WO2018047210A1 - Etching solution and etching concentrate for multilayer film, and etching method - Google Patents

Etching solution and etching concentrate for multilayer film, and etching method Download PDF

Info

Publication number
WO2018047210A1
WO2018047210A1 PCT/JP2016/004113 JP2016004113W WO2018047210A1 WO 2018047210 A1 WO2018047210 A1 WO 2018047210A1 JP 2016004113 W JP2016004113 W JP 2016004113W WO 2018047210 A1 WO2018047210 A1 WO 2018047210A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
etching solution
hydrogen peroxide
etching
multilayer film
Prior art date
Application number
PCT/JP2016/004113
Other languages
French (fr)
Japanese (ja)
Inventor
真 着能
真一郎 淵上
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2017519340A priority Critical patent/JP6167444B1/en
Priority to CN201680028059.9A priority patent/CN107690488B/en
Priority to PCT/JP2016/004113 priority patent/WO2018047210A1/en
Priority to TW106129502A priority patent/TWI631988B/en
Publication of WO2018047210A1 publication Critical patent/WO2018047210A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/10Etching compositions
    • C23F1/14Aqueous compositions
    • C23F1/16Acidic compositions
    • C23F1/18Acidic compositions for etching copper or alloys thereof
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/10Etching compositions
    • C23F1/14Aqueous compositions
    • C23F1/16Acidic compositions
    • C23F1/26Acidic compositions for etching refractory metals

Definitions

  • the present invention relates to a multilayer film etching solution, an etching concentrate, and an etching method, which are used for etching a multilayer film of copper and molybdenum used for wiring of flat panel displays such as liquid crystal and organic EL.
  • Aluminum has been used as a wiring material for TFTs (Thin Film Transistors) of flat panel displays (FPD) such as liquid crystal and organic EL (Electro-Luminescence).
  • FPD Thin Film Transistors
  • FPD flat panel displays
  • the wiring material used has been required to have a resistance lower than that of aluminum.
  • copper which has a lower resistance than aluminum, has been used as a wiring material.
  • a multilayer structure in which a molybdenum film is first formed on a semiconductor substrate and then a copper film is formed thereon is employed.
  • the FPD wiring is formed by wet etching a multilayer film formed by a sputtering method. This is because a large area can be formed at a stretch, and the process can be shortened.
  • the following points are important for wet etching of wiring. (1) Processing accuracy is high and uniform. (2) The wiring cross section after processing is a forward taper of a predetermined angle. (3) The etching rate does not change because copper ions are contained (the bath life is long). (4) There is little generation of precipitates.
  • Patent Document 1 Japanese Patent Laid-Open No. 2015-209568 is disclosed as an etchant that satisfies such requirements.
  • Hydrogen peroxide An acidic organic acid, An amine compound; A hydrogen peroxide decomposition inhibitor; Azoles, A multilayer film etching solution containing molybdenum and copper, characterized by containing a precipitation inhibitor containing an aluminum salt, is disclosed.
  • This etchant has an etching rate of copper (Cu) and molybdenum (Mo), a taper angle of the etched boundary region, an undercut of molybdenum (Mo), a residue of molybdenum (Mo), resistance to overetching, precipitates, It has the performance that satisfies the level used in the production at the present time in the evaluation such as the rate of superhydrolysis.
  • the etching solution of Patent Document 1 is based on the premise that a certain amount of the etching solution is discarded and a new etching solution (referred to as a new solution) is used as it is used.
  • Patent Document 1 a part of the etching solution is replaced with a new solution with a Cu concentration of 2000 ppm. As described above, in Patent Document 1, a part of the etching solution is replaced with a new solution because the excess water is decomposed and the etching rate changes as the Cu concentration increases.
  • An object to be processed (a glass substrate or the like) on which a film of molybdenum and copper is formed and a pattern is drawn with a resist or the like is processed one by one in an etching tank and sent to a cleaning process.
  • an etching solution taken out of the etching tank together with the object to be processed. Therefore, every time the object to be processed is carried out of the etching tank, the amount of the etching solution that has been taken out is replenished.
  • the copper ion concentration in the etchant increases. Since this decomposes hydrogen peroxide in the etching solution, when the copper ion concentration exceeds a certain level, the etching solution is replenished to dilute the copper ion concentration. In addition, the etching solution is replenished to supplement the decomposed hydrogen peroxide. Thus, the etching solution is added from three viewpoints.
  • Patent Document 2 Japanese Patent Laid-Open No. 2013-184076
  • Patent Document 3 Japanese Patent Laid-Open No. 2013-158707
  • Patent Document 4 Japanese Patent Application Laid-Open No. 2000-054167 discloses that ferrous chloride and cuprous chloride are appropriately converted into ferric chloride and cupric chloride when copper is etched with a ferric chloride etchant. The amount used is reduced by constantly oxidizing the etching solution so that the etching ability of the etching solution is kept constant.
  • Patent Documents 2 and 3 use an acid as an etching solution, and recover the etching solution by recovering copper ions from the acid. Therefore, it cannot be applied to an etching solution using hydrogen peroxide.
  • Patent Document 4 maintains the etching ability of the etching solution constant by oxidizing copper ions in the etching solution, and cannot be applied to an etching solution using hydrogen peroxide. This is because in an etching solution using hydrogen peroxide, hydrogen peroxide is decomposed, so that the etching solution itself cannot be regenerated.
  • the present invention has been conceived in order to solve the above-mentioned problems, and reduces the decomposition rate of hydrogen peroxide and greatly reduces the amount of etching solution added to maintain the concentration of hydrogen peroxide. Thus, a reduction in the amount of etching solution used is obtained.
  • the multilayer film etching solution according to the present invention comprises: Hydrogen peroxide, An acidic organic acid, An amine compound; A hydrogen peroxide decomposition inhibitor; Azoles, Including a precipitation inhibitor comprising an aluminum salt; Containing 0.4% by mass or more and 5% by mass or less of ethylene glycol monobutyl ether as the hydrogen peroxide decomposition inhibitor;
  • the amine compound is N, N-diethyl-1,3-propanediamine.
  • ethylene glycol monobutyl ether is also referred to as “BG”.
  • the multilayer film etching solution containing molybdenum and copper includes: Hydrogen peroxide, An acidic organic acid, An amine compound; A hydrogen peroxide decomposition inhibitor; Azoles, Including a precipitation inhibitor comprising an aluminum salt;
  • the hydrogen peroxide decomposition inhibitor ethylene glycol monobutyl ether is contained in a proportion of 0.9% by mass to 5% by mass, The amine compound is 1 amino 2-propanol.
  • the etching solution according to the present invention maintains a sufficiently low perhydrolysis rate even at 8,000 ppm, whereas the etchant disclosed in Patent Document 1 increases the perhydrolysis rate at a Cu concentration of 2,000 ppm or more. Can do.
  • the etching solution according to the present invention can take a long interval for adding the etching solution to supplement the decrease in the concentration of hydrogen peroxide. As a result, it is possible to obtain an effect that the amount of the etching solution used can be reduced.
  • the etching solution for multilayer film according to the present invention will be described.
  • the following description shows an embodiment of the etching solution according to the present invention, and the following embodiments and examples may be modified without departing from the spirit of the present invention.
  • the numerical range is indicated by “A to B”, it means “A or more and B or less”. That is, it means a large range including the numerical value A and a small range including the numerical value B.
  • the multilayer film etching solution according to the present invention includes hydrogen peroxide, an acidic organic acid, an amine compound, a hydrogen peroxide decomposition inhibitor, an azole, and a precipitation inhibitor containing an aluminum salt.
  • hydrogen peroxide an acidic organic acid
  • an amine compound a hydrogen peroxide decomposition inhibitor
  • an azole a precipitation inhibitor containing an aluminum salt.
  • ⁇ Hydrogen peroxide> copper is oxidized to become copper oxide (CuO) and dissolved by an acid (organic acid).
  • the etching of molybdenum is oxidized to molybdenum oxide (MoO3) and is dissolved in water.
  • Hydrogen peroxide is used as an oxidizing agent that oxidizes copper and molybdenum. Hydrogen peroxide and overwater are synonymous. Hydrogen peroxide is preferably 4.0% by mass to 5.8% by mass of the total amount of the etching solution, more preferably 4.2% by mass to 5.6% by mass, and 4.5% by mass to 5.3% by mass. % Is most preferred.
  • Organic acid serves to etch the copper film and adjust the taper angle of the cross section of the etched wiring. It is also considered to have a function to suppress the decomposition of hydrogen peroxide to some extent.
  • An acidic organic acid is used as the organic acid.
  • a neutral organic acid may be included as a precipitation inhibitor described later.
  • organic acid examples include aliphatic carboxylic acids having 1 to 18 carbon atoms, aromatic carboxylic acids having 6 to 10 carbon atoms, and amino acids having 1 to 10 carbon atoms.
  • aliphatic carboxylic acids having 1 to 18 carbon atoms include formic acid, acetic acid, propionic acid, lactic acid, glycolic acid, diglycolic acid, pyruvic acid, malonic acid, butyric acid, hydroxybutyric acid, tartaric acid, succinic acid, malic acid, maleic acid , Fumaric acid, valeric acid, glutaric acid, itaconic acid, adipic acid, caproic acid, citric acid, propanetricarboxylic acid, trans-aconitic acid, enanthic acid, caprylic acid, lauric acid, myristic acid, palmitic acid, stearic acid, olein Preferred are acid, linoleic acid, linolenic acid and the like.
  • Preferred examples of the aromatic carboxylic acid having 6 to 10 carbon atoms include benzoic acid, salicylic acid, mandelic acid, phthalic acid, isophthalic acid, and terephthalic acid.
  • amino acids having 1 to 10 carbon atoms include carbamic acid, alanine, glycine, asparagine, aspartic acid, sarcosine, serine, glutamine, glutamic acid, 4-aminobutyric acid, iminodibutyric acid, arginine, leucine, isoleucine, nitrilotriacetic acid, etc. Is preferred.
  • glycolic acid, malonic acid, and lactic acid can be suitably used as acidic organic acids.
  • glycolic acid, malonic acid, and lactic acid can obtain suitable characteristics by simultaneously using three kinds.
  • Glycolic acid is preferably contained in an amount of 1.3% to 3.3% by mass relative to the total amount of the etching solution, more preferably 1.8% by mass to 2.8% by mass, and 2.1% by mass to 2%. 5% by mass is most preferable.
  • malonic acid is preferably contained in an amount of 3.0 to 5% by mass, more preferably 3.5 to 4.5% by mass, more preferably 3.8 to 4% by mass with respect to the total amount of the etching solution. 2% by mass is most preferable.
  • lactic acid is preferably contained in an amount of 0.4 to 1.6% by mass relative to the total amount of the etching solution, more preferably 0.6 to 1.4% by mass, and 0.8 to 1% by mass. 2 mass% is most preferable.
  • the total amount of the acidic organic acid is preferably 4.7 to 9.9% by mass, more preferably 5.9 to 8.7% by mass, more preferably 6.7% by mass with respect to the total amount of the etching solution. ⁇ 7.9% by mass is most preferred.
  • the amine compound is responsible for adjusting the pH of the etching solution.
  • the amine compound those having 2 to 10 carbon atoms can be suitably used. More specifically, ethylenediamine, trimethylenediamine, tetramethylenediamine, 1,2-propanediamine, 1,3-propanediamine, N, N-dimethyl-1,3-propanediamine, N, N-diethyl-1 , 3-propanediamine, 1,3-diaminobutane, 2,3-diaminobutane, pentamethylenediamine, 2,4-diaminopentane, hexamethylenediamine, heptamethylenediamine, octamethylenediamine, nonamethylenediamine, N-methyl Ethylenediamine, N, N-dimethylethylenediamine, trimethylethylenediamine, N-ethylethylenediamine, N, N-diethylethylenediamine, triethyl
  • 1-amino-2-propanol (CAS number 78-96-6: hereinafter also referred to as “1A2P”) or N, N-diethyl-1,3-propanediamine (CAS number 104-78-9: (Hereinafter also referred to as “NNDPA”) is particularly preferred.
  • the amine compound is preferably contained in an amount of 2.0 to 3.2% by mass, more preferably 2.2 to 3.0% by mass, more preferably 2.4 to 3.0% by mass with respect to the total amount of the etching solution. 2.8% by mass is most preferable.
  • the multilayer film etching solution according to the present invention uses hydrogen peroxide as an oxidizing agent. Since hydrogen peroxide self-decomposes, a decomposition inhibitor that suppresses the decomposition is added.
  • the hydrogen peroxide decomposition inhibitor is also referred to as a hydrogen peroxide stabilizer (or “super water stabilizer”).
  • ethylene glycol monobutyl ether (CAS number 111-76-2: hereinafter also referred to as “BG”) is preferably used.
  • Conventional hydrogen peroxide decomposition inhibitors include urea-based hydrogen peroxide decomposition inhibitors such as phenylurea, allylurea, 1,3-dimethylurea and thiourea, as well as phenylacetamide, phenylethylene glycol, 1- Lower alcohols such as propanol and 2-propanol were preferably used.
  • urea-based hydrogen peroxide decomposition inhibitors such as phenylurea, allylurea, 1,3-dimethylurea and thiourea
  • phenylacetamide phenylethylene glycol
  • 1- Lower alcohols such as propanol and 2-propanol were preferably used.
  • BG exhibits a remarkable effect of suppressing the decomposition of overwater even when the Cu concentration becomes a high concentration of 8,000 ppm or more.
  • BG is effective when it is added to the etching solution at a certain level or more, and the effect is saturated even if it is added in a large amount. If the amount of other necessary components can be ensured, the effect as an etching solution is exhibited even if a large amount is added. However, adding more BG increases the cost. Considering the effect and price, there is no point in adding BG in excess of 5% by mass.
  • BG as a hydrogen peroxide decomposition inhibitor is preferably contained in an amount of 0.4% by mass to 5.0% by mass with respect to the total amount of the etching solution.
  • BG as a hydrogen peroxide decomposition inhibitor should be contained in an amount of 0.9 mass% to 5.0 mass% with respect to the total amount of the etching solution. preferable.
  • phenylurea which has been used as a hydrogen peroxide decomposition inhibitor in the past, exceeds 0.2% by mass with respect to the total amount of the etching solution, the phenyl group reacts with hydrogen peroxide to react with azoles. A precipitate different from the reaction product of hydrogen oxide was produced. However, BG does not generate such precipitates. Therefore, it is also a suitable hydrogen peroxide decomposition inhibitor (overwater stabilizer) from the viewpoint of suppression of precipitates.
  • the multilayer film etching solution according to the present invention contains azoles in order to suppress Cu etching rate and remove Mo residue.
  • azoles triazoles, tetrazoles, imidazoles, thiazoles and the like can be suitably used. More specifically, the following can be listed.
  • triazole 1H-benzotriazole, 5-methyl-1H-benzotriazole, 3-amino-1H-triazole and the like can be preferably used.
  • tetrazole 1H-tetrazole, 5-methyl-1H-tetrazole, 5-phenyl-1H-tetrazole, 5-amino-1H-tetrazole and the like can be suitably used.
  • imidazoles 1H-imidazole, 1H-benzimidazole and the like can be preferably used.
  • thiazoles 1,3-thiazole, 4-methylthiazole and the like can be suitably used.
  • 5-amino-1H-tetrazole (CAS number 4418-61-5: hereinafter also referred to as “5A1HT”) is preferable.
  • These azoles are preferably contained in an amount of 0.04% by mass to 0.16% by mass, more preferably 0.06% by mass to 0.14% by mass, based on the total amount of the etching solution. Most preferably, the content is from mass% to 0.12 mass%.
  • ⁇ Precipitating agent> As described above, when an organic acid is contained in an etchant mainly composed of hydrogen peroxide, the taper angle of the cross section of the etched wiring can be adjusted. However, organic acids are oxidized and decomposed by hydrogen peroxide to produce oxalic acid. Copper oxalate is formed by the copper ions present in the etching solution after being etched with this oxalic acid, and becomes a precipitate. Aluminum ions are easier to form complexes with oxalic acid than copper, and the solubility is higher than copper oxalate.
  • the etching solution according to the present invention contains an aluminum salt in advance so that even if copper ions are generated by etching, no precipitate (copper oxalate) is formed.
  • the aluminum salt inorganic salts such as aluminum sulfate, aluminum nitrate, and aluminum chloride, and organic salts such as aluminum lactate, aluminum acetate, and aluminum carbonate can be suitably used.
  • the precipitation inhibitor is preferably contained in an amount of 0.05% to 0.7% by mass relative to the total amount of the etching solution, more preferably 0.1% to 0.5% by mass, and 0.2% by mass. It is most preferable if it is -0.4 mass%.
  • a normal etching solution for a multilayer film is supplemented with an etching solution for dilution so that the Cu ion concentration is about 2,000 ppm to 4,000 ppm. This is because the excessive water decomposition rate increases and the excessive water concentration decreases.
  • the etching solution according to the present invention suppresses the decomposition rate of excess water, it is not necessary to add an etching solution for diluting Cu ions even when the Cu ion concentration is higher. More specifically, it is not necessary to add an etching solution for dilution until the Cu concentration of the etching solution is 8,000 ppm.
  • the multilayer film etching solution of the present invention may contain water and various commonly used additives as long as the etching performance is not impaired. Etching is intended for precision processing, and therefore water is preferably free from foreign matter. Pure water or ultrapure water is preferable. Needless to say, the range of the content ratio of each component described above is appropriately adjusted so that the total amount of the etching solution is 100% by mass.
  • the multilayer film etching solution according to the present invention is preferably used in the range of pH 2 to 6, more preferably pH 3 to 4.5.
  • the etching solution can be used between 20 ° C. and 40 ° C. More preferably, it is 25 degreeC to 35 degreeC, Most preferably, 30 degreeC to 35 degreeC is good.
  • Hydrogen peroxide is used in the multilayer film etching solution according to the present invention. Hydrogen peroxide is self-degrading. Therefore, the etchant contains a hydrogen peroxide decomposition inhibitor. However, when storing, hydrogen peroxide (or hydrogen peroxide solution) and other liquids may be stored separately. Further, only hydrogen peroxide (or hydrogen peroxide solution), raw materials excluding water and copper ions (referred to as “etching solution raw material”) may be stored together. In addition, the thing of a liquid and a powder may exist in an etching liquid raw material. That is, the multilayer film etching solution according to the present invention may be completed by combining the etching solution raw material, water, and hydrogen peroxide (or hydrogen peroxide solution).
  • an etchant raw material solution may be prepared by mixing an etchant raw material and water. This solution may be water in a proportion smaller than the proportion of water in the etching solution shown in the examples described later.
  • a solution of the etchant raw material prepared with the etchant raw material and water is referred to as an “etching concentrate”.
  • the etching concentrate has a smaller volume as compared with the etching liquid because there is no hydrogen peroxide, so it is convenient for storage and transport. Therefore, the multilayer film etching solution of the present invention may be completed by combining the etching concentrate, water, and hydrogen peroxide.
  • the amount of water in the etching concentrate may be sufficient to dissolve the etching solution raw material. That is, assuming that hydrogen peroxide is supplied as an aqueous hydrogen peroxide solution, the multilayer film etching solution of the present invention is completed by combining the etching concentrated solution, water, and hydrogen peroxide solution. Can do.
  • each component ratio of an etching concentrate is represented by the ratio with respect to the whole quantity when an etching liquid is completed. Therefore, the total of the components of the etching concentrate is not 100% by mass.
  • the target for using the multilayer film etching solution according to the present invention is a multilayer film of copper / molybdenum in which molybdenum is a lower layer and copper is an upper layer.
  • the lower molybdenum layer is thinner than the upper copper layer.
  • the range of t0 / t1 is in the range of 0.01 to 0.2. If the range of t0 / t1 is out of this range and the Mo layer is too thick, the Mo layer residue tends to be generated, and conversely, if it is too thin, the Cu layer can no longer serve as an underlayer.
  • the multilayer film etching solution according to the present invention can be stored for a long period of time by storing hydrogen peroxide, the etching solution raw material, and water separately during storage. Therefore, in actual use, these are mixed to complete the etching solution.
  • the blending method is not limited as long as the concentration of hydrogen peroxide finally reaches a predetermined concentration.
  • an etching concentrate is prepared by mixing a raw material for etching with a certain amount of water.
  • Hydrogen peroxide is usually supplied as a hydrogen peroxide solution having a concentration higher than the hydrogen peroxide concentration of the multilayer film etching solution according to the present invention. Therefore, a predetermined amount of hydrogen peroxide solution and etching concentrate is prepared. This step may be referred to as a step of preparing a multilayer film etching solution.
  • an etching solution is used at a pH of 2 to 6 and a temperature of 20 ° C. to 40 ° C. Therefore, it is desirable that the substrate to be etched is also preheated to this temperature.
  • the method for bringing the substrate to be processed into contact with the etching solution is not particularly limited. An etching solution may be sprayed on the substrate to be processed from above as in a shower type, or a method of dipping the substrate to be processed into a pool of etching solution may be used. This may be called a step of bringing the multilayer film etching solution into contact with the substrate to be processed.
  • the substrate to be processed is a substrate in which a molybdenum layer and a copper layer are laminated on a base material such as glass and a resist pattern for pattern formation is formed on the laminated film.
  • FIG. 2 and FIG. 3 show the results of a simple simulation and show the effect of the etching solution according to the present invention.
  • the simulation conditions are as follows.
  • the total number of processed sheets (those obtained by vapor-depositing copper on glass substrates) is 3,000, and the film thickness of copper on each glass substrate is 300 nm.
  • the capacity of the etching tank is 2,600L.
  • the amount of etching solution taken out by one substrate was 1 L. Accordingly, the replenishment amount of the etching solution is also added by 1 L for each substrate.
  • the horizontal axis represents the number of processed substrates (sheets), and scales from 0 to 3,000 are provided.
  • the 3,000 portions are represented by vertical arrows. Each vertical axis starts from zero, and the maximum scale is shown in the graph.
  • the overwater concentration of the etching solution was maintained between 5.3 mass% and 5.25 mass%. Moreover, the overwater concentration of the etching solution added to increase the overwater concentration was set to 10% by mass.
  • substrate was 140 second per board
  • the initial value of the Cu concentration in the etching solution started from 2,000 ppm.
  • the decomposition rate of superwater was set to 0.2 mass% / hr when the copper ion concentration was 8,000 ppm.
  • FIG. 2A shows a change in the Cu concentration of the etching solution in the etching tank.
  • the vertical axis represents the copper ion concentration (ppm).
  • the copper ion concentration starting from 2,000 ppm at the beginning was 3,500 ppm for the approximately 400th workpiece.
  • An etchant is added to dilute the Cu ion concentration.
  • FIG. 2C shows the total amount (L) of the etching solution added to the etching tank on the vertical axis.
  • An etching solution of 500 L is added to the 400th processed sheet.
  • the copper ion concentration was reduced to 2,900 ppm by adding this etching solution (see arrow A). Thereafter, this state is repeated.
  • the vertical axis shows the change in the concentration of superwater in the etching solution (described as “wt%”. It may be considered synonymous with mass%).
  • the ratio of the initial overwater was 5.3% by mass, and the overwater is decomposed by the copper ions shown in FIG.
  • the treatment with about 100 sheets resulted in a superwater concentration of 5.25% by mass. Therefore, an etching solution containing 10% by mass of overwater (other compositions are the same) is added to increase the overwater concentration.
  • FIG. 2 (d) is a graph showing the total amount of etching solution containing 10% by mass of overwater added to adjust the overwater concentration.
  • the vertical axis represents the total addition amount (L). 50L is added by processing 100 sheets.
  • the addition of the etching solution containing 10% by mass of overwater returns the concentration of overwater in the etching tank to 5.3% by mass again (see arrow B).
  • FIG. 2 (e) shows the change in the replenishment of the etching solution taken out by the substrate.
  • the vertical axis represents the additional amount (L).
  • L the additional amount
  • FIG. 2 (f) shows the total amount of etching solution added due to the above changes.
  • the vertical axis is the total amount (L), and the vertical axis is scaled up to 10,000L. According to this simulation, the total amount of etching solution added during the processing of 3,000 sheets needs to be 10,000 L or more.
  • FIG. 3 shows the case of the etching solution according to the present invention.
  • (A)-(f) is a figure corresponding to FIG. Reference is made to FIG.
  • the copper ion concentration in the etching solution increases up to 3,000 processed sheets.
  • the amount of copper contained in the etching solution taken out from the substrate also increases, so the copper ion concentration contained in the etching solution in the etching tank increases as the number of treatments increases. Be gentle.
  • FIG. 3C shows the amount of etching solution added to dilute the copper ion concentration.
  • the etching solution according to the present invention since it is not necessary to dilute the copper ion concentration to 8,000 ppm, the etching solution to be added from this viewpoint is zero.
  • the perhydrolysis rate was set to a rate of 0.16% by mass / hr at 8,000 ppm.
  • Fig. 3 (b) shows the change in the overwater concentration.
  • the decomposition rate of superwater increases.
  • the interval for adding is shortened. Therefore, the total amount of the etching solution containing 10% by mass overwater (see FIG. 3D) was larger than that in FIG. In FIG. 2 (d), the maximum scale is 1,200L, but in FIG. 3 (d), it is 2,000L.
  • the replenishment of the substrate taken out shown in FIG. 3E is 1 L per sheet, which is the same as in the case of FIG.
  • FIG. 3 (f) shows the total amount (L) of the etching solution when 3,000 sheets are processed.
  • the scale on the vertical axis is a maximum of 4,000 L.
  • approximately 5,000 L of the etching solution is used to process 3,000 sheets. This was a trial calculation that would be about half of the 10,000 L shown in FIG.
  • the amount of the etching solution used can be greatly reduced if the perhydrolysis rate is suppressed and there is no need to dilute the etching solution even if the copper ion concentration increases.
  • the etching rate (nm / min) of copper and molybdenum, the taper angle (°) of the cross section of the etched wiring, the undercut of the molybdenum layer, and the substrate remained on the substrate Evaluation was performed on the following items: molybdenum layer (referred to as “Mo residue”), over-etching resistance, presence or absence of precipitates, and hydrogen peroxide decomposition rate (mass% / 18 hr).
  • the etching rate was measured as follows. First, a single layer film having a thickness of 300 nm for copper and 150 nm for molybdenum was formed on a silicon wafer on which a thermal oxide film of 100 nm was formed by sputtering. The copper film and the molybdenum film were brought into contact with an etching solution at 30 ° C. (may be 35 ° C. in some comparative examples) for 20 to 60 seconds.
  • the resistance value of the film before and after etching was measured using a constant current application type 4-terminal 4-probe resistivity meter (manufactured by Mitsubishi Chemical Analytech: MCP-T610 type). The change in film thickness was calculated from the change in resistance value, and the etching rate was calculated.
  • the etching rate of copper was 250 nm / min to 350 nm / min, it was judged as a circle ( ⁇ ). Further, if the etching rate of molybdenum is 60 nm / min to 120 nm / min, it is set as a circle ( ⁇ ). Other than that, it was judged as X (outside) as outside the specified range.
  • the taper angle was measured as follows. First, a molybdenum film having a thickness of 20 nm was formed on a glass substrate by a sputtering method, and then a copper film having a thickness of 300 nm was formed thereon, thereby preparing a Cu / Mo multilayer film sample. A resist patterned into a wiring shape was formed on this copper film, and used as a base material for taper angle evaluation. That is, the base material is composed of a substrate, a molybdenum film, a copper film thereon, and a patterned resist layer on the copper film. Etching was performed by immersing the base material in an etching solution for the time of just etching. After the etching sample was washed and dried, the wiring portion was cut and the cut surface was observed.
  • FIG. 1A An angle 5 formed by the substrate 1 and the etched inclined surface 6 is a taper angle (°). When the taper angle 5 was 30 to 60 °, it was judged as a circle ( ⁇ ). If it was out of the range of this angle, it was judged as X (x).
  • the Mo layer is represented by reference numeral 3
  • the Cu layer is represented by reference numeral 2
  • the resist is represented by reference numeral 4.
  • the undercut of the molybdenum layer means a state (reverse taper) in which the space between the molybdenum layer 3 and the substrate 1 is quickly etched, as indicated by reference numeral 10 in FIG.
  • the evaluation can be performed simultaneously with the evaluation of the taper angle 5.
  • the undercut of the molybdenum layer was judged as a circle ( ⁇ ) if it was not found by 30,000 to 50,000 times observation of the SEM, and was judged as a cross ( ⁇ ) if found.
  • the Mo residue was determined to be cross ( ⁇ ), and if not confirmed, it was determined to be a circle ( ⁇ ).
  • the optical microscope was observed with bright field observation and dark field observation at a magnification of about 100 times. Moreover, in SEM, it observed by 30,000 times to 50,000 times.
  • Over-etching resistance also referred to as “OE resistance” refers to taper angle, undercut of molybdenum layer, and Mo residue when etching is twice the time required for just etching. "Evaluated as a circle ( ⁇ ). If any one of them is evaluated as “X”, it is X (X).
  • Presence / absence of precipitates was determined by visually determining whether or not a light blue precipitate was generated in the bottle after the etching solution was prepared and left at room temperature in a bottle for a predetermined time (3 hours). When the precipitate was not visually observed, it was judged as a circle ( ⁇ ), and when it was visually confirmed, it was judged as a cross ( ⁇ ).
  • the hydrogen peroxide decomposition rate was determined by adding Cu ions and Mo ions to the prepared etching solution so that the concentrations were 8,000 ppm and 800 ppm, respectively, and the hydrogen peroxide concentration after a predetermined time (18 hours (hours)) at 35 ° C.
  • the titration reagent was potassium permanganate and measurement was performed using an automatic titrator (GT-200 manufactured by Mitsubishi Chemical Analytech).
  • GT-200 automatic titrator manufactured by Mitsubishi Chemical Analytech.
  • the decomposition rate (mass% / hr) was computed from the variation
  • Example 1 As an acidic organic acid, 1.90% by mass of glycolic acid, 3.40% by mass of malonic acid, 0.80% by mass of lactic acid, As an amine compound, 1.20% by mass of 1-amino-2-propanol, As a water stabilizer, 0.90% by mass of BG, As azoles, 0.08% by mass of 5-amino-1H-tetrazole 0.26% by mass of aluminum lactate as a precipitation inhibitor An etching solution raw material consisting of 75.32% by mass of water was prepared to prepare an etching concentrate. Each component ratio in the etching concentrate is expressed as a ratio to the total amount when the etching liquid is completed by mixing with a hydrogen peroxide solution described later. The same applies to the following examples and comparative examples.
  • Example 2 As an acidic organic acid, 1.90% by mass of glycolic acid, 3.40% by mass of malonic acid, 0.80% by mass of lactic acid, As an amine compound, 1.20% by mass of 1-amino-2-propanol, As a water stabilizer, 2.00% by mass of BG, As azoles, 0.08% by mass of 5-amino-1H-tetrazole 0.26% by mass of aluminum lactate as a precipitation inhibitor
  • the etching liquid raw material which consists of 74.22 mass% of water was prepared, and the etching concentrated liquid was prepared.
  • Example 3 As an acidic organic acid, 1.90% by mass of glycolic acid, 3.40% by mass of malonic acid, 0.80% by mass of lactic acid, As an amine compound, 2.20% by mass of NNDPA, As a water stabilizer, 0.40% by mass of BG, As azoles, 0.08% by mass of 5-amino-1H-tetrazole 0.26% by mass of aluminum lactate as a precipitation inhibitor An etching solution raw material consisting of 75.82% by mass of water was prepared to prepare an etching concentrate.
  • Example 4 As an acidic organic acid, 1.90% by mass of glycolic acid, 3.40% by mass of malonic acid, 0.80% by mass of lactic acid, As an amine compound, 2.20% by mass of NNDPA, As a water stabilizer, 0.90% by mass of BG, As azoles, 0.08% by mass of 5-amino-1H-tetrazole 0.26% by mass of aluminum lactate as a precipitation inhibitor An etching solution raw material consisting of 75.32% by mass of water was prepared to prepare an etching concentrate.
  • Example 5 As an acidic organic acid, 1.90% by mass of glycolic acid, 3.40% by mass of malonic acid, 0.80% by mass of lactic acid, As an amine compound, 2.20% by mass of NNDPA, As a water stabilizer, 2.00% by mass of BG, As azoles, 0.08% by mass of 5-amino-1H-tetrazole 0.26% by mass of aluminum lactate as a precipitation inhibitor
  • the etching liquid raw material which consists of 74.22 mass% of water was prepared, and the etching concentrated liquid was prepared.
  • Comparative Examples 1, 2, and 3 all contain BG as a superwater stabilizer. However, in all cases, the perhydrolysis rate was higher than 0.16% by mass.
  • FIG. 4 is a graph showing the perhydrolysis rates of Comparative Examples 1, 2, and 3 and Examples 1 to 5. The horizontal axis represents the content of BG (mass%), and the vertical axis represents the perhydrolysis rate (mass% / hr).
  • the black square is when 1A2P is used as the amine compound, and the black circle is when NNDPA is used as the amine compound.
  • the symbols are black squares and black circles with small white circles.
  • Comparative Examples 4 to 7 are cases in which phenylurea conventionally used as a water stabilizer is used.
  • the perhydrolysis rate was fast, and even the slowest Comparative Example 7 was 0.219% by mass / hr.
  • the overwater decomposition rate in the case of Comparative Example 7 is indicated by a one-dot chain line.
  • BG as a perwater stabilizer needs to be 0.9% by mass or more.
  • NNDPA is used as an amine compound, it turns out that what is necessary is just to contain 0.4 mass% or more of BG as a super-water stabilizer.
  • BG is preferably 0.4% by mass to 2.0% by mass, more preferably 0.9% by mass to 2.0% by mass, and 2% by mass. 0.0 mass% indicates the most preferable thing.
  • the BG is preferably 0.9% by mass to 2.0% by mass, and more preferably 2.0% by mass.
  • BG is preferably 0.4% by mass to 5.0% by mass, more preferably 0.9% by mass to 5.0% by mass, and 2.0% by mass to 5.0% by mass. If so, it is most preferable.
  • BG is preferably 0.9% by mass to 5.0% by mass, more preferably 2.0% by mass to 5.0% by mass. .
  • the etching solution according to the present invention can be suitably used when etching a multilayer film of molybdenum and copper.
  • the decomposition rate of the hydrogen peroxide solution can be suppressed, so that the predetermined etching rate range can be maintained over a long period of time.

Abstract

Provided is an etching solution which is for etching a multilayer film of copper and molybdenum and can be used in reduced quantities. In an etching solution using peroxide, the peroxide is decomposed by copper ions, and thus the etching solution is replenished in large quantities. The etching solution for a multilayer film is characterized by comprising a precipitation inhibitor which contains: hydrogen peroxide, an acidic organic acid, an amine compound, a hydrogen peroxide decomposition inhibitor, azoles, and an aluminum salt, wherein the precipitation inhibitor contains 0.4-5 mass% of ethylene glycol monobutyl ether as the hydrogen peroxide decomposition inhibitor, and the amine compound is N,N-diethyl-1,3-propanediamine. Even if the amount of copper ions increases, the peroxide decomposition rate can be suppressed, and the total amount of etching solution used can be reduced.

Description

多層膜用エッチング液とエッチング濃縮液およびエッチング方法Etching solution for multilayer film, etching concentrated solution, and etching method
 本発明は、液晶、有機EL等のフラットパネルディスプレイの配線用に用いられる銅およびモリブデンの多層膜をエッチングする際に用いる、多層膜用エッチング液とエッチング濃縮液およびエッチング方法に関する。 The present invention relates to a multilayer film etching solution, an etching concentrate, and an etching method, which are used for etching a multilayer film of copper and molybdenum used for wiring of flat panel displays such as liquid crystal and organic EL.
 液晶や有機EL(Electro-Luminescence)等のフラットパネルディスプレイ(FPD)のTFT(Thin Film Transistor)は、配線材料としてアルミニウムが使用されてきた。近年、大画面で高精細度のFPDが普及し、使用される配線材料には、アルミニウムよりも低抵抗のものが求められた。そこで、近年アルミニウムより低抵抗である銅を配線材料として用いられるようになった。 Aluminum has been used as a wiring material for TFTs (Thin Film Transistors) of flat panel displays (FPD) such as liquid crystal and organic EL (Electro-Luminescence). In recent years, large-screen, high-definition FPDs have become widespread, and the wiring material used has been required to have a resistance lower than that of aluminum. In recent years, therefore, copper, which has a lower resistance than aluminum, has been used as a wiring material.
 銅を配線材料として用いると、基板との間の接着力と、半導体基材への拡散という2つの問題が生じる。つまり、ゲート配線で用いる場合は、比較的基材への衝突エネルギーが大きいとされるスパッタリング法を用いても、ガラスなどの基板の間で接着力が十分でない場合がある。また、ソース・ドレイン配線で用いる場合は、付着した銅が下地となるシリコンへ拡散し、半導体の電気的設計値を変えてしまうという問題が生じる。 When copper is used as a wiring material, there are two problems, namely, adhesive strength with the substrate and diffusion to the semiconductor substrate. That is, in the case of using the gate wiring, there is a case where the adhesive force between the substrates such as glass is not sufficient even when the sputtering method that has a relatively high collision energy to the base material is used. In addition, when used for source / drain wiring, there arises a problem that the deposited copper diffuses into the underlying silicon and changes the electrical design value of the semiconductor.
 この問題を解決するため、現在では、半導体基材上にモリブデン膜を最初に形成しておき、その上に銅膜を形成する多層構造が採用されている。 In order to solve this problem, a multilayer structure in which a molybdenum film is first formed on a semiconductor substrate and then a copper film is formed thereon is employed.
 FPDの配線は、スパッタリング法で形成された多層膜をウエットエッチングによって形成される。大面積を一気に形成できるので、工程の短縮化が可能だからである。ここで、配線のウエットエッチングには、以下の点が重要とされている。
(1)加工精度が高く一様であること。
(2)加工後の配線断面が所定の角度の順テーパーであること。
(3)銅イオンが含まれることでエッチングレートが変化しないこと(バスライフが長いこと)。
(4)析出物の発生が少ないこと。
The FPD wiring is formed by wet etching a multilayer film formed by a sputtering method. This is because a large area can be formed at a stretch, and the process can be shortened. Here, the following points are important for wet etching of wiring.
(1) Processing accuracy is high and uniform.
(2) The wiring cross section after processing is a forward taper of a predetermined angle.
(3) The etching rate does not change because copper ions are contained (the bath life is long).
(4) There is little generation of precipitates.
 このような要求を満たすエッチング液として、特許文献1(特開2015-209568号公報)が開示されている。 Patent Document 1 (Japanese Patent Laid-Open No. 2015-209568) is disclosed as an etchant that satisfies such requirements.
 ここでは、
 過酸化水素と、
 酸性有機酸と、
 アミン化合物と、
 過酸化水素分解抑制剤と、
 アゾール類と、
 アルミニウム塩を含む析出防止剤を含むことを特徴とするモリブデンと銅を含む多層膜用エッチング液が開示されている。
here,
Hydrogen peroxide,
An acidic organic acid,
An amine compound;
A hydrogen peroxide decomposition inhibitor;
Azoles,
A multilayer film etching solution containing molybdenum and copper, characterized by containing a precipitation inhibitor containing an aluminum salt, is disclosed.
 このエッチング液は、銅(Cu)およびモリブデン(Mo)のエッチングレート、エッチングされた境界領域のテーパー角、モリブデン(Mo)のアンダーカット、モリブデン(Mo)の残渣、オーバーエッチングに対する耐性、析出物、過水分解速度といった評価において、現時点での製造に使用される水準を満たす性能を有している。 This etchant has an etching rate of copper (Cu) and molybdenum (Mo), a taper angle of the etched boundary region, an undercut of molybdenum (Mo), a residue of molybdenum (Mo), resistance to overetching, precipitates, It has the performance that satisfies the level used in the production at the present time in the evaluation such as the rate of superhydrolysis.
 一方、特許文献1のエッチング液は、使用されるにしたがって、一定量のエッチング液を廃棄し、新しいエッチング液(新液という。)を継ぎ足して使用することを前提としている。 On the other hand, the etching solution of Patent Document 1 is based on the premise that a certain amount of the etching solution is discarded and a new etching solution (referred to as a new solution) is used as it is used.
 具体的には特許文献1の実施例に示されているように、Cu濃度が2000ppmを目途に、エッチング液の一部を新液と入れ替える。このように特許文献1において、エッチング液の一部を新液と入れ替えるのは、Cu濃度が高まるに従い、過水が分解され、エッチングレートが変化するからである。 Specifically, as shown in the example of Patent Document 1, a part of the etching solution is replaced with a new solution with a Cu concentration of 2000 ppm. As described above, in Patent Document 1, a part of the etching solution is replaced with a new solution because the excess water is decomposed and the etching rate changes as the Cu concentration increases.
 携帯端末の普及が進むなかで、フラットパネルディスプレイの需要は、ますます多くなっており、製造工場も大規模な工場が設立され、また今後も設立が予定されている。このような大規模な工場では、製造ラインでのコストを削減するために、エッチング液使用量の削減が期待されている。製造段階でのコスト削減は最終製品の価格を低下させることができるからである。 Demand for flat panel displays is increasing with the spread of mobile terminals, and a large-scale manufacturing factory has been established and will be established in the future. In such a large-scale factory, in order to reduce the cost on the production line, a reduction in the amount of etching solution used is expected. This is because cost reduction at the manufacturing stage can reduce the price of the final product.
 ここで上記のエッチング液の管理方法について簡単に説明する。モリブデンおよび銅が成膜され、レジスト等でパターンが描画された被処理物(ガラス基板等)は、エッチング槽で1枚ずつ処理され、洗浄工程に送られる。この際、被処理物と共にエッチング槽から持ち出されるエッチング液がある。そこで、被処理物がエッチング槽から搬出される都度、持ち出された分のエッチング液を補充する。 Here, the above-described etching solution management method will be briefly described. An object to be processed (a glass substrate or the like) on which a film of molybdenum and copper is formed and a pattern is drawn with a resist or the like is processed one by one in an etching tank and sent to a cleaning process. At this time, there is an etching solution taken out of the etching tank together with the object to be processed. Therefore, every time the object to be processed is carried out of the etching tank, the amount of the etching solution that has been taken out is replenished.
 また、エッチング液の使用が進むにつれてエッチング液中の銅イオン濃度が高くなる。これはエッチング液中の過酸化水素を分解するので、一定以上の銅イオン濃度になったら、銅イオン濃度を希釈するためにエッチング液を補充する。また、分解した過酸化水素を補うためにエッチング液は補充される。このように、3つの観点でエッチング液は追添される。 Also, as the use of the etchant proceeds, the copper ion concentration in the etchant increases. Since this decomposes hydrogen peroxide in the etching solution, when the copper ion concentration exceeds a certain level, the etching solution is replenished to dilute the copper ion concentration. In addition, the etching solution is replenished to supplement the decomposed hydrogen peroxide. Thus, the etching solution is added from three viewpoints.
 ところで、銅のエッチング液について、使用量を低減する手法については、従来から提案されているものがある。特許文献2(特開2013-184076号公報)、特許文献3(特開2013-158707号公報)は、銅のエッチング液中の酸から銅を回収して、エッチング液の再生を行うことで、エッチング液の使用低減を実現している。 By the way, about the technique of reducing the usage-amount about a copper etching liquid, there exists what has been proposed conventionally. Patent Document 2 (Japanese Patent Laid-Open No. 2013-184076) and Patent Document 3 (Japanese Patent Laid-Open No. 2013-158707) collect copper from an acid in an etching solution of copper and regenerate the etching solution. Reduced use of etchant.
 また、特許文献4(特開2000-054167号公報)は、塩化第二鉄エッチング液で銅をエッチング処理するに際して、塩化第一鉄と塩化第一銅を適宜塩化第二鉄および塩化第二銅に酸化することでエッチング液のエッチング能力を常に一定にすることで、使用量の削減を実現している。 Patent Document 4 (Japanese Patent Application Laid-Open No. 2000-054167) discloses that ferrous chloride and cuprous chloride are appropriately converted into ferric chloride and cupric chloride when copper is etched with a ferric chloride etchant. The amount used is reduced by constantly oxidizing the etching solution so that the etching ability of the etching solution is kept constant.
特開2015-209568号公報Japanese Patent Application Laid-Open No. 2015-209568 特開2013-184076号公報JP 2013-184076 A 特開2013-158707号公報JP 2013-158707 A 特開2000-054167号公報Japanese Patent Laid-Open No. 2000-054167
 特許文献1のエッチング液では、処理する基板の数が増えるにしたがい、エッチング液中のCu濃度が上昇すると過水の分解が進み、エッチング能力を一定に維持するために、エッチング液の追添を行っている。しかし、被処理物によるエッチング液の持ち出し、銅イオン濃度の希釈、過酸化水素の濃度の維持という3つの観点での追添が必要であり、多量のエッチング液が必要となる。 In the etching solution of Patent Document 1, as the number of substrates to be processed increases, as the Cu concentration in the etching solution increases, the decomposition of excess water proceeds, and in order to maintain the etching ability constant, additional etching solution is added. Is going. However, it is necessary to add the etching solution from the object to be processed, to dilute the copper ion concentration, and to maintain the hydrogen peroxide concentration, and a large amount of etching solution is required.
 特許文献2、3は、エッチング液に酸を用いており、その酸から銅イオンを回収することでエッチング液を再生する。したがって、過酸化水素を用いたエッチング液に適用はできない。 Patent Documents 2 and 3 use an acid as an etching solution, and recover the etching solution by recovering copper ions from the acid. Therefore, it cannot be applied to an etching solution using hydrogen peroxide.
 また、特許文献4は、エッチング液中の銅イオンを酸化することでエッチング液のエッチング能力を一定に維持するものであり、やはり過酸化水素を用いたエッチング液に適用することはできない。過酸化水素を用いたエッチング液では、過酸化水素が分解してしまうため、エッチング液の再生自体ができないからである。 Further, Patent Document 4 maintains the etching ability of the etching solution constant by oxidizing copper ions in the etching solution, and cannot be applied to an etching solution using hydrogen peroxide. This is because in an etching solution using hydrogen peroxide, hydrogen peroxide is decomposed, so that the etching solution itself cannot be regenerated.
 本発明は上記の課題を解決するために想到されたものであり、過酸化水素の分解速度を低くし、過酸化水素の濃度の維持のために追添するエッチング液の量を大幅に減らすことで、エッチング液の使用量の低減を得るものである。 The present invention has been conceived in order to solve the above-mentioned problems, and reduces the decomposition rate of hydrogen peroxide and greatly reduces the amount of etching solution added to maintain the concentration of hydrogen peroxide. Thus, a reduction in the amount of etching solution used is obtained.
 より具体的に、本発明に係る多層膜用エッチング液は、
 過酸化水素と、
 酸性有機酸と、
 アミン化合物と、
 過酸化水素分解抑制剤と、
 アゾール類と、
 アルミニウム塩を含む析出防止剤を含み、
 前記過酸化水素分解抑制剤としてエチレングリコールモノブチルエーテルを0.4質量%以上5質量%以下の割合で含み、
 前記アミン化合物がN,N-ジエチル-1,3-プロパンジアミンであることを特徴とする。なお、以後エチレングリコールモノブチルエーテルを「BG」とも呼ぶ。
More specifically, the multilayer film etching solution according to the present invention comprises:
Hydrogen peroxide,
An acidic organic acid,
An amine compound;
A hydrogen peroxide decomposition inhibitor;
Azoles,
Including a precipitation inhibitor comprising an aluminum salt;
Containing 0.4% by mass or more and 5% by mass or less of ethylene glycol monobutyl ether as the hydrogen peroxide decomposition inhibitor;
The amine compound is N, N-diethyl-1,3-propanediamine. Hereinafter, ethylene glycol monobutyl ether is also referred to as “BG”.
 また、上記課題を解決するために、本発明に係るモリブデンと銅を含む多層膜用エッチング液は、
 過酸化水素と、
 酸性有機酸と、
 アミン化合物と、
 過酸化水素分解抑制剤と、
 アゾール類と、
 アルミニウム塩を含む析出防止剤を含み、
 前記過酸化水素分解抑制剤としてエチレングリコールモノブチルエーテルを0.9質量%以上5質量%以下の割合で含み、
 前記アミン化合物が1アミノ2プロパノールであることを特徴とする。
In order to solve the above-mentioned problem, the multilayer film etching solution containing molybdenum and copper according to the present invention includes:
Hydrogen peroxide,
An acidic organic acid,
An amine compound;
A hydrogen peroxide decomposition inhibitor;
Azoles,
Including a precipitation inhibitor comprising an aluminum salt;
As the hydrogen peroxide decomposition inhibitor, ethylene glycol monobutyl ether is contained in a proportion of 0.9% by mass to 5% by mass,
The amine compound is 1 amino 2-propanol.
 本発明に係るエッチング液は、特許文献1に開示されたエッチング液が、Cu濃度2,000ppm以上で過水分解速度が高まるのに対して8,000ppmでも十分低い過水分解速度を維持することができる。 The etching solution according to the present invention maintains a sufficiently low perhydrolysis rate even at 8,000 ppm, whereas the etchant disclosed in Patent Document 1 increases the perhydrolysis rate at a Cu concentration of 2,000 ppm or more. Can do.
 したがって、本発明に係るエッチング液は、過酸化水素の濃度低下を補充するためのエッチング液の追添の間隔が長く取れる。結果、エッチング液の使用量を低減させることができるという効果を得ることができる。 Therefore, the etching solution according to the present invention can take a long interval for adding the etching solution to supplement the decrease in the concentration of hydrogen peroxide. As a result, it is possible to obtain an effect that the amount of the etching solution used can be reduced.
エッチングされた配線の断面を表す概念図である。It is a conceptual diagram showing the cross section of the etched wiring. 従来のエッチング液を使用する場合の使用量をシミュレーションした結果を表すグラフである。It is a graph showing the result of having simulated the usage-amount in the case of using the conventional etching liquid. 本発明に係る多層膜用エッチング液を使用する場合の使用量をシミュレーションした結果を表すグラフである。It is a graph showing the result of having simulated the usage-amount in the case of using the etching liquid for multilayer films concerning this invention. BGの含有量と過水分解速度の関係を示すグラフである。It is a graph which shows the relationship between content of BG and a perhydrolysis rate.
 以下本発明に係る多層膜用エッチング液について説明する。なお、以下の説明は本発明に係るエッチング液の一実施形態を示すものであり、本発明の趣旨を逸脱しない範囲で、以下の実施形態および実施例は改変されてもよい。なお、以下の説明において、数値範囲を「A~B」で示した場合、「A以上、B以下」の意味である。すなわち、数値Aを含んで大きく、且つ数値Bを含んで小さい範囲を意味する。 Hereinafter, the etching solution for multilayer film according to the present invention will be described. The following description shows an embodiment of the etching solution according to the present invention, and the following embodiments and examples may be modified without departing from the spirit of the present invention. In the following description, when the numerical range is indicated by “A to B”, it means “A or more and B or less”. That is, it means a large range including the numerical value A and a small range including the numerical value B.
 本発明に係る多層膜用エッチング液は、過酸化水素と、酸性有機酸と、アミン化合物と、過酸化水素分解抑制剤と、アゾール類と、アルミニウム塩を含む析出防止剤を含む。以下、それぞれの成分について詳説する。 The multilayer film etching solution according to the present invention includes hydrogen peroxide, an acidic organic acid, an amine compound, a hydrogen peroxide decomposition inhibitor, an azole, and a precipitation inhibitor containing an aluminum salt. Hereinafter, each component will be described in detail.
 <過酸化水素>
 銅のエッチングは、銅が酸化され、酸化銅(CuO)となり、酸(有機酸)により溶解される。また、モリブデンのエッチングは、酸化され酸化モリブデン(MoO3)になり、水に溶解する。過酸化水素は、銅とモリブデンを酸化する酸化剤として用いられる。なお、過酸化水素と過水は同義語である。過酸化水素は、エッチング液全量の4.0質量%~5.8質量%が好ましく、4.2質量%~5.6質量%であればより好ましく、4.5質量%~5.3質量%であれば最も好ましい。
<Hydrogen peroxide>
In the etching of copper, copper is oxidized to become copper oxide (CuO) and dissolved by an acid (organic acid). In addition, the etching of molybdenum is oxidized to molybdenum oxide (MoO3) and is dissolved in water. Hydrogen peroxide is used as an oxidizing agent that oxidizes copper and molybdenum. Hydrogen peroxide and overwater are synonymous. Hydrogen peroxide is preferably 4.0% by mass to 5.8% by mass of the total amount of the etching solution, more preferably 4.2% by mass to 5.6% by mass, and 4.5% by mass to 5.3% by mass. % Is most preferred.
 <有機酸>
 有機酸は、銅膜をエッチングするとともに、エッチングされた配線の断面のテーパー角度を調整する役目を負う。また、過酸化水素の分解を抑制する機能もある程度有すると考えられる。有機酸には酸性有機酸を用いる。なお、本発明に係る多層膜用エッチング液では、後述する析出防止剤として中性有機酸が含まれてもよい。
<Organic acid>
The organic acid serves to etch the copper film and adjust the taper angle of the cross section of the etched wiring. It is also considered to have a function to suppress the decomposition of hydrogen peroxide to some extent. An acidic organic acid is used as the organic acid. In the multilayer film etching solution according to the present invention, a neutral organic acid may be included as a precipitation inhibitor described later.
 有機酸としては、炭素数1~18の脂肪族カルボン酸、炭素数6~10の芳香族カルボン酸のほか、炭素数1~10のアミノ酸などが好ましく挙げられる。 Preferred examples of the organic acid include aliphatic carboxylic acids having 1 to 18 carbon atoms, aromatic carboxylic acids having 6 to 10 carbon atoms, and amino acids having 1 to 10 carbon atoms.
 炭素数1~18の脂肪族カルボン酸としては、ギ酸、酢酸、プロピオン酸、乳酸、グリコール酸、ジグリコール酸、ピルビン酸、マロン酸、酪酸、ヒドロキシ酪酸、酒石酸、コハク酸、リンゴ酸、マレイン酸、フマル酸、吉草酸、グルタル酸、イタコン酸、アジピン酸、カプロン酸、クエン酸、プロパントリカルボン酸、trans-アコニット酸、エナント酸、カプリル酸、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、オレイン酸、リノール酸、リノレン酸などが好ましく挙げられる。 Examples of aliphatic carboxylic acids having 1 to 18 carbon atoms include formic acid, acetic acid, propionic acid, lactic acid, glycolic acid, diglycolic acid, pyruvic acid, malonic acid, butyric acid, hydroxybutyric acid, tartaric acid, succinic acid, malic acid, maleic acid , Fumaric acid, valeric acid, glutaric acid, itaconic acid, adipic acid, caproic acid, citric acid, propanetricarboxylic acid, trans-aconitic acid, enanthic acid, caprylic acid, lauric acid, myristic acid, palmitic acid, stearic acid, olein Preferred are acid, linoleic acid, linolenic acid and the like.
 炭素数6~10の芳香族カルボン酸としては、安息香酸、サリチル酸、マンデル酸、フタル酸、イソフタル酸、テレフタル酸などが好ましく挙げられる。 Preferred examples of the aromatic carboxylic acid having 6 to 10 carbon atoms include benzoic acid, salicylic acid, mandelic acid, phthalic acid, isophthalic acid, and terephthalic acid.
 また、炭素数1~10のアミノ酸としては、カルバミン酸、アラニン、グリシン、アスパラギン、アスパラギン酸、サルコシン、セリン、グルタミン、グルタミン酸、4-アミノ酪酸、イミノジ酪酸、アルギニン、ロイシン、イソロイシン、ニトリロ三酢酸などが好ましく挙げられる。 Examples of amino acids having 1 to 10 carbon atoms include carbamic acid, alanine, glycine, asparagine, aspartic acid, sarcosine, serine, glutamine, glutamic acid, 4-aminobutyric acid, iminodibutyric acid, arginine, leucine, isoleucine, nitrilotriacetic acid, etc. Is preferred.
 上記有機酸のなかでも、酸性有機酸としてグリコール酸、マロン酸、乳酸が好適に利用できる。特にグリコール酸、マロン酸、乳酸は、三種を同時に併用することで、好適な特性を得ることができる。 Among the above organic acids, glycolic acid, malonic acid, and lactic acid can be suitably used as acidic organic acids. In particular, glycolic acid, malonic acid, and lactic acid can obtain suitable characteristics by simultaneously using three kinds.
 なお、グリコール酸はエッチング液全量に対して1.3質量%~3.3質量%含有させるのが好ましく、1.8質量%~2.8質量%ならより好ましく、2.1質量%~2.5質量%なら最も好ましい。 Glycolic acid is preferably contained in an amount of 1.3% to 3.3% by mass relative to the total amount of the etching solution, more preferably 1.8% by mass to 2.8% by mass, and 2.1% by mass to 2%. 5% by mass is most preferable.
 また、マロン酸は、エッチング液全量に対して3.0質量%~5質量%含有させるのが好ましく、3.5質量%~4.5質量%ならより好ましく、3.8質量%~4.2質量%であれば最も好ましい。 Further, malonic acid is preferably contained in an amount of 3.0 to 5% by mass, more preferably 3.5 to 4.5% by mass, more preferably 3.8 to 4% by mass with respect to the total amount of the etching solution. 2% by mass is most preferable.
 また、乳酸は、エッチング液全量に対して0.4質量%~1.6質量%含有させるのが好ましく、0.6質量%~1.4質量%ならより好ましく、0.8質量%~1.2質量%であれば最も好ましい。
 
Further, lactic acid is preferably contained in an amount of 0.4 to 1.6% by mass relative to the total amount of the etching solution, more preferably 0.6 to 1.4% by mass, and 0.8 to 1% by mass. 2 mass% is most preferable.
 また酸性有機酸全体では、エッチング液全量に対して4.7質量%~9.9質量%含有させるのが好ましく、5.9質量%~8.7質量%ならより好ましく、6.7質量%~7.9質量%なら最も好ましい。 The total amount of the acidic organic acid is preferably 4.7 to 9.9% by mass, more preferably 5.9 to 8.7% by mass, more preferably 6.7% by mass with respect to the total amount of the etching solution. ˜7.9% by mass is most preferred.
 <アミン化合物>
 アミン化合物はエッチング液のpH調整を担う。アミン化合物としては、炭素数2~10のものが好適に利用できる。より具体的には、エチレンジアミン、トリメチレンジアミン、テトラメチレンジアミン、1,2-プロパンジアミン、1,3-プロパンジアミン、N,N-ジメチル-1,3-プロパンジアミン、N,N-ジエチル-1,3-プロパンジアミン、1,3-ジアミノブタン、2,3-ジアミノブタン、ペンタメチレンジアミン、2,4-ジアミノペンタン、ヘキサメチレンジアミン、ヘプタメチレンジアミン、オクタメチレンジアミン、ノナメチレンジアミン、N-メチルエチレンジアミン、N,N-ジメチルエチレンジアミン、トリメチルエチレンジアミン、N-エチルエチレンジアミン、N,N-ジエチルエチレンジアミン、トリエチルエチレンジアミン、1,2,3-トリアミノプロパン、ヒドラジン、トリス(2-アミノエチル)アミン、テトラ(アミノメチル)メタン、ジエチレントリアミン、トリエチレンテトラミン、テトラエチルペンタミン、ヘプタエチレンオクタミン、ノナエチレンデカミン、ジアザビシクロウンデセンなどのポリアミン;エタノールアミン、N-メチルエタノールアミン、N-メチルジエタノールアミン、N-エチルエタノールアミン、N-アミノエチルエタノールアミン、N-プロピルエタノールアミン、N-ブチルエタノールアミン、ジエタノールアミン、トリエタノールアミン、1-アミノ-2-プロパノール、N-メチルイソプロパノールアミン、N-エチルイソプロパノールアミン、N-プロピルイソプロパノールアミン、2-アミノプロパン-1-オール、N-メチル-2-アミノ-プロパン-1-オール、N-エチル-2-アミノ-プロパン-1-オール、1-アミノプロパン-3-オール、N-メチル-1-アミノプロパン-3-オール、N-エチル-1-アミノプロパン-3-オール、1-アミノブタン-2-オール、N-メチル-1-アミノブタン-2-オール、N-エチル-1-アミノブタン-2オール、2-アミノブタン-1-オール、N-メチル-2-アミノブタン-1-オール、N-エチル-2-アミノブタン-1-オール、3-アミノブタン-1-オール、N-メチル-3-アミノブタン-1-オール、N-エチル-3-アミノブタン-1-オール、1-アミノブタン-4-オール、N-メチル1-アミノブタン-4-オール、N-エチル-1-アミノブタン-4-オール、1-アミノ-2-メチルプロパン-2-オール、2-アミノ-2-メチルプロパン-1-オール、1-アミノペンタン-4-オール、2-アミノ-4-メチルペンタン-1-オール、2-アミノヘキサン-1-オール、3-アミノヘプタン-4-オール、1-アミノオクタン-2-オール、5-アミノオクタン-4-オール、1-アミノプパン-2,3-ジオール、2-アミノプロパン-1,3-ジオール、トリス(オキシメチル)アミノメタン、1,2-ジアミノプロパン-3-オール、1,3-ジアミノプロパン-2-オール、2-(2-アミノエトキシ)エタノール、2-(2-アミノエチルアミノ)エタノール、ジグリコールアミンなどのアルカノールアミンが好ましく挙げられ、これらを単独で又は複数を組み合わせて用いることができる。
<Amine compound>
The amine compound is responsible for adjusting the pH of the etching solution. As the amine compound, those having 2 to 10 carbon atoms can be suitably used. More specifically, ethylenediamine, trimethylenediamine, tetramethylenediamine, 1,2-propanediamine, 1,3-propanediamine, N, N-dimethyl-1,3-propanediamine, N, N-diethyl-1 , 3-propanediamine, 1,3-diaminobutane, 2,3-diaminobutane, pentamethylenediamine, 2,4-diaminopentane, hexamethylenediamine, heptamethylenediamine, octamethylenediamine, nonamethylenediamine, N-methyl Ethylenediamine, N, N-dimethylethylenediamine, trimethylethylenediamine, N-ethylethylenediamine, N, N-diethylethylenediamine, triethylethylenediamine, 1,2,3-triaminopropane, hydrazine, tris (2-aminoethyl) amino , Tetra (aminomethyl) methane, diethylenetriamine, triethylenetetramine, tetraethylpentamine, heptaethyleneoctamine, nonaethylenedecamine, diazabicycloundecene, etc .; ethanolamine, N-methylethanolamine, N-methyldiethanolamine N-ethylethanolamine, N-aminoethylethanolamine, N-propylethanolamine, N-butylethanolamine, diethanolamine, triethanolamine, 1-amino-2-propanol, N-methylisopropanolamine, N-ethylisopropanol Amine, N-propylisopropanolamine, 2-aminopropan-1-ol, N-methyl-2-amino-propan-1-ol, N-ethyl-2-amino Propan-1-ol, 1-aminopropane-3-ol, N-methyl-1-aminopropan-3-ol, N-ethyl-1-aminopropan-3-ol, 1-aminobutan-2-ol, N -Methyl-1-aminobutan-2-ol, N-ethyl-1-aminobutane-2-ol, 2-aminobutane-1-ol, N-methyl-2-aminobutan-1-ol, N-ethyl-2-aminobutane- 1-ol, 3-aminobutan-1-ol, N-methyl-3-aminobutan-1-ol, N-ethyl-3-aminobutan-1-ol, 1-aminobutane-4-ol, N-methyl 1-aminobutane -4-ol, N-ethyl-1-aminobutan-4-ol, 1-amino-2-methylpropan-2-ol, 2-amino-2-methylpropa N-1-ol, 1-aminopentan-4-ol, 2-amino-4-methylpentan-1-ol, 2-aminohexane-1-ol, 3-aminoheptan-4-ol, 1-aminooctane -2-ol, 5-aminooctane-4-ol, 1-aminopropane-2,3-diol, 2-aminopropane-1,3-diol, tris (oxymethyl) aminomethane, 1,2-diaminopropane- Preferred examples include alkanolamines such as 3-ol, 1,3-diaminopropan-2-ol, 2- (2-aminoethoxy) ethanol, 2- (2-aminoethylamino) ethanol, and diglycolamine. These can be used alone or in combination.
 これらの中でも、1-アミノ-2-プロパノール(CAS番号78-96-6:以下「1A2P」とも呼ぶ。)若しくはN,N-ジエチル-1,3-プロパンジアミン(CAS番号104-78-9:以下「NNDPA」とも呼ぶ。)が特に好ましい。また、アミン化合物はエッチング液全量に対して、2.0質量%~3.2質量%含有させるのが好ましく、2.2質量%~3.0質量%であればより好ましく、2.4~2.8質量%なら最も好ましい。 Among these, 1-amino-2-propanol (CAS number 78-96-6: hereinafter also referred to as “1A2P”) or N, N-diethyl-1,3-propanediamine (CAS number 104-78-9: (Hereinafter also referred to as “NNDPA”) is particularly preferred. The amine compound is preferably contained in an amount of 2.0 to 3.2% by mass, more preferably 2.2 to 3.0% by mass, more preferably 2.4 to 3.0% by mass with respect to the total amount of the etching solution. 2.8% by mass is most preferable.
 <過酸化水素分解抑制剤>
 本発明に係る多層膜用エッチング液では、酸化剤として過酸化水素を利用している。過酸化水素は、自己分解するため、その分解を抑制する分解抑制剤を添加する。過酸化水素分解抑制剤は、過酸化水素安定剤(若しくは「過水安定剤」)とも呼ぶ。
<Hydrogen peroxide decomposition inhibitor>
The multilayer film etching solution according to the present invention uses hydrogen peroxide as an oxidizing agent. Since hydrogen peroxide self-decomposes, a decomposition inhibitor that suppresses the decomposition is added. The hydrogen peroxide decomposition inhibitor is also referred to as a hydrogen peroxide stabilizer (or “super water stabilizer”).
 特に、本発明に係るエッチング液の場合、Cu濃度が8,000ppmまでエッチングレートの変化がわずかであることが必要であるからである。本発明では、エチレングリコールモノブチルエーテル(CAS番号111-76-2:以下「BG」とも呼ぶ。)が好適に用いられる。 This is because, in particular, in the case of the etching solution according to the present invention, it is necessary that the change in the etching rate is small up to a Cu concentration of 8,000 ppm. In the present invention, ethylene glycol monobutyl ether (CAS number 111-76-2: hereinafter also referred to as “BG”) is preferably used.
 従来、過酸化水素分解抑制剤としては、フェニル尿素、アリル尿素、1,3-ジメチル尿素、チオ尿素などの尿素系過酸化水素分解抑制剤のほか、フェニル酢酸アミド、フェニルエチレングリコールや、1-プロパノール、2-プロパノール等の低級アルコールなどが好ましく用いられていた。しかし、BGはCu濃度が8,000ppm以上の高い濃度になっても、過水の分解を抑制する顕著な効果を発揮することがわかった。 Conventional hydrogen peroxide decomposition inhibitors include urea-based hydrogen peroxide decomposition inhibitors such as phenylurea, allylurea, 1,3-dimethylurea and thiourea, as well as phenylacetamide, phenylethylene glycol, 1- Lower alcohols such as propanol and 2-propanol were preferably used. However, it has been found that BG exhibits a remarkable effect of suppressing the decomposition of overwater even when the Cu concentration becomes a high concentration of 8,000 ppm or more.
 なお、後述するように、BGは、エッチング液に一定以上入れることで効果があり、多量に入れても効果は飽和する。他の必要成分量を確保できれば、多量に入れてもエッチング液としての効果は発揮する。しかし、BGを多く加えることで、コストは高くなる。効果と価格を考慮するとBGは5質量%を超えて添加する意味はない。 Note that, as will be described later, BG is effective when it is added to the etching solution at a certain level or more, and the effect is saturated even if it is added in a large amount. If the amount of other necessary components can be ensured, the effect as an etching solution is exhibited even if a large amount is added. However, adding more BG increases the cost. Considering the effect and price, there is no point in adding BG in excess of 5% by mass.
 また、BGは共存するアミン化合物によって含有量に違いがある。例えば、アゾール類として好適に利用できるとしたNNDPAの場合、過酸化水素分解抑制剤としてのBGは、エッチング液全量に対して、0.4質量%~5.0質量%含有させるのが好ましい。 Also, the content of BG varies depending on the coexisting amine compound. For example, in the case of NNDPA that can be suitably used as an azole, BG as a hydrogen peroxide decomposition inhibitor is preferably contained in an amount of 0.4% by mass to 5.0% by mass with respect to the total amount of the etching solution.
 また、アゾール類として同じく好適に利用できるとした1A2Pの場合は、過酸化水素分解抑制剤としてのBGは、エッチング液全量に対して、0.9質量%~5.0質量%含有させるのが好ましい。 Further, in the case of 1A2P which can also be suitably used as an azole, BG as a hydrogen peroxide decomposition inhibitor should be contained in an amount of 0.9 mass% to 5.0 mass% with respect to the total amount of the etching solution. preferable.
 なお、従来過酸化水素分解抑制剤として使われていたフェニル尿素は、エッチング液全量に対して0.2質量%を超えて含有させると、フェニル基と過酸化水素が反応し、アゾール類と過酸化水素の反応物とは異なる析出物を生じた。しかし、BGはそのような析出物を発生させない。したがって析出物の抑制という点からも好適な過酸化水素分解抑制剤(過水安定剤)である。 If phenylurea, which has been used as a hydrogen peroxide decomposition inhibitor in the past, exceeds 0.2% by mass with respect to the total amount of the etching solution, the phenyl group reacts with hydrogen peroxide to react with azoles. A precipitate different from the reaction product of hydrogen oxide was produced. However, BG does not generate such precipitates. Therefore, it is also a suitable hydrogen peroxide decomposition inhibitor (overwater stabilizer) from the viewpoint of suppression of precipitates.
 <アゾール類>
 本発明に係る多層膜用エッチング液では、Cuのエッチングレートを抑制し、Moの残渣を除去するためにアゾール類を含有する。アゾール類としては、トリアゾール類、テトラゾール類、イミダゾール類、チアゾール類等が好適に利用することができる。より具体的には、以下のものが列挙できる。トリアゾール類としては、1H-ベンゾトリアゾール、5-メチル-1H-ベンゾトリアゾール、3-アミノ-1H-トリアゾール等が好適に利用できる。
<Azoles>
The multilayer film etching solution according to the present invention contains azoles in order to suppress Cu etching rate and remove Mo residue. As the azoles, triazoles, tetrazoles, imidazoles, thiazoles and the like can be suitably used. More specifically, the following can be listed. As the triazole, 1H-benzotriazole, 5-methyl-1H-benzotriazole, 3-amino-1H-triazole and the like can be preferably used.
 テトラゾール類としては、1H-テトラゾール、5-メチル-1H-テトラゾール、5-フェニル-1H-テトラゾール、5-アミノ-1H-テトラゾール等が好適に利用できる。また、イミダゾール類としては、1H-イミダゾール、1H-ベンゾイミダゾール等が好適に利用できる。また、チアゾール類としては、1,3-チアゾール、4-メチルチアゾール等が好適に利用できる。 As the tetrazole, 1H-tetrazole, 5-methyl-1H-tetrazole, 5-phenyl-1H-tetrazole, 5-amino-1H-tetrazole and the like can be suitably used. As imidazoles, 1H-imidazole, 1H-benzimidazole and the like can be preferably used. As thiazoles, 1,3-thiazole, 4-methylthiazole and the like can be suitably used.
 なお、これらのうち、テトラゾール類はエッチングレート抑制に効果が高く、とりわけ5-アミノ-1H-テトラゾール(CAS番号4418-61-5:以後「5A1HT」とも呼ぶ。)が好ましい。 Of these, tetrazoles are highly effective in suppressing the etching rate, and 5-amino-1H-tetrazole (CAS number 4418-61-5: hereinafter also referred to as “5A1HT”) is preferable.
 これらのアゾール類は、エッチング液全量に対して、0.04質量%~0.16質量%含有させるのが好ましく、0.06質量%~0.14質量%であればより好ましく、0.08質量%~0.12質量%であれば最も好ましい。 These azoles are preferably contained in an amount of 0.04% by mass to 0.16% by mass, more preferably 0.06% by mass to 0.14% by mass, based on the total amount of the etching solution. Most preferably, the content is from mass% to 0.12 mass%.
 <析出防止剤>
 すでに述べたように過酸化水素を主体とするエッチング液に有機酸を含有させると、エッチングされた配線の断面のテーパー角度を調整することができる。しかし、有機酸は過酸化水素によって酸化分解されシュウ酸が生成する。このシュウ酸とエッチングされてエッチング液中に存在する銅イオンによってシュウ酸銅が生成され、析出物となる。アルミニウムイオンは、銅よりもシュウ酸と錯体を形成しやすく、しかも溶解度はシュウ酸銅より高い。
<Precipitating agent>
As described above, when an organic acid is contained in an etchant mainly composed of hydrogen peroxide, the taper angle of the cross section of the etched wiring can be adjusted. However, organic acids are oxidized and decomposed by hydrogen peroxide to produce oxalic acid. Copper oxalate is formed by the copper ions present in the etching solution after being etched with this oxalic acid, and becomes a precipitate. Aluminum ions are easier to form complexes with oxalic acid than copper, and the solubility is higher than copper oxalate.
 そこで、本発明に係るエッチング液には、予めアルミニウム塩を含有させ、エッチングによって銅イオンが生じても、析出物(シュウ酸銅)とならないようにする。アルミニウム塩としては、硫酸アルミニウム、硝酸アルミニウム、塩化アルミニウムなどの無機塩や、乳酸アルミニウム、酢酸アルミニウム、炭酸アルミニウムなどの有機塩などが好適に利用できる。 Therefore, the etching solution according to the present invention contains an aluminum salt in advance so that even if copper ions are generated by etching, no precipitate (copper oxalate) is formed. As the aluminum salt, inorganic salts such as aluminum sulfate, aluminum nitrate, and aluminum chloride, and organic salts such as aluminum lactate, aluminum acetate, and aluminum carbonate can be suitably used.
 析出防止剤は、エッチング液全量に対して0.05質量%~0.7質量%含有させるのが好ましく、0.1質量%~0.5質量%であればより好ましく、0.2質量%~0.4質量%であれば最も好ましい。 The precipitation inhibitor is preferably contained in an amount of 0.05% to 0.7% by mass relative to the total amount of the etching solution, more preferably 0.1% to 0.5% by mass, and 0.2% by mass. It is most preferable if it is -0.4 mass%.
 <銅イオン>
 通常の多層膜用エッチング液は、Cuイオン濃度が2,000ppmから4,000ppm程度になるように、希釈用のエッチング液が追添される。過水の分解速度が速くなるため、過水濃度が低下してしまうからである。しかし、本発明に係るエッチング液は、過水の分解速度を抑制するので、より高いCuイオン濃度になっても、Cuイオンの希釈のためのエッチング液の追添は不要である。より具体的には、エッチング液のCu濃度が8,000ppmまでは、希釈のためのエッチング液を追添する必要はない。
<Copper ion>
A normal etching solution for a multilayer film is supplemented with an etching solution for dilution so that the Cu ion concentration is about 2,000 ppm to 4,000 ppm. This is because the excessive water decomposition rate increases and the excessive water concentration decreases. However, since the etching solution according to the present invention suppresses the decomposition rate of excess water, it is not necessary to add an etching solution for diluting Cu ions even when the Cu ion concentration is higher. More specifically, it is not necessary to add an etching solution for dilution until the Cu concentration of the etching solution is 8,000 ppm.
 <その他>
 本発明の多層膜用エッチング液には、これらの成分の他、水と、エッチング性能を阻害しない範囲で通常用いられる各種添加剤が添加されてもよい。エッチングでは、精密加工を目的とするため、水には異物が存在しない物が望ましい。純水若しくは超純水であれば好ましい。また、上記に説明した各成分の含有比率の範囲は、エッチング液総量で100質量%になるように適宜それぞれ調整されるのは言うまでもない。
<Others>
In addition to these components, the multilayer film etching solution of the present invention may contain water and various commonly used additives as long as the etching performance is not impaired. Etching is intended for precision processing, and therefore water is preferably free from foreign matter. Pure water or ultrapure water is preferable. Needless to say, the range of the content ratio of each component described above is appropriately adjusted so that the total amount of the etching solution is 100% by mass.
 <pH、温度>
 本発明に係る多層膜用エッチング液は、pH2~6、より好ましくはpH3~4.5の範囲で使用されるのが好ましい。また、エッチング液は、20℃から40℃の間で使用することができる。より好ましくは25℃から35℃であり、最も好ましくは30℃から35℃がよい。
<PH, temperature>
The multilayer film etching solution according to the present invention is preferably used in the range of pH 2 to 6, more preferably pH 3 to 4.5. The etching solution can be used between 20 ° C. and 40 ° C. More preferably, it is 25 degreeC to 35 degreeC, Most preferably, 30 degreeC to 35 degreeC is good.
 <保存>
 本発明に係る多層膜用エッチング液には、過酸化水素が用いられる。過酸化水素は自己分解する。そのためエッチング液には、過酸化水素分解抑制剤が含まれている。しかし、保存の際には、過酸化水素(若しくは過酸化水素水)とその他の液体を分けて保存しても良い。また、過酸化水素(若しくは過酸化水素水)、水および銅イオンを除いた原料(「エッチング液原料」と呼ぶ。)だけをまとめて保存してもよい。なお、エッチング液原料には、液体のものと粉体のものが存在してもよい。すなわち、本発明に係る多層膜用エッチング液は、エッチング液原料と、水と、過酸化水素(若しくは過酸化水素水)を合わせて完成させてもよい。
<Save>
Hydrogen peroxide is used in the multilayer film etching solution according to the present invention. Hydrogen peroxide is self-degrading. Therefore, the etchant contains a hydrogen peroxide decomposition inhibitor. However, when storing, hydrogen peroxide (or hydrogen peroxide solution) and other liquids may be stored separately. Further, only hydrogen peroxide (or hydrogen peroxide solution), raw materials excluding water and copper ions (referred to as “etching solution raw material”) may be stored together. In addition, the thing of a liquid and a powder may exist in an etching liquid raw material. That is, the multilayer film etching solution according to the present invention may be completed by combining the etching solution raw material, water, and hydrogen peroxide (or hydrogen peroxide solution).
 また、エッチング液原料と水を混ぜ合わせ、エッチング液原料の溶液を作成しておいてよい。この溶液は、後述する実施例で示すエッチング液の水の割合より少ない割合の水であってもよい。エッチング液原料と水で作製したエッチング液原料の溶液を「エッチング濃縮液」と呼ぶ。エッチング濃縮液は、エッチング液と比べると過酸化水素が無い分だけ体積が少ないので、保存や移送の際には便利である。したがって、本発明の多層膜用エッチング液は、エッチング濃縮液と水と過酸化水素を合わせて完成させてもよい。 Also, an etchant raw material solution may be prepared by mixing an etchant raw material and water. This solution may be water in a proportion smaller than the proportion of water in the etching solution shown in the examples described later. A solution of the etchant raw material prepared with the etchant raw material and water is referred to as an “etching concentrate”. The etching concentrate has a smaller volume as compared with the etching liquid because there is no hydrogen peroxide, so it is convenient for storage and transport. Therefore, the multilayer film etching solution of the present invention may be completed by combining the etching concentrate, water, and hydrogen peroxide.
 ここで、エッチング濃縮液の水は、エッチング液原料が溶解するだけの量があればよい。つまり、過酸化水素が水溶液である過酸化水素水として供給されると考えると、本発明の多層膜用エッチング液は、エッチング濃縮液と水と過酸化水素水の3つを合わせて完成させることができる。 Here, the amount of water in the etching concentrate may be sufficient to dissolve the etching solution raw material. That is, assuming that hydrogen peroxide is supplied as an aqueous hydrogen peroxide solution, the multilayer film etching solution of the present invention is completed by combining the etching concentrated solution, water, and hydrogen peroxide solution. Can do.
 また、水はエッチング濃縮液若しくは過酸化水素水に含めてしまえば、エッチング濃縮液と過酸化水素水の2つを合わせて完成させることもできる。また、本明細書において、エッチング濃縮液の各成分比率は、エッチング液が完成したときの全量に対する比率で表す。したがって、エッチング濃縮液の各成分の合計は、100質量%にはならない。 Also, if water is included in the etching concentrate or hydrogen peroxide solution, it can be completed by combining the etching concentrate and hydrogen peroxide solution. Moreover, in this specification, each component ratio of an etching concentrate is represented by the ratio with respect to the whole quantity when an etching liquid is completed. Therefore, the total of the components of the etching concentrate is not 100% by mass.
 <エッチング方法>
 本発明に係る多層膜用エッチング液を用いる対象は、モリブデンが下層で、銅が上層となった銅/モリブデンの多層膜である。下層のモリブデンの厚みは、上層の銅の厚みより薄い。下層の厚みをt0とし上層の厚みをt1とすると、t0/t1の範囲が0.01から0.2までの範囲の構成である。t0/t1の範囲がこの範囲を外れて、Mo層が厚すぎると、Mo層の残渣が生じやすく、逆に薄すぎるとCu層の下地層としての役割を果たさなくなる。
<Etching method>
The target for using the multilayer film etching solution according to the present invention is a multilayer film of copper / molybdenum in which molybdenum is a lower layer and copper is an upper layer. The lower molybdenum layer is thinner than the upper copper layer. When the thickness of the lower layer is t0 and the thickness of the upper layer is t1, the range of t0 / t1 is in the range of 0.01 to 0.2. If the range of t0 / t1 is out of this range and the Mo layer is too thick, the Mo layer residue tends to be generated, and conversely, if it is too thin, the Cu layer can no longer serve as an underlayer.
 本発明に係る多層膜用エッチング液は、保存の際に、過酸化水素とエッチング液原料および水を分けて保存しておくことで長期保存が可能になる。そこで、実際に使用する際には、これらを調合してエッチング液を完成させる。調合の方法は、最終的に過酸化水素の濃度が所定の濃度になれば、限定されるものではない。 The multilayer film etching solution according to the present invention can be stored for a long period of time by storing hydrogen peroxide, the etching solution raw material, and water separately during storage. Therefore, in actual use, these are mixed to complete the etching solution. The blending method is not limited as long as the concentration of hydrogen peroxide finally reaches a predetermined concentration.
 一例を示すと、一定量の水にエッチング液原料を混ぜたエッチング濃縮液を調製しておく。過酸化水素は通常本発明に係る多層膜用エッチング液の過酸化水素濃度より高い濃度の過酸化水素水として供給される。そこで、過酸化水素水とエッチング濃縮液を所定量ずつ調合する。この工程を多層膜用エッチング液を調合する工程と呼んでもよい。 As an example, an etching concentrate is prepared by mixing a raw material for etching with a certain amount of water. Hydrogen peroxide is usually supplied as a hydrogen peroxide solution having a concentration higher than the hydrogen peroxide concentration of the multilayer film etching solution according to the present invention. Therefore, a predetermined amount of hydrogen peroxide solution and etching concentrate is prepared. This step may be referred to as a step of preparing a multilayer film etching solution.
 エッチングを行う際は、上記の通り、pH2~6で、20℃から40℃の条件でエッチング液を使用する。したがって、エッチングの被処理基板も、この温度に余熱されるのが望ましい。被処理基板をエッチング液に接触させる方法は、特に限定されない。シャワー式のように上方からエッチング液を被処理基板に対して散布してもよいし、エッチング液のプールに被処理基板をディップさせる方法でもよい。これを多層膜用エッチング液を被処理基板に接触させる工程と呼んでも良い。 When etching is performed, as described above, an etching solution is used at a pH of 2 to 6 and a temperature of 20 ° C. to 40 ° C. Therefore, it is desirable that the substrate to be etched is also preheated to this temperature. The method for bringing the substrate to be processed into contact with the etching solution is not particularly limited. An etching solution may be sprayed on the substrate to be processed from above as in a shower type, or a method of dipping the substrate to be processed into a pool of etching solution may be used. This may be called a step of bringing the multilayer film etching solution into contact with the substrate to be processed.
 なお、被処理基板とは、ガラス等の基材の上にモリブデン層と銅層が積層され、この積層膜にパターン形成のためのレジストパターンが形成されている状態の基板である。 Note that the substrate to be processed is a substrate in which a molybdenum layer and a copper layer are laminated on a base material such as glass and a resist pattern for pattern formation is formed on the laminated film.
 次に図2、図3に簡単なシミュレーションの結果を示し、本発明に係るエッチング液の効果を示す。シミュレーションの条件は以下の通りである。総処理枚数(ガラス基板上に銅を蒸着したもの)は3,000枚で、各ガラス基板上の銅の膜厚は300nmである。エッチング槽の容量は2,600Lである。1枚の基板によるエッチング液の持ち出し量は1Lとした。したがって、エッチング液の補充量も1枚の基板毎に1L追添する。 Next, FIG. 2 and FIG. 3 show the results of a simple simulation and show the effect of the etching solution according to the present invention. The simulation conditions are as follows. The total number of processed sheets (those obtained by vapor-depositing copper on glass substrates) is 3,000, and the film thickness of copper on each glass substrate is 300 nm. The capacity of the etching tank is 2,600L. The amount of etching solution taken out by one substrate was 1 L. Accordingly, the replenishment amount of the etching solution is also added by 1 L for each substrate.
 なお、図2、図3の各グラフの横軸は基板の処理枚数(枚)を表し、0から3,000の目盛りが設けられている。3,000枚の部分を縦矢印で表した。また、各縦軸はゼロから始まっており、最大目盛りをグラフ中に示した。 2 and 3, the horizontal axis represents the number of processed substrates (sheets), and scales from 0 to 3,000 are provided. The 3,000 portions are represented by vertical arrows. Each vertical axis starts from zero, and the maximum scale is shown in the graph.
 エッチング液の過水濃度は5.3質量%から5.25質量%の間に維持させた。また、過水濃度を上げるために追添するエッチング液の過水濃度は10質量%とした。 The overwater concentration of the etching solution was maintained between 5.3 mass% and 5.25 mass%. Moreover, the overwater concentration of the etching solution added to increase the overwater concentration was set to 10% by mass.
 なお、基板の処理時間は1枚につき140秒とした。また、エッチング液中のCu濃度の初期値は2,000ppmから始めた。なお、過水の分解速度は銅イオン濃度が8,000ppmの時に0.2質量%/hrとなるように設定した。 In addition, the processing time of the board | substrate was 140 second per board | substrate. The initial value of the Cu concentration in the etching solution started from 2,000 ppm. The decomposition rate of superwater was set to 0.2 mass% / hr when the copper ion concentration was 8,000 ppm.
 図2の(a)から(f)に従来(特許文献1の場合)のエッチング液を用いた場合についての変化等を示す。Cu濃度は2,900ppmから3,500ppmの間に維持させるようにした。全てのグラフで横軸は処理枚数である。図2(a)はエッチング槽内のエッチング液のCu濃度の変化を示す。縦軸は銅イオン濃度(ppm)である。最初2,000ppmからスタートした銅イオン濃度は、およそ400枚目の被処理物で3,500ppmになった。Cuイオン濃度を希釈するためにエッチング液が追添される。 (A) to (f) of FIG. 2 show changes in the case where a conventional etching solution (in the case of Patent Document 1) is used. The Cu concentration was maintained between 2,900 ppm and 3,500 ppm. In all graphs, the horizontal axis represents the number of processed sheets. FIG. 2A shows a change in the Cu concentration of the etching solution in the etching tank. The vertical axis represents the copper ion concentration (ppm). The copper ion concentration starting from 2,000 ppm at the beginning was 3,500 ppm for the approximately 400th workpiece. An etchant is added to dilute the Cu ion concentration.
 図2(c)は、縦軸がエッチング槽に追添されるエッチング液の総量(L)を表す。処理枚数が400枚目に500Lのエッチング液を追添している。図2(a)を再度参照して、このエッチング液の追添によって、銅イオン濃度は2,900ppmまで低下した(矢印A参照)。以降、この状態が繰り返される。 FIG. 2C shows the total amount (L) of the etching solution added to the etching tank on the vertical axis. An etching solution of 500 L is added to the 400th processed sheet. Referring to FIG. 2A again, the copper ion concentration was reduced to 2,900 ppm by adding this etching solution (see arrow A). Thereafter, this state is repeated.
 図2(b)は、縦軸がエッチング液中の過水濃度(「wt%」と記載した。質量%と同義と考えてよい。)の変化を示すものである。最初の過水の比率は5.3質量%であった、過水は図2(a)で示す銅イオンによって分解される。およそ100枚の処理で、過水濃度は5.25質量%になった。そこで過水濃度を上昇させるために10質量%過水を含むエッチング液(他の組成は同じである。)が加えられる。 In FIG. 2 (b), the vertical axis shows the change in the concentration of superwater in the etching solution (described as “wt%”. It may be considered synonymous with mass%). The ratio of the initial overwater was 5.3% by mass, and the overwater is decomposed by the copper ions shown in FIG. The treatment with about 100 sheets resulted in a superwater concentration of 5.25% by mass. Therefore, an etching solution containing 10% by mass of overwater (other compositions are the same) is added to increase the overwater concentration.
 図2(d)は、過水濃度を調整するために追加する10質量%過水を含むエッチング液の総添加量を示すグラフである。縦軸は総添加量(L)である。100枚の処理で50Lを追添している。図2(b)を再度参照して、この10質量%過水を含むエッチング液の追添によって、エッチング槽中の過水濃度は再び5.3質量%に戻る(矢印B参照)。 FIG. 2 (d) is a graph showing the total amount of etching solution containing 10% by mass of overwater added to adjust the overwater concentration. The vertical axis represents the total addition amount (L). 50L is added by processing 100 sheets. Referring to FIG. 2 (b) again, the addition of the etching solution containing 10% by mass of overwater returns the concentration of overwater in the etching tank to 5.3% by mass again (see arrow B).
 図2(e)は、基板によって持ち出されるエッチング液の補充の変化を表す。縦軸はその追加量(L)である。ここでは1枚毎に1Lのエッチング液が追添される様子が示されている。 FIG. 2 (e) shows the change in the replenishment of the etching solution taken out by the substrate. The vertical axis represents the additional amount (L). Here, a state in which 1 L of etching solution is added for each sheet is shown.
 以上のような変化によるエッチング液の追添の総量を図2(f)に示す。縦軸は総量(L)で、縦軸は10,000Lまで目盛りが切ってある。このシミュレーションによれば、3,000枚の処理の間に追添したエッチング液の総量は10,000L以上必要であった。 FIG. 2 (f) shows the total amount of etching solution added due to the above changes. The vertical axis is the total amount (L), and the vertical axis is scaled up to 10,000L. According to this simulation, the total amount of etching solution added during the processing of 3,000 sheets needs to be 10,000 L or more.
 図3には、本発明に係るエッチング液の場合である。(a)から(f)は図2に対応する図である。図3(a)を参照する。本発明ではエッチング液中の銅イオン濃度が8,000ppmまでは希釈する必要はない。したがって、3,000枚の処理枚数までエッチング液中の銅イオン濃度は上昇する。 FIG. 3 shows the case of the etching solution according to the present invention. (A)-(f) is a figure corresponding to FIG. Reference is made to FIG. In the present invention, it is not necessary to dilute the copper ion concentration in the etching solution up to 8,000 ppm. Therefore, the copper ion concentration in the etching solution increases up to 3,000 processed sheets.
 なお、エッチング液中の銅イオン濃度が上昇すると、基板から持ち出されるエッチング液に含まれる銅も増えるので、エッチング槽中のエッチング液に含まれる銅イオン濃度は、処理枚数が増えるに従い、上昇傾向は緩やかになる。 As the copper ion concentration in the etching solution increases, the amount of copper contained in the etching solution taken out from the substrate also increases, so the copper ion concentration contained in the etching solution in the etching tank increases as the number of treatments increases. Be gentle.
 図3(c)は、銅イオン濃度を希釈するために追添するエッチング液量を示す。本発明に係るエッチング液では、銅イオン濃度が8,000ppmまで希釈する必要がないので、この観点で追添するエッチング液はゼロである。またこの時の過水分解速度は8,000ppmの時に0.16質量%/hrのレートとした。 FIG. 3C shows the amount of etching solution added to dilute the copper ion concentration. In the etching solution according to the present invention, since it is not necessary to dilute the copper ion concentration to 8,000 ppm, the etching solution to be added from this viewpoint is zero. At this time, the perhydrolysis rate was set to a rate of 0.16% by mass / hr at 8,000 ppm.
 図3(b)は過水濃度の変化である。銅イオン濃度が増えるに従い、過水の分解速度は速くなる。そのため、処理枚数が増えるに従い、追添の間隔は短くなっていく。したがって、10質量%過水を含むエッチング液の総添加量(図3(d)参照)は図2の場合より大きくなった。図2(d)では、最大目盛りは1,200Lであったが、図3(d)では2,000Lである。図3(e)に示す基板が持ち出した分の補充は1枚あたり1Lであり、図2の場合と同じである。 Fig. 3 (b) shows the change in the overwater concentration. As the copper ion concentration increases, the decomposition rate of superwater increases. For this reason, as the number of processed sheets increases, the interval for adding is shortened. Therefore, the total amount of the etching solution containing 10% by mass overwater (see FIG. 3D) was larger than that in FIG. In FIG. 2 (d), the maximum scale is 1,200L, but in FIG. 3 (d), it is 2,000L. The replenishment of the substrate taken out shown in FIG. 3E is 1 L per sheet, which is the same as in the case of FIG.
 図3(f)は3,000枚を処理した際のエッチング液の総追添量(L)である。縦軸の目盛りは最大4,000Lである。これを見ると本発明に係るエッチング液であれば、3,000枚を処理するために、およそ5,000Lのエッチング液を使用することになる。これは図2(f)で示した10,000Lの半分程度になる試算となった。 FIG. 3 (f) shows the total amount (L) of the etching solution when 3,000 sheets are processed. The scale on the vertical axis is a maximum of 4,000 L. In view of this, with the etching solution according to the present invention, approximately 5,000 L of the etching solution is used to process 3,000 sheets. This was a trial calculation that would be about half of the 10,000 L shown in FIG.
 このように、過水分解速度を抑制し、銅イオン濃度が高くなってもエッチング液を希釈する必要がなければ、エッチング液の使用量は大幅に低減することができる。 Thus, the amount of the etching solution used can be greatly reduced if the perhydrolysis rate is suppressed and there is no need to dilute the etching solution even if the copper ion concentration increases.
 <各種評価方法の説明>
 本発明に係る多層膜用エッチング液に対しては、銅およびモリブデンのエッチングレート(nm/min)、エッチングされた配線の断面のテーパー角(°)、モリブデン層のアンダーカット、基板上に残ったモリブデン層(「Mo残渣」と呼ぶ。)、オーバーエッチング耐性、析出物の有無、過酸化水素分解速度(質量%/18hr)の項目で評価を行った。
<Description of various evaluation methods>
For the etching solution for multilayer film according to the present invention, the etching rate (nm / min) of copper and molybdenum, the taper angle (°) of the cross section of the etched wiring, the undercut of the molybdenum layer, and the substrate remained on the substrate Evaluation was performed on the following items: molybdenum layer (referred to as “Mo residue”), over-etching resistance, presence or absence of precipitates, and hydrogen peroxide decomposition rate (mass% / 18 hr).
 エッチングレートは、以下のようにして測定した。まず、熱酸化膜100nmが形成されたシリコンウエハー上にスパッタ法により、銅は300nm、モリブデンは150nmの厚みでそれぞれ単層膜を形成した。この銅膜およびモリブデン膜を30℃(比較例によっては35℃の場合もある。)のエッチング液に20秒から60秒間接触させた。 The etching rate was measured as follows. First, a single layer film having a thickness of 300 nm for copper and 150 nm for molybdenum was formed on a silicon wafer on which a thermal oxide film of 100 nm was formed by sputtering. The copper film and the molybdenum film were brought into contact with an etching solution at 30 ° C. (may be 35 ° C. in some comparative examples) for 20 to 60 seconds.
 エッチング前後の膜の抵抗値を、定電流印加方式の4端子4探針法抵抗率計(三菱化学アナリテック製:MCP-T610型)を用いて測定した。この抵抗値の変化より膜厚変化を算出し、エッチングレートを算出した。 The resistance value of the film before and after etching was measured using a constant current application type 4-terminal 4-probe resistivity meter (manufactured by Mitsubishi Chemical Analytech: MCP-T610 type). The change in film thickness was calculated from the change in resistance value, and the etching rate was calculated.
 なお、銅のエッチングレートは250nm/min~350nm/minであれば、丸(○)と判断した。また、モリブデンのエッチングレートは60nm/min~120nm/minであれば、丸(○)とした。それ以外は規定範囲外としてバツ(×)と判断した。 In addition, if the etching rate of copper was 250 nm / min to 350 nm / min, it was judged as a circle (◯). Further, if the etching rate of molybdenum is 60 nm / min to 120 nm / min, it is set as a circle (◯). Other than that, it was judged as X (outside) as outside the specified range.
 銅とモリブデンの膜厚比はおよそ10:1なので、モリブデンのエッチングレートは速すぎるように見えるが、モリブデン層は、銅膜の下層として構成されているので、エッチングレートを上記の程度の比率にしておかないと、見かけ上同速度にエッチングできない。なお、「丸」は規格範囲内、成功若しくは合格を意味し、「バツ」は規格範囲外、失敗若しくは不合格を意味する。以下の評価でも同じである。 Since the film thickness ratio of copper to molybdenum is approximately 10: 1, the molybdenum etching rate seems to be too fast, but the molybdenum layer is configured as a lower layer of the copper film, so the etching rate is set to the above ratio. Otherwise, it cannot be etched at the same rate. “Circle” means within the standard range, success or success, and “X” means out of standard range, failure or failure. The same applies to the following evaluations.
 テーパー角は以下のようにして測定した。まず、ガラス基板上にスパッタ法でモリブデンを20nmの厚みで成膜し、その上に続けて銅を300nmの厚みで成膜し、Cu/Moの多層膜サンプルを作製した。この銅膜の上に配線形状にパターンニングしたレジストを形成し、テーパー角評価用の基材とした。つまり、基材は、基板とモリブデン膜とその上の銅膜と、銅膜上のパターンニングされたレジスト層からなる。この基材をジャストエッチングする時間の間エッチング液に浸漬させ、エッチングを行った。エッチング後のサンプルを洗浄し、乾燥させた後、配線部分を切断し、切断面を観察した。 The taper angle was measured as follows. First, a molybdenum film having a thickness of 20 nm was formed on a glass substrate by a sputtering method, and then a copper film having a thickness of 300 nm was formed thereon, thereby preparing a Cu / Mo multilayer film sample. A resist patterned into a wiring shape was formed on this copper film, and used as a base material for taper angle evaluation. That is, the base material is composed of a substrate, a molybdenum film, a copper film thereon, and a patterned resist layer on the copper film. Etching was performed by immersing the base material in an etching solution for the time of just etching. After the etching sample was washed and dried, the wiring portion was cut and the cut surface was observed.
 切断面の観測は、SEM(日立製:SU8020型)を用い、加速電圧1kV、30,000~50,000倍の条件で行った。なお、ジャストエッチングは、エッチング開始から膜が光を透過させるまでの時間である。膜が光を透過させた時点は目視で確認した。 The observation of the cut surface was performed using SEM (Hitachi: SU8020 type) under the conditions of an acceleration voltage of 1 kV and 30,000 to 50,000 times. Note that just etching is the time from the start of etching until the film transmits light. The point in time when the film transmitted light was visually confirmed.
 切断面形状を図1に示す。図1(a)に示すように、基板1とエッチングされた傾斜面6のなす角度5をテーパー角(°)とする。テーパー角5は30~60°であれば丸(○)と判断した。この角度の範囲外であれば、バツ(×)と判断した。なお、図1(a)では、Mo層は符号3、Cu層は符号2、レジストは符号4で表した。 The cut surface shape is shown in FIG. As shown in FIG. 1A, an angle 5 formed by the substrate 1 and the etched inclined surface 6 is a taper angle (°). When the taper angle 5 was 30 to 60 °, it was judged as a circle (◯). If it was out of the range of this angle, it was judged as X (x). In FIG. 1A, the Mo layer is represented by reference numeral 3, the Cu layer is represented by reference numeral 2, and the resist is represented by reference numeral 4.
 モリブデン層のアンダーカットは、図1(b)の符号10で示すように、モリブデン層3と基板1の間が早くエッチングされた状態(逆テーパー)を言う。評価は、テーパー角5の評価の際に同時にできる。モリブデン層のアンダーカットは、SEMの30,000倍から50,000倍の観測で発見されなかったら丸(○)と判断し、発見されたらバツ(×)と判断した。 The undercut of the molybdenum layer means a state (reverse taper) in which the space between the molybdenum layer 3 and the substrate 1 is quickly etched, as indicated by reference numeral 10 in FIG. The evaluation can be performed simultaneously with the evaluation of the taper angle 5. The undercut of the molybdenum layer was judged as a circle (◯) if it was not found by 30,000 to 50,000 times observation of the SEM, and was judged as a cross (×) if found.
 Mo残渣は、光学顕微鏡とSEMによる観察で、残渣が確認されたらバツ(×)、確認されなければ丸(○)と判定した。なお、光学顕微鏡は100倍程度の倍率で、明視野観察と暗視野観察で観察した。またSEMでは30,000倍から50,000倍で観察した。 When the residue was confirmed by observation with an optical microscope and SEM, the Mo residue was determined to be cross (×), and if not confirmed, it was determined to be a circle (◯). The optical microscope was observed with bright field observation and dark field observation at a magnification of about 100 times. Moreover, in SEM, it observed by 30,000 times to 50,000 times.
 オーバーエッチング耐性(「O.E.耐性」とも呼ぶ。)とは、ジャストエッチングにかかる時間の2倍の時間エッチングした時のテーパー角、モリブデン層のアンダーカット、Mo残渣を観測し、全て「丸」評価なら丸(○)と判断した。どれか1つでも「バツ」評価があればバツ(×)とした。 Over-etching resistance (also referred to as “OE resistance”) refers to taper angle, undercut of molybdenum layer, and Mo residue when etching is twice the time required for just etching. "Evaluated as a circle (○). If any one of them is evaluated as “X”, it is X (X).
 析出物の有無は、エッチング液を調合後、ボトルにて所定時間(3時間)室温放置しておき、ボトル内に水色の析出物が生じるかどうかを目視で判断した。析出物が目視観測されなければ、丸(○)と判断し、目視確認された場合はバツ(×)と判断した。 Presence / absence of precipitates was determined by visually determining whether or not a light blue precipitate was generated in the bottle after the etching solution was prepared and left at room temperature in a bottle for a predetermined time (3 hours). When the precipitate was not visually observed, it was judged as a circle (◯), and when it was visually confirmed, it was judged as a cross (×).
 過酸化水素分解速度は、調合したエッチング液に、CuイオンとMoイオンをそれぞれ8,000ppm、800ppmになるように加え、35℃で所定時間経過後(18hr(時間))の過酸化水素濃度を、滴定試薬を過マンガン酸カリウムとし、自動滴定装置(三菱化学アナリテック製GT-200)を用いて測定した。そして、過酸化水素濃度の変化量から分解速度(質量%/hr)を算出した。過酸化水素の分解速度は、好ましくは0.16質量%/hr以下であれば、量産規模で問題なしと考えられる。また、シミュレーションで大まかな見積もりをしたように、エッチング液の使用量も十分に低減させることができる。 The hydrogen peroxide decomposition rate was determined by adding Cu ions and Mo ions to the prepared etching solution so that the concentrations were 8,000 ppm and 800 ppm, respectively, and the hydrogen peroxide concentration after a predetermined time (18 hours (hours)) at 35 ° C. The titration reagent was potassium permanganate and measurement was performed using an automatic titrator (GT-200 manufactured by Mitsubishi Chemical Analytech). And the decomposition rate (mass% / hr) was computed from the variation | change_quantity of hydrogen peroxide concentration. If the decomposition rate of hydrogen peroxide is preferably 0.16% by mass / hr or less, it is considered that there is no problem on a mass production scale. In addition, the amount of the etching solution used can be sufficiently reduced as roughly estimated by the simulation.
 (実施例1)
 酸性有機酸として、
グリコール酸を1.90質量%、
マロン酸を3.40質量%、
乳酸を0.80質量%、
 アミン化合物として、
1-アミノ-2-プロパノールを2.20質量%、
 過水安定剤として、
BGを0.90質量%、
 アゾール類として、
5-アミノ-1H-テトラゾールを0.08質量%
 析出防止剤として
乳酸アルミニウムを0.26質量%
からなるエッチング液原料を水75.32質量%と調合し、エッチング濃縮液を調製した。なお、エッチング濃縮液での各成分比率は、後述する過酸化水素水と混合しエッチング液が完成したときの総量に対する比率で表す。以下の実施例および比較例についても同様である。
(Example 1)
As an acidic organic acid,
1.90% by mass of glycolic acid,
3.40% by mass of malonic acid,
0.80% by mass of lactic acid,
As an amine compound,
1.20% by mass of 1-amino-2-propanol,
As a water stabilizer,
0.90% by mass of BG,
As azoles,
0.08% by mass of 5-amino-1H-tetrazole
0.26% by mass of aluminum lactate as a precipitation inhibitor
An etching solution raw material consisting of 75.32% by mass of water was prepared to prepare an etching concentrate. Each component ratio in the etching concentrate is expressed as a ratio to the total amount when the etching liquid is completed by mixing with a hydrogen peroxide solution described later. The same applies to the following examples and comparative examples.
 35%過酸化水素水15.14質量%(エッチング液の全量に対して過酸化水素が5.3質量%と水分が9.84質量%)とエッチング濃縮液を混合し、過酸化水素濃度が5.3質量%のエッチング液を調製した。なお、水は全量で85.16質量%となる。さらに、乳酸銅を加えて銅イオン濃度が8,000ppmになるように調整した。また、モリブデン粉末を加えてモリブデン濃度が800ppmになるように調整した。また、液温は35℃で用いた。エッチング液全体に占める各成分濃度と、各評価事項の結果を表1に示す。 35% hydrogen peroxide solution 15.14% by mass (5.3% by mass of hydrogen peroxide and 9.84% by mass of water with respect to the total amount of the etching solution) and the etching concentrate were mixed, and the hydrogen peroxide concentration was An etching solution of 5.3% by mass was prepared. The total amount of water is 85.16% by mass. Further, copper lactate was added to adjust the copper ion concentration to 8,000 ppm. Further, molybdenum powder was added to adjust the molybdenum concentration to 800 ppm. The liquid temperature was 35 ° C. Table 1 shows the concentration of each component in the entire etching solution and the result of each evaluation item.
 (実施例2)
 酸性有機酸として、
グリコール酸を1.90質量%、
マロン酸を3.40質量%、
乳酸を0.80質量%、
 アミン化合物として、
1-アミノ-2-プロパノールを2.20質量%、
 過水安定剤として、
BGを2.00質量%、
 アゾール類として、
5-アミノ-1H-テトラゾールを0.08質量%
 析出防止剤として
乳酸アルミニウム0.26質量%
からなるエッチング液原料を水74.22質量%と調合し、エッチング濃縮液を調製した。
(Example 2)
As an acidic organic acid,
1.90% by mass of glycolic acid,
3.40% by mass of malonic acid,
0.80% by mass of lactic acid,
As an amine compound,
1.20% by mass of 1-amino-2-propanol,
As a water stabilizer,
2.00% by mass of BG,
As azoles,
0.08% by mass of 5-amino-1H-tetrazole
0.26% by mass of aluminum lactate as a precipitation inhibitor
The etching liquid raw material which consists of 74.22 mass% of water was prepared, and the etching concentrated liquid was prepared.
 35%過酸化水素水15.14質量%(エッチング液の全量に対して過酸化水素が5.3質量%と水分が9.84質量%)とエッチング濃縮液を混合し、過酸化水素濃度が5.3質量%のエッチング液を調製した。なお、水は全量で84.06質量%となる。さらに、乳酸銅を加えて銅イオン濃度が8,000ppmになるように調整した。また、モリブデン粉末を加えてモリブデン濃度が800ppmになるように調整した。また、液温は35℃で用いた。エッチング液全体に占める各成分濃度と、各評価事項の結果を表1に示す。 35% hydrogen peroxide solution 15.14% by mass (5.3% by mass of hydrogen peroxide and 9.84% by mass of water with respect to the total amount of the etching solution) and the etching concentrate were mixed, and the hydrogen peroxide concentration was An etching solution of 5.3% by mass was prepared. The total amount of water is 84.06% by mass. Further, copper lactate was added to adjust the copper ion concentration to 8,000 ppm. Further, molybdenum powder was added to adjust the molybdenum concentration to 800 ppm. The liquid temperature was 35 ° C. Table 1 shows the concentration of each component in the entire etching solution and the result of each evaluation item.
 (実施例3)
 酸性有機酸として、
グリコール酸を1.90質量%、
マロン酸を3.40質量%、
乳酸を0.80質量%、
 アミン化合物として、
NNDPAを2.20質量%、
 過水安定剤として、
BGを0.40質量%、
 アゾール類として、
5-アミノ-1H-テトラゾールを0.08質量%
 析出防止剤として
乳酸アルミニウムを0.26質量%
からなるエッチング液原料を水75.82質量%と調合し、エッチング濃縮液を調製した。
(Example 3)
As an acidic organic acid,
1.90% by mass of glycolic acid,
3.40% by mass of malonic acid,
0.80% by mass of lactic acid,
As an amine compound,
2.20% by mass of NNDPA,
As a water stabilizer,
0.40% by mass of BG,
As azoles,
0.08% by mass of 5-amino-1H-tetrazole
0.26% by mass of aluminum lactate as a precipitation inhibitor
An etching solution raw material consisting of 75.82% by mass of water was prepared to prepare an etching concentrate.
 35%過酸化水素水15.14質量%(エッチング液の全量に対して過酸化水素が5.3質量%と水分が9.84質量%)とエッチング濃縮液を混合し、過酸化水素濃度が5.3質量%のエッチング液を調製した。なお、水は全量で85.66質量%となる。さらに、乳酸銅を加えて銅イオン濃度が8,000ppmになるように調整した。また、モリブデン粉末を加えてモリブデン濃度が800ppmになるように調整した。また、液温は35℃で用いた。エッチング液全体に占める各成分濃度と、各評価事項の結果を表1に示す。 35% hydrogen peroxide solution 15.14% by mass (5.3% by mass of hydrogen peroxide and 9.84% by mass of water with respect to the total amount of the etching solution) and the etching concentrate were mixed, and the hydrogen peroxide concentration was An etching solution of 5.3% by mass was prepared. The total amount of water is 85.66% by mass. Further, copper lactate was added to adjust the copper ion concentration to 8,000 ppm. Further, molybdenum powder was added to adjust the molybdenum concentration to 800 ppm. The liquid temperature was 35 ° C. Table 1 shows the concentration of each component in the entire etching solution and the result of each evaluation item.
 (実施例4)
 酸性有機酸として、
グリコール酸を1.90質量%、
マロン酸を3.40質量%、
乳酸を0.80質量%、
 アミン化合物として、
NNDPAを2.20質量%、
 過水安定剤として、
BGを0.90質量%、
 アゾール類として、
5-アミノ-1H-テトラゾールを0.08質量%
 析出防止剤として
乳酸アルミニウムを0.26質量%
からなるエッチング液原料を水75.32質量%と調合し、エッチング濃縮液を調製した。
Example 4
As an acidic organic acid,
1.90% by mass of glycolic acid,
3.40% by mass of malonic acid,
0.80% by mass of lactic acid,
As an amine compound,
2.20% by mass of NNDPA,
As a water stabilizer,
0.90% by mass of BG,
As azoles,
0.08% by mass of 5-amino-1H-tetrazole
0.26% by mass of aluminum lactate as a precipitation inhibitor
An etching solution raw material consisting of 75.32% by mass of water was prepared to prepare an etching concentrate.
 35%過酸化水素水15.14質量%(エッチング液の全量に対して過酸化水素が5.3質量%と水分が9.84質量%)とエッチング濃縮液を混合し、過酸化水素濃度が5.3質量%のエッチング液を調製した。なお、水は全量で85.16質量%となる。さらに、乳酸銅を加えて銅イオン濃度が8,000ppmになるように調整した。また、モリブデン粉末を加えてモリブデン濃度が800ppmになるように調整した。また、液温は35℃で用いた。エッチング液全体に占める各成分濃度と、各評価事項の結果を表1に示す。 35% hydrogen peroxide solution 15.14% by mass (5.3% by mass of hydrogen peroxide and 9.84% by mass of water with respect to the total amount of the etching solution) and the etching concentrate were mixed, and the hydrogen peroxide concentration was An etching solution of 5.3% by mass was prepared. The total amount of water is 85.16% by mass. Further, copper lactate was added to adjust the copper ion concentration to 8,000 ppm. Further, molybdenum powder was added to adjust the molybdenum concentration to 800 ppm. The liquid temperature was 35 ° C. Table 1 shows the concentration of each component in the entire etching solution and the result of each evaluation item.
 (実施例5)
 酸性有機酸として、
グリコール酸を1.90質量%、
マロン酸を3.40質量%、
乳酸を0.80質量%、
 アミン化合物として、
NNDPAを2.20質量%、
 過水安定剤として、
BGを2.00質量%、
 アゾール類として、
5-アミノ-1H-テトラゾールを0.08質量%
 析出防止剤として
乳酸アルミニウムを0.26質量%
からなるエッチング液原料を水74.22質量%と調合し、エッチング濃縮液を調製した。
(Example 5)
As an acidic organic acid,
1.90% by mass of glycolic acid,
3.40% by mass of malonic acid,
0.80% by mass of lactic acid,
As an amine compound,
2.20% by mass of NNDPA,
As a water stabilizer,
2.00% by mass of BG,
As azoles,
0.08% by mass of 5-amino-1H-tetrazole
0.26% by mass of aluminum lactate as a precipitation inhibitor
The etching liquid raw material which consists of 74.22 mass% of water was prepared, and the etching concentrated liquid was prepared.
 35%過酸化水素水15.14質量%(エッチング液の全量に対して過酸化水素が5.3質量%と水分が9.84質量%)とエッチング濃縮液を混合し、過酸化水素濃度が5.3質量%のエッチング液を調製した。なお、水は全量で84.06質量%となる。さらに、乳酸銅を加えて銅イオン濃度が8,000ppmになるように調整した。また、モリブデン粉末を加えてモリブデン濃度が800ppmになるように調整した。また、液温は35℃で用いた。エッチング液全体に占める各成分濃度と、各評価事項の結果を表1に示す。 35% hydrogen peroxide solution 15.14% by mass (5.3% by mass of hydrogen peroxide and 9.84% by mass of water with respect to the total amount of the etching solution) and the etching concentrate were mixed, and the hydrogen peroxide concentration was An etching solution of 5.3% by mass was prepared. The total amount of water is 84.06% by mass. Further, copper lactate was added to adjust the copper ion concentration to 8,000 ppm. Further, molybdenum powder was added to adjust the molybdenum concentration to 800 ppm. The liquid temperature was 35 ° C. Table 1 shows the concentration of each component in the entire etching solution and the result of each evaluation item.
 (比較例1)
 酸性有機酸として、
グリコール酸を1.90質量%、
マロン酸を3.40質量%、
乳酸を0.80質量%、
 アミン化合物として、
1-アミノ-2-プロパノールを2.20質量%、
 過水安定剤として、
BGを0.30質量%、
 アゾール類として、
5-アミノ-1H-テトラゾールを0.08質量%
 析出防止剤として
乳酸アルミニウム0.26質量%
からなるエッチング液原料を水75.92質量%と調合し、エッチング濃縮液を調製した。
(Comparative Example 1)
As an acidic organic acid,
1.90% by mass of glycolic acid,
3.40% by mass of malonic acid,
0.80% by mass of lactic acid,
As an amine compound,
1.20% by mass of 1-amino-2-propanol,
As a water stabilizer,
0.30% by mass of BG,
As azoles,
0.08% by mass of 5-amino-1H-tetrazole
0.26% by mass of aluminum lactate as a precipitation inhibitor
The etching liquid raw material which consists of was mixed with 75.92 mass% of water, and the etching concentrated liquid was prepared.
 35%過酸化水素水15.14質量%(エッチング液の全量に対して過酸化水素が5.3質量%と水分が9.84質量%)とエッチング濃縮液を混合し、過酸化水素濃度が5.3質量%のエッチング液を調製した。なお、水は全量で85.76質量%となる。さらに、乳酸銅を加えて銅イオン濃度が8,000ppmになるように調整した。また、モリブデン粉末を加えてモリブデン濃度が800ppmになるように調整した。また、液温は35℃で用いた。エッチング液全体に占める各成分濃度と、各評価事項の結果を表2に示す。 35% hydrogen peroxide solution 15.14% by mass (5.3% by mass of hydrogen peroxide and 9.84% by mass of water with respect to the total amount of the etching solution) and the etching concentrate were mixed, and the hydrogen peroxide concentration was An etching solution of 5.3% by mass was prepared. The total amount of water is 85.76% by mass. Further, copper lactate was added to adjust the copper ion concentration to 8,000 ppm. Further, molybdenum powder was added to adjust the molybdenum concentration to 800 ppm. The liquid temperature was 35 ° C. Table 2 shows the concentration of each component in the entire etching solution and the result of each evaluation item.
 (比較例2)
 酸性有機酸として、
グリコール酸を1.90質量%、
マロン酸を3.40質量%、
乳酸を0.80質量%、
 アミン化合物として、
1-アミノ-2-プロパノールを2.20質量%、
 過水安定剤として、
BGを0.40質量%、
 アゾール類として、
5-アミノ-1H-テトラゾールを0.08質量%
 析出防止剤として
乳酸アルミニウム0.26質量%
からなるエッチング液原料を水75.82質量%と調合し、エッチング濃縮液を調製した。
(Comparative Example 2)
As an acidic organic acid,
1.90% by mass of glycolic acid,
3.40% by mass of malonic acid,
0.80% by mass of lactic acid,
As an amine compound,
1.20% by mass of 1-amino-2-propanol,
As a water stabilizer,
0.40% by mass of BG,
As azoles,
0.08% by mass of 5-amino-1H-tetrazole
0.26% by mass of aluminum lactate as a precipitation inhibitor
An etching solution raw material consisting of 75.82% by mass of water was prepared to prepare an etching concentrate.
 35%過酸化水素水15.14質量%(エッチング液の全量に対して過酸化水素が5.3質量%と水分が9.84質量%)とエッチング濃縮液を混合し、過酸化水素濃度が5.3質量%のエッチング液を調製した。なお、水は全量で85.66質量%となる。さらに、乳酸銅を加えて銅イオン濃度が8,000ppmになるように調整した。また、モリブデン粉末を加えてモリブデン濃度が800ppmになるように調整した。また、液温は35℃で用いた。エッチング液全体に占める各成分濃度と、各評価事項の結果を表2に示す。
 
35% hydrogen peroxide solution 15.14% by mass (5.3% by mass of hydrogen peroxide and 9.84% by mass of water with respect to the total amount of the etching solution) and the etching concentrate were mixed, and the hydrogen peroxide concentration was An etching solution of 5.3% by mass was prepared. The total amount of water is 85.66% by mass. Further, copper lactate was added to adjust the copper ion concentration to 8,000 ppm. Further, molybdenum powder was added to adjust the molybdenum concentration to 800 ppm. The liquid temperature was 35 ° C. Table 2 shows the concentration of each component in the entire etching solution and the result of each evaluation item.
 (比較例3)
 酸性有機酸として、
グリコール酸を1.90質量%、
マロン酸を3.40質量%、
乳酸を0.80質量%、
 アミン化合物として、
NNDPAを2.20質量%、
 過水安定剤として、
BGを0.30質量%、
 アゾール類として、
5-アミノ-1H-テトラゾールを0.08質量%
 析出防止剤として
乳酸アルミニウムを0.26質量%
からなるエッチング液原料を水75.92質量%と調合し、エッチング濃縮液を調製した。
(Comparative Example 3)
As an acidic organic acid,
1.90% by mass of glycolic acid,
3.40% by mass of malonic acid,
0.80% by mass of lactic acid,
As an amine compound,
2.20% by mass of NNDPA,
As a water stabilizer,
0.30% by mass of BG,
As azoles,
0.08% by mass of 5-amino-1H-tetrazole
0.26% by mass of aluminum lactate as a precipitation inhibitor
The etching liquid raw material which consists of was mixed with 75.92 mass% of water, and the etching concentrated liquid was prepared.
 35%過酸化水素水15.14質量%(エッチング液の全量に対して過酸化水素が5.3質量%と水分が9.84質量%)とエッチング濃縮液を混合し、過酸化水素濃度が5.3質量%のエッチング液を調製した。なお、水は全量で85.76質量%となる。さらに、乳酸銅を加えて銅イオン濃度が8,000ppmになるように調整した。また、モリブデン粉末を加えてモリブデン濃度が800ppmになるように調整した。また、液温は35℃で用いた。エッチング液全体に占める各成分濃度と、各評価事項の結果を表2に示す。 35% hydrogen peroxide solution 15.14% by mass (5.3% by mass of hydrogen peroxide and 9.84% by mass of water with respect to the total amount of the etching solution) and the etching concentrate were mixed, and the hydrogen peroxide concentration was An etching solution of 5.3% by mass was prepared. The total amount of water is 85.76% by mass. Further, copper lactate was added to adjust the copper ion concentration to 8,000 ppm. Further, molybdenum powder was added to adjust the molybdenum concentration to 800 ppm. The liquid temperature was 35 ° C. Table 2 shows the concentration of each component in the entire etching solution and the result of each evaluation item.
 (比較例4)
 酸性有機酸として、
グリコール酸を1.87質量%、
マロン酸を3.41質量%、
乳酸を0.69質量%、
 アミン化合物として、
1-アミノ-2-プロパノールを2.20質量%、
 過水安定剤として、
フェニル尿素を0.10質量%、
 アゾール類として、
5-アミノ-1H-テトラゾールを0.12質量%
 析出防止剤として
硝酸アルミニウムを0.28質量%
からなるエッチング液原料を水76.19質量%と調合し、エッチング濃縮液を調製した。
(Comparative Example 4)
As an acidic organic acid,
1.87% by mass of glycolic acid,
3.41% by weight of malonic acid,
0.69% by mass of lactic acid,
As an amine compound,
1.20% by mass of 1-amino-2-propanol,
As a water stabilizer,
0.10% by mass of phenylurea,
As azoles,
0.12% by mass of 5-amino-1H-tetrazole
0.28% by mass of aluminum nitrate as a precipitation inhibitor
An etching solution raw material consisting of 76.19% by mass of water was prepared to prepare an etching concentrate.
 35%過酸化水素水15.14質量%(エッチング液の全量に対して過酸化水素が5.3質量%と水分が9.84質量%)とエッチング濃縮液を混合し、過酸化水素濃度が5.3質量%のエッチング液を調製した。なお、水は全量で86.03質量%となる。さらに、乳酸銅を加えて銅イオン濃度が8,000ppmになるように調整した。また、モリブデン粉末を加えてモリブデン濃度が800ppmになるように調整した。また、液温は35℃で用いた。エッチング液全体に占める各成分濃度と、各評価事項の結果を表2に示す。 35% hydrogen peroxide solution 15.14% by mass (5.3% by mass of hydrogen peroxide and 9.84% by mass of water with respect to the total amount of the etching solution) and the etching concentrate were mixed, and the hydrogen peroxide concentration was An etching solution of 5.3% by mass was prepared. The total amount of water is 86.03% by mass. Further, copper lactate was added to adjust the copper ion concentration to 8,000 ppm. Further, molybdenum powder was added to adjust the molybdenum concentration to 800 ppm. The liquid temperature was 35 ° C. Table 2 shows the concentration of each component in the entire etching solution and the result of each evaluation item.
 (比較例5)
 酸性有機酸として、
グリコール酸を1.87質量%、
マロン酸を3.41質量%、
乳酸を0.69質量%、
 アミン化合物として、
1-アミノ-2-プロパノールを2.20質量%、
 過水安定剤として、
フェニル尿素を0.10質量%、
 アゾール類として、
5-アミノ-1H-テトラゾールを0.12質量%
 析出防止剤として
乳酸アルミニウムを0.22質量%
からなるエッチング液原料を水76.25質量%と調合し、エッチング濃縮液を調製した。
(Comparative Example 5)
As an acidic organic acid,
1.87% by mass of glycolic acid,
3.41% by weight of malonic acid,
0.69% by mass of lactic acid,
As an amine compound,
1.20% by mass of 1-amino-2-propanol,
As a water stabilizer,
0.10% by mass of phenylurea,
As azoles,
0.12% by mass of 5-amino-1H-tetrazole
0.22% by mass of aluminum lactate as a precipitation inhibitor
The etching liquid raw material which consists of was mixed with water 76.25 mass%, and the etching concentrated liquid was prepared.
 35%過酸化水素水15.14質量%(エッチング液の全量に対して過酸化水素が5.3質量%と水分が9.84質量%)とエッチング濃縮液を混合し、過酸化水素濃度が5.3質量%のエッチング液を調製した。なお、水は全量で86.09質量%となる。さらに、乳酸銅を加えて銅イオン濃度が8,000ppmになるように調整した。また、モリブデン粉末を加えてモリブデン濃度が800ppmになるように調整した。また、液温は35℃で用いた。エッチング液全体に占める各成分濃度と、各評価事項の結果を表2に示す。 35% hydrogen peroxide solution 15.14% by mass (5.3% by mass of hydrogen peroxide and 9.84% by mass of water with respect to the total amount of the etching solution) and the etching concentrate were mixed, and the hydrogen peroxide concentration was An etching solution of 5.3% by mass was prepared. The total amount of water is 86.09% by mass. Further, copper lactate was added to adjust the copper ion concentration to 8,000 ppm. Further, molybdenum powder was added to adjust the molybdenum concentration to 800 ppm. The liquid temperature was 35 ° C. Table 2 shows the concentration of each component in the entire etching solution and the result of each evaluation item.
 (比較例6)
 酸性有機酸として、
グリコール酸を1.87質量%、
マロン酸を3.41質量%、
乳酸を0.69質量%、
 アミン化合物として、
1-アミノ-2-プロパノールを2.20質量%、
 過水安定剤として、
フェニル尿素を0.10質量%、
 アゾール類として、
5-アミノ-1H-テトラゾールを0.12質量%
 析出防止剤として
βアラニンを0.56質量%、
硝酸アルミニウムを0.28質量%
からなるエッチング液原料を水75.63質量%と調合し、エッチング濃縮液を調製した。
(Comparative Example 6)
As an acidic organic acid,
1.87% by mass of glycolic acid,
3.41% by weight of malonic acid,
0.69% by mass of lactic acid,
As an amine compound,
1.20% by mass of 1-amino-2-propanol,
As a water stabilizer,
0.10% by mass of phenylurea,
As azoles,
0.12% by mass of 5-amino-1H-tetrazole
0.56% by mass of β-alanine as a precipitation inhibitor,
0.28% by mass of aluminum nitrate
The etching liquid raw material which consists of with 75.63 mass% of water was prepared, and the etching concentrated liquid was prepared.
 35%過酸化水素水15.14質量%(エッチング液の全量に対して過酸化水素が5.3質量%と水分が9.84質量%)とエッチング濃縮液を混合し、過酸化水素濃度が5.3質量%のエッチング液を調製した。なお、水は全量で85.47質量%となる。さらに、乳酸銅を加えて銅イオン濃度が8,000ppmになるように調整した。また、モリブデン粉末を加えてモリブデン濃度が800ppmになるように調整した。また、液温は35℃で用いた。エッチング液全体に占める各成分濃度と、各評価事項の結果を表2に示す。 35% hydrogen peroxide solution 15.14% by mass (5.3% by mass of hydrogen peroxide and 9.84% by mass of water with respect to the total amount of the etching solution) and the etching concentrate were mixed, and the hydrogen peroxide concentration was An etching solution of 5.3% by mass was prepared. The total amount of water is 85.47% by mass. Further, copper lactate was added to adjust the copper ion concentration to 8,000 ppm. Further, molybdenum powder was added to adjust the molybdenum concentration to 800 ppm. The liquid temperature was 35 ° C. Table 2 shows the concentration of each component in the entire etching solution and the result of each evaluation item.
 (比較例7)
 酸性有機酸として、
グリコール酸を1.87質量%、
マロン酸を3.41質量%、
乳酸を0.69質量%、
 アミン化合物として、
1-アミノ-2-プロパノールを2.20質量%、
 過水安定剤として、
フェニル尿素を0.10質量%、
 アゾール類として、
5-アミノ-1H-テトラゾールを0.12質量%
 析出防止剤として
βアラニンを0.56質量%、
乳酸アルミニウムを0.22質量%
からなるエッチング液原料を水75.69質量%と調合し、エッチング濃縮液を調製した。
(Comparative Example 7)
As an acidic organic acid,
1.87% by mass of glycolic acid,
3.41% by weight of malonic acid,
0.69% by mass of lactic acid,
As an amine compound,
1.20% by mass of 1-amino-2-propanol,
As a water stabilizer,
0.10% by mass of phenylurea,
As azoles,
0.12% by mass of 5-amino-1H-tetrazole
0.56% by mass of β-alanine as a precipitation inhibitor,
0.22% by mass of aluminum lactate
An etching solution raw material consisting of 75.69% by mass of water was prepared to prepare an etching concentrate.
 35%過酸化水素水15.14質量%(エッチング液の全量に対して過酸化水素が5.3質量%と水分が9.84質量%)とエッチング濃縮液を混合し、過酸化水素濃度が5.3質量%のエッチング液を調製した。なお、水は全量で85.53質量%となる。さらに、乳酸銅を加えて銅イオン濃度が8,000ppmになるように調整した。また、モリブデン粉末を加えてモリブデン濃度が800ppmになるように調整した。また、液温は35℃で用いた。エッチング液全体に占める各成分濃度と、各評価事項の結果を表2に示す。 35% hydrogen peroxide solution 15.14% by mass (5.3% by mass of hydrogen peroxide and 9.84% by mass of water with respect to the total amount of the etching solution) and the etching concentrate were mixed, and the hydrogen peroxide concentration was An etching solution of 5.3% by mass was prepared. The total amount of water is 85.53% by mass. Further, copper lactate was added to adjust the copper ion concentration to 8,000 ppm. Further, molybdenum powder was added to adjust the molybdenum concentration to 800 ppm. The liquid temperature was 35 ° C. Table 2 shows the concentration of each component in the entire etching solution and the result of each evaluation item.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2を参照して、比較例1、2、3は何れも過水安定剤としてBGを含んでいる。しかし、いずれの場合も過水分解速度は0.16質量%より高かった。図4には、比較例1、2、3と実施例1乃至5の過水分解速度をグラフにしたものを示す。横軸はBGの含有量(質量%)であり、縦軸は過水分解速度(質量%/hr)である。 Referring to Table 2, Comparative Examples 1, 2, and 3 all contain BG as a superwater stabilizer. However, in all cases, the perhydrolysis rate was higher than 0.16% by mass. FIG. 4 is a graph showing the perhydrolysis rates of Comparative Examples 1, 2, and 3 and Examples 1 to 5. The horizontal axis represents the content of BG (mass%), and the vertical axis represents the perhydrolysis rate (mass% / hr).
 黒四角はアミン化合物として1A2Pを使った場合であり、黒丸はアミン化合物としてNNDPAを用いた場合である。なお、比較例1、2、3には、黒四角および黒丸の中に小さな白丸を入れたシンボルとした。 The black square is when 1A2P is used as the amine compound, and the black circle is when NNDPA is used as the amine compound. In Comparative Examples 1, 2, and 3, the symbols are black squares and black circles with small white circles.
 図4を参照して、1A2Pの場合およびNNDPAの場合とも、過水安定剤のBGの量が増えると、過水分解速度が低下した。また、1A2PよりNNDPAを用いた方が、過水分解速度はより低下した。 Referring to FIG. 4, in both the cases of 1A2P and NNDPA, when the amount of the BG of the overwater stabilizer increased, the perwater decomposition rate decreased. In addition, the perhydrolysis rate was lower when NNDPA was used than 1A2P.
 再度表2を参照して、比較例4乃至7は過水安定剤として従来使用されていたフェニル尿素を用いた場合である。比較例4乃至7(アミン化合物として1A2Pを用いた場合)は、過水分解速度は速く、最も遅い比較例7であっても、0.219質量%/hrであった。 Referring to Table 2 again, Comparative Examples 4 to 7 are cases in which phenylurea conventionally used as a water stabilizer is used. In Comparative Examples 4 to 7 (when 1A2P was used as the amine compound), the perhydrolysis rate was fast, and even the slowest Comparative Example 7 was 0.219% by mass / hr.
 再度図4を参照して、比較例7の場合の過水分解速度を一点鎖線で示した。図4より、アミン化合物として1A2Pを用いた場合は、過水安定剤としてのBGは、0.9質量%以上必要である。また、アミン化合物としてNNDPAを用いた場合は、過水安定剤としてのBGを0.4質量%以上含有させればよいことが分かる。 Referring to FIG. 4 again, the overwater decomposition rate in the case of Comparative Example 7 is indicated by a one-dot chain line. As shown in FIG. 4, when 1A2P is used as the amine compound, BG as a perwater stabilizer needs to be 0.9% by mass or more. Moreover, when NNDPA is used as an amine compound, it turns out that what is necessary is just to contain 0.4 mass% or more of BG as a super-water stabilizer.
 一方、過水安定剤の添加はエッチング液全量に対して2.0質量%以上を混入してもその効果(過水分解速度の低下)はほとんど飽和した。なお、実施例ではBGの含有量が2.0質量%以上の例は省略した。したがって、図4のグラフにもBG濃度が2.0質量%以上のプロット点はない。 On the other hand, even when 2.0% by mass or more of the addition of the overwater stabilizer was mixed with respect to the total amount of the etching solution, the effect (reduction in the overwater decomposition rate) was almost saturated. In the examples, examples in which the content of BG is 2.0 mass% or more are omitted. Therefore, there is no plot point having a BG concentration of 2.0% by mass or more in the graph of FIG.
 以上をまとめると、実施例としては、アミン化合物がNNDPAの場合は、BGが0.4質量%~2.0質量%が好ましく、0.9質量%~2.0質量%がより好ましく、2.0質量%であればもっとも好ましい事を示した。また、アミン化合物が1-アミノ-2-プロパノールの場合は、BGが0.9質量%~2.0質量%であれば好ましく、2.0質量%であればより好ましい事を示した。 In summary, as an example, when the amine compound is NNDPA, BG is preferably 0.4% by mass to 2.0% by mass, more preferably 0.9% by mass to 2.0% by mass, and 2% by mass. 0.0 mass% indicates the most preferable thing. Further, when the amine compound is 1-amino-2-propanol, the BG is preferably 0.9% by mass to 2.0% by mass, and more preferably 2.0% by mass.
 一方、すでに説明したように、BGは、5質量%を超えて含有させることは意味がない。したがって、BGの範囲は以下のように言うことができる。アミン化合物がNNDPAの場合は、BGが0.4質量%~5.0質量%が好ましく、0.9質量%~5.0質量%がより好ましく、2.0質量%~5.0質量%であればもっとも好ましい。また、アミン化合物が1-アミノ-2-プロパノールの場合は、BGが0.9質量%~5.0質量%であれば好ましく、2.0質量%~5.0質量%であればより好ましい。 On the other hand, as already explained, it is meaningless to contain BG in excess of 5% by mass. Therefore, the range of BG can be said as follows. When the amine compound is NNDPA, BG is preferably 0.4% by mass to 5.0% by mass, more preferably 0.9% by mass to 5.0% by mass, and 2.0% by mass to 5.0% by mass. If so, it is most preferable. When the amine compound is 1-amino-2-propanol, BG is preferably 0.9% by mass to 5.0% by mass, more preferably 2.0% by mass to 5.0% by mass. .
 本発明に係るエッチング液は、モリブデンと銅の多層膜をエッチングする際に好適に利用することができる。特に、銅イオン濃度が非常に高くなっても、過酸化水素水の分解速度を抑制することができるので、長期間にわたって所定のエッチングレートの範囲を維持することができる。 The etching solution according to the present invention can be suitably used when etching a multilayer film of molybdenum and copper. In particular, even when the copper ion concentration becomes very high, the decomposition rate of the hydrogen peroxide solution can be suppressed, so that the predetermined etching rate range can be maintained over a long period of time.
1 基板
2 Cu層
3 Mo層
4 レジスト
5 テーパー角
6 傾斜面
10 逆テーパー

 
1 Substrate 2 Cu layer 3 Mo layer 4 Resist 5 Taper angle 6 Inclined surface 10 Reverse taper

Claims (11)

  1.  過酸化水素と、
     酸性有機酸と、
     アミン化合物と、
     過酸化水素分解抑制剤と、
     アゾール類と、
     アルミニウム塩を含む析出防止剤を含み、
     前記過酸化水素分解抑制剤としてエチレングリコールモノブチルエーテルを0.4質量%以上5質量%以下の割合で含み、
     前記アミン化合物がN,N-ジエチル-1,3-プロパンジアミンであることを特徴とする多層膜用エッチング液。
    Hydrogen peroxide,
    An acidic organic acid,
    An amine compound;
    A hydrogen peroxide decomposition inhibitor;
    Azoles,
    Including a precipitation inhibitor comprising an aluminum salt;
    Containing 0.4% by mass or more and 5% by mass or less of ethylene glycol monobutyl ether as the hydrogen peroxide decomposition inhibitor;
    A multilayer film etching solution, wherein the amine compound is N, N-diethyl-1,3-propanediamine.
  2.  過酸化水素と、
     酸性有機酸と、
     アミン化合物と、
     過酸化水素分解抑制剤と、
     アゾール類と、
     アルミニウム塩を含む析出防止剤を含み、
     前記過酸化水素分解抑制剤としてエチレングリコールモノブチルエーテルを0.9質量%以上5質量%以下の割合で含み、
     前記アミン化合物が1-アミノ-2-プロパノールであることを特徴とする多層膜用エッチング液。
    Hydrogen peroxide,
    An acidic organic acid,
    An amine compound;
    A hydrogen peroxide decomposition inhibitor;
    Azoles,
    Including a precipitation inhibitor comprising an aluminum salt;
    As the hydrogen peroxide decomposition inhibitor, ethylene glycol monobutyl ether is contained in a proportion of 0.9% by mass to 5% by mass,
    An etching solution for multilayer films, wherein the amine compound is 1-amino-2-propanol.
  3.  前記アルミニウム塩は乳酸アルミニウムであることを特徴とする請求項1または2のいずれかの請求項に記載された多層膜用エッチング液。 3. The multilayer film etching solution according to claim 1, wherein the aluminum salt is aluminum lactate.
  4.  前記酸性有機酸は、グリコール酸、マロン酸、乳酸のうち少なくとも1種を含むことを特徴とする請求項1または2の何れかの請求項に記載された多層膜用エッチング液。 3. The multilayer film etching solution according to claim 1, wherein the acidic organic acid includes at least one of glycolic acid, malonic acid, and lactic acid.
  5.  前記アゾール類は、5-アミノ-1H-テトラゾールであることを特徴とする請求項1または2の何れかの請求項に記載された多層膜用エッチング液。 3. The multilayer film etching solution according to claim 1, wherein the azole is 5-amino-1H-tetrazole.
  6.  さらに銅イオンを8,000ppm以上含むことを特徴とする請求項1または2の何れかの請求項に記載された多層膜用エッチング液。 The multilayer film etching solution according to claim 1, further comprising 8,000 ppm or more of copper ions.
  7.  酸性有機酸と、
     アミン化合物と、
     過酸化水素分解抑制剤と、
     アゾール類と、
     アルミニウム塩を含む析出防止剤と、
     水を含み、
     前記過酸化水素分解抑制剤としてエチレングリコールモノブチルエーテルをエッチング液としての最終調合後の全量に対して0.4質量%以上5質量%以下の割合で含み、
     前記アミン化合物がN,N-ジエチル-1,3-プロパンジアミンであることを特徴とする多層膜用エッチング濃縮液。
    An acidic organic acid,
    An amine compound;
    A hydrogen peroxide decomposition inhibitor;
    Azoles,
    A precipitation inhibitor comprising an aluminum salt;
    Including water,
    Including ethylene glycol monobutyl ether as the hydrogen peroxide decomposition inhibitor in a proportion of 0.4% by mass or more and 5% by mass or less with respect to the total amount after final preparation as an etching solution,
    An etching concentrate for multilayer film, wherein the amine compound is N, N-diethyl-1,3-propanediamine.
  8.  酸性有機酸と、
     アミン化合物と、
     過酸化水素分解抑制剤と、
     アゾール類と、
     アルミニウム塩を含む析出防止剤と、
     水を含み、
     前記過酸化水素分解抑制剤としてエチレングリコールモノブチルエーテルをエッチング液としての最終調合後の全量に対して0.9質量%以上5質量%以下の割合で含み、
     前記アミン化合物が1-アミノ-2-プロパノールであることを特徴とする多層膜用エッチング濃縮液。
    An acidic organic acid,
    An amine compound;
    A hydrogen peroxide decomposition inhibitor;
    Azoles,
    A precipitation inhibitor comprising an aluminum salt;
    Including water,
    Including ethylene glycol monobutyl ether as the hydrogen peroxide decomposition inhibitor in a proportion of 0.9% by mass or more and 5% by mass or less with respect to the total amount after final preparation as an etching solution,
    Etching concentrate for multilayer film, wherein the amine compound is 1-amino-2-propanol.
  9.  酸性有機酸と、
     アミン化合物であるN,N-ジエチル-1,3-プロパンジアミンと、
     アゾール類と、
     アルミニウム塩を含む析出防止剤と、
     水と、
     過酸化水素分解抑制剤としてエチレングリコールモノブチルエーテルをエッチング液としての最終調合後の全量に対して0.4質量%以上5質量%以下の割合で含むエッチング濃縮液と、
     水と過酸化水素を調合し多層膜用エッチング液を調合する工程と、
     前記多層膜用エッチング液を被処理基板に接触させる工程を含むことを特徴とする多層膜用エッチング方法。
    An acidic organic acid,
    N, N-diethyl-1,3-propanediamine, which is an amine compound,
    Azoles,
    A precipitation inhibitor comprising an aluminum salt;
    water and,
    Etching concentrate containing ethylene glycol monobutyl ether as a hydrogen peroxide decomposition inhibitor in a proportion of 0.4% by mass or more and 5% by mass or less with respect to the total amount after final preparation as an etching solution;
    A step of preparing water and hydrogen peroxide to prepare a multilayer film etching solution,
    A multilayer film etching method comprising the step of bringing the multilayer film etchant into contact with a substrate to be processed.
  10.  酸性有機酸と、
     アミン化合物である1-アミノ-2-プロパノールと、
     アゾール類と、
     アルミニウム塩を含む析出防止剤と、
     水と、
     過酸化水素分解抑制剤としてエチレングリコールモノブチルエーテルをエッチング液としての最終調合後の全量に対して0.9質量%以上5質量%以下の割合で含むエッチング濃縮液と、
     水と過酸化水素を調合し多層膜用エッチング液を調合する工程と、
     前記多層膜用エッチング液を被処理基板に接触させる工程を含むことを特徴とする多層膜用エッチング方法。
    An acidic organic acid,
    An amine compound, 1-amino-2-propanol;
    Azoles,
    A precipitation inhibitor comprising an aluminum salt;
    water and,
    Etching concentrate containing 0.9% by mass or more and 5% by mass or less of ethylene glycol monobutyl ether as a hydrogen peroxide decomposition inhibitor with respect to the total amount after final preparation as an etching solution,
    A step of preparing water and hydrogen peroxide to prepare a multilayer film etching solution,
    A multilayer film etching method comprising the step of bringing the multilayer film etchant into contact with a substrate to be processed.
  11.  前記多層膜用エッチング液を被処理基板に接触させる工程では、
     前記多層膜用エッチング液のpHが2から6の範囲であり、液温が20℃から40℃の条件で行なわれることを特徴とする請求項9または10のいずれかの請求項に記載された多層膜用エッチング方法。

     
    In the step of bringing the multilayer film etching solution into contact with the substrate to be processed,
    The pH of the multilayer film etching solution is in the range of 2 to 6, and the temperature of the solution is 20 to 40 ° C. Etching method for multilayer film.

PCT/JP2016/004113 2016-09-09 2016-09-09 Etching solution and etching concentrate for multilayer film, and etching method WO2018047210A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017519340A JP6167444B1 (en) 2016-09-09 2016-09-09 Etching solution for multilayer film, etching concentrated solution, and etching method
CN201680028059.9A CN107690488B (en) 2016-09-09 2016-09-09 Multilayer film etching solution and etching concentrate and engraving method
PCT/JP2016/004113 WO2018047210A1 (en) 2016-09-09 2016-09-09 Etching solution and etching concentrate for multilayer film, and etching method
TW106129502A TWI631988B (en) 2016-09-09 2017-08-30 Multilayer film etching solution and etching concentrate and etching method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/004113 WO2018047210A1 (en) 2016-09-09 2016-09-09 Etching solution and etching concentrate for multilayer film, and etching method

Publications (1)

Publication Number Publication Date
WO2018047210A1 true WO2018047210A1 (en) 2018-03-15

Family

ID=59384357

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/004113 WO2018047210A1 (en) 2016-09-09 2016-09-09 Etching solution and etching concentrate for multilayer film, and etching method

Country Status (4)

Country Link
JP (1) JP6167444B1 (en)
CN (1) CN107690488B (en)
TW (1) TWI631988B (en)
WO (1) WO2018047210A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021220476A1 (en) * 2020-04-30 2021-11-04 パナソニックIpマネジメント株式会社 Etching liquid
WO2021251176A1 (en) * 2020-06-09 2021-12-16 メック株式会社 Etching agent and etching method
CN114318340A (en) * 2021-12-22 2022-04-12 深圳深骏微电子材料有限公司 Etching solution composition and preparation method thereof
CN115074734A (en) * 2022-08-22 2022-09-20 深圳市板明科技股份有限公司 Copper-reducing additive for aluminum substrate circuit board and preparation method and use method thereof
WO2024038697A1 (en) * 2022-08-19 2024-02-22 株式会社Adeka Composition, etching method, and laminate manufacturing method

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019180915A1 (en) * 2018-03-23 2019-09-26 パナソニックIpマネジメント株式会社 Etching liquid for thick copper film
KR20210002454A (en) * 2018-04-24 2021-01-08 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 Etching solution for copper foil and manufacturing method of printed wiring board using the same, and etching solution for electrolytic copper layer and manufacturing method of copper filler using the same
CN111850561B (en) * 2020-07-29 2022-07-15 珠海市板明科技有限公司 Copper corrosion accelerator and etching liquid medicine of sulfuric acid and hydrogen peroxide system
CN112410789A (en) * 2020-11-04 2021-02-26 Tcl华星光电技术有限公司 Metal wiring etching solution composition and application thereof
CN116945408A (en) * 2022-04-15 2023-10-27 三井化学株式会社 Metal member and method for producing same, etching liquid, metal-resin composite and method for producing same
CN116200748B (en) * 2023-03-29 2024-03-29 四川和晟达电子科技有限公司 Ultra-high copper ion loaded metal etching solution composition and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5286933A (en) * 1976-01-14 1977-07-20 Tokai Electro Chemical Co Method of treating surface of copper and copper alloy
JPH04337088A (en) * 1991-05-15 1992-11-25 Ebara Yuujiraito Kk Silver plating stripping liquid
WO2013015322A1 (en) * 2011-07-26 2013-01-31 三菱瓦斯化学株式会社 Etchant for copper/molybdenum-based multilayer thin film
JP2015209568A (en) * 2014-04-25 2015-11-24 パナソニックIpマネジメント株式会社 Etching liquid and etching concentrated liquid for multilayer film containing molybdenum and copper and etching method
JP2016108659A (en) * 2014-11-27 2016-06-20 三菱瓦斯化学株式会社 Liquid composition and etching method using the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015075765A1 (en) * 2013-11-25 2015-05-28 パナソニックIpマネジメント株式会社 Multilayer-film etchant, concentrated etchant, and etching method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5286933A (en) * 1976-01-14 1977-07-20 Tokai Electro Chemical Co Method of treating surface of copper and copper alloy
JPH04337088A (en) * 1991-05-15 1992-11-25 Ebara Yuujiraito Kk Silver plating stripping liquid
WO2013015322A1 (en) * 2011-07-26 2013-01-31 三菱瓦斯化学株式会社 Etchant for copper/molybdenum-based multilayer thin film
JP2015209568A (en) * 2014-04-25 2015-11-24 パナソニックIpマネジメント株式会社 Etching liquid and etching concentrated liquid for multilayer film containing molybdenum and copper and etching method
JP2016108659A (en) * 2014-11-27 2016-06-20 三菱瓦斯化学株式会社 Liquid composition and etching method using the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021220476A1 (en) * 2020-04-30 2021-11-04 パナソニックIpマネジメント株式会社 Etching liquid
WO2021251176A1 (en) * 2020-06-09 2021-12-16 メック株式会社 Etching agent and etching method
CN114318340A (en) * 2021-12-22 2022-04-12 深圳深骏微电子材料有限公司 Etching solution composition and preparation method thereof
CN114318340B (en) * 2021-12-22 2023-09-29 惠州达诚微电子材料有限公司 Etching solution composition and preparation method thereof
WO2024038697A1 (en) * 2022-08-19 2024-02-22 株式会社Adeka Composition, etching method, and laminate manufacturing method
CN115074734A (en) * 2022-08-22 2022-09-20 深圳市板明科技股份有限公司 Copper-reducing additive for aluminum substrate circuit board and preparation method and use method thereof
CN115074734B (en) * 2022-08-22 2022-11-08 深圳市板明科技股份有限公司 Copper-reducing additive for aluminum substrate circuit board and preparation method and use method thereof

Also Published As

Publication number Publication date
CN107690488A (en) 2018-02-13
JP6167444B1 (en) 2017-07-26
TWI631988B (en) 2018-08-11
CN107690488B (en) 2019-03-01
JPWO2018047210A1 (en) 2018-09-06
TW201811435A (en) 2018-04-01

Similar Documents

Publication Publication Date Title
JP6167444B1 (en) Etching solution for multilayer film, etching concentrated solution, and etching method
JP5051323B2 (en) Etching solution for multilayer thin film containing copper layer and molybdenum layer
JP5866566B2 (en) Etching solution, etching concentrate and etching method for multilayer film containing molybdenum and copper
JP6128404B2 (en) Etching solution for multilayer film, etching concentrated solution, and etching method
JP6443649B1 (en) Etching solution for copper thick film
KR102513907B1 (en) Etchant composition for multilayered metal film of copper and molybdenum, method of etching using said composition, and method for prolonging life of said composition
TWI531639B (en) Etching solution for copper/molybdenum-based multilayer thin films
JP6516214B2 (en) Etching solution for multilayer film, etching solution and etching method
CN111094627B (en) Etching solution and etching concentrated solution for multilayer film and etching method
JP2010242124A (en) Composition for etching, and etching method
JP2017115245A (en) Liquid composition for etching multilayer thin film containing copper and molybdenum, etching method using the same and manufacturing method of display device
JP2022052909A (en) Etchant

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2017519340

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16915634

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16915634

Country of ref document: EP

Kind code of ref document: A1