WO2018047679A1 - Culture medium heating device and culturing system - Google Patents

Culture medium heating device and culturing system Download PDF

Info

Publication number
WO2018047679A1
WO2018047679A1 PCT/JP2017/030981 JP2017030981W WO2018047679A1 WO 2018047679 A1 WO2018047679 A1 WO 2018047679A1 JP 2017030981 W JP2017030981 W JP 2017030981W WO 2018047679 A1 WO2018047679 A1 WO 2018047679A1
Authority
WO
WIPO (PCT)
Prior art keywords
medium
heater
culture
culture medium
inlet
Prior art date
Application number
PCT/JP2017/030981
Other languages
French (fr)
Japanese (ja)
Inventor
聡文 北原
邦忠 畑林
久 五味
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Publication of WO2018047679A1 publication Critical patent/WO2018047679A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • C12M1/36Apparatus for enzymology or microbiology including condition or time responsive control, e.g. automatically controlled fermentors
    • C12M1/38Temperature-responsive control
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M3/00Tissue, human, animal or plant cell, or virus culture apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • F24H1/10Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium
    • F24H1/12Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium in which the water is kept separate from the heating medium
    • F24H1/14Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium in which the water is kept separate from the heating medium by tubes, e.g. bent in serpentine form

Definitions

  • the present invention relates to a medium heating apparatus and a culture system.
  • GMP Good Manufacturing Practice
  • the liquid medium (also referred to as culture solution) in the culture vessel is regularly replaced.
  • the old medium in the culture container is pushed out from the culture container and discharged, and the medium in the culture container is replaced.
  • the new medium before being supplied to the culture container is stored at a low temperature of about 4 ° C. in a cool box or the like in order to prevent deterioration of the components.
  • the medium for cell culture in the culture vessel is maintained at a high temperature of about 37 ° C. Therefore, a culture apparatus configured to heat a new medium before supplying it to the culture vessel is known (see, for example, Patent Documents 1 and 2).
  • a new medium is temporarily stored in a tank or a medium supply pipe (hereinafter referred to as a tank or the like) and heated by a heater. And the culture medium which became high temperature is supplied to a culture container in the case of medium replacement
  • the component concentration of the medium to be supplied next may fluctuate.
  • the cleaning liquid for example, pure water
  • the component concentration of a new culture medium supplied thereafter may vary.
  • the present invention has been made in consideration of such points, and provides a medium heating apparatus and a culture system that can shorten the time for heating the medium and prevent the liquid from remaining.
  • the present invention is a culture medium heating apparatus for heating a culture medium for cell culture supplied from a culture medium supply source to a culture vessel, a cylindrical apparatus body having a central axis along the vertical direction, an upper part of the apparatus body, A device inlet provided in one of the lower portions, into which the culture medium flows, a device outlet provided in the other of the upper and lower portions of the device main body, through which the culture medium flows out, and from the device inlet.
  • An apparatus passage through which the culture medium toward the apparatus outlet passes, and a heating unit that heats the culture medium that passes through the apparatus passage, and the apparatus passage is formed in a spiral shape around the central axis of the apparatus main body.
  • a formed medium heating device is provided.
  • the apparatus inlet may be provided in an upper part of the apparatus main body, and the apparatus outlet may be provided in a lower part of the apparatus main body.
  • a spiral groove is provided on an outer peripheral portion of the apparatus main body, the spiral groove is formed in a spiral shape around the central axis of the apparatus main body, and the apparatus passage includes the spiral groove. It may be constituted by a tube member inserted in
  • the tube member may be pressed from the wall surface of the spiral groove.
  • the medium heating apparatus described above may further include a pressing member that presses the tube member from the outer peripheral side.
  • the heating unit extends from the apparatus inlet to the apparatus outlet along the central axis of the apparatus body, and is concentrically disposed in the apparatus passage. You may do it.
  • the above-described culture medium heating apparatus may further include a temperature measurement unit that measures the temperature of the apparatus main body.
  • the temperature measurement unit may be arranged in a part of the apparatus main body on the apparatus outlet side.
  • the temperature measurement unit may be arranged between the device passage and the heating unit.
  • the present invention is provided between a culture medium supply source for supplying a new culture medium, a container holding unit capable of holding a culture container, and the culture medium supply source and the container holding unit.
  • a culture system comprising the above-described culture medium heating device for heating the culture medium supplied to a container.
  • the culture system described above may further include a buffer tank that is provided between the medium heating device and the container holding unit and stores the medium heated by the medium heating device.
  • the culture system described above may further include a culture medium supply pump that is provided between the culture medium supply source and the culture medium heating apparatus and supplies the culture medium from the culture medium supply source to the culture medium heating apparatus.
  • the culture system further includes a control unit that controls the heating unit of the culture medium supply pump and the culture medium heating device, and the culture medium heating device includes a temperature measurement unit that measures the temperature of the device main body, The controller may control the medium supply pump and the heating unit based on the temperature of the apparatus main body measured by the temperature measurement unit while driving the medium supply pump.
  • the culture system described above may further include a cleaning liquid supply source that supplies a cleaning liquid to the apparatus inlet or the apparatus outlet provided in the upper part of the apparatus main body of the medium heating apparatus.
  • the apparatus further includes a gas supply source that supplies a gas capable of purging the cleaning liquid to the apparatus inlet or the apparatus outlet provided in the upper part of the apparatus main body of the medium heating apparatus. May be.
  • the time for heating the culture medium can be shortened and the liquid can be prevented from remaining.
  • FIG. 1 is a diagram showing a schematic configuration of a culture system in the present embodiment.
  • FIG. 2 is a plan view showing the culture vessel shown in FIG.
  • FIG. 3 is a cross-sectional view showing the culture container shown in FIG.
  • FIG. 4 is a front view showing the arrangement of the inlet heater of FIG.
  • FIG. 5 is a cross-sectional view showing the inlet heater of FIG. 6 is a partial cross-sectional view showing the inlet heater of FIG.
  • the culture system according to the present embodiment can be used for culturing all types of cells, including pluripotent stem cells such as (human) iPS cells and (human) ES cells, and chondrocytes such as bone marrow stromal cells (MSC). It can be used when culturing various cells such as dendritic cells.
  • pluripotent stem cells such as (human) iPS cells and (human) ES cells
  • chondrocytes such as bone marrow stromal cells (MSC). It can be used when culturing various cells such as dendritic cells.
  • MSC bone marrow stromal cells
  • the culture system 1 is held in a medium supply source 2 that supplies a new medium, a container holding unit 3 that can hold a culture container 100 for culturing cells, and a container holding unit 3.
  • a medium analysis unit 4 that analyzes the components of the medium discharged from the culture vessel 100.
  • the medium supply source 2 stores a new medium for cell culture to be supplied to the culture vessel 100.
  • the culture medium supply source 2 is provided, for example, in a cold storage box, and during storage, the culture medium is stored at a low temperature (for example, about 4 ° C.) to prevent deterioration of components.
  • an inlet heater 5 (medium heating apparatus) and a new solution buffer tank 6 are provided in this order.
  • the inlet heater 5 heats the culture medium supplied from the culture medium supply source 2 to the culture vessel 100 to raise the temperature of the culture medium (for example, about 37 ° C.).
  • the heated medium is discharged from the inlet heater 5 and supplied to the new solution buffer tank 6. Details of the inlet heater 5 will be described later.
  • An inlet pump 7 (medium supply pump) is provided between the culture medium supply source 2 and the inlet heater 5 to supply a culture medium from the culture medium supply source 2 to the new liquid buffer tank 6 via the inlet heater 5. It has been.
  • the pump for supplying the culture medium is not limited to the inlet pump 7.
  • a common pump (not shown) is provided downstream from the junction of the line from the culture medium supply source 2 and the line from the cleaning liquid supply source 13 (described later) and upstream from the inlet heater 5.
  • the common pump may have a medium supply function.
  • the shared pump can also have a cleaning liquid supply function, and a cleaning pump 14 described later can be omitted.
  • the new solution buffer tank 6 stores the medium heated by the inlet heater 5 and removes bubbles in the medium.
  • the new solution buffer tank 6 has an internal space for storing the culture medium and a vent portion (both not shown).
  • the internal space of the new solution buffer tank 6 is the same as that of the new solution buffer tank 6. It communicates with the surrounding atmosphere (clean atmosphere in the chamber of the culture system 1) via the vent portion.
  • the vent portion since the vent portion is provided, it is possible to smoothly supply and discharge the culture medium to and from the fresh solution buffer tank 6.
  • a vent filter (not shown) is provided in the vent portion to prevent foreign matter from entering the internal space of the new liquid buffer tank 6.
  • the storage capacity of the culture medium in the internal space of the new solution buffer tank 6 is such that when the culture medium in the culture container 100 is replaced, the old culture medium in the culture container 100 can be pushed out and completely replaced with a new culture medium. It is preferable to make it larger than the capacity. For example, when the capacity of the culture vessel 100 is 18 mL, the medium storage capacity of the new solution buffer tank 6 may be 30 mL, which is larger than this.
  • a first inlet on-off valve 8 is provided between the inlet pump 7 and the inlet heater 5.
  • the first inlet open / close valve 8 controls the supply of the culture medium from the culture medium supply source 2 to the fresh solution buffer tank 6.
  • a second inlet on-off valve 9 is provided between the new liquid buffer tank 6 and the container holding unit 3.
  • the second inlet open / close valve 9 controls the supply of the medium from the fresh solution buffer tank 6 to the culture vessel 100.
  • a solution discharge line (not shown) may be provided downstream of the second inlet opening / closing valve 9.
  • the new solution buffer tank 6 is disposed at a higher position than the container holding unit 3, and the medium can be easily supplied from the new solution buffer tank 6 to the culture vessel 100 held in the container holding unit 3. It has become.
  • the container holding unit 3 is configured to hold the culture container 100.
  • the incubator is disposed in the chamber of the culture system 1 described above, and the container holding unit 3 is provided in the casing of the incubator. It is done.
  • This housing is configured to adjust at least one of the temperature, humidity, and gas concentration of the internal atmosphere. For example, the temperature of the atmosphere in the housing is adjusted so that the temperature of the culture vessel 100 held in the vessel holding unit 3 is about 37 ° C.
  • the container holding unit 3 temporarily holds the culture container 100 transported from the incubator to the container holding unit 3 in order to exchange the medium. For that.
  • the culture container 100 held by the container holding unit 3 is accommodated in a housing that maintains a sterilization space in the chamber of the culture system 1, for example. Details of the culture vessel 100 will be described later.
  • an outlet pump 10, a medium filter 11, and an outlet opening / closing valve 12 are provided in this order.
  • the outlet pump 10 pulls out the culture medium after cell culture from the culture vessel 100 and supplies the culture medium to the culture medium analysis unit 4.
  • the supply of a new medium from the fresh solution buffer tank 6 to the culture container 100 is prompted simultaneously with the withdrawal of the medium from the culture container 100.
  • a new medium is supplied to the culture vessel 100 and the medium is exchanged.
  • the culture medium filter 11 is configured to remove solids (for example, cultured cells) contained in the culture medium discharged from the culture container 100 from the culture medium.
  • the outlet on-off valve 12 is configured to control the supply of the medium from the culture vessel 100 to the medium analysis unit 4.
  • the culture system 1 further includes a cleaning liquid supply source 13.
  • the cleaning liquid supply source 13 stores a cleaning liquid (for example, pure water) to be supplied to a heater inlet 31 (described later) of the inlet heater 5.
  • the cleaning liquid supplied to the heater inlet 31 passes through a heater passage 33 (described later) of the inlet heater 5 and is supplied to the new liquid buffer tank 6 so that the inlet heater 5 and the new liquid buffer tank 6 are cleaned.
  • a cleaning pump 14 and a cleaning on / off valve 15 are provided in this order between the cleaning liquid supply source 13 and the inlet heater 5.
  • the cleaning pump 14 is configured to supply the cleaning liquid from the cleaning liquid supply source 13 to the inlet heater 5 and the buffer tank 6 for new liquid.
  • the cleaning on / off valve 15 controls the supply of cleaning liquid from the cleaning liquid supply source 13 to the inlet heater 5.
  • the culture system 1 further includes a gas supply source 16.
  • the gas supply source 16 supplies compressed gas (for example, compressed clean air) to the heater inlet 31 of the inlet heater 5.
  • compressed gas for example, compressed clean air
  • the compressed gas supplied to the heater inlet 31 passes through the heater passage 33 of the inlet heater 5 and is supplied to the new liquid buffer tank 6, and the cleaning liquid that can remain in the inlet heater 5 is purged.
  • a gas on-off valve 17 is provided between the gas supply source 16 and the inlet heater 5 to control the supply of compressed gas from the gas supply source 16 to the inlet heater 5.
  • the gas supply source 16 stores compressed gas
  • the gas supply source 16 has a configuration in which the compressed gas is supplied to the inlet heater 5 by the pressure.
  • the cleaning gas is purged into the inlet heater 5.
  • the configuration is not limited to this.
  • the culture system 1 further includes a control unit 18.
  • the control unit 18 is configured to control each on-off valve, pump, and heater body 37 (described later) of the inlet heater 5 described above.
  • the culture vessel 100 includes a vessel body 101 and a flat plate 102 attached to one surface of the vessel body 101.
  • the container body 101 includes a container inlet 103 into which a medium (a suspension in which cells are dispersed in addition to the medium, a release agent, phosphate buffered saline (PBS), etc.) is flowed, and a container inlet 103 A container passage 104 through which the culture medium passes, and a container outlet 105 through which the culture medium that has passed through the container passage 104 flows out.
  • the container inlet 103 is connected to the above-described new solution buffer tank 6, and the container outlet 105 is connected to the culture medium analyzer 4.
  • the container passage 104 of the container body 101 is formed in a groove shape on the one surface side where the flat plate 102 of the container body 101 is attached.
  • the diameter of the container passage 104 (that is, the depth and width of the groove) is, for example, 2 mm to 4 mm.
  • the container passage 104 of the container body 101 has a portion that meanders in plan view, that is, a portion in which straight portions and folded portions are alternately connected. Thereby, the full length of the container channel
  • a plurality of cell seeding regions 106 in which cells passing through the container passage 104 are seeded are provided along the container passage 104 on the passage bottom surface 104 a of the container passage 104. ing.
  • a recess 107 is provided concentrically with the cell seeding region 106 on the channel bottom surface 104 a of the container channel 104.
  • the outlet pump 10 When exchanging the culture medium in the culture vessel 100, the outlet pump 10 is driven, and the old culture medium in the container passage 104 is drawn out and flows out from the container outlet 105. Along with this, a new culture medium supplied from the new solution buffer tank 6 flows into the container passage 104 from the container inlet 103. During this time, the old medium in the container passage 104 flows out of the container outlet 105 so as to be pushed out by the new medium. In this case, since the new medium and the old medium flow along the container passage 104, the new medium and the old medium can be prevented from being mixed, and the old medium can be easily replaced with the new medium.
  • the inlet heater 5 As shown in FIG. 4, the inlet heater 5 is arranged vertically in the chamber of the culture system 1.
  • the inlet heater 5 includes a cylindrical heater block 30 (apparatus main body) having a central axis X along the vertical direction, and a heater inlet 31 (apparatus inlet) through which a medium flows. And a heater outlet 32 (device outlet) through which the medium flows out, and a heater passage 33 (device passage) through which the medium from the heater inlet 31 toward the heater outlet 32 passes.
  • the heater inlet 31 is provided at the upper portion 30a (preferably the upper end portion) of the heater block 30, and the heater outlet 32 is provided at the lower portion 30b (preferably the lower end portion) of the heater block 30. Yes.
  • the heater passage 33 is disposed on the outer periphery of the heater block 30 and is formed in a spiral shape around the central axis X of the heater block 30.
  • the inlet heater 5 the length of contact between the heater passage 33 and the heater block 30 can be increased, and the heat transfer area between the heater passage 33 and the heater block 30 is increased. For this reason, it is possible to sufficiently transfer heat from the heater block 30 to the medium before the medium passing through the heater passage 33 reaches the heater outlet 32.
  • the heater inlet 31 is provided in the upper portion 30a of the heater block 30 and the heater outlet 32 is provided in the lower portion 30b of the heater block 30, the heater passage 33 formed in a spiral shape has a heater flow.
  • the heater block 30 is provided with a single (one system) heater passage 33, but is not limited thereto.
  • the plurality of heater passages 33 may be provided so as to form a plurality of spirals. In this case, culture media of different systems can be heated separately.
  • a spiral groove 34 is provided on the outer peripheral portion of the heater block 30.
  • the spiral groove 34 is formed in a spiral shape around the central axis X of the heater block 30.
  • the heater passage 33 is constituted by a tube member 35, and the tube member 35 is inserted into the spiral groove 34. In this manner, the tube member 35 is spirally wound around the outer peripheral portion of the heater block 30 to form a spiral heater passage 33.
  • the tube member 35 has a circular cross section when not inserted (restrained) in the spiral groove 34, and can be inserted into the spiral groove 34. It is suitable to have.
  • the material used for such a tube member 35 is not particularly limited as long as it has flexibility, but for example, it is preferably formed of a flexible resin material.
  • the tube member 35 is pressed from the wall surface 34 a of the spiral groove 34 in a state of being inserted into the spiral groove 34.
  • D the diameter of the tube member 35 not inserted in the spiral groove 34
  • W it is preferable that D> W.
  • the outer surface of the tube member 35 and the wall surface 34a of the spiral groove 34 are pressed against each other, and a portion where the outer surface and the wall surface 34a contact each other without a gap is formed.
  • the diameter D of the tube member 35 is a magnitude
  • FIG. As an example of such a tube member 35, PFA (perfluoroalkoxy fluororesin) or PTFE (polyethylene) having a diameter of 1.6 mm (equivalent to 1/16 inch) and an inner diameter of 0.8 mm (equivalent to 1/32 inch) is used. And fluororesin tubes such as tetrafluoroethylene.
  • the width W of the spiral groove 34 is preferably 1.55 mm.
  • the depth H of the spiral groove 34 is preferably a depth that prevents a part of the tube member 35 from being recessed inward even when the tube member 35 is pressed from the outer peripheral side by the press tube 36 described later.
  • the thickness is preferably 1.5 mm.
  • a pressing tube 36 (pressing member) that presses the tube member 35 inserted into the spiral groove 34 from the outer peripheral side is provided on the outer peripheral portion of the heater block 30.
  • the pressing tube 36 is preferably heat shrinkable.
  • the pressing tube 36 is attached to the heater block 30 so as to cover the entire heater passage 33.
  • the end of the tube member 35 on the heater inlet 31 side and the end of the heater outlet 32 side protrude from the pressing tube 36.
  • both end portions of the tube member 35 constitute the heater inlet 31 and the heater outlet 32.
  • the pressing tube 36 After the pressing tube 36 is mounted, the pressing tube 36 is contracted by heat applied from the surroundings, and is in close contact with the outer peripheral surface of the heater block 30. In this way, the tube member 35 of the heater passage 33 is pressed from the outer peripheral side by the pressing tube 36. Further, the pressing tube 36 prevents the tube member 35 inserted into the spiral groove 34 from dropping off.
  • a heat shrinkable tube having an inner diameter of 34 mm before heat shrinkage and an inner diameter of 26 mm after heat shrinkage may be mentioned.
  • the heater block 30 is provided with a heater main body 37 (heating unit, for example, a cartridge heater) that heats the medium passing through the heater passage 33.
  • the heater body 37 is attached to the heater block 30 by being inserted from below into a heater hole 38 provided in the center of the heater block 30.
  • the heater body 37 extends from the heater inlet 31 to the heater outlet 32 along the central axis X of the heater block 30, and it is preferable that the heat generation amount is equal over the entire length.
  • the heater body 37 is disposed concentrically with the heater passage 33. That is, the heater main body 37 is disposed inside the spiral heater passage 33 and at the center of the heater block 30 when viewed from the direction along the central axis X. Thus, the distance between the heater main body 37 and each point of the heater passage 33 is equalized, and heat is transmitted from the heater main body 37 to each point of the heater passage 33 evenly.
  • An example of the amount of heat generated by the heater body 37 is 2.3 W / cm 2 .
  • the heater block 30 is preferably made of a material having good heat transfer property in order to transmit the heat generated from the heater body 37 to the heater passage 33.
  • the heater block 30 is made of a metal material such as an aluminum alloy such as A6063. It is preferred that The outer diameter of the heater block 30 is, for example, 31 mm, and the length along the central axis X is, for example, 178 mm. The number of turns of the spiral groove 34 formed in the heater block 30 is, for example, 43 turns.
  • the 1 controls the inlet pump 7 and the heater main body 37 so as to drive the heater main body 37 of the inlet heater 5 while the inlet pump 7 is being driven.
  • the low temperature medium discharged from the medium supply source 2 is heated while passing through the heater passage 33 of the inlet heater 5, and a desired temperature (for example, about 37 ° C.) at the heater outlet 32 of the inlet heater 5.
  • the temperature rises to
  • the heater block 30 is provided with a temperature sensor 39 (temperature measurement unit) that measures the temperature of the heater block 30. Based on the temperature of the heater block 30 measured by the temperature sensor 39, the control unit 18 controls the heater body 37. That is, the control unit 18 drives (ON) the heater body 37 when the temperature of the heater block 30 measured by the temperature sensor 39 is less than a predetermined reference value, and when the temperature is equal to or higher than the predetermined reference value, Is stopped (OFF).
  • the predetermined reference value may be a temperature equal to the temperature of the culture medium in the culture vessel 100 (about 37 ° C.), but in order to prevent an excessive temperature rise, a lower temperature may be used. Good.
  • the temperature sensor 39 is disposed in the lower part 30b of the heater block 30 (the part on the heater outlet 32 side).
  • the temperature sensor 39 is attached to the heater block 30 by being inserted into a sensor hole 40 provided in the lower portion 30 b of the heater block 30 from below.
  • the temperature sensor 39 is not limited to being disposed in the lower portion 30b of the heater block 30, and may be disposed in the upper portion 30a of the heater block 30 as long as the medium can be prevented from overheating.
  • the temperature sensor 39 is preferably disposed between the heater passage 33 and the heater body 37 as shown in FIG. In this case, the temperature sensor 39 is disposed in a portion of the heater block 30 on the inner side of the heater passage 33 (on the heater body 37 side).
  • the inlet pump 7 When supplying a new medium from the medium supply source 2 to the new solution buffer tank 6, the inlet pump 7 is driven and the heater body 37 of the inlet heater 5 is driven. As a result, a new medium stored at a low temperature is supplied to the new solution buffer tank 6 via the inlet heater 5. A new culture medium is heated to a desired temperature when passing through the inlet heater 5.
  • the flow rate of the culture medium at this time is, for example, 15 mL / min.
  • the medium supplied from the medium supply source 2 flows into the heater inlet 31 of the inlet heater 5 and passes through the heater passage 33. Since the tube member 35 constituting the heater passage 33 is inserted into the spiral groove 34 of the heater block 30, the medium passing through the heater passage 33 faces downward (heater outlet 32) in the outer periphery of the heater block 30. Flowing in a spiral. During this time, since the heater main body 37 is driven, heat generated from the heater main body 37 is transmitted to the medium passing through the heater passage 33 via the heater block 30. In particular, since the culture medium flows spirally, the heat transfer area where the culture medium can receive heat from the heater block 30 is increased. As a result, heat is efficiently transferred from the heater block 30 to the medium, and the medium is efficiently heated to a desired temperature.
  • the temperature sensor 39 provided in the lower part 30b of the heater block 30 measures the temperature of the heater block 30 on the heater outlet 32 side.
  • the heater main body 37 is stopped to prevent the medium from being overheated.
  • the heater body 37 is driven to heat the heater block 30.
  • the culture medium passing through the heater passage 33 is heated, and the temperature of the culture medium reaching the heater outlet 32 becomes a desired temperature.
  • the inlet heater 5 according to the present embodiment can raise the temperature of the medium flowing from the heater inlet 31 to a desired temperature before reaching the heater outlet 32 at a low temperature.
  • the temperature of the medium that has reached the heater outlet 32 can be affected by various parameters.
  • Such parameters mainly include the diameter, length, and material of the heater block 30, the diameter of the tube member 35 of the heater passage 33, the number of turns, the amount of heat generated by the heater body 37, the flow rate of the culture medium, and the like.
  • the number of turns of the tube member 35 sufficient heat can be transferred from the heater block 30 to the medium passing through the heater passage 33, and the temperature of the medium is desired before reaching the heater outlet 32.
  • the temperature can be increased to
  • the culture medium that has reached the heater outlet 32 flows out of the heater outlet 32 and is supplied to the buffer tank 6 for new solution.
  • the medium that has passed through the heater passage 33 of the inlet heater 5 is smoothly discharged from the heater outlet 32. That is, since the heater inlet 31 is provided in the upper part 30 a of the heater block 30 and the heater outlet 32 is provided in the lower part 30 b of the heater block 30, the heater passage 33 formed in a spiral shape has the heater inlet 31. To the heater outlet 32 continuously inclining downward. For this reason, it can suppress that a culture medium remains in the heater channel
  • the medium discharged from the inlet heater 5 is supplied to the new solution buffer tank 6 and stored.
  • bubbles are removed from the stored medium. That is, since the culture medium stored in the buffer tank 6 for new solution is at a high temperature, dissolved gas and minute bubbles in the culture medium appear and expand and are likely to float. This effectively removes bubbles from the culture medium.
  • the second inlet opening / closing valve 9 and the outlet opening / closing valve 12 are opened, and the medium can be circulated from the buffer tank 6 for fresh solution to the culture vessel 100.
  • the outlet pump 10 is driven, the old medium in the container passage 104 is drawn out, and flows out from the container outlet 105.
  • the old medium is drawn out from the culture vessel 100 and discharged.
  • a new medium stored in the buffer tank 6 for fresh solution flows into the container passage 104 via the container inlet 103 (see FIGS. 2 and 3) of the culture container 100, and the old medium in the container passage 104
  • the medium is drained so as to be pushed into the new medium. In this way, the container passage 104 is filled with a new medium, and the medium in the container passage 104 is exchanged.
  • the heater passage 33 is cleaned using a cleaning liquid.
  • the cleaning on-off valve 15 is opened and the second inlet on-off valve 9 is closed.
  • the cleaning liquid from the cleaning liquid supply source 13 is supplied to the heater inlet 31 of the inlet heater 5, passes through the heater passage 33, and travels toward the heater outlet 32.
  • the flow rate of the cleaning liquid at this time is, for example, 30 mL / min.
  • the heater passage 33 is cleaned by the cleaning liquid that passes therethrough.
  • the cleaning liquid that has reached the heater outlet 32 is supplied to and stored in the new liquid buffer tank 6.
  • the second inlet opening / closing valve 9 is opened, and the cleaning liquid stored in the new liquid buffer tank 6 flows downstream of the second inlet opening / closing valve 9. It is discharged from a solution discharge line (not shown) provided.
  • the cleaning liquid that has passed through the heater passage 33 of the inlet heater 5 is smoothly discharged from the heater outlet 32. That is, since the heater inlet 31 is provided in the upper part 30 a of the heater block 30 and the heater outlet 32 is provided in the lower part 30 b of the heater block 30, the heater passage 33 formed in a spiral shape has the heater inlet 31. To the heater outlet 32 continuously inclining downward. For this reason, it is possible to prevent the cleaning liquid from remaining in the heater passage 33.
  • a cleaning liquid may remain in the heater passage 33. Therefore, in order to further prevent the cleaning liquid from remaining in the heater passage 33, it is preferable to purge the cleaning liquid that may remain in the heater passage 33 after cleaning.
  • the gas on-off valve 17 is opened and the second inlet on-off valve 9 is closed.
  • the compressed gas from the gas supply source 16 is supplied to the heater inlet 31 of the inlet heater 5, passes through the heater passage 33, and travels toward the heater outlet 32.
  • the flow rate of the compressed air at this time is, for example, 30 mL / min.
  • the cleaning liquid remaining in the heater passage 33 is purged by the compressed gas, discharged from the heater passage 33 and supplied to the new liquid buffer tank 6. Since the space in the new solution buffer tank 6 communicates with the surrounding atmosphere through the vent portion, the compressed gas can be continuously supplied to the inlet heater 5.
  • the spiral heater passage 33 is continuously inclined downward from the heater inlet 31 to the heater outlet 32, the cleaning liquid purged by the compressed air smoothly flows to the heater outlet 32. Can reach. For this reason, the cleaning liquid in the heater passage 33 can be more reliably discharged from the inlet heater 5.
  • the cleaning liquid supplied to the new liquid buffer tank 6 can be discharged from a solution discharge line (not shown) provided downstream by opening the second inlet on-off valve 9.
  • the heater passage 33 through which the medium from the heater inlet 31 toward the heater outlet 32 passes is formed in a spiral shape around the central axis X of the cylindrical heater block 30. Yes.
  • the length of contact between the heater passage 33 and the heater block 30 can be increased, and the medium passing through the heater passage 33 is sufficiently heated from the heater block 30 to the medium before reaching the heater outlet 32. Can be communicated.
  • the culture medium can be heated while passing through the heater passage 33, and the time for heating the culture medium can be shortened.
  • the central axis X of the heater block 30 is along the vertical direction. Accordingly, the heater passage 33 can be continuously inclined downward, and the medium can be prevented from remaining in the heater passage 33 when the medium is discharged, and the washing liquid can be prevented from remaining after washing. . In particular, when the cleaning liquid remaining in the heater passage 33 after cleaning is purged, the cleaning liquid can smoothly reach the heater outlet 32 and the cleaning liquid remaining in the heater passage 33 can be further suppressed.
  • the heater inlet 31 of the inlet heater 5 is provided in the upper part 30 a of the heater block 30, and the heater outlet 32 is provided in the lower part 30 b of the heater block 30.
  • the heater passage 33 can be inclined downward continuously from the heater inlet 31 toward the heater outlet 32.
  • the cleaning liquid or the compressed air may be introduced from the heater inlet 31, and the direction of the culture medium and the flow of the cleaning liquid and the compressed gas The direction of flow can be the same direction. In this case, it can suppress that the structure of the culture system 1 becomes complicated.
  • the heater passage 33 is constituted by the tube member 35 inserted into the spiral groove 34 provided in the heater block 30. Accordingly, the spiral heater passage 33 can be easily formed and the heater passage 33 can be easily replaced.
  • the tube member 35 of the heater passage 33 is pressed from the wall surface 34 a of the spiral groove 34. Thereby, the heat transfer resistance between the heater block 30 and the tube member 35 can be reduced, and the heat transfer efficiency from the heater block 30 to the tube member 35 can be improved.
  • the tube member 35 of the heater passage 33 is pressed from the outer peripheral side by the pressing tube 36. Thereby, the heat transfer resistance between the heater block 30 and the tube member 35 can be further reduced, and the heat transfer efficiency from the heater block 30 to the tube member 35 can be further improved.
  • the heater body 37 extends from the heater inlet 31 to the heater outlet 32 along the central axis X of the heater block 30 and is concentrically disposed in the heater passage 33. ing.
  • the distance between the heater main body 37 and each point of the heater passage 33 can be equalized, and heat can be evenly transmitted from the heater main body 37 to each part of the heater passage 33. For this reason, it can prevent that the culture medium which passes the heater channel
  • the heater body 37 is controlled based on the temperature of the heater block 30 measured by the temperature sensor 39. Thereby, it is possible to prevent the medium passing through the heater passage 33 from being overheated and to suppress the deterioration of the medium.
  • the temperature sensor 39 is disposed in the heater block 30 on the heater outlet 32 side, the heater outlet 32 on the heater passage 33 where the temperature can be increased. The temperature of the culture medium in this part can be measured, and the heater body 37 can be controlled based on this temperature. For this reason, it can prevent further that a culture medium is overheated, and can suppress further deterioration of a culture medium.
  • the temperature sensor 39 is disposed between the heater passage 33 and the heater main body 37, the temperature sensor 39 can measure the temperature in the heater block 30 on the inner side (the heater main body 37 side) of the heater passage 33.
  • the heater body 37 can be controlled based on this temperature. For this reason, it can prevent further that a culture medium is overheated, and can suppress further deterioration of a culture medium.
  • the medium heated by the inlet heater 5 is stored in the buffer tank 6 for new solution.
  • bubbles can be removed from the stored medium. That is, since the culture medium stored in the buffer tank 6 for new solution is at a high temperature, dissolved gas and minute bubbles in the culture medium appear and expand, and the bubbles can be efficiently removed.
  • the inlet pump 7 is provided between the culture medium supply source 2 and the inlet heater 5. Thereby, it is possible to suppress the formation of bubbles in the culture medium in the heater passage 33 due to an increase in the pressure of the culture medium passing through the heater passage 33 of the inlet heater 5. For this reason, heat can be efficiently transmitted from the heater block 30 to the culture medium.
  • the heater inflow port 31 was provided in the upper part 30a of the heater block 30
  • the heater outflow port 32 was provided in the lower part 30b of the heater block 30 was demonstrated.
  • the present invention is not limited to this, and the heater inlet 31 may be provided in the lower part 30 b of the heater block 30, and the heater outlet 32 may be provided in the upper part 30 a of the heater block 30.
  • the cleaning liquid or the compressed air may be introduced from the heater outlet 32.
  • the present invention is not limited to this, and the tube member 35 may not be pressed from the wall surface 34 a of the spiral groove 34 as long as heat transfer efficiency from the heater block 30 to the tube member 35 can be ensured.
  • the present invention is not limited to this, and if the heat transfer efficiency from the heater block 30 to the tube member 35 can be ensured and the tube member 35 inserted into the spiral groove 34 can be prevented from falling off, the pressure can be reduced.
  • the tube 36 may not be provided.
  • the pressing tube 36 may not have heat shrinkability, and may be formed using, for example, a material having elasticity.
  • the inner diameter of the pressing tube 36 may be smaller than the outer diameter of the heater block 30 and may be attached to the outer peripheral surface of the heater block 30 while being elastically deformed so as to expand.
  • the new solution buffer tank 6 may have a heater (not shown) for heating the stored medium.
  • the stored medium can be maintained at a desired temperature. Further, even when the temperature of the medium discharged from the inlet heater 5 is not raised to a desired temperature, the temperature is raised to the desired temperature while being stored in the new solution buffer tank 6. Can do. Even in this case, since the low temperature medium can be brought close to a desired temperature by the inlet heater 5, it is possible to contribute to shortening the time for heating the medium.
  • the present invention is not limited to the above-described embodiments and modification examples as they are, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage. Further, various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the above-described embodiments and modifications. You may delete a some component from all the components shown by embodiment and a modification. Furthermore, constituent elements over different embodiments and modifications may be combined as appropriate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Sustainable Development (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • Cell Biology (AREA)
  • Virology (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

The culture medium heating device according to the present invention comprises: a cylindrical device body having a central axis along the vertical direction; a device inlet which is provided in one of an upper part and a lower part of the device body, and into which a culture medium flows; a device outlet which is provided in the other of the upper part and the lower part of the device body, and out of which the culture medium flows; and a device channel through which the culture medium passes from the device inlet toward the device outlet. Culture medium passing through the device channel is heated by a heating unit. The device channel is formed in a spiral shape centered on the central axis of the device body.

Description

培地加熱装置および培養システムMedium heating device and culture system
 本発明は、培地加熱装置および培養システムに関する。 The present invention relates to a medium heating apparatus and a culture system.
 近年、細胞培養により、目的とする組織や臓器を人工的に作成する再生医療の研究開発が進められている。細胞の培養操作等を行うためには、所定の基準、例えばGMP(Good Manufacturing Practice)を充足した培養システムが用いられている。 In recent years, research and development of regenerative medicine that artificially creates target tissues and organs by cell culture has been promoted. In order to perform a cell culture operation, a culture system satisfying a predetermined standard, for example, GMP (Good Manufacturing Practice) is used.
 培養システムでは、通常、培養容器内の培養環境が徐々に悪化することを防止するために、培養容器内の液体の培地(培養液とも言う)を定期的に交換する。この際、新しい培地を培養容器に供給することで、培養容器内の古い培地を培養容器から押し出して排出し、培養容器内の培地の交換を行っている。 In a culture system, in order to prevent the culture environment in the culture vessel from gradually deteriorating, the liquid medium (also referred to as culture solution) in the culture vessel is regularly replaced. At this time, by supplying a new medium to the culture container, the old medium in the culture container is pushed out from the culture container and discharged, and the medium in the culture container is replaced.
 ところで、培養容器に供給される前の新しい培地は、成分の劣化を防止するために保冷庫等において約4℃の低温で保管されている。一方、培養容器内で細胞培養を行う際の培地は約37℃の高温に維持される。そこで、新しい培地を培養容器に供給する前に加熱するように構成された培養装置が知られている(例えば、特許文献1および2参照)。このような培養装置では、新しい培地がタンクまたは培地供給管(以下、タンク等と記す)で一旦貯留され、ヒータによって加熱される。そして、高温になった培地が、培地交換の際に培養容器に供給される。 By the way, the new medium before being supplied to the culture container is stored at a low temperature of about 4 ° C. in a cool box or the like in order to prevent deterioration of the components. On the other hand, the medium for cell culture in the culture vessel is maintained at a high temperature of about 37 ° C. Therefore, a culture apparatus configured to heat a new medium before supplying it to the culture vessel is known (see, for example, Patent Documents 1 and 2). In such a culture apparatus, a new medium is temporarily stored in a tank or a medium supply pipe (hereinafter referred to as a tank or the like) and heated by a heater. And the culture medium which became high temperature is supplied to a culture container in the case of medium replacement | exchange.
特開2015-109877号公報Japanese Patent Laid-Open No. 2015-109877 特開2015-213462号公報Japanese Patent Laid-Open No. 2015-213462
 しかしながら、約4℃で供給された培地を約37℃まで加熱するためには、相当の時間が費やされる。高温になった培地の成分は劣化しやすくなるため、培地を加熱するための時間は短い方が好ましい。 However, it takes a considerable amount of time to heat the medium supplied at about 4 ° C. to about 37 ° C. Since the components of the medium at a high temperature are likely to deteriorate, it is preferable that the time for heating the medium is short.
 一方、培地を排出した後のタンク等に培地が残存していると、次に供給される培地の成分濃度が変動し得る。また、洗浄液(例えば、純水)を用いて洗浄した後にタンク等に洗浄液が残存している場合においても、その後に供給される新しい培地の成分濃度が変動し得る。 On the other hand, if the medium remains in the tank or the like after the medium is discharged, the component concentration of the medium to be supplied next may fluctuate. In addition, even when the cleaning liquid remains in the tank or the like after cleaning with a cleaning liquid (for example, pure water), the component concentration of a new culture medium supplied thereafter may vary.
 本発明は、このような点を考慮してなされたものであり、培地を加熱する時間を短縮することができるとともに、液体が残存することを防止できる培地加熱装置および培養システムを提供する。 The present invention has been made in consideration of such points, and provides a medium heating apparatus and a culture system that can shorten the time for heating the medium and prevent the liquid from remaining.
 本発明は、培地供給源から培養容器に供給される細胞培養用の培地を加熱する培地加熱装置であって、鉛直方向に沿う中心軸線を有する円筒状の装置本体と、前記装置本体の上部および下部のうちの一方に設けられ、前記培地が流入する装置流入口と、前記装置本体の上部および下部のうちの他方に設けられ、前記培地が流出する装置流出口と、前記装置流入口から前記装置流出口に向かう前記培地が通過する装置通路と、前記装置通路を通過する前記培地を加熱する加熱部と、を備え、前記装置通路は、前記装置本体の前記中心軸線を中心に螺旋状に形成されている、培地加熱装置、を提供する。 The present invention is a culture medium heating apparatus for heating a culture medium for cell culture supplied from a culture medium supply source to a culture vessel, a cylindrical apparatus body having a central axis along the vertical direction, an upper part of the apparatus body, A device inlet provided in one of the lower portions, into which the culture medium flows, a device outlet provided in the other of the upper and lower portions of the device main body, through which the culture medium flows out, and from the device inlet. An apparatus passage through which the culture medium toward the apparatus outlet passes, and a heating unit that heats the culture medium that passes through the apparatus passage, and the apparatus passage is formed in a spiral shape around the central axis of the apparatus main body. A formed medium heating device is provided.
 上述した培地加熱装置において、前記装置流入口は、前記装置本体の上部に設けられ、 前記装置流出口は、前記装置本体の下部に設けられている、ようにしてもよい。 In the above-described culture medium heating apparatus, the apparatus inlet may be provided in an upper part of the apparatus main body, and the apparatus outlet may be provided in a lower part of the apparatus main body.
 上述した培地加熱装置において、前記装置本体の外周部に、螺旋溝が設けられ、前記螺旋溝は、前記装置本体の前記中心軸線を中心に螺旋状に形成され、前記装置通路は、前記螺旋溝に挿入されたチューブ部材により構成されている、ようにしてもよい。 In the culture medium heating apparatus described above, a spiral groove is provided on an outer peripheral portion of the apparatus main body, the spiral groove is formed in a spiral shape around the central axis of the apparatus main body, and the apparatus passage includes the spiral groove. It may be constituted by a tube member inserted in
 上述した培地加熱装置において、前記チューブ部材は、前記螺旋溝の壁面から押圧されている、ようにしてもよい。 In the culture medium heating apparatus described above, the tube member may be pressed from the wall surface of the spiral groove.
 上述した培地加熱装置おいて、前記チューブ部材を外周側から押圧する押圧部材を更に備える、ようにしてもよい。 The medium heating apparatus described above may further include a pressing member that presses the tube member from the outer peripheral side.
 上述した培地加熱装置において、前記加熱部は、前記装置本体の前記中心軸線に沿って、前記装置流入口から前記装置流出口にわたって延びているとともに、前記装置通路に同心状に配置されている、ようにしてもよい。 In the culture medium heating apparatus described above, the heating unit extends from the apparatus inlet to the apparatus outlet along the central axis of the apparatus body, and is concentrically disposed in the apparatus passage. You may do it.
 上述した培地加熱装置において、前記装置本体の温度を計測する温度計測部を更に備える、ようにしてもよい。 The above-described culture medium heating apparatus may further include a temperature measurement unit that measures the temperature of the apparatus main body.
 上述した培地加熱装置において、前記温度計測部は、前記装置本体のうち前記装置流出口の側の部分に配置されている、ようにしてもよい。 In the culture medium heating apparatus described above, the temperature measurement unit may be arranged in a part of the apparatus main body on the apparatus outlet side.
 上述した培地加熱装置において、前記温度計測部は、前記装置通路と前記加熱部との間に配置されている、ようにしてもよい。 In the culture medium heating device described above, the temperature measurement unit may be arranged between the device passage and the heating unit.
 また、本発明は、新しい培地を供給する培地供給源と、培養容器を保持可能な容器保持部と、前記培地供給源と前記容器保持部との間に設けられ、前記培地供給源から前記培養容器に供給される前記培地を加熱する、上述した培地加熱装置と、を備えた、培養システム、を提供する。 In addition, the present invention is provided between a culture medium supply source for supplying a new culture medium, a container holding unit capable of holding a culture container, and the culture medium supply source and the container holding unit. There is provided a culture system comprising the above-described culture medium heating device for heating the culture medium supplied to a container.
 上述した培養システムにおいて、前記培地加熱装置と前記容器保持部との間に設けられ、前記培地加熱装置により加熱された前記培地を貯留するバッファタンクを更に備える、ようにしてもよい。 The culture system described above may further include a buffer tank that is provided between the medium heating device and the container holding unit and stores the medium heated by the medium heating device.
 上述した培養システムにおいて、前記培地供給源と前記培地加熱装置との間に設けられ、前記培地供給源から前記培地加熱装置に前記培地を供給する培地供給ポンプを更に備える、ようにしてもよい。 The culture system described above may further include a culture medium supply pump that is provided between the culture medium supply source and the culture medium heating apparatus and supplies the culture medium from the culture medium supply source to the culture medium heating apparatus.
 上述した培養システムにおいて、前記培地供給ポンプおよび前記培地加熱装置の前記加熱部を制御する制御部を更に備え、前記培地加熱装置は、前記装置本体の温度を計測する温度計測部を有し、前記制御部は、前記培地供給ポンプを駆動している間、前記温度計測部により計測された前記装置本体の温度に基づいて、前記培地供給ポンプおよび前記加熱部を制御する、ようにしてもよい。 In the culture system described above, the culture system further includes a control unit that controls the heating unit of the culture medium supply pump and the culture medium heating device, and the culture medium heating device includes a temperature measurement unit that measures the temperature of the device main body, The controller may control the medium supply pump and the heating unit based on the temperature of the apparatus main body measured by the temperature measurement unit while driving the medium supply pump.
 上述した培養システムにおいて、前記培地加熱装置の前記装置本体の上部に設けられた前記装置流入口または前記装置流出口に洗浄液を供給する洗浄液供給源を更に備える、ようにしてもよい。 The culture system described above may further include a cleaning liquid supply source that supplies a cleaning liquid to the apparatus inlet or the apparatus outlet provided in the upper part of the apparatus main body of the medium heating apparatus.
 上述した培養システムにおいて、前記培地加熱装置の前記装置本体の上部に設けられた前記装置流入口または前記装置流出口に、前記洗浄液をパージ可能な気体を供給する気体供給源を更に備える、ようにしてもよい。 In the culture system described above, the apparatus further includes a gas supply source that supplies a gas capable of purging the cleaning liquid to the apparatus inlet or the apparatus outlet provided in the upper part of the apparatus main body of the medium heating apparatus. May be.
 本発明によれば、培地を加熱する時間を短縮することができるとともに、液体が残存することを防止できる。 According to the present invention, the time for heating the culture medium can be shortened and the liquid can be prevented from remaining.
図1は、本実施の形態における培養システムの概略構成を示す図である。FIG. 1 is a diagram showing a schematic configuration of a culture system in the present embodiment. 図2は、図1に示す培養容器を示す平面図である。FIG. 2 is a plan view showing the culture vessel shown in FIG. 図3は、図2に示す培養容器を示す断面図である。FIG. 3 is a cross-sectional view showing the culture container shown in FIG. 図4は、図1のインレットヒータの配置を示す正面図である。FIG. 4 is a front view showing the arrangement of the inlet heater of FIG. 図5は、図4のインレットヒータを示す断面図である。FIG. 5 is a cross-sectional view showing the inlet heater of FIG. 図6は、図5のインレットヒータを示す部分断面図である。6 is a partial cross-sectional view showing the inlet heater of FIG.
 以下、図面を参照して本発明の一の実施の形態について説明する。なお、本明細書に添付する図面においては、図示の理解のしやすさの便宜上、適宜縮尺および縦横の寸法比等を、実物のそれらから変更し誇張してある。 Hereinafter, an embodiment of the present invention will be described with reference to the drawings. Note that, in the drawings attached to the present specification, for the sake of easy understanding of the drawings, the scale and the vertical / horizontal dimension ratio are appropriately changed and exaggerated from those of the actual ones.
 本実施の形態による培養システムは、あらゆる細胞を培養するために用いることができ、(ヒト)iPS細胞、(ヒト)ES細胞等の多能性幹細胞、骨髄間質細胞(MSC)等の軟骨細胞、樹状細胞等の様々な細胞を培養する際に用いることができる。本実施の形態では、以下、iPS細胞を培養する用途を主に想定して説明するが、これはあくまでも一例である。 The culture system according to the present embodiment can be used for culturing all types of cells, including pluripotent stem cells such as (human) iPS cells and (human) ES cells, and chondrocytes such as bone marrow stromal cells (MSC). It can be used when culturing various cells such as dendritic cells. In the present embodiment, the following description will be given mainly assuming the use of culturing iPS cells, but this is only an example.
 まず、図1を参照して、本発明の実施の形態に係る培養システムの概略構成を説明する。 First, a schematic configuration of a culture system according to an embodiment of the present invention will be described with reference to FIG.
 図1に示すように、培養システム1は、新しい培地を供給する培地供給源2と、細胞を培養するための培養容器100を保持可能な容器保持部3と、容器保持部3に保持された培養容器100から排出される培地の成分を分析する培地分析部4と、を備えている。 As shown in FIG. 1, the culture system 1 is held in a medium supply source 2 that supplies a new medium, a container holding unit 3 that can hold a culture container 100 for culturing cells, and a container holding unit 3. A medium analysis unit 4 that analyzes the components of the medium discharged from the culture vessel 100.
 培地供給源2は、培養容器100に供給するための細胞培養用の新しい培地を保管する。培地供給源2は、例えば保冷庫内に設けられており、保管時には、培地は低温(例えば約4℃)で保管され、成分の劣化を防止している。 The medium supply source 2 stores a new medium for cell culture to be supplied to the culture vessel 100. The culture medium supply source 2 is provided, for example, in a cold storage box, and during storage, the culture medium is stored at a low temperature (for example, about 4 ° C.) to prevent deterioration of components.
 培地供給源2と容器保持部3との間に、インレットヒータ5(培地加熱装置)および新液用バッファタンク6がこの順に設けられている。 Between the culture medium supply source 2 and the container holding unit 3, an inlet heater 5 (medium heating apparatus) and a new solution buffer tank 6 are provided in this order.
 インレットヒータ5は、培地供給源2から培養容器100に供給される培地を加熱して、培地の温度を高温(例えば、約37℃)にする。加熱された培地は、インレットヒータ5から排出されて、新液用バッファタンク6に供給される。インレットヒータ5の詳細は後述する。なお、培地供給源2とインレットヒータ5との間には、培地供給源2からインレットヒータ5を介して新液用バッファタンク6に培地を供給するためのインレットポンプ7(培地供給ポンプ)が設けられている。なお、培地を供給するためのポンプ(培地供給ポンプ)は、このインレットポンプ7で構成されることに限られることはない。例えば、培地供給源2からのラインと洗浄液供給源13(後述)からのラインとの合流点よりも下流側であって、インレットヒータ5よりも上流側に共用ポンプ(図示せず)を設けて、この共用ポンプに培地供給機能を持たせてもよい。この場合、共用ポンプは、洗浄液供給機能も持たせることができ、後述する洗浄ポンプ14を省略することができる。 The inlet heater 5 heats the culture medium supplied from the culture medium supply source 2 to the culture vessel 100 to raise the temperature of the culture medium (for example, about 37 ° C.). The heated medium is discharged from the inlet heater 5 and supplied to the new solution buffer tank 6. Details of the inlet heater 5 will be described later. An inlet pump 7 (medium supply pump) is provided between the culture medium supply source 2 and the inlet heater 5 to supply a culture medium from the culture medium supply source 2 to the new liquid buffer tank 6 via the inlet heater 5. It has been. The pump for supplying the culture medium (medium supply pump) is not limited to the inlet pump 7. For example, a common pump (not shown) is provided downstream from the junction of the line from the culture medium supply source 2 and the line from the cleaning liquid supply source 13 (described later) and upstream from the inlet heater 5. The common pump may have a medium supply function. In this case, the shared pump can also have a cleaning liquid supply function, and a cleaning pump 14 described later can be omitted.
 新液用バッファタンク6は、インレットヒータ5により加熱された培地を貯留し、培地中の気泡を除去する。新液用バッファタンク6は、培地を貯留する内部空間と、ベント部(いずれも図示せず)と、を有しており、新液用バッファタンク6の内部空間は新液用バッファタンク6の周囲雰囲気(培養システム1のチャンバ内の清浄な雰囲気)とベント部を介して連通している。このことにより、新液用バッファタンク6に貯留されている培地に気泡が混入している場合には、その気泡が浮き上がって培地から除去される。すなわち、新しい培地に含まれる溶存気体や微小な気泡は、高温になったことによって発現し膨張するため、内部空間に貯留された培地から気泡を効率良く除去することができる。また、ベント部を有していることにより、新液用バッファタンク6に対する培地の供給および排出をスムースにさせることができる。なお、ベント部にはベントフィルター(図示せず)が設けられており、新液用バッファタンク6の内部空間への異物の混入防止を図っている。 The new solution buffer tank 6 stores the medium heated by the inlet heater 5 and removes bubbles in the medium. The new solution buffer tank 6 has an internal space for storing the culture medium and a vent portion (both not shown). The internal space of the new solution buffer tank 6 is the same as that of the new solution buffer tank 6. It communicates with the surrounding atmosphere (clean atmosphere in the chamber of the culture system 1) via the vent portion. As a result, when bubbles are mixed in the medium stored in the buffer tank 6 for fresh solution, the bubbles are lifted and removed from the medium. That is, the dissolved gas and minute bubbles contained in the new medium are expressed and expanded when the temperature becomes high, and thus the bubbles can be efficiently removed from the medium stored in the internal space. In addition, since the vent portion is provided, it is possible to smoothly supply and discharge the culture medium to and from the fresh solution buffer tank 6. In addition, a vent filter (not shown) is provided in the vent portion to prevent foreign matter from entering the internal space of the new liquid buffer tank 6.
 新液用バッファタンク6の内部空間における培地の貯留容量は、培養容器100内の培地を交換する際に培養容器100内の古い培地を押し出し新しい培地に完全に置換できるように、培養容器100の容量よりも大きくすることが好適である。例えば、新液用バッファタンク6の培地の貯留容量は、培養容器100の容量が18mLである場合には、これよりも大きい30mLとすることが一例として挙げられる。 The storage capacity of the culture medium in the internal space of the new solution buffer tank 6 is such that when the culture medium in the culture container 100 is replaced, the old culture medium in the culture container 100 can be pushed out and completely replaced with a new culture medium. It is preferable to make it larger than the capacity. For example, when the capacity of the culture vessel 100 is 18 mL, the medium storage capacity of the new solution buffer tank 6 may be 30 mL, which is larger than this.
 インレットポンプ7とインレットヒータ5との間には、第1インレット開閉弁8が設けられている。この第1インレット開閉弁8は、培地供給源2から新液用バッファタンク6への培地の供給を制御している。新液用バッファタンク6と容器保持部3との間には、第2インレット開閉弁9が設けられている。第2インレット開閉弁9は、新液用バッファタンク6から培養容器100への培地の供給を制御している。この第2インレット開閉弁9の下流には、図示しない溶液排出ラインが設けられていてもよい。なお、新液用バッファタンク6は、容器保持部3よりも高い位置に配置されており、新液用バッファタンク6から容器保持部3に保持された培養容器100への培地の供給が容易になっている。 Between the inlet pump 7 and the inlet heater 5, a first inlet on-off valve 8 is provided. The first inlet open / close valve 8 controls the supply of the culture medium from the culture medium supply source 2 to the fresh solution buffer tank 6. A second inlet on-off valve 9 is provided between the new liquid buffer tank 6 and the container holding unit 3. The second inlet open / close valve 9 controls the supply of the medium from the fresh solution buffer tank 6 to the culture vessel 100. A solution discharge line (not shown) may be provided downstream of the second inlet opening / closing valve 9. The new solution buffer tank 6 is disposed at a higher position than the container holding unit 3, and the medium can be easily supplied from the new solution buffer tank 6 to the culture vessel 100 held in the container holding unit 3. It has become.
 容器保持部3は、培養容器100を保持するように構成されている。培養システム1が、細胞培養を行うインキュベータ(図示せず)を組み込んでいる場合には、上述した培養システム1のチャンバ内にインキュベータが配置され、このインキュベータの筐体内に、容器保持部3が設けられる。この筐体は、内部の雰囲気の温度、湿度および気体濃度の少なくとも一つを調整するように構成されている。例えば、容器保持部3に保持されている培養容器100の温度が約37℃になるように筐体内の雰囲気の温度が調整される。他方、培養システム1とインキュベータが離れて設置されている場合には、容器保持部3は、インキュベータから容器保持部3に搬送された培養容器100を、培地交換を行うために一時的に保持するためのものになる。この場合の容器保持部3に保持されている培養容器100は、例えば培養システム1のチャンバ内において滅菌空間を維持する筐体内に収容される。培養容器100の詳細は後述する。 The container holding unit 3 is configured to hold the culture container 100. When the culture system 1 incorporates an incubator for cell culture (not shown), the incubator is disposed in the chamber of the culture system 1 described above, and the container holding unit 3 is provided in the casing of the incubator. It is done. This housing is configured to adjust at least one of the temperature, humidity, and gas concentration of the internal atmosphere. For example, the temperature of the atmosphere in the housing is adjusted so that the temperature of the culture vessel 100 held in the vessel holding unit 3 is about 37 ° C. On the other hand, when the culture system 1 and the incubator are installed apart from each other, the container holding unit 3 temporarily holds the culture container 100 transported from the incubator to the container holding unit 3 in order to exchange the medium. For that. In this case, the culture container 100 held by the container holding unit 3 is accommodated in a housing that maintains a sterilization space in the chamber of the culture system 1, for example. Details of the culture vessel 100 will be described later.
 容器保持部3と培地分析部4の間には、アウトレットポンプ10、培地フィルター11およびアウトレット開閉弁12が、この順に設けられている。このうちアウトレットポンプ10は、培養容器100から細胞培養後の培地を引き出し、培地分析部4に培地を供給する。この際、培養容器100からの培地の引き出しと同時に、新液用バッファタンク6から培養容器100への新しい培地の供給が促される。このことにより、培養容器100に新しい培地が供給され、培地交換がなされる。培地フィルター11は、培養容器100から排出される培地に含まれる固形物(例えば、培養していた細胞など)を培地から除去するように構成されている。アウトレット開閉弁12は、培養容器100から培地分析部4への培地の供給を制御するように構成されている。 Between the container holding unit 3 and the medium analysis unit 4, an outlet pump 10, a medium filter 11, and an outlet opening / closing valve 12 are provided in this order. Among these, the outlet pump 10 pulls out the culture medium after cell culture from the culture vessel 100 and supplies the culture medium to the culture medium analysis unit 4. At this time, the supply of a new medium from the fresh solution buffer tank 6 to the culture container 100 is prompted simultaneously with the withdrawal of the medium from the culture container 100. As a result, a new medium is supplied to the culture vessel 100 and the medium is exchanged. The culture medium filter 11 is configured to remove solids (for example, cultured cells) contained in the culture medium discharged from the culture container 100 from the culture medium. The outlet on-off valve 12 is configured to control the supply of the medium from the culture vessel 100 to the medium analysis unit 4.
 本実施の形態による培養システム1は、洗浄液供給源13を更に備えている。洗浄液供給源13は、インレットヒータ5のヒータ流入口31(後述)に供給するための洗浄液(例えば、純水)を保管する。このヒータ流入口31に供給された洗浄液は、インレットヒータ5のヒータ通路33(後述)を通過して新液用バッファタンク6に供給され、インレットヒータ5および新液用バッファタンク6が洗浄される。洗浄液供給源13とインレットヒータ5との間には、洗浄ポンプ14および洗浄開閉弁15がこの順に設けられている。このうち洗浄ポンプ14は、洗浄液供給源13からインレットヒータ5および新液用バッファタンク6に洗浄液を供給するように構成されている。洗浄開閉弁15は、洗浄液供給源13からインレットヒータ5への洗浄液の供給を制御している。 The culture system 1 according to the present embodiment further includes a cleaning liquid supply source 13. The cleaning liquid supply source 13 stores a cleaning liquid (for example, pure water) to be supplied to a heater inlet 31 (described later) of the inlet heater 5. The cleaning liquid supplied to the heater inlet 31 passes through a heater passage 33 (described later) of the inlet heater 5 and is supplied to the new liquid buffer tank 6 so that the inlet heater 5 and the new liquid buffer tank 6 are cleaned. . A cleaning pump 14 and a cleaning on / off valve 15 are provided in this order between the cleaning liquid supply source 13 and the inlet heater 5. Among these, the cleaning pump 14 is configured to supply the cleaning liquid from the cleaning liquid supply source 13 to the inlet heater 5 and the buffer tank 6 for new liquid. The cleaning on / off valve 15 controls the supply of cleaning liquid from the cleaning liquid supply source 13 to the inlet heater 5.
 また、培養システム1は、気体供給源16を更に備えている。気体供給源16は、インレットヒータ5のヒータ流入口31に圧縮気体(例えば、圧縮された清浄な空気)を供給する。このヒータ流入口31に供給された圧縮気体は、インレットヒータ5のヒータ通路33を通過して新液用バッファタンク6に供給され、インレットヒータ5内に残存し得る洗浄液がパージされる。気体供給源16とインレットヒータ5との間には、気体開閉弁17が設けられており、気体供給源16からインレットヒータ5への圧縮気体の供給を制御している。なお、気体供給源16には圧縮気体が貯留されており、その圧力によってインレットヒータ5に圧縮気体が供給される構成を気体供給源16が有しているが、インレットヒータ5に、洗浄液をパージ可能な気体を供給可能であれば、このような構成に限られることはない。 The culture system 1 further includes a gas supply source 16. The gas supply source 16 supplies compressed gas (for example, compressed clean air) to the heater inlet 31 of the inlet heater 5. The compressed gas supplied to the heater inlet 31 passes through the heater passage 33 of the inlet heater 5 and is supplied to the new liquid buffer tank 6, and the cleaning liquid that can remain in the inlet heater 5 is purged. A gas on-off valve 17 is provided between the gas supply source 16 and the inlet heater 5 to control the supply of compressed gas from the gas supply source 16 to the inlet heater 5. Note that the gas supply source 16 stores compressed gas, and the gas supply source 16 has a configuration in which the compressed gas is supplied to the inlet heater 5 by the pressure. The cleaning gas is purged into the inlet heater 5. As long as possible gas can be supplied, the configuration is not limited to this.
 図1に示すように、培養システム1は、制御部18を更に備えている。この制御部18は、上述した各開閉弁、ポンプおよびインレットヒータ5のヒータ本体37(後述)を制御するように構成されている。 As shown in FIG. 1, the culture system 1 further includes a control unit 18. The control unit 18 is configured to control each on-off valve, pump, and heater body 37 (described later) of the inlet heater 5 described above.
 次に、図2および図3を用いて、本実施の形態による培養容器100について説明する。 Next, the culture vessel 100 according to the present embodiment will be described with reference to FIGS.
 図2および図3に示すように、培養容器100は、容器本体101と、容器本体101の一面に貼り付けられた平板102と、を備えている。容器本体101は、培地(培地以外にも細胞が分散された懸濁液、剥離剤、リン酸緩衝生理食塩水(PBS)など)が流入される容器流入口103と、容器流入口103から流入した培地が通過する容器通路104と、容器通路104を通過した培地が流出される容器流出口105と、を有している。このうち容器流入口103は、上述した新液用バッファタンク6に連結され、容器流出口105は、培地分析部4に連結されている。 As shown in FIGS. 2 and 3, the culture vessel 100 includes a vessel body 101 and a flat plate 102 attached to one surface of the vessel body 101. The container body 101 includes a container inlet 103 into which a medium (a suspension in which cells are dispersed in addition to the medium, a release agent, phosphate buffered saline (PBS), etc.) is flowed, and a container inlet 103 A container passage 104 through which the culture medium passes, and a container outlet 105 through which the culture medium that has passed through the container passage 104 flows out. Among these, the container inlet 103 is connected to the above-described new solution buffer tank 6, and the container outlet 105 is connected to the culture medium analyzer 4.
 容器本体101の容器通路104は、容器本体101の平板102が貼り付けられた一面側に溝状に形成されている。容器通路104の口径(すなわち溝の深さ及び幅)は、一例として、2mm~4mmである。また、容器本体101の容器通路104は、平面視において蛇行する部分、すなわち直線部と折り返し部とが交互に接続された部分を有している。これにより、容器本体101を大型化させることなく、容器通路104の全長を延伸させて、細長状の容器通路104が形成されている。 The container passage 104 of the container body 101 is formed in a groove shape on the one surface side where the flat plate 102 of the container body 101 is attached. The diameter of the container passage 104 (that is, the depth and width of the groove) is, for example, 2 mm to 4 mm. Further, the container passage 104 of the container body 101 has a portion that meanders in plan view, that is, a portion in which straight portions and folded portions are alternately connected. Thereby, the full length of the container channel | path 104 is extended without enlarging the container main body 101, and the elongate container channel | path 104 is formed.
 図2および図3に示すように、容器通路104の通路底面104aには、容器通路104を通過する細胞が播種される複数の細胞播種領域106が、当該容器通路104に沿って並んで設けられている。本実施の形態では、容器通路104の通路底面104aには、細胞播種領域106と同心状に窪み107が凹設されている。 As shown in FIGS. 2 and 3, a plurality of cell seeding regions 106 in which cells passing through the container passage 104 are seeded are provided along the container passage 104 on the passage bottom surface 104 a of the container passage 104. ing. In the present embodiment, a recess 107 is provided concentrically with the cell seeding region 106 on the channel bottom surface 104 a of the container channel 104.
 このような培養容器100内の培地を交換する際には、アウトレットポンプ10が駆動されて、容器通路104内の古い培地が引き出されて容器流出口105から流出される。これに伴い、新液用バッファタンク6から供給される新しい培地が容器流入口103から容器通路104に流入される。この間、容器通路104内の古い培地は、新しい培地により押し出されるようにして容器流出口105から流出される。この場合、新しい培地と古い培地は、容器通路104に沿って流れるため、新しい培地と古い培地とが混ざることを防止できるとともに、古い培地を新しい培地に容易に交換することができる。 When exchanging the culture medium in the culture vessel 100, the outlet pump 10 is driven, and the old culture medium in the container passage 104 is drawn out and flows out from the container outlet 105. Along with this, a new culture medium supplied from the new solution buffer tank 6 flows into the container passage 104 from the container inlet 103. During this time, the old medium in the container passage 104 flows out of the container outlet 105 so as to be pushed out by the new medium. In this case, since the new medium and the old medium flow along the container passage 104, the new medium and the old medium can be prevented from being mixed, and the old medium can be easily replaced with the new medium.
 次に、図4乃至図6を用いて、本実施の形態によるインレットヒータ5について説明する。このインレットヒータ5は、図4に示すように、培養システム1のチャンバ内において縦置き配置されている。 Next, the inlet heater 5 according to this embodiment will be described with reference to FIGS. As shown in FIG. 4, the inlet heater 5 is arranged vertically in the chamber of the culture system 1.
 図4および図5に示すように、インレットヒータ5は、鉛直方向に沿う中心軸線Xを有する円筒状のヒータブロック30(装置本体)と、培地が流入するヒータ流入口31(装置流入口)と、培地が流出するヒータ流出口32(装置流出口)と、ヒータ流入口31からヒータ流出口32に向かう培地が通過するヒータ通路33(装置通路)と、を備えている。本実施の形態では、ヒータ流入口31がヒータブロック30の上部30a(好適には上端部)に設けられ、ヒータ流出口32がヒータブロック30の下部30b(好適には下端部)に設けられている。 As shown in FIGS. 4 and 5, the inlet heater 5 includes a cylindrical heater block 30 (apparatus main body) having a central axis X along the vertical direction, and a heater inlet 31 (apparatus inlet) through which a medium flows. And a heater outlet 32 (device outlet) through which the medium flows out, and a heater passage 33 (device passage) through which the medium from the heater inlet 31 toward the heater outlet 32 passes. In the present embodiment, the heater inlet 31 is provided at the upper portion 30a (preferably the upper end portion) of the heater block 30, and the heater outlet 32 is provided at the lower portion 30b (preferably the lower end portion) of the heater block 30. Yes.
 ヒータ通路33は、ヒータブロック30の外周部に配置されており、ヒータブロック30の中心軸線Xを中心に螺旋状に形成されている。このことにより、インレットヒータ5において、ヒータ通路33とヒータブロック30とが接触する長さを長くすることができ、ヒータ通路33とヒータブロック30との伝熱面積を増大させている。このため、ヒータ通路33を通過する培地がヒータ流出口32に達するまでに、ヒータブロック30から培地に十分に熱を伝えることが可能になっている。また、ヒータ流入口31がヒータブロック30の上部30aに設けられているとともにヒータ流出口32がヒータブロック30の下部30bに設けられているため、螺旋状に形成されたヒータ通路33は、ヒータ流入口31からヒータ流出口32にわたって連続状に下方に傾斜する。このことにより、ヒータ通路33内に、培地の排出時には培地が残存することを抑制できるとともに、後述する洗浄後には洗浄液が残存することを抑制できる。なお、本実施の形態では、ヒータブロック30には単一(1系統)のヒータ通路33が設けられているが、これに限られることはない。例えば、複数のヒータ通路33が複数条の螺旋を形成するように設けられていてもよい。この場合には、互いに異なる系統の培地を別々に加熱することができる。 The heater passage 33 is disposed on the outer periphery of the heater block 30 and is formed in a spiral shape around the central axis X of the heater block 30. As a result, in the inlet heater 5, the length of contact between the heater passage 33 and the heater block 30 can be increased, and the heat transfer area between the heater passage 33 and the heater block 30 is increased. For this reason, it is possible to sufficiently transfer heat from the heater block 30 to the medium before the medium passing through the heater passage 33 reaches the heater outlet 32. Further, since the heater inlet 31 is provided in the upper portion 30a of the heater block 30 and the heater outlet 32 is provided in the lower portion 30b of the heater block 30, the heater passage 33 formed in a spiral shape has a heater flow. It inclines downward continuously from the inlet 31 to the heater outlet 32. As a result, the medium can be prevented from remaining in the heater passage 33 when the medium is discharged, and the washing liquid can be prevented from remaining after the cleaning described later. In the present embodiment, the heater block 30 is provided with a single (one system) heater passage 33, but is not limited thereto. For example, the plurality of heater passages 33 may be provided so as to form a plurality of spirals. In this case, culture media of different systems can be heated separately.
 図5および図6に示すように、本実施の形態では、ヒータブロック30の外周部に、螺旋溝34が設けられている。この螺旋溝34は、ヒータブロック30の中心軸線Xを中心に螺旋状に形成されている。ヒータ通路33は、チューブ部材35によって構成されており、このチューブ部材35が、螺旋溝34に挿入されている。このようにして、チューブ部材35が、螺旋状にヒータブロック30の外周部に巻き付けられて、螺旋状のヒータ通路33を形成している。 As shown in FIGS. 5 and 6, in the present embodiment, a spiral groove 34 is provided on the outer peripheral portion of the heater block 30. The spiral groove 34 is formed in a spiral shape around the central axis X of the heater block 30. The heater passage 33 is constituted by a tube member 35, and the tube member 35 is inserted into the spiral groove 34. In this manner, the tube member 35 is spirally wound around the outer peripheral portion of the heater block 30 to form a spiral heater passage 33.
 図6に示すように、チューブ部材35は、螺旋溝34に挿入されていない(拘束されていない)状態では円形断面を有しており、螺旋溝34に挿入可能になるために、柔軟性を有していることが好適である。このようなチューブ部材35に用いる材料としては、柔軟性を有していれば特に限られることはないが、例えば、柔軟な樹脂材料により形成されていることが好適である。 As shown in FIG. 6, the tube member 35 has a circular cross section when not inserted (restrained) in the spiral groove 34, and can be inserted into the spiral groove 34. It is suitable to have. The material used for such a tube member 35 is not particularly limited as long as it has flexibility, but for example, it is preferably formed of a flexible resin material.
 チューブ部材35は、螺旋溝34に挿入された状態において、螺旋溝34の壁面34aから押圧されている。螺旋溝34に挿入されていないチューブ部材35の直径をD、螺旋溝34の幅をWとしたときに、D>Wとなっていることが好適である。この場合、チューブ部材35が螺旋溝34に挿入された状態において、チューブ部材35の外面と螺旋溝34の壁面34aとが互いに押し付け合い、当該外面と当該壁面34aとが隙間なく接する部分が形成される。そして、円形であったチューブ部材35の断面が、螺旋溝34の断面形状に沿うように変形する。なお、チューブ部材35の直径Dは、螺旋溝34に挿入された状態で、チューブ部材35の一部が内側に凹まない程度の大きさであることが好適である。このようなチューブ部材35の一例としては、直径1.6mm(1/16インチ相当)、内径0.8mm(1/32インチ相当)の寸法を有する、PFA(ペルフルオロアルコキシフッ素樹脂)またはPTFE(ポリテトラフロオロエチレン)等のフッ素樹脂チューブが挙げられる。この場合には、螺旋溝34の幅Wは1.55mmとすることが好適である。螺旋溝34の深さHは、後述する押圧チューブ36により外周側からチューブ部材35が押圧された場合であってもチューブ部材35の一部が内側に凹まない程度の深さであることが好ましく、例えば1.5mmとすることが好適である。 The tube member 35 is pressed from the wall surface 34 a of the spiral groove 34 in a state of being inserted into the spiral groove 34. When the diameter of the tube member 35 not inserted in the spiral groove 34 is D and the width of the spiral groove 34 is W, it is preferable that D> W. In this case, in a state where the tube member 35 is inserted into the spiral groove 34, the outer surface of the tube member 35 and the wall surface 34a of the spiral groove 34 are pressed against each other, and a portion where the outer surface and the wall surface 34a contact each other without a gap is formed. The And the cross section of the tube member 35 which was circular deform | transforms so that the cross-sectional shape of the spiral groove 34 may be followed. In addition, it is suitable for the diameter D of the tube member 35 that it is a magnitude | size which is a grade which does not dent a part of the tube member 35 in the state inserted in the spiral groove 34. FIG. As an example of such a tube member 35, PFA (perfluoroalkoxy fluororesin) or PTFE (polyethylene) having a diameter of 1.6 mm (equivalent to 1/16 inch) and an inner diameter of 0.8 mm (equivalent to 1/32 inch) is used. And fluororesin tubes such as tetrafluoroethylene. In this case, the width W of the spiral groove 34 is preferably 1.55 mm. The depth H of the spiral groove 34 is preferably a depth that prevents a part of the tube member 35 from being recessed inward even when the tube member 35 is pressed from the outer peripheral side by the press tube 36 described later. For example, the thickness is preferably 1.5 mm.
 図5および図6に示すように、ヒータブロック30の外周部には、螺旋溝34に挿入されたチューブ部材35を外周側から押圧する押圧チューブ36(押圧部材)が設けられている。押圧チューブ36は、熱収縮性を有していることが好適である。この場合、螺旋溝34にチューブ部材35を挿入した後に、押圧チューブ36が、ヒータ通路33の全体を覆うようにヒータブロック30に装着される。この際、チューブ部材35のヒータ流入口31の側の端部およびヒータ流出口32の側の端部は、押圧チューブ36からはみ出させる。本実施の形態では、チューブ部材35の両端部が、ヒータ流入口31およびヒータ流出口32を構成している。押圧チューブ36は、装着された後、周囲から加えられる熱によって収縮し、ヒータブロック30の外周面に密着する。このようにして、ヒータ通路33のチューブ部材35が押圧チューブ36によって外周側から押圧される。また、押圧チューブ36によって、螺旋溝34内に挿入されたチューブ部材35が脱落することを防止している。このような押圧チューブ36の一例としては、例えば、熱収縮前の内径が34mm、熱収縮後の内径が26mmとなる熱収縮チューブが挙げられる。 As shown in FIGS. 5 and 6, a pressing tube 36 (pressing member) that presses the tube member 35 inserted into the spiral groove 34 from the outer peripheral side is provided on the outer peripheral portion of the heater block 30. The pressing tube 36 is preferably heat shrinkable. In this case, after inserting the tube member 35 into the spiral groove 34, the pressing tube 36 is attached to the heater block 30 so as to cover the entire heater passage 33. At this time, the end of the tube member 35 on the heater inlet 31 side and the end of the heater outlet 32 side protrude from the pressing tube 36. In the present embodiment, both end portions of the tube member 35 constitute the heater inlet 31 and the heater outlet 32. After the pressing tube 36 is mounted, the pressing tube 36 is contracted by heat applied from the surroundings, and is in close contact with the outer peripheral surface of the heater block 30. In this way, the tube member 35 of the heater passage 33 is pressed from the outer peripheral side by the pressing tube 36. Further, the pressing tube 36 prevents the tube member 35 inserted into the spiral groove 34 from dropping off. As an example of such a pressing tube 36, for example, a heat shrinkable tube having an inner diameter of 34 mm before heat shrinkage and an inner diameter of 26 mm after heat shrinkage may be mentioned.
 図5に示すように、ヒータブロック30には、ヒータ通路33を通過する培地を加熱するヒータ本体37(加熱部、例えば、カートリッジヒータ)が設けられている。ヒータ本体37は、ヒータブロック30の中心に設けられたヒータ孔38に下側から挿入されて、ヒータブロック30に取り付けられている。 As shown in FIG. 5, the heater block 30 is provided with a heater main body 37 (heating unit, for example, a cartridge heater) that heats the medium passing through the heater passage 33. The heater body 37 is attached to the heater block 30 by being inserted from below into a heater hole 38 provided in the center of the heater block 30.
 ヒータ本体37は、ヒータブロック30の中心軸線Xに沿って、ヒータ流入口31からヒータ流出口32にわたって延びており、全長にわたって、発熱量は等しくなっていることが好適である。また、ヒータ本体37は、ヒータ通路33に同心状に配置されている。すなわち、ヒータ本体37は、中心軸線Xに沿う方向から見たときに、螺旋状のヒータ通路33の内側であって、ヒータブロック30の中心に配置されている。このことにより、ヒータ本体37とヒータ通路33の各地点との距離が均等化されて、ヒータ本体37からヒータ通路33の各地点に均等に熱が伝わるように構成されている。ヒータ本体37の発熱量の一例としては、2.3W/cmである。 The heater body 37 extends from the heater inlet 31 to the heater outlet 32 along the central axis X of the heater block 30, and it is preferable that the heat generation amount is equal over the entire length. The heater body 37 is disposed concentrically with the heater passage 33. That is, the heater main body 37 is disposed inside the spiral heater passage 33 and at the center of the heater block 30 when viewed from the direction along the central axis X. Thus, the distance between the heater main body 37 and each point of the heater passage 33 is equalized, and heat is transmitted from the heater main body 37 to each point of the heater passage 33 evenly. An example of the amount of heat generated by the heater body 37 is 2.3 W / cm 2 .
 ヒータブロック30は、ヒータ本体37から発した熱をヒータ通路33に伝えるため、伝熱性の良好な材料により形成されていることが好適であり、例えば、A6063などのアルミニウム合金などの金属材料により形成されていることが好適である。ヒータブロック30の外径は、例えば31mm、中心軸線Xに沿った長さは、例えば178mmである。このヒータブロック30に形成される螺旋溝34の巻き数は、例えば43巻である。 The heater block 30 is preferably made of a material having good heat transfer property in order to transmit the heat generated from the heater body 37 to the heater passage 33. For example, the heater block 30 is made of a metal material such as an aluminum alloy such as A6063. It is preferred that The outer diameter of the heater block 30 is, for example, 31 mm, and the length along the central axis X is, for example, 178 mm. The number of turns of the spiral groove 34 formed in the heater block 30 is, for example, 43 turns.
 図1に示す制御部18は、インレットポンプ7を駆動している間、インレットヒータ5のヒータ本体37を駆動するように、インレットポンプ7およびヒータ本体37を制御する。このことにより、培地供給源2から排出された低温の培地は、インレットヒータ5のヒータ通路33を通過しながら加熱され、インレットヒータ5のヒータ流出口32では所望の温度(例えば、約37℃)まで昇温する。 1 controls the inlet pump 7 and the heater main body 37 so as to drive the heater main body 37 of the inlet heater 5 while the inlet pump 7 is being driven. Thus, the low temperature medium discharged from the medium supply source 2 is heated while passing through the heater passage 33 of the inlet heater 5, and a desired temperature (for example, about 37 ° C.) at the heater outlet 32 of the inlet heater 5. The temperature rises to
 本実施の形態では、図5に示すように、ヒータブロック30に、ヒータブロック30の温度を計測する温度センサ39(温度計測部)が設けられている。温度センサ39により計測されたヒータブロック30の温度に基づいて、制御部18が、ヒータ本体37を制御する。すなわち、制御部18は、温度センサ39により計測されたヒータブロック30の温度が所定基準値未満である場合にヒータ本体37を駆動(ON)し、当該温度が所定基準値以上である場合にヒータを停止(OFF)する。ここで、所定基準値としては、培養容器100内での培地の温度と等しい温度(約37℃)にしてもよいが、過昇温を防止するためには、これよりも低い温度にしてもよい。 In the present embodiment, as shown in FIG. 5, the heater block 30 is provided with a temperature sensor 39 (temperature measurement unit) that measures the temperature of the heater block 30. Based on the temperature of the heater block 30 measured by the temperature sensor 39, the control unit 18 controls the heater body 37. That is, the control unit 18 drives (ON) the heater body 37 when the temperature of the heater block 30 measured by the temperature sensor 39 is less than a predetermined reference value, and when the temperature is equal to or higher than the predetermined reference value, Is stopped (OFF). Here, the predetermined reference value may be a temperature equal to the temperature of the culture medium in the culture vessel 100 (about 37 ° C.), but in order to prevent an excessive temperature rise, a lower temperature may be used. Good.
 図5に示す形態では、温度センサ39は、ヒータブロック30の下部30b(ヒータ流出口32の側の部分)に配置されている。この温度センサ39は、ヒータブロック30の下部30bに設けられたセンサ孔40に下側から挿入されて、ヒータブロック30に取り付けられている。なお、温度センサ39は、ヒータブロック30の下部30bに配置されることに限られることはなく、培地が過昇温することを防止できれば、ヒータブロック30の上部30aに配置されていてもよい。また、温度センサ39は、図5に示すように、ヒータ通路33とヒータ本体37との間に配置されていることが好適である。この場合、温度センサ39は、ヒータブロック30のうちヒータ通路33より内側(ヒータ本体37の側)の部分に配置される。 In the form shown in FIG. 5, the temperature sensor 39 is disposed in the lower part 30b of the heater block 30 (the part on the heater outlet 32 side). The temperature sensor 39 is attached to the heater block 30 by being inserted into a sensor hole 40 provided in the lower portion 30 b of the heater block 30 from below. Note that the temperature sensor 39 is not limited to being disposed in the lower portion 30b of the heater block 30, and may be disposed in the upper portion 30a of the heater block 30 as long as the medium can be prevented from overheating. Further, the temperature sensor 39 is preferably disposed between the heater passage 33 and the heater body 37 as shown in FIG. In this case, the temperature sensor 39 is disposed in a portion of the heater block 30 on the inner side of the heater passage 33 (on the heater body 37 side).
 次に、このような構成からなる本実施の形態の作用について説明する。まず、培地供給源2から新液用バッファタンク6に培地を供給する方法について説明する。 Next, the operation of the present embodiment having such a configuration will be described. First, a method of supplying a culture medium from the culture medium supply source 2 to the new solution buffer tank 6 will be described.
 培地供給源2から新液用バッファタンク6に新しい培地を供給する際、インレットポンプ7が駆動されるとともにインレットヒータ5のヒータ本体37が駆動される。このことにより、低温で保管されていた新しい培地が、インレットヒータ5を介して新液用バッファタンク6に供給される。新しい培地は、インレットヒータ5を通過する際に、所望の温度まで加熱される。この際の培地の流量は、例えば15mL/分である。 When supplying a new medium from the medium supply source 2 to the new solution buffer tank 6, the inlet pump 7 is driven and the heater body 37 of the inlet heater 5 is driven. As a result, a new medium stored at a low temperature is supplied to the new solution buffer tank 6 via the inlet heater 5. A new culture medium is heated to a desired temperature when passing through the inlet heater 5. The flow rate of the culture medium at this time is, for example, 15 mL / min.
 より具体的には、培地供給源2から供給された培地は、インレットヒータ5のヒータ流入口31に流入し、ヒータ通路33を通過する。ヒータ通路33を構成するチューブ部材35は、ヒータブロック30の螺旋溝34に挿入されているため、ヒータ通路33を通過する培地は、ヒータブロック30の外周部において下方(ヒータ流出口32)に向かって螺旋状に流れる。この間、ヒータ本体37が駆動されているため、ヒータ本体37から発した熱がヒータブロック30を介してヒータ通路33を通過する培地に伝わる。とりわけ、培地が螺旋状に流れるため、培地がヒータブロック30から熱を受けることができる伝熱面積が増大されている。このことにより、ヒータブロック30から培地に効率良く熱が伝わり、培地が所望の温度まで効率良く加熱されていく。 More specifically, the medium supplied from the medium supply source 2 flows into the heater inlet 31 of the inlet heater 5 and passes through the heater passage 33. Since the tube member 35 constituting the heater passage 33 is inserted into the spiral groove 34 of the heater block 30, the medium passing through the heater passage 33 faces downward (heater outlet 32) in the outer periphery of the heater block 30. Flowing in a spiral. During this time, since the heater main body 37 is driven, heat generated from the heater main body 37 is transmitted to the medium passing through the heater passage 33 via the heater block 30. In particular, since the culture medium flows spirally, the heat transfer area where the culture medium can receive heat from the heater block 30 is increased. As a result, heat is efficiently transferred from the heater block 30 to the medium, and the medium is efficiently heated to a desired temperature.
 ここで、ヒータブロック30の下部30bに設けられた温度センサ39により、ヒータブロック30のうちヒータ流出口32の側の部分の温度が計測される。計測された温度が所定基準値以上になると、培地の過昇温を防止するためにヒータ本体37は停止される。一方、計測された温度が所定値未満になると、ヒータブロック30を加熱するためにヒータ本体37が駆動される。このようにして、ヒータ通路33を通過する培地が加熱され、ヒータ流出口32に達した培地の温度は、所望の温度になる。このようにして、本実施の形態によるインレットヒータ5は、低温でヒータ流入口31から流入した培地の温度を、ヒータ流出口32に達するまでに所望の温度まで上昇させることができる。 Here, the temperature sensor 39 provided in the lower part 30b of the heater block 30 measures the temperature of the heater block 30 on the heater outlet 32 side. When the measured temperature is equal to or higher than a predetermined reference value, the heater main body 37 is stopped to prevent the medium from being overheated. On the other hand, when the measured temperature becomes less than the predetermined value, the heater body 37 is driven to heat the heater block 30. In this way, the culture medium passing through the heater passage 33 is heated, and the temperature of the culture medium reaching the heater outlet 32 becomes a desired temperature. In this manner, the inlet heater 5 according to the present embodiment can raise the temperature of the medium flowing from the heater inlet 31 to a desired temperature before reaching the heater outlet 32 at a low temperature.
 なお、ヒータ流出口32に達した培地の温度は、種々のパラメータの影響を受け得る。このようなパラメータとしては、主に、ヒータブロック30の直径、長さ、材質、ヒータ通路33のチューブ部材35の直径、巻き数、ヒータ本体37の発熱量、および培地の流量等が挙げられる。しかしながら、チューブ部材35の巻き数を十分に多くすることにより、ヒータブロック30からヒータ通路33を通過する培地に十分な熱を伝えることができ、ヒータ流出口32に達するまでに培地の温度を所望の温度まで上昇させることができる。 Note that the temperature of the medium that has reached the heater outlet 32 can be affected by various parameters. Such parameters mainly include the diameter, length, and material of the heater block 30, the diameter of the tube member 35 of the heater passage 33, the number of turns, the amount of heat generated by the heater body 37, the flow rate of the culture medium, and the like. However, by sufficiently increasing the number of turns of the tube member 35, sufficient heat can be transferred from the heater block 30 to the medium passing through the heater passage 33, and the temperature of the medium is desired before reaching the heater outlet 32. The temperature can be increased to
 ヒータ流出口32に達した培地は、ヒータ流出口32から流出し、新液用バッファタンク6に供給される。この際、ヒータ流入口31への新しい培地の供給を停止すると、インレットヒータ5のヒータ通路33を通過した培地は、ヒータ流出口32からスムースに排出される。すなわち、ヒータ流入口31がヒータブロック30の上部30aに設けられ、ヒータ流出口32がヒータブロック30の下部30bに設けられているため、螺旋状に形成されたヒータ通路33は、ヒータ流入口31からヒータ流出口32にわたって連続状に下方に傾斜している。このため、ヒータ通路33内に培地が残存することを抑制できる。 The culture medium that has reached the heater outlet 32 flows out of the heater outlet 32 and is supplied to the buffer tank 6 for new solution. At this time, when the supply of new medium to the heater inlet 31 is stopped, the medium that has passed through the heater passage 33 of the inlet heater 5 is smoothly discharged from the heater outlet 32. That is, since the heater inlet 31 is provided in the upper part 30 a of the heater block 30 and the heater outlet 32 is provided in the lower part 30 b of the heater block 30, the heater passage 33 formed in a spiral shape has the heater inlet 31. To the heater outlet 32 continuously inclining downward. For this reason, it can suppress that a culture medium remains in the heater channel | path 33. FIG.
 インレットヒータ5から排出された培地は、新液用バッファタンク6に供給されて貯留される。新液用バッファタンク6において、貯留された培地から気泡が除去される。すなわち、新液用バッファタンク6に貯留された培地は高温になっているため、培地中の溶存気体や微小な気泡が発現して膨張し、浮き上がりやすくなる。このことにより、培地から気泡が効率良く除去される。 The medium discharged from the inlet heater 5 is supplied to the new solution buffer tank 6 and stored. In the fresh solution buffer tank 6, bubbles are removed from the stored medium. That is, since the culture medium stored in the buffer tank 6 for new solution is at a high temperature, dissolved gas and minute bubbles in the culture medium appear and expand and are likely to float. This effectively removes bubbles from the culture medium.
 次に、培養容器100内の培地の交換方法について説明する。 Next, a method for replacing the medium in the culture vessel 100 will be described.
 まず、第2インレット開閉弁9およびアウトレット開閉弁12が開き、新液用バッファタンク6から培養容器100に培地が流通可能となる。次に、アウトレットポンプ10が駆動されて、容器通路104内の古い培地が引き出されて容器流出口105から流出される。このことにより、培養容器100から古い培地が引き出されて排出される。この際、新液用バッファタンク6内に貯留されている新しい培地が培養容器100の容器流入口103(図2および図3参照)を介して容器通路104に流入し、容器通路104内の古い培地は、新しい培地に押し出されるように排出される。このようにして、容器通路104に新しい培地が満たされ、容器通路104内の培地の交換が行われる。 First, the second inlet opening / closing valve 9 and the outlet opening / closing valve 12 are opened, and the medium can be circulated from the buffer tank 6 for fresh solution to the culture vessel 100. Next, the outlet pump 10 is driven, the old medium in the container passage 104 is drawn out, and flows out from the container outlet 105. As a result, the old medium is drawn out from the culture vessel 100 and discharged. At this time, a new medium stored in the buffer tank 6 for fresh solution flows into the container passage 104 via the container inlet 103 (see FIGS. 2 and 3) of the culture container 100, and the old medium in the container passage 104 The medium is drained so as to be pushed into the new medium. In this way, the container passage 104 is filled with a new medium, and the medium in the container passage 104 is exchanged.
 次に、インレットヒータ5を洗浄する方法について説明する。 Next, a method for cleaning the inlet heater 5 will be described.
 まず、洗浄液を用いてヒータ通路33が洗浄される。 First, the heater passage 33 is cleaned using a cleaning liquid.
 この場合、まず、洗浄開閉弁15が開くとともに第2インレット開閉弁9が閉じる。このことにより、洗浄液供給源13からの洗浄液がインレットヒータ5のヒータ流入口31に供給され、ヒータ通路33を通過してヒータ流出口32に向かう。この際の洗浄液の流量は、例えば30mL/分である。 In this case, first, the cleaning on-off valve 15 is opened and the second inlet on-off valve 9 is closed. As a result, the cleaning liquid from the cleaning liquid supply source 13 is supplied to the heater inlet 31 of the inlet heater 5, passes through the heater passage 33, and travels toward the heater outlet 32. The flow rate of the cleaning liquid at this time is, for example, 30 mL / min.
 この間、ヒータ通路33は、通過する洗浄液によって洗浄される。ヒータ流出口32に達した洗浄液は、新液用バッファタンク6に供給されて貯留される。新液用バッファタンク6に貯留された洗浄液が所定量に達すると、第2インレット開閉弁9が開くとともに、新液用バッファタンク6に貯留された洗浄液が、第2インレット開閉弁9の下流に設けられた図示しない溶液排出ラインから排出される。 During this time, the heater passage 33 is cleaned by the cleaning liquid that passes therethrough. The cleaning liquid that has reached the heater outlet 32 is supplied to and stored in the new liquid buffer tank 6. When the cleaning liquid stored in the new liquid buffer tank 6 reaches a predetermined amount, the second inlet opening / closing valve 9 is opened, and the cleaning liquid stored in the new liquid buffer tank 6 flows downstream of the second inlet opening / closing valve 9. It is discharged from a solution discharge line (not shown) provided.
 ヒータ流入口31への洗浄液の供給を停止すると、インレットヒータ5のヒータ通路33を通過した洗浄液は、ヒータ流出口32からスムースに排出される。すなわち、ヒータ流入口31がヒータブロック30の上部30aに設けられ、ヒータ流出口32がヒータブロック30の下部30bに設けられているため、螺旋状に形成されたヒータ通路33は、ヒータ流入口31からヒータ流出口32にわたって連続状に下方に傾斜している。このため、ヒータ通路33内に洗浄液が残存することを抑制できる。 When the supply of the cleaning liquid to the heater inlet 31 is stopped, the cleaning liquid that has passed through the heater passage 33 of the inlet heater 5 is smoothly discharged from the heater outlet 32. That is, since the heater inlet 31 is provided in the upper part 30 a of the heater block 30 and the heater outlet 32 is provided in the lower part 30 b of the heater block 30, the heater passage 33 formed in a spiral shape has the heater inlet 31. To the heater outlet 32 continuously inclining downward. For this reason, it is possible to prevent the cleaning liquid from remaining in the heater passage 33.
 しかしながら、ヒータ通路33の汚損状況またはヒータ通路33の形状精度によっては、ヒータ通路33内に洗浄液が残存する場合も考えられる。このため、ヒータ通路33内に洗浄液が残存することをより一層防止するために、洗浄後のヒータ通路33に残存し得る洗浄液をパージすることが好適である。 However, depending on the contamination state of the heater passage 33 or the shape accuracy of the heater passage 33, a cleaning liquid may remain in the heater passage 33. Therefore, in order to further prevent the cleaning liquid from remaining in the heater passage 33, it is preferable to purge the cleaning liquid that may remain in the heater passage 33 after cleaning.
 この場合、まず、気体開閉弁17が開くとともに第2インレット開閉弁9が閉じる。このことにより、気体供給源16からの圧縮気体がインレットヒータ5のヒータ流入口31に供給され、ヒータ通路33を通過してヒータ流出口32に向かう。この際の圧縮空気の流量は、例えば30mL/分である。 In this case, first, the gas on-off valve 17 is opened and the second inlet on-off valve 9 is closed. Thus, the compressed gas from the gas supply source 16 is supplied to the heater inlet 31 of the inlet heater 5, passes through the heater passage 33, and travels toward the heater outlet 32. The flow rate of the compressed air at this time is, for example, 30 mL / min.
 この間、ヒータ通路33に残存していた洗浄液は、圧縮気体によってパージされ、ヒータ通路33から排出されて新液用バッファタンク6に供給される。新液用バッファタンク6内の空間は、ベント部を介して周囲雰囲気に連通しているため、インレットヒータ5に連続的に圧縮気体を供給することができる。 During this time, the cleaning liquid remaining in the heater passage 33 is purged by the compressed gas, discharged from the heater passage 33 and supplied to the new liquid buffer tank 6. Since the space in the new solution buffer tank 6 communicates with the surrounding atmosphere through the vent portion, the compressed gas can be continuously supplied to the inlet heater 5.
 この場合においても、螺旋状のヒータ通路33が、ヒータ流入口31からヒータ流出口32にわたって連続状に下方に傾斜しているため、圧縮空気によりパージされる洗浄液は、ヒータ流出口32にスムースに達することができる。このため、ヒータ通路33内の洗浄液をより一層確実にインレットヒータ5から排出することができる。なお、新液用バッファタンク6に供給された洗浄液は、第2インレット開閉弁9を開いて、下流に設けられた図示しない溶液排出ラインから排出することができる。 Even in this case, since the spiral heater passage 33 is continuously inclined downward from the heater inlet 31 to the heater outlet 32, the cleaning liquid purged by the compressed air smoothly flows to the heater outlet 32. Can reach. For this reason, the cleaning liquid in the heater passage 33 can be more reliably discharged from the inlet heater 5. The cleaning liquid supplied to the new liquid buffer tank 6 can be discharged from a solution discharge line (not shown) provided downstream by opening the second inlet on-off valve 9.
 このように本実施の形態によれば、ヒータ流入口31からヒータ流出口32に向かう培地が通過するヒータ通路33が、円筒状のヒータブロック30の中心軸線Xを中心に螺旋状に形成されている。このことにより、ヒータ通路33とヒータブロック30とが接触する長さを長くすることができ、ヒータ通路33を通過する培地がヒータ流出口32に達するまでに、ヒータブロック30から培地に十分に熱を伝えることができる。このため、ヒータ通路33を通過させながら培地を加熱することができ、培地を加熱する時間を短縮することができる。 As described above, according to the present embodiment, the heater passage 33 through which the medium from the heater inlet 31 toward the heater outlet 32 passes is formed in a spiral shape around the central axis X of the cylindrical heater block 30. Yes. As a result, the length of contact between the heater passage 33 and the heater block 30 can be increased, and the medium passing through the heater passage 33 is sufficiently heated from the heater block 30 to the medium before reaching the heater outlet 32. Can be communicated. For this reason, the culture medium can be heated while passing through the heater passage 33, and the time for heating the culture medium can be shortened.
 また、本実施の形態によれば、ヒータブロック30の中心軸線Xが、鉛直方向に沿っている。このことにより、ヒータ通路33を連続状に下方に傾斜させることができ、ヒータ通路33内に、培地の排出時には培地が残存することを抑制できるとともに、洗浄後には洗浄液が残存することを抑制できる。とりわけ、洗浄後のヒータ通路33に残存する洗浄液をパージする場合には、洗浄液はスムースにヒータ流出口32に達することができ、ヒータ通路33内に洗浄液が残存することをより一層抑制できる。 Further, according to the present embodiment, the central axis X of the heater block 30 is along the vertical direction. Accordingly, the heater passage 33 can be continuously inclined downward, and the medium can be prevented from remaining in the heater passage 33 when the medium is discharged, and the washing liquid can be prevented from remaining after washing. . In particular, when the cleaning liquid remaining in the heater passage 33 after cleaning is purged, the cleaning liquid can smoothly reach the heater outlet 32 and the cleaning liquid remaining in the heater passage 33 can be further suppressed.
 また、本実施の形態によれば、インレットヒータ5のヒータ流入口31がヒータブロック30の上部30aに設けられているとともに、ヒータ流出口32がヒータブロック30の下部30bに設けられている。このことにより、ヒータ通路33をヒータ流入口31からヒータ流出口32に向かって連続状に下方に傾斜させることができる。このため、ヒータ通路33内に培地または洗浄液が残存することを防止するためには、ヒータ流入口31から洗浄液または圧縮空気を流入させればよく、培地の流れの方向と、洗浄液および圧縮気体の流れの方向を同じ方向にすることができる。この場合、培養システム1の構成が複雑化することを抑制できる。 Further, according to the present embodiment, the heater inlet 31 of the inlet heater 5 is provided in the upper part 30 a of the heater block 30, and the heater outlet 32 is provided in the lower part 30 b of the heater block 30. Thereby, the heater passage 33 can be inclined downward continuously from the heater inlet 31 toward the heater outlet 32. For this reason, in order to prevent the culture medium or the cleaning liquid from remaining in the heater passage 33, the cleaning liquid or the compressed air may be introduced from the heater inlet 31, and the direction of the culture medium and the flow of the cleaning liquid and the compressed gas The direction of flow can be the same direction. In this case, it can suppress that the structure of the culture system 1 becomes complicated.
 また、本実施の形態によれば、ヒータ通路33が、ヒータブロック30に設けられた螺旋溝34に挿入されたチューブ部材35によって構成されている。このことにより、螺旋状のヒータ通路33を容易に形成することができるとともに、ヒータ通路33の交換を容易に行うことができる。とりわけ、本実施の形態によれば、ヒータ通路33のチューブ部材35が、螺旋溝34の壁面34aから押圧されている。このことにより、ヒータブロック30とチューブ部材35との間の伝熱抵抗を低減することができ、ヒータブロック30からチューブ部材35への伝熱効率を向上させることができる。さらに、本実施の形態によれば、ヒータ通路33のチューブ部材35が、押圧チューブ36によって外周側から押圧されている。このことにより、ヒータブロック30とチューブ部材35との伝熱抵抗をより一層低減することができ、ヒータブロック30からチューブ部材35への伝熱効率をより一層向上させることができる。 Further, according to the present embodiment, the heater passage 33 is constituted by the tube member 35 inserted into the spiral groove 34 provided in the heater block 30. Accordingly, the spiral heater passage 33 can be easily formed and the heater passage 33 can be easily replaced. In particular, according to the present embodiment, the tube member 35 of the heater passage 33 is pressed from the wall surface 34 a of the spiral groove 34. Thereby, the heat transfer resistance between the heater block 30 and the tube member 35 can be reduced, and the heat transfer efficiency from the heater block 30 to the tube member 35 can be improved. Furthermore, according to the present embodiment, the tube member 35 of the heater passage 33 is pressed from the outer peripheral side by the pressing tube 36. Thereby, the heat transfer resistance between the heater block 30 and the tube member 35 can be further reduced, and the heat transfer efficiency from the heater block 30 to the tube member 35 can be further improved.
 また、本実施の形態によれば、ヒータ本体37が、ヒータブロック30の中心軸線Xに沿って、ヒータ流入口31からヒータ流出口32にわたって延びているとともに、ヒータ通路33に同心状に配置されている。このことにより、ヒータ本体37とヒータ通路33の各地点との距離を均等化させることができ、ヒータ本体37からヒータ通路33の各部に均等に熱を伝えることができる。このため、ヒータ通路33を通過する培地が局所的に過昇温されることを防止でき、培地の劣化を抑制できる。 Further, according to the present embodiment, the heater body 37 extends from the heater inlet 31 to the heater outlet 32 along the central axis X of the heater block 30 and is concentrically disposed in the heater passage 33. ing. Thus, the distance between the heater main body 37 and each point of the heater passage 33 can be equalized, and heat can be evenly transmitted from the heater main body 37 to each part of the heater passage 33. For this reason, it can prevent that the culture medium which passes the heater channel | path 33 is locally overheated, and can suppress deterioration of a culture medium.
 また、本実施の形態によれば、温度センサ39により計測されたヒータブロック30の温度に基づいて、ヒータ本体37が制御される。このことにより、ヒータ通路33を通過する培地が過昇温されることを防止でき、培地の劣化を抑制できる。とりわけ、本実施の形態によれば、温度センサ39はヒータブロック30のうちヒータ流出口32の側の部分に配置されているため、ヒータ通路33のうち温度が高くなり得るヒータ流出口32の側の部分における培地の温度を計測することができ、この温度に基づいてヒータ本体37を制御することができる。このため、培地が過昇温されることをより一層防止でき、培地の劣化をより一層抑制できる。さらに、温度センサ39は、ヒータ通路33とヒータ本体37との間に配置されているため、ヒータブロック30のうちヒータ通路33より内側(ヒータ本体37の側)の部分における温度を計測することができ、この温度に基づいてヒータ本体37を制御することができる。このため、培地が過昇温されることをより一層防止でき、培地の劣化をより一層抑制できる。 Further, according to the present embodiment, the heater body 37 is controlled based on the temperature of the heater block 30 measured by the temperature sensor 39. Thereby, it is possible to prevent the medium passing through the heater passage 33 from being overheated and to suppress the deterioration of the medium. In particular, according to the present embodiment, since the temperature sensor 39 is disposed in the heater block 30 on the heater outlet 32 side, the heater outlet 32 on the heater passage 33 where the temperature can be increased. The temperature of the culture medium in this part can be measured, and the heater body 37 can be controlled based on this temperature. For this reason, it can prevent further that a culture medium is overheated, and can suppress further deterioration of a culture medium. Further, since the temperature sensor 39 is disposed between the heater passage 33 and the heater main body 37, the temperature sensor 39 can measure the temperature in the heater block 30 on the inner side (the heater main body 37 side) of the heater passage 33. The heater body 37 can be controlled based on this temperature. For this reason, it can prevent further that a culture medium is overheated, and can suppress further deterioration of a culture medium.
 また、本実施の形態によれば、インレットヒータ5により加熱された培地が、新液用バッファタンク6に貯留される。このことにより、貯留された培地から気泡を除去することができる。すなわち、新液用バッファタンク6に貯留された培地は、高温になっているため、培地中の溶存気体や微小な気泡が発現して膨張し、効率良く気泡を除去することができる。 Further, according to the present embodiment, the medium heated by the inlet heater 5 is stored in the buffer tank 6 for new solution. Thereby, bubbles can be removed from the stored medium. That is, since the culture medium stored in the buffer tank 6 for new solution is at a high temperature, dissolved gas and minute bubbles in the culture medium appear and expand, and the bubbles can be efficiently removed.
 さらに、本実施の形態によれば、インレットポンプ7は、培地供給源2とインレットヒータ5との間に設けられている。このことにより、インレットヒータ5のヒータ通路33を通過する培地の圧力が高くなることによってヒータ通路33内の培地に気泡が形成されることを抑制できる。このため、ヒータブロック30から培地に効率良く熱を伝えることができる。 Furthermore, according to the present embodiment, the inlet pump 7 is provided between the culture medium supply source 2 and the inlet heater 5. Thereby, it is possible to suppress the formation of bubbles in the culture medium in the heater passage 33 due to an increase in the pressure of the culture medium passing through the heater passage 33 of the inlet heater 5. For this reason, heat can be efficiently transmitted from the heater block 30 to the culture medium.
 なお、上述した本実施の形態においては、ヒータ流入口31がヒータブロック30の上部30aに設けられるとともに、ヒータ流出口32がヒータブロック30の下部30bに設けられている例について説明した。しかしながら、このことに限られることはなく、ヒータ流入口31がヒータブロック30の下部30bに設けられ、ヒータ流出口32がヒータブロック30の上部30aに設けられていてもよい。この場合、ヒータ通路33内に培地または洗浄液が残存することを防止するために、ヒータ流出口32から洗浄液または圧縮空気を流入させればよい。 In addition, in this Embodiment mentioned above, while the heater inflow port 31 was provided in the upper part 30a of the heater block 30, the heater outflow port 32 was provided in the lower part 30b of the heater block 30 was demonstrated. However, the present invention is not limited to this, and the heater inlet 31 may be provided in the lower part 30 b of the heater block 30, and the heater outlet 32 may be provided in the upper part 30 a of the heater block 30. In this case, in order to prevent the culture medium or the cleaning liquid from remaining in the heater passage 33, the cleaning liquid or the compressed air may be introduced from the heater outlet 32.
 また、上述した本実施の形態においては、ヒータ通路33のチューブ部材35が、ヒータブロック30に設けられた螺旋溝34の壁面34aから押圧されている例について説明した。しかしながら、このことに限られることはなく、ヒータブロック30からチューブ部材35への伝熱効率を確保することができれば、チューブ部材35は螺旋溝34の壁面34aから押圧されていなくてもよい。 In the above-described embodiment, the example in which the tube member 35 of the heater passage 33 is pressed from the wall surface 34a of the spiral groove 34 provided in the heater block 30 has been described. However, the present invention is not limited to this, and the tube member 35 may not be pressed from the wall surface 34 a of the spiral groove 34 as long as heat transfer efficiency from the heater block 30 to the tube member 35 can be ensured.
 また、上述した本実施の形態においては、ヒータ通路33のチューブ部材35が、押圧チューブ36によって外周側から押圧されている例について説明した。しかしながら、このことに限られることはなく、ヒータブロック30からチューブ部材35への伝熱効率を確保することができるとともに、螺旋溝34内に挿入されたチューブ部材35が脱落することを防止できれば、押圧チューブ36は設けられていなくてもよい。また、押圧チューブ36は、熱収縮性を有していなくてもよく、例えば、弾力性を有する材料を用いて形成されていてもよい。この場合、押圧チューブ36の内径を、ヒータブロック30の外径よりも小さくして、拡げるように弾性変形させながらヒータブロック30の外周面に装着するようにしてもよい。 In the above-described embodiment, the example in which the tube member 35 of the heater passage 33 is pressed from the outer peripheral side by the pressing tube 36 has been described. However, the present invention is not limited to this, and if the heat transfer efficiency from the heater block 30 to the tube member 35 can be ensured and the tube member 35 inserted into the spiral groove 34 can be prevented from falling off, the pressure can be reduced. The tube 36 may not be provided. Further, the pressing tube 36 may not have heat shrinkability, and may be formed using, for example, a material having elasticity. In this case, the inner diameter of the pressing tube 36 may be smaller than the outer diameter of the heater block 30 and may be attached to the outer peripheral surface of the heater block 30 while being elastically deformed so as to expand.
 さらに、上述した本実施の形態においては、新液用バッファタンク6が、貯留された培地を加熱するヒータ(図示せず)を有していてもよい。この場合、貯留された培地を所望の温度に維持することができる。また、インレットヒータ5から排出された培地の温度が所望の温度まで昇温していない場合であっても、新液用バッファタンク6に貯留されている間に、所望の温度まで昇温させることができる。この場合であっても、インレットヒータ5によって低温の培地を所望の温度に近づけることができるため、培地を加熱する時間の短縮に貢献することができる。 Furthermore, in the above-described embodiment, the new solution buffer tank 6 may have a heater (not shown) for heating the stored medium. In this case, the stored medium can be maintained at a desired temperature. Further, even when the temperature of the medium discharged from the inlet heater 5 is not raised to a desired temperature, the temperature is raised to the desired temperature while being stored in the new solution buffer tank 6. Can do. Even in this case, since the low temperature medium can be brought close to a desired temperature by the inlet heater 5, it is possible to contribute to shortening the time for heating the medium.
 本発明は上記実施の形態および変形例そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施の形態および変形例に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成できる。実施の形態および変形例に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施の形態および変形例にわたる構成要素を適宜組み合わせてもよい。 The present invention is not limited to the above-described embodiments and modification examples as they are, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage. Further, various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the above-described embodiments and modifications. You may delete a some component from all the components shown by embodiment and a modification. Furthermore, constituent elements over different embodiments and modifications may be combined as appropriate.

Claims (15)

  1.  培地供給源から培養容器に供給される細胞培養用の培地を加熱する培地加熱装置であって、
     鉛直方向に沿う中心軸線を有する円筒状の装置本体と、
     前記装置本体の上部および下部のうちの一方に設けられ、前記培地が流入する装置流入口と、
     前記装置本体の上部および下部のうちの他方に設けられ、前記培地が流出する装置流出口と、
     前記装置流入口から前記装置流出口に向かう前記培地が通過する装置通路と、
     前記装置通路を通過する前記培地を加熱する加熱部と、を備え、
     前記装置通路は、前記装置本体の前記中心軸線を中心に螺旋状に形成されている、培地加熱装置。
    A medium heating apparatus for heating a medium for cell culture supplied from a medium supply source to a culture container,
    A cylindrical device body having a central axis along the vertical direction;
    A device inlet provided in one of an upper part and a lower part of the apparatus main body, into which the culture medium flows;
    A device outlet provided on the other of the upper part and the lower part of the apparatus main body, through which the medium flows out;
    A device passage through which the culture medium passes from the device inlet to the device outlet;
    A heating unit for heating the culture medium passing through the device passage,
    The apparatus passage is a medium heating apparatus formed in a spiral shape around the central axis of the apparatus main body.
  2.  前記装置流入口は、前記装置本体の上部に設けられ、
     前記装置流出口は、前記装置本体の下部に設けられている、請求項1に記載の培地加熱装置。
    The apparatus inlet is provided on the upper part of the apparatus body,
    The culture apparatus according to claim 1, wherein the apparatus outlet is provided at a lower portion of the apparatus main body.
  3.  前記装置本体の外周部に、螺旋溝が設けられ、
     前記螺旋溝は、前記装置本体の前記中心軸線を中心に螺旋状に形成され、
     前記装置通路は、前記螺旋溝に挿入されたチューブ部材により構成されている、請求項1に記載の培地加熱装置。
    A spiral groove is provided on the outer periphery of the apparatus body,
    The spiral groove is formed in a spiral shape around the central axis of the device body,
    The culture apparatus according to claim 1, wherein the device passage is configured by a tube member inserted into the spiral groove.
  4.  前記チューブ部材は、前記螺旋溝の壁面から押圧されている、請求項3に記載の培地加熱装置。 The culture medium heating apparatus according to claim 3, wherein the tube member is pressed from a wall surface of the spiral groove.
  5.  前記チューブ部材を外周側から押圧する押圧部材を更に備えた、請求項3または4に記載の培地加熱装置。 The culture medium heating apparatus according to claim 3 or 4, further comprising a pressing member that presses the tube member from the outer peripheral side.
  6.  前記加熱部は、前記装置本体の前記中心軸線に沿って、前記装置流入口から前記装置流出口にわたって延びているとともに、前記装置通路に同心状に配置されている、請求項1乃至5のいずれか一項に記載の培地加熱装置。 6. The heating unit according to claim 1, wherein the heating unit extends from the apparatus inlet to the apparatus outlet along the central axis of the apparatus main body and is concentrically disposed in the apparatus passage. The culture medium heating apparatus according to claim 1.
  7.  前記装置本体の温度を計測する温度計測部を更に備えた、請求項1乃至6のいずれか一項に記載の培地加熱装置。 The culture medium heating apparatus according to any one of claims 1 to 6, further comprising a temperature measurement unit that measures the temperature of the apparatus main body.
  8.  前記温度計測部は、前記装置本体のうち前記装置流出口の側の部分に配置されている、請求項7に記載の培地加熱装置。 The culture medium heating apparatus according to claim 7, wherein the temperature measuring unit is arranged in a part of the apparatus main body on the apparatus outlet side.
  9.  前記温度計測部は、前記装置通路と前記加熱部との間に配置されている、請求項7または8に記載の培地加熱装置。 The culture medium heating device according to claim 7 or 8, wherein the temperature measurement unit is disposed between the device passage and the heating unit.
  10.  新しい培地を供給する培地供給源と、
     培養容器を保持可能な容器保持部と、
     前記培地供給源と前記容器保持部との間に設けられ、前記培地供給源から前記培養容器に供給される前記培地を加熱する、請求項1に記載の前記培地加熱装置と、を備えた、培養システム。
    A medium source for supplying new medium;
    A container holding unit capable of holding a culture container;
    The medium heating apparatus according to claim 1, wherein the medium heating apparatus is provided between the medium supply source and the container holding unit, and heats the medium supplied from the medium supply source to the culture container. Culture system.
  11.  前記培地加熱装置と前記容器保持部との間に設けられ、前記培地加熱装置により加熱された前記培地を貯留するバッファタンクを更に備えた、請求項10に記載の培養システム。 The culture system according to claim 10, further comprising a buffer tank provided between the culture medium heating device and the container holding unit and storing the culture medium heated by the culture medium heating device.
  12.  前記培地供給源と前記培地加熱装置との間に設けられ、前記培地供給源から前記培地加熱装置に前記培地を供給する培地供給ポンプを更に備えた、請求項10または11に記載の培養システム。 The culture system according to claim 10 or 11, further comprising a medium supply pump that is provided between the medium supply source and the medium heating apparatus and supplies the medium from the medium supply source to the medium heating apparatus.
  13.  前記培地供給ポンプおよび前記培地加熱装置の前記加熱部を制御する制御部を更に備え、
     前記培地加熱装置は、前記装置本体の温度を計測する温度計測部を有し、
     前記制御部は、前記培地供給ポンプを駆動している間、前記温度計測部により計測された前記装置本体の温度に基づいて、前記培地供給ポンプおよび前記加熱部を制御する、請求項12に記載の培養システム。
    A control unit for controlling the heating unit of the medium supply pump and the medium heating device;
    The culture medium heating device has a temperature measurement unit that measures the temperature of the device main body,
    The said control part controls the said culture medium supply pump and the said heating part based on the temperature of the said apparatus main body measured by the said temperature measurement part, while driving the said culture medium supply pump. Culture system.
  14.  前記培地加熱装置の前記装置本体の上部に設けられた前記装置流入口または前記装置流出口に洗浄液を供給する洗浄液供給源を更に備えた、請求項10乃至13のいずれか一項に記載の培養システム。 The culture according to any one of claims 10 to 13, further comprising a cleaning liquid supply source for supplying a cleaning liquid to the apparatus inlet or the apparatus outlet provided in an upper part of the apparatus main body of the culture medium heating apparatus. system.
  15.  前記培地加熱装置の前記装置本体の上部に設けられた前記装置流入口または前記装置流出口に、前記洗浄液をパージ可能な気体を供給する気体供給源を更に備えた、請求項14に記載の培養システム。 The culture according to claim 14, further comprising a gas supply source for supplying a gas capable of purging the cleaning liquid to the apparatus inlet or the apparatus outlet provided in an upper part of the apparatus main body of the culture medium heating apparatus. system.
PCT/JP2017/030981 2016-09-09 2017-08-29 Culture medium heating device and culturing system WO2018047679A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-176654 2016-09-09
JP2016176654 2016-09-09

Publications (1)

Publication Number Publication Date
WO2018047679A1 true WO2018047679A1 (en) 2018-03-15

Family

ID=61561495

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/030981 WO2018047679A1 (en) 2016-09-09 2017-08-29 Culture medium heating device and culturing system

Country Status (1)

Country Link
WO (1) WO2018047679A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004088231A2 (en) * 2003-02-12 2004-10-14 Applied Integrated Systems, Inc. Heat exchanger for high purity and corrosive fluids
JP2009145027A (en) * 2007-12-18 2009-07-02 Bridgestone Corp Inline heater
WO2009147871A1 (en) * 2008-06-02 2009-12-10 東京エレクトロン株式会社 Fluid heater, manufacturing method thereof, substrate processing device equipped with a fluid heater, and substrate processing method
JP2012170364A (en) * 2011-02-18 2012-09-10 Hitachi Plant Technologies Ltd Culture vessel for living cell and culture apparatus
JP2015004470A (en) * 2013-06-20 2015-01-08 新熱工業株式会社 Fluid heater and fluid heating device
JP2015109877A (en) * 2015-03-25 2015-06-18 株式会社日立製作所 Automatic culture device
JP2015152226A (en) * 2014-02-14 2015-08-24 日本電熱株式会社 liquid heating device
JP2015213462A (en) * 2014-05-09 2015-12-03 株式会社Ihi Cell culture device and cell culture system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004088231A2 (en) * 2003-02-12 2004-10-14 Applied Integrated Systems, Inc. Heat exchanger for high purity and corrosive fluids
JP2009145027A (en) * 2007-12-18 2009-07-02 Bridgestone Corp Inline heater
WO2009147871A1 (en) * 2008-06-02 2009-12-10 東京エレクトロン株式会社 Fluid heater, manufacturing method thereof, substrate processing device equipped with a fluid heater, and substrate processing method
JP2012170364A (en) * 2011-02-18 2012-09-10 Hitachi Plant Technologies Ltd Culture vessel for living cell and culture apparatus
JP2015004470A (en) * 2013-06-20 2015-01-08 新熱工業株式会社 Fluid heater and fluid heating device
JP2015152226A (en) * 2014-02-14 2015-08-24 日本電熱株式会社 liquid heating device
JP2015213462A (en) * 2014-05-09 2015-12-03 株式会社Ihi Cell culture device and cell culture system
JP2015109877A (en) * 2015-03-25 2015-06-18 株式会社日立製作所 Automatic culture device

Similar Documents

Publication Publication Date Title
JP5476096B2 (en) Water supply apparatus and water cooling and water purification method used therefor
US10294447B2 (en) Bioreactor with condenser
JP2012506257A5 (en)
WO2010021139A1 (en) Isolator
CN107921327B (en) Bioreactor condenser
WO2016020992A1 (en) Culture apparatus, culture method using same, and method for selecting aggregated cell mass
US1196481A (en) Sterilization of liquids.
JP2006075683A (en) Liquid applying apparatus and liquid deaerating method
US11124753B2 (en) System, device and method for receiving a disposable bag
WO2018047679A1 (en) Culture medium heating device and culturing system
KR20180119250A (en) hot water creation module for water treatment apparatus
JP5370644B2 (en) Ink jet head unit and ink jet recording apparatus including the same
KR20160035625A (en) Cell observable incubator system
JP2009120252A (en) Method for feeding sterile liquefied gas into liquefied gas filling apparatus for a long time and apparatus for it
JP2007222063A (en) Culture apparatus and method
US20170275579A1 (en) Cell culture apparatus and cell culture bag
CN100371661C (en) Constant temperature liquid crculating apparatus
JP4594764B2 (en) Pretreatment equipment for water quality measurement
JP6447597B2 (en) Buffer tank and culture system
JP2017063617A (en) Culture apparatus
JP2017063618A (en) incubator
KR101719349B1 (en) Sterilization and cleaning kit using citric acid
KR20190061907A (en) Clean air generator for pneumatic conveyor system
JP2007177769A (en) Micropump device
KR20120132272A (en) Cold & hot water dispenser having sterilization system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17848619

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17848619

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP