WO2018045863A1 - 环网倒换的保护方法、装置及系统 - Google Patents

环网倒换的保护方法、装置及系统 Download PDF

Info

Publication number
WO2018045863A1
WO2018045863A1 PCT/CN2017/097926 CN2017097926W WO2018045863A1 WO 2018045863 A1 WO2018045863 A1 WO 2018045863A1 CN 2017097926 W CN2017097926 W CN 2017097926W WO 2018045863 A1 WO2018045863 A1 WO 2018045863A1
Authority
WO
WIPO (PCT)
Prior art keywords
segment
node
wtr
segments
ring network
Prior art date
Application number
PCT/CN2017/097926
Other languages
English (en)
French (fr)
Inventor
吕枝
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2018045863A1 publication Critical patent/WO2018045863A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/42Loop networks
    • H04L12/437Ring fault isolation or reconfiguration

Definitions

  • the present disclosure relates to the field of communications, and in particular, to a method, device, and system for protecting a ring network.
  • PTN protection includes device level protection, network level protection, and access link protection.
  • the network-level protection includes the label switching path/pseudo wire (LSP Switched Path/Pseudo wire, LSP/PW for short) linear protection, ring network protection, and dual-homing protection.
  • LSP Switched Path/Pseudo wire LSP Switched Path/Pseudo wire, LSP/PW for short
  • linear protection LSP Switched Path/Pseudo wire, LSP/PW for short
  • LSP Switched Path/Pseudo wire LSP Switcheudo wire
  • ring network protection for short
  • dual-homing protection dual-homing protection.
  • various protection schemes have been proposed: such as linear superposition ring network protection, full ring network protection mode, and the like.
  • the service layer protection is a single-ring ring network protection. Linear protection or other ring protection is triggered only when the ring protection of the single ring
  • the manner of ring network protection is basically Wrapping mode. In this way, when a segment fails, the flow to that segment will be reversed to the opposite direction, away from the defective segment.
  • the working flow is Na-Nb-Nc-Nd.
  • the traffic path is Na-Nb-Na-Nf. -Ne-Nd-Nc-Nb.
  • the protection path is a two-way circular tunnel.
  • the working tunnel can be any segment on the ring.
  • a ring network protection scheme for sharing working tunnels has been introduced.
  • the longest path on the ring is a shared working tunnel.
  • Each service tunnel can be any segment of a shared work tunnel. As shown in FIG. 3, the shared working tunnel is Na-Nb-Nc-Nd-Ne-Nf, and the service tunnel may be Nb-Nc-Nd, Nc-Nd-Ne-Nf, and the like.
  • the path of the traffic is Nd-Ne-Nf under normal conditions.
  • Nb-Nc and Ne-Nf fail, the traffic flow is infinitely looped such as Nd-Ne-Nd-Nc-Nd-Ne-Nd, that is, the service is not available at this time. Therefore, when there is a multi-point fault, it is currently possible to prevent traffic from being generated on the upper service node to avoid traffic congestion. However, in order to allow the service to recover as soon as possible, only one segment can be switched when it is restored.
  • the embodiments of the present disclosure provide a protection method, device, and system for ring network switching, so as to at least solve the related art, when multiple nodes in the ring network have a transient fault, causing multiple nodes to maintain the WTR switching state, and then A problem that causes the ring network to fail to fail and triggers unnecessary other switching.
  • a method for protecting a ring network switching includes: obtaining segment values of all segments in a WTR switching state in a ring network at the time of failure recovery, and determining segment values of all segments a first node corresponding to the maximum segment value, wherein the segment value is used to indicate a size of each segment in the ring network; maintaining the first node in the WTR switching state, and segmenting all the segments The second node corresponding to the other segment value in the value is switched from the WTR switching state to the WTR punch-through state, wherein the other segment value is a segment value other than the maximum segment value of the segment values of all segments .
  • obtaining segment values of all segments in the WTR switching state in the ring network when the fault is recovered and determining the first node corresponding to the largest segment value of the segment values of all the segments, including: sequentially determining Whether the third node corresponding to each of all the fault segments in the ring network is in the WTR switching state during the fault recovery; determining the fourth node in the WTR switching state in the third node; A segment value of the fourth node is used, and a node corresponding to a maximum segment value of the segment values of the fourth node is used as the first node.
  • both segments connected to the third node are faulty recovering, determining that a node state corresponding to a segment with a larger segment value of the two segments connected to the third node is a node of the third node status.
  • each of the segments includes a first endpoint and a second endpoint connected to the two ends thereof, where the first endpoint includes a first identifier unique to the entire network, and the second endpoint Includes the second logo unique to the entire network.
  • the method further includes: according to the first identifier and the first edge of the first endpoint of each segment The second identifier of the second endpoint determines a segment value of the segment.
  • segment value of each segment is determined by the following formula:
  • V MAX (NODE ID1 ⁇ a+NODE ID2, NODE ID1+NODE ID2 ⁇ a),
  • V is a segment value of each segment
  • NODE ID1 is the first identifier
  • NODE ID2 is the second identifier
  • a is a constant
  • the segment values of all the segments in the ring network are obtained from the received Automatic Protection Switching (APS) message.
  • APS Automatic Protection Switching
  • a protection device for ring network switching including: a first processing module, And a segment value of all segments in the WTR switching state in the ring network at the time of failure recovery, and determining a first node corresponding to a maximum segment value of the segment values of all the segments, wherein the segment value is used to indicate a size of each segment in the ring network; a second processing module, configured to keep the first node in the WTR switching state, and to use a second node corresponding to another segment value of the segment values of all segments
  • the WTR switching state is switched to a WTR punch-through state, wherein the other segment values are segment values of the segment values of the all segments except the maximum segment value.
  • the first processing module is further configured to sequentially determine, according to the fault recovery, whether a third node corresponding to each of all the fault segments in the ring network is in the WTR switching state; a fourth node in the WTR switching state of the three nodes; comparing the segment values of the fourth nodes in sequence, and using the node corresponding to the largest segment value of the segment values of the fourth node as the first node .
  • the device further includes: a determining module, configured to acquire, according to a segment value of all segments in the WTR switching state in the ring network during the fault recovery, according to each segment of all segments a first identifier of an endpoint and a second identifier of the second endpoint determine a segment value of the segment, wherein each segment includes the first endpoint and the second endpoint connected to both ends thereof
  • the first endpoint includes the first identifier unique to the entire network
  • the second endpoint includes the second identifier unique to the entire network.
  • a protection system for ring network switching comprising: a node in a ring network, a segment formed by a path between adjacent nodes in the node, wherein, when After the segment is faulty, the designated node in the node is configured to obtain segment values of all segments in the WTR switching state in the ring network when the fault is recovered, and determine the corresponding segment of the segment value of all segment segments.
  • the segment value is used to indicate a size of each segment in the ring network; maintaining the first node in the WTR switching state, and corresponding to other segment values in the segment values of all segments
  • the second node is switched from the WTR switching state to the WTR punch-through state, wherein the other segment values are segment values other than the maximum segment value among the segment values of all segments.
  • the designated node is further configured to sequentially determine, according to the fault recovery, whether a third node corresponding to each of all the fault segments in the ring network is in the WTR switching state; determining the third node a fourth node in the WTR switching state; comparing segment values of each of the fourth nodes in sequence, and using a node corresponding to a maximum segment value of the segment values of the fourth node as the first node.
  • the designated node is further configured to acquire, according to the segment value of all the segments in the WTR switching state in the ring network when the fault is recovered, according to the first endpoint of each segment of all segments
  • the first identifier and the second identifier of the second endpoint determine a segment value of the segment, wherein each segment includes the first endpoint and the second endpoint connected to both ends thereof, the first endpoint
  • the first identifier that is unique to the entire network is included, and the second endpoint includes the second identifier that is unique to the entire network.
  • a storage medium is also provided.
  • the storage medium is configured to store program code for performing the steps of: obtaining segment values of all segments in the WTR switching state in the ring network at the time of failure recovery, and determining a maximum segment value corresponding to the segment values of all segments a first node, wherein the segment value is used to indicate a size of each segment in the ring network; maintaining the first node in the WTR switching state, and using other segment values in the segment values of all segments Corresponding second node is switched from the WTR switching state to the WTR punch-through state, where The other segment values are segment values other than the maximum segment value among the segment values of all segments.
  • the storage medium is further configured to store program code for performing: determining, in sequence, whether the third node corresponding to each of all the fault segments in the ring network is in the WTR switching when the fault is recovered a fourth node in the third node that is in the WTR switching state; a segment value of each of the fourth nodes is sequentially compared, and a node corresponding to a maximum segment value of the segment values of the fourth node is determined As the first node.
  • the storage medium is further configured to store program code for performing the following steps: determining that the two segments connected to the third node are larger when both segments connected to the third node fail recovery The node state corresponding to the segment is the node state of the third node.
  • the storage medium is further configured to store program code for performing the step of determining, according to the first identifier of the first endpoint of the each segment and the second identifier of the second endpoint The segment value of the segment.
  • the storage medium is further arranged to store program code for performing the step of determining the segment value of each segment by the following formula:
  • V MAX (NODE ID1 ⁇ a+NODE ID2, NODE ID1+NODE ID2 ⁇ a),
  • V is a segment value of each segment
  • NODE ID1 is the first identifier
  • NODE ID2 is the second identifier
  • a is a constant
  • the storage medium is further configured to store program code for performing the step of: obtaining segment values of all segments in the ring network from the received APS message.
  • the node since the segment values of all segments in the WTR switching state in the ring network at the time of failure recovery are obtained and the node corresponding to the largest segment value among the segment values of all segments is determined, the node is maintained in the WTR switching state, and other segment values are The corresponding node is switched from the WTR switching state to the WTR punch-through state. Therefore, when a transient fault occurs in multiple nodes in the ring network, the multiple nodes maintain the WTR switching state, which in turn causes the ring network to be switched. Failure and triggering unnecessary other switching problems, when only one node in the ring network has a transient fault, only one node maintains the WTR switching state, avoiding the ring network switching failure and triggering unnecessary other switching. The effect that occurred.
  • FIG. 1 is a schematic diagram of a ring network in a normal state in the related art
  • FIG. 2 is a schematic diagram of a Wrapping method for protecting a ring network in a fault state in the related art
  • FIG. 3 is a schematic diagram of a ring network sharing a working tunnel in the related art
  • FIG. 4 is a schematic diagram of a network architecture for protection of a ring network switching according to an embodiment of the present disclosure
  • FIG. 5 is a flowchart of a method of protecting a ring network switching according to an embodiment of the present disclosure
  • FIG. 6 is a schematic diagram of the identification of nodes and segments in a ring network, in accordance with an embodiment of the present disclosure
  • FIG. 7 is a flowchart of a method of protecting a ring network switch in accordance with an alternative embodiment of the present disclosure
  • FIG. 8 is a structural block diagram of a protection device for ring network switching according to an embodiment of the present disclosure
  • FIG. 9 is a structural block diagram of a protection device for ring network switching in accordance with an alternative embodiment of the present disclosure.
  • the WTR switching state refers to the state of the node connected to the current segment when the current segment fails and then recovers
  • the WTR punch-through state refers to the state of the node that is not connected to the current segment when the current segment fails and then recovers.
  • a ring network includes a plurality of nodes, namely, Na, Nb, Nc, Nd, Ne, and Nf, and nodes.
  • Nb, Nc, Ne, and Nf obtain the segment values of the Nb-Nc segment and the segment values of the Ne-Nf segment, Nb, Nc, Ne, and Nf.
  • One or more nodes compare the segment values of the Nb-Nc and Ne-Nf segments.
  • Ne and Nf maintain the WTR switching state, and Nb and Nc are switched from the WTR switching state to The WTR is in the through state, and vice versa, and the embodiments of the present disclosure are not described again.
  • FIG. 5 is a flowchart of a method for protecting a ring network switching according to an embodiment of the present disclosure. As shown in FIG. 5, the process includes Step S502 - step S504, wherein:
  • Step S502 Obtain segment values of all segments in the WTR switching state in the ring network when the fault is recovered, and determine a first node corresponding to the largest segment value of the segment values of all the segments, where the segment value is used to indicate the ring The size of each segment in the net;
  • the segment values of all segments in the ring network in the WTR switching state are obtained from the received APS packets.
  • Step S504 maintaining the first node in the WTR switching state, and switching the second node corresponding to the other segment values of the segment values of all the segments from the WTR switching state to the WTR punch-through state, wherein the other segment values are all segments.
  • the first node refers to two endpoints connected to the segment with the largest segment value.
  • the above fault recovery refers to the recovery of the corresponding faults of the nodes and segments after the segment fails.
  • the execution body of the above steps may be a certain node in the ring network, or may perform the above steps through mutual cooperation of a plurality of nodes, or a third-party control device located outside the node, but is not limited thereto.
  • the foregoing step S502 may determine, by using the following manner, the first node corresponding to the largest segment value of the segment values of all the segments: sequentially determining, correspondingly, each segment of all the fault segments in the ring network when the fault is recovered. Whether the third node is in the WTR switching state; determining the fourth node in the WTR switching state in the third node; comparing the segment values of the fourth nodes in turn, and the node corresponding to the largest segment value in the segment value of the fourth node As the first node.
  • the node in the WTR punch-through state can be excluded, and only the node in the WTR switching state is compared, which greatly simplifies the process of determining the first node.
  • the process is implemented quickly and efficiently to ensure that only one node is in the WTR switching state, avoiding the occurrence of ring network switching failures and triggering unnecessary other switching.
  • the node state corresponding to the segment with the larger segment value of the two segments connected to the third node is the node state of the third node.
  • the two segments connected by the third node may be a west segment and an east segment, and the third node compares the segment value of the west segment to be greater than the east direction.
  • the segment value of the segment when the segment value of the west segment is greater than the segment value of the east segment, the state of the third node jumps to the node state of the west segment. Otherwise, the current state maintains the node state of the east segment.
  • each of the foregoing segments includes a first endpoint and a second endpoint connected to the two ends thereof, wherein the first endpoint includes a first identifier unique to the entire network, and the second endpoint Includes the second logo unique to the entire network.
  • each node in the ring network is marked with a unique identifier of the entire network, where the identifier may range from 1 to 127, so that any segment of the ring network can use the two nodes of the segment.
  • the identifier is uniquely identified. As shown in Figure 6, the identifier of the node is the value in parentheses, such as Nf (127), 127 is the identifier of Nf, and the segment between nodes Na and Nf can be expressed as (1, 127).
  • the segment value of the segment may also be determined according to the first identifier of the first endpoint of each segment and the second identifier of the second endpoint. In this embodiment, since the first identifier and the second identifier are both unique in the entire network, the segment value of the segment determined according to the foregoing identifier is not repeated, and then the segment value may be used to determine the node state of the node.
  • segment values for each of the above segments are determined by the following formula:
  • V MAX (NODE ID1 ⁇ a+NODE ID2, NODE ID1+NODE ID2 ⁇ a),
  • MAX() represents the maximum value
  • V is the segment value of each segment
  • NODE ID1 is the first identifier
  • NODE ID2 is the second identifier
  • a is a constant
  • the value of a needs to be such that the segment value of any segment in the ring network calculated by the above formula is not repeated.
  • the value of a may be 1000, but is not limited thereto.
  • the segment value of the segment is calculated according to the nodes and segments in the identified ring network by the above formula, but the above formula is only an optional calculation method of the present disclosure, and is not limited thereto.
  • FIG. 7 is a flowchart of a method for protecting a ring network switching according to an alternative embodiment of the present disclosure. As shown in FIG. 7, the Nb-Nc and Ne-Nf segments are faulty. The process includes the following steps:
  • Step S702 configuring identifiers for each node and segment in the ring network
  • Step S704 the Nb node perceives the fault recovery, enters the WTR switching state and constructs the WTR APS message to be sent to Nc through the short path Nb-Nc and the long diameter Nb-Na-Nf-Ne-Nd-Nc;
  • Step S706 the Nc node perceives the fault recovery, enters the WTR switching state, and constructs the WTR APS packet to be sent to the Nb through the short-path Nc-Nb and the long-path Nc-Nd-Ne-Nf-Na-Nb;
  • Step S708 the Ne node senses the fault recovery, enters the WTR switching state and constructs the WTR APS message to be sent to the Nf through the short-path Ne-Nf and the long-path Ne-Nd-Nc-Nb-Na-Nf;
  • Step S710 the Nf node perceives the fault recovery, enters the WTR switching state, and constructs the WTR APS message to be sent to the Ne through the short-path Nf-Ne and the long-path Nf-Na-Nb-Nc-Nd-Ne;
  • Ne receives the APS packet of the long-path WTR sent by Nb to Nc.
  • the current state of Ne is the WTR switching state
  • the segment value of the current segment is 127005
  • the segment value of the WTR request segment of the punch-through is 3002
  • the punch-through segment is smaller than In the current segment, the current node Ne maintains the original WTR switching state;
  • Step S714 when Ne receives the APS packet of the long-path WTR sent by Nc to Nb, the current state of Ne is the WTR switching state, the segment value of the current segment is 127005, and the segment value of the WTR request segment of the punch-through is 3002. If the current node is smaller than the current segment, the current node Ne maintains the original WTR switching state;
  • step S716 the Nf receives the APS packet of the long-path WTR sent by the Nc to the Nb.
  • the current state of the Nf is the WTR switching state
  • the segment value of the current segment is 127005
  • the segment value of the WTR request segment of the punch-through is 3002. If the current node is smaller than the current segment, the current node Nf maintains the original WTR switching state.
  • step S718, the Nf receives the APS packet of the long-path WTR sent by the Nb to the Nc.
  • the current state of the Nf is the WTR switching state
  • the segment value of the current segment is 127005
  • the segment value of the WTR request segment of the punch-through is 3002. If the current node is smaller than the current segment, the current node Nf maintains the original WTR switching state.
  • step S720 the Nb receives the APS packet of the long-path WTR sent by the Ne to the Nf.
  • the current state of the Nb is the WTR switching state
  • the segment value of the current segment is 3002
  • the segment value of the WTR request segment of the punch-through is 127005. If the current node is larger than the current segment, the current node Nb is switched from the WTR switching state to the WTR punch-through state.
  • the Nb receives the APS packet of the long-path WTR sent by the Nf to the Ne.
  • the current state of the Nb is the WTR switching state
  • the segment value of the current segment is 3002
  • the segment value of the WTR request segment of the punch-through is 127005. If the current node is larger than the current segment, the current node Nb is switched from the WTR switching state to the WTR punch-through state.
  • Step S724, Nc receives the APS packet of the long-path WTR sent by Ne to the Nf.
  • the current state of Nc is the switching state of the WTR, the segment value of the current segment is 3002, and the segment value of the WTR request segment of the punch-through is 127005. If the current node is larger than the current segment, the current node Nb is switched from the WTR switching state to the WTR punch-through state.
  • Step S726, Nc receives the APS packet of the long-path WTR sent by Nf to Ne.
  • the current state of Nc is the switching state of the WTR, the segment value of the current segment is 3002, and the segment value of the WTR request segment of the punch-through is 127005. More than the current segment, the current node Nb is switched from the WTR switching state to the WTR punch-through state.
  • the identifiers are configured for each node and segment in the ring network.
  • Steps S704 to S710 have no sequence, and may be executed sequentially or simultaneously.
  • Steps S712 to S726 have no sequence. It can be executed sequentially or simultaneously.
  • the nodes such as Nb and Nc
  • the above comparison and/or handover process will not be performed on the APS message receiving the long-path WTR.
  • a protection device for the ring network switching is also provided in this embodiment.
  • the device is used to implement the foregoing embodiments and preferred embodiments, and details are not described herein.
  • the term "module” may implement a combination of software and/or hardware of a predetermined function.
  • the apparatus described in the following embodiments is preferably implemented in software, hardware, or a combination of software and hardware, is also possible and contemplated.
  • the apparatus includes a first processing module 82 for acquiring all of the WTR switching states in the ring network during failure recovery. a segment value of the segment, and determining a first node corresponding to a maximum segment value of the segment values of all the segments, wherein the segment value is used to indicate the size of each segment in the ring network; and the second processing module 84 is configured to maintain the A node is in a WTR switching state, and the second node corresponding to the other segment values of the segment values of all the segments is switched from the WTR switching state to the WTR punch-through state, wherein the other segment values are the largest among the segment values of all the segments.
  • the first processing module 82 is further configured to sequentially determine whether the third node corresponding to each of all the fault segments in the ring network is in the WTR switching state during the fault recovery; determining that the third node is in the third node WTR The fourth node of the switching state; the segment values of the fourth nodes are sequentially compared, and the node corresponding to the largest segment value of the segment values of the fourth node is taken as the first node.
  • FIG. 9 is a structural block diagram of a protection device for ring network switching according to an alternative embodiment of the present disclosure.
  • the device includes all the modules shown in FIG.
  • the method includes: a determining module 92, configured to acquire, according to the first identifier of the first endpoint and the second endpoint of each segment in each segment, before the segment value of all the segments in the WTR switching state in the ring network during the fault recovery
  • the second identifier determines a segment value of the segment, where each segment includes a first endpoint and a second endpoint connected to the two ends thereof, the first endpoint includes a first identifier unique to the entire network, and the second endpoint includes all The only second identifier of the web.
  • each of the above modules may be implemented by software or hardware.
  • the foregoing may be implemented by, but not limited to, the foregoing modules are all located in the same processor; or, the above modules are in any combination.
  • the forms are located in different processors.
  • a ring network switching protection system is further provided, which is used to implement the foregoing embodiments and preferred embodiments.
  • the description of the system may be omitted as shown in FIG. 4 .
  • Network architecture diagram but not limited to this.
  • the protection system for the ring network switching includes: a node in the ring network, a segment formed by a path between adjacent nodes in the node, wherein, when multiple segments fail, the designated node in the node is used to acquire the fault.
  • the segment value of all segments in the WTR switching state in the ring network is restored, and the first node corresponding to the largest segment value of the segment values of all the segments is determined, wherein the segment value is used to indicate the size of each segment in the ring network.
  • the foregoing designated node is further configured to sequentially determine whether the third node corresponding to each of all the fault segments in the ring network is in the WTR switching state when the fault is recovered; and determine that the third node is in the WTR switchover.
  • the foregoing designated node is further configured to acquire, before the segment value of all the segments in the WTR switching state in the ring network during the fault recovery, according to the first end of each segment of each segment.
  • the identifier and the second identifier of the second endpoint determine a segment value of the segment, where each segment includes a first endpoint and a second endpoint connected to the two ends thereof, the first endpoint including the first identifier unique to the entire network
  • the second endpoint includes a second identifier unique to the entire network.
  • Embodiments of the present disclosure also provide a storage medium.
  • the foregoing storage medium may be configured to store program code for performing the following steps: S1, acquiring segment values of all segments in the WTR switching state in the ring network during failure recovery, and determining The first node corresponding to the largest segment value of all segment segments, where the segment value It is used to indicate the size of each segment in the ring network; S2, keeping the first node in the WTR switching state, and switching the second node corresponding to the other segment values of the segment values of all segments from the WTR switching state to the WTR punch-through state, wherein The other segment values are segment values other than the maximum segment value among the segment values of all segments.
  • the storage medium is further configured to store program code for performing the following steps: S1, sequentially determining whether the third node corresponding to each of all the fault segments in the ring network is in the WTR switching state when the fault is recovered; S2 And determining a fourth node in the WTR switching state in the third node; S3, comparing the segment values of the fourth nodes in turn, and using the node corresponding to the largest segment value in the segment value of the fourth node as the first node.
  • the storage medium is further configured to store program code for performing the following steps: when both segments connected to the third node fail to recover, determining a segment with a larger mid-segment value connected to the third node The corresponding node state is the node state of the third node.
  • the storage medium is further arranged to store program code for performing the step of determining a segment value of the segment based on the first identity of the first endpoint of each segment and the second identity of the second endpoint.
  • the storage medium is further arranged to store program code for performing the following steps: determining the segment value of each segment by the following formula:
  • V MAX (NODE ID1 ⁇ a+NODE ID2, NODE ID1+NODE ID2 ⁇ a),
  • V is the segment value of each segment
  • NODE ID1 is the first identifier
  • NODEID2 is the second identifier
  • a is a constant
  • the storage medium is further configured to store program code for performing the step of: obtaining segment values of all segments in the ring network from the received APS message.
  • the foregoing storage medium may include, but is not limited to, a USB flash drive, a Read-Only Memory (ROM), and a Random Access Memory (RAM).
  • ROM Read-Only Memory
  • RAM Random Access Memory
  • modules or steps of the present disclosure described above can be implemented by a general-purpose computing device that can be centralized on a single computing device or distributed across a network of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device such that they may be stored in the storage device by the computing device and, in some cases, may be different from the order herein.
  • the steps shown or described are performed, or they are separately fabricated into individual integrated circuit modules, or a plurality of modules or steps thereof are fabricated as a single integrated circuit module. As such, the disclosure is not limited to any specific combination of hardware and software.
  • the method, device, and system for protecting a ring network are configured to obtain segment values of all segments in a WTR switching state in a ring network at the time of failure recovery, and determine a maximum segment value of segment values of all segments.
  • the node maintains the WTR switching state, and the node corresponding to the other segment values is switched from the WTR switching state to the WTR punch-through state.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Small-Scale Networks (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本公开提供了一种环网倒换的保护方法、装置及系统,其中该方法包括:获取在故障恢复时环网中处于WTR倒换状态的所有段的段值,并确定上述所有段的段值中最大段值所对应的第一节点;保持第一节点处于WTR倒换状态,以及将上述所有段的段值中其它段值所对应的第二节点由WTR倒换状态切换为WTR穿通状态,其中,上述其它段值为所有段的段值中除最大段值之外的段值。本公开的技术方案解决了相关技术中当环网中的多个节点均发生瞬断故障时,引起环网倒换失败且触发不必要的其他倒换的问题,进而达到了当环网中的多个节点均发生瞬断故障时只有一个节点保持WTR倒换状态,避免了环网倒换失败和触发不必要的其他倒换的情况的发生的效果。

Description

环网倒换的保护方法、装置及系统 技术领域
本公开涉及通信领域,具体而言,涉及一种环网倒换的保护方法、装置及系统。
背景技术
3G兴起后运营商在新一轮通信技术浪潮来临之际面临着前所未有的激烈竞争,移动回程网的IP化对新一代的城域传送网提出了新的要求,其中电信级的保护是其中重要的一项指标。高可靠性是电信级设备的基本要求,是电信运营商建设网络的基本出发点。在承载网中,网络设备的可用性要求达到99.999%,大致相当于设备在一年的连续运行中因各种可能原因造成停机维护的时间少于5分钟。另一方面要求在出现故障时做到快速的保护倒换,尤其对时延敏感的语音等业务更是要求低于50ms的倒换时间。因此,现在对分组传送网(Packet Transport Network,简称为PTN)的保护方式尤为关注。
PTN的保护方式包括设备级保护,网络级保护和接入链路保护。在网络级保护里面,包括标签转发路径/伪线(Label Switched Path/Pseudo wire,简称为LSP/PW)线性保护,环网保护,双归保护等。为了保证高可靠性,目前提出了多种保护方案:如线性叠加环网保护,全环网保护方式等。这些保护方案里面,服务层保护都是单环的环网保护。仅当单环的环网保护不成功时,再触发线性保护或是其他环的保护。为了保证整个网络的保护性能能达到50ms的性能要求,环网保护性能达此要求是非常重要的。主要是当环网保护已经达到了保护的目的,不会触发线性保护或是跨环保护等操作。这可以节省倒换时间,增加倒换性能。
相关技术中,环网保护的方式基本上都是Wrapping方式。在这种方式里面,当某一段发生故障后,发往该段的流将被倒换到相反方向,远离缺陷段。如附图1所示,在环网处于正常状态下,工作流量为Na-Nb-Nc-Nd,如图2所示,当Nb-Nc段故障以后,流量路径为Na-Nb-Na-Nf-Ne-Nd-Nc-Nb。
通常,在环网保护里面,保护路径是一个双向的环形隧道。工作隧道可以是环上的任何一段。为了可以在环的任意节点上上、下业务,现在已经推出一种共享工作隧道的环网保护方案。在这种保护方式里面,环上的最长路径为共享的工作隧道。各业务隧道可以是共享工作隧道的任意一段。如图3所示,共享工作隧道为Na-Nb-Nc-Nd-Ne-Nf,业务隧道可以是Nb-Nc-Nd,Nc-Nd-Ne-Nf等等。如业务隧道是Nd-Ne-Nf时,正常情况下,流量的路径即为Nd-Ne-Nf。当Nb-Nc,Ne-Nf故障后,业务流量为Nd-Ne-Nd-Nc-Nd-Ne-Nd等这样无限循环下去,即此时业务不通。因此当出现多点故障时,目前可以做到在上业务节点上就不发流以免出现流量拥塞,但是为了让业务能尽快恢复,只要恢复时,只能让一段处于倒换状态。
在现在的G8132协议里面,只有高优先级的请求可以覆盖低优先级的请求。在多点 故障的时候,如果是一段一段有序的恢复,那么可以通过报文交互,让最后恢复的一段处于倒换状态。如果多点故障同时恢复时,可能出现多点同时进入等待恢复(Wait to Restore,简称为WTR)的情况。在相关技术中,当环网中的多个节点均发生瞬断故障时,导致多个节点保持WTR倒换状态,继而引起环网倒换失败且触发不必要的其他倒换。
针对上述问题,相关技术中尚未提出有效的解决方案。
发明内容
本公开实施例提供了一种环网倒换的保护方法、装置及系统,以至少解决相关技术中当环网中的多个节点均发生瞬断故障时,导致多个节点保持WTR倒换状态,继而引起环网倒换失败且触发不必要的其他倒换的问题。
根据本公开的一个实施例,提供了一种环网倒换的保护方法,包括:获取在故障恢复时环网中处于WTR倒换状态的所有段的段值,并确定所述所有段的段值中最大段值所对应的第一节点,其中,所述段值用于指示所述环网中每一段的大小;保持所述第一节点处于所述WTR倒换状态,以及将所述所有段的段值中其它段值所对应的第二节点由所述WTR倒换状态切换为WTR穿通状态,其中,所述其它段值为所述所有段的段值中除所述最大段值之外的段值。
可选地,获取在故障恢复时环网中处于WTR倒换状态的所有段的段值,并确定所述所有段的段值中最大段值所对应的第一节点,包括:依次判断在所述故障恢复时所述环网中所有故障段中每一段所对应的第三节点是否处于所述WTR倒换状态;确定所述第三节点中处于所述WTR倒换状态的第四节点;依次比较各个所述第四节点的段值,将所述第四节点的段值中的最大段值所对应的节点作为所述第一节点。
可选地,当与所述第三节点连接的两段均故障恢复时,确定与所述第三节点连接的两段中段值较大的段所对应的节点状态为所述第三节点的节点状态。
可选地,所述所有段中的每一段均包括与其两端连接的第一端点和第二端点,其中,所述第一端点包括全网唯一的第一标识,所述第二端点包括全网唯一的第二标识。
可选地,获取在故障恢复时环网中处于WTR倒换状态的所有段的段值之前,所述方法还包括:根据所述每一段的所述第一端点的所述第一标识和所述第二端点的所述第二标识确定该段的段值。
可选地,通过以下公式确定所述每一段的段值:
V=MAX(NODE ID1×a+NODE ID2,NODE ID1+NODE ID2×a),
其中,MAX()表示取最大值,所述V为所述每一段的段值,NODE ID1为所述第一标识,NODE ID2为所述第二标识,a为常数。
可选地,从接收到的自动保护切换(Automatic Protection Switching,简称为APS)报文中获取环网中所述所有段的段值。
根据本公开的另一个实施例,提供了一种环网倒换的保护装置,包括:第一处理模块, 用于获取在故障恢复时环网中处于WTR倒换状态的所有段的段值,并确定所述所有段的段值中最大段值所对应的第一节点,其中,所述段值用于指示所述环网中每一段的大小;第二处理模块,用于保持所述第一节点处于所述WTR倒换状态,以及将所述所有段的段值中其它段值所对应的第二节点由所述WTR倒换状态切换为WTR穿通状态,其中,所述其它段值为所述所有段的段值中除所述最大段值之外的段值。
可选地,所述第一处理模块还用于依次判断在所述故障恢复时所述环网中所有故障段中每一段所对应的第三节点是否处于所述WTR倒换状态;确定所述第三节点中处于所述WTR倒换状态的第四节点;依次比较各个所述第四节点的段值,将所述第四节点的段值中的最大段值所对应的节点作为所述第一节点。
可选地,所述装置还包括:确定模块,用于获取在所述故障恢复时所述环网中处于WTR倒换状态的所有段的段值之前,根据所述所有段中的每一段的第一端点的第一标识和第二端点的第二标识确定该段的段值,其中,所述每一段均包括与其两端连接的所述第一端点和所述第二端点,所述第一端点包括全网唯一的所述第一标识,所述第二端点包括全网唯一的所述第二标识。
根据本公开的另一实施例,提供了一种环网倒换的保护系统,包括:环网中的节点,所述节点中的相邻节点间的路径构成的段,其中,当多个所述段发生故障后,所述节点中的指定节点用于获取在故障恢复时环网中处于WTR倒换状态的所有段的段值,并确定所述所有段的段值中最大段值所对应的第一节点,其中,所述段值用于指示所述环网中每一段的大小;保持所述第一节点处于所述WTR倒换状态,以及将所述所有段的段值中其它段值所对应的第二节点由所述WTR倒换状态切换为WTR穿通状态,其中,所述其它段值为所述所有段的段值中除所述最大段值之外的段值。
可选地,所述指定节点还用于依次判断在所述故障恢复时所述环网中所有故障段中每一段所对应的第三节点是否处于所述WTR倒换状态;确定所述第三节点中处于所述WTR倒换状态的第四节点;依次比较各个所述第四节点的段值,将所述第四节点的段值中的最大段值所对应的节点作为所述第一节点。
可选地,所述指定节点还用于获取在所述故障恢复时所述环网中处于WTR倒换状态的所有段的段值之前,根据所述所有段中的每一段的第一端点的第一标识和第二端点的第二标识确定该段的段值,其中,所述每一段均包括与其两端连接的所述第一端点和所述第二端点,所述第一端点包括全网唯一的所述第一标识,所述第二端点包括全网唯一的所述第二标识。
根据本公开的又一个实施例,还提供了一种存储介质。该存储介质设置为存储用于执行以下步骤的程序代码:获取在故障恢复时环网中处于WTR倒换状态的所有段的段值,并确定所述所有段的段值中最大段值所对应的第一节点,其中,所述段值用于指示所述环网中每一段的大小;保持所述第一节点处于所述WTR倒换状态,以及将所述所有段的段值中其它段值所对应的第二节点由所述WTR倒换状态切换为WTR穿通状态,其中,所 述其它段值为所述所有段的段值中除所述最大段值之外的段值。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:依次判断在所述故障恢复时所述环网中所有故障段中每一段所对应的第三节点是否处于所述WTR倒换状态;确定所述第三节点中处于所述WTR倒换状态的第四节点;依次比较各个所述第四节点的段值,将所述第四节点的段值中的最大段值所对应的节点作为所述第一节点。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:当与所述第三节点连接的两段均故障恢复时,确定与所述第三节点连接的两段中段值较大的段所对应的节点状态为所述第三节点的节点状态。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:根据所述每一段的所述第一端点的所述第一标识和所述第二端点的所述第二标识确定该段的段值。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:通过以下公式确定所述每一段的段值:
V=MAX(NODE ID1×a+NODE ID2,NODE ID1+NODE ID2×a),
其中,MAX()表示取最大值,所述V为所述每一段的段值,NODE ID1为所述第一标识,NODE ID2为所述第二标识,a为常数。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:从接收到的APS报文中获取环网中所述所有段的段值。
通过本公开,由于获取在故障恢复时环网中处于WTR倒换状态的所有段的段值并确定所有段的段值中最大段值所对应的节点,将该节点保持WTR倒换状态,其它段值所对应的节点由WTR倒换状态切换为WTR穿通状态,因此,可以解决相关技术中当环网中的多个节点均发生瞬断故障时,导致多个节点保持WTR倒换状态,继而引起环网倒换失败且触发不必要的其他倒换的问题,达到当环网中的多个节点均发生瞬断故障时只有一个节点保持WTR倒换状态,避免了环网倒换失败和触发不必要的其他倒换的情况的发生的效果。
附图说明
此处所说明的附图用来提供对本公开的进一步理解,构成本申请的一部分,本公开的示意性实施例及其说明用于解释本公开,并不构成对本公开的不当限定。在附图中:
图1是相关技术中处于正常状态的环网的示意图;
图2是相关技术中Wrapping方式保护处于故障状态的环网的示意图;
图3是相关技术中共享工作隧道的环网的示意图;
图4是根据本公开实施例的环网倒换的保护的网络架构示意图;
图5是根据本公开实施例的环网倒换的保护方法的流程图;
图6是根据本公开实施例的环网中节点以及段的标识的示意图;
图7是根据本公开的可选实施例的环网倒换的保护方法的流程图;
图8是根据本公开实施例的环网倒换的保护装置的结构框图;
图9是根据本公开可选实施例的环网倒换的保护装置的结构框图。
具体实施方式
下文中将参考附图并结合实施例来详细说明本公开。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
需要说明的是,本公开的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
为便于理解本申请实施例,以下对本申请实施例中所涉及的技术术语解释如下:
WTR倒换状态指的是:当前段发生故障再恢复时与当前段连接的节点所处状态;
WTR穿通状态指的是:当前段发生故障再恢复时与当前段不连接的节点所处状态。
实施例1
图4是根据本公开实施例的环网倒换的保护的网络架构示意图,如图4所示,环网中包括多个节点,即,Na,Nb,Nc,Nd,Ne和Nf,和节点中的相邻节点间的路径构成的段。当Nb-Nc和Ne-Nf段发生故障并进行故障恢复时,Nb,Nc,Ne和Nf获取Nb-Nc段的段值和Ne-Nf段的段值,Nb,Nc,Ne和Nf中的一个或多个节点比较Nb-Nc和Ne-Nf段的段值,当Ne-Nf的段值大于Nb-Nc段值时,Ne和Nf保持WTR倒换状态,Nb和Nc由WTR倒换状态切换为WTR穿通状态,反之亦然,本公开实施例不再赘述。
在本实施例中提供了一种运行于上述网络架构的环网倒换的保护方法,图5是根据本公开实施例的环网倒换的保护方法的流程图,如图5所示,该流程包括步骤S502-步骤S504,其中:
步骤S502,获取在故障恢复时环网中处于WTR倒换状态的所有段的段值,并确定上述所有段的段值中最大段值所对应的第一节点,其中,上述段值用于指示环网中每一段的大小;
在一个可选的实施例中,从接收到的APS报文中获取环网中处于WTR倒换状态的所有段的段值;
步骤S504,保持第一节点处于WTR倒换状态,以及将上述所有段的段值中其它段值所对应的第二节点由WTR倒换状态切换为WTR穿通状态,其中,上述其它段值为所有段的段值中除最大段值之外的段值。
在本实施例中,由于环网中的每一段的两端均连接有节点,因此,上述第一节点指的是与最大段值的段连接的两个端点。上述故障恢复指的是在段发生故障后,节点和段进行相应故障的恢复。上述步骤的执行主体可以是环网中的某个节点,也可以是通过多个节点的相互配合执行上述步骤,亦或是位于节点以外的第三方的控制装置,但是并不限于此。
通过上述步骤,由于获取在故障恢复时环网中处于WTR倒换状态的所有段的段值并 确定所有段的段值中最大段值所对应的节点,将该节点保持WTR倒换状态,其它段值所对应的节点由WTR倒换状态切换为WTR穿通状态,因此,可以解决相关技术中当环网中的多个节点均发生瞬断故障时,导致多个节点保持WTR倒换状态,继而引起环网倒换失败且触发不必要的其他倒换的问题,达到当环网中的多个节点均发生瞬断故障时只有一个节点保持WTR倒换状态,避免了环网倒换失败和触发不必要的其他倒换的情况的发生的效果。
在一个可选的实施例中,上述步骤S502可以通过如下方式确定所有段的段值中最大段值所对应的第一节点:依次判断在故障恢复时环网中所有故障段中每一段所对应的第三节点是否处于WTR倒换状态;确定第三节点中处于WTR倒换状态的第四节点;依次比较各个第四节点的段值,将第四节点的段值中的最大段值所对应的节点作为第一节点。在本实施例中,通过首先判断在故障恢复时环网中的节点的状态可以将处于WTR穿通状态的节点进行排除,只比较处于WTR倒换状态的节点,大大简化了确定上述第一节点的处理过程,继而快速和有效地实现保证只有一个节点处于WTR倒换状态,避免了环网倒换失败和触发不必要的其他倒换的情况的发生。
在一个可选的实施例中,当与第三节点连接的两段均故障恢复时,确定与第三节点连接的两段中段值较大的段所对应的节点状态为第三节点的节点状态。在本实施例中,当与第三节点连接的两段均故障恢复时,第三节点连接的两段可以为西向段和东向段,该第三节点比较西向段的段值是否大于东向段的段值,仅当西向段的段值大于东向段的段值时,该第三节点的状态跳转为西向段的节点状态。否则,当前状态维持东向段的节点状态。通过上述节点状态的比较和判断,保证了节点的状态并不会因为与该节点连接的两个段的段值的不同引起无法判断该节点的节点状态。
在一个可选的实施例中,上述所有段中的每一段均包括与其两端连接的第一端点和第二端点,其中,第一端点包括全网唯一的第一标识,第二端点包括全网唯一的第二标识。在本实施例中,在环网中的每个节点均标记有一个全网唯一的标识,其中该标识的范围可以为1~127,这样环网上的任何一段可以用该段的两个节点的标识来唯一标识,如图6所示,节点的标识为括号中的值,如Nf(127),127为Nf的标识,节点Na与Nf之间的段可以表示为(1,127)也可以表示为(127,1)。通过上述方法可以将环网中的所有节点以及节点之间的段进行标记,从而有效地区分了环网中的各个节点以及节点之间的段,为段值的计算奠定了基础。
在一个可选的实施例中,在步骤S502之前,还可以根据每一段的第一端点的第一标识和第二端点的第二标识确定该段的段值。在本实施例中,由于第一标识和第二标识均是全网中唯一的,因此根据上述标识确定的段的段值不会重复,继而可以将该段值用于确定节点的节点状态。
在一个可选的实施例中,通过以下公式确定上述每一段的段值:
V=MAX(NODE ID1×a+NODE ID2,NODE ID1+NODE ID2×a),
其中,MAX()表示取最大值,上述V为所述每一段的段值,NODE ID1为第一标识,NODE ID2为第二标识,a为常数。
在本实施例中,a的取值需要满足能够使得通过上述公式计算得到的环网中任意段的段值不重复,在本实施例中,a的取值可以为1000,但是并不限于此。通过上述公式有效地根据标识后的环网中的节点和段计算出段的段值,但是上述公式仅仅为本公开的一个可选的计算方式,并不限于此。
在一个可选的实施例中,图7是根据本公开的可选实施例的环网倒换的保护方法的流程图,如图7所示,Nb-Nc以及Ne-Nf段发生了故障,该流程包括如下步骤:
步骤S702,为环网中的各个节点和段配置标识;
步骤S704,Nb节点感知到故障恢复,进入WTR倒换状态并构建WTR的APS报文经过短径Nb-Nc以及长径Nb-Na-Nf-Ne-Nd-Nc发送给Nc;
步骤S706,Nc节点感知到故障恢复,进入WTR倒换状态并构建WTR的APS报文经过短径Nc-Nb以及长径Nc-Nd-Ne-Nf-Na-Nb发送给Nb;
步骤S708,Ne节点感知到故障恢复,进入WTR倒换状态并构建WTR的APS报文经过短径Ne-Nf和长径Ne-Nd-Nc-Nb-Na-Nf发送给Nf;
步骤S710,Nf节点感知到故障恢复,进入WTR倒换状态并构建WTR的APS报文经过短径Nf-Ne和长径Nf-Na-Nb-Nc-Nd-Ne发送给Ne;
步骤S712,Ne收到了Nb发往Nc的长径WTR的APS报文,Ne当前的状态是WTR倒换状态,当前段的段值为127005,穿通的WTR请求段的段值是3002,穿通段小于当前段,当前节点Ne维持原来的WTR倒换状态;
步骤S714,当Ne收到了Nc发往Nb的长径WTR的APS报文,Ne当前的状态是WTR倒换状态,当前段的段值为127005,穿通的WTR请求段的段值是3002,穿通段小于当前段,当前节点Ne维持原来的WTR倒换状态;
步骤S716,Nf收到了Nc发往Nb的长径WTR的APS报文,Nf当前的状态是WTR的倒换状态,当前段的段值为127005,穿通的WTR请求段的段值是3002,穿通段小于当前段,当前节点Nf维持原来的WTR倒换状态;
步骤S718,Nf收到了Nb发往Nc的长径WTR的APS报文,Nf当前的状态是WTR的倒换状态,当前段的段值为127005,穿通的WTR请求段的段值是3002,穿通段小于当前段,当前节点Nf维持原来的WTR倒换状态;
步骤S720,Nb收到了Ne发往Nf的长径WTR的APS报文,Nb当前的状态是WTR的倒换状态,当前段的段值为3002,穿通的WTR请求段的段值是127005,穿通段大于当前段,当前节点Nb由WTR倒换状态切换为WTR穿通状态;
步骤S722,Nb收到了Nf发往Ne的长径WTR的APS报文,Nb当前的状态是WTR的倒换状态,当前段的段值为3002,穿通的WTR请求段的段值是127005,穿通段大于当前段,当前节点Nb由WTR倒换状态切换为WTR穿通状态;
步骤S724,Nc收到了Ne发往Nf的长径WTR的APS报文,Nc当前的状态是WTR的倒换状态,当前段的段值为3002,穿通的WTR请求段的段值是127005,穿通段大于当前段,当前节点Nb由WTR倒换状态切换为WTR穿通状态;
步骤S726,Nc收到了Nf发往Ne的长径WTR的APS报文,Nc当前的状态是WTR的倒换状态,当前段的段值为3002,穿通的WTR请求段的段值是127005,穿通段大于当前段,当前节点Nb由WTR倒换状态切换为WTR穿通状态。
在本实施例中,如图6所示,为环网中的各个节点和段配置标识,步骤S704-步骤S710没有先后顺序,可以先后执行也可以同时执行,步骤S712-步骤S726没有先后顺序,可以先后执行也可以同时执行,可选地,当节点(如Nb和Nc)进行WTR穿通状态后,在收到长径WTR的APS报文也不会执行上述比较和/或切换过程。通过执行本实施例中的上述比较和切换过程,整个环网中只有Ne-Nf段处于WTR倒换状态,其他所有节点均处于WTR穿通状态,此时环网保护是生效的,解决了相关技术中当环网中的多个节点均发生瞬断故障时,导致多个节点保持WTR倒换状态,继而引起环网倒换失败且触发不必要的其他倒换的问题,达到当环网中的多个节点均发生瞬断故障时只有一个节点保持WTR倒换状态,避免了环网倒换失败和触发不必要的其他倒换的情况的发生的效果。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到根据上述实施例的方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本公开的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本公开各个实施例所述的方法。
实施例2
在本实施例中还提供了一种环网倒换的保护装置,该装置用于实现上述实施例及优选实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图8是根据本公开实施例的环网倒换的保护装置的结构框图,如图8所示,该装置包括第一处理模块82,用于获取在故障恢复时环网中处于WTR倒换状态的所有段的段值,并确定上述所有段的段值中最大段值所对应的第一节点,其中,上述段值用于指示环网中每一段的大小;第二处理模块84,用于保持第一节点处于WTR倒换状态,以及将上述所有段的段值中其它段值所对应的第二节点由WTR倒换状态切换为WTR穿通状态,其中,上述其它段值为所有段的段值中除最大段值之外的段值。
在一个可选的实施例中,第一处理模块82还用于依次判断在故障恢复时环网中所有故障段中每一段所对应的第三节点是否处于WTR倒换状态;确定第三节点中处于WTR 倒换状态的第四节点;依次比较各个第四节点的段值,将第四节点的段值中的最大段值所对应的节点作为第一节点。
在一个可选的实施例中,图9是根据本公开可选实施例的环网倒换的保护装置的结构框图,如图9所示,该装置除包括图8所示的所有模块外,还包括:确定模块92,用于获取在故障恢复时环网中处于WTR倒换状态的所有段的段值之前,根据所有段中的每一段的第一端点的第一标识和第二端点的第二标识确定该段的段值,其中,该每一段均包括与其两端连接的第一端点和第二端点,该第一端点包括全网唯一的第一标识,该第二端点包括全网唯一的第二标识。
需要说明的是,上述各个模块是可以通过软件或硬件来实现的,对于后者,可以通过以下方式实现,但不限于此:上述模块均位于同一处理器中;或者,上述各个模块以任意组合的形式分别位于不同的处理器中。
实施例3
在本实施例中还提供了一种环网倒换的保护系统,该系统用于实现上述实施例及优选实施方式,已经进行过说明的不再赘述,该系统的示意图可以为图4所示的网络架构图,但并不限于此。
上述环网倒换的保护系统包括:环网中的节点,上述节点中的相邻节点间的路径构成的段,其中,当多个段发生故障后,上述节点中的指定节点用于获取在故障恢复时环网中处于WTR倒换状态的所有段的段值,并确定上述所有段的段值中最大段值所对应的第一节点,其中,上述段值用于指示环网中每一段的大小;保持第一节点处于WTR倒换状态,以及将上述所有段的段值中其它段值所对应的第二节点由WTR倒换状态切换为WTR穿通状态,其中,上述其它段值为所有段的段值中除最大段值之外的段值。
在一个可选的实施例中,上述指定节点还用于依次判断在故障恢复时环网中所有故障段中每一段所对应的第三节点是否处于WTR倒换状态;确定第三节点中处于WTR倒换状态的第四节点;依次比较各个第四节点的段值,将第四节点的段值中的最大段值所对应的节点作为第一节点。
在一个可选的实施例中,上述指定节点还用于获取在故障恢复时环网中处于WTR倒换状态的所有段的段值之前,根据所有段中的每一段的第一端点的第一标识和第二端点的第二标识确定该段的段值,其中,该每一段均包括与其两端连接的第一端点和第二端点,该第一端点包括全网唯一的第一标识,该第二端点包括全网唯一的第二标识。
实施例4
本公开的实施例还提供了一种存储介质。可选地,在本实施例中,上述存储介质可以被设置为存储用于执行以下步骤的程序代码:S1,获取在故障恢复时环网中处于WTR倒换状态的所有段的段值,并确定所有段的段值中最大段值所对应的第一节点,其中,段值 用于指示环网中每一段的大小;S2,保持第一节点处于WTR倒换状态,以及将所有段的段值中其它段值所对应的第二节点由WTR倒换状态切换为WTR穿通状态,其中,其它段值为所有段的段值中除最大段值之外的段值。
可选地,存储介质还被设置为存储用于执行以下步骤的程序代码:S1,依次判断在故障恢复时环网中所有故障段中每一段所对应的第三节点是否处于WTR倒换状态;S2,确定第三节点中处于WTR倒换状态的第四节点;S3,依次比较各个第四节点的段值,将第四节点的段值中的最大段值所对应的节点作为第一节点。
可选地,存储介质还被设置为存储用于执行以下步骤的程序代码:当与第三节点连接的两段均故障恢复时,确定与第三节点连接的两段中段值较大的段所对应的节点状态为第三节点的节点状态。
可选地,存储介质还被设置为存储用于执行以下步骤的程序代码:根据每一段的第一端点的第一标识和第二端点的第二标识确定该段的段值。
可选地,存储介质还被设置为存储用于执行以下步骤的程序代码:通过以下公式确定每一段的段值:
V=MAX(NODE ID1×a+NODE ID2,NODE ID1+NODE ID2×a),
其中,MAX()表示取最大值,该V为每一段的段值,NODE ID1为第一标识,NODEID2为第二标识,a为常数。
可选地,存储介质还被设置为存储用于执行以下步骤的程序代码:从接收到的APS报文中获取环网中所有段的段值。
可选地,在本实施例中,上述存储介质可以包括但不限于:U盘、只读存储器(Read-Only Memory,简称为ROM)、随机存取存储器(Random Access Memory,简称为RAM)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
可选地,本实施例中的具体示例可以参考上述实施例及可选实施方式中所描述的示例,本实施例在此不再赘述。
显然,本领域的技术人员应该明白,上述的本公开的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本公开不限制于任何特定的硬件和软件结合。
以上所述仅为本公开的优选实施例而已,并不用于限制本公开,对于本领域的技术人员来说,本公开可以有各种更改和变化。凡在本公开的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。
工业实用性
根据本公开实施例提供的环网倒换的保护方法、装置及系统,由于获取在故障恢复时环网中处于WTR倒换状态的所有段的段值并确定所有段的段值中最大段值所对应的节点,将该节点保持WTR倒换状态,其它段值所对应的节点由WTR倒换状态切换为WTR穿通状态,因此,可以解决相关技术中当环网中的多个节点均发生瞬断故障时,导致多个节点保持WTR倒换状态,继而引起环网倒换失败且触发不必要的其他倒换的问题,达到当环网中的多个节点均发生瞬断故障时只有一个节点保持WTR倒换状态,避免了环网倒换失败和触发不必要的其他倒换的情况的发生的效果。

Claims (14)

  1. 一种环网倒换的保护方法,包括:
    获取在故障恢复时环网中处于WTR倒换状态的所有段的段值,并确定所述所有段的段值中最大段值所对应的第一节点,其中,所述段值用于指示所述环网中每一段的大小;
    保持所述第一节点处于所述WTR倒换状态,以及将所述所有段的段值中其它段值所对应的第二节点由所述WTR倒换状态切换为WTR穿通状态,其中,所述其它段值为所述所有段的段值中除所述最大段值之外的段值。
  2. 根据权利要求1所述的方法,其中,获取在故障恢复时环网中处于WTR倒换状态的所有段的段值,并确定所述所有段的段值中最大段值所对应的第一节点,包括:
    依次判断在所述故障恢复时所述环网中所有故障段中每一段所对应的第三节点是否处于所述WTR倒换状态;
    确定所述第三节点中处于所述WTR倒换状态的第四节点;
    依次比较各个所述第四节点的段值,将所述第四节点的段值中的最大段值所对应的节点作为所述第一节点。
  3. 根据权利要求2所述的方法,其中,当与所述第三节点连接的两段均故障恢复时,确定与所述第三节点连接的两段中段值较大的段所对应的节点状态为所述第三节点的节点状态。
  4. 根据权利要求1所述的方法,其中,所述所有段中的每一段均包括与其两端连接的第一端点和第二端点,其中,所述第一端点包括全网唯一的第一标识,所述第二端点包括全网唯一的第二标识。
  5. 根据权利要求4所述的方法,其中,获取在故障恢复时环网中处于WTR倒换状态的所有段的段值之前,所述方法还包括:根据所述每一段的所述第一端点的所述第一标识和所述第二端点的所述第二标识确定该段的段值。
  6. 根据权利要求5所述的方法,其中,通过以下公式确定所述每一段的段值:
    V=MAX(NODE ID1×a+NODE ID2,NODE ID1+NODE ID2×a),
    其中,MAX()表示取最大值,所述V为所述每一段的段值,NODE ID1为所述第一标识,NODE ID2为所述第二标识,a为常数。
  7. 根据权利要求1所述的方法,其中,从接收到的自动保护切换APS报文中获取环网中所述所有段的段值。
  8. 一种环网倒换的保护装置,包括:
    第一处理模块,设置为获取在故障恢复时环网中处于WTR倒换状态的所有段的段值,并确定所述所有段的段值中最大段值所对应的第一节点,其中,所述段值用于指示所述环网中每一段的大小;
    第二处理模块,设置为保持所述第一节点处于所述WTR倒换状态,以及将所述所有 段的段值中其它段值所对应的第二节点由所述WTR倒换状态切换为WTR穿通状态,其中,所述其它段值为所述所有段的段值中除所述最大段值之外的段值。
  9. 根据权利要求8所述的装置,其中,所述第一处理模块还设置为依次判断在所述故障恢复时所述环网中所有故障段中每一段所对应的第三节点是否处于所述WTR倒换状态;确定所述第三节点中处于所述WTR倒换状态的第四节点;依次比较各个所述第四节点的段值,将所述第四节点的段值中的最大段值所对应的节点作为所述第一节点。
  10. 根据权利要求8所述的装置,其中,所述装置还包括:确定模块,设置为获取在所述故障恢复时所述环网中处于WTR倒换状态的所有段的段值之前,根据所述所有段中的每一段的第一端点的第一标识和第二端点的第二标识确定该段的段值,其中,所述每一段均包括与其两端连接的所述第一端点和所述第二端点,所述第一端点包括全网唯一的所述第一标识,所述第二端点包括全网唯一的所述第二标识。
  11. 一种环网倒换的保护系统,包括:环网中的节点,所述节点中的相邻节点间的路径构成的段,其中,当多个所述段发生故障后,所述节点中的指定节点设置为获取在故障恢复时环网中处于WTR倒换状态的所有段的段值,并确定所述所有段的段值中最大段值所对应的第一节点,其中,所述段值用于指示所述环网中每一段的大小;保持所述第一节点处于所述WTR倒换状态,以及将所述所有段的段值中其它段值所对应的第二节点由所述WTR倒换状态切换为WTR穿通状态,其中,所述其它段值为所述所有段的段值中除所述最大段值之外的段值。
  12. 根据权利要求11所述的系统,其中,所述指定节点还设置为依次判断在所述故障恢复时所述环网中所有故障段中每一段所对应的第三节点是否处于所述WTR倒换状态;确定所述第三节点中处于所述WTR倒换状态的第四节点;依次比较各个所述第四节点的段值,将所述第四节点的段值中的最大段值所对应的节点作为所述第一节点。
  13. 根据权利要求11所述的系统,其中,所述指定节点还设置为获取在所述故障恢复时所述环网中处于WTR倒换状态的所有段的段值之前,根据所述所有段中的每一段的第一端点的第一标识和第二端点的第二标识确定该段的段值,其中,所述每一段均包括与其两端连接的所述第一端点和所述第二端点,所述第一端点包括全网唯一的所述第一标识,所述第二端点包括全网唯一的所述第二标识。
  14. 一种存储介质,用于存储程序代码,所述程序代码用于执行权利要求1-7任一项所述的环网倒换的保护方法。
PCT/CN2017/097926 2016-09-06 2017-08-17 环网倒换的保护方法、装置及系统 WO2018045863A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610807100.4 2016-09-06
CN201610807100.4A CN107800601B (zh) 2016-09-06 2016-09-06 环网倒换的保护方法、装置及系统

Publications (1)

Publication Number Publication Date
WO2018045863A1 true WO2018045863A1 (zh) 2018-03-15

Family

ID=61530693

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/097926 WO2018045863A1 (zh) 2016-09-06 2017-08-17 环网倒换的保护方法、装置及系统

Country Status (2)

Country Link
CN (1) CN107800601B (zh)
WO (1) WO2018045863A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1725676A (zh) * 2004-07-20 2006-01-25 中兴通讯股份有限公司 一种二纤环sdh系统自动保护倒换方法
CN101453264A (zh) * 2007-12-04 2009-06-10 华为技术有限公司 光网络的自愈保护方法及装置
CN101599798A (zh) * 2009-07-02 2009-12-09 中兴通讯股份有限公司 环形光传送网中处理多跨段工作通道故障的方法及装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1129261C (zh) * 1999-07-15 2003-11-26 华为技术有限公司 多安全机制下的同步触发复用段保护倒换和检测方法
CN101141364A (zh) * 2006-09-07 2008-03-12 华为技术有限公司 在环状以太网中实现保护倒换的方法和装置
CN101626272B (zh) * 2008-07-10 2013-03-20 中兴通讯股份有限公司 一种光网络中错连阻错的实现方法
WO2011080829A1 (ja) * 2009-12-28 2011-07-07 富士通株式会社 光転送リングネットワークの切替え方法及びノード装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1725676A (zh) * 2004-07-20 2006-01-25 中兴通讯股份有限公司 一种二纤环sdh系统自动保护倒换方法
CN101453264A (zh) * 2007-12-04 2009-06-10 华为技术有限公司 光网络的自愈保护方法及装置
CN101599798A (zh) * 2009-07-02 2009-12-09 中兴通讯股份有限公司 环形光传送网中处理多跨段工作通道故障的方法及装置

Also Published As

Publication number Publication date
CN107800601B (zh) 2021-10-29
CN107800601A (zh) 2018-03-13

Similar Documents

Publication Publication Date Title
US10432514B2 (en) Multiprotocol label switching traffic engineering tunnel establishing method and device
EP2364539B1 (en) A system and method of implementing lightweight not-via ip fast reroutes in a telecommunications network
EP2649752B1 (en) System and method for providing improved failover performance for pseudowires
EP3082309B1 (en) Sdn controller, data centre system and router connection method
US10148554B2 (en) System and methods for load placement in data centers
EP3454510B1 (en) Message forwarding method and apparatus
EP2467973B1 (en) Method and means for state transition of Ethernet linear protection switching
US20140334292A1 (en) Implementing Dual-Homed Node Protection
WO2010045832A1 (zh) 用于以太环网的链路聚合组的保护方法及装置
WO2022166543A1 (zh) 故障保护方法及装置、存储介质、电子装置
US9130865B2 (en) Method and network element to limit service disruption due to a failure on a layer 2 interface
CN111447101B (zh) 链路检测方法、装置、计算机设备及存储介质
CN110417564B (zh) 全网状的链路保护方法、装置、设备及存储介质
CN110611577A (zh) 业务快速切换方法、切换装置、网络设备和存储介质
Papán et al. Overview of IP fast reroute solutions
WO2019001197A1 (zh) 一种链路切换方法及装置
US20200322251A1 (en) Packet Transmission Method and Apparatus
CN105207871B (zh) 双切环网保护方法及装置
CN110138656B (zh) 业务处理方法及装置
CN104717143A (zh) 用于多归场景组播数据传输的方法及设备
WO2018045863A1 (zh) 环网倒换的保护方法、装置及系统
CN105897451B (zh) Otn调度系统及故障处理方法
CN106464524B (zh) Ason的路由计算方法和装置
EP2693706A1 (en) Method and device for implementing multi-protection overlapped protection groups
CN106817302B (zh) 一种实现二层与三层虚拟专用网协调倒换的方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17848036

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17848036

Country of ref document: EP

Kind code of ref document: A1