WO2018047285A1 - Solar power amplifier and solar power generation system - Google Patents

Solar power amplifier and solar power generation system Download PDF

Info

Publication number
WO2018047285A1
WO2018047285A1 PCT/JP2016/076536 JP2016076536W WO2018047285A1 WO 2018047285 A1 WO2018047285 A1 WO 2018047285A1 JP 2016076536 W JP2016076536 W JP 2016076536W WO 2018047285 A1 WO2018047285 A1 WO 2018047285A1
Authority
WO
WIPO (PCT)
Prior art keywords
power generation
amplifier
solar power
semiconductor particles
conductor
Prior art date
Application number
PCT/JP2016/076536
Other languages
French (fr)
Japanese (ja)
Inventor
徹 金城
Original Assignee
株式会社京楽産業ホールディングス
徹 金城
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社京楽産業ホールディングス, 徹 金城 filed Critical 株式会社京楽産業ホールディングス
Priority to PCT/JP2016/076536 priority Critical patent/WO2018047285A1/en
Priority to JP2018537940A priority patent/JP6714706B2/en
Publication of WO2018047285A1 publication Critical patent/WO2018047285A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B11/00Communication cables or conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B9/00Power cables
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/30Electrical components
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to an amplifier for photovoltaic power generation and a photovoltaic power generation system using the same.
  • Patent Document 1 discloses a technique in which a crystalline nanodiamond semiconductor having an activation energy level of 0.8 to 2.0 eV having a spontaneous charge is used as a solar cell protective film.
  • This solar cell protective film increases the light absorption ability by the light scattering effect of nanodiamond semiconductor particles having a particle size of 3-8 nm, prevents dirt from adhering to the surface of the solar cell by spontaneous charge, and prevents deterioration of output over time.
  • the photoelectric conversion efficiency is improved by converting an ultraviolet wavelength band of 400 nm or less into a wavelength band of 0.5 to 2.0 ⁇ m.
  • Patent Document 2 discloses a functional fiber in which nanodiamond semiconductor particles are dispersed in a fiber. Specifically, by using nanodiamond semiconductor particles having an activation energy level of 0.1 to 1.0 eV for generating charged particles near room temperature, fibers having high bioinfrared and charged particle radioactivity are produced. Semiconductor particles penetrate into the gaps of the fiber polymer crystals and are connected in a pseudo series, and the potential between the particles generated by excitation with heating at about the body temperature is integrated to generate a large electromotive force. Demonstrate the effect.
  • Patent Document 3 discloses an organic functional material using nanodiamond semiconductor particles having ultraviolet absorption ability and light energy conversion ability to convert a wavelength from ultraviolet to infrared.
  • the organic functional material contains 0.0005 wt% or more of nanodiamond semiconductor particles having an activation energy level of 0.2-1.0 eV.
  • An object of the present invention is to provide an amplifier for photovoltaic power generation and a photovoltaic power generation system focusing on novel electrical characteristics of crystalline nanodiamond semiconductor particles.
  • the first invention provides an amplifier for photovoltaic power generation.
  • This amplifier is constituted by an electric wire wound in a coil shape, and this electric wire has a conductor and an electron acceleration layer.
  • the electron acceleration layer is disposed in contact with or close to the conductor and includes crystalline nanodiamond semiconductor particles having a spontaneous charge, and accelerates free electrons flowing in the conductor.
  • the second invention provides a solar power generation system.
  • This system includes a photovoltaic power generation module, an inverter, and an amplifier.
  • the photovoltaic power generation module converts light energy into electric power using the photovoltaic effect.
  • the inverter converts DC power generated by the photovoltaic power generation module into AC power.
  • the amplifier is provided on a line connecting the photovoltaic power generation module and the inverter.
  • This amplifier is constituted by an electric wire wound in a coil shape, and this electric wire has a conductor and an electron acceleration layer.
  • the electron acceleration layer is disposed in contact with or close to the conductor and includes crystalline nanodiamond semiconductor particles having a spontaneous charge, and accelerates free electrons flowing in the conductor.
  • the backflow prevention diode 4 is provided in the line which connects between a photovoltaic power generation module and an inverter.
  • the amplifier is connected to the anode side of the backflow prevention diode in the positive line or the negative electrode of the photovoltaic module. It is preferable to provide in the minus line. Further, when the backflow prevention diode is provided on the minus line, the amplifier is preferably provided on the anode side of the backflow prevention diode in the minus line or on the plus line.
  • the crystalline nanodiamond semiconductor particles preferably have a particle diameter of 3 nm or more and 8 nm or less, and more preferably, the activation energy level of the crystalline nanodiamond semiconductor particles is 0.00. 3 eV or more and 0.7 eV or less.
  • Configuration diagram of electric wire according to the second embodiment Comparison chart showing delay time characteristics Diagram showing each line of waveform level Illustration of electric wire manufacturing method Table showing test results of measured current of photovoltaic power generation
  • FIG. 1 is a circuit diagram of a photovoltaic power generation system according to this embodiment.
  • This solar power generation system 1 is mainly composed of a solar power generation module 2, an inverter 3, a backflow prevention diode 4, and an amplifier 5.
  • the photovoltaic power generation module 2 converts the light energy of sunlight into electric power using the photovoltaic effect.
  • the solar power generation module 2 any type including a general compound semiconductor element type (multijunction element or the like) may be used.
  • the photovoltaic power generation module 2 may be one.
  • the inverter 3 converts the DC power generated by the photovoltaic power generation module 2 into AC power and outputs the AC power to the outside.
  • the photovoltaic power generation module 2 and the inverter 3 are connected by a plus line 6 and a minus line 7, thereby forming one closed circuit.
  • the plus line 6 is connected to the positive electrode of the solar power generation module 2, and current flows from the solar power generation module 2 toward the inverter 3.
  • the positive line 6 is provided with a backflow prevention diode 4 such as a Schottky barrier diode in order to protect the photovoltaic power generation module 2 from a surge current.
  • the minus line 7 is connected to the negative electrode of the photovoltaic power generation module 2, and current flows from the inverter 3 toward the photovoltaic power generation module 2.
  • the minus line 7 is provided with an amplifier 5. As will be described later, by providing the amplifier 5 in a closed circuit including the photovoltaic power generation module 2 and the inverter 3, the direct-current power generated by the photovoltaic power generation module is increased (the current is amplified with the voltage unchanged).
  • the installation position of the amplifier 5 is a position other than the cathode side of the backflow prevention diode 4 on the positive line 6, that is, the backflow on the negative line 7 or the positive line 6.
  • the anode side of the prevention diode 4 is preferable. According to experiments conducted by the inventors, when the amplifier 5 is provided at these positions, the amplification factor of the current by the amplifier 5 is larger than when the amplifier 5 is provided on the cathode side of the backflow prevention diode 4 in the plus line 6. I got the result. From this, it can be understood that there is a correlation between the rectifying action of the diode and the amplifying action of the current by the amplifier 5, and that the current not rectified by the diode has a higher current amplification factor.
  • FIG. 2 is a circuit diagram showing another example of the solar power generation system 1.
  • a backflow prevention diode 4 is provided on the minus line 7, and an amplifier 5 is provided on the plus line 6.
  • the installation position of the amplifier 5 is a position other than the cathode side of the backflow prevention diode 4 in the minus line 7, that is, the plus line 6 or the backflow in the minus line 7.
  • the anode side of the prevention diode 4 is preferable.
  • FIG. 3 is a configuration diagram of the amplifier 5 according to the present embodiment.
  • the amplifier 5 is mainly composed of a box-shaped housing 8, a pair of connectors 9, a pair of wires 10, and a coil 11.
  • the pair of connectors 9 is provided on the wall portion of the housing 8 and is connected to the input terminal and output terminal of the plus line 6 (or minus line 7) described above.
  • the coil 11 is housed inside the housing 8, and one end of the coil 11 is connected to one connector 9 via the wiring 10, and the other end is connected to the other connector 9 via the wiring 10. Yes.
  • the coil 11 is obtained by winding a special electric wire 12 described below in a coil shape.
  • FIG. 4 is a configuration diagram of the electric wire 12 according to the first embodiment.
  • the electric wire 12 includes a conductive wire 12a that is a conductor through which electricity flows, and an electron acceleration layer 12b that directly covers the periphery of the conductive wire 12a.
  • the electron acceleration layer 12b has insulating properties and includes crystalline nanodiamond semiconductor particles. Crystalline nanodiamond semiconductor particles are generated by finely pulverizing with explosive energy of explosives. The crystalline nanodiamond semiconductor particles have a spontaneous charge.
  • crystalline nanodiamond semiconductor particles having a particle diameter of 3 nm or more and 8 nm or less are used. Particles of this size have the following characteristics. First, since the surface carbon SP2 layer is thin, the generation efficiency of excited charged particles is good and the blending amount is small. Secondly, it has spontaneous polarization and high performance due to spontaneous charge. Third, the activation energy level of the spontaneous charge is 0.3 eV or more and 0.7 eV or less, and many excited charged particles are generated. Fourth, it has a soccer ball shape and a function of reducing contact resistance due to excited electrons. The electron acceleration layer 12b accelerates free electrons flowing through the conductive wire 12a by utilizing the electric repulsive force due to charging by utilizing the characteristics of the crystalline nanodiamond semiconductor particles as described above.
  • FIG. 5 is a configuration diagram of the electric wire 12 according to the second embodiment.
  • an insulating layer 12c is provided between a conducting wire 12a that is a conductor through which electricity flows and an electron acceleration layer 12b similar to that shown in FIG.
  • the electron acceleration layer 12b is disposed close to the conductive wire 12a without being in contact with the conductor 12a, that is, separated by the film thickness of the insulating layer 12c.
  • the electron acceleration layer 12b is provided over the perimeter, you may provide the electron acceleration layer 12b only in a part of periphery.
  • FIG. 6 is a comparison diagram showing the delay time of the output wave with respect to the input wave.
  • a wire having a diameter of 0.1 mm, a wire length of 1 m, and a resistance of 50 ⁇ is used, and a frequency of 100 kHz is applied.
  • the left side of the figure shows the characteristics of the bulk electric wire (conductive wire itself) not covered with the electron acceleration layer, the middle of the figure shows the characteristics of the electric wire 12 according to the first embodiment, and the right side of the figure shows the characteristics of the electric wire 12 according to the second embodiment. Each is shown.
  • the delay time of the 10% line (see FIG. 7) of the waveform level is 8.8 nsec, but the delay time (phase shift) of the 50% line and 90% line is in the order of bulk wire, wire 1 and wire 2.
  • FIG. 8 is an explanatory diagram of a method for manufacturing the electric wire 12.
  • the conducting wire 12a drawn from the first roll 13 is wound up by the second roll 14 through a predetermined path.
  • An annealing process, an impregnation process, and a baking process are interposed in this path.
  • the conductor 12a is heated to a predetermined temperature by the heater 15.
  • an impregnation step an insulating coating agent containing crystalline nanodiamond semiconductor particles having a spontaneous charge is applied around the heated conducting wire 12a.
  • This coating agent is produced by adding crystalline nanodiamond semiconductor particles to a liquid urethane resin at a predetermined mixing ratio and performing a dispersion process using a shaker or ultrasonic waves. Then, the coating agent is applied by immersing the lead wire 12a in the storage tank 16 in which the coating agent is stored. Thereafter, the conductive wire 12a coated with the coating agent is heated and fired at a predetermined temperature for a predetermined time by the baking device 17. These impregnation step and firing step are repeated a predetermined number of times so as to obtain the electron acceleration layer 12b having a predetermined film thickness. Thereby, the electron acceleration layer 12b for accelerating free electrons flowing through the conductor 12a is formed around the conductor 12a. Finally, the electric wire 12 in which the electron acceleration layer 12 b is formed around the conducting wire 12 a is wound up by the second roll 14. According to the manufacturing method as described above, the electric wire 12 including the conducting wire 12a and the electron acceleration layer 12b can be efficiently manufactured.
  • FIG. 9 is a table showing test results of measured current of photovoltaic power generation. This test was conducted on August 4, 2016 at the Palace Solar Takeo Power Station of Dachs Co., Ltd., and the current measured at an existing photovoltaic power generation facility (uninstalled circuit of the amplifier 5) under the same conditions The value is compared with the current value measured by the amplifier 5 installed in the same facility (the construction circuit of the amplifier 5) (unit: amps). In the time period from 13:10 to 14:30, the current was measured 18 times in total (t1 to t18). From this test result, it can be understood that the provision of the amplifier 5 increases the current value by more than 10% compared to the case where the amplifier 5 is not provided.
  • the current generated by the photovoltaic power generation module 2 can be effectively increased. This is based on the fact that a crystal nanodiamond semiconductor particle having a spontaneous charge is brought into contact with or brought close to the conducting wire 12a through which electricity flows to thereby accelerate (double) the free electrons flowing in the conducting wire 12a. Is. Although the mechanism of current amplification by the amplifier 5 is not clear, the amplifier 5 including the coil 11 functions as a kind of low-pass filter, and the high-frequency component included in the current output from the photovoltaic power generation module 2 is converted to the low-frequency component. It may be derived from the fact that it is converted into energy.
  • the amplifier 5 is configured as a unit different from the photovoltaic power generation module 2 and the like, but this allows the amplifier 5 to be easily externally attached to an existing photovoltaic power generation facility. Because. Therefore, if there is no such necessity, the amplifier 5 may be configured integrally with the photovoltaic power generation module 2 or the like instead of a separate unit.
  • the present invention can be widely applied to applications that increase the current generated by the photovoltaic power generation module.

Landscapes

  • Photovoltaic Devices (AREA)
  • Insulated Conductors (AREA)

Abstract

Provided are a solar power amplifier and a solar power generation system, which are based on novel electrical properties of crystalline nano-diamond semiconductor particles. The solar power amplifier is composed of an electric wire wound in the shape of a coil, the electric wire having a conductor and an electron acceleration layer. The electron acceleration layer is in contact with or in proximity to the conductor, contains crystalline nano-diamond semiconductor particles having spontaneous charges, and accelerates free electrons flowing through the conductor. The crystalline nano-diamond semiconductor particles preferably have a particle size of 3-8 nm, and more preferably, the activation energy level of the crystalline nano-diamond semiconductor particles is 0.3-0.7 eV.

Description

太陽光発電用増幅器および太陽光発電システムSolar power amplifier and solar power system
 本発明は、太陽光発電用増幅器、および、これを用いた太陽光発電システムに関する。 The present invention relates to an amplifier for photovoltaic power generation and a photovoltaic power generation system using the same.
 従来より、ナノダイヤモンド粒子は、磁気ディスクのガラス基板研磨等における研磨材として広く使用されているが、近年、ナノダイヤモンド半導体が有する自発電荷に着目した応用例が注目されている。例えば、特許文献1は、自発電荷を有する活性化エネルギーレベル0.8-2.0eVを持つ結晶系ナノダイヤモンド半導体を太陽電池保護膜として使用する技術が開示されている。この太陽電池保護膜は、粒子サイズ3-8nmのナノダイヤモンド半導体粒子の光散乱効果により光吸収能を増し、自発電荷により太陽電池表面の汚れ付着を防止して出力の経年劣化を防止すると共に、400nm以下の紫外線波長帯域を0.5-2.0μmの波長帯域に変換して光電気変換効率を向上させる。 Conventionally, nanodiamond particles have been widely used as an abrasive in polishing a glass substrate of a magnetic disk, but in recent years, application examples focusing on the spontaneous charge of nanodiamond semiconductors have attracted attention. For example, Patent Document 1 discloses a technique in which a crystalline nanodiamond semiconductor having an activation energy level of 0.8 to 2.0 eV having a spontaneous charge is used as a solar cell protective film. This solar cell protective film increases the light absorption ability by the light scattering effect of nanodiamond semiconductor particles having a particle size of 3-8 nm, prevents dirt from adhering to the surface of the solar cell by spontaneous charge, and prevents deterioration of output over time. The photoelectric conversion efficiency is improved by converting an ultraviolet wavelength band of 400 nm or less into a wavelength band of 0.5 to 2.0 μm.
 また、特許文献2には、ナノダイヤモンド半導体粒子を繊維中に分散させた機能性繊維が開示されている。具体的には、室温付近で荷電粒子を発生させる活性化エネルギーレベルが0.1-1.0eVであるナノダイヤモンド半導体粒子を用いることで、生体赤外線及び荷電粒子放射能の大きな繊維を作成する。半導体粒子は、繊維高分子結晶の間隙に浸透して擬似的に直列接続され、体温程度の加熱での励起で発生した粒子間の電位が積算されることによって、大きな起電力を発生し、生体効果を発揮する。 Patent Document 2 discloses a functional fiber in which nanodiamond semiconductor particles are dispersed in a fiber. Specifically, by using nanodiamond semiconductor particles having an activation energy level of 0.1 to 1.0 eV for generating charged particles near room temperature, fibers having high bioinfrared and charged particle radioactivity are produced. Semiconductor particles penetrate into the gaps of the fiber polymer crystals and are connected in a pseudo series, and the potential between the particles generated by excitation with heating at about the body temperature is integrated to generate a large electromotive force. Demonstrate the effect.
 さらに、特許文献3には、紫外線吸収能および紫外線から赤外線に波長を変換する光エネルギー変換能を有するナノダイヤモンド半導体粒子を用いた有機機能性材料が開示されている。有機機能性材料は、0.2-1.0eVの活性化エネルギーレベルを有するナノダイヤモンド半導体粒子を0.0005wt%以上含む。 Furthermore, Patent Document 3 discloses an organic functional material using nanodiamond semiconductor particles having ultraviolet absorption ability and light energy conversion ability to convert a wavelength from ultraviolet to infrared. The organic functional material contains 0.0005 wt% or more of nanodiamond semiconductor particles having an activation energy level of 0.2-1.0 eV.
特開2014-203985号公報JP 2014-203985 A 特開2011-074553号公報JP 2011-074553 A 特開2011-10635号公報JP 2011-10635 A
 本発明の目的は、結晶系ナノダイヤモンド半導体粒子の新規な電気的特性に着目した太陽光発電用増幅器および太陽光発電システムを提供することである。 An object of the present invention is to provide an amplifier for photovoltaic power generation and a photovoltaic power generation system focusing on novel electrical characteristics of crystalline nanodiamond semiconductor particles.
 かかる課題を解決すべく、第1の発明は、太陽光発電用増幅器を提供する。この増幅器は、コイル状に巻回された電線によって構成され、この電線は、導電体と、電子加速層とを有する。電子加速層は、導電体に当接または近接して配置され、自発電荷を有する結晶系ナノダイヤモンド半導体粒子を含み、導電体中を流れる自由電子を加速させる。 In order to solve this problem, the first invention provides an amplifier for photovoltaic power generation. This amplifier is constituted by an electric wire wound in a coil shape, and this electric wire has a conductor and an electron acceleration layer. The electron acceleration layer is disposed in contact with or close to the conductor and includes crystalline nanodiamond semiconductor particles having a spontaneous charge, and accelerates free electrons flowing in the conductor.
 第2の発明は、太陽光発電システムを提供する。このシステムは、太陽光発電モジュールと、インバータと、増幅器とを有する。太陽光発電モジュールは、光起電力効果を利用して光エネルギーを電力に変換する。インバータは、太陽光発電モジュールによって生成された直流電力を交流電力に変換する。増幅器は、太陽光発電モジュールとインバータとの間を接続するラインに設けられている。この増幅器は、コイル状に巻回された電線によって構成され、この電線は、導電体と、電子加速層とを有する。電子加速層は、導電体に当接または近接して配置され、自発電荷を有する結晶系ナノダイヤモンド半導体粒子を含み、導電体中を流れる自由電子を加速させる。 The second invention provides a solar power generation system. This system includes a photovoltaic power generation module, an inverter, and an amplifier. The photovoltaic power generation module converts light energy into electric power using the photovoltaic effect. The inverter converts DC power generated by the photovoltaic power generation module into AC power. The amplifier is provided on a line connecting the photovoltaic power generation module and the inverter. This amplifier is constituted by an electric wire wound in a coil shape, and this electric wire has a conductor and an electron acceleration layer. The electron acceleration layer is disposed in contact with or close to the conductor and includes crystalline nanodiamond semiconductor particles having a spontaneous charge, and accelerates free electrons flowing in the conductor.
 ここで、第2の発明において、逆流防止ダイオード4を設けることが好ましい。この逆流防止ダイオードは、太陽光発電モジュールとインバータとの間を接続するラインに設けられている。ここで、逆流防止ダイオードが太陽光発電モジュールの正極に接続されたプラスラインに設けられている場合、増幅器は、プラスラインにおける逆流防止ダイオードのアノード側、または、太陽光発電モジュールの負極に接続されたマイナスラインに設けることが好ましい。また、逆流防止ダイオードがマイナスラインに設けられている場合、増幅器は、マイナスラインにおける逆流防止ダイオードのアノード側、または、プラスラインに設けることが好ましい。 Here, in the second invention, it is preferable to provide the backflow prevention diode 4. This backflow prevention diode is provided in the line which connects between a photovoltaic power generation module and an inverter. Here, when the backflow prevention diode is provided in the positive line connected to the positive electrode of the photovoltaic module, the amplifier is connected to the anode side of the backflow prevention diode in the positive line or the negative electrode of the photovoltaic module. It is preferable to provide in the minus line. Further, when the backflow prevention diode is provided on the minus line, the amplifier is preferably provided on the anode side of the backflow prevention diode in the minus line or on the plus line.
 また、第1および第2の発明において、結晶系ナノダイヤモンド半導体粒子は、3nm以上8nm以下の粒子径を有することが好ましく、より好ましくは、結晶系ナノダイヤモンド半導体粒子の活性化エネルギーレベルが0.3eV以上0.7eV以下である。 In the first and second inventions, the crystalline nanodiamond semiconductor particles preferably have a particle diameter of 3 nm or more and 8 nm or less, and more preferably, the activation energy level of the crystalline nanodiamond semiconductor particles is 0.00. 3 eV or more and 0.7 eV or less.
 本発明者が鋭意研究を重ねた結果、自発電荷を有する結晶系ナノダイヤモンド半導体粒子を電気が流れる導線に当接または近づけることで、導線中を流れる自由電子が加速(倍増)する現象を見出だすに至った。第1および第2の発明によれば、結晶系ナノダイヤモンド半導体粒子の新規な電気的特性を活用することで、太陽光発電用増幅器を設けない場合と比較して、太陽光発電モジュールによって生成された電流を有効に増大させることができる。 As a result of extensive research conducted by the present inventor, a phenomenon has been found in which free electrons flowing in a conducting wire are accelerated (doubled) by bringing crystalline nanodiamond semiconductor particles having spontaneous charges into contact with or approaching the conducting wire through which electricity flows. It came out. According to the first and second inventions, by using the novel electrical characteristics of the crystalline nanodiamond semiconductor particles, it is generated by the photovoltaic power generation module as compared with the case where no photovoltaic power generation amplifier is provided. Current can be increased effectively.
太陽光発電システムの回路図Circuit diagram of solar power generation system 太陽光発電システムの他の例を示す回路図Circuit diagram showing another example of a photovoltaic power generation system 増幅器の構成図Amplifier configuration diagram 第1の実施例に係る電線の構成図Configuration diagram of electric wire according to the first embodiment 第2の実施例に係る電線の構成図Configuration diagram of electric wire according to the second embodiment 遅延時間の特性を示す比較図Comparison chart showing delay time characteristics 波形レベルの各ラインを示す図Diagram showing each line of waveform level 電線の製造方法の説明図Illustration of electric wire manufacturing method 太陽光発電の計測電流の試験結果を示す表Table showing test results of measured current of photovoltaic power generation
 図1は、本実施形態に係る太陽光発電システムの回路図である。この太陽光発電システム1は、太陽光発電モジュール2と、インバータ3と、逆流防止ダイオード4と、増幅器5とを主体に構成されている。太陽光発電モジュール2は、光起電力効果を利用して、太陽光の光エネルギーを電力に変換する。太陽光発電モジュール2としては、一般的な化合物半導体系素子型(多接合素子など)を含めて、どのようなタイプを用いてもよい。また、本実施形態では、複数の太陽光発電モジュール2を直接に接続した構成を示しているが、太陽光発電モジュール2は一つであってもよい。インバータ3は、太陽光発電モジュール2によって生成された直流電力を交流電力に変換し、交流電力を外部に出力する。太陽光発電モジュール2およびインバータ3は、プラスライン6およびマイナスライン7によって接続されており、これによって、一つの閉回路が形成されている。 FIG. 1 is a circuit diagram of a photovoltaic power generation system according to this embodiment. This solar power generation system 1 is mainly composed of a solar power generation module 2, an inverter 3, a backflow prevention diode 4, and an amplifier 5. The photovoltaic power generation module 2 converts the light energy of sunlight into electric power using the photovoltaic effect. As the solar power generation module 2, any type including a general compound semiconductor element type (multijunction element or the like) may be used. Moreover, although the structure which connected the several photovoltaic power generation module 2 directly is shown in this embodiment, the photovoltaic power generation module 2 may be one. The inverter 3 converts the DC power generated by the photovoltaic power generation module 2 into AC power and outputs the AC power to the outside. The photovoltaic power generation module 2 and the inverter 3 are connected by a plus line 6 and a minus line 7, thereby forming one closed circuit.
 プラスライン6は、太陽光発電モジュール2の正極に接続されており、太陽光発電モジュール2からインバータ3に向かって電流が流れる。このプラスライン6には、サージ電流から太陽光発電モジュール2を保護すべく、ショットキーバリアダイオード等の逆流防止ダイオード4が設けられている。また、マイナスライン7は、太陽光発電モジュール2の負極に接続されており、インバータ3から太陽光発電モジュール2に向かって電流が流れる。このマイナスライン7には、増幅器5が設けられている。後述するように、太陽光発電モジュール2およびインバータ3を含む閉回路中に増幅器5を設けることによって、太陽光発電モジュールによって生成された直流電力を増大させる(電圧不変で電流を増幅させる)。逆流防止ダイオード4がプラスライン6に設けられている場合、増幅器5の設置位置は、プラスライン6における逆流防止ダイオード4のカソード側を除く位置、すなわち、マイナスライン7、または、プラスライン6における逆流防止ダイオード4のアノード側とすることが好ましい。発明者が行った実験によれば、これらの位置に増幅器5を設けた場合、プラスライン6における逆流防止ダイオード4のカソード側に設けた場合と比較して、増幅器5による電流の増幅率が大きくなるとの結果を得た。このことから、ダイオードの整流作用と、増幅器5による電流の増幅作用との間には相関があり、ダイオードによって整流されていない電流の方が、電流の増幅率が高いことが理解できる。 The plus line 6 is connected to the positive electrode of the solar power generation module 2, and current flows from the solar power generation module 2 toward the inverter 3. The positive line 6 is provided with a backflow prevention diode 4 such as a Schottky barrier diode in order to protect the photovoltaic power generation module 2 from a surge current. The minus line 7 is connected to the negative electrode of the photovoltaic power generation module 2, and current flows from the inverter 3 toward the photovoltaic power generation module 2. The minus line 7 is provided with an amplifier 5. As will be described later, by providing the amplifier 5 in a closed circuit including the photovoltaic power generation module 2 and the inverter 3, the direct-current power generated by the photovoltaic power generation module is increased (the current is amplified with the voltage unchanged). When the backflow prevention diode 4 is provided on the positive line 6, the installation position of the amplifier 5 is a position other than the cathode side of the backflow prevention diode 4 on the positive line 6, that is, the backflow on the negative line 7 or the positive line 6. The anode side of the prevention diode 4 is preferable. According to experiments conducted by the inventors, when the amplifier 5 is provided at these positions, the amplification factor of the current by the amplifier 5 is larger than when the amplifier 5 is provided on the cathode side of the backflow prevention diode 4 in the plus line 6. I got the result. From this, it can be understood that there is a correlation between the rectifying action of the diode and the amplifying action of the current by the amplifier 5, and that the current not rectified by the diode has a higher current amplification factor.
 図2は、太陽光発電システム1の他の例を示す回路図である。この例では、マイナスライン7に逆流防止ダイオード4、プラスライン6に増幅器5がそれぞれ設けられている。逆流防止ダイオード4がマイナスライン7に設けられている場合、増幅器5の設置位置は、マイナスライン7における逆流防止ダイオード4のカソード側を除く位置、すなわち、プラスライン6、または、マイナスライン7における逆流防止ダイオード4のアノード側とすることが好ましい。発明者が行った実験によれば、これらの位置に増幅器5を設けた場合、マイナスライン7における逆流防止ダイオード4のカソード側に設けた場合と比較して、増幅器5による電流の増幅率が大きくとの結果を得た。なお、それ以外の点については図1の構成と同様なので、同一の符号を付して、ここでの説明を省略する。 FIG. 2 is a circuit diagram showing another example of the solar power generation system 1. In this example, a backflow prevention diode 4 is provided on the minus line 7, and an amplifier 5 is provided on the plus line 6. When the backflow prevention diode 4 is provided in the minus line 7, the installation position of the amplifier 5 is a position other than the cathode side of the backflow prevention diode 4 in the minus line 7, that is, the plus line 6 or the backflow in the minus line 7. The anode side of the prevention diode 4 is preferable. According to experiments conducted by the inventors, when the amplifier 5 is provided at these positions, the amplification factor of the current by the amplifier 5 is larger than when the amplifier 5 is provided on the cathode side of the backflow prevention diode 4 in the minus line 7. And got the result. Since the other points are the same as in the configuration of FIG. 1, the same reference numerals are given and the description thereof is omitted here.
 図3は、本実施形態に係る増幅器5の構成図である。この増幅器5は、箱状の筐体8と、一対のコネクタ9と、一対の配線10と、コイル11とを主体に構成されている。一対のコネクタ9は、筐体8の壁部に設けられており、上述したプラスライン6(またはマイナスライン7)の入力端子および出力端子がそれぞれ接続される。コイル11は、筐体8の内部に収容されており、その一端は配線10を介して一方のコネクタ9に接続されていると共に、その他端は配線10を介して他方のコネクタ9に接続されている。このコイル11は、以下に述べる特殊な電線12をコイル状に巻回したものである。 FIG. 3 is a configuration diagram of the amplifier 5 according to the present embodiment. The amplifier 5 is mainly composed of a box-shaped housing 8, a pair of connectors 9, a pair of wires 10, and a coil 11. The pair of connectors 9 is provided on the wall portion of the housing 8 and is connected to the input terminal and output terminal of the plus line 6 (or minus line 7) described above. The coil 11 is housed inside the housing 8, and one end of the coil 11 is connected to one connector 9 via the wiring 10, and the other end is connected to the other connector 9 via the wiring 10. Yes. The coil 11 is obtained by winding a special electric wire 12 described below in a coil shape.
 図4は、第1の実施例に係る電線12の構成図である。この電線12は、電気が流れる導電体である導線12aと、この導線12aの周囲を直接覆う電子加速層12bとによって構成されている。電子加速層12bは、絶縁性を有すると共に、結晶系ナノダイヤモンド半導体粒子を含んでいる。結晶系ナノダイヤモンド半導体粒子は、火薬の爆発エネルギー等によって細かく粉砕することによって生成される。また、この結晶系ナノダイヤモンド半導体粒子は、自発電荷を有している。 FIG. 4 is a configuration diagram of the electric wire 12 according to the first embodiment. The electric wire 12 includes a conductive wire 12a that is a conductor through which electricity flows, and an electron acceleration layer 12b that directly covers the periphery of the conductive wire 12a. The electron acceleration layer 12b has insulating properties and includes crystalline nanodiamond semiconductor particles. Crystalline nanodiamond semiconductor particles are generated by finely pulverizing with explosive energy of explosives. The crystalline nanodiamond semiconductor particles have a spontaneous charge.
 本実施形態では、結晶系ナノダイヤモンド半導体粒子として、3nm以上8nm以下の粒子径を有するものを用いる。このサイズの粒子は以下のような特徴を有している。第1に、表面炭素SP2層が薄くなるため、励起荷電粒子の発生効率が良く、配合量が少なくて済む。第2に、自発分極をもち自発電荷による性能が大きい。第3に、自発電荷の活性化エネルギーレベルが0.3eV以上0.7eV以下を有し、励起された荷電粒子が多く発生する。第4に、サッカーボール状で励起電子による接触抵抗の低下機能を有する。電子加速層12bは、以上のような結晶系ナノダイヤモンド半導体粒子の特性を生かして、帯電による電気反発力を利用することによって、導線12aを流れる自由電子を加速させる。 In the present embodiment, crystalline nanodiamond semiconductor particles having a particle diameter of 3 nm or more and 8 nm or less are used. Particles of this size have the following characteristics. First, since the surface carbon SP2 layer is thin, the generation efficiency of excited charged particles is good and the blending amount is small. Secondly, it has spontaneous polarization and high performance due to spontaneous charge. Third, the activation energy level of the spontaneous charge is 0.3 eV or more and 0.7 eV or less, and many excited charged particles are generated. Fourth, it has a soccer ball shape and a function of reducing contact resistance due to excited electrons. The electron acceleration layer 12b accelerates free electrons flowing through the conductive wire 12a by utilizing the electric repulsive force due to charging by utilizing the characteristics of the crystalline nanodiamond semiconductor particles as described above.
 図5は、第2の実施例に係る電線12の構成図である。この電線12では、電気が流れる導電体である導線12aと、図4と同様の電子加速層12bとの間に、絶縁層12cが設けられている。この場合、電子加速層12bは導線12aと当接することなく近接、すなわち、絶縁層12cの膜厚分だけ離れて配置されることになる。なお、図4および図5に示した電線12では、その全周に亘って電子加速層12bが設けられているが、周囲の一部だけに電子加速層12bを設けてもよい。 FIG. 5 is a configuration diagram of the electric wire 12 according to the second embodiment. In this electric wire 12, an insulating layer 12c is provided between a conducting wire 12a that is a conductor through which electricity flows and an electron acceleration layer 12b similar to that shown in FIG. In this case, the electron acceleration layer 12b is disposed close to the conductive wire 12a without being in contact with the conductor 12a, that is, separated by the film thickness of the insulating layer 12c. In addition, in the electric wire 12 shown in FIG. 4 and FIG. 5, although the electron acceleration layer 12b is provided over the perimeter, you may provide the electron acceleration layer 12b only in a part of periphery.
 図6は、入力波に対する出力波の遅延時間を示す比較図である。径0.1mm、線長1m、抵抗50Ωのワイヤーを使用し、100kHzの周波数を印加する。同図左側は電子加速層にて被覆されていないバルク電線(導線そのもの)、同図中央は第1の実施例に係る電線12、同図右側は第2の実施例に係る電線12の特性をそれぞれ示している。波形レベルの10%ライン(図7参照)の遅延時間はいずれも8.8nsecであるが、50%ラインおよび90%ラインの遅延時間(位相ズレ)は、バルク電線、電線1、電線2の順に短くなっている。この比較結果から、(1)自発電荷を有する結晶系ナノダイヤモンド半導体粒子によって、導線中を流れる自由電子加速(倍増)していること、および、(2)この電子加速性は、電子加速層12bを導線12aに当接させた導線12よりも、電子加速層12bを導線12aに近接して配置した導線12の方が優れていることが理解できる。 FIG. 6 is a comparison diagram showing the delay time of the output wave with respect to the input wave. A wire having a diameter of 0.1 mm, a wire length of 1 m, and a resistance of 50Ω is used, and a frequency of 100 kHz is applied. The left side of the figure shows the characteristics of the bulk electric wire (conductive wire itself) not covered with the electron acceleration layer, the middle of the figure shows the characteristics of the electric wire 12 according to the first embodiment, and the right side of the figure shows the characteristics of the electric wire 12 according to the second embodiment. Each is shown. The delay time of the 10% line (see FIG. 7) of the waveform level is 8.8 nsec, but the delay time (phase shift) of the 50% line and 90% line is in the order of bulk wire, wire 1 and wire 2. It is getting shorter. From this comparison result, (1) free electron acceleration (doubling) flowing in the conducting wire is accelerated by the crystalline nanodiamond semiconductor particles having spontaneous charge, and (2) this electron acceleration property is determined by the electron acceleration layer 12b. It can be understood that the lead wire 12 in which the electron acceleration layer 12b is disposed in the vicinity of the lead wire 12a is superior to the lead wire 12 in which the lead wire 12a is brought into contact with the lead wire 12a.
 図8は、電線12の製造方法の説明図である。第1のロール13から線出しされた導線12aは、所定の経路経て、第2のロール14にて巻き取られる。この経路中には、アニール工程と、含浸工程と、焼成工程とが介在する。まず、アニール工程では、加熱器15によって、導線12aが所定の温度に加熱される。つぎに、含浸工程では、加熱された導線12aの周囲に、自発電荷を有する結晶系ナノダイヤモンド半導体粒子を含有した絶縁性の被覆剤が塗布される。この被覆剤は、液状のウレタン樹脂に結晶系ナノダイヤモンド半導体粒子を所定の混合比で加え、シェーカや超音波による分散工程を経て生成される。そして、被覆剤が貯留された貯留槽16に導線12aを浸すことによって、被覆剤の塗布が行われる。その後、焼成装置17によって、被覆剤が塗布された導線12aが所定の温度で所定の時間だけ加熱され、焼成される。これらの含浸工程および焼成工程は、所定の膜厚の電子加速層12bが得られるように、所定の回数だけ繰り返される。これにより、導線12aの周囲に、導線中12aを流れる自由電子を加速させる電子加速層12bを形成される。最後に、導線12aの周囲に電子加速層12bが形成された電線12が第2のロール14にて巻き取られる。以上のような製造方法によれば、導線12aおよび電子加速層12bよりなる電線12を効率的に製造できる。 FIG. 8 is an explanatory diagram of a method for manufacturing the electric wire 12. The conducting wire 12a drawn from the first roll 13 is wound up by the second roll 14 through a predetermined path. An annealing process, an impregnation process, and a baking process are interposed in this path. First, in the annealing step, the conductor 12a is heated to a predetermined temperature by the heater 15. Next, in the impregnation step, an insulating coating agent containing crystalline nanodiamond semiconductor particles having a spontaneous charge is applied around the heated conducting wire 12a. This coating agent is produced by adding crystalline nanodiamond semiconductor particles to a liquid urethane resin at a predetermined mixing ratio and performing a dispersion process using a shaker or ultrasonic waves. Then, the coating agent is applied by immersing the lead wire 12a in the storage tank 16 in which the coating agent is stored. Thereafter, the conductive wire 12a coated with the coating agent is heated and fired at a predetermined temperature for a predetermined time by the baking device 17. These impregnation step and firing step are repeated a predetermined number of times so as to obtain the electron acceleration layer 12b having a predetermined film thickness. Thereby, the electron acceleration layer 12b for accelerating free electrons flowing through the conductor 12a is formed around the conductor 12a. Finally, the electric wire 12 in which the electron acceleration layer 12 b is formed around the conducting wire 12 a is wound up by the second roll 14. According to the manufacturing method as described above, the electric wire 12 including the conducting wire 12a and the electron acceleration layer 12b can be efficiently manufactured.
 図9は、太陽光発電の計測電流の試験結果を示す表である。本試験は、平成28年8月4日、株式会社ダックスのパレストソーラー武雄発電所にて行われ、同一条件下で、既存の太陽光発電施設(増幅器5の未施工回路)で計測された電流値と、これと同一施設に増幅器5を設置したもの(増幅器5の施工回路)で計測された電流値とを比較したものである(単位:アンペア)。13時10分から14時30分までの時間帯において、電流の計測を合計18回行った(t1~t18)。この試験結果から、増幅器5を設けることにより、これを設けない場合と比較して、電流値が10%強増大していることが理解できる。 FIG. 9 is a table showing test results of measured current of photovoltaic power generation. This test was conducted on August 4, 2016 at the Palace Solar Takeo Power Station of Dachs Co., Ltd., and the current measured at an existing photovoltaic power generation facility (uninstalled circuit of the amplifier 5) under the same conditions The value is compared with the current value measured by the amplifier 5 installed in the same facility (the construction circuit of the amplifier 5) (unit: amps). In the time period from 13:10 to 14:30, the current was measured 18 times in total (t1 to t18). From this test result, it can be understood that the provision of the amplifier 5 increases the current value by more than 10% compared to the case where the amplifier 5 is not provided.
 このように、本実施形態によれば、太陽光発電モジュール2によって生成された電流を有効に増大させることができる。これは、自発電荷を有する結晶系ナノダイヤモンド半導体粒子を電気が流れる導線12aに当接または近づけることで、導線12a中を流れる自由電子が加速(倍増)する現象を新規に見出だしたことに基づくものである。増幅器5による電流増幅の機序については定かではないが、コイル11を内蔵した増幅器5が一種のローパスフィルタとして機能し、太陽光発電モジュール2より出力された電流に含まれる高周波成分を低周波成分のエネルギーに変換していることに由来するのではないかと考えられる。 Thus, according to the present embodiment, the current generated by the photovoltaic power generation module 2 can be effectively increased. This is based on the fact that a crystal nanodiamond semiconductor particle having a spontaneous charge is brought into contact with or brought close to the conducting wire 12a through which electricity flows to thereby accelerate (double) the free electrons flowing in the conducting wire 12a. Is. Although the mechanism of current amplification by the amplifier 5 is not clear, the amplifier 5 including the coil 11 functions as a kind of low-pass filter, and the high-frequency component included in the current output from the photovoltaic power generation module 2 is converted to the low-frequency component. It may be derived from the fact that it is converted into energy.
 なお、上述した実施形態では、増幅器5を太陽光発電モジュール2等とは別のユニットとして構成しているが、これは、既存の太陽光発電施設に増幅器5を簡単に外付けできるようにするためである。よって、そのような必要性がないのであれば、増幅器5を別ユニットではなく、太陽光発電モジュール2等と一体で構成してもよい。 In the above-described embodiment, the amplifier 5 is configured as a unit different from the photovoltaic power generation module 2 and the like, but this allows the amplifier 5 to be easily externally attached to an existing photovoltaic power generation facility. Because. Therefore, if there is no such necessity, the amplifier 5 may be configured integrally with the photovoltaic power generation module 2 or the like instead of a separate unit.
 本発明は、太陽光発電モジュールによって生成された電流を増大させる用途に広く適用できる。 The present invention can be widely applied to applications that increase the current generated by the photovoltaic power generation module.
 1 太陽光発電システム
 2 太陽光発電モジュール
 3 インバータ
 4 逆流防止ダイオード
 5 増幅器
 6 プラスライン
 7 マイナスライン
 8 筐体
 9 コネクタ
 10 配線
 11 コイル
 12 電線
 12a 導線
 12b 電子加速層
 12c 絶縁層
 13,14 ロール
 15 加熱器
 16 貯留槽
 17 焼成装置
DESCRIPTION OF SYMBOLS 1 Photovoltaic power generation system 2 Photovoltaic power generation module 3 Inverter 4 Backflow prevention diode 5 Amplifier 6 Plus line 7 Minus line 8 Case 9 Connector 10 Wiring 11 Coil 12 Electric wire 12a Conductor 12b Electron acceleration layer 12c Insulating layer 13, 14 Roll 15 Heating Vessel 16 storage tank 17 firing device

Claims (8)

  1.  太陽光発電用増幅器において、
     コイル状に巻回された電線によって構成され、
     前記電線は、
     導電体と、
     前記導電体に当接または近接して配置され、自発電荷を有する結晶系ナノダイヤモンド半導体粒子を含み、前記導電体中を流れる自由電子を加速させる電子加速層と
    を有することを特徴とする太陽光発電用増幅器。
    In a solar power amplifier,
    Consists of wires wound in a coil,
    The wire is
    A conductor;
    Sunlight comprising crystalline nanodiamond semiconductor particles arranged in contact with or close to the conductor and having a spontaneous charge, and an electron acceleration layer for accelerating free electrons flowing in the conductor Power amplifier.
  2.  前記結晶系ナノダイヤモンド半導体粒子は、3nm以上8nm以下の粒子径を有することを特徴とする請求項1に記載された太陽光発電用増幅器。 The solar power amplifier according to claim 1, wherein the crystalline nanodiamond semiconductor particles have a particle diameter of 3 nm or more and 8 nm or less.
  3.  前記結晶系ナノダイヤモンド半導体粒子の活性化エネルギーレベルは、0.3eV以上0.7eV以下であることを特徴とする請求項2に記載された太陽光発電用増幅器。 The solar power amplifier according to claim 2, wherein the activation energy level of the crystalline nanodiamond semiconductor particles is 0.3 eV or more and 0.7 eV or less.
  4.  太陽光発電システムにおいて、
     光起電力効果を利用して光エネルギーを電力に変換する太陽光発電モジュールと、
     前記太陽光発電モジュールによって生成された直流電力を交流電力に変換するインバータと、
     前記太陽光発電モジュールと前記インバータとの間を接続するラインに設けられた増幅器とを有し、
     前記増幅器は、
     コイル状に巻回された電線によって構成され、
     前記電線は、
     導電体と、
     前記導電体に当接または近接して配置され、自発電荷を有する結晶系ナノダイヤモンド半導体粒子を含み、前記導電体中を流れる自由電子を加速させる電子加速層と
    を有することを特徴とする太陽光発電システム。
    In the solar power generation system,
    A photovoltaic module that converts light energy into electric power using the photovoltaic effect;
    An inverter that converts direct current power generated by the photovoltaic power generation module into alternating current power;
    An amplifier provided in a line connecting between the photovoltaic power generation module and the inverter;
    The amplifier is
    Consists of wires wound in a coil,
    The wire is
    A conductor;
    Sunlight comprising crystalline nanodiamond semiconductor particles arranged in contact with or close to the conductor and having a spontaneous charge, and an electron acceleration layer for accelerating free electrons flowing in the conductor Power generation system.
  5.  前記太陽光発電モジュールと前記インバータとの間を接続するラインに設けられた逆流防止ダイオードをさらに有することを特徴とする請求項4に記載された太陽光発電システム。 The solar power generation system according to claim 4, further comprising a backflow prevention diode provided in a line connecting the solar power generation module and the inverter.
  6.  前記増幅器は、
     前記逆流防止ダイオードが前記太陽光発電モジュールの正極に接続されたプラスラインに設けられている場合、前記プラスラインにおける前記逆流防止ダイオードのアノード側または前記太陽光発電モジュールの負極に接続されたマイナスラインに設けられ、
     前記逆流防止ダイオードが前記マイナスラインに設けられている場合、前記マイナスラインにおける前記逆流防止ダイオードのアノード側または前記プラスラインに設けられていることを特徴とする請求項4または5に記載された太陽光発電システム。
    The amplifier is
    When the backflow prevention diode is provided on a positive line connected to the positive electrode of the photovoltaic power generation module, the negative line connected to the anode side of the backflow prevention diode in the positive line or the negative electrode of the photovoltaic power generation module Provided in
    6. The sun according to claim 4, wherein when the backflow prevention diode is provided on the minus line, the sun is provided on an anode side of the backflow prevention diode in the minus line or on the plus line. Photovoltaic system.
  7.  前記結晶系ナノダイヤモンド半導体粒子は、3nm以上8nm以下の粒子径を有することを特徴とする請求項4から6のいずれかに記載された太陽光発電システム。 The solar power generation system according to any one of claims 4 to 6, wherein the crystalline nanodiamond semiconductor particles have a particle diameter of 3 nm or more and 8 nm or less.
  8.  前記結晶系ナノダイヤモンド半導体粒子の活性化エネルギーレベルは、0.3eV以上0.7eV以下であることを特徴とする請求項7に記載された太陽光発電システム。 The activation energy level of the crystalline nanodiamond semiconductor particles is 0.3 eV or more and 0.7 eV or less, The photovoltaic power generation system according to claim 7.
PCT/JP2016/076536 2016-09-09 2016-09-09 Solar power amplifier and solar power generation system WO2018047285A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2016/076536 WO2018047285A1 (en) 2016-09-09 2016-09-09 Solar power amplifier and solar power generation system
JP2018537940A JP6714706B2 (en) 2016-09-09 2016-09-09 Photovoltaic amplifier and photovoltaic system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/076536 WO2018047285A1 (en) 2016-09-09 2016-09-09 Solar power amplifier and solar power generation system

Publications (1)

Publication Number Publication Date
WO2018047285A1 true WO2018047285A1 (en) 2018-03-15

Family

ID=61562010

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/076536 WO2018047285A1 (en) 2016-09-09 2016-09-09 Solar power amplifier and solar power generation system

Country Status (2)

Country Link
JP (1) JP6714706B2 (en)
WO (1) WO2018047285A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013054738A1 (en) * 2011-10-11 2013-04-18 東特塗料株式会社 Electrically insulated wire having multi-layered coating
WO2016027363A1 (en) * 2014-08-22 2016-02-25 合同会社33 Transmission cable
WO2016027362A1 (en) * 2014-08-22 2016-02-25 合同会社33 Transmission device and transmission circuit

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013054738A1 (en) * 2011-10-11 2013-04-18 東特塗料株式会社 Electrically insulated wire having multi-layered coating
WO2016027363A1 (en) * 2014-08-22 2016-02-25 合同会社33 Transmission cable
WO2016027362A1 (en) * 2014-08-22 2016-02-25 合同会社33 Transmission device and transmission circuit

Also Published As

Publication number Publication date
JPWO2018047285A1 (en) 2019-01-24
JP6714706B2 (en) 2020-06-24

Similar Documents

Publication Publication Date Title
Hassan et al. Effect irradiation time of Gamma ray on MSISM (Au/SnO2/SiO2/Si/Al) devices using theoretical modeling
RU2704321C2 (en) Electric generator system
TW201505350A (en) Device and process for the generation of electrical energy
KR101221501B1 (en) Apparatus of generating electricity by using nano-wires
WO2018047285A1 (en) Solar power amplifier and solar power generation system
US7968793B2 (en) Solar cell
JP4835127B2 (en) Solar cell
US8440903B1 (en) Method and structure for forming module using a powder coating and thermal treatment process
Chani et al. Design, fabrication and investigation of semitransparent thermoelectric cells based on graphene
US20150107644A1 (en) Photovoltaic (pv) efficiency using high frequency electric pulses
US20110048534A1 (en) Nanodipole Photovoltaic Devices, Methods of Making and Methods of Use Thereof
JP6712406B2 (en) Electrical wire
Houmomou et al. Toward High‐Efficiency CIGS‐based Thin‐film Solar Cells Incorporating Surface Defects Layer, through a Comparative Study of Electrical Characteristics—SCAPS 1D Modeling
JP6567539B2 (en) Photovoltaic cell, circuit and method
JP6473553B1 (en) Noise reduction body, method for manufacturing the same, and electronic apparatus using the same
Grankin et al. Generation of high-energy electrons in a metal under the impact of thermal hydrogen atoms and plasma deuterium
RU2605758C1 (en) Electric power supply source
JP6714728B2 (en) Transmission medium
WO1994024706A1 (en) Bipolar thermoelectric element, battery of bipolar thermoelectric elements, methods of manufacturing the same and their use in energy conversion
Bonilla et al. Electric field effect surface passivation for silicon solar cells
US20090309555A1 (en) Electricity efficiency improving apparatus
JP2014116327A (en) Photoelectric conversion device
Sahariya et al. Electronic and Optical Response of Chalcopyrites Cu 2 InMSe 4 (M= Al, Ga): First Principles Investigation for Use in Solar Cells
US20120192938A1 (en) Method and apparatus involving high-efficiency photovoltaic with p-type oxidant
JP6462195B1 (en) Electrical contact conducting material and method for producing the same

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018537940

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16915703

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16915703

Country of ref document: EP

Kind code of ref document: A1