement of the contact on the touch-sensitive surface without performing an operation associated with the light press intensity threshold or the deep press intensity threshold.
  • these intensity thresholds are consistent between different sets of user interface figures.
  • the response of the device to inputs detected by the device depends on criteria based on the contact intensity during the input. For example, for some "light press” inputs, the intensity of a contact exceeding a first intensity threshold during the input triggers a first response. In some embodiments, the response of the device to inputs detected by the device depends on criteria that include both the contact intensity during the input and time-based criteria. For example, for some "deep press” inputs, the intensity of a contact exceeding a second intensity threshold during the input, greater than the first intensity threshold for a light press, triggers a second response only if a delay time has elapsed between meeting the first intensity threshold and meeting the second intensity threshold.
  • This delay time is typically less than 200 ms (milliseconds) in duration (e.g., 40, 100, or 120 ms, depending on the magnitude of the second intensity threshold, with the delay time increasing as the second intensity threshold increases).
  • This delay time helps to avoid accidental recognition of deep press inputs.
  • there is a reduced-sensitivity time period that occurs after the time at which the first intensity threshold is met. During the reduced- sensitivity time period, the second intensity threshold is increased. This temporary increase in the second intensity threshold also helps to avoid accidental deep press inputs.
  • the response to detection of a deep press input does not depend on time-based criteria.
  • one or more of the input intensity thresholds and/or the corresponding outputs vary based on one or more factors, such as user settings, contact motion, input timing, application running, rate at which the intensity is applied, number of concurrent inputs, user history, environmental factors (e.g., ambient noise), focus selector position, and the like.
  • factors such as user settings, contact motion, input timing, application running, rate at which the intensity is applied, number of concurrent inputs, user history, environmental factors (e.g., ambient noise), focus selector position, and the like.
  • Example factors are described in U.S. Patent Application Serial Nos. 14/399,606 and 14/624,296, which are incorporated by reference herein in their entireties.
  • FIG. 4C illustrates a dynamic intensity threshold 480 that changes over time based in part on the intensity of touch input 476 over time.
  • Dynamic intensity threshold 480 is a sum of two components, first component 474 that decays over time after a predefined delay time pi from when touch input 476 is initially detected, and second component 478 that trails the intensity of touch input 476 over time.
  • the initial high intensity threshold of first component 474 reduces accidental triggering of a "deep press” response, while still allowing an immediate “deep press” response if touch input 476 provides sufficient intensity.
  • Second component 478 reduces unintentional triggering of a "deep press” response by gradual intensity fluctuations of in a touch input.
  • touch input 476 satisfies dynamic intensity threshold 480 (e.g., at point 481 in Figure 4C)
  • the "deep press" response is triggered.
  • Figure 4D illustrates another dynamic intensity threshold 486 (e.g., intensity threshold I D ).
  • Figure 4D also illustrates two other intensity thresholds: a first intensity threshold 1 ⁇ 2 and a second intensity threshold II.
  • touch input 484 satisfies the first intensity threshold 1 ⁇ 2 and the second intensity threshold II prior to time p2
  • no response is provided until delay time p2 has elapsed at time 482.
  • dynamic intensity threshold 486 decays over time, with the decay starting at time 488 after a predefined delay time pi has elapsed from time 482 (when the response associated with the second intensity threshold II was triggered).
  • This type of dynamic intensity threshold reduces accidental triggering of a response associated with the dynamic intensity threshold ID immediately after, or concurrently with, triggering a response associated with a lower intensity threshold, such as the first intensity threshold 1 ⁇ 2 or the second intensity threshold II.
  • Figure 4E illustrate yet another dynamic intensity threshold 492 (e.g., intensity threshold I D ).
  • intensity threshold I D e.g., intensity threshold I D
  • a response associated with the intensity threshold I L is triggered after the delay time p2 has elapsed from when touch input 490 is initially detected.
  • dynamic intensity threshold 492 decays after the predefined delay time pi has elapsed from when touch input 490 is initially detected. So a decrease in intensity of touch input 490 after triggering the response associated with the intensity threshold I L , followed by an increase in the intensity of touch input 490, without releasing touch input 490, can trigger a response associated with the intensity threshold ID (e.g., at time 494) even when the intensity of touch input 490 is below another intensity threshold, for example, the intensity threshold I L .
  • An increase of characteristic intensity of the contact from an intensity below the light press intensity threshold ITL to an intensity between the light press intensity threshold ITL and the deep press intensity threshold ITD is sometimes referred to as a "light press” input.
  • An increase of characteristic intensity of the contact from an intensity below the deep press intensity threshold ITD to an intensity above the deep press intensity threshold IT D is sometimes referred to as a "deep press” input.
  • An increase of characteristic intensity of the contact from an intensity below the contact-detection intensity threshold IT 0 to an intensity between the contact-detection intensity threshold IT 0 and the light press intensity threshold IT L is sometimes referred to as detecting the contact on the touch-surface.
  • a decrease of characteristic intensity of the contact from an intensity above the contact-detection intensity threshold IT 0 to an intensity below the contact-detection intensity threshold IT 0 is sometimes referred to as detecting liftoff of the contact from the touch- surface.
  • IT 0 is zero. In some embodiments, IT 0 is greater than zero.
  • a shaded circle or oval is used to represent intensity of a contact on the touch-sensitive surface. In some illustrations, a circle or oval without shading is used represent a respective contact on the touch-sensitive surface without specifying the intensity of the respective contact.
  • 4C-4E are used for inputs on touch-sensitive display system 1 12.
  • different criteria e.g., criteria described with respect to Figures 5A-5II
  • an intensity-sensitive input device such as intensity-sensitive home buttons illustrated in Figures 2B and 2C.
  • the criteria described with respect to Figures 5A- 511 are used for all inputs instead of the dynamic intensity thresholds illustrated in Figures 4C-4E.
  • one or more operations are performed in response to detecting a gesture that includes a respective press input or in response to detecting the respective press input performed with a respective contact (or a plurality of contacts), where the respective press input is detected based at least in part on detecting an increase in intensity of the contact (or plurality of contacts) above a press-input intensity threshold.
  • the respective operation is performed in response to detecting the increase in intensity of the respective contact above the press-input intensity threshold (e.g., the respective operation is performed on a "down stroke" of the respective press input).
  • the press input includes an increase in intensity of the respective contact above the press-input intensity threshold and a subsequent decrease in intensity of the contact below the press-input intensity threshold, and the respective operation is performed in response to detecting the subsequent decrease in intensity of the respective contact below the press-input threshold (e.g., the respective operation is performed on an "up stroke" of the respective press input).
  • the device employs intensity hysteresis to avoid accidental inputs sometimes termed "jitter," where the device defines or selects a hysteresis intensity threshold with a predefined relationship to the press-input intensity threshold (e.g., the hysteresis intensity threshold is X intensity units lower than the press-input intensity threshold or the hysteresis intensity threshold is 75%, 90%, or some reasonable proportion of the press-input intensity threshold).
  • the hysteresis intensity threshold is X intensity units lower than the press-input intensity threshold or the hysteresis intensity threshold is 75%, 90%, or some reasonable proportion of the press-input intensity threshold.
  • the press input includes an increase in intensity of the respective contact above the press-input intensity threshold and a subsequent decrease in intensity of the contact below the hysteresis intensity threshold that corresponds to the press-input intensity threshold, and the respective operation is performed in response to detecting the subsequent decrease in intensity of the respective contact below the hysteresis intensity threshold (e.g., the respective operation is performed on an "up stroke" of the respective press input).
  • the press input is detected only when the device detects an increase in intensity of the contact from an intensity at or below the hysteresis intensity threshold to an intensity at or above the press-input intensity threshold and, optionally, a subsequent decrease in intensity of the contact to an intensity at or below the hysteresis intensity, and the respective operation is performed in response to detecting the press input (e.g., the increase in intensity of the contact or the decrease in intensity of the contact, depending on the circumstances).
  • the description of operations performed in response to a press input associated with a press-input intensity threshold or in response to a gesture including the press input are, optionally, triggered in response to detecting: an increase in intensity of a contact above the press-input intensity threshold, an increase in intensity of a contact from an intensity below the hysteresis intensity threshold to an intensity above the press-input intensity threshold, a decrease in intensity of the contact below the press-input intensity threshold, or a decrease in intensity of the contact below the hysteresis intensity threshold corresponding to the press-input intensity threshold.
  • the operation is, optionally, performed in response to detecting a decrease in intensity of the contact below a hysteresis intensity threshold corresponding to, and lower than, the press-input intensity threshold.
  • the triggering of these responses also depends on time-based criteria being met (e.g., a delay time has elapsed between a first intensity threshold being met and a second intensity threshold being met).
  • UI user interfaces
  • portable multifunction device 100 or device 300 with a display, a touch-sensitive surface, and one or more sensors to detect intensities of contacts with the touch-sensitive surface.
  • Figures 5A-5II illustrate example user interfaces and a variety of timeout periods and intensity thresholds used for detecting gestures. Some of the intensity thresholds and timeout periods are based on prior input intensity (e.g., during input of a gesture, some intensity thresholds are based on a characteristic intensity or representative intensity of the input during the same gesture), in accordance with some embodiments.
  • the user interfaces in these figures are used to illustrate the processes described below, including the processes in Figures 6A-6F, 7A-7E, and 8A-8C. For convenience of explanation, some of the
  • the focus selector is, optionally: a respective finger or stylus contact, a representative point corresponding to a finger or stylus contact (e.g., a centroid of a respective contact or a point associated with a respective contact), or a centroid of two or more contacts detected on the touch-sensitive display system 1 12.
  • analogous operations are, optionally, performed on a device with a display 450 and a separate touch- sensitive surface 451 in response to detecting the contacts on the touch- sensitive surface 451 while displaying the user interfaces shown in the figures on the display 450, along with a focus selector.
  • Figures 5A-5N illustrate user interfaces, user input intensities and
  • FIGS 5A-5C illustrate a single click gesture on a home button 204 of an electronic device that also includes a touch-sensitive display 1 12.
  • home button 204 is separate from the display and, optionally, includes a set of one or more intensity sensors that are separate from intensity sensors used to detect the intensity of inputs on the display.
  • home button 204 is a virtual home button that is displayed on the display (e.g., with a set of one or more intensity sensors that are separate from intensity sensors used to detect the intensity of inputs on the display or, optionally, using intensity sensors integrated into the display to determine an intensity of an input with the virtual home button).
  • Home button 204 is associated with an intensity sensor that is used to measure the intensity of use inputs on the home button.
  • Figure 5A shows the electronic device 100, display 1 12 and home button 204, and also shows a first down-click intensity threshold I D .
  • a touch input 505 on home button 204 has an intensity that changes over time, including a first increase in intensity 520, sometimes called a first down-click, reaching a peak intensity, Ip eak, that is above a first down-click intensity threshold ID (e.g., because a user will typically overshoot the down-click intensity threshold when performing a down-click operation) .
  • the electronic device detects that the increase in intensity meets down-click detection criteria, which requires that the intensity of the input increase above the first down-click intensity threshold ID in order for the down-click detection criteria to be met.
  • the device provides feedback (e.g., audio and/or tactile feedback) indicating that the down-click intensity threshold has been reached.
  • the intensity of the touch input on home button 204 decreases, and the electronic device detects a first decrease in intensity of the contact 522, sometimes called a first up-click.
  • the first decrease in intensity of the input meets up-click detection criteria, which requires that the intensity of the input decrease below a first up-click intensity threshold Iu in order for the up-click detection criteria to be met.
  • the first up-click intensity threshold Iu is selected based on the intensity of the input during the first increase in intensity of the contact 520.
  • electronic device 100 provides first feedback.
  • the first feedback is, or includes, switching from displaying the user interface of a first application (e.g., a timer application) to displaying an application launch user interface.
  • a first application e.g., a timer application
  • the user interface transition shown in Figures 5B-5C is accomplished by closing the application (e.g., a timer application), or ceasing to display the user interface of the application, in response to single click gesture on home button 204, the performance of which is detected when the first decrease in intensity of the input meets the up-click detection criteria.
  • the device provides feedback (e.g., audio and/or tactile feedback) indicating that the up-click intensity threshold has been reached.
  • the tactile output for the up-click is different from the tactile output for the down-click (e.g., the tactile output for the up-click has a reduced amplitude relative to the down-click tactile output, such as the MicroTap (270Hz) tactile output pattern with a gain of 0.5 as opposed to a MicroTap (270Hz) tactile output pattern with a gain of 1.0 for the down-click).
  • the tactile output for the up-click has a reduced amplitude relative to the down-click tactile output, such as the MicroTap (270Hz) tactile output pattern with a gain of 0.5 as opposed to a MicroTap (270Hz) tactile output pattern with a gain of 1.0 for the down-click).
  • a touch input-based gesture represented by Figures 5B and 5F corresponds to a touch input in which the first decrease in intensity of the input does not meet the up-click detection criteria (e.g., does not decrease below the first up-click intensity threshold Iu), and as a result, the electronic device forgoes providing the first feedback (e.g., the visual, audio and/or tactile feedback).
  • the first feedback e.g., the visual, audio and/or tactile feedback
  • Figure 5D-5E illustrate a second single click input.
  • a second touch input 507 on home button 204 detected after the conclusion of the first touch input 505 (shown in Figure 5C), has an intensity that changes over time, including an increase in intensity 524, reaching a peak intensity, Ip eak, that is above the first down-click intensity threshold I D .
  • the electronic device, or a module thereof e.g.,
  • contact/motion module 130 detects that the increase in intensity 524 meets the down-click detection criteria.
  • the device provides feedback (e.g., audio and/or tactile feedback) indicating that the down-click intensity threshold has been reached.
  • the intensity of the touch input on home button 204 decreases, and the electronic device detects a decrease in intensity of the input 526.
  • the decrease in intensity of the input meets up-click detection criteria, which requires that the intensity of the input decrease below the first up-click intensity threshold Iu in order for the up-click detection criteria to be met.
  • electronic device 100 provides feedback.
  • the feedback is, or includes, scrolling from one screen of icons in an application launching user interface (as shown in Figure 5D), including a first set of application launch icons, to another screen of icons in the application launch user interface, including a second set of application launch icons that include application launch icons not in the first set of application launch icons.
  • the device when the up-click intensity threshold is reached the device provides feedback (e.g., audio and/or tactile feedback) indicating that the up-click intensity threshold has been reached.
  • indicator 510 indicates the point in time at which the down-click detection criteria is met
  • indicator 512 indicates the point in time at which the up-click detection criteria is met
  • indicator 514 indicates the point in time at which the down- click detection criteria is met for a second time
  • indicator 516 indicates the point in time at which the up-click detection criteria is met for a second time.
  • the electronic device or a module thereof (e.g., an application-independent module, such as contact/motion module 130, Figure 1A) generates an event (e.g., a down-click event) in response to the down-click detection criteria being met, or generates an event (e.g., an up- click event) in response to the down-click detection criteria being met, or both.
  • the event e.g., a down-click event or an up-click event
  • the event is delivered to one or more targets, such as an application, or a web page for processing by instructions in the web page, or to a web browser, which is a special case of an application, and/or a haptics feedback module, such as module 133, Figure 1A.
  • a tactile output 502 (e.g., a tactile output having the MicroTap (270Hz) tactile output pattern, Figure 4F) is generated in conjunction with the electronic device detecting that the decrease in intensity of the input meets the up-click criteria, sometimes called detecting an up-click or detecting a single click input.
  • a tactile output 502 or 504 is generated in conjunction with the electronic device detecting that the increase in intensity of the input meets the down-click criteria, sometimes called detecting a down-click or a long press, for example as discussed above with reference to Figures 5Z through 511.
  • Figures 5G-5I illustrate two examples of double click inputs and the provision of corresponding feedback.
  • Figure 5G shows a touch input that includes a first increase in intensity 532, reaching a peak intensity, I Peak, that is above a first down-click intensity threshold I D .
  • the touch input After reaching the peak intensity, Ip eak, the touch input includes a first decrease in intensity of the input 534, to a low intensity, Ivaiie y , that is below a first up-click intensity threshold Iu in order for the up-click detection criteria to be met.
  • the first up-click intensity threshold Iu is determined based on the intensity of the input during the first increase in intensity of the contact 532.
  • the touch input includes a second increase in intensity 536 to an intensity above a second down-click intensity threshold I D2 - AS
  • the second down-click intensity threshold I D2 is determined based on the intensity of the input during the first decrease in intensity of the contact.
  • the second down-click intensity threshold I D2 is determined based on the minimum or lowest intensity of the input, Ivaiiey, during the first decrease in intensity of the contact.
  • the input shown in Figure 5G includes a first increase in intensity 532 that satisfies down-click detection criteria, as indicated by indicator 510, followed by a first decrease in intensity 534 that satisfies up-click detection criteria, as indicated by indicator 512, followed by a second increase in intensity 536 that satisfies the down-click detection criteria as indicated by indicator 518, where the down-click detection criteria includes a first down-click intensity threshold for the first increase in intensity and includes a second down-click intensity threshold for the second increase in intensity.
  • the electronic device 101 when the electronic device 101 determines that the first increase in intensity 532, first decrease in intensity 534 and second increase in intensity 536 of the input shown in Figure 5G has satisfied the down-click detection criteria, up-click detection criteria, and down-click detection criteria, respectively, the electronic device produces second feedback (e.g., visual, audio and/or tactile feedback) indicating that the second increase in intensity was recognized as part of a double-click input, such as displaying a multitasking user interface as shown in Figure 5H.
  • the second feedback is generated, or initiated, at or immediately following the time, indicated by indicator 518 in Figures 5G and 51, at which the second increase in intensity satisfies the down-click detection criteria.
  • the second feedback is or includes transitioning to a multitasking user interface, as shown in Figure 51.
  • the second feedback is or includes generating a tactile output 503, as shown in Figures 5H and 51.
  • tactile output 503 is a tactile output having the MiniTap (270Hz) tactile output pattern, Figure 4F).
  • the input shown in Figure 5G continues, with a second decrease in intensity 538 that falls below the up-click intensity threshold Iu, and thereby meets the up-click detection criteria at the time indicated by indicator 522. While Figure 5H shows the same up-click intensity threshold Iu for both the first and second decreases in intensity, in some embodiments, or in some circumstances, the up-click intensity threshold for the second up-click (e.g., the second decrease in intensity) is different from the up-click intensity threshold for the first up-click (e.g., the first decrease in intensity).
  • two full clicks e.g., an input that includes, in sequence, first down-click 532, a first up-click 534, a second down-click 536, and a second up-click 538, is treated as double click, which triggers performance of an action, such as producing the second feedback (e.g., visual, audio and/or tactile feedback).
  • the second feedback is transitioning to a multitasking user interface, as shown in Figure 5H.
  • Figure 5J shows, in graph form, how the ratio of the up-click intensity threshold I D (see Figures 5C, and 5E-5I) to an intensity value that represents the intensity of the contact changes based on the intensity value that represents the intensity of the contact.
  • the ratio has a maximum value, a 2 , when the input intensity is I DI , which is greater (e.g., higher) than the first down-click intensity threshold I D , and has a minimum value, ai, when the input intensity is I D2 , which is greater (e.g., higher) than I D1 .
  • the ratio has a value between 0 and 1.
  • the ratio's maximum value, a 2 is equal to 0.73 and the ratio's minimum value, ai, is equal to 0.6.
  • the ratio is 0.6 and when the low-pass filtered current intensity of the contact is 300g, the ratio is 0.73.
  • the ratio of the up-click intensity threshold to the first intensity value has a first value; and when the up-click intensity is based on a second intensity value that represents the intensity of the contact that is greater than the first intensity value, the ratio of the up-click intensity threshold to the second intensity value has a second value that is different from (e.g., lower than or higher than) the first value.
  • the ratio shown in Figure 5J is multiplier that is applied to (e.g., multiplied with) a characteristic intensity of the input (e.g., a peak intensity of the input during the first increase in intensity, or an intensity value obtained by low-pass filtering the intensity during the first decrease in intensity) to determine the up-click intensity threshold Iu-
  • a characteristic intensity of the input e.g., a peak intensity of the input during the first increase in intensity, or an intensity value obtained by low-pass filtering the intensity during the first decrease in intensity
  • Figure 5K illustrates the determination of an up-click intensity threshold Iu( t )
  • the intensity of the input is low pass filtered, producing a first time varying value I L p up 544.
  • the first time varying value is then multiplied by either a fixed value, such as 0.7, or an intensity -based value, such as the ratio shown in Figure 5J, to produce a time varying up-click intensity threshold Iu( t ), where the "(t)" symbol indicates that the value is time varying.
  • a fixed value such as 0.7
  • an intensity -based value such as the ratio shown in Figure 5J
  • Figure 5L illustrates the determination of a down-click intensity threshold I D ⁇
  • the intensity of the input is low pass filtered, producing a second time varying value iLPdown
  • the low pass filtered intensity (ILPdown 552) of the detected intensity of the input during the second increase 550 in intensity of the contact is initially set, at the start of the second increase 550 in intensity of the contact, to the lowest intensity, Ivaiiey, of the input during the first decrease 534 in intensity of the contact.
  • the second time varying value iLPdown 552 is then multiplied by either a fixed value, such as 1.4, (or, alternatively, divided by a fixed value, such as 0.7) or an intensity- based value, such as the ratio shown in Figure 5 J, to produce a time varying up-click intensity threshold Iu(t) 554, where the "(t)" symbol indicates that the value is time varying.
  • a fixed value such as 1.4
  • an intensity- based value such as the ratio shown in Figure 5 J
  • Figure 5M illustrates the determination of an up-click intensity threshold Iu 2 (t)
  • I LP2U P 560 The second time varying value is then multiplied by either a fixed value, such as 0.7, or an intensity-based value, such as the ratio shown in Figure 5J, to produce a time varying up-click intensity threshold I U2(t) 561, where the "(t)" symbol indicates that the value is time varying.
  • a fixed value such as 0.7
  • an intensity-based value such as the ratio shown in Figure 5J
  • Figure 5N is similar to Figure 5M, with the exception that a minimum up-click intensity threshold IU M is applied to the time varying up-click intensity threshold I U2(T) 561 of Figure 5M, thereby producing a modified time varying up-click intensity threshold Iu 2M (t) 563.
  • time varying up-click intensity threshold Iu 2M (t) 563 is, at each point in time, equal to the greater of time varying up-click intensity threshold Iu 2 (t) 561 and the minimum up-click intensity threshold IU M -
  • Figures 50-5Y illustrate user interfaces, user input intensities and
  • intensity thresholds for distinguishing between single click inputs or gestures and double click inputs or gestures, with accelerated or expedited recognition of single click gestures (e.g., based on a determination that a double click input is not going to be
  • Figures 50-5P illustrate a single click gesture, sometimes called a single tap or single tap gesture, on a home button 204 of an electronic device that also includes a touch- sensitive display 112.
  • Home button 204 includes an intensity sensor for measuring the intensity of use inputs on the home button.
  • Figure 50 shows the electronic device 100, display 112 and home button 204, and also shows a first down-click intensity threshold I D , a first up-click intensity threshold Iu, and an early confirmation threshold IA, sometimes called the accelerated confirmation threshold.
  • a touch input 523 on home button 204 has an intensity that changes over time, including a first increase in intensity 532, sometimes called a first down-click, reaching a peak intensity Ip eak , that is above a first down- click intensity threshold I D .
  • the electronic device, or a module thereof detects that the increase in intensity meets down- click detection criteria, as indicated by indicator 510 at time Ti, which requires that the intensity of the input increase above the first down-click intensity threshold I D in order for the down-click detection criteria to be met.
  • the intensity of the touch input 523 on home button 204 decreases, and the electronic device detects a first decrease in intensity of the contact 534, sometimes called a first up-click.
  • the first decrease in intensity of the input meets up-click detection criteria, as indicated by indicator 512 at time T 2a , where the input meets up-click detection criteria requires that the intensity of the input decrease below a first up-click intensity threshold Iu in order for the up- click detection criteria to be met. If the first increase in intensity meets the down-click detection criteria and the first decrease in intensity meets the up-click detection criteria, the device recognizes at least a portion of the change in intensity of the input as first event, for example a click event, sometimes called a first click.
  • the performance of a first operation associated with recognizing a single click is delayed until the device determines that the user is not inputting a double click, or equivalently, that the first click is not the first part of a double click.
  • the delay in performing the first operation is limited to a default delay time, such as 300 ms or 500 ms.
  • the electronic device can initiate performance of the first operation as soon as that determination is made.
  • the early-confirmation criteria requires that the intensity of the input during the first decrease in intensity remains below a confirmation intensity threshold, IA, for more than an early confirmation time threshold.
  • the confirmation intensity threshold, IA is 100g
  • the up-click detection threshold, Iu is 150g, or 200g, or more, and thus the confirmation intensity threshold, IA, is lower than the up-click detection threshold.
  • the confirmation intensity threshold, IA is determined in accordance with a peak characteristic intensity of the input, I Pea k, detected during the detected increase in intensity of the input, prior to detecting the decrease in intensity of the input on the input element.
  • the up-click detection threshold, Iu is determined in accordance with the peak characteristic intensity of the input, Ipeak, detected during the detected increase in intensity of the input, prior to detecting the decrease in intensity of the input on the input element, and the confirmation intensity threshold, IA, is set in accordance with the up-click detection threshold, Iu-
  • the confirmation intensity threshold, IA is set to a level that is a predefined amount less (e.g., 50g less) than the up-click detection threshold, Iu, while in other such embodiments, the confirmation intensity threshold, IA, is set to a level that is a predefined multiple or percentage of (e.g., 0.90 times or 90% of) up-click detection threshold, Iu.
  • the up-click threshold is a dynamically determined up-click threshold as described above with reference to Figures 5 A-5N.
  • a tactile output 502 (e.g., a tactile output having the MicroTap (270Hz) tactile output pattern, Figure 4F) is generated in conjunction with the electronic device detecting the increase in intensity of the input meets the down-click criteria, sometimes called detecting or recognizing a down-click, or in conjunction with the electronic device detecting the decrease in intensity of the input meets the up-click criteria, sometimes called detecting or recognizing an up-click or single click input.
  • the tactile output for the up-click is different from the tactile output for the down-click (e.g., the tactile output for the up-click has a reduced amplitude relative to a down-click tactile output, such as the MicroTap (270Hz) tactile output pattern with a gain of 0.5 as opposed to a MicroTap (270Hz) tactile output pattern with a gain of 1.0 for the down-click).
  • a down-click tactile output such as the MicroTap (270Hz) tactile output pattern with a gain of 0.5 as opposed to a MicroTap (270Hz) tactile output pattern with a gain of 1.0 for the down-click.
  • the first decrease 534 of the input shown in Figure 50 continues, passing the confirmation intensity threshold, IA, at time T 2 , as indicated by indicator 564.
  • the input ends with liftoff of the finger or stylus at time T off , thereby ending the gesture.
  • termination of the input by liftoff of the contact during the first decrease in intensity is treated as confirmation that the gesture is a single click (or, equivalently, single tap).
  • the electronic device performs the first operation, which in this example includes ending display of the user interface of the application displayed prior to the single tap being received, and thus the display 1 12 of the electronic device transitions from displaying the user interface of a first application (e.g., a time application) to displaying a set of application launch icons in an application launching user interface.
  • a first application e.g., a time application
  • a touch input 525 detected (e.g., while an application user interface similar to the user interface illustrated in Figure 50 is displayed on touch-sensitive display 1 12) on home button 204 has an intensity that changes over time, including a first increase in intensity 532, sometimes called a first down-click, followed by a first decrease 534 in intensity.
  • Indicator 512 indicates the point in time at which the up-click detection criteria are met, and indicator 564 indicates the point in time at which the first decrease in intensity reaches the confirmation intensity threshold, IA.
  • the input after reaching the confirmation intensity threshold, IA, the input remains at an intensity below the confirmation intensity threshold, IA, starting at time T 2 for a period of time that lasts at least the confirmation time threshold.
  • a timeout period called the "fast timeout period” starts at time T 2 , when the intensity of the input decreases below the confirmation threshold, IA.
  • the duration of the fast timeout period reaches the confirmation time threshold, at time T 3 , the input is confirmed to be a single click, as indicated by indicator 565.
  • the first operation e.g., an operation associated with recognizing a single click
  • performance of the first operation is initiated.
  • the first operation includes ending display of the user interface of the application displayed prior to the single tap being received (e.g., an application user interface illustrated in Figure 50), and thus the display 1 12 of the electronic device transitions from displaying the user interface of a first application (e.g., a time application) to displaying a set of application launch icons in an application launching user interface.
  • a first application e.g., a time application
  • Figure 5R illustrates a continuation of the input shown in Figure 5Q.
  • a second single tap is received by the electronic device, subsequent to confirmation (e.g., at time T 3 ) that the initial input was a single tap input and performance, or initiation of performance, of the first operation.
  • the second single tap includes a second increase in intensity 566 that meets the down-click detection criteria, as indicated by indicator 567, and a second decrease in intensity 568 that meets the up-click detection criteria, as indicated by indicator 569.
  • the second single tap is detected, for example when the second decrease in intensity 568 meets the up-click detection criteria, another operation is performed.
  • that operation includes scrolling from one screen of icons in an application launching user interface (as shown in Figure 5Q), including a first set of application launch icons, to another screen of icons in the application launch user interface (as shown in Figure 5R), including a second set of application launch icons that include application launch icons not in the first set of application launch icons.
  • a touch input 527 on home button 204 has an intensity that changes over time, including a first increase in intensity 532 and a first decrease in intensity 534 that decreases below an up-click intensity threshold Iu, at time T 2 A, as indicated by indicator 512.
  • the intensity of touch input 527 remains at an intensity below the up-click intensity threshold Iu, but above below the confirmation intensity threshold, IA.
  • Performance of the first operation, in response to the first event is delayed until a default delay time period elapses, for example at time T 4 , as indicated by indicator 571.
  • the first operation includes ending display of the user interface of the application displayed prior to the single tap being received, and thus the display 112 of the electronic device transitions from displaying the user interface of a first application (e.g., a time application) to displaying a set of application launch icons in an application launching user interface.
  • a first application e.g., a time application
  • a delay time is monitored or measured from the time at which a first down-click is detected, indicated as time T 1 in Figure 5S. In some other embodiments, the delay time is measured from the time at which a first up-click is detected, indicated as time T 2 A in Figure 5S. In some embodiments, measurement of the delay time stops and the measured delay time is reset to zero, if the intensity of the input increases above the up-click intensity threshold Iu prior to the delay time reaching the default delay time period.
  • the default delay time period is typically significantly longer than the early confirmation time threshold. For example, in some embodiments the default delay time period is a value between 300 ms and 500 ms while the early confirmation time threshold is a value between 100 ms and 200 ms.
  • the early confirmation criteria is satisfied when the cumulative amount of time that the intensity of the input is below the early confirmation threshold IA reaches the early confirmation time threshold.
  • the intensity of the input decreases below the up-click intensity threshold Iu and the early confirmation threshold IA, at time T 2 , as indicated by indicator 568, but then increases to a value above the early confirmation threshold IA at time T 2- i without satisfying the early confirmation criteria.
  • the intensity of the input again decreases below the early confirmation threshold IA, as indicated by indicator 572, at time T2-2, and then, as shown in Figure 5 V, remains below the early confirmation threshold IA until the cumulative amount of time that the input intensity has remained below the early confirmation threshold IA reaches the early confirmation time threshold, at time T3-2, as indicated by indicator 573.
  • the electronic device performs or initiates performance of the first operation.
  • the first operation includes ending display of the user interface of the application displayed prior to the single tap being received, and thus the display 112 of the electronic device transitions from displaying the user interface of a first application (e.g., a time application) to displaying a set of application launch icons in an application launching user interface.
  • a first application e.g., a time application
  • a touch input 531 on home button 204 has an intensity that changes over time, including a first increase in intensity 532 and a first decrease in intensity 534 that decreases below an up-click intensity threshold Iu, as indicated by indicator 512, and then below early confirmation threshold IA at time T2, as indicated by indicator 568.
  • the input then continues with a second increase in intensity 536 to an intensity above the down- click intensity threshold ID (or alternatively to an intensity above a second down-click intensity threshold ID 2 as shown in Figure 5G), as indicated by indicator 574.
  • the second increase in intensity 536 occurs prior to expiration of the default delay time period, and also prior to the intensity of the input satisfying the early confirmation criteria, and therefore the electronic device recognizes the second input event (e.g., a double click), and the first operation is not performed.
  • the time period from time T 2 when the intensity falls below the early confirmation intensity threshold IA to time T 2-1 , when the intensity rises above the early confirmation threshold IA, is less than the early
  • the electronic device transitions from displaying a previous user interface, such as the user interface of an application (as shown in Figure 50), to a displaying multitasking user interface, as shown in Figure 5W.
  • a tactile output 503 is generated in conjunction with the electronic device recognizing the second input event (e.g., detecting that the second increase in intensity 536 continues to an intensity above the down-click intensity threshold prior to expiration of the default delay time period).
  • tactile output 503 is a tactile output having the MiniTap (270Hz) tactile output pattern, Figure 4F).
  • a touch input 533 on home button 204 has an intensity that changes over time, including a first increase in intensity 532 and a first decrease in intensity 534 that decreases below an up-click intensity threshold Iu, as indicated by indicator 512, and then below early confirmation threshold IA.
  • measurement of the delay time starts from a time at which the intensity of the input decreases below an up-click intensity threshold Iu, and continues to be measured so long as the input remains below the up-click intensity threshold Iu-
  • measurement of the delay time starts from a time at which the intensity of the input increases above a down-click intensity threshold I D , as shown in Figure 5S, and once an up-click is detected, continues to be measured so long as the intensity of the input 533 remains below the up-click intensity threshold Iu-
  • the electronic device determines whether the intensity of a touch input 531 satisfies double click criteria or triple click criteria, and thus determines whether the input is a double click or triple click.
  • the touch input 531 (also shown in Figure 5W) on home button 204 has an intensity that changes over time, including a first increase in intensity 532 and a first decrease in intensity 534 that decreases below an up-click intensity threshold Iu, as indicated by indicator 512, and then below early confirmation threshold IA at time T2, as indicated by indicator 568.
  • Input 531 then continues with a second increase in intensity 536 to an intensity above the down-click intensity threshold I D (or alternatively to an intensity above a second down-click intensity threshold I D2 as shown in Figure 5G), as indicated by indicator 574, and a second decrease in intensity 538 to an intensity below the up-click intensity threshold Iu, as indicated by indicator 522.
  • a third possibility shown in Figure 5Y is that the intensity of touch input 531 falls below and remains below the up-click intensity threshold Iu (and above the early confirmation threshold IA) for at least a default delay time threshold, as indicated by indicator 578, and thereby satisfies the double click detection criteria.
  • the electronic device in response to detecting that input 531 satisfies the double click detection criteria, performs or initiates performance of a second operations, such as transitioning from a prior user interface to a multitasking user interface, as shown in Figure 5 Y.
  • a fourth possibility shown in Figure 5Y is that, subsequent to the second decrease in intensity 538, and without touch input 531 satisfying the double click detection criteria, the intensity of touch input 531 has a third increase in intensity 580, during which the intensity increases above the down-click intensity threshold I D (or alternatively increases above a respective down-click intensity threshold ID that is based on historic intensity of the touch input 531), as indicated by indicator 579, and thereby satisfies triple click detection criteria.
  • the electronic device in response to detecting that input 531 satisfies the triple click detection criteria, performs or initiates performance of a third operation, such as transitioning from a prior user interface to a predefined user interface (e.g., a device settings interface) or transitioning into an accessibility mode.
  • the device When there is a triple click operation that is configured to be detected in response to a change in intensity of a contact on the home button, the device optionally imposes a delay in detecting the double click operation after detecting the second up-click to ensure that a triple click will not be detected.
  • the delay in detecting the double click optionally operates in a similar fashion to the delay in detecting a single click described above with reference to Figures 50-5Y.
  • Figures 5Z-5II depict touch inputs scenarios in which the length of time in which it takes to recognize a "long press" depends on the intensity of the touch input.
  • the time for recognizing an input as a long press input decreases to 400 ms or even 300 ms if the intensity of the input reaches predefined or corresponding intensity levels.
  • Figure 5Z shows a graph in which a rate, sometimes called a recognition rate or timer rate, changes with the intensity of an input. More specifically, when the intensity is below a first down-click intensity threshold I D , the rate is a default rate, r 0 . When the intensity is between the first down-click intensity threshold I D and a second down-click intensity threshold I D+ , the rate changes from a first rate, ri to a second rate r 2 . In some embodiments, the rate changes linearly from the first rate, ri to the second rate r 2 as the intensity of the input changes from I D to I D+ .
  • a rate sometimes called a recognition rate or timer rate
  • the rates changes from the first rate ri to the second rate r 2 in a number of discrete steps, such as one or more steps, two or more steps, or three or more steps, as the intensity of the input changes from I D to I D +.
  • a timeout timer or counter is updated at periodic intervals in accordance with the current rate, as determined by the current or most recently measured input intensity.
  • the timeout timer or counter is updated as indicated by pseudocode representation in Table 1, of a timeout timer update function.
  • timeout_value start_value // e.g., 500 ms /
  • timeout value timeout value - rate(current intensity)
  • timeout value is the current value of the timer
  • start value is the default timeout period, such as 500 ms
  • current intensity is the current intensity, or last measured intensity, of the input
  • rate(current intensity) is the rate function, which maps the current intensity to a rate, one example of which is shown in Figure 5Z
  • timeout event is an event that is delivered to a respective software module, such as contact/motion module 130, or any of applications 136, when the timer "times out” (i.e., when the timeout value reaches or falls below zero).
  • the timeout timer update function is first called when the intensity of the input reaches a predefined intensity threshold, such as the first down-click intensity threshold I D , and thus the timeout value of the timeout timer is initialized to the default timeout period when the intensity of the input reaches the predefined intensity threshold.
  • the amount of time that the timeout timer or counter takes to expire, and then issue a timeout event varies depending on the intensity of the input. Also, in some embodiments, if the intensity of the input satisfies (e.g., reaches or falls below) an up-click intensity threshold, the timeout function terminates, without issuing a timeout event. For example, in some embodiments, the intensity of the input satisfies the up-click intensity threshold if there is liftoff of the contact. In some embodiments, the up-click intensity threshold is a dynamic intensity threshold as described above with reference to Figures 5A- 5N.
  • FIG. 5AA electronic device 100 receives a touch input 535 on home button 204, the touch input having a measured or detected intensity, and displays a user interface on display 112.
  • the displayed user interface is the user interface of an application.
  • Figure 5AA includes a first graph showing the intensity of an input 535 over a period of time, a second graph showing the value of the aforementioned timeout timer over the same period of time, and a third graph showing the timer rate during the same period of time, which is a function of the input intensity.
  • the intensity of input 543 remains constant from time T 1 through time T 2 , as indicated by indicator 583, and at time T 2 the value of the timeout time reaches zero, indicating that the timeout period for detecting a long press has expired, sometimes called detecting a long press.
  • electronic device 100 performs an operation (e.g., transitioning to a user assistance user interface) in accordance with a corresponding determination.
  • the aforementioned determination includes a determination that the intensity of the input did not satisfy up-click detection criteria prior to expiration of the timeout period.
  • the operation performed when a long press is detected includes generating a tactile output 504.
  • tactile output 504 is a tactile output having the FullTap (125Hz) tactile output pattern, Figure 4F).
  • Figure 511 In contrast to Figure 5BB, in Figure 511, electronic device 100 receives a touch input 543 on home button 204, the touch input having a measured or detected intensity, and displays a user interface on display 112 (not shown in Figure 511, but can be seen in Figure 5AA).
  • Figure 511 includes a first graph showing the intensity of an input 543 over a period of time, a second graph showing the value of the aforementioned timeout timer over the same period of time, and a third graph showing the timer rate during the same period of time, which is a function of the input intensity.
  • the intensity of input 543 remains below the first down-click intensity threshold I D , through the time period from time T 1 to time T 6 , as indicated by indicator 587.
  • the timeout timer is initialized to a starting value, such as the default timeout time for detecting a long press.
  • the value of the timeout timer decreases at a default rate. Since, in this example, the intensity of input 535 remains below the first down-click intensity threshold I D during this period of time, the value of the timeout timer decreases at a constant, default rate, and thus expires after a default time period, represented in Figure 511 by the time from T 1 to T 6 .
  • electronic device 100 performs an operation (e.g., transitioning to a user assistance user interface) in accordance with a corresponding determination.
  • the aforementioned determination includes a determination that the intensity of the input did not satisfy up-click detection criteria prior to expiration of the default timeout period.
  • the operation performed when a long press is detected includes generating a tactile output 504.
  • tactile output 504 is a tactile output having the FullTap (125Hz) tactile output pattern, Figure 4F).
  • FIG. 5CC electronic device 100 receives a touch input 537 on home button 204, the touch input having a measured or detected intensity, and displays a user interface on display 112.
  • the displayed user interface is the user interface of an application.
  • Figure 5CC is similar to Figure 5AA, except that the intensity of touch input 537 is higher, or has greater magnitude, than touch input 535 in Figure 5AA.
  • the timer rate in the example shown in Figure 5CC is higher or greater than the timer rate in the example shown in Figure 5 AA, and the value of the timeout timer decreases at a faster rate in Figure 5CC than in Figure 5AA.
  • the intensity of input 537 remains constant from time T 1 through time T 3 , which is before time T 2 , and the value of the timeout timer reaches zero at time T 3 , as indicated by indicator 584, indicating that the timeout period for detecting a long press has expired.
  • the timeout period (T 1 to T 3 ) for detecting a long press is shorter in the example shown in Figures 5CC-5DD than the timeout period (T 1 to T 2 ) in the example shown in Figures 5 AA-5BB, because the intensity of the touch input in the example shown in Figures 5CC-5DD is higher than the example shown in Figures 5AA-5BB, and the corresponding timer rate in the example shown in Figures 5CC-5DD is higher than the example shown in Figures 5AA-5BB.
  • electronic device 100 performs an operation (e.g., transitioning to a user assistance user interface) in accordance with a corresponding determination.
  • the aforementioned determination includes a determination that the intensity of the input did not satisfy up-click detection criteria prior to expiration of the timeout period.
  • Figure 5EE electronic device 100 receives a touch input 539 on home button 204, the touch input having a measured or detected intensity, and displays a user interface on display 112.
  • the displayed user interface is the user interface of an application.
  • Figure 5EE is similar to Figures 5AA and 5CC, except that the intensity of touch input 539 is higher, or has greater magnitude, than touch input 535 in Figure 5AA and touch input 537 in Figure 5CC.
  • the timer rate in the example shown in Figure 5EE is higher or greater than the timer rates in the examples shown in Figures 5AA and 5CC, and the value of the timeout timer decreases at a faster rate in Figure 5EE than in Figures 5AA and 5CC.
  • the intensity of input 539 remains constant from time T 1 through time T 4 , which is before time T 3 and time T 2 , and the value of the timeout timer reaches zero at time T 4 , as indicated by indicator 585, indicating that the timeout period for detecting a long press has expired.
  • the timeout period (T 1 to T 4 ) for detecting a long press is shorter in the example shown in Figures 5EE-5FF than the timeout period (T 1 to T 2 ) in the example shown in Figures 5AA-5BB and the timeout period (T 1 to T 3 ) in the example shown in Figures 5CC-5DD, because the intensity of the touch input in the example shown in Figures 5EE-5FF is higher than the examples shown in Figures 5AA-5BB and 5CC-5DD, and the corresponding timer rate in the example shown in Figures 5EE-5FF is higher than the examples shown in Figures 5AA-5BB and 5CC-5DD.
  • electronic device 100 performs an operation (e.g., transitioning to a user assistance user interface) in accordance with a corresponding determination.
  • the aforementioned determination includes a determination that the intensity of the input did not satisfy up-click detection criteria prior to expiration of the timeout period.
  • FIG. 5GG electronic device 100 receives a touch input 541 on home button 204, the touch input having a measured or detected intensity, and displays a user interface on display 112.
  • the displayed user interface is the user interface of an application.
  • Figure 5GG is similar to Figure 5AA, and touch input 541 has the same or a similar intensity as touch input 535 in Figure 5AA.
  • the timer rate in the example shown in Figure 5GG is the same or similar to the timer rate in the example shown in Figure 5AA, and the value of the timeout timer decreases at the same or a similar rate in Figure 5GG as in Figure 5 AA.
  • the intensity of input 541 varies or changes between time T 1 and time T 5 .
  • the intensity of input 541 at time T 5 is at or approximately at the intensity level associated with a maximum timer rate for the timeout timer. Due to the changes in intensity between time T 1 and time T 5 , the timer rate changes between time T 1 and time T 5 , in accordance with the intensity of input 541, and thus the rate at which the value of the timeout timer decreases changes between time T 1 and time T 5 . In this example, the rate at which the value of the timeout timer decreases accelerates when the intensity of the input increases at time T 33 ⁇ 4 . Alternatively, had the intensity of the input decreased at time T 3b , the rate at which the value of the timeout timer decreases would have decelerated.
  • the value of the timeout timer reaches zero at time T 5 , indicating that the timeout period for detecting a long press has expired.
  • the timeout period in this example is the period for time T 1 to time T 5 .
  • electronic device 100 performs an operation (e.g., transitioning to a user assistance user interface) in accordance with a corresponding determination.
  • the aforementioned determination includes a determination that the intensity of the input did not satisfy up-click detection criteria prior to expiration of the timeout period.
  • Figures 6A-6F are flow diagrams illustrating a method 600 of monitoring an input on an intensity sensitive input element, and detecting an up-click and/or a down-click in the monitored input using one or more intensity thresholds that are based on prior input intensity of the input.
  • Method 600 is performed at an electronic device (e.g., device 300, Figure 3, or portable multifunction device 100, Figure 1 A) with a display, a touch-sensitive surface, and one or more sensors 165 to detect intensity of contacts with the touch- sensitive surface.
  • the electronic device at which method 600 is performed includes, in addition to the touch-sensitive surface, a home button 204 that includes one of sensors 165.
  • home button 204 is separate from the display and, optionally, includes a set of one or more intensity sensors that are separate from intensity sensors used to detect the intensity of inputs on the display.
  • home button 204 is a virtual home button that is displayed on the display (e.g., with a set of one or more intensity sensors that are separate from intensity sensors used to detect the intensity of inputs on the display or, optionally, using intensity sensors integrated into the display to determine an intensity of an input with the virtual home button).
  • the display is a touch-screen display and the touch-sensitive surface is on or integrated with the display. In some embodiments, the display is separate from the touch- sensitive surface.
  • method 600 provides a way to accurately determine user intent, with respect to whether a touch input includes an up-click or down-click, by taking into account the intensity of the user's input during a portion of the input immediately preceding a decrease in intensity, or immediately preceding an increase in intensity.
  • Method 600 reduces "false positives,” such as inputs incorrectly detected as including an up-click or down-click, as well as “false negatives,” such as inputs incorrectly detected as not including a respective up-click or down-click, thereby creating a more efficient human-machine interface.
  • a user taking into account the priority intensity of a user's touch input enables a user to enter gestures, such as one or more of a single click, double click and triple click gesture, faster and more efficiently, which conserves power and increases the time between battery charges.
  • the device detects (602) a first increase in intensity of an input on the input element that meets down-click detection criteria, and after detecting the first increase in intensity of the input on the input element, detects (608) a first decrease in intensity of the contact.
  • a touch input 505 on home button 204 has an intensity that changes over time, including a first increase in intensity 520, sometimes called a first down-click, reaching a peak intensity, Ip eak, that is above a first down-click intensity threshold I D .
  • the intensity of the touch input on home button 204 decreases, and the electronic device detects a first decrease in intensity of the contact 522, sometimes called a first up-click.
  • the input on the input element comprises (604) an input on a touch-sensitive surface.
  • the input on the input element is an input 505 on home button 204.
  • the down-click detection criteria require (606) that the intensity of the input increase above a first down-click intensity threshold, such as first down-click intensity threshold I D shown in Figures 5B and 5C, in order for the down-click detection criteria to be met.
  • the down-click intensity threshold is a fixed, predefined value, and thus is neither time-varying nor based on the intensity of the input immediately prior to the detecting the first increase in intensity of the input (602).
  • method 600 includes determining (612) whether the first decrease in intensity of the input meets up-click detection criteria, where (A) for the first decrease in intensity, the up-click detection criteria require that the intensity of the input decrease below a first up-click intensity threshold (e.g., threshold Iu, Figure 5C) in order for the up-click detection criteria to be met, and (B) the first up-click intensity threshold (e.g., threshold Iu, Figure 5C) is selected based on the intensity of the input during the increase in intensity (e.g., first increase, 520, Figures 5B-5C) of the contact that was detected prior to detecting the first decrease in intensity of the input.
  • a first up-click intensity threshold e.g., threshold Iu, Figure 5C
  • the first up-click intensity threshold is based on either a peak intensity, Ip eak (see Figure 5C), of the input prior to the first decrease 522, or another characteristic intensity or representative intensity of the input.
  • the peak intensity, or characteristic intensity or representative intensity is multiplied by a multiplier, such as a value between 0.6 and 0.75, to determine the first up-click intensity threshold.
  • the first up-click intensity threshold is time varying
  • Figure 5K illustrates the determination of an up-click intensity threshold Iu( t ) 546 that dynamically changes as intensity of the input changes during a first decrease in intensity 542.
  • the intensity of the input is low pass filtered, producing a first time varying value I LPU P 544.
  • the first time varying value is then multiplied by either a fixed value, such as 0.7, or an intensity -based value, such as the ratio shown in Figure 5J, to produce a time varying up-click intensity threshold Iu (t) , where the "(t)" symbol indicates that the value is time varying.
  • a ratio of the up-click intensity threshold Iu to an intensity value that represents the intensity of the contact changes (642) based on the intensity value that represents the intensity of the contact (e.g., the low-pass filtered peak intensity value of the input) such that when the up- click intensity is based on a first intensity value (e.g., intensity I DI , Figure 5J) that represents the intensity of the contact, the ratio of the up-click intensity threshold to the first intensity value has a first value (e.g., a 2 , Figure 5J); and when the up-click intensity is based on a second intensity value (e.g., intensity I D2 , Figure 5 J) that represents the intensity of the contact that is greater than the first intensity value, the ratio of the up-click intensity threshold to the second intensity value has a second value (e.g., al) that is different from (e.g., lower than or higher than) the first value (e.g.,
  • the magnitude of the up-click intensity threshold is set (644) by multiplying the intensity value that represents the intensity of the contact (e.g., the peak intensity of the contact before detecting the decrease in the intensity of the contact, or the low-pass filtered current intensity of the contact) by an adjustment value (e.g., a value between 0 and 1) that is determined based at least in part on the magnitude of the intensity value that represents the intensity of the contact (e.g., the peak intensity of the contact before detecting the decrease in the intensity of the contact, or the low-pass filtered current intensity of the contact).
  • an adjustment value e.g., a value between 0 and 1
  • the ratio of the up-click intensity threshold to an intensity value that represents the intensity of the contact changes (646) in accordance with a maximum characteristic intensity of the input.
  • the multiplier changes from a predefined maximum value when the detected intensity is below a first intensity value, e.g., 300g, and to a predefined minimum value for when the detected intensity is above a second intensity value, e.g., 500g.
  • the ratio of the up-click intensity threshold to an intensity value that represents the intensity of the contact varies smoothly (648) from a predefined maximum value to a predefined minimum value as the intensity value that represents the intensity of the contact varies between the first intensity value and the second intensity value, where the first intensity value is less than the second intensity value.
  • "varying smoothly" means that the ratio changes from the predefined maximum value to the predefined minimum value in two or more steps, or three or more steps, as the intensity value that represents the intensity of the contact varies between the first intensity value and the second intensity value.
  • the ratio of the up-click intensity threshold to an intensity value that represents the intensity of the contact varies monotonically from a predefined maximum value to a predefined minimum value as the intensity value that represents the intensity of the contact varies between the first intensity value and the second intensity value.
  • the up-click intensity threshold is no less than a predefined minimum up-click intensity threshold (649). For example, while the
  • the up-click intensity threshold is set to the greater of the predefined minimum up-click intensity threshold (e.g., 130g) and the up-click intensity threshold determined using the ratio or multiplier.
  • the imposition of a predefined minimum up-click intensity threshold may be represented as:
  • IT m in is the predefined minimum up-click intensity threshold
  • I re presentative is the intensity value that represents the intensity of the contact
  • is the aforementioned ratio or multiplier
  • the up-click intensity threshold is determined in accordance with a multiplier (634), having a value greater than zero and less than one, applied to a characteristic intensity of the input.
  • the multiplier is, effectively, the aforementioned ratio, and is multiplied by the intensity value that represents the intensity of the contact.
  • the intensity value that represents the intensity of the contact is, in some embodiments, the peak intensity before an up-click, or the lowest intensity immediately preceding a down- click.
  • the intensity value that represents the intensity of the contact is a low-pass filtered intensity value for a respective portion of the input, as shown in Figure 5L for second down-click) and as shown in Figures 5K and 5N for a first or second up-click.
  • the multiplier changes (636) in accordance with the characteristic intensity of the input. For example, in some embodiments, the multiplier smoothly varies (638) from a predefined maximum value to a predefined minimum value as the characteristic intensity of the input varies between a first intensity value and a second intensity value, where the first intensity value is less than the second intensity value. In some embodiments, "varying smoothly" means that the multiplier changes from the predefined maximum value to the predefined minimum value in two or more steps, or three or more steps, as the intensity value that represents the intensity of the contact varies between the first intensity value and the second intensity value.
  • the multiplier changes from a predefined maximum value when the detected intensity is below a first intensity value, e.g., 300g, and to a predefined minimum value for when the detected intensity is above a second intensity value, e.g., 500g. More generally, the multiplier varies monotonically from a predefined maximum value to a predefined minimum value as the intensity value that represents the intensity of the contact varies between the first intensity value and the second intensity value.
  • the up-click intensity threshold is the greater of a predefined minimum up-click intensity threshold and a value determined in accordance with the multiplier (e.g., a value greater than zero and less than one), applied to a characteristic intensity of the input (640).
  • the imposition of a predefined minimum up- click intensity threshold may be represented as:
  • IT m in is the predefined minimum up-click intensity threshold
  • I C ha r is the characteristic intensity of the contact
  • is the aforementioned multiplier
  • the electronic device provides first feedback indicating that the first decrease in intensity of the input was recognized as an up-click, and in accordance with a determination (616) that the decrease in intensity of the input does not meet the up-click detection criteria, the electronic device forgoes providing the first feedback.
  • the device when decrease 522 in intensity of the input meets up-click detection criteria (indicated by indicator 512), the device provides tactile output 502 to indicate that decrease 522 in intensity of the input was recognized as an up- click, and as illustrated in Figure 5F, when decrease 530 in intensity of the input does not meet the up-click detection criteria, the electronic device does not generate a tactile output (e.g., tactile output 502) that indicates recognition of a decrease (e.g., decrease 530) in intensity of the input as an up-click.
  • a tactile output e.g., tactile output 502
  • the electronic device detects (614) a second increase in intensity of the input.
  • a second increase in intensity is detected are discussed above with reference to Figures 5D-5E, 5G-5I, and 5L-5N.
  • the electronic device In response to detecting the second increase in intensity of the input (620), in accordance with a determination that the second increase in intensity of the input meets the down-click detection criteria, the electronic device provides second feedback indicating that the second increase in intensity was recognized as part of a double-click input. For example, as discussed above with reference to Figure 5G, a second tactile output 503 is generated in conjunction with detecting the up-click of a second click of an input 511 on home button 204. For example, in some embodiments, the second (down-click) tactile output is generated with the one or more tactile output generators 167 ( Figure 1 A) of the electronic device.
  • providing the second feedback includes generating an audio output with one or more speakers (e.g., speaker 1 1 1, Figure 1 A), and/or displaying a change in the graphical user interface displayed on the electronic device's display (e.g., display 1 12, Figures 5G, 5H) in accordance with a double click operation, such as displaying a multitasking user interface, as shown in Figure 5H.
  • speakers e.g., speaker 1 1 1, Figure 1 A
  • a change in the graphical user interface displayed on the electronic device's display e.g., display 1 12, Figures 5G, 5H
  • a double click operation such as displaying a multitasking user interface, as shown in Figure 5H.
  • the intensity of the input increase above a second down-click intensity threshold e.g., intensity threshold ID 2 , Figure 5G
  • the second down-click intensity threshold for the second increase in intensity is selected (624) based on the intensity of the input during the first decrease in intensity of the contact.
  • the second down-click intensity threshold for the second increase in intensity is selected based on the lowest intensity, Ivaiiey, of the input during the first decrease 534 in intensity of the contact.
  • the second down-click intensity threshold is time varying, and the second down-click intensity threshold is selected (626) based on a low pass filtering of the detected intensity of the input during the second increase in intensity of the contact that is detected after the first decrease in intensity of the input. For example, the decrease in intensity of the input meets the up-click detection criteria.
  • Figure 5L shows an example of a time varying second down-click intensity threshold, ID ( D 554, that is selected or determined based on a low pass filtering (iLPdown 552) of the detected intensity of the input during the second increase 550 in intensity of the contact.
  • the low pass filtered intensity (ILPdown 552) of the detected intensity of the input during the second increase 550 in intensity of the contact is initially set, at the start of the second increase 550 in intensity of the contact, to the lowest intensity, Ivaiiey, of the input during the first decrease 534 in intensity of the contact.
  • the electronic device In response to detecting the second increase in intensity of the input (620), in in accordance with a determination (628) that the second increase in intensity of the input does not meet the down-click detection criteria, the electronic device forgoes providing the second feedback. For example, in Figure 5G, if the input were to stop (e.g., if the contact were to lift off) prior to the intensity reaching the second down-click intensity threshold I D2 , the second increase in intensity of the input would not meet the down-click detection criteria, and the electronic device would forgo providing the second feedback.
  • method 600 includes generating (650) a first tactile output in conjunction with detecting that the increase in intensity of the input meets the down-click detection criteria.
  • a first tactile output 502 is generated in conjunction with detecting a down-click during a decrease in intensity 522 of an input 505 on home button 204.
  • method 600 includes generating (652) a second tactile output in conjunction with detecting that the decrease in intensity of the input meets the up- click detection criteria. For example, as discussed above with reference to Figure 5G, a second tactile output 503 is generated in conjunction with detecting the up-click of a second click of an input 511 on home button 204.
  • method 600 includes generating (654), in response to detecting the increase in intensity of the input on the input element that meets the down-click detection criteria, a response that is displayed on the display of the electronic device.
  • the response that is displayed is response to that visually distinguishes an object in the user interface or a region of the user interface whose position corresponds to the input.
  • providing the first feedback includes generating (656) a response that is displayed on the display of the electronic device.
  • the response which may be called a first click or single click response, switching from displaying the user interface of a first application (e.g., a timer application) to displaying an application launch user interface.
  • a first application e.g., a timer application
  • method 600 includes generating (658) a same first tactile output in conjunction with multiple instances of detecting that the increase in intensity of an input detected on the input element meets the down-click detection criteria, including instances in which the down-click detection criteria is associated with different down-click intensity thresholds. For example, even when a first down-click and a second down-click are detected at different intensity thresholds, the same tactile output (e.g., a tactile output having the MicroTap (270Hz) tactile output pattern, Figure 4F) is generated for both the first down- click and the second down-click.
  • a tactile output e.g., a tactile output having the MicroTap (270Hz) tactile output pattern, Figure 4F
  • method 600 includes generating (660) a same second tactile output in conjunction with multiple instances of detecting that the decrease in intensity of an input detected on the input element meets the up-click detection criteria, including instances in which the up-click detection criteria is associated with different up-click intensity thresholds. For example, even when a first up-click and a second up-click are detected at different intensity thresholds, the same tactile output (e.g., a tactile output having the MiniTap (270Hz) tactile output pattern, Figure 4F) is generated for both the first up-click and the second up-click.
  • the up-click tactile output pattern has a lower gain than the down-click tactile output pattern (e.g., the up-click tactile output pattern is a reduced amplitude version of the down-click tactile output pattern).
  • method 600 includes, after detecting the second increase in intensity of the input on the input element (e.g., increase 536 in intensity of input 513, Figure 5H), detecting (662) a second decrease in intensity of the contact (e.g., decrease 538 in intensity of input 513, Figure 5H), and providing third feedback (e.g., performing a double click operation, an example of which is described above with reference to Figure 5H) indicating that the second decrease in intensity was recognized as an up-click input in response to detecting the second decrease in intensity of the input.
  • third feedback e.g., performing a double click operation, an example of which is described above with reference to Figure 5H
  • the up-click detection criteria require that the intensity of the input decrease below a second up-click intensity threshold in order for the up-click detection criteria to be met; and the second up-click intensity threshold is selected based on the intensity of the input during the second increase in intensity of the contact. Furthermore, in accordance with a determination that the second decrease in intensity of the input does not meet the up-click detection criteria, the electronic device forgoes providing the third feedback (e.g., by forgoing performance of a double click operation).
  • the third feedback is generated, or initiated, at or immediately following the time, indicated by indicator 522 in Figure 5H, at which the second decrease in intensity satisfies the up-click detection criteria.
  • the third feedback is or includes transitioning to a multitasking user interface, as shown in Figure 5H.
  • the third feedback is or includes generating a tactile output 503, as shown in Figure 5H.
  • tactile output 503 is a tactile output having the MiniTap (270Hz) tactile output pattern, Figure 4F).
  • Figures 6A-6F have been described is merely an example and is not intended to indicate that the described order is the only order in which the operations could be performed.
  • One of ordinary skill in the art would recognize various ways to reorder the operations described herein. Additionally, it should be noted that details of other processes described herein with respect to other methods described herein (e.g., methods 700 and 800) are also applicable in an analogous manner to method 600 described above with respect to Figures 6A-6F.
  • method 600 of monitoring an input on an intensity sensitive input element, and detecting an up-click and/or a down-click in the monitored input using one or more intensity thresholds that are based on prior input intensity of the input optionally has one or more of the characteristics of the method of accelerated detection of single clicks described herein with reference to method 700, and/or the method of accelerated detection of long press inputs described herein with reference to method 800. For brevity, these details are not repeated here.
  • Figure 9 shows a functional block diagram of an electronic device 900 configured in accordance with the principles of the various described embodiments.
  • the functional blocks of the device are, optionally, implemented by hardware, software, or a combination of hardware and software to carry out the principles of the various described embodiments. It is understood by persons of skill in the art that the functional blocks described in Figure 9 are, optionally, combined or separated into sub-blocks to implement the principles of the various described embodiments. Therefore, the description herein optionally supports any possible combination or separation or further definition of the functional blocks described herein.
  • an electronic device 900 includes a display unit 902
  • electronic device 900 also includes touch-sensitive surface unit 906 for receiving touch inputs on a surface, such as a display surface of display unit 902, and one or more tactile output units 908 for generating tactile outputs, also coupled to processing unit 910.
  • processing unit 910 includes one or more of the following sub-units: intensity monitoring unit 912, up-click determining unit 914, down-click determining unit 916, and feedback unit 918.
  • feedback unit 918 includes response display unit 920 and tactile output unit 922.
  • Processing unit 910 is configured to: detect (e.g., using intensity monitoring unit 912) a first increase in intensity of an input on the input element that meets down-click detection criteria, and after detecting the first increase in intensity of the input on the input element, detect a first decrease in intensity of the contact.
  • processing unit 910 determines (e.g., using up-click determining unit) whether the first decrease in intensity of the input meets up-click detection criteria, wherein for the first decrease in intensity, the up-click detection criteria require that the intensity of the input decrease below a first up-click intensity threshold in order for the up-click detection criteria to be met, and the first up-click intensity threshold is selected based on the intensity of the input during the increase in intensity of the contact that was detected prior to detecting the first decrease in intensity of the input.
  • Processing unit 910 in accordance with a determination that the first decrease in intensity of the input meets up-click detection criteria, provides first feedback (e.g., using feedback unit 918) indicating that the first decrease in intensity of the input was recognized as an up-click, and in accordance with a determination that the decrease in intensity of the input does not meet the up-click detection criteria, forgoes providing the first feedback.
  • first feedback e.g., using feedback unit 918
  • processing unit 910 is further configured to, after determining that the first decrease in intensity meets the up-click detection criteria, detect (e.g., using intensity monitoring unit 912) a second increase in intensity of the input; and in response to detecting the second increase in intensity of the input, in accordance with a determination (e.g., using down-click determining unit 916)) that the second increase in intensity of the input meets the down-click detection criteria, provide second feedback (e.g., using feedback unit 918) indicating that the second increase in intensity was recognized as part of a double-click input.
  • detect e.g., using intensity monitoring unit 912
  • second feedback e.g., using feedback unit 918
  • the down-click detection criteria require that the intensity of the input increase above a second down-click intensity threshold in order for the down- click detection criteria to be met.
  • the second down-click intensity threshold for the second increase in intensity is selected based on the intensity of the input during the first decrease in intensity of the contact, and in accordance with a determination (e.g., using down-click determining unit 916) that the second increase in intensity of the input does not meet the down-click detection criteria, processing unit 910 forgoes providing the second feedback.
  • the second down-click intensity threshold is time varying, and the second down-click intensity threshold is selected by processing unit 912 (e.g., using down-click determining unit 916) based on a low pass filtering of the detected intensity of the input during the second increase in intensity of the contact that is detected after the first decrease in intensity of the input.
  • the down-click detection criteria require that the intensity of the input increase above a first down-click intensity threshold in order for the down-click detection criteria to be met.
  • the input on the intensity sensitive input unit 904 comprises an input on a touch-sensitive surface.
  • the first up-click intensity threshold is time varying, in accordance with a low pass filtering of the detected intensity of the input during the first decrease in intensity of the contact.
  • a ratio of the up-click intensity threshold to an intensity value that represents the intensity of the contact changes based on the intensity value that represents the intensity of the contact such that, when the up-click intensity is based on a first intensity value that represents the intensity of the contact, the ratio of the up-click intensity threshold to the first intensity value has a first value; and when the up-click intensity is based on a second intensity value that represents the intensity of the contact that is greater than the first intensity value, the ratio of the up-click intensity threshold to the second intensity value has a second value that is different from the first value.
  • the magnitude of the up-click intensity threshold is set
  • the ratio of the up-click intensity threshold to an intensity value that represents the intensity of the contact changes in accordance with a maximum characteristic intensity of the input. In some embodiments, the ratio of the up-click intensity threshold to an intensity value that represents the intensity of the contact varies smoothly from a predefined maximum value to a predefined minimum value as the intensity value that represents the intensity of the contact varies between the first intensity value and the second intensity value, wherein the first intensity value is less than the second intensity value.
  • the up-click intensity threshold is no less than a predefined minimum up-click intensity threshold.
  • the up-click intensity threshold is determined (e.g., by processing unit 910 or up-click determining unit 914) in accordance with a multiplier, having a value greater than zero and less than one, applied to a characteristic intensity of the input.
  • the multiplier changes in accordance with the characteristic intensity of the input.
  • the multiplier smoothly varies from a predefined maximum value to a predefined minimum value as the characteristic intensity of the input varies between a first intensity value and a second intensity value, wherein the first intensity value is less than the second intensity value.
  • the up-click intensity threshold is the greater of a predefined minimum up-click intensity threshold and a value determined in accordance with a multiplier, having a value greater than zero and less than one, applied to a characteristic intensity of the input.
  • processing unit 910 is further configured to generate
  • a first tactile output in conjunction with detecting that the increase in intensity of the input meets the down-click detection criteria.
  • processing unit 910 is further configured to generate
  • a second tactile output in conjunction with detecting that the decrease in intensity of the input meets the up-click detection criteria.
  • the processing unit is further configured to generate, in response to detecting the increase in intensity of the input on the input element that meets the down-click detection criteria, a response (e.g., using response display unit 920 of feedback unit 918) that is displayed by display unit 902 of the electronic device.
  • providing the first feedback includes generating a response (e.g., using response display unit 920 of feedback unit 918) that is displayed by display unit 902 of the electronic device.
  • the processing unit is further configured to generate a same first tactile output in conjunction with multiple instances of detecting that the increase in intensity of an input detected on the input element meets the down-click detection criteria, including instances in which the down-click detection criteria is associated with different down-click intensity thresholds.
  • the processing unit is further configured to, after detecting the second increase in intensity of the input on the input element, detect a second decrease in intensity of the contact; and, in response to detecting the second decrease in intensity of the input, in accordance with a determination that the second decrease in intensity of the input meets the up-click detection criteria, provide third feedback indicating that the second decrease in intensity was recognized as an up-click input.
  • the up-click detection criteria require that the intensity of the input decrease below a second up-click intensity threshold in order for the up-click detection criteria to be met; and the second up-click intensity threshold is selected based on the intensity of the input during the second increase in intensity of the contact.
  • the processing unit is configured, in accordance with a determination (e.g., by up-click determining unit 914) that the second decrease in intensity of the input does not meet the up-click detection criteria, to forgo providing the third feedback.
  • the processing unit is further configured to generate
  • a same second tactile output in conjunction with multiple instances of detecting that the decrease in intensity of an input detected on the input element meets the up-click detection criteria, including instances in which the up-click detection criteria is associated with different up-click intensity thresholds.
  • detection operations 602, 608, 614, etc., and determine operations 612, etc. are, optionally, implemented by contact/motion module 130, and feedback operations that provide tactile outputs are implemented by haptic feedback module 133, while some other operations are, optionally, implemented by event sorter 170, event recognizer 180, and event handler 190.
  • Event monitor 171 in event sorter 170 detects a contact on touch-sensitive display 112, and event dispatcher module 174 delivers the event information to application 136-1.
  • a respective event recognizer 180 of application 136-1 compares the event information to respective event definitions 186, and determines whether a first contact at a first location on the touch-sensitive surface (or whether rotation of the device) corresponds to a predefined event or sub-event, such as selection of an object on a user interface, or rotation of the device from one orientation to another.
  • event recognizer 180 activates an event handler 190 associated with the detection of the event or sub-event.
  • Event handler 190 optionally uses or calls data updater 176 or object updater 177 to update the application internal state 192.
  • event handler 190 accesses a respective GUI updater 178 to update what is displayed by the application.
  • Figures 7A-7E are flow diagrams illustrating a method 700 of monitoring an input on an intensity sensitive input element, and detecting whether the input is a single click or double click.
  • Method 700 is performed at an electronic device (e.g., device 300, Figure 3, or portable multifunction device 100, Figure 1 A) with a display, a touch-sensitive surface, and one or more sensors 165 to detect intensity of contacts with the touch-sensitive surface.
  • the electronic device at which method 700 is performed includes, in addition to the touch-sensitive surface, a home button 204 that includes one of sensors 165.
  • home button 204 is separate from the display and, optionally, includes a set of one or more intensity sensors that are separate from intensity sensors used to detect the intensity of inputs on the display.
  • home button 204 is a virtual home button that is displayed on the display (e.g., with a set of one or more intensity sensors that are separate from intensity sensors used to detect the intensity of inputs on the display or, optionally, using intensity sensors integrated into the display to determine an intensity of an input with the virtual home button).
  • the display is a touch-screen display and the touch-sensitive surface is on or integrated with the display. In some embodiments, the display is separate from the touch-sensitive surface.
  • method 700 provides a way to accurately determine user intent, with respect to whether a touch input is a single click or double click, on an accelerated basis, by taking into account the intensity of the user's input during a portion of the input immediately following recognition of a first event (e.g., that a first decrease in intensity of the input has fallen below an up-click intensity threshold).
  • Method 700 reduces latency, by recognizing single click inputs faster than would otherwise be possible, while avoiding "false positives," such as inputs incorrectly detected as a single click, thereby creating a more efficient human-machine interface.
  • the device detects (702) a change in intensity of an input on an input element
  • the input on the input element is or includes an input on a touch-sensitive surface (704), such as surface of home button 204 ( Figure 50) or a touch- sensitive surface of the electronic device's touch- sensitive display 112.
  • detecting a change in intensity of the input on the input element includes continuously detecting (706) the input on the input element.
  • Method 700 further includes recognizing (708) at least a portion of the change in intensity of the input as a first input event that is associated with a first operation.
  • the first input event is sometimes called a click or first click. An example is described above with reference to Figure 50.
  • method 700 After recognizing the first input event, method 700 includes delaying (710) performance of the first operation while monitoring subsequent changes in intensity of the input for a second input event, wherein the delay is limited by a default delay time period.
  • performance of the first operation such as changing the displayed user interface from an application user interface currently display to home screen or application launching user interface, is delayed or deferred while the device continues to monitor changes in intensity of the input.
  • the monitoring of changes in the intensity of the input stops, and therefore performance of the first operation is not deferred after liftoff of the is detected.
  • Method 700 further includes, after delaying performance of the first operation
  • Method 700 further includes, after delaying performance of the first operation
  • Method 700 further includes, after delaying performance of the first operation
  • the early-confirmation criteria (used in operation 716, described above) for the first input event comprise criteria that the intensity of the input remains below a confirmation intensity threshold for more than an early confirmation time threshold (720).
  • the early-confirmation criteria for the first input event comprise criteria that the intensity of the input remains below confirmation intensity threshold IA, which is lower than the up-click intensity threshold Iu, for more than an early confirmation time threshold, which corresponds to the length of time between T 2 and T 3 in Figures 5Q and 5R.
  • the default delay time period is shown in Figure 5S, as corresponding to the length of time between Ti (down-click detection) and T 4 , or
  • the early confirmation time threshold is less than half the default delay time period (722).
  • the default delay time period is 500 ms
  • the early confirmation time threshold is 150 ms, or 200 ms, or a value between 150 ms and 240 ms.
  • the confirmation intensity threshold e.g., confirmation intensity threshold IA in Figures 50-5Y
  • the up-click intensity threshold e.g., up- click intensity threshold Iu in Figures 50-5Y
  • the confirmation intensity threshold is 150g while the up-click intensity threshold is 200g.
  • the confirmation intensity threshold is less than 150g while the up-click intensity threshold is more than 150g.
  • the up-click intensity threshold is determined (726) in accordance with a characteristic intensity of the input during the detected increase in intensity of the input in which the input reached a peak intensity prior to detecting the decrease in intensity of the input on the input element. Examples of up-click intensity thresholds that are determined in this manner, sometimes called time-varying intensity thresholds, are discussed above with reference to Figures 5K and 5M. Figures 5K and 5M show examples in which the up-click intensity threshold is determined using a low pass filtered intensity of the contact.
  • method 700 includes monitoring a duration of a fast timeout period, starting when the intensity of the input decreases below the confirmation intensity threshold (728). This is shown, for example in Figures 5Q, 5R and 5T-5V, with the monitoring of the fast timeout period starting at time T 2 , which is when the intensity of the input decreases below the confirmation intensity threshold IA in those examples.
  • the duration of the fast timeout period is a cumulative amount of time, after the fast timeout period starts, that the intensity of the input is below the confirmation intensity threshold (730). Measurement of the duration of the fast timeout period as a cumulative amount of time, after the fast timeout period starts, that the intensity of the input is below the confirmation intensity threshold is discussed in more detail above with reference to Figures 5T-5V.
  • method 700 includes determining (732) the
  • confirmation intensity threshold (e.g., threshold IA in Figures 50-5Y) in accordance with a peak characteristic intensity of the input (e.g., Ip eak , Figure 50) detected during the detected increase in intensity of the input, prior to detecting the decrease in intensity of the input on the input element. Further explanation and examples of how the confirmation intensity threshold is determine are provided above with respect to Figure 50.
  • the confirmation intensity threshold is independent of a peak characteristic intensity of the input detected during the detected increase in intensity of the input (734).
  • the confirmation intensity threshold is set to a fixed intensity threshold, such as lOOg or 150g, independent of the peak characteristic intensity of the input detected during the detected increase in intensity of the input.
  • method 700 includes monitoring (736) a duration of the default timeout period starting when the intensity of the input increases to a down-click intensity threshold. In some other embodiments, method 700 includes monitoring (738) a duration of the default timeout period starting when the intensity of the input decreases to an up-click intensity threshold. Both of these options for monitoring the duration of the default timeout period are described above with reference to Figure 5S. In Figure 5S, time Ti is the time at which the intensity of the input has increased to the down-click intensity threshold I D , while time T 2 A is the time at which the intensity of the input has decreased to the up-click intensity threshold Iu-
  • method 700 includes, after delaying performance of the first operation, in accordance with a determination that a second input event has been recognized after the default delay time period has elapsed, performing (739) a third operation.
  • a third operation For example, referring to Figure 5S, after the default time period has expired, at time T 4 , if a second input event is recognized, it would be treated as a separate event, such as a separate single click, and the third operation would correspond to the operation to be performed by the electronic device in response to a single client.
  • Figure 5R shows a similar example.
  • the input includes a single click after the early-confirmation criteria are satisfied at time T 3 .
  • the resulting third operation is scrolling from one screen of icons in an application launching user interface, including a first set of application launch icons, to another screen of icons in the application launch user interface.
  • method 700 includes detecting (741) a sequence of distinct inputs on the input element, separated by periods during which no input is detected on the input element, and repeating the recognizing and delaying with respect to a plurality of the inputs in the sequence of distinct inputs.
  • the device may detect a touchdown of a first input (e.g., touch input 505, Figures 5B-5C) on the input element followed by liftoff of the first input and touchdown of a second input (e.g., touch input 507, Figure 5E) on the input element.
  • a first input e.g., touch input 505, Figures 5B-5C
  • a second input e.g., touch input 507, Figure 5E
  • method 700 includes, after delaying performance of the first operation, in accordance with a determination that the first input event meets (740) long press input criteria before the second input event has been recognized, performing a third operation and forgoing performance of the first operation and the second operation.
  • the first input event may be a down-click, and the third operation in this
  • circumstance may be a long press operation, such as invoking a virtual assistant or a dictation mode of operation.
  • Recognition of long press inputs and responding to long press inputs are discussed in more detail with respect to Figures 5Z to 511 and Figures 8A-8C.
  • method 700 includes generating (742) a first tactile output (e.g., first tactile output 502, Figure 50) in conjunction with recognizing the first input event (e.g., recognizing a down-click at time Ti, or recognizing an up-click at time T 2a ,
  • a first tactile output e.g., first tactile output 502, Figure 50
  • recognizing the first input event e.g., recognizing a down-click at time Ti, or recognizing an up-click at time T 2a
  • method 700 includes generating (744) a second tactile output in conjunction with recognizing the second input event, as described above with reference to Figure 5W.
  • the first operation is or includes (746) ceasing to display a user interface for an application (and, optionally returning to displaying a home screen or application launch screen for the device), for example as shown in the transition for Figure 50 to 5Q
  • the second operation comprises a multitasking operation (e.g., switching between applications or displaying a user interface that provides options for switching between a plurality of different applications such as concurrently open applications or recently used applications, as shown in Figure 5W).
  • the first operation is or includes (748) scrolling from one screen of icons in an application launching user interface (e.g., an application launching user interface including a first set of application launch icons), to another screen of icons in the application launch user interface (e.g., including a second set of application launch icons that include application launch icons not in the first set of application launch icons), as shown in the transition from Figure 5Q to 5R, and the second operation comprises a multitasking operation (e.g., switching between applications or displaying a user interface that provides options for switching between a plurality of different applications such as concurrently open applications or recently used applications, as shown in Figure 5W).
  • a multitasking operation e.g., switching between applications or displaying a user interface that provides options for switching between a plurality of different applications such as concurrently open applications or recently used applications, as shown in Figure 5W).
  • recognition of the first input event is based on detection of a change in a characteristic intensity of an input with reference to a first intensity threshold (e.g., an up-click intensity threshold); and recognition of the second input event is based on detection of a change in a characteristic intensity of an input with reference to a second intensity threshold (e.g., a down-click intensity threshold) that is different from the first intensity threshold.
  • a first intensity threshold e.g., an up-click intensity threshold
  • recognition of the second input event is based on detection of a change in a characteristic intensity of an input with reference to a second intensity threshold (e.g., a down-click intensity threshold) that is different from the first intensity threshold.
  • the up-click intensity threshold Iu used for recognition of the first event, is distinct from (e.g., lower than) the down-click intensity threshold I D , used for recognition of the second event.
  • method 700 includes, after recognizing the second input event (e.g., a second up-click event, corresponding to indicator 522 in Figure 5Y), delaying (760) performance of the second operation while monitoring subsequent changes in intensity of the input for a third input event (e.g., a third down-click, sometimes called a triple click event, corresponding to indicator 579), where the delay is limited by a second default delay time period.
  • the second input event e.g., a second up-click event, corresponding to indicator 522 in Figure 5Y
  • delaying (760) performance of the second operation while monitoring subsequent changes in intensity of the input for a third input event (e.g., a third down-click, sometimes called a triple click event, corresponding to indicator 579), where the delay is limited by a second default delay time period.
  • Method 700 further includes, after delaying (762) performance of the second operation, in accordance with a determination that the third input event has been recognized (e.g., corresponding to indicator 579, Figure 5Y) before the second default delay time period has elapsed, performing (764) a third operation (e.g., a triple click operation) and forgoing performance of the second operation (e.g., a double click operation).
  • a third operation e.g., a triple click operation
  • forgoing performance of the second operation e.g., a double click operation.
  • method 700 includes, in accordance with a determination that early-confirmation criteria for the second input event have been met before the second default delay time period has elapsed (e.g., as indicated by indictor 577, Figure 5Y) without the third input event being recognized, performing (766) the second operation (e.g., the double click operation) before the second default delay time period has elapsed.
  • the second operation e.g., the double click operation
  • method 700 includes, in accordance with a determination that the second default delay time period has elapsed without the early-confirmation criteria for the second input event being met (e.g., as indicated by indictor 578, Figure 5Y) and without the third input event being recognized, performing (768) the second operation (e.g., the double click operation) once the second default delay time period has elapsed.
  • the second default delay time period is the same as the first default delay time period. In some other embodiments, the second default delay time period is longer or shorter than the first default delay time period.
  • Figure 10 shows a functional block diagram of an electronic device 1000 configured in accordance with the principles of the various described embodiments.
  • the functional blocks of the device are, optionally, implemented by hardware, software, or a combination of hardware and software to carry out the principles of the various described embodiments. It is understood by persons of skill in the art that the functional blocks described in Figure 10 are, optionally, combined or separated into sub-blocks to implement the principles of the various described embodiments. Therefore, the description herein optionally supports any possible combination or separation or further definition of the functional blocks described herein.
  • an electronic device 1000 includes a display unit 1002
  • electronic device 1000 also includes touch-sensitive surface unit 1006 for receiving touch inputs on a surface, such as a display surface of display unit 1002, and one or more tactile output units 1008 for generating tactile outputs, also coupled to processing unit 1010.
  • processing unit 1010 includes one or more of the following sub-units: intensity monitoring unit 1012, single-click determining unit 1014, double-click determining unit 1016, feedback unit 1018 and delay unit 1024.
  • single-click determining unit 1014 includes early confirmation unit 1015.
  • feedback unit 1018 includes response display unit 1020 and tactile output unit 1022.
  • Processing unit 1010 is configured to: detect (e.g., using intensity monitoring unit 912) a change in intensity of an input on the intensity sensitive input unit that includes detecting an increase in intensity of the input on the intensity sensitive input unit followed by a decrease in intensity of the input on the intensity sensitive input unit; recognize (e.g., using single-click determining unit 1014) at least a portion of the change in intensity of the input as a first input event that is associated with a first operation; and delay performance of the first operation (e.g., using delay unit 1024), after recognizing the first input event, while monitoring subsequent changes in intensity of the input for a second input event, wherein the delay is limited by a default delay time period.
  • detect e.g., using intensity monitoring unit 912
  • a change in intensity of an input on the intensity sensitive input unit that includes detecting an increase in intensity of the input on the intensity sensitive input unit followed by a decrease in intensity of the input on the intensity sensitive input unit
  • recognize e.g., using single-click determining unit 101
  • Processing unit 1010 is further configured to, after delaying performance of the first operation: in accordance with a determination that the second input event has been recognized (e.g., using double-click determining unit 1016) before the default delay time period has elapsed, perform a second operation and forgoing performance of the first operation; in accordance with a determination that early-confirmation criteria for the first input event have been met (e.g., using early confirmation unit 1014) before the default delay time period has elapsed without the second input event being recognized, perform the first operation before the default delay time period has elapsed; and in accordance with a determination that the default delay time period has elapsed without the early-confirmation criteria for the first input event being met (e.g., using early confirmation unit 1014) and without the second input event being recognized (e.g., using double-click determining unit), perform the first operation once the default delay time period has elapsed.
  • a determination that the second input event has been recognized e.g., using double-click determining unit 101
  • the processing unit is further configured to perform a third operation, after delaying performance of the first operation, in accordance with a determination that a second input event has been recognized (e.g., using double-click determining unit 1016) after the default delay time period has elapsed.
  • the input on the intensity sensitive input unit is or includes an input on a touch-sensitive surface.
  • detecting a change in intensity of the input on the intensity sensitive input unit includes continuously detecting the input on the intensity sensitive input unit.
  • the processing unit is further configured to detect a sequence of distinct inputs on the intensity sensitive input unit, separated by periods during which no input is detected on the intensity sensitive input unit, and repeating the recognizing (e.g., using the single-click determining unit) and delaying (e.g., using delay unit 1024) with respect to a plurality of the inputs in the sequence of distinct inputs.
  • the early-confirmation criteria for the first input event are or include criteria that the intensity of the input remains below a confirmation intensity threshold for more than an early confirmation time threshold.
  • the early confirmation time threshold is less than half the default delay time period.
  • the confirmation intensity threshold is below an up-click intensity threshold used for recognizing the second input event.
  • the up-click intensity threshold is determined (e.g., using single-click determining unit 1014) in accordance with a characteristic intensity of the input during the detected increase in intensity of the input in which the input reached a peak intensity prior to detecting the decrease in intensity of the input on the intensity sensitive input unit.
  • the processing unit is further configured to monitor a duration of a fast timeout period (e.g., using early confirmation unit 1015) starting when the intensity of the input decreases below the confirmation intensity threshold.
  • the duration of the fast timeout period is a cumulative amount of time, after the fast timeout period starts, that the intensity of the input is below the confirmation intensity threshold.
  • the processing unit is further configured to determine the confirmation intensity threshold (e.g., using single-click determining unit 1014 or early confirmation unit 1015) in accordance with a peak characteristic intensity of the input detected during the detected increase in intensity of the input, prior to detecting the decrease in intensity of the input on the intensity sensitive input unit.
  • the confirmation intensity threshold is independent of a peak characteristic intensity of the input detected during the detected increase in intensity of the input.
  • the processing unit is further configured to monitor a duration of the default timeout period (e.g., using single-click determining unit 1014) starting when the intensity of the input increases to a down-click intensity threshold. In some other embodiments, the processing unit is further configured to monitor a duration of the default timeout period starting when the intensity of the input decreases to an up-click intensity threshold.
  • the processing unit is further configured to generate a first tactile output (e.g., using tactile output unit 1022) in conjunction with recognizing the first input event. In some embodiments, the processing unit is further configured to generate a second tactile output (e.g., using tactile output unit 1022) in conjunction with recognizing the second input event.
  • a first tactile output e.g., using tactile output unit 1022
  • a second tactile output e.g., using tactile output unit 1022
  • the processing unit is further configured to, after recognizing the second input event (e.g., using double-click determining unit), delay performance of the second operation (e.g., using delay unit 1024) while monitoring subsequent changes in intensity of the input for a third input event, where the delay is limited by a second default delay time period.
  • the processing unit is further configured to, after delaying performance of the second operation, in accordance with a determination that the third input event has been recognized before the second default delay time period has elapsed, perform a third operation and forgoing performance of the second operation.
  • the processing unit is also configured to, in accordance with a determination that early- confirmation criteria for the second input event have been met before the second default delay time period has elapsed without the third input event being recognized, perform the second operation before the second default delay time period has elapsed. Further, the processing unit is configured to, in accordance with a determination that the second default delay time period has elapsed without the early-confirmation criteria for the second input event being met and without the third input event being recognized, perform the second operation once the second default delay time period has elapsed.
  • the first operation comprises ceasing to display a user interface for an application, and the second operation comprises a multitasking operation.
  • the first operation comprises scrolling from one screen of icons in an application launching user interface, to another screen of icons in the application launch user interface, and the second operation comprises a multitasking operation.
  • the processing unit is further configured to, after delaying performance of the first operation (e.g., using delay unit 1024), perform a third operation and forgo performance of the first operation and the second operation in
  • recognition of the first input event is based on detection of a change in a characteristic intensity of an input with reference to a first intensity threshold; and recognition of the second input event is based on detection of a change in a characteristic intensity of an input with reference to a second intensity threshold that is different from the first intensity threshold.
  • detection operations 702, 706, etc., and recognize and determine operations 708, 714, 716, 718, etc. are, optionally, implemented by contact/motion module 130, and feedback operations that provide tactile outputs are implemented by haptic feedback module 133, while some other operations are, optionally, implemented by event sorter 170, event recognizer 180, and event handler 190.
  • Event monitor 171 in event sorter 170 detects a contact on touch- sensitive display 112, and event dispatcher module 174 delivers the event information to application 136-1.
  • a respective event recognizer 180 of application 136-1 compares the event information to respective event definitions 186, and determines whether a first contact at a first location on the touch-sensitive surface (or whether rotation of the device) corresponds to a predefined event or sub-event, such as selection of an object on a user interface, or rotation of the device from one orientation to another.
  • event recognizer 180 activates an event handler 190 associated with the detection of the event or sub-event.
  • Event handler 190 optionally uses or calls data updater 176 or object updater 177 to update the application internal state 192.
  • event handler 190 accesses a respective GUI updater 178 to update what is displayed by the application.
  • it would be clear to a person having ordinary skill in the art how other processes can be implemented based on the components depicted in Figures 1 A-1B.
  • Figures 8A-8C are flow diagrams illustrating a method 800 of monitoring an input on an intensity sensitive input element, detecting a long press on an accelerated basis, and if a long press is detected, performing a corresponding operation.
  • Method 800 is performed at an electronic device (e.g., device 300, Figure 3, or portable multifunction device 100, Figure 1 A) with a display, a touch-sensitive surface, and one or more sensors 165 to detect intensity of contacts with the touch-sensitive surface.
  • the electronic device at which method 800 is performed includes, in addition to the touch- sensitive surface, a home button 204 that includes one of sensors 165.
  • home button 204 is separate from the display and, optionally, includes a set of one or more intensity sensors that are separate from intensity sensors used to detect the intensity of inputs on the display.
  • home button 204 is a virtual home button that is displayed on the display (e.g., with a set of one or more intensity sensors that are separate from intensity sensors used to detect the intensity of inputs on the display or, optionally, using intensity sensors integrated into the display to determine an intensity of an input with the virtual home button).
  • the display is a touch-screen display and the touch-sensitive surface is on or integrated with the display. In some embodiments, the display is separate from the touch-sensitive surface.
  • method 800 provides a way to accurately determine user intent, with respect to whether a touch input is a long press, on an accelerated basis, by taking into account the intensity of the user's input.
  • Method 800 reduces latency, by recognizing long press inputs faster than would otherwise be possible, while avoiding "false positives," such as inputs incorrectly detected as a long press, thereby creating a more efficient human- machine interface.
  • taking into account the intensity of a user's touch input enables a user to enter gestures, such as a long press, faster and more efficiently, which conserves power and increases the time between battery charges.
  • the device detects (802) an input sequence that includes an increase in intensity of an input that corresponds to a first input event (e.g., a down-click event).
  • a first input event e.g., a down-click event
  • the input on the input element is or includes (804) an input on a touch-sensitive surface.
  • the increase in intensity of the input is followed by a decrease in intensity of the input, for example as shown in Figure 5BB.
  • Method 800 includes, in response to detecting the input sequence (806), in accordance with a determination that a second input event (e.g., an up-click event), including a decrease in intensity of the input after the first input event, is detected within a first time period after the first input event is detected, performing (808) a first operation (e.g., a single click operation).
  • a second input event e.g., an up-click event
  • a first operation e.g., a single click operation.
  • Figure 5X shown an input having an increase in intensity 532 followed by a decrease in intensity 534. If a second input event corresponding to the decrease occurs within the first time period after the first input event is detected, then a long press has not been detected and the first operation, such as a single click operation, is performed.
  • Method 800 further includes, in accordance with a determination that the second input event (e.g., an event that corresponds to a reversal of the first input event such as an up-click event) is not detected within a second time period that is longer than the first time period and that the input had a characteristic intensity above a respective intensity threshold between when the first input event was detected and when the second time period elapsed (e.g., as shown in Figure 5BB, the characteristic intensity of the input was above the respective intensity threshold (e.g., I D ) between when the first input event was detected and when the second time period elapsed), performing (809) a second operation (e.g., a long press operation) once the second time period has elapsed (e.g., in response to the second time period elapsing (e.g., sooner/faster than the normal long press operation), wherein the second time period is determined based at least in part on an intensity of the input after the first input event is detected.
  • a second operation e.
  • Method 800 further includes, in accordance with a determination that the second input event is not detected within a third time period (e.g., the default time period discussed above with reference to Figure 511) that is longer than the second time period and that the input did not have a characteristic intensity above the respective intensity threshold between when the first input event was detected and when the second time period elapsed, performing (810) the second operation (e.g., the long press operation) once the third time period has elapsed (e.g., in response to the third time period elapsing, corresponding to time T 5 in Figure 511; see above discussion of Figures 5 A, 5B and 511).
  • a third time period e.g., the default time period discussed above with reference to Figure 511
  • the second operation e.g., the long press operation
  • method 800 includes, in accordance with a determination that the second input event is not detected within the second time period and that the input did not have a characteristic intensity above the respective intensity threshold between when the first input event was detected and when the second time period elapsed (e.g., as shown in Figure 511), forgoing (512) performance of the second operation (e.g., the long press operation) once the second time period has elapsed until at least the third time period (e.g., called the default time period in the above discussion of Figure 511) has elapsed.
  • the second operation e.g., the long press operation
  • method 800 includes recognizing (814) the first input event in accordance with an increase in intensity of the input that satisfies a first intensity threshold and recognizing the second input event in accordance with an decrease in intensity of the input that satisfies a second intensity threshold that is distinct from the first intensity threshold.
  • Figure 5X shown an input having an increase in intensity 532 that satisfies a down-click intensity threshold I D , followed by a decrease in intensity 534 that satisfies an up-click intensity threshold Iu that is distinct from the down-click intensity threshold I D .
  • the respective intensity threshold is greater (816) than the first intensity threshold (e.g., referring to Figures 5Z and 5AA, the respective intensity threshold is an intensity threshold such as I D+ , which is greater than the down-click intensity threshold I D ), and the second intensity threshold (e.g., up-click intensity threshold Iu) is less than the first intensity threshold (e.g., down-click intensity threshold I D ).
  • method 800 includes monitoring (818) a duration of a timeout period starting when the increase in intensity of the input satisfies the first intensity threshold, and comparing the duration of the timeout period with at least one of the first time period, second time period and third time period. See examples described above with respect to Figure 5BB, 5DD and 5FF. [00348] In some embodiments, method 800 includes stopping (820) the monitoring of the duration of the timeout period when the decrease in intensity of the input satisfies the second intensity threshold. For example, referring to Figure 5X, if the intensity of the input falls below the up-click intensity threshold Iu, the monitoring of the duration of the timeout period is stopped.
  • method 800 includes accelerating (822) a rate at which the timeout period accumulates when intensity of the input exceeds a first predefined intensity threshold (e.g., the respective intensity threshold), wherein the accelerated rate is higher than a default rate.
  • a first predefined intensity threshold e.g., the respective intensity threshold
  • the rate of which the timeout period accumulates is an accelerated rate.
  • method 800 further includes decelerating (824) a rate at which the timeout period accumulates when intensity of the input decreases.
  • the third time period is (826) a maximum duration of the timeout period before performing the second operation (e.g., a default timeout period, such as 500ms).
  • monitoring the duration of the timeout period continues until either a determination that the second input event is detected, or duration of the timeout period is equal to the third time period, whichever occurs first, and the second time period comprises a minimum duration of the timeout period before performing the second operation.
  • the second time period is constrained (828) to a least a minimum duration (e.g., in some embodiments, the time to detect a long press input does not decrease below 300ms, no matter how high the intensity of the input reaches).
  • the minimum duration e.g., 300ms
  • the maximum duration e.g., 500ms.
  • monitoring the duration of the timeout period includes decaying (830) a time value, starting at an initial time value, at a rate that changes in accordance with the intensity of the input.
  • a time value starting at an initial time value, at a rate that changes in accordance with the intensity of the input.
  • the first operation is or includes closing (832) an application
  • the second operation comprises displaying a virtual assistant user interface.
  • the first operation is or includes (834) scrolling from one screen of icons in an application launching user interface (e.g., an application launching user interface including a first set of application launch icons), to another screen of icons in the application launch user interface (e.g., including a second set of application launch icons that include application launch icons not in the first set of application launch icons), as shown in the transition from Figure 5Q to 5R, and the second operation is or includes displaying a virtual assistant user interface (e.g., as shown in Figures 5BB, 5DD, 5FF and 5HH).
  • a virtual assistant user interface e.g., as shown in Figures 5BB, 5DD, 5FF and 5HH.
  • Figure 11 shows a functional block diagram of an electronic device 1100 configured in accordance with the principles of the various described embodiments.
  • the functional blocks of the device are, optionally, implemented by hardware, software, or a combination of hardware and software to carry out the principles of the various described embodiments. It is understood by persons of skill in the art that the functional blocks described in Figure 11 are, optionally, combined or separated into sub-blocks to implement the principles of the various described embodiments. Therefore, the description herein optionally supports any possible combination or separation or further definition of the functional blocks described herein.
  • an electronic device 1100 includes a display unit 1002
  • electronic device 1000 also includes touch-sensitive surface unit 1106 for receiving touch inputs on a surface, such as a display surface of display unit 1102, and one or more tactile output units 1108 for generating tactile outputs, also coupled to processing unit 1010.
  • processing unit 1110 includes one or more of the following sub-units: intensity monitoring unit 1112, long press determining unit 1114, single-click determining unit 1116, and feedback unit 1118.
  • feedback unit 1 118 includes response display unit 1120 and tactile output unit 1122.
  • Processing unit 1110 is configured to: detect (e.g., using intensity monitoring unit 912) an input sequence that includes detecting an increase in intensity of an input that corresponds to a first input event; and, in response to detecting the input sequence: in accordance with a determination (e.g., using single click determining unit 1116) that a second input event, including a decrease in intensity of the input after the first input event, is detected within a first time period after the first input event is detected, perform a first operation; in accordance with a determination (e.g., using single click determining unit 1116) that the second input event is not detected within a second time period that is longer than the first time period and (e.g., using long press determining unit 1114) that the input had a
  • the second time period is determined based at least in part on an intensity of the input after the first input event is detected; and in accordance with a determination that the second input event is not detected (e.g., using single click determining unit 1116) within a third time period that is longer than the second time period and (e.g., using long press determining unit 1114) that the input did not have a characteristic intensity above the respective intensity threshold between when the first input event was detected and when the second time period elapsed, perform the second operation once the third time period has elapsed.
  • processing unit 1110 is further configured to, in accordance with a determination (e.g., using single click determining unit 1116) that the second input event is not detected within the second time period and (e.g., using single click determining unit 1116) that the input did not have a characteristic intensity above the respective intensity threshold between when the first input event was detected and when the second time period elapsed, forgo performance of the second operation once the second time period has elapsed until at least the third time period has elapsed.
  • a determination e.g., using single click determining unit 1116
  • single click determining unit 1116 e.g., using single click determining unit 1116
  • the input on the intensity sensitive input unit comprises an input on a touch-sensitive surface.
  • processing unit 1110 is further configured to recognize the first input event in accordance with an increase in intensity of the input that satisfies a first intensity threshold and recognize (e.g., using single click determining unit 1116) the second input event in accordance with an decrease in intensity of the input that satisfies a second intensity threshold that is distinct from the first intensity threshold.
  • the respective intensity threshold is greater than the first intensity threshold, and the second intensity threshold is less than the first intensity threshold. See discussion of Figure 5X with respect to down-click intensity threshold I D
  • processing unit 1110 is further configured to monitor
  • processing unit 1110 is further configured to stop the monitoring of the duration of the timeout period when the decrease in intensity of the input satisfies the second intensity threshold.
  • processing unit 1110 is further configured to accelerate a rate at which the timeout period accumulates when intensity of the input exceeds a first predefined intensity threshold, wherein the accelerated rate is higher than a default rate.
  • processing unit 1110 is further configured to decelerate a rate at which the timeout period accumulates when intensity of the input decreases.
  • the third time period comprises a maximum duration of the timeout period before performing the second operation.
  • the second time period is constrained to a least a minimum duration.
  • monitoring the duration of the timeout period comprises decaying a time value, starting at an initial time value, at a rate that changes in accordance with the intensity of the input.
  • the first operation is or includes closing an application
  • the second operation comprises displaying a virtual assistant user interface.
  • the first operation is or includes scrolling from one screen of icons in an application launching user interface (e.g., an application launching user interface including a first set of application launch icons, an example of which is shown in Figure 5Q), to another screen of icons in the application launch user interface (e.g., an application launching user interface including a second set of application launch icons that include application launch icons not in the first set of application launch icons, an example of which is shown in Figure 5R), and the second operation comprises displaying a virtual assistant user interface (e.g., an example of which is shown in Figures 5BB, 5DD, and 5FF).
  • an application launching user interface e.g., an application launching user interface including a first set of application launch icons, an example of which is shown in Figure 5Q
  • another screen of icons in the application launch user interface e.g., an application launching user interface including a second set of application launch icons that include application launch icons not
  • Event monitor 171 in event sorter 170 detects a contact on touch-sensitive display 112, and event dispatcher module 174 delivers the event information to application 136-1.
  • a respective event recognizer 180 of application 136-1 compares the event
  • event recognizer 180 activates an event handler 190 associated with the detection of the event or sub-event.
  • Event handler 190 optionally uses or calls data updater 176 or object updater 177 to update the application internal state 192.
  • event handler 190 accesses a respective GUI updater 178 to update what is displayed by the application.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Input By Displaying (AREA)

Abstract

Un dispositif électronique détecte une première augmentation suivie d'une première diminution de l'intensité d'une entrée sur un dispositif d'entrée, et détermine si la première diminution répond à des critères de détection de fin de clic. Les critères de détection de fin de clic nécessitent que l'intensité de l'entrée diminue en dessous d'un premier seuil d'intensité de fin de clic, qui est sélectionné sur la base de l'intensité de l'entrée pendant la première augmentation d'intensité. Selon qu'il est déterminé que la première diminution de l'intensité de l'entrée répond à des critères de détection de fin de clic, le dispositif fournit une première rétroaction, telle que la réalisation d'une opération qui change une interface utilisateur affichée et/ou la production d'une sortie tactile, indiquant que la première diminution de l'intensité de l'entrée a été reconnue comme une fin de clic.
PCT/US2017/041758 2016-09-06 2017-07-12 Dispositifs et procédés de traitement et de désambiguïsation d'entrées tactiles à l'aide de seuils d'intensité sur la base d'une intensité d'entrée antérieure WO2018048504A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201780003364.7A CN108174612B (zh) 2016-09-06 2017-07-12 用于利用基于先前输入强度的强度阈值对触摸输入进行处理和消除歧义的设备和方法
CN201910352081.4A CN110058757B (zh) 2016-09-06 2017-07-12 用于对触摸输入进行处理和消除歧义的设备和方法
CN202210877529.6A CN115167745A (zh) 2016-09-06 2017-07-12 用于对触摸输入进行处理和消除歧义的设备和方法
EP17743156.6A EP3329356B1 (fr) 2016-09-06 2017-07-12 Dispositifs et procédés de traitement et de désambiguïsation d'entrées tactiles à l'aide de seuils d'intensité sur la base d'une intensité d'entrée antérieure

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US201662384053P 2016-09-06 2016-09-06
US62/384,053 2016-09-06
DK201670722 2016-09-16
DKPA201670722A DK179411B1 (en) 2016-09-06 2016-09-16 Devices and methods for processing and rendering touch inputs unambiguous using intensity thresholds based on a prior input intensity
US15/270,789 2016-09-20
US15/270,789 US9910524B1 (en) 2016-09-06 2016-09-20 Devices and methods for processing and disambiguating touch inputs using intensity thresholds based on prior input intensity

Publications (1)

Publication Number Publication Date
WO2018048504A1 true WO2018048504A1 (fr) 2018-03-15

Family

ID=61561970

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2017/041758 WO2018048504A1 (fr) 2016-09-06 2017-07-12 Dispositifs et procédés de traitement et de désambiguïsation d'entrées tactiles à l'aide de seuils d'intensité sur la base d'une intensité d'entrée antérieure

Country Status (1)

Country Link
WO (1) WO2018048504A1 (fr)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2375307A1 (fr) * 2010-04-08 2011-10-12 Research In Motion Limited Dispositif électronique portable avec seuils locaux pour retour tactile
US20150084874A1 (en) * 2013-09-26 2015-03-26 Synaptics Incorporated Methods and apparatus for click detection on a force pad using dynamic thresholds

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2375307A1 (fr) * 2010-04-08 2011-10-12 Research In Motion Limited Dispositif électronique portable avec seuils locaux pour retour tactile
US20150084874A1 (en) * 2013-09-26 2015-03-26 Synaptics Incorporated Methods and apparatus for click detection on a force pad using dynamic thresholds

Similar Documents

Publication Publication Date Title
US11086368B2 (en) Devices and methods for processing and disambiguating touch inputs using intensity thresholds based on prior input intensity
US11635818B2 (en) Devices, methods, and graphical user interfaces for providing feedback during interaction with an intensity-sensitive button
US10901513B2 (en) Devices, methods, and graphical user interfaces for haptic mixing
US10996766B2 (en) Devices, methods, and graphical user interfaces for providing a home button replacement
WO2018048632A1 (fr) Dispositifs, procédés et interfaces utilisateur graphiques permettant de fournir une rétroaction pendant une interaction avec un bouton sensible à l'intensité
AU2017251751B2 (en) Devices, methods, and graphical user interfaces for haptic mixing
EP3293611B1 (fr) Dispositifs, procédés et interfaces utilisateur graphiques pour mélange haptique
AU2017100980A4 (en) Devices and methods for processing and disambiguating touch inputs using intensity thresholds based on prior input intensity
EP3291076B1 (fr) Dispositifs, procédés et interfaces utilisateur graphiques pour fournir une rétroaction pendant l'interaction avec un bouton sensible à l'intensité
WO2018048504A1 (fr) Dispositifs et procédés de traitement et de désambiguïsation d'entrées tactiles à l'aide de seuils d'intensité sur la base d'une intensité d'entrée antérieure
DK179082B1 (en) Devices, methods and graphical user interfaces for haptic mixing
DK201670739A1 (en) Devices, Methods, and Graphical User Interfaces for Providing Feedback During Interaction with an Intensity-Sensitive Button

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE