WO2018045778A1 - 一种电控光取样系统及太赫兹时域光谱仪 - Google Patents

一种电控光取样系统及太赫兹时域光谱仪 Download PDF

Info

Publication number
WO2018045778A1
WO2018045778A1 PCT/CN2017/085541 CN2017085541W WO2018045778A1 WO 2018045778 A1 WO2018045778 A1 WO 2018045778A1 CN 2017085541 W CN2017085541 W CN 2017085541W WO 2018045778 A1 WO2018045778 A1 WO 2018045778A1
Authority
WO
WIPO (PCT)
Prior art keywords
pulse
laser module
sampling system
electronically controlled
laser
Prior art date
Application number
PCT/CN2017/085541
Other languages
English (en)
French (fr)
Inventor
彭世昌
潘奕
李辰
丁庆
Original Assignee
深圳市太赫兹系统设备有限公司
华讯方舟科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市太赫兹系统设备有限公司, 华讯方舟科技有限公司 filed Critical 深圳市太赫兹系统设备有限公司
Publication of WO2018045778A1 publication Critical patent/WO2018045778A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/42Absorption spectrometry; Double beam spectrometry; Flicker spectrometry; Reflection spectrometry
    • G01J3/433Modulation spectrometry; Derivative spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/06Scanning arrangements arrangements for order-selection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/06Scanning arrangements arrangements for order-selection
    • G01J2003/064Use of other elements for scan, e.g. mirror, fixed grating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/42Absorption spectrometry; Double beam spectrometry; Flicker spectrometry; Reflection spectrometry
    • G01J2003/423Spectral arrangements using lasers, e.g. tunable
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/42Absorption spectrometry; Double beam spectrometry; Flicker spectrometry; Reflection spectrometry
    • G01J3/433Modulation spectrometry; Derivative spectrometry
    • G01J2003/4334Modulation spectrometry; Derivative spectrometry by modulation of source, e.g. current modulation

Definitions

  • the present invention belongs to the technical field of terahertz, and in particular, to an electronically controlled optical sampling system and a terahertz gamma domain spectrometer.
  • Terahertz ⁇ spectrometer can perform coherent measurement on the terahertz electric field, and can obtain the complex refractive index of the sample.
  • Parameters such as dielectric constant and conductivity, by analyzing these parameters, the physicochemical information of the sample can be obtained.
  • the existing terahertz gamma spectrometer usually uses a mechanical delay device (ie, a stepper motor to control a linear translation stage) to achieve phase delay control, and there is an unstable beam propagation direction, and the spot size exists due to dispersion. Shortcomings such as changes, slow scanning speeds, etc.
  • An object of the present invention is to provide an electronically controlled optical sampling system and a terahertz gamma domain spectrometer, which aim to solve the problem that the existing terahertz gamma spectrometer usually adopts a mechanical delay device to realize phase delay control and has beam propagation.
  • the problem is that the direction is unstable, the spot size varies due to dispersion, and the scanning speed is slow.
  • an electronically controlled optical sampling system including a first laser module, a second laser module, a first beam splitter, a second beam splitter, a first photoelectric sensor, and a second photoelectric a sensor, a phase detector, an adder, and a function generator, the first laser module including a piezoelectric sensor;
  • the first beam splitter is connected to the first laser module through an optical fiber
  • the second beam splitter is connected to the second laser module through an optical fiber
  • the first photoelectric sensor and the second The photosensors are all connected to the phase detector, and the phase detector and the function generator are both connected to the adder, and the adder is connected to the piezoelectric sensor;
  • the function generator outputs a phase modulation signal
  • the piezoelectric sensor adjusts a cavity length of the first laser module according to the phase modulation signal, and controls the first laser module to emit a preset phase of the pump a pulse
  • the first beam splitter splits the pump pulse into a transmissive pump pulse and a reflected pump pulse, wherein the reflected pump pulse is transmitted to the first photosensor;
  • the sensor converts the reflected pump pulse into a first electrical pulse signal and transmits the signal to the phase detector;
  • the second laser module emits a detection pulse having a preset phase difference from the pump pulse, and the second beam splitter splits the detection pulse into a transmission detection pulse and a reflection detection pulse.
  • the reflection detecting pulse is transmitted to the second photosensor; the second photosensor converts the reflection detecting pulse into a second electrical pulse signal and transmits the signal to the phase detector;
  • the phase detector detects the preset phase difference, and generates a voltage signal that is linearly positively correlated with the preset phase difference; the function generator continuously outputs the phase modulation signal; the adder pair The voltage signal and the phase modulation signal are superimposed and output to the piezoelectric sensor; the piezoelectric sensor adjusts a cavity length of the first laser module according to a signal feedback output by the adder.
  • the present invention also provides a terahertz gamma spectrometer comprising the above-described electronically controlled optical sampling system, further comprising
  • a data processing module coupled to the terahertz module to convert the current signal into a digital signal and processed.
  • the present invention has the beneficial effects of:
  • the electronically controlled optical sampling system is used to realize the scanning of the area, and the optical fiber is used to replace the traditional free-space transmission optical signal, thereby improving the scanning speed and ensuring the stability of the beam propagation.
  • FIG. 1 is a block diagram showing the basic structure of an electronically controlled optical sampling system according to Embodiment 1 of the present invention
  • FIG. 2 is a block diagram showing a specific structure of an electronically controlled optical sampling system according to Embodiment 2 of the present invention
  • FIG. 3 is a block diagram showing a specific structure of an electronically controlled optical sampling system according to Embodiment 3 of the present invention
  • 4 is a structural block diagram of a terahertz germanium domain spectrometer according to a fourth embodiment of the present invention.
  • the electronically controlled optical sampling system in the present invention refers to electronically controlled optical sampling (ECOPS, Electronically
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • the electronically controlled optical sampling system 100 of the present embodiment includes a first laser module 101, a second laser module 102, a first beam splitter 103, a second beam splitter 104, and a first A photosensor 105, a second photosensor 106, a phase detector 107, an adder 108, and a function generator 109, wherein the first laser module 101 includes a piezoelectric sensor 6.
  • the first beam splitter 103 is connected to the first laser module 101 through an optical fiber
  • the second beam splitter 104 is connected to the second laser module 102 through an optical fiber
  • the sensors 106 are all connected to a phase detector 107
  • both the phase detector 107 and the function generator 109 are connected to an adder 108, which is connected to a piezoelectric sensor.
  • the hollow arrows in the figure represent the direction of propagation of the optical signal
  • the solid arrows represent the direction of propagation of the electrical signal.
  • the optical fiber can adopt a polarization-maintaining single-mode optical fiber to ensure that the optical path is stable without jitter.
  • the second laser module 102 may use a tragic laser.
  • the energy of the transmission pump pulse is greater than the energy of the reflected pump pulse, and the energy of the transmission detection pulse is greater than the energy of the reflection detection pulse.
  • the transflective ratio of the first beam splitter 103 and the second beam splitter 104 may be 9:1, that is, the transmission pulse transmitted through the first beam splitter 103 and the second beam splitter 104.
  • the energy ratio of the energy to the reflected pulses reflected by the first beam splitter 103 and the second beam splitter 104 is 9:1.
  • the first photosensor 105 and the second photosensor 106 are both photodiodes.
  • the working principle of the electronically controlled optical sampling system 100 is: [0030]
  • the function generator 109 outputs a phase modulation signal to control the piezoelectric sensor 6 to adjust the cavity length of the first laser module 101, so that the first laser module 101 emits a pump pulse of a preset phase, and the first beam splitter 103 will
  • the pump pulse splitting is a transmissive pump pulse and a reflected pump pulse, wherein the reflected pump pulse is transmitted to the first photosensor 105; the first photosensor 105 converts the reflected pump pulse into a first electrical pulse signal and transmits Giving phase detector 107;
  • the second laser module 102 transmits a detection pulse having a preset phase difference between the pump pulse and the detection pulse, and the second beam splitter 104 splits the detection pulse into a transmission detection pulse and a reflection detection pulse.
  • the reflection detection pulse is transmitted to the second photosensor 106; the second photosensor 106 converts the reflection detection pulse into a second electrical pulse signal and transmits it to the phase detector 107;
  • the phase detector 107 detects the preset phase difference and generates a voltage signal that is linearly positively correlated with the preset phase difference; the function generator 109 continuously outputs the phase modulation signal; the adder 108 turns the voltage The signal and the phase modulation signal are superimposed and output to the piezoelectric sensor 6; the piezoelectric sensor 6 adjusts the cavity length of the first laser module 101 according to the signal feedback output by the adder 108 to feedbackly adjust the phase of the pump pulse. And feedback feedback adjusts the delay of the pump pulse relative to the detection pulse.
  • the piezoelectric sensor 6 can adjust the first laser module according to the phase modulation signal.
  • the cavity length of 101 thereby changing the phase of the pump pulse emitted by the first laser module to achieve the purpose of changing the phase difference between the pump pulse and the detection pulse.
  • the pump pulse and the detection pulse are both laser pulses.
  • the pulses of the same nature are distinguished, and different names are used.
  • the electronically controlled optical sampling system is used to realize the scanning of the area, and the optical fiber is used to replace the traditional free space to transmit the optical signal, thereby improving the scanning speed and ensuring the stability of the beam propagation.
  • the working principle of the electronically controlled optical sampling system 100 is:
  • controlling the second laser module 102 to output a detection pulse having a stable repetition frequency as a reference pulse (in the present embodiment, a miscellaneous fiber laser output reference pulse with a repetition frequency of 100 MHz produced by TOTPICA) is used; the piezoelectric sensor 6 is adjusted.
  • the cavity length of a laser module 101 is such that it outputs a pump pulse having a variable repetition frequency, and the relationship between the repetition frequency of the pump pulse and the cavity length of the first laser module 101 is:
  • f c / 2L ;
  • f the repetition frequency of the pump pulse output by the first laser module
  • c the light propagation speed
  • L the cavity length of the first laser module; and when f is equal to 100 MHz, the first laser module and the second laser The module is phase synchronized on the domain;
  • the function generator 109 outputs a phase modulation signal, and controls the piezoelectric sensor 6 to adjust the cavity length of the first laser module 101 to change the repetition frequency of the pump pulse output by the first laser module 101, thereby making the pump There is a phase difference between the pulse and the reference pulse, and thus there is a delay between the pump pulse and the reference pulse.
  • the cavity length of the first laser module 101 when the cavity length of the first laser module 101 is increased by 120 nm, a delay of 0.4 fs can be realized on the ⁇ domain, and the first pump pulse output by the first laser module 101 is output. Synchronizing the reference pulse with respect to the ⁇ field, if the cavity length of the first laser module 101 is increased by 120 nm, the second pump pulse outputted by the first laser module 101 can be realized relative to the output of the second laser module.
  • the second detection pulse has a delay of 0.4 fs, and the third pulse between the two has a delay of 0.8 fs, and so on; if the cavity length of the first laser module 101 is maintained to increase by 120 nm, Then, there is a 40 ps delay between the 105th pulses of the two laser modules.
  • the above-mentioned electronically controlled optical sampling system capable of achieving 40 ps delay in lms can be applied to a terahertz gamma domain spectrometer, so that the scanning range of the gamut domain spectrometer has a scanning range of 40 ps, the scanning frequency is at most 1 kHz, and the sampling resolution is 0.4fs.
  • the electronically controlled optical sampling system provided by the embodiment can realize the terahertz based on the electronically controlled optical sampling system only by changing the amplitude, frequency and continuous time of the phase modulation signal output by the function generator.
  • This embodiment is based on the first embodiment, and the specific structure of the first laser module 101 is described in detail.
  • the first laser module 101 includes a laser 1, a wavelength division multiplexer 2, a coupler 3, a polarization controller 4, an electro-optic modulator 5, a piezoelectric sensor 6, a tunable filter 7, Optical isolator 8 and fiber amplifier 9.
  • Laser 1 wavelength division multiplexer 2, coupler 3, polarization controller 4, electro-optic modulator 5, piezoelectric sensor 6
  • the tunable filter 7, the optical isolator 8 and the optical fiber amplifier 9 are sequentially connected end by end through the optical fiber to form a ring Resonant cavity.
  • the laser 1 may be a semiconductor laser having a wavelength of 980 nm.
  • the electro-optic modulator 5 may be a lithium niobate (LiNb0 3 ) modulator.
  • the fiber amplifier 3 can be selected with a tragic fiber amplifier.
  • the working principle of the first laser module 101 provided by this embodiment is:
  • the laser 1 emits a pumping light source coupled to the coupler 3 via a wavelength division multiplexer 2, which transmits the pumping light source to a polarization controller 4, which adjusts the pumping source
  • the polarization state is output to the electro-optic modulator 5, and the electro-optic modulator 5 modulates the pumping light source outputted by the polarization controller 4 into a pumping light source of a preset phase, and outputs it to the piezoelectric sensor 6, which is based on the function generator 109.
  • the output phase modulation signal adjusts a cavity length of the ring resonator to adjust a frequency of the pumping light source of the preset phase, and the tunable filter 7 adjusts the pumping light source of the preset phase to a single wavelength laser pulse
  • the optical isolator 8 unidirectionally transmits the single-wavelength pumping light source to the fiber amplifier 9, and the fiber amplifier 9 amplifies the single-wavelength pumping source gain into a pump pulse, and the wavelength division multiplexer 2
  • the pump pulse is coupled to a coupler 3 that couples a portion of the pump pulse to the first beam splitter 103 and another portion to the polarization controller 4.
  • the tunable filter 7 adjusts the pumping source of the predetermined phase to a pumping source having a wavelength of 1550 ⁇ m.
  • the present embodiment controls the piezoelectric sensor 6 to adjust the cavity length of the ring resonator by the function generator 109, so that the first laser module 101 can emit a preset phase difference between the detection pulse emitted by the second laser module and the second laser module.
  • the pump pulse can be adjusted according to the needs of the user by changing the amplitude and frequency of the phase modulation signal output from the function generator 109 to the piezoelectric sensor 6, so as to realize the delay of the preset phase difference.
  • the adjustment precision is high and the scanning speed is fast.
  • the first laser module 101 further includes a mechanical extension line 10 connected between the coupler 10 and the polarization controller 8, and the mechanical extension line 10 is also coupled to the adder. 108 is connected.
  • the function generator 109 When the drift rate of the repetition frequency of the ring resonator is greater than a preset threshold ⁇ , the function generator 109 outputs a phase control signal, which is transmitted to the mechanical delay line 10 through the adder 108, so that the mechanical delay line 10 is based on the adder 10.
  • the output signal adjusts the cavity length of the ring resonator to achieve phase difference and delay between the pump pulse and the probe pulse Modulation between.
  • the drift rate of the repetition frequency of the ring resonator is greater than a preset threshold, which causes the piezoelectric sensor to adjust the cavity length of the ring resonator, which is not ideal, and is mechanically delayed.
  • the line assists in adjusting the length of the cavity of the ring resonator to return the repetition frequency of the ring resonator to the normal range.
  • an embodiment of the present invention further provides a terahertz domain spectrometer comprising the above-described electronically controlled optical sampling system 100, further comprising a terahertz module 200 and a data processing module 300.
  • the terahertz module 200 is connected to the electronically controlled optical sampling system 100 through an optical fiber for receiving the transmission pump pulse and the transmission detection pulse, and transmitting the transmission pump pulse and the transmission detection pulse Converted into a current signal;
  • the data processing module 300 is coupled to the terahertz module 200 for converting the current signal to a digital signal and processing.
  • the terahertz module 200 includes a terahertz radiation device and a terahertz detection device, and the terahertz radiation device and the terahertz detection device adopt a photoconductive antenna, an optical rectification or a two-color field driving plasma Radiation and detection of terahertz waves.
  • the data processing module 300 can be a general-purpose integrated circuit, such as a CPU (Central).
  • a CPU Central
  • This embodiment provides a terahertz gamma-domain spectrometer composed of an electronically controlled optical sampling system, a terahertz module, and a data processing module to modularize the structure of the terahertz gamma spectrometer, simplifying the structure of the terahertz gamma spectrometer. , making it suitable for more applications and environments, facilitating installation and maintenance.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

一种电控光取样系统(100)包括第一激光模块(101)、第二激光模块(102)、第一分束器(103)、第二分束器(104)、第一光电传感器(105)、第二光电传感器(106)、相位探测器(107)、加法器(108)和函数发生器(109),其中第一激光模块(101)包括压电传感器(6)。第一分束器(103)通过光纤与第一激光模块(101)连接,第二分束器(104)通过光纤与第二激光模块(102)连接,第一光电传感器(105)和第二光电传感器(106)均与相位探测器(107)连接,相位探测器(107)和函数发生器(109)均与加法器(108)连接,加法器(108)与压电传感器(6)连接。还公开了一种太赫兹时域光谱仪。通过电控光取样系统(100)来实现时域扫描,并采用光纤取代传统的自由空间来传输光信号,提高了扫描速度、保证了光束传播的稳定性。

Description

一种电控光取样系统及太赫兹时域光谱仪
技术领域
[0001] 本发明属于太赫兹技术领域, 尤其涉及一种电控光取样系统及太赫兹吋域光谱 仪。
背景技术
[0002] 太赫兹吋域光谱仪可以对太赫兹电场进行相干测量, 能够得到样品的复折射率
、 介电常数和电导率等参数, 通过分析这些参数可以得到样品的物理化学信息
, 具有重要的应用前景。
[0003] 然而, 现有的太赫兹吋域光谱仪通常采用机械延吋装置 (即, 步进电机控制线 性平移台) 来实现相位延吋控制, 存在光束传播方向不稳定, 光斑大小由于色 散而存在变化, 扫描速度慢等缺点。
技术问题
[0004] 本发明的目的在于提供一种电控光取样系统及太赫兹吋域光谱仪, 旨在解决现 有的太赫兹吋域光谱仪通常采用机械延吋装置来实现相位延吋控制, 存在光束 传播方向不稳定, 光斑大小由于色散而存在变化, 扫描速度慢等缺点的问题。 问题的解决方案
技术解决方案
[0005] 本发明是这样实现的, 一种电控光取样系统, 其包括第一激光模块、 第二激光 模块、 第一分束器、 第二分束器、 第一光电传感器、 第二光电传感器、 相位探 测器、 加法器和函数发生器, 所述第一激光模块包括压电传感器;
[0006] 所述第一分束器通过光纤与所述第一激光模块连接, 所述第二分束器通过光纤 与所述第二激光模块连接, 所述第一光电传感器和所述第二光电传感器均与所 述相位探测器连接, 所述相位探测器和所述函数发生器均与所述加法器连接, 所述加法器与所述压电传感器连接;
[0007] 所述函数发生器输出相位调制信号, 所述压电传感器根据所述相位调制信号调 节所述第一激光模块的腔体长度, 控制所述第一激光模块发射预设相位的泵浦 脉冲, 所述第一分束器将所述泵浦脉冲分束为透射泵浦脉冲和反射泵浦脉冲, 其中, 所述反射泵浦脉冲发射至所述第一光电传感器; 所述第一光电传感器将 所述反射泵浦脉冲转换为第一电脉冲信号并传递给所述相位探测器;
[0008] 所述第二激光模块发射与所述泵浦脉冲之间具有预设相位差的探测脉冲, 所述 第二分束器将所述探测脉冲分束为透射探测脉冲和反射探测脉冲, 其中, 所述 反射探测脉冲发射至所述第二光电传感器; 所述第二光电传感器将所述反射探 测脉冲转换为第二电脉冲信号并传递给所述相位探测器;
[0009] 所述相位探测器探测所述预设相位差, 并生成与所述预设相位差线性正相关的 电压信号; 所述函数发生器持续输出所述相位调制信号; 所述加法器对所述电 压信号和所述相位调制信号进行叠加并输出给所述压电传感器; 所述压电传感 器根据所述加法器输出的信号反馈调节所述第一激光模块的腔体长度。
[0010] 本发明还提供一种太赫兹吋域光谱仪, 其包括上述的电控光取样系统, 还包括
[0011] 通过光纤与所述电控光取样系统连接, 接收所述透射泵浦脉冲和所述透射探测 脉冲, 并将所述透射泵浦脉冲和所述透射探测脉冲转化为电流信号的太赫兹模 块; 以及
[0012] 与所述太赫兹模块连接, 将所述电流信号转换为数字信号并处理的数据处理模 块。
发明的有益效果
有益效果
[0013] 本发明与现有技术相比, 其有益效果在于:
[0014] 通过采用电控光取样系统来实现吋域扫描, 并采用光纤取代传统的自由空间传 输光信号, 提高了扫描速度、 保证了光束传播的稳定性。
对附图的简要说明
附图说明
[0015] 图 1是本发明实施例一提供的电控光取样系统的基本结构框图;
[0016] 图 2是本发明实施例二提供的电控光取样系统的具体结构框图;
[0017] 图 3是本发明实施例三提供的电控光取样系统的具体结构框图; [0018] 图 4是本发明实施例四提供的太赫兹吋域光谱仪的结构框图。
本发明的实施方式
[0019] 为了使本发明的目的、 技术方案及优点更加清楚明白, 以下结合附图及实施例 , 对本发明进行进一步详细说明。 应当理解, 此处所描述的具体实施例仅用以 解释本发明, 并不用于限定本发明。
[0020] 本发明中的电控光取样系统指的是基于电控光取样 (ECOPS , Electronically
Controlled Optical Sampling) 技术的硬件系统, 以下各实施例均基于该技术实现
[0021] 实施例一:
[0022] 如图 1所示, 本实施例提供的电控光取样系统 100, 其包括第一激光模块 101、 第二激光模块 102、 第一分束器 103、 第二分束器 104、 第一光电传感器 105、 第 二光电传感器 106、 相位探测器 107、 加法器 108和函数发生器 109, 其中, 第一 激光模块 101包括压电传感器 6。
[0023] 本实施例中, 第一分束器 103通过光纤与第一激光模块 101连接, 第二分束器 10 4通过光纤与第二激光模块 102连接, 第一光电传感器 105和第二光电传感器 106 均与相位探测器 107连接, 相位探测器 107和函数发生器 109均与加法器 108连接 , 加法器 108与压电传感器连接。 图中空心箭头代表光信号传播方向, 实心箭头 代表电信号传播方向。
[0024] 在具体应用中, 光纤可采用保偏单模光纤, 以保证光路稳定不发生抖动。
[0025] 在具体应用中, 第二激光模块 102可选用惨铒激光器。
[0026] 在本实施例中, 所述透射泵浦脉冲的能量大于所述反射泵浦脉冲的能量, 所述 透射探测脉冲的能量大于所述反射探测脉冲的能量。
[0027] 在具体应用中, 第一分束器 103和第二分束器 104的透反比可以为 9: 1, 即透过 第一分束器 103和第二分束器 104的透射脉冲的能量与第一分束器 103和第二分束 器 104所反射的反射脉冲的能量比为 9: 1。
[0028] 本实施例中, 第一光电传感器 105和第二光电传感器 106均为光电二极管。
[0029] 本实施例所提供的电控光取样系统 100的工作原理为: [0030] 函数发生器 109输出相位调制信号控制压电传感器 6调节第一激光模块 101的腔 体长度, 使第一激光模块 101发射预设相位的泵浦脉冲, 第一分束器 103将所述 泵浦脉冲分束为透射泵浦脉冲和反射泵浦脉冲, 其中, 反射泵浦脉冲发射至第 一光电传感器 105; 第一光电传感器 105将反射泵浦脉冲转换为第一电脉冲信号 并传递给相位探测器 107;
[0031] 第二激光模块 102发射探测脉冲, 所述泵浦脉冲与所述探测脉冲之间具有预设 相位差, 第二分束器 104将探测脉冲分束为透射探测脉冲和反射探测脉冲, 其中 , 反射探测脉冲发射至第二光电传感器 106; 第二光电传感器 106将反射探测脉 冲转换为第二电脉冲信号并传递给相位探测器 107;
[0032] 相位探测器 107探测所述预设相位差, 并生成与所述预设相位差线性正相关的 电压信号; 函数发生器 109持续输出所述相位调制信号; 加法器 108将所述电压 信号和所述相位调制信号叠加后输出给压电传感器 6; 压电传感器 6根据加法器 1 08输出的信号反馈调节第一激光模块 101的腔体长度, 以反馈调节所述泵浦脉冲 的相位, 进而反馈调节所述泵浦脉冲相对于所述探测脉冲的延吋吋间。
[0033] 在具体应用中, 若要改变所述预设相位差, 只需要改变所述相位调制信号的幅 值和频率, 即可使压电传感器 6根据所述相位调制信号调节第一激光模块 101的 腔体长度, 从而改变第一激光模块发射的泵浦脉冲的相位, 以达到改变所述泵 浦脉冲和所述探测脉冲之间相位差的目的。
[0034] 本实施例中, 所述泵浦脉冲和所述探测脉冲均为激光脉冲, 本实施例中仅是为 了对相同性质的脉冲进行区别, 而采用不同命名。
[0035] 本实施例通过采用电控光取样系统来实现吋域扫描, 并采用光纤取代传统的自 由空间传输光信号, 提高了扫描速度、 保证了光束传播的稳定性。
[0036] 在一具体实施例中, 电控光取样系统 100的工作原理为:
[0037] 控制第二激光模块 102输出重复频率稳定的探测脉冲作为参考脉冲 (本实施例 中, 采用 TOPTICA公司生产的重复频率为 100MHz的惨铒光纤激光器输出参考脉 冲) ; 压电传感器 6调节第一激光模块 101的腔长, 使其输出重复频率可变的泵 浦脉冲, 泵浦脉冲的重复频率与第一激光模块 101的腔长的关系式为:
[0038] f=c/2L; [0039] 其中, f为第一激光模块输出的泵浦脉冲的重复频率, c为光传播速度, L为第 一激光模块的腔长; 当 f等于 100MHz吋, 第一激光模块和第二激光模块在吋域上 相位同步;
[0040] 函数发生器 109输出相位调制信号, 控制压电传感器 6调节第一激光模块 101的 腔长, 使第一激光模块 101输出的泵浦脉冲的重复频率发生改变, 从而使所述泵 浦脉冲与所述参考脉冲之间存在相位差, 进而使所述泵浦脉冲与所述参考脉冲 之间存在吋域上的延吋。
[0041] 在具体应用中, 当第一激光模块 101的腔长增长 120nm吋, 即可在吋域上实现 每次 0.4fs的延吋, 当第一激光模块 101输出的第一束泵浦脉冲相对所述参考脉冲 在吋域上同步吋, 若使第一激光模块 101的腔长增长 120nm, 则可实现第一激光 模块 101输出的第二束泵浦脉冲相对于第二激光模块输出的的第二束探测脉冲则 有 0.4fs的延日寸, 二者的第三束脉冲之间则有 0.8fs的延吋, 以此类推; 假如维持第 一激光模块 101的腔长增长 120nm持续 lms, 则可使二个激光模块输出的第 10 5束 脉冲之间有 40ps的延吋。
[0042] 将上述在 lms内可实现 40ps延吋的电控光取样系统应用与太赫兹吋域光谱仪, 即可使该吋域光谱仪具有 40ps的扫描范围、 扫描频率最大为 lkHz、 取样分辨率 为 0.4fs。
[0043] 本实施例所提供的电控光取样系统只需通过改变函数发生器输出的相位调制信 号的幅值、 频率和持续吋间就可以实现对基于该电控光取样系统的太赫兹吋域 光谱仪的扫描频率、 扫描范围和取样分辨率的控制。
[0044] 实施例二:
[0045] 本实施例是在实施例一的基础上, 对第一激光模块 101的具体结构进行详细介 绍。
[0046] 如图 2所示, 第一激光模块 101包括激光器 1、 波分复用器 2、 耦合器 3、 偏振控 制器 4、 电光调制器 5、 压电传感器 6、 可调谐滤波器 7、 光隔离器 8和光纤放大器 9。
[0047] 激光器 1、 波分复用器 2、 耦合器 3、 偏振控制器 4、 电光调制器 5、 压电传感器 6
、 可调谐滤波器 7、 光隔离器 8和光纤放大器 9通过光纤依次首尾连接, 构成环形 谐振腔。
[0048] 在具体应用中, 激光器 1可选用 980nm波长的半导体激光器。
[0049] 在具体应用中, 电光调制器 5可选用铌酸锂 (LiNb0 3) 调制器。
[0050] 在具体应用中, 光纤放大器 3可选用惨铒光纤放大器。
[0051] 本实施例提供的第一激光模块 101的工作原理为:
[0052] 激光器 1发射泵浦光源, 该泵浦光源经波分复用器 2耦合到耦合器 3, 耦合器 3将 泵浦光源传输给偏振控制器 4, 偏振控制器 4调节泵浦光源的偏振状态后输出给 电光调制器 5, 电光调制器 5将偏振控制器 4输出的泵浦光源调制为预设相位的泵 浦光源后输出给压电传感器 6, 压电传感器 6根据函数发生器 109输出的相位调制 信号调节环形谐振腔的腔体长度, 以调节所述预设相位的泵浦光源的频率, 可 调谐滤波器 7将所述预设相位的泵浦光源调节为单一波长的激光脉冲, 光隔离器 8将所述单一波长的泵浦光源单向传输至光纤放大器 9, 光纤放大器 9将所述单一 波长的泵浦光源增益放大为泵浦脉冲, 波分复用器 2将所述泵浦脉冲耦合至耦合 器 3, 耦合器 3将所述泵浦脉冲的一部分耦合至第一分束器 103、 另一部分耦合至 偏振控制器 4。
[0053] 在具体应用中, 可调谐滤波器 7将所述预设相位的泵浦光源调节为波长为 1550η m的泵浦光源。
[0054] 本实施例通过函数发生器 109来控制压电传感器 6调节环形谐振腔的腔体长度, 使第一激光模块 101可以发射与第二激光模块发射的探测脉冲之间具有预设相位 差的泵浦脉冲, 可根据用户需要, 通过改变函数发生器 109输出至压电传感器 6 的相位调制信号的幅值和频率, 来实现对所述预设相位差的调节, 以实现吋间 延吋, 与传统的机械延吋方法相比, 调节精度高, 扫描速度快。
[0055] 实施例三:
[0056] 如图 3所示, 在一实施例中, 第一激光模块 101还包括连接在耦合器 10和偏振控 制器 8之间的机械延吋线 10, 机械延吋线 10还与加法器 108连接, 在环形谐振腔 的重复频率的漂移率大于预设阈值吋, 函数发生器 109输出相位控制信号, 通过 加法器 108传递给机械延吋线 10, 使机械延吋线 10根据加法器 10输出的信号调节 环形谐振腔的腔体长度, 以实现对泵浦脉冲和探测脉冲之间的相位差和延吋吋 间的调制。
[0057] 本实施例通过额外设置机械延吋线, 可在环形谐振腔的重复频率的漂移率大于 预设阈值, 导致压电传感器调节环形谐振腔的腔长效果不理想吋, 通过机械延 吋线来辅助调节环形谐振腔的腔体长度, 以使环形谐振腔的重复频率回到正常 范围。
[0058] 实施例四:
[0059] 如图 4所示, 本发明实施例还提供一种太赫兹吋域光谱仪, 其包括上述的电控 光取样系统 100, 还包括太赫兹模块 200和数据处理模块 300。
[0060] 其中, 太赫兹模块 200通过光纤与电控光取样系统 100连接, 用于接收所述透射 泵浦脉冲和所述透射探测脉冲, 并将所述透射泵浦脉冲和所述透射探测脉冲转 化为电流信号;
[0061] 数据处理模块 300与太赫兹模块 200连接, 用于将所述电流信号转换为数字信号 并处理。
[0062] 在具体应用中, 太赫兹模块 200包括太赫兹辐射装置和太赫兹探测装置, 所述 太赫兹辐射装置和所述太赫兹探测装置采用光电导天线, 光整流或双色场驱动 等离子体实现太赫兹波的辐射与探测。
[0063] 在具体应用中, 数据处理模块 300可以为通用集成电路, 例如 CPU (Central
Processing Unit, 中央处理器) , 或通过 ASIC (Application Specific Integrated
Circuit, 专用集成电路) 来实现。
[0064] 本实施例通过提供由电控光取样系统、 太赫兹模块和数据处理模块构成的太赫 兹吋域光谱仪, 使太赫兹吋域光谱仪的结构模块化, 简化了太赫兹吋域光谱仪 的结构, 使其能够适用于更多应用场景和环境, 利于安装和维修。
[0065] 以上所述仅为本发明的较佳实施例而已, 并不用以限制本发明, 凡在本发明的 精神和原则之内所作的任何修改、 等同替换和改进等, 均应包含在本发明的保 护范围之内。

Claims

权利要求书
[权利要求 1] 一种电控光取样系统, 其特征在于, 所述电控光取样系统包括第一激 光模块、 第二激光模块、 第一分束器、 第二分束器、 第一光电传感器 、 第二光电传感器、 相位探测器、 加法器和函数发生器, 其中, 所述 第一激光模块包括压电传感器;
所述第一分束器通过光纤与所述第一激光模块连接, 所述第二分束器 通过光纤与所述第二激光模块连接, 所述第一光电传感器和所述第二 光电传感器均与所述相位探测器连接, 所述相位探测器和所述函数发 生器均与所述加法器连接, 所述加法器与所述压电传感器连接; 所述函数发生器输出相位调制信号, 所述压电传感器根据所述相位调 制信号调节所述第一激光模块的腔体长度, 控制所述第一激光模块发 射预设相位的泵浦脉冲, 所述第一分束器将所述泵浦脉冲分束为透射 泵浦脉冲和反射泵浦脉冲, 其中, 所述反射泵浦脉冲发射至所述第一 光电传感器; 所述第一光电传感器将所述反射泵浦脉冲转换为第一电 脉冲信号并传递给所述相位探测器;
所述第二激光模块发射与所述泵浦脉冲之间具有预设相位差的探测脉 冲, 所述第二分束器将所述探测脉冲分束为透射探测脉冲和反射探测 脉冲, 其中, 所述反射探测脉冲发射至所述第二光电传感器; 所述第 二光电传感器将所述反射探测脉冲转换为第二电脉冲信号并传递给所 述相位探测器;
所述相位探测器探测所述预设相位差, 并生成与所述预设相位差线性 正相关的电压信号; 所述函数发生器持续输出所述相位调制信号; 所 述加法器对所述电压信号和所述相位调制信号进行叠加并输出给所述 压电传感器; 所述压电传感器根据所述加法器输出的信号反馈调节所 述第一激光模块的腔体长度。
[权利要求 2] 如权利要求 1所述的电控光取样系统, 其特征在于, 所述第一激光模 块还包括激光器、 波分复用器、 耦合器、 偏振控制器、 电光调制器、 可调谐滤波器、 光隔离器和光纤放大器; 所述激光器、 所述波分复用器、 所述耦合器、 所述偏振控制器、 所述 电光调制器、 所述压电传感器、 所述可调谐滤波器、 所述光隔离器和 所述光纤放大器通过光纤依次连接, 构成环形谐振腔;
所述激光器发射泵浦光源, 所述泵浦光源经所述波分复用器耦合到所 述耦合器, 所述耦合器将所述泵浦光源传输给所述偏振控制器, 所述 偏振控制器调节所述泵浦光源的偏振状态并输出给所述电光调制器, 所述电光调制器将所述泵浦光源调制为预设相位的泵浦光源并输出给 所述压电传感器, 所述压电传感器根据所述相位调制信号调节所述环 形谐振腔的腔体长度, 所述可调谐滤波器将所述预设相位的泵浦光源 调节为单一波长的激光脉冲, 所述光隔离器将所述单一波长的泵浦光 源单向传输至所述光纤放大器, 所述光纤放大器将所述单一波长的泵 浦光源增益放大为泵浦脉冲, 所述波分复用器将所述泵浦脉冲耦合至 所述耦合器, 所述耦合器将所述泵浦脉冲的一部分耦合至所述第一分 束器、 另一部分耦合至所述偏振控制器。
[权利要求 3] 如权利要求 2所述的电控光取样系统, 其特征在于, 所述第一激光模 块还包括连接在所述耦合器和所述偏振控制器之间的机械延吋线, 所 述机械延吋线还与所述加法器连接, 在所述环形谐振腔的重复频率的 漂移率大于预设阈值吋, 所述机械延吋线根据所述加法器输出的信号 调节所述环形谐振腔的腔体长度。
[权利要求 4] 如权利要求 2所述的电控光取样系统, 其特征在于, 所述激光器为半 导体激光器。
[权利要求 5] 如权利要求 2所述的电控光取样系统, 其特征在于, 所述电光调制器 为铌酸锂调制器。
[权利要求 6] 如权利要求 2所述的电控光取样系统, 其特征在于, 所述光纤放大器 为惨铒光纤放大器。
[权利要求 7] 如权利要求 1所述的电控光取样系统, 其特征在于, 所述透射泵浦脉 冲的能量大于所述反射泵浦脉冲的能量, 所述透射探测脉冲的能量大 于所述反射探测脉冲的能量。
[权利要求 8] 如权利要求 1所述的电控光取样系统, 其特征在于, 所述第二激光模 块为惨铒激光器。
[权利要求 9] 如权利要求 1所述的电控光取样系统, 其特征在于, 所述第一光电传 感器和所述第二光电传感器均为光电二极管。
[权利要求 10] —种太赫兹吋域光谱仪, 其特征在于, 所述太赫兹吋域光谱仪包括如 权利要求 1~9任一项所述的电控光取样系统, 还包括:
通过光纤与所述电控光取样系统连接, 接收所述透射泵浦脉冲和所述 透射探测脉冲, 并将所述透射泵浦脉冲和所述透射探测脉冲转化为电 流信号的太赫兹模块; 以及
与所述太赫兹模块连接, 将所述电流信号转换为数字信号并处理的数 据处理模块。
PCT/CN2017/085541 2016-09-09 2017-05-23 一种电控光取样系统及太赫兹时域光谱仪 WO2018045778A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610814526.2 2016-09-09
CN201610814526.2A CN106289528B (zh) 2016-09-09 2016-09-09 一种电控光取样系统及太赫兹时域光谱仪

Publications (1)

Publication Number Publication Date
WO2018045778A1 true WO2018045778A1 (zh) 2018-03-15

Family

ID=57711049

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/085541 WO2018045778A1 (zh) 2016-09-09 2017-05-23 一种电控光取样系统及太赫兹时域光谱仪

Country Status (2)

Country Link
CN (1) CN106289528B (zh)
WO (1) WO2018045778A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107809300A (zh) * 2017-10-31 2018-03-16 浙江大学 一种基于波分解复用技术的点对多点空间激光通信系统

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106289528B (zh) * 2016-09-09 2018-07-17 深圳市太赫兹系统设备有限公司 一种电控光取样系统及太赫兹时域光谱仪
CN108535891B (zh) * 2018-04-11 2020-01-10 雄安华讯方舟科技有限公司 一种太赫兹波波前相位调制方法
CN109374140B (zh) * 2018-12-25 2020-06-02 北京无线电计量测试研究所 一种具有高时间分辨力的电光取样方法及装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103278893A (zh) * 2013-05-30 2013-09-04 中国科学院西安光学精密机械研究所 一种太赫兹波发射/接收集成模块
CN104428963A (zh) * 2012-08-07 2015-03-18 株式会社爱德万测试 脉冲光源以及稳定地控制脉冲激光的相位差的方法
CN106289528A (zh) * 2016-09-09 2017-01-04 深圳市太赫兹系统设备有限公司 一种电控光取样系统及太赫兹时域光谱仪
CN106323469A (zh) * 2016-09-09 2017-01-11 华讯方舟科技有限公司 一种电控光取样系统、方法及太赫兹时域光谱仪
CN206114113U (zh) * 2016-09-09 2017-04-19 华讯方舟科技有限公司 一种电控光取样系统及太赫兹时域光谱仪
CN206114112U (zh) * 2016-09-09 2017-04-19 深圳市太赫兹系统设备有限公司 一种电控光取样系统及太赫兹时域光谱仪

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101701852B (zh) * 2009-09-18 2011-10-05 深圳大学 一种用于测量太赫兹光脉冲的电光取样装置及测量方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104428963A (zh) * 2012-08-07 2015-03-18 株式会社爱德万测试 脉冲光源以及稳定地控制脉冲激光的相位差的方法
CN103278893A (zh) * 2013-05-30 2013-09-04 中国科学院西安光学精密机械研究所 一种太赫兹波发射/接收集成模块
CN106289528A (zh) * 2016-09-09 2017-01-04 深圳市太赫兹系统设备有限公司 一种电控光取样系统及太赫兹时域光谱仪
CN106323469A (zh) * 2016-09-09 2017-01-11 华讯方舟科技有限公司 一种电控光取样系统、方法及太赫兹时域光谱仪
CN206114113U (zh) * 2016-09-09 2017-04-19 华讯方舟科技有限公司 一种电控光取样系统及太赫兹时域光谱仪
CN206114112U (zh) * 2016-09-09 2017-04-19 深圳市太赫兹系统设备有限公司 一种电控光取样系统及太赫兹时域光谱仪

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
FLORIAN TAUSER: "Electronically controlled optical sampling using 100 MHz repetition rate fiber lasers", PROC. OF SPIE, 15 February 2008 (2008-02-15), pages 6881, XP055604688, DOI: 10.1117/12.764506 *
STEFAN KRAY: "Electronically controlled coherent linear optical sampling for optical coherence tomography", OPTICS EXPRESS, vol. 18, no. 10, 10 May 2010 (2010-05-10), pages 9976, XP055253611, DOI: 10.1364/OE.18.009976 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107809300A (zh) * 2017-10-31 2018-03-16 浙江大学 一种基于波分解复用技术的点对多点空间激光通信系统
CN107809300B (zh) * 2017-10-31 2019-05-31 浙江大学 一种基于波分解复用技术的点对多点空间激光通信系统

Also Published As

Publication number Publication date
CN106289528B (zh) 2018-07-17
CN106289528A (zh) 2017-01-04

Similar Documents

Publication Publication Date Title
WO2018045778A1 (zh) 一种电控光取样系统及太赫兹时域光谱仪
US9863815B2 (en) Method and apparatus for multifrequency optical comb generation
CN103344194B (zh) 基于光电振荡器的相移光纤布拉格光栅应变传感系统
CN101924320A (zh) 基于法布里-珀罗腔的非调制2μm激光稳频方法和装置
CN103337776B (zh) 一种全光纤型激光自混合测距系统
CN104283617A (zh) 基于液晶可变相位延迟器的偏振激光光束产生方法
CN105244744A (zh) 一种利用电光晶体实现宽带载波包络偏频控制的光梳系统
CN109060150B (zh) 基于光谱干涉的超短脉冲时间宽度测量装置和方法
CN106092519B (zh) 基于光电反馈的短延时激光器线宽测量系统及其测量方法
CN111245599B (zh) 时域脉冲的延时控制装置以及量子密钥分发系统
CN103078241B (zh) 全光纤激光噪声过滤装置
WO2012079480A1 (zh) 动态频偏矫正的方法及相干光时域反射仪系统
WO2016187826A1 (zh) 一种光接收机和基于光接收机的光信号调节方法
JP6604580B2 (ja) 周波数安定化レーザ
CN108896192B (zh) 基于单层石墨烯的脉冲自相关测量装置和测量方法
CN107409000A (zh) 一种相干光源频偏估计和补偿的相干接收机、方法和系统
CN112083401B (zh) 一种调频连续波激光雷达非线性校正装置及方法
CN211825682U (zh) 一种基于fp腔干涉仪的光域扫频装置
WO2018045777A1 (zh) 一种电控光取样系统、方法及太赫兹时域光谱仪
CN104459350A (zh) 一种铌酸锂直波导电场测量系统
CN108375386A (zh) 一种可调频移结构的布里渊光纤传感系统与传感方法
CN206114112U (zh) 一种电控光取样系统及太赫兹时域光谱仪
JP5008483B2 (ja) タイミング調整装置および光サンプリング装置
CN110927114B (zh) 一种基于fp腔干涉仪的光域扫频装置及方法
CN114608631B (zh) 一种布里渊光时域反射传感装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17847951

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17847951

Country of ref document: EP

Kind code of ref document: A1