WO2018045531A1 - 多模卫星导航天线 - Google Patents

多模卫星导航天线 Download PDF

Info

Publication number
WO2018045531A1
WO2018045531A1 PCT/CN2016/098432 CN2016098432W WO2018045531A1 WO 2018045531 A1 WO2018045531 A1 WO 2018045531A1 CN 2016098432 W CN2016098432 W CN 2016098432W WO 2018045531 A1 WO2018045531 A1 WO 2018045531A1
Authority
WO
WIPO (PCT)
Prior art keywords
probe
dielectric substrate
satellite navigation
hole
patch
Prior art date
Application number
PCT/CN2016/098432
Other languages
English (en)
French (fr)
Inventor
江荣
刘代东
黄松
Original Assignee
深圳市天鼎微波科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市天鼎微波科技有限公司 filed Critical 深圳市天鼎微波科技有限公司
Priority to PCT/CN2016/098432 priority Critical patent/WO2018045531A1/zh
Publication of WO2018045531A1 publication Critical patent/WO2018045531A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support

Definitions

  • the present invention relates to antennas, and more particularly to a multimode satellite navigation antenna.
  • the satellite navigation and positioning system is a new generation satellite radio navigation and positioning system established with the development of science and technology. It can provide navigation and positioning information for users in real time, continuous, high precision and all weather. It has been widely used in military and civilian fields. .
  • the mainstream satellite navigation system in the world today has the US Global Positioning System (GPS, Global). Position System), Russia's GLONASS system, the European Union's Galileo system (GALILEO) and China's Beidou satellite navigation and positioning system (COMPASS).
  • GPS Global Positioning System
  • GLONASS the European Union's Galileo system
  • COMPASS Beidou satellite navigation and positioning system
  • GPS global satellite system market share and recognition is high, and the terminal industry chain is relatively mature.
  • the satellite navigation antenna adopts a microstrip antenna and a four-arm helical antenna.
  • the disadvantage of the microstrip antenna is that the working frequency band is narrow, the low elevation gain and the axial ratio characteristic are relatively poor; the shortcoming of the four-arm helical antenna is that the size is large and it is not easy to conform.
  • the performance of the antenna is often affected by the back radiation problem of the feed network.
  • a multimode satellite navigation antenna includes a laminated structure, a coaxial connector, a first probe and a second probe, the first probe has a rectangular cross section, and the second probe has a cross section of Circular, and an area of a cross section of the first probe is larger than an area of a cross section of the second probe;
  • the stacked structure includes, in order from top to bottom, a first conductive patch operating in a first frequency band, a first dielectric substrate, a second conductive patch operating in a second frequency band, a second dielectric substrate, and a ground conductive a patch, a third dielectric substrate, a feed network, and a shielding layer of the hollow structure;
  • the first dielectric substrate, the second dielectric substrate, and the third dielectric substrate are both ceramic sheets and have a thickness of 0.85 mm, respectively 1.63 mm and 1.2 mm;
  • the laminated structure is provided with a first through hole and a second through hole sequentially penetrating from the first conductive patch to the third dielectric substrate; the first through hole and the first through hole
  • the two through holes are located on a circumference centered on the center of the laminated structure, and are separated by 90 degrees, the inner radius of the first through hole is 0.43 mm, and the inner radius of the second through hole is 0.41 mm;
  • the first probe is disposed in the first through hole, and the second probe is disposed in the second through hole.
  • the above multi-mode satellite navigation antenna adopts a microstrip antenna method, has a compact structure and is easy to conform.
  • the shielding layer of the hollow structure is provided on the bottom layer of the laminated structure, which can effectively suppress the back radiation of the feeding network (the power splitter and the phase shifter), and effectively improve the performance of the antenna.
  • FIG. 1 is a side view of a multimode satellite navigation antenna of an embodiment
  • FIG. 2 is a top plan view of a multimode satellite navigation antenna of one embodiment
  • FIG. 3 is a top plan view of a multimode satellite navigation antenna of another embodiment
  • FIG. 4 is a top plan view of a coaxial cable connector and a feed network of an embodiment
  • Figure 5 is an antenna simulation and measured standing wave diagram of an embodiment
  • Figure 6 is an antenna simulation and measured axial ratio diagram of one embodiment
  • Figure 7 is an axial ratio pattern of the 1.2 GHz frequency X-Z
  • Figure 8 is an axial ratio pattern of the 1.2 GHz frequency Y-Z
  • Figure 9 is an axial ratio pattern of the 1.6 GHz frequency X-Z.
  • Figure 10 is an axial ratio pattern of the 1.6 GHz frequency Y-Z
  • Figure 11 is a far field pattern of different frequencies.
  • a multimode satellite navigation antenna comprising a laminated structure, a coaxial connector, a first probe and a second probe,
  • the cross section of the first probe is rectangular, the cross section of the second probe is circular, and the area of the cross section of the first probe is larger than the area of the cross section of the second probe.
  • the first dielectric substrate, the second dielectric substrate and the third dielectric substrate are all ceramic sheets and have thicknesses of 0.85 mm, 1.63 mm and 1.2 mm, respectively.
  • the stacked structure includes, in order from top to bottom, a first conductive patch working in the first frequency band, a first dielectric substrate, a second conductive patch working in the second frequency band, a second dielectric substrate, and a ground conductive patch. a third dielectric substrate, a feed network, and a shield of the hollow structure.
  • the laminated structure is provided with a first through hole and a second through hole which are sequentially penetrated from the first conductive patch to the third dielectric substrate.
  • the first through hole and the second through hole are located on a circumference centered on a center of the laminated structure and are separated by 90 degrees, an inner radius of the first through hole is 0.43 mm, and an inner radius of the second through hole is 0.41 mm.
  • the first probe is disposed in the first through hole
  • the second probe is disposed in the second through hole.
  • the feed network includes an input, a first output, and a second output.
  • the coaxial connector connects the input end, and the first probe passes through the first through hole to connect the first conductive patch and the first output end.
  • the second probe passes through the second through hole to connect the first conductive patch and the second output end.
  • the above multi-mode satellite navigation antenna adopts a microstrip antenna method, has a compact structure and is easy to conform.
  • the shielding layer of the hollow structure is provided on the bottom layer of the laminated structure, which can effectively suppress the back radiation of the feeding network (the power splitter and the phase shifter), and effectively improve the performance of the antenna.
  • FIG. 1 is a side elevational view of a multimode satellite navigation antenna of one embodiment
  • FIG. 2 is a top plan view of a multimode satellite navigation antenna of one embodiment.
  • a multimode satellite navigation antenna includes a laminated structure 100, a coaxial connector 200, a first probe 300, and a second probe 400.
  • the cross section of the first probe 300 and the second probe 400 can each be square, rectangular, circular, or any other suitable shape.
  • the first probe 300 has a rectangular cross section
  • the second probe 400 has a circular cross section
  • the cross-sectional area of the first probe 300 is larger than the cross-sectional area of the second probe 400.
  • the stacked structure 100 includes, in order from top to bottom, a first conductive patch 110 operating in a first frequency band, a first dielectric substrate 120, a second conductive patch 130 operating in a second frequency band, and a second dielectric substrate 140.
  • the first frequency band is 1.53 GHz - 1.63 GHz
  • the second frequency band is 1.23 GHz - 1.33 GHz.
  • the shielding layer 180 has a hollow structure with a thickness of between 1 mm and 2 mm for suppressing the back radiation of the feed network 170 (power splitter and phase shifter), and effectively improving the performance of the antenna.
  • the first conductive patch 110 and the second conductive patch 130 are of a disc type or a circle, and both adopt a right-hand circular polarization.
  • the first conductive patch 110 has a radius of 22 to 25 mm, preferably 23.4 mm.
  • the second conductive patch 130 has a radius of 30 to 35 mm, preferably 31.6 mm.
  • the ground conductive patch 150 is square in this embodiment and has a side length of 70 mm.
  • the first dielectric substrate 120, the second dielectric substrate 140, and the third dielectric substrate 160 are ceramic substrates each having a thickness of between 0.5 mm and 2 mm, and in the present embodiment, thicknesses of 0.8 mm, 1.6 mm, and 1 mm, respectively. .
  • the ceramic substrate has a dielectric constant of 10 to 12, preferably 10.45.
  • the first dielectric substrate 120 is a circular shape matching the first conductive patch 110 in this embodiment, and has a radius of 22 to 25 mm, preferably 23.4 mm. Other shapes, such as squares, may also be used in other embodiments, as long as it is ensured to be larger than the first conductive patch 110.
  • the second dielectric substrate 140 and the third dielectric substrate 160 are both square in this embodiment and have a side length of 70 mm. Of course, other shapes, such as a circle, can also be made in other embodiments.
  • the first dielectric substrate, the second dielectric substrate, and the third dielectric substrate are all ceramic sheets and have thicknesses of 0.85 mm, 1.63 mm, and 1.2 mm, respectively.
  • the first conductive patch 110 may also be provided with a slit 112 for cutting off current.
  • the slit 112 is a cross-shaped slit, and the vertical slit and the horizontal slit are respectively 10 mm long and 1 mm wide.
  • other shape slits may be used as long as the current can be cut off to reduce the size of the antenna, such as an H-shaped slit.
  • the laminated structure 100 further includes a second conductive patch 130, a second dielectric substrate 140, a ground conductive patch 150, and a second conductive patch 130 that operate through the first dielectric substrate 120 from the first conductive patch 110.
  • the first through hole 101 and the second through hole 102 are located on a circumference having a center O of the laminated structure 100 and having a radius R, and are separated by 90 degrees.
  • the first through hole 101 and the second through hole 102 serve as doubly-fed points with equal amplitudes and a phase difference of 90 degrees.
  • the radius R is between 12 and 15 mm, preferably 13 mm.
  • the inner diameters of the first through hole 101 and the second through hole 102 are between 0.4 and 0.6 mm, preferably 0.45 mm.
  • the inner radius of the first through hole 101 is 0.43 mm
  • the inner radius of the second through hole is 0.41 mm.
  • the first probe 300 and the second probe 400 are used to connect the first conductive patch 110 and the feed network 170 for feeding.
  • One end of the first probe 300 is provided with a first patch
  • one end of the second probe 400 is provided with a second patch.
  • the first patch and the second patch are respectively attached to the first conductive patch 110 .
  • the needle body of the first probe 300 extending into the first through hole 101 is smaller than the inner diameter of the first through hole 101
  • the needle body of the second probe 400 extending into the second through hole 102 is smaller than the inner diameter of the first through hole 102.
  • the number of probes can be increased as needed to make the circular polarization performance better.
  • Feed network 170 includes a Wilkinson splitter 174 and a 90 degree wideband phase shifter 175 in a two-stage series configuration.
  • the Wilkinson splitter 174 includes an input 173, and the 90 degree wideband phase shifter 175 includes a first output 171 and a second output 172.
  • the coaxial connector 200 is connected to the input end 173, and the first probe 300 passes through the first through hole 101 to connect the first conductive patch 110 and the first output end 171.
  • the second probe 400 passes through the second through hole 102 to connect the first conductive patch 110 and the second output end 172.
  • the transmission line of the feed network 170 is bent to reduce the area, and the feed network 170 operates in a wide band of 1.2 GHz to 1.6 GHz.
  • VSWR is the voltage standing wave ratio (Voltage Standing Wave Ratio)
  • AR is the axial ratio (Axial Ratio).
  • Figures 7 through 10 it can be seen that the antenna of the present embodiment has excellent wide-angle elevation-axis ratio characteristics.
  • the antenna gain is greater than -5 dB at an elevation angle greater than 10°.
  • the above-mentioned multi-mode satellite navigation antenna satisfies the bandwidth requirements of various satellite navigation systems such as Beidou II, GPS and GLONASS; and adopts a microstrip antenna method, which is compact in structure and easy to conform.
  • the shielding layer of the hollow structure is provided on the bottom layer of the laminated structure, which can effectively suppress the back radiation of the feeding network (the power splitter and the phase shifter), and effectively improve the performance of the antenna. It has been proved by experiments that the antenna of the above antenna has a wide beam width and a high elevation angle gain; the antenna has a wide angle-angle axis characteristic and a strong anti-multipath interference capability.

Landscapes

  • Waveguide Aerials (AREA)

Abstract

一种多模卫星导航天线,包括叠层结构(100)、同轴线接头(200)、第一探针(300)和第二探针(400),所述第一探针(300)的横截面为矩形,所述第二探针(400)的横截面为圆形,且所述第一探针(300)的横截面的面积大于所述第二探针(400)的横截面的面积;所述叠层结构(100)从上而下依次包括:工作于第一频带的第一导电贴片(110)、第一介质基片(120)、工作于第二频带的第二导电贴片(130)、第二介质基片(140)、接地导电贴片(150)、第三介质基片(160)、馈电网络(170)和中空结构的屏蔽层(180)。

Description

多模卫星导航天线
【技术领域】
本发明涉及天线,特别是涉及一种多模卫星导航天线。
【背景技术】
卫星导航定位系统是随着科学技术发展而建立起来的新一代卫星无线电导航定位系统,它可以实时、连续、高精度、全天候地为用户提供导航定位信息,目前已经在军用和民用领域得到广泛应用。当今世界主流卫星导航系统有美国的全球定位系统(GPS,Global Position System)、俄罗斯的格洛纳斯系统(GLONASS)、欧洲联盟的伽利略系统(GALILEO)和我国的北斗卫星导航定位系统(COMPASS)。其中GPS全球卫星系统市场占有率和认知度较高,且终端产业链比较成熟。为了更好得结合市场推动北斗产业的发展,国内外各大导航公司、通信企业、高校等致力于北斗、GPS以及多个导航系统联合的研究,这就要求射频组件以及天线往多系统兼容的方向发展。
通常卫星导航天线采用微带天线和四臂螺旋天线两种方式。微带天线的缺点是工作频带窄,低仰角增益和轴比特性比较差;四臂螺旋天线的缺点是尺寸大,不易共形。采用微带天线方式的时候,往往由于馈电网络的背向辐射问题,导致天线的性能受到影响。
【发明内容】
基于此,有必要提供一种能够多模卫星导航天线。
一种多模卫星导航天线,包括叠层结构、同轴线接头、第一探针和第二探针,所述第一探针的横截面为矩形,所述第二探针的横截面为圆形,且所述第一探针的横截面的面积大于所述第二探针的横截面的面积;
所述叠层结构从上而下依次包括:工作于第一频带的第一导电贴片、第一介质基片、工作于第二频带的第二导电贴片、第二介质基片、接地导电贴片、第三介质基片、馈电网络和中空结构的屏蔽层;所述第一介质基片、第二介质基片及第三介质基片均为陶瓷片体且厚度分别为0.85毫米、1.63毫米及1.2毫米;所述叠层结构设有从所述第一导电贴片依次贯穿到所述第三介质基片的第一通孔和第二通孔;所述第一通孔和第二通孔位于以所述叠层结构的中心为圆心的圆周上,并且相隔90度,所述第一通孔的内半径为0.43毫米,所述第二通孔的内半径为0.41毫米;
所述第一探针穿设于所述第一通孔中,所述第二探针穿设于所述第二通孔中。
上述多模卫星导航天线,采用微带天线方式,结构紧凑,易共形。在叠层结构的底层设有中空结构的屏蔽层,可以有效地抑制馈电网络(功分器和移相器)的背向辐射,有效地改善了天线的性能。
【附图说明】
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为一个实施例的多模卫星导航天线侧面示意图;
图2为一个实施例的多模卫星导航天线俯视图;
图3为另一个实施例的多模卫星导航天线俯视图;
图4为一个实施例的同轴线接头和馈电网络的俯视图;
图5为一个实施例的天线仿真和实测驻波图;
图6为一个实施例的天线仿真和实测轴比图;
图7为1.2GHz频率X-Z的轴比方向图;
图8为1.2GHz频率Y-Z的轴比方向图;
图9为1.6GHz频率X-Z的轴比方向图;
图10为1.6GHz频率Y-Z的轴比方向图;以及
图11为不同频率远场方向图。
【具体实施方式】
为了便于理解本发明,下面将参照相关附图对本发明进行更全面的描述。附图中给出了本发明的较佳实施例。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本发明的公开内容的理解更加透彻全面。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在限制本发明。本文所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。
一种多模卫星导航天线,包括叠层结构、同轴线接头、第一探针和第二探针, 所述第一探针的横截面为矩形,所述第二探针的横截面为圆形,所述第一探针的横截面的面积大于所述第二探针的横截面的面积, 所述第一介质基片、第二介质基片及第三介质基片均为陶瓷片体,且厚度分别为0.85毫米、1.63毫米及1.2毫米,。
叠层结构从上而下依次包括:工作于第一频带的第一导电贴片、第一介质基片、工作于第二频带的第二导电贴片、第二介质基片、接地导电贴片、第三介质基片、馈电网络和中空结构的屏蔽层。
叠层结构设有从第一导电贴片依次贯穿到第三介质基片的第一通孔和第二通孔。第一通孔和第二通孔位于以叠层结构的中心为圆心的圆周上,并且相隔90度,所述第一通孔的内半径为0.43毫米,所述第二通孔的内半径为0.41毫米。
例如,第一探针穿设于第一通孔中,第二探针穿设于第二通孔中。
例如,在一实施例中,馈电网络包括输入端、第一输出端和第二输出端。同轴线接头连接输入端,第一探针穿过第一通孔以使第一导电贴片和第一输出端连接。第二探针穿过第二通孔以使第一导电贴片和第二输出端连接。
上述多模卫星导航天线,采用微带天线方式,结构紧凑,易共形。在叠层结构的底层设有中空结构的屏蔽层,可以有效地抑制馈电网络(功分器和移相器)的背向辐射,有效地改善了天线的性能。
图1为一个实施例的多模卫星导航天线侧面示意图,图2为一个实施例的多模卫星导航天线俯视图。
一种多模卫星导航天线,包括叠层结构100、同轴线接头200、第一探针300和第二探针400。
例如,第一探针300及第二探针400的横截面均可为方形、矩形、圆形或任何其它合适的形状。例如,第一探针300的横截面为矩形,第二探针400的横截面为圆形,且第一探针300的横截面的面积大于第二探针400的横截面面积。
叠层结构100从上而下依次包括:工作于第一频带的第一导电贴片110、第一介质基片120、工作于第二频带的第二导电贴片130、第二介质基片140、接地导电贴片150、第三介质基片160、馈电网络170和中空结构的屏蔽层180。第一频带为1.53GHz-1.63GHz,第二频带为1.23GHz-1.33GHz。屏蔽层180为中空的结构,厚度介于1mm~2mm之间,用于抑制馈电网络170(功分器和移相器)的背向辐射,有效地改善了天线的性能。
第一导电贴片110和第二导电贴片130为圆片型或类圆形,都采用右旋圆极化方式。第一导电贴片110半径在22~25mm,优选为23.4mm。第二导电贴片130半径在30~35mm,优选为31.6mm。接地导电贴片150在本实施例中为方形,边长为70mm。
第一介质基片120、第二介质基片140和第三介质基片160为陶瓷基片,厚度都介于0.5mm~2mm之间,在本实施例中分别厚0.8mm、1.6mm、1mm。陶瓷基片的介电常数为10~12,优选为10.45。第一介质基片120在本实施例中为和第一导电贴片110相匹配的圆形,半径在22~25mm,优选为23.4mm。在其他实施例中还可以是其他形状,例如方形,只需确保比第一导电贴片110大即可。第二介质基片140和第三介质基片160在本实施例中都为方形,边长为70mm。当然在其他实施例中还可以做成其他形状,例如圆形。
例如,所述第一介质基片、第二介质基片及第三介质基片均为陶瓷片体且厚度分别为0.85毫米、1.63毫米及1.2毫米。
见图3,第一导电贴片110还可以开设有用于切断电流的缝隙112。在本实施例中,缝隙112为十字形缝隙,竖缝隙和横缝隙分别长10mm,宽1mm。在其他实施例中,还可以是其他形状缝隙,只要能切断电流减少天线尺寸即可,例如H字形缝隙。
叠层结构100还设有从第一导电贴片110依次贯穿第一介质基片120、工作于第二频带的第二导电贴片130、第二介质基片140、接地导电贴片150、第三介质基片160的第一通孔101和第二通孔102。
第一通孔101和第二通孔102位于以叠层结构100的中心为圆心O、半径为R的圆周上,并且相隔90度。第一通孔101和第二通孔102作为双馈点,振幅相等,相位差90度。半径为R介于12~15mm之间,优选为13mm。第一通孔101和第二通孔102的内半径介于0.4~0.6mm之间,优选为0.45mm。
例如,所述第一通孔101的内半径为0.43mm,所述第二通孔的内半径为0.41mm。
第一探针300和第二探针400用于连接第一导电贴片110和馈电网络170进行馈电。第一探针300的一端设有第一贴片,第二探针400的一端设有第二贴片,见图1,第一贴片和第二贴片分别与第一导电贴片110贴面连接。第一探针300伸入第一通孔101的针体比第一通孔101的内径小,第二探针400伸入第二通孔102的针体比第一通孔102的内径小,以避免与第二导电贴片130和接地导电贴片150接触。可以理解,还可以按需要增加探针数量,使圆极化性能更佳。
馈电网络170包括采用双级串联式结构的Wilkinson功分器174和90度宽带移相器175。见图4,Wilkinson功分器174包括输入端173,90度宽带移相器175包括第一输出端171和第二输出端172。同轴线接头200连接输入端173,第一探针300穿过第一通孔101以使第一导电贴片110和第一输出端171连接。第二探针400穿过第二通孔102以使第一导电贴片110和第二输出端172连接。馈电网络170的传输线路都采用折弯的方式来减少面积,馈电网络170工作在1.2GHz-1.6GHz的宽带内。
参阅图5和图6,从图中可以看出,VSWR<2的带宽为50.8%,AR<3的带宽为45.5%,驻波和轴比带宽可以完全覆盖1.2GHz-1.6GHz。VSWR为电压驻波比(Voltage Standing Wave Ratio),AR为轴比 (Axial Ratio)。参阅图7到图10,可以看出,本实施例天线具有优异的宽角仰角轴比特性。参阅图11,可以看出,在仰角大于10°时,天线的增益都大于-5dB。
上述多模卫星导航天线,满足北斗二代、GPS和GLONASS等多种卫星导航系统的带宽要求;采用微带天线方式,结构紧凑,易共形。在叠层结构的底层设有中空结构的屏蔽层,可以有效地抑制馈电网络(功分器和移相器)的背向辐射,有效地改善了天线的性能。经试验证明,上述天线的天线波束宽度宽,低仰角增益高;天线宽角仰角轴比特性好,抗多径干扰能力强。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (10)

  1. 一种多模卫星导航天线,其特征在于,包括叠层结构、同轴线接头、第一探针和第二探针,所述第一探针的横截面为矩形,所述第二探针的横截面为圆形,所述第一探针的横截面的面积大于所述第二探针的横截面的面积;
    所述叠层结构从上而下依次包括:工作于第一频带的第一导电贴片、第一介质基片、工作于第二频带的第二导电贴片、第二介质基片、接地导电贴片、第三介质基片、馈电网络和中空结构的屏蔽层;所述第一介质基片、第二介质基片及第三介质基片均为陶瓷片体,且厚度分别为0.85毫米、1.63毫米及1.2毫米,所述叠层结构设有从所述第一导电贴片依次贯穿到所述第三介质基片的第一通孔和第二通孔;所述第一通孔和第二通孔位于以所述叠层结构的中心为圆心的圆周上,并且相隔90度,所述第一通孔的内半径为0.43毫米,所述第二通孔的内半径为0.41毫米;
    所述第一探针穿设于所述第一通孔中, 所述第二探针穿设于所述第二通孔中。
  2. 根据权利要求1所述的多模卫星导航天线,其特征在于,所述第一频带为1.53GHz-1.63GHz,所述第二频带为1.23GHz-1.33GHz,所述馈电网络包括输入端、第一输出端和第二输出端,所述同轴线接头连接所述输入端,所述第一探针连接所述第一导电贴片和所述第一输出端,所述第二探针连接所述第一导电贴片和所述第二输出端连接。
  3. 根据权利要求1所述的多模卫星导航天线,其特征在于,所述第一导电贴片和所述第二导电贴片为圆片型。
  4. 根据权利要求1所述的多模卫星导航天线,其特征在于,所述第一导电贴片开设有用于切断电流的缝隙。
  5. 根据权利要求4所述的多模卫星导航天线,其特征在于,所述缝隙为十字形或H字形缝隙。
  6. 根据权利要求1所述的多模卫星导航天线,其特征在于,所述第一介质基片为圆形,所述第二介质基片和所述第三介质基片均为方形。
  7. 根据权利要求6所述的多模卫星导航天线,其特征在于,所述陶瓷基片的介电常数为10~12。
  8. 根据权利要求7所述的多模卫星导航天线,其特征在于,所述陶瓷基片的介电常数为10.45。
  9. 根据权利要求1所述的多模卫星导航天线,其特征在于,所述馈电网络包括Wilkinson功分器和90度宽带移相器。
  10. 根据权利要求1所述的多模卫星导航天线,其特征在于,所述第一探针的一端设有第一贴片,所述第二探针的一端设有第二贴片,所述第一贴片和所述第二贴片分别与所述第一导电贴片连接。
PCT/CN2016/098432 2016-09-08 2016-09-08 多模卫星导航天线 WO2018045531A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/098432 WO2018045531A1 (zh) 2016-09-08 2016-09-08 多模卫星导航天线

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/098432 WO2018045531A1 (zh) 2016-09-08 2016-09-08 多模卫星导航天线

Publications (1)

Publication Number Publication Date
WO2018045531A1 true WO2018045531A1 (zh) 2018-03-15

Family

ID=61561615

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/098432 WO2018045531A1 (zh) 2016-09-08 2016-09-08 多模卫星导航天线

Country Status (1)

Country Link
WO (1) WO2018045531A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109387860A (zh) * 2018-12-04 2019-02-26 中电科技扬州宝军电子有限公司 一种改善天线相位稳定度的阶梯地结构
CN114824766A (zh) * 2021-01-19 2022-07-29 大唐移动通信设备有限公司 一种多模式导航天线

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101859927A (zh) * 2010-04-14 2010-10-13 电子科技大学 一种ltcc叠层双馈圆极化微带贴片天线
CN202474201U (zh) * 2011-12-31 2012-10-03 嘉兴佳利电子股份有限公司 小型化叠层多频圆极化天线
CN102904071A (zh) * 2012-09-29 2013-01-30 西安空间无线电技术研究所 一种l波段三频圆极化微带天线
US20140097995A1 (en) * 2012-04-03 2014-04-10 William E. McKinzie, III Artificial magnetic conductor antennas with shielded feedlines
CN104538730A (zh) * 2014-08-15 2015-04-22 深圳市天鼎微波科技有限公司 减少馈电网络的背向辐射影响的多模卫星导航天线
CN105305037A (zh) * 2014-06-05 2016-02-03 南京理工大学 一种双频圆极化星载导航天线
CN105356070A (zh) * 2015-09-08 2016-02-24 电子科技大学 一种双频共口面阵列天线

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101859927A (zh) * 2010-04-14 2010-10-13 电子科技大学 一种ltcc叠层双馈圆极化微带贴片天线
CN202474201U (zh) * 2011-12-31 2012-10-03 嘉兴佳利电子股份有限公司 小型化叠层多频圆极化天线
US20140097995A1 (en) * 2012-04-03 2014-04-10 William E. McKinzie, III Artificial magnetic conductor antennas with shielded feedlines
CN102904071A (zh) * 2012-09-29 2013-01-30 西安空间无线电技术研究所 一种l波段三频圆极化微带天线
CN105305037A (zh) * 2014-06-05 2016-02-03 南京理工大学 一种双频圆极化星载导航天线
CN104538730A (zh) * 2014-08-15 2015-04-22 深圳市天鼎微波科技有限公司 减少馈电网络的背向辐射影响的多模卫星导航天线
CN105356070A (zh) * 2015-09-08 2016-02-24 电子科技大学 一种双频共口面阵列天线

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109387860A (zh) * 2018-12-04 2019-02-26 中电科技扬州宝军电子有限公司 一种改善天线相位稳定度的阶梯地结构
CN109387860B (zh) * 2018-12-04 2024-06-07 中电科技扬州宝军电子有限公司 一种改善天线相位稳定度的阶梯地结构
CN114824766A (zh) * 2021-01-19 2022-07-29 大唐移动通信设备有限公司 一种多模式导航天线
CN114824766B (zh) * 2021-01-19 2023-05-26 大唐移动通信设备有限公司 一种多模式导航天线

Similar Documents

Publication Publication Date Title
CN109462024B (zh) 一种宽轴比波束的双频北斗导航天线
CN106252858B (zh) S/x波段共口径宽带小型化平面天线
CN102185182B (zh) 圆极化多模宽带天线及微带功分移相网络
CN100369323C (zh) 超宽带梯形地板印刷单极天线
CN106711596B (zh) 一种宽轴比波束宽度的宽带gnss天线
CN204361256U (zh) 减少馈电网络的背向辐射影响的多模卫星导航天线
CN103700946B (zh) 带跨臂缝隙耦合的寄生三角多臂天线
CN208690490U (zh) 一种基于共面波导的对地开槽的圆极化天线
CN103794846B (zh) 一种双频圆极化北斗天线
CN104466382B (zh) 基于嵌套递归旋转对称csrr分布阵列的叠层微带天线
CN208862170U (zh) 一种宽轴比波束的双频圆极化北斗天线
CN107275776A (zh) 一种siw缝隙串馈阵列天线系统
GB2540824B (en) Antenna
CN107425277B (zh) 多频组合卫星导航终端天线
CN109037931A (zh) 双频双圆极化北斗导航天线及北斗卫星导航终端设备
WO2018045531A1 (zh) 多模卫星导航天线
WO2022156411A1 (zh) 一种多模式导航天线
CN105322288B (zh) 卫星导航系统终端宽带小型微带天线
CN207303352U (zh) 一种siw缝隙串馈阵列天线系统
CN109216908A (zh) 一种宽轴比波束的双频圆极化北斗天线
CN113964494A (zh) 一种具有滤波特性的宽带圆极化天线
CN107104280A (zh) 一种新型螺旋天线
CN113794055A (zh) 一种宽带高增益双圆极化微带天线及通讯装置
CN207732087U (zh) 一种新型天线基片
CN208862167U (zh) 双频双圆极化北斗导航天线及北斗卫星导航终端设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16915466

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16915466

Country of ref document: EP

Kind code of ref document: A1