WO2018047249A1 - Traveling plan revising device, and traveling plan revising method - Google Patents

Traveling plan revising device, and traveling plan revising method Download PDF

Info

Publication number
WO2018047249A1
WO2018047249A1 PCT/JP2016/076244 JP2016076244W WO2018047249A1 WO 2018047249 A1 WO2018047249 A1 WO 2018047249A1 JP 2016076244 W JP2016076244 W JP 2016076244W WO 2018047249 A1 WO2018047249 A1 WO 2018047249A1
Authority
WO
WIPO (PCT)
Prior art keywords
travel plan
driving
vehicle
travel
load
Prior art date
Application number
PCT/JP2016/076244
Other languages
French (fr)
Japanese (ja)
Inventor
小畑 直彦
中村 好孝
直志 宮原
下谷 光生
義典 上野
山田 久典
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2018537915A priority Critical patent/JP6576570B2/en
Priority to CN201680088897.5A priority patent/CN109641593B/en
Priority to PCT/JP2016/076244 priority patent/WO2018047249A1/en
Publication of WO2018047249A1 publication Critical patent/WO2018047249A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/02Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
    • B60W40/04Traffic conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/08Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to drivers or passengers
    • B60W40/09Driving style or behaviour
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/08Interaction between the driver and the control system

Definitions

  • the present invention relates to a technique for formulating a travel plan for reducing a driving load on a driver when an automatic driving level of an autonomous driving vehicle is lowered.
  • An automatic driving system that performs automatic driving control of a vehicle can reduce the driving load on the driver by the system controlling various actuators related to traveling control.
  • the Japanese government office and the US National Highway Traffic Safety Administration (NHTSA) define the following autonomous driving levels. In this specification, the following autonomous driving levels are used. Although the invention will be described, this is exemplary and does not exclude other levels of automatic driving.
  • Level 0 The driver always operates all the main control systems of acceleration, steering and braking. Manual operation.
  • Level 1 State in which the system performs acceleration, steering, or braking.
  • Level 2 State in which the system performs multiple operations among acceleration, steering, and braking.
  • Level 3 Acceleration, steering, and braking are all performed by the system, and the driver responds when requested by the system.
  • Level 4 A state in which acceleration, steering, and braking are all performed by a person other than the driver, and the driver is not involved at all.
  • Patent Document 1 it is determined whether or not the driver is in a manual driving acceptance state before switching the driving state of the vehicle from automatic driving to manual driving, and the driver is determined not to be in the manual driving acceptance state.
  • a vehicle control device is disclosed that sets a switching position at a position closer to the vehicle than the retreat space in the course. According to this vehicle control device, the vehicle can be retreated in the retreat space when the driver cannot cope with the manual operation.
  • Patent Document 2 in places such as tunnels, sloped sections, junctions with other roads, in front of traffic lights, intersections, and curves, it is possible to safely and automatically avoid changing from automatic driving to manual driving. It is shown that the operation is terminated.
  • JP 2016-34782 A Japanese Unexamined Patent Publication No. 2016-45856
  • the prior art document discloses determining whether or not authority should be transferred to the driver based on the driver's condition or the characteristics of the road, but the relationship with surrounding vehicles is taken into consideration. There wasn't. Therefore, even if there is no problem in the condition of the driver or the characteristics of the driving road, authority is transferred to the driver in a situation where the driving load is high due to the relationship with surrounding vehicles, such as the presence of many vehicles in the vicinity. There was a problem that.
  • an object of the present invention is to correct a travel plan so that a driving load on a driver is reduced in consideration of a relationship with surrounding vehicles.
  • the travel plan correction device acquires a first travel plan including a travel route, a travel lane, and a travel speed of the host vehicle from an automatic operation control device of the host vehicle that can travel by switching a plurality of automatic driving levels.
  • a travel plan correction unit that sets at least a part of the route up to the automatic driving level lowering switching point on the route as a travel plan correction section and creates a second travel plan different from the first travel plan for the travel plan correction section. And comprising.
  • the travel plan correction unit sets the driving load of the travel plan correction section based on the surrounding vehicle information for each of the first travel plan and the second travel plan, and the second travel plan is at least at any point in the travel plan correction section.
  • the second travel plan is output to the automatic operation control device as a load reduction travel plan.
  • the travel plan correction method obtains a first travel plan including a travel route, a travel lane, and a travel speed of the host vehicle from an automatic driving control device of the host vehicle capable of traveling by switching a plurality of automatic driving levels. And obtaining peripheral vehicle information including at least the positional relationship between the host vehicle and the surrounding vehicles traveling around the host vehicle, from the current location of the host vehicle to the automatic driving level lowering switching point on the travel route of the first travel plan.
  • At least a part of the section is set as a travel plan correction section, a second travel plan different from the first travel plan is created for the travel plan correction section, and each of the first travel plan and the second travel plan is The driving load of the travel plan correction section is set based on the vehicle information, and the driving load based on the second travel plan is the driving load based on the first travel plan at least at any point in the travel plan correction section. If also small, and output to the automatic operation controller of the second travel plan as a pressure relief travel plan.
  • the travel plan correction device acquires a first travel plan including a travel route, a travel lane, and a travel speed of the host vehicle from an automatic operation control device of the host vehicle that can travel by switching a plurality of automatic driving levels.
  • a travel plan correction unit that sets at least a part of the route up to the automatic driving level lowering switching point on the route as a travel plan correction section and creates a second travel plan different from the first travel plan for the travel plan correction section. And comprising.
  • the travel plan correction unit sets the driving load of the travel plan correction section based on the surrounding vehicle information for each of the first travel plan and the second travel plan, and the second travel plan is at least at any point in the travel plan correction section.
  • the driving load according to the plan is smaller than the driving load according to the first travel plan
  • the second travel plan is output to the automatic operation control device as a load reduction travel plan. Therefore, the travel plan can be corrected so that the driving load is reduced in consideration of the relationship with the surrounding vehicles.
  • the travel plan correction method obtains a first travel plan including a travel route, a travel lane, and a travel speed of the host vehicle from an automatic driving control device of the host vehicle capable of traveling by switching a plurality of automatic driving levels. And obtaining peripheral vehicle information including at least the positional relationship between the host vehicle and the surrounding vehicles traveling around the host vehicle, from the current location of the host vehicle to the automatic driving level lowering switching point on the travel route of the first travel plan.
  • At least a part of the section is set as a travel plan correction section, a second travel plan different from the first travel plan is created for the travel plan correction section, and each of the first travel plan and the second travel plan is
  • the driving load of the travel plan correction section is set based on the vehicle information, and the driving load based on the second travel plan is the driving load based on the first travel plan at least at any point in the travel plan correction section. If also small, and output to the automatic operation controller of the second travel plan as a pressure relief travel plan. Therefore, the travel plan can be corrected so that the driving load is reduced in consideration of the relationship with the surrounding vehicles.
  • FIG. 1 is a configuration diagram showing an automatic driving system according to Embodiment 1 of the present invention.
  • the automatic driving system according to Embodiment 1 includes an automatic driving control device 11 that controls driving of a vehicle, a driving plan correction device 101 that corrects a driving plan of the vehicle that the automatic driving control device 11 has, and various actuators 18. It is prepared for.
  • a vehicle to be controlled by the automatic driving control device 11 is referred to as a host vehicle, and other vehicles are referred to as other vehicles.
  • the travel plan defines the travel route, travel lane, and travel speed of the vehicle.
  • the travel plan correction device 101 controls the various actuators 18 according to the travel plan, and performs automatic driving control of the vehicle.
  • the various actuators 18 include a steering actuator, a driving actuator, and a braking actuator for the host vehicle.
  • the travel plan correction apparatus 101 includes a travel plan acquisition unit 1, a surrounding vehicle information acquisition unit 2, and a travel plan correction unit 3.
  • the travel plan acquisition unit 1 acquires a travel plan from the automatic operation control device 11.
  • the travel plan includes the travel route, travel lane, and travel speed of the host vehicle.
  • the travel plan correction device 101 corrects the travel plan acquired from the automatic operation control device 11 to a travel plan with a smaller driving load.
  • the travel plan before being corrected by the travel plan correcting device 101 is referred to as a first travel plan, and the corrected travel plan is referred to as a second travel plan.
  • the surrounding vehicle information acquisition unit 2 acquires surrounding vehicle information including at least the positional relationship between the host vehicle and the surrounding vehicle.
  • another vehicle that travels around the host vehicle is referred to as a peripheral vehicle.
  • the travel plan correction unit 3 sets at least a part of a section between the current location of the host vehicle and the automatic driving level lowering switching point on the travel route of the first travel plan as a travel plan correction section.
  • a second travel plan different from the first travel plan is created.
  • the travel plan correction part 3 sets the driving load of the travel plan correction section based on the surrounding vehicle information for each of the first travel plan and the second travel plan, and at at least one point of the travel plan correction section, When the operation load based on the second travel plan is smaller than the operation load based on the first travel plan, the second travel plan is output to the automatic operation control device 11 as a load reduction travel plan.
  • the travel plan acquisition unit 1 acquires the first travel plan of the host vehicle from the automatic driving control device 11 (step S1).
  • the surrounding vehicle information acquisition unit 2 acquires surrounding vehicle information including at least the positional relationship between the host vehicle and the surrounding vehicle (step S2).
  • the travel plan correction unit 3 sets a travel plan correction section (step S3).
  • the travel plan correction unit 3 calculates a driving load when the host vehicle travels in the travel plan correction section along the first travel plan based on the surrounding vehicle information (step S4).
  • the travel plan correction unit 3 creates a second travel plan different from the first travel plan for the travel plan correction section (step S5).
  • the travel plan correction unit 3 calculates a driving load when the host vehicle travels along the second travel plan in the travel plan correction section based on the surrounding vehicle information (step S6).
  • the travel plan correction unit 3 determines whether or not the second travel plan is a load reduction travel plan (step S7).
  • the travel plan correction unit 3 travels the second travel plan while reducing the load when the operation load of the second travel plan is smaller than the operation load of the first travel plan at least at any point in the travel plan correction section. Judge as a plan.
  • the travel plan correction unit 3 transmits the load reduction travel plan to the automatic operation control device 11 (step S8).
  • the second travel plan is not a load reduction travel plan, and the travel plan correction device 101. Ends the process.
  • the travel plan correcting apparatus 101 switches from the automatic driving control apparatus 11 of the own vehicle that can travel by switching a plurality of automatic driving levels, Peripheral vehicle information that acquires at least the positional relationship between the travel plan acquisition unit 1 that acquires the first travel plan including the travel lane and the travel speed, and the surrounding vehicle that travels in the vicinity of the host vehicle. At least a section between the acquisition unit 2 and the current location of the host vehicle and the automatic driving level lowering switching point on the travel route of the first travel plan is set as the travel plan correction section, and the first travel plan correction section is set.
  • a travel plan correction unit 3 that creates a second travel plan different from the travel plan.
  • the travel plan correction part 3 sets the driving load of the travel plan correction section based on the surrounding vehicle information for each of the first travel plan and the second travel plan, and at at least one point of the travel plan correction section,
  • the second travel plan is output to the automatic operation control device 11 as a load reduction travel plan. Since the operation load of the load reduction travel plan is smaller than the operation load of the first travel plan at any point in the travel plan correction section, the automatic operation control device 11 performs automatic operation control according to the load reduction travel plan.
  • the automatic driving level can be lowered at a timing when the driving load is smaller.
  • the driving load is set based on the surrounding vehicle information, it is possible to perform smooth automatic driving level lowering switching in consideration of the positional relationship with the surrounding vehicle.
  • the travel plan correction method from the own vehicle's automatic operation control device 11 capable of traveling while switching a plurality of automatic operation levels, the own vehicle's travel route, travel lane, and A first travel plan including a travel speed is acquired, peripheral vehicle information including at least a positional relationship between the host vehicle and a peripheral vehicle traveling around the host vehicle is acquired, and a travel route of the first travel plan from the current location of the host vehicle At least a part of the section up to the automatic driving level lowering switching point is set as a travel plan correction section, a second travel plan different from the first travel plan is created for the travel plan correction section, and the first travel plan For each of the second travel plan, the driving load of the travel plan correction section is set based on the surrounding vehicle information, and the driving load according to the second travel plan is set at at least one point of the travel plan correction section.
  • the automatic operation control device 11 performs automatic operation control according to the load reduction travel plan.
  • the automatic driving level can be lowered at a timing when the driving load is smaller.
  • the driving load is set based on the surrounding vehicle information, it is possible to perform smooth automatic driving level lowering switching in consideration of the positional relationship with the surrounding vehicle.
  • FIG. 3 is a block diagram showing the configuration of the automatic driving system according to Embodiment 2 of the present invention. 3, the same or corresponding components as those shown in FIG. 1 are denoted by the same reference numerals, and this also applies to the drawings subsequent to FIG.
  • the automatic driving system according to Embodiment 2 includes an automatic driving control device 11, a traffic information transmission device 12, an in-vehicle sensor 13, various actuators 18, a driving operation unit 19, a display device 20, a voice output device 21, and a travel plan correction device. 102.
  • the travel plan correction device 102 has the same configuration as the travel plan correction device 101 of the first embodiment.
  • the traffic information transmitting device 12 transmits traffic information such as position information of surrounding vehicles or the degree of congestion of surrounding vehicles to the surrounding vehicle information acquisition unit 2 of the travel plan correcting device 102.
  • the degree of congestion of surrounding vehicles is defined by the number of surrounding vehicles existing within a predetermined distance from the host vehicle, for example.
  • the traffic information transmitting device 12 is configured as a roadside machine and transmits traffic information to a vehicle traveling around the roadside machine.
  • the surrounding vehicle information acquisition unit 2 acquires traffic information from the traffic information transmission device 12 by road-to-vehicle communication.
  • the traffic information transmitting device 12 may be a communication device that is mounted on a surrounding vehicle and transmits position information of the mounted surrounding vehicle to another vehicle.
  • the surrounding vehicle information acquisition unit 2 acquires traffic information from the traffic information transmission device 12 by inter-vehicle communication.
  • the traffic information transmitting device 12 may be configured by a traffic information server that transmits VICS (registered trademark) (Vehicle Information and Communication System) information and the like.
  • the on-vehicle sensor 13 is a sensor mounted on the host vehicle that detects the traveling speed, traveling direction, position, and the like of surrounding vehicles.
  • the traveling speed, traveling direction, and position of the surrounding vehicle detected by the in-vehicle sensor 13 are absolute values or relative values to the host vehicle.
  • 3 illustrates the camera 14, the millimeter wave radar 15, the ultrasonic sensor 16, and the laser radar 17, but the in-vehicle sensor 13 may include other sensors.
  • the surrounding vehicle information acquisition unit 2 uses the positional information of the other vehicle acquired as the traffic information from the traffic information transmitting device 12 and the positional information of the own vehicle acquired from the positional information acquisition unit (not shown), The inter-vehicle distance is calculated and used as surrounding vehicle information. Or the surrounding vehicle information acquisition part 2 acquires the inter-vehicle distance of the own vehicle and another vehicle from the measurement information of the vehicle-mounted sensor 13 as surrounding vehicle information. In addition, the surrounding vehicle information acquisition part 2 should just acquire surrounding vehicle information from at least any one of the traffic information transmitter 12 and the vehicle-mounted sensor 13. FIG.
  • the driving operation unit 19 is a handle, an accelerator, a brake, a handle lever, a winker lever or the like, and inputs an actuator operation by the driver and operation information from the driver to the automatic driving control device 11. Further, the driving operation unit 19 inputs a request for lowering the automatic driving level by the driver to the automatic driving control device 11.
  • the display device 20 and the audio output device 21 are human interfaces for performing various notifications from the automatic operation control device 11 to the driver.
  • the display device 20 is a display such as a liquid crystal display device installed in a meter cluster of a vehicle, for example.
  • the audio output device 21 is a speaker installed in a vehicle, for example.
  • voice output apparatus 21 may be comprised by portable terminals, such as a smart phone which a driver
  • the automatic driving control device 11 starts the driving control at the automatic driving level 3 in accordance with the first driving plan (step S11).
  • the automatic driving level is determined for each section of the travel route of the host vehicle, and is included in the map data or the first travel plan.
  • the automatic driving control device 11 notifies the driver of the start of level 3 automatic driving (step S12). If automatic operation is started at level 2 or less before step S11, this fact may be notified.
  • the automatic driving control device 11 determines whether or not the host vehicle has reached the automatic driving level change preparation section (step S13).
  • the automatic driving level change preparation section indicates to the driver the switching of the automatic driving level, and the automatic driving level by the driver's operation is satisfied if a predetermined condition is met before the automatic driving level lowering switching point Pe.
  • the automatic driving control device 11 is a section determined in advance. Satisfying a predetermined condition is, for example, a condition that the driving load due to manual operation is not large, not a road branch or merge section.
  • the driver's operation is a predetermined operation such as touching the steering wheel twice to lightly operate the brake lever.
  • the automatic driving level up to the point Pe is defined as level 3, and the automatic driving level after the point Pe is defined as level 0. Accordingly, if there is no request for switching the automatic driving level from the driver, the automatic driving level is switched from level 3 to level 0 when the host vehicle passes the point Pe. That is, the point Pe is an automatic driving level lowering switching point that switches in a direction in which the automatic driving level decreases.
  • the automatic driving control device 11 sets P0 as a point that has traveled a certain distance from the automatic driving level lowering switching point Pe, or a point that has traveled the distance traveled by the host vehicle A for a certain time, from P0.
  • the section to the automatic driving level lowering switching point Pe is set as the automatic driving level change preparation section.
  • the automatic driving control device 11 waits until the own vehicle reaches the automatic driving level change preparation section, and when the own vehicle reaches the automatic driving level change preparation section, the automatic driving level change notice is given to the driver (step S14). In addition, the automatic driving control device 11 notifies the travel plan correction device 102 that the host vehicle has reached the automatic driving level change preparation section, and checks whether or not there is a load reduction travel plan (step S15). If there is no load reduction travel plan, the automatic operation control device 11 notifies the display device 20 or the voice output device 21 that there is no change in the travel plan (step S18).
  • step S16 the automatic operation control device 11 changes the travel plan based on the load reduction travel plan
  • step S17 notifies the driver of the change of the travel plan.
  • the advance notice or notification in step S12, step S14, step S17, or step S18 is performed by display on the display device 20, audio output by the audio output device 21, or a combination thereof.
  • the travel plan acquisition part 1 acquires a 1st travel plan from the automatic driving
  • the travel plan correcting apparatus 102 determines whether or not the current automatic driving level is 3 or more (step S22).
  • the travel plan correction device 102 waits until the automatic driving level becomes 3 or higher, and determines whether or not the own vehicle has reached the automatic driving level change preparation section (step S23). For example, when the host vehicle reaches the automatic driving level change preparation section, the driving plan correction device 102 obtains the information by notifying the driving plan correction device 102 from the automatic driving control device 11.
  • the surrounding vehicle information acquisition unit 2 acquires the surrounding vehicle information (step S24). As shown in FIG. 5, the host vehicle A travels in the right lane according to the travel plan, and in front of it, the surrounding vehicles Bf1, Bf2, Bf3 travel in the right lane, and the surrounding vehicles Cf1, Cf2, Cf3, Cf4. Drive in the left lane. Further, behind the host vehicle A, the surrounding vehicles Bb1, Bb2, and Bb3 travel in the right lane, and Cb1 travels in the left lane. In the right lane, both the host vehicle and the surrounding vehicles are traveling at 100 km / h, and the surrounding vehicle is traveling at 80 km / h in the left lane. The peripheral vehicle information acquisition unit 2 acquires the travel lane, travel speed, and inter-vehicle distance from the host vehicle A as peripheral vehicle information.
  • the travel plan correction unit 3 sets a travel plan correction section (step S25). Since this operation is performed after the host vehicle reaches the automatic driving level change preparation section, the travel plan correction section is set as an arbitrary section in the automatic driving level change preparation section.
  • FIG. 7 shows the relationship between the travel plan correction section and the automatic driving level change preparation section.
  • the travel plan correction section may be the same section as the automatic driving level change preparation section, or may be a section from a point P0 to a midpoint of the automatic driving level change preparation section. Then, it may be a section from the midpoint of the automatic driving level change preparation section to the automatic driving level lowering switching point Pe, or between any two points from the point P0 to the point Pe.
  • the travel plan correction section is assumed to be the same section as the automatic driving level change preparation section.
  • the travel plan correction unit 3 calculates the operation load according to the first travel plan (step S ⁇ b> 26).
  • FIG. 8 shows the positions of the host vehicle A and the surrounding vehicles when the host vehicle A and the surrounding vehicles travel at a constant speed according to the first travel plan from the situation shown in FIG. 5 and the own vehicle A reaches the point P2. Showing the relationship.
  • the positional relationship between the own vehicle A and the surrounding vehicles Bf1, Bf2, Bf3, Bb1, Bb2, Bb3 changes from the situation shown in FIG. Not.
  • the positional relationship between the host vehicle A and the surrounding vehicles Cf1, Cf2, Cf3, Cf4, Cb1 changes with time.
  • the inter-vehicle distance between the host vehicle A and the surrounding vehicle Cf1 is closer than when the host vehicle A is traveling at the point P0.
  • the travel plan correction unit 3 calculates the driving load when the host vehicle travels at each point in the travel plan correction section based on the inter-vehicle distance between the host vehicle and the surrounding vehicle at each point shown in FIGS. 5 and 8. .
  • FIG. 9 shows an example of an operating load score table used for calculating the operating load. The higher the driving load score, the higher the driving load and the lower the automatic driving level. For example, in the front of the same lane, the driving load for the surrounding vehicles existing within a range of 20 m or less from the own vehicle is 10 points, and the driving load for the surrounding vehicles existing within a range of 21 m to 30 m from the own vehicle is 6 points. .
  • the driving load with respect to the surrounding vehicle which exists in the range below 20 m from the own vehicle in the back of the same lane is six points.
  • the driving load with respect to the surrounding vehicle which exists in the range below 20 m from the own vehicle in the front or back of a horizontal lane is one point.
  • the driving load score increases as the inter-vehicle distance between the host vehicle and the surrounding vehicle decreases, and the driving load score increases in the order of the same lane front, the same lane rear, and the horizontal lane for the same inter-vehicle distance.
  • the driving load score may be determined based on at least the inter-vehicle distance between the host vehicle and surrounding vehicles. For example, regardless of whether the surrounding vehicle is in front of or behind the host vehicle, or in the same lane or in the side lane, the driving load score is simply based on the inter-vehicle distance. May be determined.
  • FIG. 10 shows the transition of the driving load score in the automatic driving level change preparation section.
  • the solid line in the graph of FIG. 10 indicates the transition of the driving load when the host vehicle A travels along the first travel plan, and the alternate long and short dash line indicates the transition of the driving load when traveled along the second travel plan. Show.
  • the own vehicle A travels at a constant speed of 100 m / h in the right lane, and maintains a vehicle interval of 50 m with respect to the surrounding vehicle Bf1 ahead. Therefore, at the point P0, the driving load score by the surrounding vehicle Bf1 is 4 points, the driving load score by the surrounding vehicle Bf2 existing 40m behind the same lane is 3, and the driving load score is 7 points in total. Thereafter, when the vehicle travels at the point P2 shown in FIG. 8, the distance between the vehicle in the left lane and the vehicle Cf1 is within 20 m, so one driving load score is added by the surrounding vehicle Cf1, and the total driving load score is eight points. .
  • the surrounding vehicles Cf1 and Cf2 are both located within 20 m from the host vehicle, one driving load score is added by the surrounding vehicle Cf2 for a total driving load score of nine points.
  • the driving load score changes as shown by the solid line in FIG. 10 in accordance with the change in the inter-vehicle distance between the surrounding vehicle traveling in the left lane and the host vehicle.
  • the travel plan correction unit 3 creates a second travel plan (step S27).
  • the travel plan correction unit 3 performs the first travel by changing the lane or the speed so that the driving load due to the second travel plan is smaller than the driving load due to the first travel plan at least at any point in the travel plan correction section.
  • the second travel plan is created by correcting the plan.
  • the travel plan correction unit 3 moves to the left lane at the point P1 and travels at a speed of 80 km / h, travels at a speed of 80 km / h or less and secures an inter-vehicle distance of 75 m with respect to the surrounding vehicle Cf1, and then at a speed of 80 km / h.
  • a second travel plan for traveling at a constant speed is created.
  • the travel plan correction unit 3 calculates a driving load when the host vehicle travels in the travel plan correction section in accordance with the second travel plan (step S28).
  • the calculation method of the operating load here is the same as the method already described in step S26.
  • the operation load according to the second travel plan changes as follows.
  • Point P1 When the host vehicle A moves to the left lane, the driving load by the surrounding vehicle Cf1 traveling 50 m ahead of the same lane becomes 4 points.
  • Point P3 When the host vehicle A decelerates and the inter-vehicle distance with the surrounding vehicle Cf1 increases to 50 m or more, the driving load becomes two points.
  • the travel plan correction unit 3 determines whether or not the second travel plan is a load reduction travel plan (step S29).
  • the travel plan correction unit 3 travels the second travel plan while reducing the load when the driving load based on the second travel plan is smaller than the driving load based on the first travel plan at least at any point in the travel plan correction section. Plan.
  • the driving load on the driver when switching the automatic driving level is smaller than before the correction.
  • the travel plan correction unit 3 sets a driving load threshold T, and a section where the driving load due to the second travel plan is smaller than the threshold T is smaller than a section where the driving load due to the first travel plan is smaller than the threshold T. If the time is too long, the second travel plan may be a load reduction travel plan. In this case, the section in which the automatic driving level can be switched with a low driving load is longer than before the correction.
  • the load of the second travel plan is reduced. It may be a travel plan. In this case, even if the automatic driving level is switched at any point in the travel plan correction section, the driving load is reduced from before the correction.
  • the travel plan correcting unit 3 determines that the second travel plan is a load reduction travel plan in step S29, the travel plan correction unit 3 transmits the load reduction travel plan to the automatic operation control device 11 (step S30), and the second travel plan is reduced in load. If it is not determined as a travel plan, the process ends.
  • the travel plan correction unit 3 may predict the speed change of the surrounding vehicle based on the traffic situation or road situation ahead of the surrounding vehicle, and may incorporate it into the calculation of the travel plan.
  • the travel plan correction unit 3 may obtain a travel plan of a surrounding vehicle using a communication device, and calculate a future surrounding vehicle position based on the travel plan of the surrounding vehicle.
  • the travel plan correction unit 3 may be able to set which of the first, middle, and second half of the automatic operation level change preparation section to reduce the load when creating the load reduction travel plan.
  • the travel plan correction unit 3 may create a load reduction travel plan so that the driving load becomes the smallest at the final point of the automatic driving level change preparation section, that is, in the vicinity of the automatic driving level lowering switching point Pe, or at least automatically.
  • a load-reducing travel plan may be created so that the driving load at the driving level lowering switching point Pe becomes a certain value or less.
  • ⁇ B-3 Modified example of operating load score table>
  • the driving load score is increased as the inter-vehicle distance between the host vehicle and the surrounding vehicle is longer.
  • the driving load score may be determined based on at least the distance between the host vehicle and the surrounding vehicle, but may be determined in consideration of other factors.
  • the travel plan correction unit 3 counts the number of surrounding vehicles within a certain distance from the host vehicle as an indicator of the degree of congestion, and even if the driving load is set larger as the degree of congestion of the surrounding vehicles obtained in this way is higher. good.
  • the travel plan correction unit 3 may set the driving load larger as the traveling speed of the host vehicle is higher.
  • the surrounding vehicle information acquisition unit 2 acquires the vehicle type of the surrounding vehicle as the surrounding vehicle information by, for example, a position information server or inter-vehicle communication, and the travel plan correction unit 3 calculates the driving load based on the vehicle type of the surrounding vehicle. May be set. This reflects the fact that, because the vehicle characteristics are different for different vehicle types, if the vehicle type of the surrounding vehicle is different from the host vehicle, driving according to the motion characteristics of the surrounding vehicle is required and the driving load increases. is there. For example, when the surrounding vehicle is a large vehicle such as a bus or a truck, the driving load is set higher than that when the surrounding vehicle is an ordinary vehicle. In this case, in addition to the driving load score table shown in FIG.
  • an additional driving load score table according to the difference in vehicle type as shown in FIG. 11 is used. For example, if there is a surrounding vehicle of a vehicle type different from the own vehicle within 20 m ahead of the same lane as the own vehicle, the driving load score by the surrounding vehicle is 10 points specified in the driving score table of FIG. 11 points are added to the 2 points specified in the driving score table. In this way, the difference in vehicle type can be reflected in the driving load.
  • the travel plan correction unit 3 may set a driving load based on a travel drive method such as a gasoline vehicle, an electric vehicle, or a fuel cell vehicle.
  • the surrounding vehicle information acquisition unit 2 acquires the automatic driving level of the surrounding vehicle through the inter-vehicle communication as the surrounding vehicle information, and the travel plan correction unit 3 sets the driving load based on the automatic driving level of the surrounding vehicle.
  • the driving load may be set higher because it is considered that the lower the automatic driving level of surrounding vehicles is, the higher the possibility of unpredictable movement for the host vehicle is.
  • the surrounding vehicle information acquisition unit 2 acquires the driving concentration of the driver of the surrounding vehicle by inter-vehicle communication, and the travel plan correction unit 3 applies driving load to the surrounding vehicle of the driver having a high driving concentration.
  • the driving load may be set higher for the surrounding vehicles of the driver having a small driving concentration and a low driving concentration.
  • the driving concentration is determined from, for example, the degree of arousal, the operation state of other devices, and the like.
  • the arousal level can be obtained from the pulse of the driver, the opening degree of the eyes, the number of blinks, and the like by an electrode, a camera, or the like attached to the steering wheel of the vehicle.
  • the surrounding vehicle information acquisition unit 2 acquires driver attributes such as the age, driving history, and accident history of the driver of the surrounding vehicle by inter-vehicle communication, and the travel plan correction unit 3 responds to the driver attributes.
  • An operating load may be set. For example, a high driving load is set for a peripheral vehicle driven by an elderly driver, and a low driving load is set for a peripheral vehicle driven by a driver who has no history of accidents recently.
  • the influence of the speed of the host vehicle, the relative speed with other vehicles, the traveling terrain, etc. may be reflected in the driving load score.
  • the travel plan correcting device 102 receives a notification from the automatic driving control device when the host vehicle reaches the automatic driving level change preparation section, and starts the travel plan correcting operation.
  • the automatic driving level changing operation may be started at the timing when an instruction is received from the driver.
  • the travel plan correction section is set as at least a part of the section from the point Px where the host vehicle A is traveling when receiving an instruction from the driver to the automatic driving level lowering switching point Pe. The For example, as shown in FIG.
  • the travel plan correction section may be a section from the point Px to the automatic driving level lowering switching point Pe, or a section from the point Px to the midpoint of the automatic driving level change preparation section. There may be a section from a point between the point Px and the point P0 to a midpoint of the automatic driving level change preparation section. At this time, not only the section from the point P0 to the point Pe but also the section from Px to P0 may be set as the automatic driving level change preparation section, and switching of the automatic driving level by the driver's operation in the section may be accepted. That is, the automatic driving level change preparation section is determined by an instruction from the automatic driving control device or an instruction from the user.
  • the scene where the automatic driving level is switched from 3 to 0 is illustrated, but the present invention can be applied to switching between any levels as long as the automatic driving level is lowered.
  • the automatic driving level change preparation section and the travel plan correction section are described as distance sections, but they may be time sections.
  • the automatic driving level change preparation section may be set as a section from a point that is 20 minutes back from the automatic driving level lowering switching point.
  • FIG. 13 is a block diagram showing a configuration of an automatic driving system according to Embodiment 3 of the present invention.
  • the automatic driving system according to Embodiment 3 includes an automatic driving control device 11, a traffic information transmitting device 12, an in-vehicle sensor 13, various actuators 18, a driving operation unit 19, a display device 20, a voice output device 21, an operation input device 22, And a travel plan correcting device 103.
  • the travel plan correction device 103 includes a presentation control unit 4 that controls the presentation of the driving load to the driver by the load reduction travel plan in addition to the configuration of the travel plan correction device 102 according to the second embodiment.
  • the presentation control unit 4 controls audio output to the audio output device 21 and display output to the display device 20.
  • the operation input device 22 is a human interface for the driver to input information to the travel plan correction device 103.
  • the display device 20 is configured as a display with a touch panel
  • the display device is a touch panel sensor. 20 and a single unit.
  • running plan may be shown to a driver
  • seat with the vibration apparatus which is not illustrated.
  • Step S31 acquires a 1st travel plan from the automatic driving
  • step S32 determines whether or not the current automatic driving level is 3 or more
  • step S33 the presentation control unit 4 notifies the driver of the start of automatic driving by various devices. This notification is performed by display on the display device 20, audio output by the audio output device 21, or a combination thereof.
  • the travel plan correction device 103 determines whether or not the host vehicle has reached the automatic driving level change preparation section (step S34). For example, when the host vehicle reaches the automatic driving level change preparation section, the driving plan correction device 103 acquires the information by notifying the driving plan correction device 103 from the automatic driving control device 11.
  • the presentation control unit 4 makes a notice of changing the automatic driving level using various devices (step S35).
  • FIG. 16 shows a meter cluster 51 of the host vehicle, which is an example of the display device 20 used by the presentation control unit 4 for notification to the driver.
  • the meter cluster 51 includes a display 52, a fuel gauge 53, and a speedometer 54, and the presentation control unit 4 can use the display 52 to make an advance notice of the automatic driving level change.
  • the display device 20 is not limited to the display 52 of the meter cluster 51, but may be a HUD (Head-Up Display) or other display device.
  • FIG. 17 shows a display example of the automatic driving level change notice on the display 52.
  • the automatic driving level change notice is given by a message 61 “automatic driving cancellation: 20 minutes ago”.
  • the automatic driving level change preparation section is set on a time basis as a section where the host vehicle travels for 20 minutes.
  • the automatic driving level change preparation section is set on a distance basis, the automatic driving level change preparation section The change notice is made with a message such as “Cancel automatic driving: 10 km before”.
  • steps S36 to S40 and steps S41 and S42 of FIG. 15 are the same as steps S24 to S30 of FIG.
  • step S42 after the travel plan correction unit 3 outputs the load reduction travel plan to the automatic operation control device 11 (step S42), the presentation control unit 4 notifies the driver of the execution of the load reduction travel plan by various devices. (Step S43). Thereafter, the presentation control unit 4 displays the operation load of the load reduction travel plan on the display device 20 (step S44).
  • FIG. 18 is a display example of the display 52 in such a case.
  • a message 61 “load reduction travel start” is displayed on the display 52 to notify the implementation of the load reduction travel plan.
  • the display 52 shows an indicator 63 indicating the transition of the operation load according to the load reduction travel plan.
  • the indicator 63 represents the driving load according to the load reduction traveling plan in increments of 2.5 minutes for 20 minutes from when the vehicle reaches the automatic driving level lowering switching point.
  • black indicates a high load
  • white indicates a low load
  • hatched lines indicate a medium load.
  • an icon 62 of the own vehicle is displayed on the indicator 63 20 minutes ago, which indicates that the own vehicle is 20 minutes before the automatic driving level lowering switching point. Yes.
  • the presentation control unit 4 determines whether or not the change of the automatic driving level is completed (step S46). If the change of the automatic driving level is incomplete, the presentation control unit 4 updates the display of the driving load based on the load reduction travel plan (step S47).
  • the display on the display 52 after the update is illustrated in FIG. In FIG. 19, compared to FIG. 18, the icon 62 of the host vehicle has moved to a position indicating a point 10 minutes before the automatic driving cancellation of the indicator 63, and the message 61 is “Automatic driving cancellation: 10 minutes before”. It has changed. In this way, the display position of the icon 62 of the host vehicle and the message 61 are updated until the change of the automatic driving level is completed.
  • Such a display allows the driver to know the transition of the driving load from the current location of the vehicle to the point where the automatic driving level is scheduled to be switched, so that the automatic driving control device in advance when the driving load is low By instructing 11 to switch the automatic driving level to a low level, smooth switching of the automatic driving level can be performed smoothly.
  • the presentation control unit 4 displays the automatic driving level change completion on the display device 20 (step S48).
  • the display device 20 For example, as shown in FIG. 20, a message 61 “automatic driving level change completion” is displayed on the display 52.
  • step S41 determines in step S41 that the second travel plan is not a load reduction travel plan
  • the presentation control unit 4 displays the operation load of the first travel plan on the display device 20 (step S45).
  • a display example of the display 52 at this time is shown in FIG.
  • the display 52 shows the change in the driving load according to the first travel plan by an indicator 64.
  • the indicator 64 represents the transition of the driving load according to the first travel plan in increments of 2.5 minutes for 20 minutes from when the vehicle reaches the automatic driving level lowering switching point.
  • black indicates a high load
  • white indicates a low load
  • hatched lines indicate a medium load.
  • the icon 62 of the host vehicle is displayed at a position indicating a point 20 minutes before the cancellation of the automatic driving of the indicator 64, whereby the host vehicle is positioned 20 minutes before the automatic driving level lowering switching point. It is shown to be in
  • FIG. 22 is a diagram illustrating a display update example of the operation load of the first travel plan.
  • the display 52 displays a message 61 “Automatic operation cancellation: 10 minutes ago” and an indicator 64 indicating the driving load of the first travel plan.
  • the icon 62 of the own vehicle is displayed at a position indicating a point 10 minutes before the automatic driving is canceled by the indicator 64, thereby indicating that the own vehicle is 10 minutes before the automatic driving level lowering switching point. ing.
  • the travel plan correcting device 103 ends the process.
  • the current driving load level may be expressed by changing the background color of the display, the text color of the message, the color of the icon of the host vehicle, and the like.
  • the background color may be red or the message text color may be red
  • the background color may be blue or the message text color may be blue.
  • the driving load is indicated by the digital representation indicator in increments of 2.5 minutes, but as shown in FIG. 24, the transition of the driving load is indicated by a smooth graph of analog expression. May be.
  • the transition of the driving load in the travel correction section is shown by a graph in which the horizontal axis represents the time to the automatic driving level lowering switching point and the vertical axis represents the driving load. Thereby, the driver can know the transition of the driving load more accurately.
  • the icon 62 of the own vehicle is superimposed on the driving load graph, and the icon 62 of the own vehicle is moved on the driving load graph until the change of the automatic driving level is completed.
  • the vehicle is traveling in the travel correction section.
  • the icon of the host vehicle may not be displayed, and the display may be updated so that the driving load graph moves from right to left over time.
  • the origin of the horizontal axis of the graph indicates 10 minutes, it can be seen that the host vehicle is traveling a further 10 minutes until the automatic driving level is changed.
  • the travel plan correction device 103 outputs the created load reduction travel plan to the automatic operation control device 11 unconditionally.
  • the travel plan correction device 103 causes the driver to select which of the first travel plan and the load reduction travel plan to use, and only when the driver selects the load reduction travel plan, the travel plan correction plan is generated. You may output to the automatic operation control apparatus 11.
  • the presentation control unit 4 can cause the user to select one of the travel plans by displaying a screen as shown in FIG. 27 on the display.
  • the transition of the driving load according to the first travel plan and the transition of the driving load according to the load reduction travel plan are displayed in parallel, and selection icons 65 and 66 are displayed for the respective driving loads.
  • the driver can select whether to adopt the load-reducing travel plan or to continue the first travel plan by pressing one of the selection icons. In addition to pressing the selection icon, it is also possible to input which travel plan to adopt by methods such as remote control, voice recognition, and gesture input.
  • the load reduction travel plan is one, but a plurality of load reduction travel plans may be created by changing the calculation method of the operation load.
  • the driving load is calculated using the load reduction travel plan when the driving load is calculated using only the driving load score table of FIG. 9 and the driving load score table according to the vehicle type of FIG. 11 in addition to FIG.
  • a load reduction travel plan and two load reduction travel plans may be created. In this case, it is only necessary to display the driving loads based on both load-reducing travel plans on the display device 20 and allow the driver to select which load-reducing travel plan to adopt.
  • the transition of the driving load is expressed on the time axis, but may be expressed on the distance axis.
  • the driving load is not limited to being expressed by a digital indicator or an analog graph, and may be displayed by other methods.
  • the travel route in the travel correction section may be represented by coloring the travel route in the travel plan on the road map according to the drive load.
  • the travel plan acquisition unit 1, the surrounding vehicle information acquisition unit 2, the travel plan correction unit 3, and the presentation control unit 4 are realized by a processing circuit 81 shown in FIG. That is, the processing circuit 81 includes a travel plan acquisition unit 1, a surrounding vehicle information acquisition unit 2, a travel plan correction unit 3, and a presentation control unit 4.
  • Dedicated hardware may be applied to the processing circuit 81, or a processor that executes a program stored in the memory may be applied.
  • the processor is, for example, a central processing unit, a processing unit, an arithmetic unit, a microprocessor, a microcomputer, a digital signal processor, or the like.
  • the processing circuit 81 When the processing circuit 81 is dedicated hardware, the processing circuit 81 includes, for example, a single circuit, a composite circuit, a programmed processor, a processor programmed in parallel, an ASIC (Application Specific Integrated Circuit), an FPGA (Field-Programmable). Gate Array) or a combination of these.
  • Each function of each part such as the travel plan correcting unit 3 may be realized by a plurality of processing circuits 81, or the functions of each part may be realized by a single processing circuit.
  • the processing circuit 81 When the processing circuit 81 is a processor, the functions of the travel plan correction unit 3 and the like are realized by a combination of software and the like (software, firmware or software and firmware). Software or the like is described as a program and stored in a memory. As shown in FIG. 29, the processor 82 applied to the processing circuit 81 implements the functions of the respective units by reading and executing the program stored in the memory 83.
  • the travel plan correction devices 101, 102, and 103 when executed by the processing circuit 81, from the automatic driving control device 11 of the own vehicle that can travel by switching a plurality of automatic driving levels, A step of acquiring a first travel plan including a travel lane and a travel speed; a step of acquiring peripheral vehicle information including at least a positional relationship between the host vehicle and a peripheral vehicle traveling around the host vehicle; and a current location of the host vehicle Is set as a travel plan correction section, and a second travel plan different from the first travel plan is set for the travel plan correction section.
  • the second driving plan For each of the first travel plan and the second travel plan, setting the driving load of the travel plan correction section based on the surrounding vehicle information, When at least one of the points in the plan correction section, the driving load by the second driving plan is smaller than the driving load by the first driving plan, the second driving plan is output as a load-reducing driving plan to the automatic driving control device.
  • a memory 83 for storing a program to be executed as a result. In other words, it can be said that this program causes the computer to execute procedures and methods such as the travel plan correction unit 3.
  • the memory 83 is a nonvolatile memory such as a RAM (Random Access Memory), a ROM (Read Only Memory), a flash memory, an EPROM (Electrically Programmable Read Only Memory), an EEPROM (Electrically Erasable Programmable Read Only Memory), or the like.
  • a volatile semiconductor memory a HDD (Hard Disk Drive), a magnetic disk, a flexible disk, an optical disk, a compact disk, a mini disk, a DVD (Digital Versatile Disk), and its drive device can be applied. Any storage element or storage device used in the future can be applied.
  • each function such as the travel plan correction unit 3 is realized by either hardware or software
  • the present invention is not limited to this, and a configuration in which a part of the travel plan correction unit 3 or the like is realized by dedicated hardware and another part is realized by software or the like.
  • the travel plan correction unit 3 realizes its function by a processing circuit as dedicated hardware, and otherwise the processing circuit 81 as the processor 82 reads and executes the program stored in the memory 83. The function can be realized.
  • the processing circuit can realize the functions described above by hardware, software, or the like, or a combination thereof.
  • the travel plan correction devices 101, 102, and 103 have been described as in-vehicle devices.
  • the present invention can also be applied to a system constructed as a system by appropriately combining the functions of an application and a server.
  • each function or each component of the travel plan correction devices 101, 102, 103 described above may be distributed and arranged in each device that constructs the system, or may be concentrated on any device. It may be arranged.

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Human Computer Interaction (AREA)
  • Traffic Control Systems (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)

Abstract

The purpose of the present invention is to revise a traveling plan such that a driving load decreases in consideration of a relationship with surrounding vehicles. A traveling plan revising device (101) according to the present invention is provided with: a traveling plan acquiring unit (1) which acquires a first traveling plan from an automatic driving control device (11); a surrounding vehicle information acquiring unit (2) which acquires surrounding vehicle information including at least a positional relationship between an own vehicle and surrounding vehicles; and a traveling plan revising unit (3) which sets, as a traveling plan revision section, at least a partial section between a current location and an automatic driving level reduction switching location and constructs a second traveling plan with respect to the traveling plan revision section. The traveling plan revising unit (3) sets a driving load of the traveling plan revision section on the basis of the surrounding vehicle information with respect to each of the first traveling plan and second traveling plan, and outputs, to the automatic driving control device (11) as a load reducing traveling plan, the second traveling plan, when a driving load of the second traveling plan is smaller than a driving load of the first traveling plan in at least a certain location in the traveling plan revision section.

Description

走行計画修正装置、走行計画修正方法Travel plan correction device and travel plan correction method
 本発明は、自動運転車両の自動運転レベルが低下する際に運転者への運転負荷を軽減する走行計画を策定する技術に関する。 The present invention relates to a technique for formulating a travel plan for reducing a driving load on a driver when an automatic driving level of an autonomous driving vehicle is lowered.
 車両の自動運転制御を行う自動運転システムは、走行制御に関わる各種のアクチュエータをシステムが制御することにより、運転者の運転負荷を軽減することができる。現在、日本国の内閣府や米国運輸省道路交通安全局(NHTSA:National Highway Traffic Safety Administration)では、自動運転レベルを以下のように定義しており、本明細書では以下の自動運転レベルに基づき発明を説明するが、これは例示であり、他の自動運転レベルを排除するものではない。 An automatic driving system that performs automatic driving control of a vehicle can reduce the driving load on the driver by the system controlling various actuators related to traveling control. Currently, the Japanese government office and the US National Highway Traffic Safety Administration (NHTSA) define the following autonomous driving levels. In this specification, the following autonomous driving levels are used. Although the invention will be described, this is exemplary and does not exclude other levels of automatic driving.
 レベル0:ドライバーが常に、加速、操舵、制動の全ての主制御系統の操作を行う。手動運転である。 Level 0: The driver always operates all the main control systems of acceleration, steering and braking. Manual operation.
 レベル1:加速、操舵、制動のいずれかをシステムが行う状態。 Level 1: State in which the system performs acceleration, steering, or braking.
 レベル2:加速、操舵、制動のうち複数の操作をシステムが行う状態。 Level 2: State in which the system performs multiple operations among acceleration, steering, and braking.
 レベル3:加速、操舵、制動を全てシステムが行い、システムが要請したときは運転者が対応する。 Level 3: Acceleration, steering, and braking are all performed by the system, and the driver responds when requested by the system.
 レベル4:加速、操舵、制動を全て運転者以外が行い、運転者が全く関与しない状態。 Level 4: A state in which acceleration, steering, and braking are all performed by a person other than the driver, and the driver is not involved at all.
 自動運転システムでは、自動運転レベルを低下させる変更、すなわちシステムから運転者への運転操作に関する権限移譲を、運転者の運転負荷が小さい状況で行うことにより、スムーズに権限移譲するような配慮がなされている。 In the automatic driving system, consideration is given to smoothly transferring authority by changing the automatic driving level, that is, transferring authority from the system to the driver in a situation where the driving load on the driver is small. ing.
 例えば、特許文献1では、車両の運転状態を自動運転から手動運転に切り換える前に、運転者が手動運転受け入れ状態であるか否かを判定し、運転者が手動運転受け入れ状態ではないと判定した場合には、進路において退避スペースより車両側の位置に切換位置を設定する車両制御装置が開示されている。この車両制御装置によれば、運転者が手動運転に対応できない場合には退避スペースに車両を退避させることが可能となる。 For example, in Patent Document 1, it is determined whether or not the driver is in a manual driving acceptance state before switching the driving state of the vehicle from automatic driving to manual driving, and the driver is determined not to be in the manual driving acceptance state. In this case, a vehicle control device is disclosed that sets a switching position at a position closer to the vehicle than the retreat space in the course. According to this vehicle control device, the vehicle can be retreated in the retreat space when the driver cannot cope with the manual operation.
 また、特許文献2では、トンネル、勾配のある区間、他の道路との合流地点、信号機の手前、交差点、カーブ、といった場所では、自動運転から手動運転への変更を避けることにより、安全に自動運転を終了することが示されている。 Also, in Patent Document 2, in places such as tunnels, sloped sections, junctions with other roads, in front of traffic lights, intersections, and curves, it is possible to safely and automatically avoid changing from automatic driving to manual driving. It is shown that the operation is terminated.
特開2016-34782号公報JP 2016-34782 A 特開2016-45856号公報Japanese Unexamined Patent Publication No. 2016-45856
 このように、先行技術文献には、運転者の状態または走行道路の特性に基づき運転者に権限移譲すべきか否かを判断することが開示されているが、周辺車両との関係は考慮していなかった。そのため、運転者の状態または走行道路の特性に問題が無くても、周辺に多数の車両が存在する等、周辺車両との関係により運転負荷が高い状況で運転者に権限移譲が行われてしまう、という問題点があった。 As described above, the prior art document discloses determining whether or not authority should be transferred to the driver based on the driver's condition or the characteristics of the road, but the relationship with surrounding vehicles is taken into consideration. There wasn't. Therefore, even if there is no problem in the condition of the driver or the characteristics of the driving road, authority is transferred to the driver in a situation where the driving load is high due to the relationship with surrounding vehicles, such as the presence of many vehicles in the vicinity. There was a problem that.
 本発明は上述の問題点に鑑み、周辺車両との関係を考慮して運転者への運転負荷が小さくなるように走行計画を修正することを目的とする。 In view of the above-described problems, an object of the present invention is to correct a travel plan so that a driving load on a driver is reduced in consideration of a relationship with surrounding vehicles.
 本発明に係る走行計画修正装置は、複数の自動運転レベルを切替えて走行可能な自車両の自動運転制御装置から、自車両の走行経路、走行車線、および走行速度を含む第1走行計画を取得する走行計画取得部と、自車両と自車両の周辺を走行する周辺車両との位置関係を少なくとも含む周辺車両情報を取得する周辺車両情報取得部と、自車両の現在地から第1走行計画の走行経路上の自動運転レベル低下切替地点までの間の少なくとも一部の区間を走行計画修正区間と設定し、走行計画修正区間について第1走行計画とは異なる第2走行計画を作成する走行計画修正部と、を備える。走行計画修正部は、第1走行計画及び第2走行計画の夫々について、周辺車両情報に基づき走行計画修正区間の運転負荷を設定し、走行計画修正区間の少なくともいずれかの地点において、第2走行計画による運転負荷が第1走行計画による運転負荷よりも小さくなる場合に、第2走行計画を負荷軽減走行計画として自動運転制御装置に出力する。 The travel plan correction device according to the present invention acquires a first travel plan including a travel route, a travel lane, and a travel speed of the host vehicle from an automatic operation control device of the host vehicle that can travel by switching a plurality of automatic driving levels. A travel plan acquisition unit, a peripheral vehicle information acquisition unit that acquires peripheral vehicle information including at least a positional relationship between the host vehicle and a peripheral vehicle that travels around the host vehicle, and travel of the first travel plan from the current location of the host vehicle A travel plan correction unit that sets at least a part of the route up to the automatic driving level lowering switching point on the route as a travel plan correction section and creates a second travel plan different from the first travel plan for the travel plan correction section. And comprising. The travel plan correction unit sets the driving load of the travel plan correction section based on the surrounding vehicle information for each of the first travel plan and the second travel plan, and the second travel plan is at least at any point in the travel plan correction section. When the driving load according to the plan is smaller than the driving load according to the first travel plan, the second travel plan is output to the automatic operation control device as a load reduction travel plan.
 本発明に係る走行計画修正方法は、複数の自動運転レベルを切替えて走行可能な自車両の自動運転制御装置から、自車両の走行経路、走行車線、および走行速度を含む第1走行計画を取得し、自車両と自車両の周辺を走行する周辺車両との位置関係を少なくとも含む周辺車両情報を取得し、自車両の現在地から第1走行計画の走行経路上の自動運転レベル低下切替地点までの間の少なくとも一部の区間を走行計画修正区間と設定し、走行計画修正区間について第1走行計画とは異なる第2走行計画を作成し、第1走行計画及び第2走行計画の夫々について、周辺車両情報に基づき走行計画修正区間の運転負荷を設定し、走行計画修正区間の少なくともいずれかの地点において、第2走行計画による運転負荷が第1走行計画による運転負荷よりも小さくなる場合に、第2走行計画を負荷軽減走行計画として自動運転制御装置に出力する。 The travel plan correction method according to the present invention obtains a first travel plan including a travel route, a travel lane, and a travel speed of the host vehicle from an automatic driving control device of the host vehicle capable of traveling by switching a plurality of automatic driving levels. And obtaining peripheral vehicle information including at least the positional relationship between the host vehicle and the surrounding vehicles traveling around the host vehicle, from the current location of the host vehicle to the automatic driving level lowering switching point on the travel route of the first travel plan. At least a part of the section is set as a travel plan correction section, a second travel plan different from the first travel plan is created for the travel plan correction section, and each of the first travel plan and the second travel plan is The driving load of the travel plan correction section is set based on the vehicle information, and the driving load based on the second travel plan is the driving load based on the first travel plan at least at any point in the travel plan correction section. If also small, and output to the automatic operation controller of the second travel plan as a pressure relief travel plan.
 本発明に係る走行計画修正装置は、複数の自動運転レベルを切替えて走行可能な自車両の自動運転制御装置から、自車両の走行経路、走行車線、および走行速度を含む第1走行計画を取得する走行計画取得部と、自車両と自車両の周辺を走行する周辺車両との位置関係を少なくとも含む周辺車両情報を取得する周辺車両情報取得部と、自車両の現在地から第1走行計画の走行経路上の自動運転レベル低下切替地点までの間の少なくとも一部の区間を走行計画修正区間と設定し、走行計画修正区間について第1走行計画とは異なる第2走行計画を作成する走行計画修正部と、を備える。走行計画修正部は、第1走行計画及び第2走行計画の夫々について、周辺車両情報に基づき走行計画修正区間の運転負荷を設定し、走行計画修正区間の少なくともいずれかの地点において、第2走行計画による運転負荷が第1走行計画による運転負荷よりも小さくなる場合に、第2走行計画を負荷軽減走行計画として自動運転制御装置に出力する。従って、周辺車両との関係を考慮して運転負荷が小さくなるように走行計画を修正することができる。 The travel plan correction device according to the present invention acquires a first travel plan including a travel route, a travel lane, and a travel speed of the host vehicle from an automatic operation control device of the host vehicle that can travel by switching a plurality of automatic driving levels. A travel plan acquisition unit, a peripheral vehicle information acquisition unit that acquires peripheral vehicle information including at least a positional relationship between the host vehicle and a peripheral vehicle that travels around the host vehicle, and travel of the first travel plan from the current location of the host vehicle A travel plan correction unit that sets at least a part of the route up to the automatic driving level lowering switching point on the route as a travel plan correction section and creates a second travel plan different from the first travel plan for the travel plan correction section. And comprising. The travel plan correction unit sets the driving load of the travel plan correction section based on the surrounding vehicle information for each of the first travel plan and the second travel plan, and the second travel plan is at least at any point in the travel plan correction section. When the driving load according to the plan is smaller than the driving load according to the first travel plan, the second travel plan is output to the automatic operation control device as a load reduction travel plan. Therefore, the travel plan can be corrected so that the driving load is reduced in consideration of the relationship with the surrounding vehicles.
 本発明に係る走行計画修正方法は、複数の自動運転レベルを切替えて走行可能な自車両の自動運転制御装置から、自車両の走行経路、走行車線、および走行速度を含む第1走行計画を取得し、自車両と自車両の周辺を走行する周辺車両との位置関係を少なくとも含む周辺車両情報を取得し、自車両の現在地から第1走行計画の走行経路上の自動運転レベル低下切替地点までの間の少なくとも一部の区間を走行計画修正区間と設定し、走行計画修正区間について第1走行計画とは異なる第2走行計画を作成し、第1走行計画及び第2走行計画の夫々について、周辺車両情報に基づき走行計画修正区間の運転負荷を設定し、走行計画修正区間の少なくともいずれかの地点において、第2走行計画による運転負荷が第1走行計画による運転負荷よりも小さくなる場合に、第2走行計画を負荷軽減走行計画として自動運転制御装置に出力する。従って、周辺車両との関係を考慮して運転負荷が小さくなるように走行計画を修正することができる。 The travel plan correction method according to the present invention obtains a first travel plan including a travel route, a travel lane, and a travel speed of the host vehicle from an automatic driving control device of the host vehicle capable of traveling by switching a plurality of automatic driving levels. And obtaining peripheral vehicle information including at least the positional relationship between the host vehicle and the surrounding vehicles traveling around the host vehicle, from the current location of the host vehicle to the automatic driving level lowering switching point on the travel route of the first travel plan. At least a part of the section is set as a travel plan correction section, a second travel plan different from the first travel plan is created for the travel plan correction section, and each of the first travel plan and the second travel plan is The driving load of the travel plan correction section is set based on the vehicle information, and the driving load based on the second travel plan is the driving load based on the first travel plan at least at any point in the travel plan correction section. If also small, and output to the automatic operation controller of the second travel plan as a pressure relief travel plan. Therefore, the travel plan can be corrected so that the driving load is reduced in consideration of the relationship with the surrounding vehicles.
 本発明の目的、特徴、態様、および利点は、以下の詳細な説明と添付図面とによって、より明白となる。 The objects, features, aspects and advantages of the present invention will become more apparent from the following detailed description and the accompanying drawings.
本発明の実施の形態1に係る自動運転システムの構成を示すブロック図である。It is a block diagram which shows the structure of the automatic driving system which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る走行計画修正装置の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the travel plan correction apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態2に係る自動運転システムの構成を示すブロック図である。It is a block diagram which shows the structure of the automatic driving system which concerns on Embodiment 2 of this invention. 本発明の実施の形態2に係る自動運転制御装置の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the automatic driving | operation control apparatus which concerns on Embodiment 2 of this invention. 自車両が自動運転レベル変更準備区間に達した時点での自車両と周辺車両との位置関係を示す図である。It is a figure which shows the positional relationship of the own vehicle and surrounding vehicles at the time of the own vehicle reaching an automatic driving level change preparation area. 本発明の実施の形態2に係る走行計画修正装置の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the travel plan correction apparatus which concerns on Embodiment 2 of this invention. 走行計画修正区間と自動運転レベル変更準備区間との関係を示す図である。It is a figure which shows the relationship between a travel plan correction area and an automatic driving level change preparation area. 自車両及び周辺車両が図5に示す状況から第1走行計画に沿って走行し自車両が地点P2に達した時点での、自車両と周辺車両との位置関係を示した図である。It is the figure which showed the positional relationship of the own vehicle and a surrounding vehicle at the time of the own vehicle and a surrounding vehicle driving | running along a 1st travel plan from the condition shown in FIG. 5, and the own vehicle reached the point P2. 運転負荷得点表の一例を示す図である。It is a figure which shows an example of an operation load score table. 自動運転レベル変更準備区間における運転負荷得点の推移を示す図である。It is a figure which shows transition of the driving load score in an automatic driving level change preparation area. 車両種別の違いによる追加の運転負荷得点表を示す図である。It is a figure which shows the additional driving load score table | surface by the difference in vehicle classification. 変形例における走行計画修正区間と自動運転レベル変更準備区間との関係を示す図である。It is a figure which shows the relationship between the travel plan correction area and automatic driving level change preparation area in a modification. 本発明の実施の形態3に係る自動運転システムの構成を示すブロック図である。It is a block diagram which shows the structure of the automatic driving system which concerns on Embodiment 3 of this invention. 本発明の実施の形態3に係る走行計画修正装置の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the travel plan correction apparatus which concerns on Embodiment 3 of this invention. 本発明の実施の形態3に係る走行計画修正装置の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the travel plan correction apparatus which concerns on Embodiment 3 of this invention. 表示装置の一例であるメータクラスタを示す図である。It is a figure which shows the meter cluster which is an example of a display apparatus. 自動運転レベルの変更予告における表示例を示す図である。It is a figure which shows the example of a display in the change notice of an automatic driving level. 負荷軽減走行計画の実施の報知と負荷軽減走行計画の運転負荷の表示を共に行う場合の表示例を示す図である。It is a figure which shows the example of a display in the case of performing both the alerting | reporting of implementation of a load reduction driving plan, and the display of the driving load of a load reduction driving plan. 負荷軽減走行計画の運転負荷の表示更新例を示す図である。It is a figure which shows the example of a display update of the driving load of a load reduction driving plan. 自動運転レベルの変更完了表示例を示す図である。It is a figure which shows the example of a change completion display of an automatic driving level. 第1走行計画の運転負荷の表示例を示す図である。It is a figure which shows the example of a display of the driving load of a 1st driving | running plan. 第1走行計画の運転負荷の表示更新例を示す図である。It is a figure which shows the display update example of the driving load of a 1st driving | running plan. 変形例による負荷軽減走行計画の運転負荷の表示例を示す図である。It is a figure which shows the example of a display of the driving load of the load reduction driving | running plan by a modification. 変形例による負荷軽減走行計画の運転負荷の表示例を示す図である。It is a figure which shows the example of a display of the driving load of the load reduction driving | running plan by a modification. 変形例による負荷軽減走行計画の運転負荷の表示例を示す図である。It is a figure which shows the example of a display of the driving load of the load reduction driving | running plan by a modification. 変形例による負荷軽減走行計画の運転負荷の表示例を示す図である。It is a figure which shows the example of a display of the driving load of the load reduction driving | running plan by a modification. 変形例による負荷軽減走行計画および第1走行計画の運転負荷の表示例を示す図である。It is a figure which shows the example of a display of the driving load of the load reduction driving | running plan by a modification, and a 1st driving | running plan. 走行計画修正装置のハードウェア構成を示す図である。It is a figure which shows the hardware constitutions of a travel plan correction apparatus. 走行計画修正装置のハードウェア構成を示す図である。It is a figure which shows the hardware constitutions of a travel plan correction apparatus.
 <A.実施の形態1>
 <A-1.構成>
 図1は、本発明の実施の形態1に係る自動運転システムを示す構成図である。実施の形態1に係る自動運転システムは、車両の運転制御を行う自動運転制御装置11と、自動運転制御装置11が有する車両の走行計画を修正する走行計画修正装置101と、各種アクチュエータ18とを備えて構成される。以下、自動運転制御装置11の制御対象となる車両を自車両、それ以外の車両を他車両と呼称する。
<A. Embodiment 1>
<A-1. Configuration>
FIG. 1 is a configuration diagram showing an automatic driving system according to Embodiment 1 of the present invention. The automatic driving system according to Embodiment 1 includes an automatic driving control device 11 that controls driving of a vehicle, a driving plan correction device 101 that corrects a driving plan of the vehicle that the automatic driving control device 11 has, and various actuators 18. It is prepared for. Hereinafter, a vehicle to be controlled by the automatic driving control device 11 is referred to as a host vehicle, and other vehicles are referred to as other vehicles.
 走行計画では、自車両の走行経路、走行車線、および走行速度が定められている。走行計画修正装置101は走行計画に従って、各種アクチュエータ18を制御し、車両の自動運転制御を実施する。各種アクチュエータ18には、自車両の操舵アクチュエータ、駆動アクチュエータ、制動アクチュエータが含まれる。 The travel plan defines the travel route, travel lane, and travel speed of the vehicle. The travel plan correction device 101 controls the various actuators 18 according to the travel plan, and performs automatic driving control of the vehicle. The various actuators 18 include a steering actuator, a driving actuator, and a braking actuator for the host vehicle.
 走行計画修正装置101は、走行計画取得部1、周辺車両情報取得部2、および走行計画修正部3を備えて構成される。 The travel plan correction apparatus 101 includes a travel plan acquisition unit 1, a surrounding vehicle information acquisition unit 2, and a travel plan correction unit 3.
 走行計画取得部1は、自動運転制御装置11から走行計画を取得する。走行計画には、自車両の走行経路、走行車線、および走行速度が含まれている。走行計画修正装置101は、自動運転制御装置11から取得した走行計画を、より運転負荷の小さい走行計画に修正する。本明細書では、走行計画修正装置101による修正前の走行計画を第1走行計画、修正後の走行計画を第2走行計画と呼称して区別する。 The travel plan acquisition unit 1 acquires a travel plan from the automatic operation control device 11. The travel plan includes the travel route, travel lane, and travel speed of the host vehicle. The travel plan correction device 101 corrects the travel plan acquired from the automatic operation control device 11 to a travel plan with a smaller driving load. In this specification, the travel plan before being corrected by the travel plan correcting device 101 is referred to as a first travel plan, and the corrected travel plan is referred to as a second travel plan.
 周辺車両情報取得部2は、自車両と周辺車両との位置関係を少なくとも含む周辺車両情報を取得する。本明細書では、自車両の周辺を走行する他車両を周辺車両と呼称する。 The surrounding vehicle information acquisition unit 2 acquires surrounding vehicle information including at least the positional relationship between the host vehicle and the surrounding vehicle. In this specification, another vehicle that travels around the host vehicle is referred to as a peripheral vehicle.
 走行計画修正部3は、自車両の現在地から、第1走行計画の走行経路上の自動運転レベル低下切替地点前の間の少なくとも一部の区間を走行計画修正区間と設定し、走行計画修正区間について第1走行計画とは異なる第2走行計画を作成する。そして、走行計画修正部3は、第1走行計画および第2走行計画の夫々について、周辺車両情報に基づき走行計画修正区間の運転負荷を設定し、走行計画修正区間の少なくともいずれかの地点において、第2走行計画による運転負荷が第1走行計画による運転負荷よりも小さくなる場合に、第2走行計画を負荷軽減走行計画として自動運転制御装置11に出力する。 The travel plan correction unit 3 sets at least a part of a section between the current location of the host vehicle and the automatic driving level lowering switching point on the travel route of the first travel plan as a travel plan correction section. A second travel plan different from the first travel plan is created. And the travel plan correction part 3 sets the driving load of the travel plan correction section based on the surrounding vehicle information for each of the first travel plan and the second travel plan, and at at least one point of the travel plan correction section, When the operation load based on the second travel plan is smaller than the operation load based on the first travel plan, the second travel plan is output to the automatic operation control device 11 as a load reduction travel plan.
 <A-2.フローチャート>
 次に、本発明の実施の形態1に係る走行計画修正装置101の動作を、図2のフローチャートに沿って説明する。
<A-2. Flow chart>
Next, operation | movement of the travel plan correction apparatus 101 which concerns on Embodiment 1 of this invention is demonstrated along the flowchart of FIG.
 まず、走行計画取得部1が、自動運転制御装置11から自車両の第1走行計画を取得する(ステップS1)。 First, the travel plan acquisition unit 1 acquires the first travel plan of the host vehicle from the automatic driving control device 11 (step S1).
 次に、周辺車両情報取得部2が、自車両と周辺車両との位置関係を少なくとも含む周辺車両情報を取得する(ステップS2)。 Next, the surrounding vehicle information acquisition unit 2 acquires surrounding vehicle information including at least the positional relationship between the host vehicle and the surrounding vehicle (step S2).
 次に、走行計画修正部3が、走行計画修正区間を設定する(ステップS3)。 Next, the travel plan correction unit 3 sets a travel plan correction section (step S3).
 次に、走行計画修正部3が、自車両が走行計画修正区間を第1走行計画に沿って走行した場合の運転負荷を、周辺車両情報に基づき計算する(ステップS4)。 Next, the travel plan correction unit 3 calculates a driving load when the host vehicle travels in the travel plan correction section along the first travel plan based on the surrounding vehicle information (step S4).
 次に、走行計画修正部3が、走行計画修正区間について第1走行計画とは異なる第2走行計画を作成する(ステップS5)。 Next, the travel plan correction unit 3 creates a second travel plan different from the first travel plan for the travel plan correction section (step S5).
 次に、走行計画修正部3が、自車両が走行計画修正区間を第2走行計画に沿って走行した場合の運転負荷を、周辺車両情報に基づき計算する(ステップS6)。 Next, the travel plan correction unit 3 calculates a driving load when the host vehicle travels along the second travel plan in the travel plan correction section based on the surrounding vehicle information (step S6).
 次に、走行計画修正部3が、第2走行計画が負荷軽減走行計画か否かを判断する(ステップS7)。ここで走行計画修正部3は、走行計画修正区間の少なくともいずれかの地点において、第2走行計画の運転負荷が第1走行計画の運転負荷より小さくなる場合に、第2走行計画を負荷軽減走行計画と判断する。走行計画修正部3は、第2走行計画を負荷軽減走行計画と判断すると、当該負荷軽減走行計画を自動運転制御装置11に送信する(ステップS8)。 Next, the travel plan correction unit 3 determines whether or not the second travel plan is a load reduction travel plan (step S7). Here, the travel plan correction unit 3 travels the second travel plan while reducing the load when the operation load of the second travel plan is smaller than the operation load of the first travel plan at least at any point in the travel plan correction section. Judge as a plan. When the travel plan correction unit 3 determines that the second travel plan is a load reduction travel plan, the travel plan correction unit 3 transmits the load reduction travel plan to the automatic operation control device 11 (step S8).
 一方、走行計画修正区間のいずれの地点においても、第2走行計画の運転負荷が第1走行計画の運転負荷より小さくならない場合、第2走行計画は負荷軽減走行計画ではなく、走行計画修正装置101は処理を終了する。 On the other hand, if the operation load of the second travel plan is not smaller than the operation load of the first travel plan at any point in the travel plan correction section, the second travel plan is not a load reduction travel plan, and the travel plan correction device 101. Ends the process.
 以上に説明したように、本発明の実施の形態1に係る走行計画修正装置101は、複数の自動運転レベルを切替えて走行可能な自車両の自動運転制御装置11から、自車両の走行経路、走行車線、および走行速度を含む第1走行計画を取得する走行計画取得部1と、自車両と自車両の周辺を走行する周辺車両との位置関係を少なくとも含む周辺車両情報を取得する周辺車両情報取得部2と、自車両の現在地から第1走行計画の走行経路上の自動運転レベル低下切替地点までの間の少なくとも一部の区間を走行計画修正区間と設定し、走行計画修正区間について第1走行計画とは異なる第2走行計画を作成する走行計画修正部3と、を備える。そして、走行計画修正部3は、第1走行計画及び第2走行計画の夫々について、周辺車両情報に基づき走行計画修正区間の運転負荷を設定し、走行計画修正区間の少なくともいずれかの地点において、第2走行計画による運転負荷が第1走行計画による運転負荷よりも小さくなる場合に、第2走行計画を負荷軽減走行計画として自動運転制御装置11に出力する。負荷軽減走行計画の運転負荷は、走行計画修正区間のいずれかの地点において第1走行計画の運転負荷よりも小さいため、自動運転制御装置11が負荷軽減走行計画に沿って自動運転制御を行うことにより、運転負荷がより小さいタイミングで自動運転レベルを低下させることができる。また、運転負荷は周辺車両情報に基づき設定されるため、周辺車両との位置関係を考慮して、スムーズな自動運転レベルの低下切替を行うことができる。 As described above, the travel plan correcting apparatus 101 according to the first embodiment of the present invention switches from the automatic driving control apparatus 11 of the own vehicle that can travel by switching a plurality of automatic driving levels, Peripheral vehicle information that acquires at least the positional relationship between the travel plan acquisition unit 1 that acquires the first travel plan including the travel lane and the travel speed, and the surrounding vehicle that travels in the vicinity of the host vehicle. At least a section between the acquisition unit 2 and the current location of the host vehicle and the automatic driving level lowering switching point on the travel route of the first travel plan is set as the travel plan correction section, and the first travel plan correction section is set. A travel plan correction unit 3 that creates a second travel plan different from the travel plan. And the travel plan correction part 3 sets the driving load of the travel plan correction section based on the surrounding vehicle information for each of the first travel plan and the second travel plan, and at at least one point of the travel plan correction section, When the operation load based on the second travel plan is smaller than the operation load based on the first travel plan, the second travel plan is output to the automatic operation control device 11 as a load reduction travel plan. Since the operation load of the load reduction travel plan is smaller than the operation load of the first travel plan at any point in the travel plan correction section, the automatic operation control device 11 performs automatic operation control according to the load reduction travel plan. Thus, the automatic driving level can be lowered at a timing when the driving load is smaller. In addition, since the driving load is set based on the surrounding vehicle information, it is possible to perform smooth automatic driving level lowering switching in consideration of the positional relationship with the surrounding vehicle.
 また、本発明の実施の形態1に係る走行計画修正方法によれば、複数の自動運転レベルを切替えて走行可能な自車両の自動運転制御装置11から、自車両の走行経路、走行車線、および走行速度を含む第1走行計画を取得し、自車両と自車両の周辺を走行する周辺車両との位置関係を少なくとも含む周辺車両情報を取得し、自車両の現在地から第1走行計画の走行経路上の自動運転レベル低下切替地点までの間の少なくとも一部の区間を走行計画修正区間と設定し、走行計画修正区間について第1走行計画とは異なる第2走行計画を作成し、第1走行計画及び第2走行計画の夫々について、周辺車両情報に基づき走行計画修正区間の運転負荷を設定し、走行計画修正区間の少なくともいずれかの地点において、第2走行計画による運転負荷が第1走行計画による運転負荷よりも小さくなる場合に、第2走行計画を負荷軽減走行計画として自動運転制御装置に出力する。負荷軽減走行計画の運転負荷は、走行計画修正区間のいずれかの地点において第1走行計画の運転負荷よりも小さいため、自動運転制御装置11が負荷軽減走行計画に沿って自動運転制御を行うことにより、運転負荷がより小さいタイミングで自動運転レベルを低下させることができる。また、運転負荷は周辺車両情報に基づき設定されるため、周辺車両との位置関係を考慮して、スムーズな自動運転レベルの低下切替を行うことができる。 Further, according to the travel plan correction method according to the first embodiment of the present invention, from the own vehicle's automatic operation control device 11 capable of traveling while switching a plurality of automatic operation levels, the own vehicle's travel route, travel lane, and A first travel plan including a travel speed is acquired, peripheral vehicle information including at least a positional relationship between the host vehicle and a peripheral vehicle traveling around the host vehicle is acquired, and a travel route of the first travel plan from the current location of the host vehicle At least a part of the section up to the automatic driving level lowering switching point is set as a travel plan correction section, a second travel plan different from the first travel plan is created for the travel plan correction section, and the first travel plan For each of the second travel plan, the driving load of the travel plan correction section is set based on the surrounding vehicle information, and the driving load according to the second travel plan is set at at least one point of the travel plan correction section. If smaller than the operating load of the first trip plan, and it outputs the automatic driving controller of the second travel plan as a pressure relief travel plan. Since the operation load of the load reduction travel plan is smaller than the operation load of the first travel plan at any point in the travel plan correction section, the automatic operation control device 11 performs automatic operation control according to the load reduction travel plan. Thus, the automatic driving level can be lowered at a timing when the driving load is smaller. In addition, since the driving load is set based on the surrounding vehicle information, it is possible to perform smooth automatic driving level lowering switching in consideration of the positional relationship with the surrounding vehicle.
 <B.実施の形態2>
 <B-1.構成>
 図3は、本発明の実施の形態2に係る自動運転システムの構成を示すブロック図である。図3では、図1に示した構成要素と同一又は対応する構成要素に同一の参照符号を付しており、これは図3以降の図においても同様である。実施の形態2に係る自動運転システムは、自動運転制御装置11、交通情報送信装置12、車載センサ13、各種アクチュエータ18、運転操作部19、表示装置20、音声出力装置21、および走行計画修正装置102を備えて構成される。
<B. Second Embodiment>
<B-1. Configuration>
FIG. 3 is a block diagram showing the configuration of the automatic driving system according to Embodiment 2 of the present invention. 3, the same or corresponding components as those shown in FIG. 1 are denoted by the same reference numerals, and this also applies to the drawings subsequent to FIG. The automatic driving system according to Embodiment 2 includes an automatic driving control device 11, a traffic information transmission device 12, an in-vehicle sensor 13, various actuators 18, a driving operation unit 19, a display device 20, a voice output device 21, and a travel plan correction device. 102.
 走行計画修正装置102は、実施の形態1の走行計画修正装置101と同様の構成である。 The travel plan correction device 102 has the same configuration as the travel plan correction device 101 of the first embodiment.
 交通情報送信装置12は、周辺車両の位置情報または周辺車両の混雑度などの交通情報を、走行計画修正装置102の周辺車両情報取得部2に送信する。周辺車両の混雑度は、例えば、自車両から所定の距離内に存在する周辺車両の数により定義される。例えば、交通情報送信装置12は、路側機として構成され、路側機の周辺を走行する車両に交通情報を送信する。この場合、周辺車両情報取得部2は路車間通信により交通情報送信装置12から交通情報を取得する。あるいは、交通情報送信装置12は、周辺車両に搭載され、搭載された周辺車両の位置情報を他の車両に送信する通信装置であっても良い。この場合、周辺車両情報取得部2は車車間通信により交通情報送信装置12から交通情報を取得する。あるいは、交通情報送信装置12はVICS(登録商標)(Vehicle Information and Communication System)情報等を送信する交通情報サーバにより構成されても良い。 The traffic information transmitting device 12 transmits traffic information such as position information of surrounding vehicles or the degree of congestion of surrounding vehicles to the surrounding vehicle information acquisition unit 2 of the travel plan correcting device 102. The degree of congestion of surrounding vehicles is defined by the number of surrounding vehicles existing within a predetermined distance from the host vehicle, for example. For example, the traffic information transmitting device 12 is configured as a roadside machine and transmits traffic information to a vehicle traveling around the roadside machine. In this case, the surrounding vehicle information acquisition unit 2 acquires traffic information from the traffic information transmission device 12 by road-to-vehicle communication. Alternatively, the traffic information transmitting device 12 may be a communication device that is mounted on a surrounding vehicle and transmits position information of the mounted surrounding vehicle to another vehicle. In this case, the surrounding vehicle information acquisition unit 2 acquires traffic information from the traffic information transmission device 12 by inter-vehicle communication. Alternatively, the traffic information transmitting device 12 may be configured by a traffic information server that transmits VICS (registered trademark) (Vehicle Information and Communication System) information and the like.
 車載センサ13は、周辺車両の走行速度、走行方向、および位置等を検出する自車両に搭載されたセンサである。車載センサ13が検出する周辺車両の走行速度、走行方向、位置は、絶対値、または自車両との相対値である。図3には、カメラ14、ミリ波レーダ15、超音波センサ16、レーザレーダ17を例示しているが、車載センサ13は他のセンサを含んでいても良い。 The on-vehicle sensor 13 is a sensor mounted on the host vehicle that detects the traveling speed, traveling direction, position, and the like of surrounding vehicles. The traveling speed, traveling direction, and position of the surrounding vehicle detected by the in-vehicle sensor 13 are absolute values or relative values to the host vehicle. 3 illustrates the camera 14, the millimeter wave radar 15, the ultrasonic sensor 16, and the laser radar 17, but the in-vehicle sensor 13 may include other sensors.
 周辺車両情報取得部2は、交通情報送信装置12から交通情報として取得した他車両の位置情報と、図示しない位置情報取得部から取得した自車両の位置情報とから、自車両と他車両との車間距離を計算し、これを周辺車両情報とする。あるいは、周辺車両情報取得部2は、車載センサ13の測定情報から、自車両と他車両との車間距離を周辺車両情報として取得する。なお、周辺車両情報取得部2は、交通情報送信装置12と車載センサ13の少なくともいずれかから周辺車両情報を取得できれば良い。 The surrounding vehicle information acquisition unit 2 uses the positional information of the other vehicle acquired as the traffic information from the traffic information transmitting device 12 and the positional information of the own vehicle acquired from the positional information acquisition unit (not shown), The inter-vehicle distance is calculated and used as surrounding vehicle information. Or the surrounding vehicle information acquisition part 2 acquires the inter-vehicle distance of the own vehicle and another vehicle from the measurement information of the vehicle-mounted sensor 13 as surrounding vehicle information. In addition, the surrounding vehicle information acquisition part 2 should just acquire surrounding vehicle information from at least any one of the traffic information transmitter 12 and the vehicle-mounted sensor 13. FIG.
 運転操作部19は、ハンドル、アクセル、ブレーキ、ハンドルレバー、又はウィンカーレバー等であり、運転者によるアクチュエータ操作や、運転者からの操作情報を自動運転制御装置11に入力する。また、運転操作部19は、運転者による自動運転レベルの低下要求を自動運転制御装置11に入力する。 The driving operation unit 19 is a handle, an accelerator, a brake, a handle lever, a winker lever or the like, and inputs an actuator operation by the driver and operation information from the driver to the automatic driving control device 11. Further, the driving operation unit 19 inputs a request for lowering the automatic driving level by the driver to the automatic driving control device 11.
 表示装置20および音声出力装置21は、自動運転制御装置11から運転者に対する各種の報知を行うためのヒューマンインタフェースである。表示装置20は、例えば車両のメータクラスタに設置された液晶表示装置等のディスプレイである。音声出力装置21は、例えば車両に設置されたスピーカである。あるいは、表示装置20および音声出力装置21は、運転者が携帯するスマートフォン等の携帯端末によって構成されても良い。 The display device 20 and the audio output device 21 are human interfaces for performing various notifications from the automatic operation control device 11 to the driver. The display device 20 is a display such as a liquid crystal display device installed in a meter cluster of a vehicle, for example. The audio output device 21 is a speaker installed in a vehicle, for example. Or the display apparatus 20 and the audio | voice output apparatus 21 may be comprised by portable terminals, such as a smart phone which a driver | operator carries.
 <B-2.動作>
 次に、自動運転レベルをレベル3からレベル0へ切り替える場面を例に、実施の形態2に係る自動運転システムの動作を説明する。
<B-2. Operation>
Next, the operation of the automatic driving system according to the second embodiment will be described with an example of switching the automatic driving level from level 3 to level 0 as an example.
 まず、図4のフローチャートに沿って、自動運転制御装置11の動作を説明する。自動運転制御装置11は、第1走行計画に沿って、自動運転レベル3で走行制御を開始する(ステップS11)。自動運転レベルは、自車両の走行経路の区間ごとに定まっており、地図データ又は第1走行計画に含められている。ここで、自動運転制御装置11は、レベル3の自動運転の開始を運転者に報知する(ステップS12)。ステップS11の前にレベル2以下で自動運転を開始した場合には、その旨を報知しても良い。 First, the operation of the automatic driving control device 11 will be described along the flowchart of FIG. The automatic driving control device 11 starts the driving control at the automatic driving level 3 in accordance with the first driving plan (step S11). The automatic driving level is determined for each section of the travel route of the host vehicle, and is included in the map data or the first travel plan. Here, the automatic driving control device 11 notifies the driver of the start of level 3 automatic driving (step S12). If automatic operation is started at level 2 or less before step S11, this fact may be notified.
 次に、自動運転制御装置11は、自車両が自動運転レベル変更準備区間に達したか否かを判断する(ステップS13)。自動運転レベル変更準備区間とは、自動運転レベルの切替を運転者に予告し、自動運転レベル低下切替地点Peの手前ではあるが予め定められた条件を満たすと運転者の操作による自動運転レベルの切替を受け付けるための区間として、自動運転制御装置11が予め定めた区間である。予め定められた条件を満たすとは、例えば道路の分岐又は合流区間ではなく、手動運転による運転負荷が大きくない等の条件である。運転者の操作とは、例えばハンドルを2回タッチして軽くブレーキレバーを操作する等、予め定められた操作である。図5は、自車両Aが自動運転レベル変更準備区間に達した時点での自車両Aと周辺車両との位置関係を示している。図5に示すように、第1走行計画において、地点Peまでの自動運転レベルがレベル3、地点Pe以降の自動運転レベルがレベル0と定められている。従って、運転者から自動運転レベルの切替要求がなければ、自車両が地点Peを通過する時点で自動運転レベルがレベル3からレベル0に切り替わる。すなわち、地点Peは、自動運転レベルが低下する方向に切り替わる自動運転レベル低下切替地点である。自動運転制御装置11は、自動運転レベル低下切替地点Peから一定距離だけ走行経路を遡った地点、あるいは一定時間に自車両Aが走行する距離だけ走行距離を遡った地点をP0とし、地点P0から自動運転レベル低下切替地点Peまでの区間を自動運転レベル変更準備区間と設定する。 Next, the automatic driving control device 11 determines whether or not the host vehicle has reached the automatic driving level change preparation section (step S13). The automatic driving level change preparation section indicates to the driver the switching of the automatic driving level, and the automatic driving level by the driver's operation is satisfied if a predetermined condition is met before the automatic driving level lowering switching point Pe. As a section for accepting switching, the automatic driving control device 11 is a section determined in advance. Satisfying a predetermined condition is, for example, a condition that the driving load due to manual operation is not large, not a road branch or merge section. The driver's operation is a predetermined operation such as touching the steering wheel twice to lightly operate the brake lever. FIG. 5 shows the positional relationship between the host vehicle A and surrounding vehicles when the host vehicle A reaches the automatic driving level change preparation section. As shown in FIG. 5, in the first travel plan, the automatic driving level up to the point Pe is defined as level 3, and the automatic driving level after the point Pe is defined as level 0. Accordingly, if there is no request for switching the automatic driving level from the driver, the automatic driving level is switched from level 3 to level 0 when the host vehicle passes the point Pe. That is, the point Pe is an automatic driving level lowering switching point that switches in a direction in which the automatic driving level decreases. The automatic driving control device 11 sets P0 as a point that has traveled a certain distance from the automatic driving level lowering switching point Pe, or a point that has traveled the distance traveled by the host vehicle A for a certain time, from P0. The section to the automatic driving level lowering switching point Pe is set as the automatic driving level change preparation section.
 自動運転制御装置11は、自車両が自動運転レベル変更準備区間に達するまで待機し、自車両が自動運転レベル変更準備区間に達すると、自動運転レベル変更予告を運転者に行う(ステップS14)。また、自動運転制御装置11は、走行計画修正装置102に、自車両が自動運転レベル変更準備区間に達したことを報知し、負荷軽減走行計画の有無を確認する(ステップS15)。負荷軽減走行計画がなければ、自動運転制御装置11は、走行計画に変更がないことを表示装置20又は音声出力装置21によって報知する(ステップS18)。一方、負荷軽減走行計画があれば、自動運転制御装置11は、負荷軽減走行計画によって走行計画を変更し(ステップS16)、走行計画の変更を運転者に報知する(ステップS17)。なお、ステップS12、ステップS14、ステップS17、ステップS18における予告又は報知は、表示装置20による表示、又は音声出力装置21による音声出力、又はこれらの組み合わせによって行われる。 The automatic driving control device 11 waits until the own vehicle reaches the automatic driving level change preparation section, and when the own vehicle reaches the automatic driving level change preparation section, the automatic driving level change notice is given to the driver (step S14). In addition, the automatic driving control device 11 notifies the travel plan correction device 102 that the host vehicle has reached the automatic driving level change preparation section, and checks whether or not there is a load reduction travel plan (step S15). If there is no load reduction travel plan, the automatic operation control device 11 notifies the display device 20 or the voice output device 21 that there is no change in the travel plan (step S18). On the other hand, if there is a load reduction travel plan, the automatic operation control device 11 changes the travel plan based on the load reduction travel plan (step S16), and notifies the driver of the change of the travel plan (step S17). Note that the advance notice or notification in step S12, step S14, step S17, or step S18 is performed by display on the display device 20, audio output by the audio output device 21, or a combination thereof.
 次に、図6のフローチャートに沿って、走行計画修正装置102の動作を説明する。まず、走行計画取得部1が自動運転制御装置11から第1走行計画を取得する(ステップS21)。次に、走行計画修正装置102は、現在の自動運転レベルが3以上か否かを判断する(ステップS22)。走行計画修正装置102は、自動運転レベルが3以上になるまで待機し、3以上になれば自車両が自動運転レベル変更準備区間に達したか否かを判断する(ステップS23)。例えば、自車両が自動運転レベル変更準備区間に達した場合、自動運転制御装置11から走行計画修正装置102に報知が行われることによって、走行計画修正装置102はその情報を取得する。 Next, the operation of the travel plan correcting apparatus 102 will be described with reference to the flowchart of FIG. First, the travel plan acquisition part 1 acquires a 1st travel plan from the automatic driving | operation control apparatus 11 (step S21). Next, the travel plan correcting apparatus 102 determines whether or not the current automatic driving level is 3 or more (step S22). The travel plan correction device 102 waits until the automatic driving level becomes 3 or higher, and determines whether or not the own vehicle has reached the automatic driving level change preparation section (step S23). For example, when the host vehicle reaches the automatic driving level change preparation section, the driving plan correction device 102 obtains the information by notifying the driving plan correction device 102 from the automatic driving control device 11.
 自車両が自動運転レベル変更準備区間に達すると、周辺車両情報取得部2が周辺車両情報を取得する(ステップS24)。図5に示すように、自車両Aは走行計画に沿って右側車線を走行して、その前方では、周辺車両Bf1,Bf2,Bf3が右側車線を走行し、周辺車両Cf1,Cf2,Cf3,Cf4が左側車線を走行する。また、自車両Aの後方では、周辺車両Bb1,Bb2,Bb3が右側車線を走行し、Cb1が左側車線を走行する。また、右側車線では自車両及び周辺車両がともに時速100kmで走行し、左側車線では周辺車両が時速80kmで走行しているものとする。周辺車両情報取得部2は、こうした周辺車両の走行車線、走行速度、自車両Aとの車間距離を、周辺車両情報として取得する。 When the own vehicle reaches the automatic driving level change preparation section, the surrounding vehicle information acquisition unit 2 acquires the surrounding vehicle information (step S24). As shown in FIG. 5, the host vehicle A travels in the right lane according to the travel plan, and in front of it, the surrounding vehicles Bf1, Bf2, Bf3 travel in the right lane, and the surrounding vehicles Cf1, Cf2, Cf3, Cf4. Drive in the left lane. Further, behind the host vehicle A, the surrounding vehicles Bb1, Bb2, and Bb3 travel in the right lane, and Cb1 travels in the left lane. In the right lane, both the host vehicle and the surrounding vehicles are traveling at 100 km / h, and the surrounding vehicle is traveling at 80 km / h in the left lane. The peripheral vehicle information acquisition unit 2 acquires the travel lane, travel speed, and inter-vehicle distance from the host vehicle A as peripheral vehicle information.
 次に、走行計画修正部3が走行計画修正区間を設定する(ステップS25)。この動作は、自車両が自動運転レベル変更準備区間に達した後に行われるため、走行計画修正区間は、自動運転レベル変更準備区間の中の任意の区間として設定される。図7に、走行計画修正区間と自動運転レベル変更準備区間との関係を示す。図7に示すように、走行計画修正区間は、自動運転レベル変更準備区間と同一の区間であっても良いし、地点P0から自動運転レベル変更準備区間の途中地点までの区間であっても良いし、自動運転レベル変更準備区間の途中地点から自動運転レベル低下切替地点Peまでの区間であっても良いし、地点P0から地点Peまでの間の任意の2点間であっても良い。以下では、走行計画修正区間を自動運転レベル変更準備区間と同一の区間であるものとして説明を行う。 Next, the travel plan correction unit 3 sets a travel plan correction section (step S25). Since this operation is performed after the host vehicle reaches the automatic driving level change preparation section, the travel plan correction section is set as an arbitrary section in the automatic driving level change preparation section. FIG. 7 shows the relationship between the travel plan correction section and the automatic driving level change preparation section. As shown in FIG. 7, the travel plan correction section may be the same section as the automatic driving level change preparation section, or may be a section from a point P0 to a midpoint of the automatic driving level change preparation section. Then, it may be a section from the midpoint of the automatic driving level change preparation section to the automatic driving level lowering switching point Pe, or between any two points from the point P0 to the point Pe. In the following description, the travel plan correction section is assumed to be the same section as the automatic driving level change preparation section.
 次に図6に戻り、走行計画修正部3が第1走行計画による運転負荷を計算する(ステップS26)。 Next, returning to FIG. 6, the travel plan correction unit 3 calculates the operation load according to the first travel plan (step S <b> 26).
 図8は、自車両A及び周辺車両が図5に示す状況から第1走行計画に沿って定速走行し、自車両Aが地点P2に達した時点での自車両Aと周辺車両との位置関係を示している。右側車線では、全ての車両が時速100kmで定速走行しているため、自車両Aと周辺車両Bf1,Bf2,Bf3,Bb1,Bb2,Bb3との位置関係は、図5に示す状況から変化していない。しかし、左側車線では、全ての車両が時速80kmで定速走行しているため、自車両Aと周辺車両Cf1,Cf2,Cf3,Cf4,Cb1との位置関係は、時間と共に変化する。自車両Aが地点P0を走行している時に比べて、自車両Aと周辺車両Cf1との車間距離は近づいている。 FIG. 8 shows the positions of the host vehicle A and the surrounding vehicles when the host vehicle A and the surrounding vehicles travel at a constant speed according to the first travel plan from the situation shown in FIG. 5 and the own vehicle A reaches the point P2. Showing the relationship. In the right lane, since all the vehicles are traveling at a constant speed of 100 km / h, the positional relationship between the own vehicle A and the surrounding vehicles Bf1, Bf2, Bf3, Bb1, Bb2, Bb3 changes from the situation shown in FIG. Not. However, since all the vehicles are traveling at a constant speed of 80 km / h in the left lane, the positional relationship between the host vehicle A and the surrounding vehicles Cf1, Cf2, Cf3, Cf4, Cb1 changes with time. The inter-vehicle distance between the host vehicle A and the surrounding vehicle Cf1 is closer than when the host vehicle A is traveling at the point P0.
 走行計画修正部3は、自車両が走行計画修正区間の各地点を走行する際の運転負荷を、図5および図8に示す各地点における自車両と周辺車両との車間距離に基づいて計算する。図9は、運転負荷の計算に用いる運転負荷得点表の一例を示している。運転負荷得点が高いほど、運転負荷が高く自動運転レベルの低下には適していないことを表している。例えば、同一車線前方において、自車両から20m以下の範囲に存在する周辺車両に対する運転負荷は10点であり、自車両から21m以上30m以下の範囲に存在する周辺車両に対する運転負荷は6点である。また、同一車線後方において、自車両から20m以下の範囲に存在する周辺車両に対する運転負荷は6点である。また、横車線前方または後方において、自車両から20m以下の範囲に存在する周辺車両に対する運転負荷は1点である。このように、図9では、自車両と周辺車両との車間距離が近いほど運転負荷得点が大きく、同じ車間距離に対しては同一車線前方、同一車線後方、横車線の順に運転負荷得点が大きくなる。但し、運転負荷得点は、少なくとも自車両と周辺車両との車間距離に基づき定められれば良い。例えば、周辺車両が自車両の前方に存在するか後方に存在するか、あるいは同一車線に存在するか横車線に存在するかによらず、単純に自車両との車間距離のみに基づき運転負荷得点が定まっても良い。 The travel plan correction unit 3 calculates the driving load when the host vehicle travels at each point in the travel plan correction section based on the inter-vehicle distance between the host vehicle and the surrounding vehicle at each point shown in FIGS. 5 and 8. . FIG. 9 shows an example of an operating load score table used for calculating the operating load. The higher the driving load score, the higher the driving load and the lower the automatic driving level. For example, in the front of the same lane, the driving load for the surrounding vehicles existing within a range of 20 m or less from the own vehicle is 10 points, and the driving load for the surrounding vehicles existing within a range of 21 m to 30 m from the own vehicle is 6 points. . Moreover, the driving load with respect to the surrounding vehicle which exists in the range below 20 m from the own vehicle in the back of the same lane is six points. Moreover, the driving load with respect to the surrounding vehicle which exists in the range below 20 m from the own vehicle in the front or back of a horizontal lane is one point. Thus, in FIG. 9, the driving load score increases as the inter-vehicle distance between the host vehicle and the surrounding vehicle decreases, and the driving load score increases in the order of the same lane front, the same lane rear, and the horizontal lane for the same inter-vehicle distance. Become. However, the driving load score may be determined based on at least the inter-vehicle distance between the host vehicle and surrounding vehicles. For example, regardless of whether the surrounding vehicle is in front of or behind the host vehicle, or in the same lane or in the side lane, the driving load score is simply based on the inter-vehicle distance. May be determined.
 図10は、自動運転レベル変更準備区間における運転負荷得点の推移を示している。図10のグラフの実線は、自車両Aが第1走行計画に沿って走行した場合の運転負荷の推移を示し、一点鎖線は、第2走行計画に沿って走行した場合の運転負荷の推移を示している。 FIG. 10 shows the transition of the driving load score in the automatic driving level change preparation section. The solid line in the graph of FIG. 10 indicates the transition of the driving load when the host vehicle A travels along the first travel plan, and the alternate long and short dash line indicates the transition of the driving load when traveled along the second travel plan. Show.
 第1走行計画によれば、自車両Aは右側車線を時速100mで定速走行し、前方の周辺車両Bf1に対して車両間隔50mを維持する。従って、地点P0では、周辺車両Bf1による運転負荷得点が4点、同一車線の後方40mの位置に存在する周辺車両Bf2による運転負荷得点が3点となり、合計で運転負荷得点は7点である。その後、図8に示す地点P2の走行時に、左側車線の車両Cf1との車間距離が20m以内となるため、周辺車両Cf1による運転負荷得点が1点加わり、合計で運転負荷得点は8点となる。さらに進んで、周辺車両Cf1,Cf2が共に自車両から20m以内の位置に存在するときには、周辺車両Cf2による運転負荷得点が1点加わり、合計で運転負荷得点は9点となる。このように、左側車線を走行する周辺車両と自車両との車間距離の変化に伴い、運転負荷得点は図10の実線で示すように推移する。 According to the first travel plan, the own vehicle A travels at a constant speed of 100 m / h in the right lane, and maintains a vehicle interval of 50 m with respect to the surrounding vehicle Bf1 ahead. Therefore, at the point P0, the driving load score by the surrounding vehicle Bf1 is 4 points, the driving load score by the surrounding vehicle Bf2 existing 40m behind the same lane is 3, and the driving load score is 7 points in total. Thereafter, when the vehicle travels at the point P2 shown in FIG. 8, the distance between the vehicle in the left lane and the vehicle Cf1 is within 20 m, so one driving load score is added by the surrounding vehicle Cf1, and the total driving load score is eight points. . Further, when the surrounding vehicles Cf1 and Cf2 are both located within 20 m from the host vehicle, one driving load score is added by the surrounding vehicle Cf2 for a total driving load score of nine points. As described above, the driving load score changes as shown by the solid line in FIG. 10 in accordance with the change in the inter-vehicle distance between the surrounding vehicle traveling in the left lane and the host vehicle.
 図6に戻って、次に走行計画修正部3が第2走行計画を作成する(ステップS27)。走行計画修正部3は、走行計画修正区間の少なくともいずれかの地点において、第2走行計画による運転負荷が第1走行計画による運転負荷よりも小さくなるように、車線変更または速度変更により第1走行計画を修正して第2走行計画を作成する。ここで、走行計画修正部3は、地点P1で左車線に移動して時速80kmで走行した後、時速80km以下で走行して周辺車両Cf1に対し車間距離を75m確保し、その後、時速80kmで定速走行する、という第2走行計画を作成するものとする。 Referring back to FIG. 6, the travel plan correction unit 3 creates a second travel plan (step S27). The travel plan correction unit 3 performs the first travel by changing the lane or the speed so that the driving load due to the second travel plan is smaller than the driving load due to the first travel plan at least at any point in the travel plan correction section. The second travel plan is created by correcting the plan. Here, the travel plan correction unit 3 moves to the left lane at the point P1 and travels at a speed of 80 km / h, travels at a speed of 80 km / h or less and secures an inter-vehicle distance of 75 m with respect to the surrounding vehicle Cf1, and then at a speed of 80 km / h. A second travel plan for traveling at a constant speed is created.
 その後、走行計画修正部3は、第2走行計画に沿って自車両が走行計画修正区間を走行するときの運転負荷を計算する(ステップS28)。ここでの運転負荷の計算方法は、ステップS26で既に説明した方法と同様である。図10のグラフの一点鎖線で示すように、第2走行計画による運転負荷は以下のように推移する。 Thereafter, the travel plan correction unit 3 calculates a driving load when the host vehicle travels in the travel plan correction section in accordance with the second travel plan (step S28). The calculation method of the operating load here is the same as the method already described in step S26. As indicated by the alternate long and short dash line in the graph of FIG. 10, the operation load according to the second travel plan changes as follows.
 地点P1:自車両Aが左車線に移動することにより、同一車線の50m前方を走行する周辺車両Cf1による運転負荷が4点となる。 Point P1: When the host vehicle A moves to the left lane, the driving load by the surrounding vehicle Cf1 traveling 50 m ahead of the same lane becomes 4 points.
 地点P3:自車両Aが減速し周辺車両Cf1との車間距離が50m以上に広がることにより、運転負荷は2点となる。 Point P3: When the host vehicle A decelerates and the inter-vehicle distance with the surrounding vehicle Cf1 increases to 50 m or more, the driving load becomes two points.
 地点P4以降:自車両と周辺車両Bb1との車間距離が20m以下になるため、運周辺車両Bb1による運転負荷得点が1点加わり、運転負荷は合計で3点となる。その後、自車両が周辺車両Bb1に抜き去られ、周辺車両Bb1との車間距離が20mを超えるときに運転負荷得点が2点に戻る。その後も、自車両Aが周辺車両Bb2,Bb3に抜かれる度に、運転負荷得点が増減する。 After point P4: Since the inter-vehicle distance between the host vehicle and the surrounding vehicle Bb1 is 20 m or less, one driving load score is added by the driving peripheral vehicle Bb1, and the driving load is three points in total. Thereafter, the host vehicle is pulled out to the surrounding vehicle Bb1, and the driving load score returns to 2 when the distance between the surrounding vehicle and the surrounding vehicle Bb1 exceeds 20 m. Thereafter, the driving load score increases or decreases each time the host vehicle A is pulled out by the surrounding vehicles Bb2 and Bb3.
 次に、図6に戻り走行計画修正部3は、第2走行計画が負荷軽減走行計画か否かを判断する(ステップS29)。ここで走行計画修正部3は、走行計画修正区間の少なくともいずれかの地点において、第2走行計画による運転負荷が第1走行計画による運転負荷より小さい場合に、当該第2走行計画を負荷軽減走行計画とする。この場合、第2走行計画による運転負荷が第1走行計画による運転負荷より小さくなる地点で自動運転レベルを切替えることによって、自動運転レベルを切替える際の運転者への運転負荷が修正前よりも小さくなる。 Next, returning to FIG. 6, the travel plan correction unit 3 determines whether or not the second travel plan is a load reduction travel plan (step S29). Here, the travel plan correction unit 3 travels the second travel plan while reducing the load when the driving load based on the second travel plan is smaller than the driving load based on the first travel plan at least at any point in the travel plan correction section. Plan. In this case, by switching the automatic driving level at a point where the driving load according to the second driving plan is smaller than the driving load according to the first driving plan, the driving load on the driver when switching the automatic driving level is smaller than before the correction. Become.
 あるいは、走行計画修正部3は運転負荷の閾値Tを設定し、閾値Tよりも第2走行計画による運転負荷が小さくなる区間が、閾値Tよりも第1走行計画による運転負荷が小さくなる区間よりも長い場合に、当該第2走行計画を負荷軽減走行計画としても良い。この場合、低い運転負荷で自動運転レベルの切り替えを行うことの出来る区間が、修正前よりも長くなる。 Alternatively, the travel plan correction unit 3 sets a driving load threshold T, and a section where the driving load due to the second travel plan is smaller than the threshold T is smaller than a section where the driving load due to the first travel plan is smaller than the threshold T. If the time is too long, the second travel plan may be a load reduction travel plan. In this case, the section in which the automatic driving level can be switched with a low driving load is longer than before the correction.
 あるいは、図10に示す例のように、走行計画修正区間の全領域に亘って第2走行計画による運転負荷が第1走行計画による運転負荷以下となる場合に、当該第2走行計画を負荷軽減走行計画としても良い。この場合、走行計画修正区間のいずれの地点で自動運転レベルの切り替えが行われても、運転負荷が修正前より軽減される。 Alternatively, as in the example illustrated in FIG. 10, when the operation load of the second travel plan is equal to or less than the operation load of the first travel plan over the entire region of the travel plan correction section, the load of the second travel plan is reduced. It may be a travel plan. In this case, even if the automatic driving level is switched at any point in the travel plan correction section, the driving load is reduced from before the correction.
 走行計画修正部3は、ステップS29において第2走行計画を負荷軽減走行計画と判断すれば、当該負荷軽減走行計画を自動運転制御装置11に送信し(ステップS30)、第2走行計画を負荷軽減走行計画と判断しなければ、処理を終了する。 If the travel plan correcting unit 3 determines that the second travel plan is a load reduction travel plan in step S29, the travel plan correction unit 3 transmits the load reduction travel plan to the automatic operation control device 11 (step S30), and the second travel plan is reduced in load. If it is not determined as a travel plan, the process ends.
 以上の説明では、説明の簡単化のため周辺車両の速度を一定とした。しかし、走行計画修正部3は周辺車両前方の交通状況又は道路状況により、周辺車両の速度変化を予測し、走行計画の計算に取り入れても良い。また、走行計画修正部3は、周辺車両の走行計画を通信装置により入手し、当該周辺車両の走行計画に基づき未来の周辺車両位置を計算しても良い。 In the above description, the speed of surrounding vehicles is assumed to be constant for the sake of simplicity. However, the travel plan correction unit 3 may predict the speed change of the surrounding vehicle based on the traffic situation or road situation ahead of the surrounding vehicle, and may incorporate it into the calculation of the travel plan. In addition, the travel plan correction unit 3 may obtain a travel plan of a surrounding vehicle using a communication device, and calculate a future surrounding vehicle position based on the travel plan of the surrounding vehicle.
 また、走行計画修正部3は、負荷軽減走行計画を作成するにあたり、自動運転レベル変更準備区間の前半、中盤、後半のどの区間の負荷を下げるかの設定が可能であってもよい。また、走行計画修正部3は、自動運転レベル変更準備区間の最終地点すなわち自動運転レベル低下切替地点Pe近傍で最も運転負荷が小さくなるように負荷軽減走行計画を作成しても良いし、少なくとも自動運転レベル低下切替地点Peの運転負荷が一定値以下となるように負荷軽減走行計画を作成してもよい。 In addition, the travel plan correction unit 3 may be able to set which of the first, middle, and second half of the automatic operation level change preparation section to reduce the load when creating the load reduction travel plan. In addition, the travel plan correction unit 3 may create a load reduction travel plan so that the driving load becomes the smallest at the final point of the automatic driving level change preparation section, that is, in the vicinity of the automatic driving level lowering switching point Pe, or at least automatically. A load-reducing travel plan may be created so that the driving load at the driving level lowering switching point Pe becomes a certain value or less.
 <B-3.運転負荷得点表の変形例>
 図9に示した運転負荷得点表では、自車両と周辺車両との車間距離が長いほど運転負荷得点を大きくし、車間距離が同じ場合には、同一車線前方、同一車線後方、横車線の順に運転負荷得点を大きくした。運転負荷得点は、少なくとも自車両と周辺車両との車間距離に基づき定められれば良いが、他の要素を考慮して定められても良い。
<B-3. Modified example of operating load score table>
In the driving load score table shown in FIG. 9, the driving load score is increased as the inter-vehicle distance between the host vehicle and the surrounding vehicle is longer. When the inter-vehicle distance is the same, the same lane front, the same lane rear, and the horizontal lane in this order. Increased operating load score. The driving load score may be determined based on at least the distance between the host vehicle and the surrounding vehicle, but may be determined in consideration of other factors.
 例えば、走行計画修正部3は、自車両から一定距離内の周辺車両の台数を混雑度の指標としてカウントし、こうして得られた周辺車両の混雑度が高い程、運転負荷を大きく設定しても良い。 For example, the travel plan correction unit 3 counts the number of surrounding vehicles within a certain distance from the host vehicle as an indicator of the degree of congestion, and even if the driving load is set larger as the degree of congestion of the surrounding vehicles obtained in this way is higher. good.
 また、走行計画修正部3は、自車両の走行速度が高い程、運転負荷を大きく設定しても良い。 In addition, the travel plan correction unit 3 may set the driving load larger as the traveling speed of the host vehicle is higher.
 また、周辺車両情報取得部2は、例えば位置情報サーバまたは車車間通信によって周辺車両の車両種別を周辺車両情報として取得し、走行計画修正部3は、周辺車両の車両種別に基づき、運転負荷を設定しても良い。これは、車両種別が異なると運動特性が異なるため、周辺車両の車両種別が自車両と異なる場合、周辺車両の運動特性に合わせた運転が必要となり、運転負荷が大きくなることを反映したものである。例えば、普通車両の自車両に対して、周辺車両がバスまたはトラック等の大型車両である場合は、周辺車両が普通車両である場合に比べて運転負荷を高く設定する。この場合、図9に示した運転負荷得点表に加え、図11に示すような車両種別の違いによる追加の運転負荷得点表を用いる。例えば、自車両と同一車線の前方20m以内に、自車両と異なる車種の周辺車両が存在する場合、当該周辺車両による運転負荷得点は、図9の運転得点表に規定された10点に、図11の運転得点表で規定された2点を加えて12点となる。このようにして、車両種別の違いを運転負荷に反映することができる。 Further, the surrounding vehicle information acquisition unit 2 acquires the vehicle type of the surrounding vehicle as the surrounding vehicle information by, for example, a position information server or inter-vehicle communication, and the travel plan correction unit 3 calculates the driving load based on the vehicle type of the surrounding vehicle. May be set. This reflects the fact that, because the vehicle characteristics are different for different vehicle types, if the vehicle type of the surrounding vehicle is different from the host vehicle, driving according to the motion characteristics of the surrounding vehicle is required and the driving load increases. is there. For example, when the surrounding vehicle is a large vehicle such as a bus or a truck, the driving load is set higher than that when the surrounding vehicle is an ordinary vehicle. In this case, in addition to the driving load score table shown in FIG. 9, an additional driving load score table according to the difference in vehicle type as shown in FIG. 11 is used. For example, if there is a surrounding vehicle of a vehicle type different from the own vehicle within 20 m ahead of the same lane as the own vehicle, the driving load score by the surrounding vehicle is 10 points specified in the driving score table of FIG. 11 points are added to the 2 points specified in the driving score table. In this way, the difference in vehicle type can be reflected in the driving load.
 また、走行計画修正部3は、ガソリン自動車、電気自動車、燃料電池自動車といった走行駆動方式の別に基づき、運転負荷を設定しても良い。 In addition, the travel plan correction unit 3 may set a driving load based on a travel drive method such as a gasoline vehicle, an electric vehicle, or a fuel cell vehicle.
 また、周辺車両情報取得部2は、車車間通信によって周辺車両の自動運転レベルを周辺車両情報として取得し、走行計画修正部3が、周辺車両の自動運転レベルに基づき運転負荷を設定しても良い。例えば、周辺車両の自動運転レベルが低い程、自車両にとって予測できない動きをする可能性が高いと考え、運転負荷を高く設定しても良い。 Further, the surrounding vehicle information acquisition unit 2 acquires the automatic driving level of the surrounding vehicle through the inter-vehicle communication as the surrounding vehicle information, and the travel plan correction unit 3 sets the driving load based on the automatic driving level of the surrounding vehicle. good. For example, the driving load may be set higher because it is considered that the lower the automatic driving level of surrounding vehicles is, the higher the possibility of unpredictable movement for the host vehicle is.
 また、周辺車両情報取得部2は、車車間通信によって周辺車両の運転者の運転集中度を取得し、走行計画修正部3が、運転集中度が高い運転者の周辺車両に対しては運転負荷を小さく、運転集中度が低い運転者の周辺車両に対しては運転負荷を高く設定しても良い。運転集中度は、例えば覚醒度、他機器の操作状態などから判断される。覚醒度は、車両のハンドルに取り付けられた電極、カメラ等によって、運転者の脈拍、目の開度、瞬きの回数、等から取得することが可能である。 The surrounding vehicle information acquisition unit 2 acquires the driving concentration of the driver of the surrounding vehicle by inter-vehicle communication, and the travel plan correction unit 3 applies driving load to the surrounding vehicle of the driver having a high driving concentration. The driving load may be set higher for the surrounding vehicles of the driver having a small driving concentration and a low driving concentration. The driving concentration is determined from, for example, the degree of arousal, the operation state of other devices, and the like. The arousal level can be obtained from the pulse of the driver, the opening degree of the eyes, the number of blinks, and the like by an electrode, a camera, or the like attached to the steering wheel of the vehicle.
 また、周辺車両情報取得部2は、車車間通信によって周辺車両の運転者の年齢、運転歴、事故歴といった運転者の属性を取得し、走行計画修正部3は、運転者の属性に応じて運転負荷を設定しても良い。例えば、高齢の運転者が運転する周辺車両に対しては運転負荷を高く設定し、最近事故を起こした経歴がない運転者が運転する周辺車両に対しては運転負荷を低く設定する。 Further, the surrounding vehicle information acquisition unit 2 acquires driver attributes such as the age, driving history, and accident history of the driver of the surrounding vehicle by inter-vehicle communication, and the travel plan correction unit 3 responds to the driver attributes. An operating load may be set. For example, a high driving load is set for a peripheral vehicle driven by an elderly driver, and a low driving load is set for a peripheral vehicle driven by a driver who has no history of accidents recently.
 これ以外にも、自車両の速度、他車両との相対速度、走行している地形などの影響を運転負荷得点に反映させても良い。 In addition to this, the influence of the speed of the host vehicle, the relative speed with other vehicles, the traveling terrain, etc. may be reflected in the driving load score.
 <B-4.その他の変形例>
 ここまでの説明では、走行計画修正装置102は、自車両が自動運転レベル変更準備区間に達したときに自動運転制御装置から報知を受けて、走行計画の修正動作を開始するものとした。しかし、自車両が自動運転レベル変更準備区間に達する前であっても、運転者から指示を受けたタイミングで、自動運転レベルの変更動作を開始しても良い。その場合、走行計画修正区間は、運転者からの指示を受けた時点で自車両Aが走行している地点Pxから、自動運転レベル低下切替地点Peまでの間の少なくとも一部の区間として設定される。例えば図12に示すように、走行計画修正区間は、地点Pxから自動運転レベル低下切替地点Peまでの区間であっても良いし、地点Pxから自動運転レベル変更準備区間の途中地点までの区間であっても良いし、地点Pxと地点P0との間の地点から自動運転レベル変更準備区間の途中地点までの区間であっても良い。このとき、地点P0から地点Peまでの区間だけでなくPxからP0の区間も自動運転レベル変更準備区間とし、当該区間において運転者の操作による自動運転レベルの切替を受け付けても良い。すなわち、自動運転レベル変更準備区間は、自動運転制御装置からの指示又はユーザからの指示により決定される。
<B-4. Other variations>
In the description so far, the travel plan correcting device 102 receives a notification from the automatic driving control device when the host vehicle reaches the automatic driving level change preparation section, and starts the travel plan correcting operation. However, even before the host vehicle reaches the automatic driving level change preparation section, the automatic driving level changing operation may be started at the timing when an instruction is received from the driver. In that case, the travel plan correction section is set as at least a part of the section from the point Px where the host vehicle A is traveling when receiving an instruction from the driver to the automatic driving level lowering switching point Pe. The For example, as shown in FIG. 12, the travel plan correction section may be a section from the point Px to the automatic driving level lowering switching point Pe, or a section from the point Px to the midpoint of the automatic driving level change preparation section. There may be a section from a point between the point Px and the point P0 to a midpoint of the automatic driving level change preparation section. At this time, not only the section from the point P0 to the point Pe but also the section from Px to P0 may be set as the automatic driving level change preparation section, and switching of the automatic driving level by the driver's operation in the section may be accepted. That is, the automatic driving level change preparation section is determined by an instruction from the automatic driving control device or an instruction from the user.
 また、本実施の形態では、自動運転レベルが3から0に切り替わる場面を例示したが、自動運転レベルが低下する局面であれば、いかなるレベル間の切り替えにも本発明は適用可能である。 Further, in the present embodiment, the scene where the automatic driving level is switched from 3 to 0 is illustrated, but the present invention can be applied to switching between any levels as long as the automatic driving level is lowered.
 本発明では、自動運転レベル変更準備区間、走行計画修正区間を距離の区間として説明しているが、時間の区間であっても良い。例えば、自動運転レベル変更準備区間は、自動運転レベル低下切替地点から20分遡った地点までの区間と設定されても良い。 In the present invention, the automatic driving level change preparation section and the travel plan correction section are described as distance sections, but they may be time sections. For example, the automatic driving level change preparation section may be set as a section from a point that is 20 minutes back from the automatic driving level lowering switching point.
 <C.実施の形態3>
 <C-1.構成>
 図13は、本発明の実施の形態3に係る自動運転システムの構成を示すブロック図である。実施の形態3に係る自動運転システムは、自動運転制御装置11、交通情報送信装置12、車載センサ13、各種アクチュエータ18、運転操作部19、表示装置20、音声出力装置21、操作入力装置22、および走行計画修正装置103を備えて構成される。
<C. Embodiment 3>
<C-1. Configuration>
FIG. 13 is a block diagram showing a configuration of an automatic driving system according to Embodiment 3 of the present invention. The automatic driving system according to Embodiment 3 includes an automatic driving control device 11, a traffic information transmitting device 12, an in-vehicle sensor 13, various actuators 18, a driving operation unit 19, a display device 20, a voice output device 21, an operation input device 22, And a travel plan correcting device 103.
 走行計画修正装置103は、実施の形態2に係る走行計画修正装置102の構成に加えて、負荷軽減走行計画による運転負荷の運転者への提示を制御する提示制御部4を備えている。提示制御部4は、音声出力装置21への音声出力、および表示装置20への表示出力を制御する。 The travel plan correction device 103 includes a presentation control unit 4 that controls the presentation of the driving load to the driver by the load reduction travel plan in addition to the configuration of the travel plan correction device 102 according to the second embodiment. The presentation control unit 4 controls audio output to the audio output device 21 and display output to the display device 20.
 また、操作入力装置22は、運転者が走行計画修正装置103に情報を入力するためのヒューマンインタフェースであり、例えば表示装置20がタッチパネル付きのディスプレイとして構成される場合には、タッチパネルセンサとして表示装置20と一体的に構成される。 The operation input device 22 is a human interface for the driver to input information to the travel plan correction device 103. For example, when the display device 20 is configured as a display with a touch panel, the display device is a touch panel sensor. 20 and a single unit.
 以下では、表示装置20による表示例を示すが、音声出力装置21から音声出力することによって負荷軽減走行計画による運転負荷を運転者に提示しても良いし、表示と音声の組み合わせによって提示することも可能である。また、図示しない振動装置によってハンドル又はシートを振動させることを、表示又は音声と組み合わせることも可能である。 Below, although the example of a display by the display apparatus 20 is shown, the driving | running load by a load reduction driving | running plan may be shown to a driver | operator by outputting sound from the audio | voice output apparatus 21, or presenting with a combination of a display and an audio | voice. Is also possible. Moreover, it is also possible to combine a display or a sound with vibrating a handle | steering-wheel or a sheet | seat with the vibration apparatus which is not illustrated.
 <C-2.動作>
 図14,15は、実施の形態3に係る走行計画修正装置103の動作を示すフローチャートである。以下、図14,15に沿って走行計画修正装置103の動作を説明する。まず、走行計画取得部1が、自動運転制御装置11から第1走行計画を取得する(ステップS31)。次に、走行計画修正装置103は、現在の自動運転レベルが3以上か否かを判断する(ステップS32)。走行計画修正装置103は、自動運転レベルが3以上になるまで待機し、3以上になれば、提示制御部4が各種装置により自動運転の開始を運転者に報知する(ステップS33)。この報知は、表示装置20による表示、又は音声出力装置21による音声出力、又はこれらの組み合わせによって行われる。
<C-2. Operation>
14 and 15 are flowcharts showing the operation of the travel plan correcting apparatus 103 according to the third embodiment. Hereinafter, the operation of the travel plan correcting apparatus 103 will be described with reference to FIGS. First, the travel plan acquisition part 1 acquires a 1st travel plan from the automatic driving | operation control apparatus 11 (step S31). Next, the travel plan correcting device 103 determines whether or not the current automatic driving level is 3 or more (step S32). The travel plan correcting device 103 waits until the automatic driving level becomes 3 or higher, and when it becomes 3 or higher, the presentation control unit 4 notifies the driver of the start of automatic driving by various devices (step S33). This notification is performed by display on the display device 20, audio output by the audio output device 21, or a combination thereof.
 次に、走行計画修正装置103は、自車両が自動運転レベル変更準備区間に達したか否かを判断する(ステップS34)。例えば、自車両が自動運転レベル変更準備区間に達した場合、自動運転制御装置11から走行計画修正装置103に報知が行われることによって、走行計画修正装置103はその情報を取得する。 Next, the travel plan correction device 103 determines whether or not the host vehicle has reached the automatic driving level change preparation section (step S34). For example, when the host vehicle reaches the automatic driving level change preparation section, the driving plan correction device 103 acquires the information by notifying the driving plan correction device 103 from the automatic driving control device 11.
 自車両が自動運転レベル変更準備区間に達すると、提示制御部4が各種装置により自動運転レベルの変更予告を行う(ステップS35)。 When the own vehicle reaches the automatic driving level change preparation section, the presentation control unit 4 makes a notice of changing the automatic driving level using various devices (step S35).
 図16は、提示制御部4が運転者への報知に用いる表示装置20の一例である自車両のメータクラスタ51を示している。メータクラスタ51は、ディスプレイ52、燃料計53、速度計54を備えており、提示制御部4はディスプレイ52を用いて自動運転レベルの変更予告を行うことができる。この他、表示装置20には、メータクラスタ51のディスプレイ52に限らず、HUD(Head-Up Display)又は他の表示器を用いても良い。 FIG. 16 shows a meter cluster 51 of the host vehicle, which is an example of the display device 20 used by the presentation control unit 4 for notification to the driver. The meter cluster 51 includes a display 52, a fuel gauge 53, and a speedometer 54, and the presentation control unit 4 can use the display 52 to make an advance notice of the automatic driving level change. In addition, the display device 20 is not limited to the display 52 of the meter cluster 51, but may be a HUD (Head-Up Display) or other display device.
 図17は、ディスプレイ52における自動運転レベルの変更予告の表示例を示している。図17に示すように、「自動運転解除:20分前」というメッセージ61により、自動運転レベルの変更予告が行われる。なお、この例では、自動運転レベル変更準備区間を、自車両が20分だけ走行する区間として時間基準で定めているが、自動運転レベル変更準備区間を距離基準で定めた場合、自動運転レベルの変更予告は「自動運転解除:10km前」のようなメッセージで行われる。 FIG. 17 shows a display example of the automatic driving level change notice on the display 52. As shown in FIG. 17, the automatic driving level change notice is given by a message 61 “automatic driving cancellation: 20 minutes ago”. In this example, the automatic driving level change preparation section is set on a time basis as a section where the host vehicle travels for 20 minutes. However, when the automatic driving level change preparation section is set on a distance basis, the automatic driving level change preparation section The change notice is made with a message such as “Cancel automatic driving: 10 km before”.
 図14に戻って、ステップS36からステップS40、さらに図15のステップS41およびステップS42は、図6のステップS24からステップS30と同様であるため、説明を省略する。 Returning to FIG. 14, steps S36 to S40 and steps S41 and S42 of FIG. 15 are the same as steps S24 to S30 of FIG.
 ステップS42において、走行計画修正部3が自動運転制御装置11に負荷軽減走行計画を出力した後(ステップS42)、提示制御部4が、各種装置により負荷軽減走行計画の実施を運転者に報知する(ステップS43)。その後、提示制御部4は、負荷軽減走行計画の運転負荷を表示装置20に表示する(ステップS44)。 In step S42, after the travel plan correction unit 3 outputs the load reduction travel plan to the automatic operation control device 11 (step S42), the presentation control unit 4 notifies the driver of the execution of the load reduction travel plan by various devices. (Step S43). Thereafter, the presentation control unit 4 displays the operation load of the load reduction travel plan on the display device 20 (step S44).
 なお、負荷軽減走行計画の実施の報知(ステップS43)は、負荷軽減走行計画の運転負荷の表示(ステップS44)と共に行われても良い。図18は、そのような場合のディスプレイ52の表示例である。図18に示すように、ディスプレイ52には「負荷軽減走行開始」というメッセージ61が表示され、負荷軽減走行計画の実施の報知が行われる。さらに、ディスプレイ52には、負荷軽減走行計画による運転負荷の推移がインジケータ63により示されている。インジケータ63は、車両が現在地から自動運転レベル低下切替地点に至るまでの20分間について、2.5分刻みで負荷軽減走行計画による運転負荷を表している。なお、インジケータ63は黒色が高負荷を、白色が低負荷を、斜線が中負荷を表している。また、図18では、20分前のインジケータ63の上に自車両のアイコン62が表示されており、これにより自車両が自動運転レベル低下切替地点から20分前の位置にいることが示されている。 Note that the notification of the execution of the load reduction travel plan (step S43) may be performed together with the display of the operation load of the load reduction travel plan (step S44). FIG. 18 is a display example of the display 52 in such a case. As shown in FIG. 18, a message 61 “load reduction travel start” is displayed on the display 52 to notify the implementation of the load reduction travel plan. Further, the display 52 shows an indicator 63 indicating the transition of the operation load according to the load reduction travel plan. The indicator 63 represents the driving load according to the load reduction traveling plan in increments of 2.5 minutes for 20 minutes from when the vehicle reaches the automatic driving level lowering switching point. In the indicator 63, black indicates a high load, white indicates a low load, and hatched lines indicate a medium load. Further, in FIG. 18, an icon 62 of the own vehicle is displayed on the indicator 63 20 minutes ago, which indicates that the own vehicle is 20 minutes before the automatic driving level lowering switching point. Yes.
 次に、図15に戻り提示制御部4は自動運転レベルの変更が完了したか否かを判断する(ステップS46)。自動運転レベルの変更が未完了であれば、提示制御部4は、負荷軽減走行計画による運転負荷の表示を更新する(ステップS47)。更新後のディスプレイ52の表示を図19に例示する。図19では、図18と比べると、自車両のアイコン62がインジケータ63の自動運転解除から10分前の地点を示す位置に移動しており、メッセージ61は「自動運転解除:10分前」に変化している。このように、自動運転レベルの変更が完了するまで、自車両のアイコン62の表示位置とメッセージ61が更新される。このような表示により、運転者は、車両の現在地から自動運転レベルの切替が予定されている地点までの、運転負荷の推移を知ることが出来るため、運転負荷が低い時点で予め自動運転制御装置11に自動運転レベルの低下切替を指示することによって、スムーズな自動運転レベルの低下切替を行うことができる。 Next, returning to FIG. 15, the presentation control unit 4 determines whether or not the change of the automatic driving level is completed (step S46). If the change of the automatic driving level is incomplete, the presentation control unit 4 updates the display of the driving load based on the load reduction travel plan (step S47). The display on the display 52 after the update is illustrated in FIG. In FIG. 19, compared to FIG. 18, the icon 62 of the host vehicle has moved to a position indicating a point 10 minutes before the automatic driving cancellation of the indicator 63, and the message 61 is “Automatic driving cancellation: 10 minutes before”. It has changed. In this way, the display position of the icon 62 of the host vehicle and the message 61 are updated until the change of the automatic driving level is completed. Such a display allows the driver to know the transition of the driving load from the current location of the vehicle to the point where the automatic driving level is scheduled to be switched, so that the automatic driving control device in advance when the driving load is low By instructing 11 to switch the automatic driving level to a low level, smooth switching of the automatic driving level can be performed smoothly.
 自動運転レベルの変更が完了すると、提示制御部4は表示装置20に自動運転レベルの変更完了表示を行う(ステップS48)。ここでは、例えば図20に示すように、「自動運転レベル変更完了」というメッセージ61がディスプレイ52に表示される。 When the change of the automatic driving level is completed, the presentation control unit 4 displays the automatic driving level change completion on the display device 20 (step S48). Here, for example, as shown in FIG. 20, a message 61 “automatic driving level change completion” is displayed on the display 52.
 なお、走行計画修正部3がステップS41において第2走行計画を負荷軽減走行計画ではないと判断した場合、提示制御部4が第1走行計画の運転負荷を表示装置20に表示する(ステップS45)。このときの、ディスプレイ52の表示例を図21に示す。 When the travel plan correction unit 3 determines in step S41 that the second travel plan is not a load reduction travel plan, the presentation control unit 4 displays the operation load of the first travel plan on the display device 20 (step S45). . A display example of the display 52 at this time is shown in FIG.
 図21に示すように、ディスプレイ52には、「自動運転解除:20分前」というメッセージ61に加えて、第1走行計画による運転負荷の推移がインジケータ64により示されている。インジケータ64は、車両が現在地から自動運転レベル低下切替地点に至るまでの20分間について、2.5分刻みで第1走行計画による運転負荷の推移を表している。なお、インジケータ64は黒色が高負荷を、白色が低負荷を、斜線が中負荷を表している。また、図21では、インジケータ64の自動運転解除から20分前の地点を示す位置に自車両のアイコン62が表示されており、これにより自車両が自動運転レベル低下切替地点から20分前の位置にいることが示されている。 As shown in FIG. 21, in addition to the message 61 “Automatic operation cancellation: 20 minutes ago”, the display 52 shows the change in the driving load according to the first travel plan by an indicator 64. The indicator 64 represents the transition of the driving load according to the first travel plan in increments of 2.5 minutes for 20 minutes from when the vehicle reaches the automatic driving level lowering switching point. In the indicator 64, black indicates a high load, white indicates a low load, and hatched lines indicate a medium load. Further, in FIG. 21, the icon 62 of the host vehicle is displayed at a position indicating a point 20 minutes before the cancellation of the automatic driving of the indicator 64, whereby the host vehicle is positioned 20 minutes before the automatic driving level lowering switching point. It is shown to be in
 次に、提示制御部4が、自動運転レベルの変更が完了したか否かを判断し、自動運転レベルの変更が完了するまで、第1走行計画の運転負荷の表示を更新する(ステップS47)。図22は、第1走行計画の運転負荷の表示更新例を示す図である。図22に示すように、ディスプレイ52には、「自動運転解除:10分前」というメッセージ61と、第1走行計画の運転負荷を示すインジケータ64が表示される。なお、自車両のアイコン62はインジケータ64の自動運転解除から10分前の地点を示す位置に表示され、これにより自車両が自動運転レベル低下切替地点から10分前の位置にいることが示されている。 Next, the presentation control unit 4 determines whether or not the change of the automatic driving level is completed, and updates the display of the driving load of the first travel plan until the change of the automatic driving level is completed (step S47). . FIG. 22 is a diagram illustrating a display update example of the operation load of the first travel plan. As shown in FIG. 22, the display 52 displays a message 61 “Automatic operation cancellation: 10 minutes ago” and an indicator 64 indicating the driving load of the first travel plan. In addition, the icon 62 of the own vehicle is displayed at a position indicating a point 10 minutes before the automatic driving is canceled by the indicator 64, thereby indicating that the own vehicle is 10 minutes before the automatic driving level lowering switching point. ing.
 自動運転レベルの変更が完了すると、走行計画修正装置103は処理を終了する。 When the change of the automatic driving level is completed, the travel plan correcting device 103 ends the process.
 <C-3.変形例>
 なお、図18,19,21,22では、インジケータの色または斜線ハッチングによって運転負荷の高低を示した。しかし、図23に示すように、画面の上下方向におけるインジケータの表示位置を変えることによって、運転負荷の高低をより視覚的に分かりやすく表現しても良い。
<C-3. Modification>
18, 19, 21, and 22, the level of the driving load is indicated by the color of the indicator or hatched hatching. However, as shown in FIG. 23, the level of the driving load may be expressed more visually and easily by changing the display position of the indicator in the vertical direction of the screen.
 また、現時点の運転負荷の高低を、ディスプレイの背景色、メッセージの文字色、自車両のアイコンの色等を変化させることにより、表現しても良い。例えば、運転負荷が高い場合には背景色を赤、又はメッセージの文字色を赤にし、運転負荷が低い場合には背景色を青、又はメッセージの文字色を青にしても良い。 Also, the current driving load level may be expressed by changing the background color of the display, the text color of the message, the color of the icon of the host vehicle, and the like. For example, when the driving load is high, the background color may be red or the message text color may be red, and when the driving load is low, the background color may be blue or the message text color may be blue.
 また、図18,19,21,22では、2.5分刻みのデジタル表現のインジケータにより運転負荷を示したが、図24に示すように、アナログ表現の滑らかなグラフにより運転負荷の推移を示しても良い。図24では、横軸を自動運転レベル低下切替地点までの時間、縦軸を運転負荷とするグラフにより、走行修正区間における運転負荷の推移を示している。これにより、運転者はより精確に運転負荷の推移を知ることができる。また、この場合、図25に示すように、自車両のアイコン62を運転負荷のグラフに重畳表示し、自動運転レベルの変更完了まで、自車両のアイコン62を運転負荷のグラフ上を移動させることによって、自車両が走行修正区間のどこを走行しているかが分かるようにすることができる。 18, 19, 21, and 22, the driving load is indicated by the digital representation indicator in increments of 2.5 minutes, but as shown in FIG. 24, the transition of the driving load is indicated by a smooth graph of analog expression. May be. In FIG. 24, the transition of the driving load in the travel correction section is shown by a graph in which the horizontal axis represents the time to the automatic driving level lowering switching point and the vertical axis represents the driving load. Thereby, the driver can know the transition of the driving load more accurately. Further, in this case, as shown in FIG. 25, the icon 62 of the own vehicle is superimposed on the driving load graph, and the icon 62 of the own vehicle is moved on the driving load graph until the change of the automatic driving level is completed. Thus, it can be understood where the vehicle is traveling in the travel correction section.
 あるいは、図26に示すように、自車両のアイコンは表示せず、運転負荷のグラフが時間の経過と共に右から左に移動するように表示を更新しても良い。図26では、グラフの横軸の原点が10分を示していることから、自車両が自動運転レベルの変更まであと10分の地点を走行していることが分かる。 Alternatively, as shown in FIG. 26, the icon of the host vehicle may not be displayed, and the display may be updated so that the driving load graph moves from right to left over time. In FIG. 26, since the origin of the horizontal axis of the graph indicates 10 minutes, it can be seen that the host vehicle is traveling a further 10 minutes until the automatic driving level is changed.
 上記の説明で走行計画修正装置103は、作成した負荷軽減走行計画を無条件に自動運転制御装置11に出力した。しかし、走行計画修正装置103は、運転者に第1走行計画と負荷軽減走行計画のいずれを使用するかを選択させ、運転者が負荷軽減走行計画を選択した場合に限り、負荷軽減走行計画を自動運転制御装置11に出力しても良い。このとき、提示制御部4は、図27に示すような画面をディスプレイに表示することにより、ユーザにいずれかの走行計画を選択させることができる。図27には、第1走行計画による運転負荷の推移と、負荷軽減走行計画による運転負荷の推移を並列表示し、夫々の運転負荷に対し選択アイコン65,66を表示している。運転者は、いずれかの選択アイコンを押下することにより、負荷軽減走行計画を採用するか、第1走行計画を続行するかを選択することが出来る。なお、選択アイコンを押下する他、遠隔操作、音声認識、ジェスチャー入力といった方法でいずれの走行計画を採用するかを入力することも可能である。 In the above description, the travel plan correction device 103 outputs the created load reduction travel plan to the automatic operation control device 11 unconditionally. However, the travel plan correction device 103 causes the driver to select which of the first travel plan and the load reduction travel plan to use, and only when the driver selects the load reduction travel plan, the travel plan correction plan is generated. You may output to the automatic operation control apparatus 11. At this time, the presentation control unit 4 can cause the user to select one of the travel plans by displaying a screen as shown in FIG. 27 on the display. In FIG. 27, the transition of the driving load according to the first travel plan and the transition of the driving load according to the load reduction travel plan are displayed in parallel, and selection icons 65 and 66 are displayed for the respective driving loads. The driver can select whether to adopt the load-reducing travel plan or to continue the first travel plan by pressing one of the selection icons. In addition to pressing the selection icon, it is also possible to input which travel plan to adopt by methods such as remote control, voice recognition, and gesture input.
 また、以上の説明では、負荷軽減走行計画は一つとしたが、運転負荷の計算手法を変えて複数の負荷軽減走行計画を作成しても良い。例えば、図9の運転負荷得点表のみを用いて運転負荷を計算した場合の負荷軽減走行計画と、図9に加えて図11の車両種別による運転負荷得点表をも用いて運転負荷を計算した場合の負荷軽減走行計画と、2つの負荷軽減走行計画を作成しても良い。この場合、両方の負荷軽減走行計画による運転負荷を表示装置20に表示し、いずれの負荷軽減走行計画を採用するかを、運転者に選択させればよい。 In the above description, the load reduction travel plan is one, but a plurality of load reduction travel plans may be created by changing the calculation method of the operation load. For example, the driving load is calculated using the load reduction travel plan when the driving load is calculated using only the driving load score table of FIG. 9 and the driving load score table according to the vehicle type of FIG. 11 in addition to FIG. In some cases, a load reduction travel plan and two load reduction travel plans may be created. In this case, it is only necessary to display the driving loads based on both load-reducing travel plans on the display device 20 and allow the driver to select which load-reducing travel plan to adopt.
 また、図18,19,21ないし27では、運転負荷の推移を時間軸で表現したが、距離軸で表現しても良い。また、運転負荷はデジタル的なインジケータ又はアナログ的なグラフでの表現に限らず、他の方法によって表示しても良い。例えば、道路地図上の走行計画における走行経路を、運転負荷に応じて色付けすることにより、運転負荷の走行修正区間における推移を表しても良い。 Further, in FIGS. 18, 19, 21 to 27, the transition of the driving load is expressed on the time axis, but may be expressed on the distance axis. Further, the driving load is not limited to being expressed by a digital indicator or an analog graph, and may be displayed by other methods. For example, the travel route in the travel correction section may be represented by coloring the travel route in the travel plan on the road map according to the drive load.
 <D.ハードウェア構成>
 上述した走行計画修正装置101,102,103における、走行計画取得部1、周辺車両情報取得部2、走行計画修正部3、提示制御部4は、図28に示す処理回路81により実現される。すなわち、処理回路81は、走行計画取得部1、周辺車両情報取得部2、走行計画修正部3、および提示制御部4を備える。処理回路81には、専用のハードウェアが適用されても良いし、メモリに格納されるプログラムを実行するプロセッサが適用されても良い。プロセッサは、例えば中央処理装置、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、Digital Signal Processor等である。
<D. Hardware configuration>
In the travel plan correction devices 101, 102, 103 described above, the travel plan acquisition unit 1, the surrounding vehicle information acquisition unit 2, the travel plan correction unit 3, and the presentation control unit 4 are realized by a processing circuit 81 shown in FIG. That is, the processing circuit 81 includes a travel plan acquisition unit 1, a surrounding vehicle information acquisition unit 2, a travel plan correction unit 3, and a presentation control unit 4. Dedicated hardware may be applied to the processing circuit 81, or a processor that executes a program stored in the memory may be applied. The processor is, for example, a central processing unit, a processing unit, an arithmetic unit, a microprocessor, a microcomputer, a digital signal processor, or the like.
 処理回路81が専用のハードウェアである場合、処理回路81は、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)、またはこれらを組み合わせたものが該当する。走行計画修正部3等の各部の機能それぞれは、複数の処理回路81で実現されてもよいし、各部の機能をまとめて一つの処理回路で実現されてもよい。 When the processing circuit 81 is dedicated hardware, the processing circuit 81 includes, for example, a single circuit, a composite circuit, a programmed processor, a processor programmed in parallel, an ASIC (Application Specific Integrated Circuit), an FPGA (Field-Programmable). Gate Array) or a combination of these. Each function of each part such as the travel plan correcting unit 3 may be realized by a plurality of processing circuits 81, or the functions of each part may be realized by a single processing circuit.
 処理回路81がプロセッサである場合、走行計画修正部3等の機能は、ソフトウェア等(ソフトウェア、ファームウェアまたはソフトウェアとファームウェア)との組み合わせにより実現される。ソフトウェア等はプログラムとして記述され、メモリに格納される。図29に示すように、処理回路81に適用されるプロセッサ82は、メモリ83に記憶されたプログラムを読み出して実行することにより、各部の機能を実現する。すなわち、走行計画修正装置101,102,103は、処理回路81により実行されるときに、複数の自動運転レベルを切替えて走行可能な自車両の自動運転制御装置11から、自車両の走行経路、走行車線、および走行速度を含む第1走行計画を取得するステップと、自車両と自車両の周辺を走行する周辺車両との位置関係を少なくとも含む周辺車両情報を取得するステップと、自車両の現在地から第1走行計画の走行経路上の自動運転レベル低下切替地点までの間の少なくとも一部の区間を走行計画修正区間と設定し、走行計画修正区間について第1走行計画とは異なる第2走行計画を作成するステップと、第1走行計画及び第2走行計画の夫々について、周辺車両情報に基づき走行計画修正区間の運転負荷を設定するステップと、走行計画修正区間の少なくともいずれかの地点において、第2走行計画による運転負荷が第1走行計画による運転負荷よりも小さくなる場合に、第2走行計画を負荷軽減走行計画として自動運転制御装置に出力するステップと、が結果的に実行されることになるプログラムを格納するためのメモリ83を備える。換言すれば、このプログラムは、走行計画修正部3等の手順や方法をコンピュータに実行させるものであるともいえる。ここで、メモリ83には、例えば、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ、EPROM(Electrically Programmable Read Only Memory)、EEPROM(Electrically Erasable Programmable Read Only Memory)などの、不揮発性または揮発性の半導体メモリ、HDD(Hard Disk Drive)、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスク、DVD(Digital Versatile Disk)及びそのドライブ装置の少なくともいずれか1つが適用可能であり、さらには、今後使用されるいかなる記憶素子または記憶装置が適用可能である。 When the processing circuit 81 is a processor, the functions of the travel plan correction unit 3 and the like are realized by a combination of software and the like (software, firmware or software and firmware). Software or the like is described as a program and stored in a memory. As shown in FIG. 29, the processor 82 applied to the processing circuit 81 implements the functions of the respective units by reading and executing the program stored in the memory 83. That is, the travel plan correction devices 101, 102, and 103, when executed by the processing circuit 81, from the automatic driving control device 11 of the own vehicle that can travel by switching a plurality of automatic driving levels, A step of acquiring a first travel plan including a travel lane and a travel speed; a step of acquiring peripheral vehicle information including at least a positional relationship between the host vehicle and a peripheral vehicle traveling around the host vehicle; and a current location of the host vehicle Is set as a travel plan correction section, and a second travel plan different from the first travel plan is set for the travel plan correction section. For each of the first travel plan and the second travel plan, setting the driving load of the travel plan correction section based on the surrounding vehicle information, When at least one of the points in the plan correction section, the driving load by the second driving plan is smaller than the driving load by the first driving plan, the second driving plan is output as a load-reducing driving plan to the automatic driving control device. And a memory 83 for storing a program to be executed as a result. In other words, it can be said that this program causes the computer to execute procedures and methods such as the travel plan correction unit 3. Here, the memory 83 is a nonvolatile memory such as a RAM (Random Access Memory), a ROM (Read Only Memory), a flash memory, an EPROM (Electrically Programmable Read Only Memory), an EEPROM (Electrically Erasable Programmable Read Only Memory), or the like. Alternatively, at least one of a volatile semiconductor memory, a HDD (Hard Disk Drive), a magnetic disk, a flexible disk, an optical disk, a compact disk, a mini disk, a DVD (Digital Versatile Disk), and its drive device can be applied. Any storage element or storage device used in the future can be applied.
 以上、走行計画修正部3等の各機能が、ハードウェア及びソフトウェア等のいずれか一方で実現される構成について説明した。しかしこれに限ったものではなく、走行計画修正部3等の一部を専用のハードウェアで実現し、別の一部をソフトウェア等で実現する構成であってもよい。例えば、走行計画修正部3については専用のハードウェアとしての処理回路でその機能を実現し、それ以外についてはプロセッサ82としての処理回路81がメモリ83に格納されたプログラムを読み出して実行することによってその機能を実現することが可能である。 As described above, the configuration in which each function such as the travel plan correction unit 3 is realized by either hardware or software has been described. However, the present invention is not limited to this, and a configuration in which a part of the travel plan correction unit 3 or the like is realized by dedicated hardware and another part is realized by software or the like. For example, the travel plan correction unit 3 realizes its function by a processing circuit as dedicated hardware, and otherwise the processing circuit 81 as the processor 82 reads and executes the program stored in the memory 83. The function can be realized.
 以上のように、処理回路は、ハードウェア、ソフトウェア等、またはこれらの組み合わせによって、上述の各機能を実現することができる。 As described above, the processing circuit can realize the functions described above by hardware, software, or the like, or a combination thereof.
 また、上記では走行計画修正装置101,102,103を車載装置として説明したが、車載装置、Portable Navigation Device、通信端末(例えば携帯電話、スマートフォン、およびタブレットなどの携帯端末)、およびこれらにインストールされるアプリケーションの機能、並びにサーバなどを適宜に組み合わせてシステムとして構築されるシステムにも適用することができる。この場合、以上で説明した走行計画修正装置101,102,103の各機能または各構成要素は、システムを構築する各機器に分散して配置されてもよいし、いずれかの機器に集中して配置されてもよい。 In the above description, the travel plan correction devices 101, 102, and 103 have been described as in-vehicle devices. The present invention can also be applied to a system constructed as a system by appropriately combining the functions of an application and a server. In this case, each function or each component of the travel plan correction devices 101, 102, 103 described above may be distributed and arranged in each device that constructs the system, or may be concentrated on any device. It may be arranged.
 なお、本発明は、その発明の範囲内において、各実施の形態を自由に組み合わせたり、各実施の形態を適宜、変形、省略したりすることが可能である。 In the present invention, it is possible to freely combine the respective embodiments within the scope of the invention, and to appropriately modify and omit the respective embodiments.
 この発明は詳細に説明されたが、上記した説明は、すべての態様において、例示であって、この発明がそれに限定されるものではない。例示されていない無数の変形例が、この発明の範囲から外れることなく想定され得るものと解される。 Although the present invention has been described in detail, the above description is illustrative in all aspects, and the present invention is not limited thereto. It is understood that countless variations that are not illustrated can be envisaged without departing from the scope of the present invention.
1 走行計画取得部、2 周辺車両情報取得部、3 走行計画修正部、4 提示制御部、11 自動運転制御装置、12 交通情報送信装置、13 車載センサ、14 カメラ、15 ミリ波レーダ、16 超音波センサ、17 レーザレーダ、18 各種アクチュエータ、19 運転操作部、20 表示装置、21 音声出力装置、22 操作入力装置、81 処理回路、82 プロセッサ、83 メモリ、101,102,103 走行計画修正装置。 1 travel plan acquisition unit, 2 neighboring vehicle information acquisition unit, 3 travel plan correction unit, 4 presentation control unit, 11 automatic driving control device, 12 traffic information transmission device, 13 on-board sensor, 14 camera, 15 millimeter wave radar, more than 16 Sonic sensor, 17 laser radar, 18 various actuators, 19 driving operation unit, 20 display device, 21 audio output device, 22 operation input device, 81 processing circuit, 82 processor, 83 memory, 101, 102, 103 travel plan correction device.

Claims (17)

  1.  複数の自動運転レベルを切替えて走行可能な自車両の自動運転制御装置から、前記自車両の走行経路、走行車線、および走行速度を含む第1走行計画を取得する走行計画取得部と、
     前記自車両と前記自車両の周辺を走行する周辺車両との位置関係を少なくとも含む周辺車両情報を取得する周辺車両情報取得部と、
     前記自車両の現在地から前記第1走行計画の走行経路上の自動運転レベル低下切替地点までの間の少なくとも一部の区間を走行計画修正区間と設定し、前記走行計画修正区間について前記第1走行計画とは異なる第2走行計画を作成する走行計画修正部と、を備え、
     前記走行計画修正部は、前記第1走行計画及び前記第2走行計画の夫々について、前記周辺車両情報に基づき前記走行計画修正区間の運転負荷を設定し、前記走行計画修正区間の少なくともいずれかの地点において、前記第2走行計画による前記運転負荷が前記第1走行計画による前記運転負荷よりも小さくなる場合に、前記第2走行計画を負荷軽減走行計画として前記自動運転制御装置に出力する、
    走行計画修正装置。
    A travel plan acquisition unit for acquiring a first travel plan including a travel route, a travel lane, and a travel speed of the own vehicle from an automatic operation control device of the own vehicle capable of traveling by switching a plurality of automatic driving levels;
    A peripheral vehicle information acquisition unit that acquires peripheral vehicle information including at least a positional relationship between the host vehicle and a peripheral vehicle traveling around the host vehicle;
    At least a part of the section from the current location of the host vehicle to the automatic driving level lowering switching point on the travel route of the first travel plan is set as a travel plan correction section, and the first travel for the travel plan correction section A travel plan correction unit that creates a second travel plan different from the plan,
    The travel plan correction unit sets an operation load of the travel plan correction section based on the surrounding vehicle information for each of the first travel plan and the second travel plan, and at least one of the travel plan correction sections When the driving load according to the second driving plan is smaller than the driving load according to the first driving plan at a point, the second driving plan is output to the automatic operation control device as a load-reducing driving plan.
    Travel plan correction device.
  2.  前記走行計画修正部は、前記第2走行計画による前記運転負荷が予め定められた閾値よりも小さくなる区間が、前記第1走行計画による前記運転負荷が前記閾値よりも小さくなる区間よりも長くなる場合に、前記第2走行計画を前記自動運転制御装置に出力する、
    請求項1に記載の走行計画修正装置。
    In the travel plan correction unit, a section where the driving load due to the second travel plan is smaller than a predetermined threshold is longer than a section where the driving load due to the first travel plan is smaller than the threshold. The second driving plan is output to the automatic operation control device,
    The travel plan correction apparatus according to claim 1.
  3.  前記自動運転制御装置は、前記第1走行計画の走行経路における前記自動運転レベル低下切替地点より前方の地点から前記自動運転レベル低下切替地点までの区間を、予め定められた条件を満たす場合に運転者の操作による自動運転レベルの切替を受け付ける自動運転レベル変更準備区間と設定し、
     前記走行計画修正部は、前記走行計画修正区間を前記自動運転レベル変更準備区間の一部または同一の区間に設定する、
    請求項1に記載の走行計画修正装置。
    The automatic operation control device operates when a predetermined condition in a section from a point ahead of the automatic driving level lowering switching point to the automatic driving level lowering switching point on the travel route of the first travel plan is satisfied. Set as an automatic driving level change preparation section that accepts switching of automatic driving level by the user's operation,
    The travel plan correction unit sets the travel plan correction section as a part of the automatic driving level change preparation section or the same section,
    The travel plan correction apparatus according to claim 1.
  4.  前記走行計画修正部は、前記自動運転制御装置から指示を受けたタイミングで、前記走行計画修正区間を設定する、
    請求項1に記載の走行計画修正装置。
    The travel plan correction unit sets the travel plan correction section at a timing when receiving an instruction from the automatic operation control device,
    The travel plan correction apparatus according to claim 1.
  5.  前記走行計画修正部は、ユーザから指示を受けたタイミングで、前記走行計画修正区間を設定する、
    請求項1に記載の走行計画修正装置。
    The travel plan correction unit sets the travel plan correction section at a timing when an instruction is received from a user.
    The travel plan correction apparatus according to claim 1.
  6.  前記負荷軽減走行計画による前記運転負荷を、表示装置又は音声出力装置により運転者に提示する提示制御部をさらに備える、
    請求項1に記載の走行計画修正装置。
    A display control unit for presenting the driving load according to the load reduction travel plan to a driver by a display device or a voice output device;
    The travel plan correction apparatus according to claim 1.
  7.  前記提示制御部は、前記負荷軽減走行計画による前記運転負荷の推移を運転者に提示する、
    請求項6に記載の走行計画修正装置。
    The presentation control unit presents to the driver the transition of the driving load according to the load reduction travel plan.
    The travel plan correction apparatus according to claim 6.
  8.  前記提示制御部は、前記負荷軽減走行計画による前記運転負荷と前記第1走行計画による前記運転負荷とを、運転者に提示する、
    請求項6に記載の走行計画修正装置。
    The presentation control unit presents the driving load according to the load reduction driving plan and the driving load according to the first driving plan to a driver.
    The travel plan correction apparatus according to claim 6.
  9.  前記周辺車両情報取得部は、車車間通信、路車間通信、又は位置情報サーバとの通信によって取得した前記周辺車両の位置情報に基づき、前記周辺車両情報を取得する、
    請求項1に記載の走行計画修正装置。
    The surrounding vehicle information acquisition unit acquires the surrounding vehicle information based on the position information of the surrounding vehicle acquired by inter-vehicle communication, road-to-vehicle communication, or communication with a position information server.
    The travel plan correction apparatus according to claim 1.
  10.  前記周辺車両情報取得部は、前記自車両に搭載されたカメラ、ミリ波レーダ、超音波センサ、レーザレーダを少なくとも含むセンサの測定情報に基づき、前記周辺車両情報を取得する、
    請求項1に記載の走行計画修正装置。
    The peripheral vehicle information acquisition unit acquires the peripheral vehicle information based on measurement information of a sensor including at least a camera, a millimeter wave radar, an ultrasonic sensor, and a laser radar mounted on the host vehicle.
    The travel plan correction apparatus according to claim 1.
  11.  前記走行計画修正部は、前記自車両から一定距離内の前記周辺車両の台数が多い程、前記運転負荷を大きく設定する、
    請求項1に記載の走行計画修正装置。
    The travel plan correction unit sets the driving load larger as the number of the surrounding vehicles within a certain distance from the host vehicle increases.
    The travel plan correction apparatus according to claim 1.
  12.  前記走行計画修正部は、前記自車両の走行速度が高い程、前記運転負荷を大きく設定する、
    請求項1に記載の走行計画修正装置。
    The travel plan correction unit sets the driving load larger as the traveling speed of the host vehicle is higher.
    The travel plan correction apparatus according to claim 1.
  13.  前記周辺車両情報は、前記周辺車両の車両種別を含み、
     前記走行計画修正部は、前記周辺車両の車両種別に基づき、前記運転負荷を設定する、
    請求項1に記載の走行計画修正装置。
    The surrounding vehicle information includes a vehicle type of the surrounding vehicle,
    The travel plan correction unit sets the driving load based on a vehicle type of the surrounding vehicle.
    The travel plan correction apparatus according to claim 1.
  14.  前記周辺車両情報は、前記周辺車両の自動運転レベルを含み、
     前記走行計画修正部は、前記周辺車両の自動運転レベルが小さいほど、前記運転負荷を大きく設定する、
    請求項1に記載の走行計画修正装置。
    The surrounding vehicle information includes an automatic driving level of the surrounding vehicle,
    The travel plan correction unit sets the driving load larger as the automatic driving level of the surrounding vehicle is smaller.
    The travel plan correction apparatus according to claim 1.
  15.  前記周辺車両情報は、前記周辺車両の運転者の運転集中度を含み、
     前記走行計画修正部は、前記周辺車両の運転者の運転集中度に基づき、前記運転負荷を設定する、
    請求項1に記載の走行計画修正装置。
    The surrounding vehicle information includes a driving concentration level of a driver of the surrounding vehicle,
    The travel plan correction unit sets the driving load based on the driving concentration of the driver of the surrounding vehicle.
    The travel plan correction apparatus according to claim 1.
  16.  前記周辺車両情報は、前記周辺車両の運転者の属性を含み、
     前記走行計画修正部は、前記周辺車両の運転者の属性に基づき、前記運転負荷を設定する、
    請求項1に記載の走行計画修正装置。
    The surrounding vehicle information includes an attribute of a driver of the surrounding vehicle,
    The travel plan correction unit sets the driving load based on an attribute of a driver of the surrounding vehicle.
    The travel plan correction apparatus according to claim 1.
  17.  複数の自動運転レベルを切替えて走行可能な自車両の自動運転制御装置から、前記自車両の走行経路、走行車線、および走行速度を含む第1走行計画を取得し、
     前記自車両と前記自車両の周辺を走行する周辺車両との位置関係を少なくとも含む周辺車両情報を取得し、
     前記自車両の現在地から前記第1走行計画の走行経路上の自動運転レベル低下切替地点までの間の少なくとも一部の区間を走行計画修正区間と設定し、
     前記走行計画修正区間について前記第1走行計画とは異なる第2走行計画を作成し、
     前記第1走行計画及び前記第2走行計画の夫々について、前記周辺車両情報に基づき前記走行計画修正区間の運転負荷を設定し、
     前記走行計画修正区間の少なくともいずれかの地点において、前記第2走行計画による前記運転負荷が前記第1走行計画による前記運転負荷よりも小さくなる場合に、前記第2走行計画を負荷軽減走行計画として前記自動運転制御装置に出力する、
    走行計画修正方法。
    Acquiring a first travel plan including a travel route, a travel lane, and a travel speed of the own vehicle from an automatic operation control device of the own vehicle capable of traveling by switching a plurality of automatic driving levels;
    Obtaining peripheral vehicle information including at least a positional relationship between the host vehicle and a surrounding vehicle traveling around the host vehicle;
    Setting at least a part of a section between the current location of the host vehicle and the automatic driving level lowering switching point on the travel route of the first travel plan as a travel plan correction section;
    Creating a second travel plan different from the first travel plan for the travel plan correction section;
    For each of the first travel plan and the second travel plan, set the driving load of the travel plan correction section based on the surrounding vehicle information,
    When at least one point of the travel plan correction section, the operation load due to the second travel plan is smaller than the operation load due to the first travel plan, the second travel plan is used as a load reduction travel plan. Output to the automatic operation control device,
    Travel plan correction method.
PCT/JP2016/076244 2016-09-07 2016-09-07 Traveling plan revising device, and traveling plan revising method WO2018047249A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018537915A JP6576570B2 (en) 2016-09-07 2016-09-07 Travel plan correction device and travel plan correction method
CN201680088897.5A CN109641593B (en) 2016-09-07 2016-09-07 Travel plan correction device and travel plan correction method
PCT/JP2016/076244 WO2018047249A1 (en) 2016-09-07 2016-09-07 Traveling plan revising device, and traveling plan revising method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/076244 WO2018047249A1 (en) 2016-09-07 2016-09-07 Traveling plan revising device, and traveling plan revising method

Publications (1)

Publication Number Publication Date
WO2018047249A1 true WO2018047249A1 (en) 2018-03-15

Family

ID=61561755

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/076244 WO2018047249A1 (en) 2016-09-07 2016-09-07 Traveling plan revising device, and traveling plan revising method

Country Status (3)

Country Link
JP (1) JP6576570B2 (en)
CN (1) CN109641593B (en)
WO (1) WO2018047249A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019185123A (en) * 2018-04-02 2019-10-24 パイオニア株式会社 Device, system, method, and program for information processing
JP2019206258A (en) * 2018-05-29 2019-12-05 本田技研工業株式会社 Vehicle control system
JP2019209889A (en) * 2018-06-06 2019-12-12 本田技研工業株式会社 Vehicle control system
WO2020031370A1 (en) * 2018-08-10 2020-02-13 三菱電機株式会社 Operation schedule creation device, remote operation server, and operation schedule creation method
US11597387B2 (en) 2019-03-27 2023-03-07 Honda Motor Co., Ltd. Vehicle controller, vehicle, and vehicle control method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7474081B2 (en) * 2020-03-16 2024-04-24 本田技研工業株式会社 Control device, system, and program

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008129804A (en) * 2006-11-20 2008-06-05 Toyota Motor Corp Travel control plan generation system and computer program
JP2015175824A (en) * 2014-03-18 2015-10-05 アイシン・エィ・ダブリュ株式会社 Automatic driving support system, automatic driving support method, and computer program
JP2016097770A (en) * 2014-11-20 2016-05-30 アイシン・エィ・ダブリュ株式会社 Autonomous driving assist system, autonomous driving assist method, and program

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101690666B (en) * 2009-10-13 2011-05-04 北京工业大学 Driving working load calculation method of automobile driver
JP5860831B2 (en) * 2013-03-29 2016-02-16 アイシン・エィ・ダブリュ株式会社 Driving support system, driving support method, and computer program
US10220781B2 (en) * 2013-04-12 2019-03-05 Toyota Jidosha Kabushiki Kaisha Travel environment evaluation system, travel environment evaluation method, drive assist device, and travel environment display device
JP6237656B2 (en) * 2015-01-19 2017-11-29 トヨタ自動車株式会社 Vehicle system
JP6531983B2 (en) * 2015-07-31 2019-06-19 パナソニックIpマネジメント株式会社 Automatic driving apparatus, automatic driving support method and automatic driving support program

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008129804A (en) * 2006-11-20 2008-06-05 Toyota Motor Corp Travel control plan generation system and computer program
JP2015175824A (en) * 2014-03-18 2015-10-05 アイシン・エィ・ダブリュ株式会社 Automatic driving support system, automatic driving support method, and computer program
JP2016097770A (en) * 2014-11-20 2016-05-30 アイシン・エィ・ダブリュ株式会社 Autonomous driving assist system, autonomous driving assist method, and program

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019185123A (en) * 2018-04-02 2019-10-24 パイオニア株式会社 Device, system, method, and program for information processing
JP2022189907A (en) * 2018-04-02 2022-12-22 パイオニア株式会社 Information processing device, information processing system, information processing method and program
JP2019206258A (en) * 2018-05-29 2019-12-05 本田技研工業株式会社 Vehicle control system
JP2019209889A (en) * 2018-06-06 2019-12-12 本田技研工業株式会社 Vehicle control system
WO2020031370A1 (en) * 2018-08-10 2020-02-13 三菱電機株式会社 Operation schedule creation device, remote operation server, and operation schedule creation method
JPWO2020031370A1 (en) * 2018-08-10 2020-12-17 三菱電機株式会社 Operation plan creation device, remote operation server and operation plan creation method
US11597387B2 (en) 2019-03-27 2023-03-07 Honda Motor Co., Ltd. Vehicle controller, vehicle, and vehicle control method

Also Published As

Publication number Publication date
CN109641593B (en) 2021-07-27
JPWO2018047249A1 (en) 2019-02-21
CN109641593A (en) 2019-04-16
JP6576570B2 (en) 2019-09-18

Similar Documents

Publication Publication Date Title
JP6576570B2 (en) Travel plan correction device and travel plan correction method
US10293748B2 (en) Information presentation system
US10198009B2 (en) Vehicle automation and operator engagment level prediction
US11180143B2 (en) Vehicle control device
US11353866B2 (en) Driving-automation-level lowering feasibility determination apparatus
JP6648721B2 (en) Support device, support method, and program
CN107249953B (en) Autonomous maneuver notification for autonomous vehicles
US20200377126A1 (en) Information output control device and information output control method
US11009873B2 (en) Automatic driving control planning apparatus and automatic driving control planning method
CN110182212B (en) Vehicle control device
WO2022044768A1 (en) Vehicular display device
US10152835B2 (en) Vehicle control device
WO2018163472A1 (en) Mode switching control device, mode switching control system, mode switching control method and program
US10800431B2 (en) Vehicle
WO2022038962A1 (en) Vehicular display device
US8989997B2 (en) Map display system, method, and program
JP2020160940A (en) Vehicle controller, vehicle control method, vehicle, and program
JP7124784B2 (en) vehicle controller
JP7477470B2 (en) Vehicle display control device, vehicle display device, vehicle display control method and program
US20230016222A1 (en) A control system for a vehicle
WO2022030317A1 (en) Vehicular display device and vehicular display method
WO2024105863A1 (en) Driving control method and driving control device
WO2023171458A1 (en) Vehicular notification control device and vehicular notification control method
WO2022107466A1 (en) Vehicle control device and vehicular notification device
WO2022039021A1 (en) Vehicle congestion determination device and vehicle display control device

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018537915

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16915668

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16915668

Country of ref document: EP

Kind code of ref document: A1