WO2018043970A1 - Angle type hybrid beam reinforcement, method for manufacturing angle type hybrid beam reinforcement, and method for constructing angle type hybrid beam reinforcement - Google Patents

Angle type hybrid beam reinforcement, method for manufacturing angle type hybrid beam reinforcement, and method for constructing angle type hybrid beam reinforcement Download PDF

Info

Publication number
WO2018043970A1
WO2018043970A1 PCT/KR2017/009070 KR2017009070W WO2018043970A1 WO 2018043970 A1 WO2018043970 A1 WO 2018043970A1 KR 2017009070 W KR2017009070 W KR 2017009070W WO 2018043970 A1 WO2018043970 A1 WO 2018043970A1
Authority
WO
WIPO (PCT)
Prior art keywords
angle
reinforcement
hybrid beam
reinforced concrete
beam reinforcement
Prior art date
Application number
PCT/KR2017/009070
Other languages
French (fr)
Korean (ko)
Inventor
박춘욱
황성일
홍원화
Original Assignee
경북대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 경북대학교 산학협력단 filed Critical 경북대학교 산학협력단
Publication of WO2018043970A1 publication Critical patent/WO2018043970A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C5/00Reinforcing elements, e.g. for concrete; Auxiliary elements therefor
    • E04C5/07Reinforcing elements of material other than metal, e.g. of glass, of plastics, or not exclusively made of metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D47/00Making rigid structural elements or units, e.g. honeycomb structures
    • B21D47/01Making rigid structural elements or units, e.g. honeycomb structures beams or pillars
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D49/00Sheathing or stiffening objects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D49/00Sheathing or stiffening objects
    • B21D49/005Hollow objects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/54Component parts, details or accessories; Auxiliary operations, e.g. feeding or storage of prepregs or SMC after impregnation or during ageing
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G23/00Working measures on existing buildings
    • E04G23/02Repairing, e.g. filling cracks; Restoring; Altering; Enlarging
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G23/00Working measures on existing buildings
    • E04G23/02Repairing, e.g. filling cracks; Restoring; Altering; Enlarging
    • E04G23/0218Increasing or restoring the load-bearing capacity of building construction elements

Definitions

  • the present invention relates to an angle-type hybrid beam reinforcement, an angle-type hybrid beam reinforcement method and a construction method of the angle-type hybrid beam reinforcement, more specifically, an angle-type hybrid beam exhibiting excellent reinforcement ability while overcoming the disadvantages of steel reinforcement and fiber reinforcement
  • a method of manufacturing a reinforcing material, an angle hybrid beam reinforcing material, and a construction method of an angle type hybrid beam reinforcing material is a method of manufacturing a reinforcing material, an angle hybrid beam reinforcing material, and a construction method of an angle type hybrid beam reinforcing material.
  • the foundation of social infrastructure consists mostly of reinforced concrete. All reinforced concrete structures are mechanically considered by the designer to perform their functions fully, and appropriate safety factors are provided to users according to the environment and situation. However, in case of aging caused by structural damage or environmental factors due to unexpected factors, the designed structure does not function properly. In such cases, the structure safety diagnosis is performed to ensure the functional scope of the structure. Is done. In addition, when the structure in use had a sufficient strength at the time of design, when the strength of the structure needs to be increased due to the increase in the extension or use load due to the structural change, reinforcement is performed through the structural design again.
  • the material used for the initial repair and reinforcement method is steel
  • the steel plate reinforcement method using steel is a method of attaching steel plate to the tensile surface of concrete structure using epoxy, which can be expected to improve the flexural strength and rigidity of reinforced concrete structures. It has been used for a long time since the 1960s.
  • the steel plate reinforcement method has a disadvantage in that it is difficult to handle and has a high self-weight because it uses steel having a high specific gravity.
  • the adhesion damage to the concrete matrix due to steel corrosion has been raised as a problem.
  • Fiber reinforced polymer which has excellent mechanical properties, durability, and light weight
  • Types of fiber reinforcements include glass fibers, aramid fibers, carbon fibers, etc., and are used in various reinforcing methods depending on their physical properties. Fiber reinforcement has a great advantage in strength, light weight, corrosion resistance, etc. than other materials, FRP sheet method, FRP plate method, FRP NSM (near surface mounted) method has been developed and used (Korea Patent Publication No. 10-2011- See 0001337).
  • angle hybrid beam reinforcement In order to solve these problems, the angle hybrid beam reinforcement, angle hybrid beam reinforcement manufacturing method and angle type can be solved while increasing the strength and stiffness of reinforced concrete, while solving the disadvantages such as breathability problems, early dropout, and construction problems of the existing reinforcement method There is a need for a construction method for hybrid beam reinforcement.
  • the problem to be solved by the present invention is different from the structure, shape and material of the conventional reinforced concrete beam reinforcement, as a result of the angle hybrid beam reinforcement that can solve the problems of the conventional reinforcement while increasing the strength and rigidity of the reinforced concrete beam
  • Angle-type hybrid beam reinforcement for solving the above problems, is an angle-type hybrid beam reinforcement used for repairing and reinforcement of reinforced concrete beams, is attached to the surface of the angle-type aluminum beam and angle-type aluminum beam, glass
  • the fiber fabric prepreg is formed and includes a glass fiber composite formed.
  • a method of manufacturing an angle hybrid beam reinforcement comprising: placing a glass fiber fabric prepreg in a lower mold of a detachable mold, and forming an angle aluminum beam on the glass fiber fabric prepreg. Laminating, laminating glass fiber fabric prepreg on the angled aluminum beam, assembling the upper mold of the detachable mold with the lower mold, applying high temperature treatment and high pressure treatment to the detachable mold, and separating the detachable mold Demolding the angular hybrid beam reinforcement produced afterwards.
  • the construction method of the angle-type hybrid beam stiffener for solving the above problems, the step of applying the adhesive to the reinforced concrete beam and the angle-type hybrid beam stiffener and bonding the reinforced concrete beam and the angle-type hybrid beam stiffener and tableting Securing the angled hybrid beam stiffener to the reinforced concrete beam using a fixing pin of the tool.
  • an angle hybrid beam reinforcement, an angle hybrid beam reinforcement manufacturing method, and an angle hybrid beam can be solved while increasing the strength and rigidity of reinforced concrete while solving the disadvantages such as breathability problems, premature dropout, and construction problems of the existing reinforcement method
  • the construction method of a reinforcement can be provided.
  • FIG. 1 is a cross-sectional view in the width direction for flexural reinforcement of an angle-type hybrid beam reinforcement according to an embodiment of the present invention.
  • Figure 2 is a cross-sectional view showing a state in which the angle-type hybrid beam reinforcement according to an embodiment of the present invention attached to the reinforced concrete beam for bending reinforcement.
  • FIG. 3 is a cross-sectional view for shear reinforcement in an angle-type hybrid beam reinforcement according to another embodiment of the present invention.
  • Figure 4 is a cross-sectional view showing a state in which the angle-type hybrid beam reinforcement according to another embodiment of the present invention attached to the reinforced concrete beam for shear reinforcement.
  • FIG. 5 is a view showing the fiber arrangement direction of the glass fiber fabric prepreg of the angle-type hybrid beam reinforcement according to the present invention.
  • FIG. 6 is a flowchart of a method of manufacturing an angle hybrid beam reinforcement according to the present invention.
  • FIG. 7 to 10 is a photograph showing each process of the manufacturing method of the angle-type hybrid beam reinforcement according to the present invention.
  • FIG. 11 is a flowchart of a construction method of an angle-type hybrid beam reinforcement according to the present invention.
  • FIG. 12 is a photograph of the fixing pin used in the construction method of the angle-type hybrid beam reinforcement according to the present invention.
  • FIG. 13 is a view showing a test body for evaluating the effect of the angle-type hybrid beam reinforcement according to the present invention.
  • FIG. 14 is a photograph showing a fracture pattern according to the application of the load of the reinforced concrete beam is not reinforced.
  • 15 is a photograph showing the final failure pattern according to the load application of the reinforced concrete beam reinforced with an angle-type hybrid beam bending stiffener according to an embodiment of the present invention.
  • 16 is a photograph showing the final failure pattern according to the load application of the reinforced concrete beam reinforced with an angle-type hybrid beam shear reinforcement according to another embodiment of the present invention.
  • 17 is a graph comparing the relationship between the load and the displacement of the reinforced concrete beam not reinforced with reinforced concrete beams reinforced with an angle-type hybrid beam stiffener according to an embodiment of the present invention.
  • FIG. 1 is a cross-sectional view in the width direction for flexural reinforcement of an angle-type hybrid beam reinforcement according to an embodiment of the present invention.
  • Figure 2 is a cross-sectional view showing a state in which the angle-type hybrid beam reinforcement according to an embodiment of the present invention attached to the reinforced concrete beam for bending reinforcement.
  • 3 is a cross-sectional view for shear reinforcement in an angle-type hybrid beam reinforcement according to another embodiment of the present invention.
  • Figure 4 is a cross-sectional view showing a state in which the angle-type hybrid beam reinforcement according to another embodiment of the present invention attached to the reinforced concrete beam for shear reinforcement.
  • 5 is a view showing the fiber arrangement direction of the glass fiber fabric prepreg of the angle-type hybrid beam reinforcement according to the present invention.
  • the angled hybrid beam reinforcement 30 and 50 may include an angled aluminum beam 10 and a glass fiber composite 20, and may further include a protective film 60. .
  • the angle aluminum beam 10 is a member which forms the basic frame
  • Angle-type hybrid beam stiffener (30, 50) may have a widthwise cross-section "a" shape, the lower surface portion 23, 27 and the side of the reinforced concrete beam 40 attached to the lower surface of the reinforced concrete beam 40 It may include side portions 25, 29 attached to it. That is, the lower surface portions 23 and 27 and the side portions 25 and 29 form a right angle so that the angle-type hybrid beam stiffeners 30 and 50 form a "-" shaped cross section in the width direction.
  • the width W1 of the lower portion 23 may have a shape longer than the width W2 of the side portion 25 (see FIGS. 1 and 2), and the angle type
  • the width W4 of the side portion 29 may have a shape longer than the width W3 of the lower surface portion 27 (see FIGS. 3 and 4).
  • the hollow 15 may be formed inside the angle-type aluminum beam 10, and as the hollow 15 is formed therein, the rigidity may be improved while reducing the weight of the angle-type aluminum beam 10. .
  • the material of the angled aluminum beam 10 may be AL 6063-T5, and the angled aluminum beam 10 may be manufactured by extrusion using a mold using AL 6063-T5.
  • AL 6063-T5 is excellent in formability and corrosion resistance, and therefore the angled aluminum beam 10 made of AL 6063-T5 contributes to the enhancement of the rigidity, strength, flexural rigidity and strength of the concrete structure.
  • the glass fiber composite 20 is formed by forming a glass fiber fabric prepreg, and is a member that is attached to the surface of the angle aluminum beam 10 and surrounds the angle aluminum beam 10.
  • the angle-type aluminum beam 10 forming the basic skeleton of the angle-type hybrid beam stiffeners 30 and 50 may be light and thus improve handling and constructability, but may have a smaller strength than steel, but the glass fiber composite 20 may be relatively low. Since the angle-type aluminum beam 10 having strength can be reinforced, and also the angle-type aluminum beam 10 is enclosed, it contributes to corrosion prevention and durability improvement.
  • angle-type aluminum beam 10 and the glass fiber composite 20 having a relatively low modulus of elasticity can reduce shear friction due to non-adherence with the reinforced concrete structure, thereby inducing a synthetic behavior.
  • a raw material of the glass fiber composite 20 is a molding material in which continuous glass / carbon long fibers are woven so as to exhibit the strength and rigidity most effectively, and impregnated with the liquid thermosetting resin in advance. It is a material mainly used in Auto-Clave molding method among molding methods.
  • the prepreg has a multidirectionality as compared with the conventional unidirectional long fiber reinforcement.
  • the fiber arrangement of the glass fiber fabric prepregs may thus be multidirectional.
  • Such multi-directionality may include a direction perpendicular to an external force and a direction perpendicular to the external force.
  • the pattern of the fiber arrangement of the glass fiber fabric prepreg may include the case of the 0 ° direction, the + 45 ° direction, the 90 ° direction, and the -45 ° direction, which is 0 ° / 90 °. It can be expressed as / + 45 ° / -45 ° / 90 ° / 0 °.
  • the glass fiber fabric prepreg according to the present invention can exhibit all the structural performance of the hybrid material by having a multi-directional fiber arrangement pattern instead of unidirectional, and the required mechanical properties can be realized.
  • the protective film 60 is a member attached to the surface of the glass fiber composite 20, blocks ultraviolet rays and seawater and thereby improves corrosion resistance, and the angle-type hybrid beam reinforcement 30 or 50 according to the present invention has various appearances. To have. In addition, it can reduce air and cost by eliminating or minimizing the post-treatment process during reinforcement work such as painting and mortar treatment after construction.
  • the angled hybrid beam reinforcement 30, 50 may or may not include such a protective film 60 in some cases.
  • the angle-type hybrid beam reinforcement (30, 50) is the overall shape of the angle beam shape, for example, in the case of the reinforcement (30) for bending reinforcement (see Fig. 1) the width W1 and the side of the lower portion
  • the width W2 of the portion is 200 mm and 100 mm, respectively, and in the case of the reinforcement material 50 for shear reinforcement (see FIG. 3), the width W3 of the lower portion and the width W4 of the side portion are 100 mm and It may be an angled beam shape of 300mm.
  • FIGS. 6 to 10 is a flowchart of a method of manufacturing an angle hybrid beam reinforcement according to the present invention.
  • 7 to 10 is a photograph showing each process of the manufacturing method of the angle-type hybrid beam reinforcement according to the present invention.
  • an additional protective film 60 is placed on the glass fiber fabric prepreg positioned on the top. Can be laminated.
  • the step (S40) of assembling the upper mold of the detachable mold with the lower mold includes a glass fiber fabric prepreg, an angled aluminum beam 10, a glass fiber fabric prepreg, and a protective film in the lower mold ( After stacking all of 60), the upper mold and the lower mold are assembled while covering the upper mold.
  • the hot press method of hot and high pressure treatment is performed on the detachable mold assembled after the upper mold and the lower mold are assembled.
  • the high temperature treatment is carried out at 140 °C
  • the high pressure treatment may be carried out for 120 minutes at a pressure of 7kgf / cm 2 , but is not limited to such temperature, pressure and time, various manufacturing conditions may be applied in some cases Can be.
  • a top / bottom split mold is used to integrate the glass fiber fabric prepreg with the angled aluminum beam 10, and thus, by using a hot press method using a top / bottom split mold, Compared to the flat reinforcement made by the hand lay-up method such as carbon fiber attachment and the pultrusion method using unidirectional long fibers, it is possible to manufacture the reinforcement which has excellent mechanical properties, and by applying high temperature and high pressure to the mold It is possible to produce large quantities of this dense and uniform quality product.
  • the step (S60) of demolding the manufactured angular hybrid beam reinforcement after separating the detachable mold (S60) separates the upper mold from the lower mold after the hot pressing process is finished, and manufactures the angular hybrid beam reinforcement (30). , 50) is demolded from the mold.
  • the demolded angled hybrid beam reinforcement 30, 50 may include an angled aluminum beam 10, a glass fiber composite 20 surrounding the angled aluminum beam 10, and a protective film 60.
  • the width of the angle-type hybrid beam reinforcement (30, 50) molded to fit the product size can be cut with a cutter.
  • the adhesive surface with the reinforced concrete beam 40 may be sanded from the surfaces of the formed angle-type hybrid beam reinforcement 30 and 50.
  • FIGS. 11 and 12 are flowchart of a construction method of an angle-type hybrid beam reinforcement according to the present invention.
  • 12 is a perspective view of a fixing pin used in the construction method of the angle-type hybrid beam reinforcement according to the present invention.
  • the construction method of the angle-type hybrid beam reinforcement according to the present invention applying an adhesive to the reinforced concrete beam and the angle-type hybrid beam reinforcement and bonding the reinforced concrete beam and the angle-type hybrid beam reinforcement (S70) and tableting tool Fixing the angle-type hybrid beam reinforcement to the reinforced concrete beam using the fixing pin of (S80).
  • the step of applying the adhesive to the reinforced concrete beam and the angle hybrid beam reinforcement and joining the reinforced concrete beam and the angle hybrid beam reinforcement (S70), first, the reinforcing bars to which the angle hybrid beam reinforcement 30 and 50 are to be joined. Grinding work on the surface of the concrete beam 40, removing the finishing mortar of the reinforced concrete beam 40, repair work for the crack of the reinforced concrete beam 40, and the uneven surface of the reinforced concrete beam 40
  • a pretreatment process may be performed to perform any one or more of the planarization operations.
  • the primer may be applied to the reinforced concrete beam 40 after the pretreatment process.
  • the adhesive is applied to the reinforced concrete beam 40 and the angled hybrid beam reinforcement (30, 50) and the reinforced concrete beam 40 and the angled hybrid beam reinforcement (30, 50) are bonded.
  • epoxy may be used as the adhesive.
  • the fixing of the angle-type hybrid beam reinforcement to the reinforced concrete beam by using the fixing pin of the tableting tool (S80) may be performed on the bonded reinforced concrete beam 40 and the angle-type hybrid beam reinforcement 30, 50.
  • the fixing pin 70 is fired through the tableting tool to fix the angle-type hybrid beam stiffeners 30 and 50 to the reinforced concrete beam 40.
  • the construction method according to the present invention uses a tableting tool and a fixing pin 70.
  • a tableting tool and a fixing pin 70 By using it, there is no damage to the base material and no additional facility or equipment for fixing the reinforcement is easy to install, the weight of the reinforcement is made light, and it is manufactured in the form of a finished product to reduce the site access and air.
  • the conventional epoxy curing takes about 1 to 3 days at room temperature, but does not require the epoxy curing period and post-treatment by the fixing pin 70 work.
  • the fixing pin 70 may be a stainless steel pin, the front portion may have a pointed shape.
  • FIGS. 13 to 17 is a view showing a test body for evaluating the effect of the angle-type hybrid beam reinforcement according to the present invention.
  • 14 is a photograph showing a fracture pattern according to the application of the load of the reinforced concrete beam is not reinforced.
  • 15 is a photograph showing a fracture pattern according to the application of the load of the reinforced concrete beam with flexural reinforcement to the angle-type hybrid beam stiffener according to an embodiment of the present invention.
  • 16 is a photograph showing a fracture pattern according to the load application of the reinforced concrete beam shear shear reinforcement with an angle-type hybrid beam stiffener according to another embodiment of the present invention.
  • 17 is a graph comparing the relationship between the load and the displacement of the reinforced concrete beam not reinforced with reinforced concrete beams reinforced with an angle-type hybrid beam stiffener according to an embodiment of the present invention.
  • Fig. 13 three types of test bodies, namely, reinforced concrete beams (reference specimens) without reinforcement, reinforced concrete beams with flexural reinforcement (flexural reinforcement specimens) and reinforced concrete beams with shear reinforcement (shear reinforcement specimens) Prepare and design the test environment so that each specimen is loaded.
  • FIG. 14 applies a load to the reinforced concrete beam 40 without reinforcement, and shows a fracture pattern according to this structure.
  • This structure is a system in which a compressive force of concrete and a tensile force of reinforcing bars are combined to resist bending.
  • the angle-type hybrid beam stiffener 30 and the tensile reinforcing bar bear the tensile force at the same time. Then, when the load reaches a random load, the reinforcing bar first yields, and the load of the angle-type hybrid beam reinforcement 30 is borne by a large load, and the fracture occurs in the maximum bending section.
  • the shear reinforcement strength of the angle-type hybrid beam reinforcement 30 exhibits the best performance and adhesion of the material and can be said to be the most ideal failure mode.
  • FIG. 17 shows the relationship between load and displacement for reinforced concrete beams (specimen 1) without reinforcement and reinforced concrete beams (specimen 2) with reinforcement with angle-type hybrid beam reinforcement 30 according to an embodiment of the present invention. This is a graph comparing.
  • the initial crack load, stiffness and maximum load of the specimen (specimen 2) reinforced with the angle-type hybrid beam stiffener 30 were increased.
  • the initial crack load of the reference specimen was 11.6 kN and the reinforcement specimen was 18.1 kN. It is determined that the angle-type hybrid beam reinforcement 30 suppresses initial cracking while being reinforced in the tension portion of the concrete.
  • the stiffness of the reference specimen and the reinforced specimen did not show a big difference until the initial crack occurred, but the stiffness difference after the initial cracking appeared, and the maximum load also increased significantly compared to the reference specimen.
  • the flexural reinforcement effect can be expected as the ductile section behaves larger while yielding at higher loads than the reference specimen.
  • the reinforced concrete beam 40 reinforced with the angle-type hybrid beam reinforcement (30, 50) according to the present invention increased the initial crack load, stiffness and maximum load bar angle hybrid beam reinforcement (30) according to the present invention , 50) shows very good performance of reinforcement.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Composite Materials (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Working Measures On Existing Buildindgs (AREA)

Abstract

The present invention can provide an angle type hybrid beam reinforcement, a method for manufacturing an angle type hybrid beam reinforcement, and a method for constructing an angle type hybrid beam reinforcement, which increases the stiffness and strength of reinforced concrete and resolves disadvantages such as an air permeability problem, an early separation and a constructability problem in a conventional reinforcing method. In addition, the angle type hybrid beam reinforcement of the present invention is an angle type hybrid beam reinforcement used for repairing and reinforcing a reinforced concrete beam, is attached to an angle type aluminum beam and a surface of the angle type aluminum beam, and includes a fiber glass composite formed by molding a glass fiber fabric prepreg.

Description

앵글형 하이브리드 빔 보강재, 앵글형 하이브리드 빔 보강재의 제조 방법 및 앵글형 하이브리드 빔 보강재의 시공 방법Angle hybrid beam stiffener, method of manufacturing angle hybrid beam stiffener and construction method of angle hybrid beam stiffener
본 발명은 앵글형 하이브리드 빔 보강재, 앵글형 하이브리드 빔 보강재의 제조 방법 및 앵글형 하이브리드 빔 보강재의 시공 방법에 관한 것으로서, 보다 구체적으로는 강재 보강재 및 섬유 보강재의 단점을 극복하면서 우수한 보강 능력을 발휘하는 앵글형 하이브리드 빔 보강재, 앵글형 하이브리드 빔 보강재의 제조 방법 및 앵글형 하이브리드 빔 보강재의 시공 방법에 관한 것이다.The present invention relates to an angle-type hybrid beam reinforcement, an angle-type hybrid beam reinforcement method and a construction method of the angle-type hybrid beam reinforcement, more specifically, an angle-type hybrid beam exhibiting excellent reinforcement ability while overcoming the disadvantages of steel reinforcement and fiber reinforcement A method of manufacturing a reinforcing material, an angle hybrid beam reinforcing material, and a construction method of an angle type hybrid beam reinforcing material.
일반적으로 사회 기간 시설의 기초는 대부분 철근 콘크리트(reinforced concrete)로 이루어져 있다. 모든 철근 콘크리트 구조물은 제 기능을 충분히 수행하기 위해 설계자에 의해 역학이 고려되며, 환경과 상황에 따라 적절한 안전율이 적용되어 사용자들에게 제공된다. 그러나 예상치 못한 요인으로 인한 구조적 손상 또는 환경적 요인 등에 의해 노후화가 발생된 경우에는 설계된 구조물이 제 기능을 다하지 못하며, 그럴 경우에는 구조물의 제 기능 범위를 확보할 수 있도록 구조물 안전 진단을 수행한 후 보수가 이루어진다. 또한, 사용 중인 구조물이 설계 당시에는 충분한 내력을 확보하고 있었으나, 구조 변경으로 인한 증축 혹은 사용 하중의 증가로 구조물의 내력을 증가시켜야 할 경우에는 다시 구조 설계를 통해 보강이 이루어진다.In general, the foundation of social infrastructure consists mostly of reinforced concrete. All reinforced concrete structures are mechanically considered by the designer to perform their functions fully, and appropriate safety factors are provided to users according to the environment and situation. However, in case of aging caused by structural damage or environmental factors due to unexpected factors, the designed structure does not function properly. In such cases, the structure safety diagnosis is performed to ensure the functional scope of the structure. Is done. In addition, when the structure in use had a sufficient strength at the time of design, when the strength of the structure needs to be increased due to the increase in the extension or use load due to the structural change, reinforcement is performed through the structural design again.
철근 콘크리트 구조물의 보수 및 보강에는 여러 가지 재료를 통한 공법들이 사용되어 왔다. 초기 보수 및 보강 공법에 사용된 재료는 강재이며, 강재를 이용한 강판 보강 공법은 강판을 에폭시를 이용하여 콘크리트 구조물의 인장면에 부착하는 공법으로서 철근 콘크리트 구조물의 휨 내력과 강성 증진 효과를 기대할 수 있어 1960년대 이후 장기간 사용되었다. 그러나 강판 보강 공법은 비중이 큰 강을 사용하기 때문에 취급이 어렵고, 자중이 크다는 단점이 있다. 또한, 강 부식에 따른 콘크리트 모체와의 부착 손상 등이 문제점으로 제기되어 왔다.Various materials have been used to repair and reinforce reinforced concrete structures. The material used for the initial repair and reinforcement method is steel, and the steel plate reinforcement method using steel is a method of attaching steel plate to the tensile surface of concrete structure using epoxy, which can be expected to improve the flexural strength and rigidity of reinforced concrete structures. It has been used for a long time since the 1960s. However, the steel plate reinforcement method has a disadvantage in that it is difficult to handle and has a high self-weight because it uses steel having a high specific gravity. In addition, the adhesion damage to the concrete matrix due to steel corrosion has been raised as a problem.
이러한 문제점을 인식하고, 1980년대에 들어서 역학적 특성, 내구성 및 경량성이 우수한 섬유 보강체(fiber reinforced polymer; FRP)가 소개되면서 강판 보강 공법을 대체하는 섬유 보강체 보강 공법이 연구되기 시작했다. 섬유 보강체의 종류에는 유리섬유, 아라미드섬유, 탄소섬유 등이 있으며, 각각 물리적 특성에 의해서 다양한 보강 공법에 사용된다. 섬유 보강체는 다른 재료보다 강도, 경량, 내부식성 등에서 큰 장점을 가지고 있어 FRP 시트 공법, FRP 플레이트 공법, FRP NSM(near surface mounted) 공법 등이 개발되어 사용되고 있다(한국공개특허 제10-2011-0001337호 참조).Recognizing this problem, in the 1980s, fiber reinforced polymer (FRP), which has excellent mechanical properties, durability, and light weight, was introduced. Types of fiber reinforcements include glass fibers, aramid fibers, carbon fibers, etc., and are used in various reinforcing methods depending on their physical properties. Fiber reinforcement has a great advantage in strength, light weight, corrosion resistance, etc. than other materials, FRP sheet method, FRP plate method, FRP NSM (near surface mounted) method has been developed and used (Korea Patent Publication No. 10-2011- See 0001337).
그러나, 아직도 철근 콘크리트의 강도와 강성을 증가시키면서도 기존 보강 공법의 통기성 문제, 조기 탈락, 시공성 문제와 같은 단점을 보완 해결해야 할 과제가 남아있다.However, while increasing the strength and stiffness of reinforced concrete, there are still challenges to solve the disadvantages of the existing reinforcement methods such as breathability problems, premature dropouts, construction problems.
이러한 문제점을 해결하기 위하여, 철근 콘크리트의 강도와 강성을 증가시키면서도 기존 보강 공법의 통기성 문제, 조기 탈락, 시공성 문제와 같은 단점을 보완 해결할 수 있는 앵글형 하이브리드 빔 보강재, 앵글형 하이브리드 빔 보강재의 제조 방법 및 앵글형 하이브리드 빔 보강재의 시공 방법의 필요성이 대두되고 있다.In order to solve these problems, the angle hybrid beam reinforcement, angle hybrid beam reinforcement manufacturing method and angle type can be solved while increasing the strength and stiffness of reinforced concrete, while solving the disadvantages such as breathability problems, early dropout, and construction problems of the existing reinforcement method There is a need for a construction method for hybrid beam reinforcement.
본 발명이 해결하려는 과제는, 종래의 철근 콘크리트 보의 보강재와는 구조, 형상 및 재료에서 차이가 나며, 그 결과 철근 콘크리트의 강도와 강성을 증가시키면서도 종래 보강재의 문제점을 해결할 수 있는 앵글형 하이브리드 빔 보강재, 앵글형 하이브리드 빔 보강재의 제조 방법 및 앵글형 하이브리드 빔 보강재의 시공 방법을 제공하는 데 있다.The problem to be solved by the present invention is different from the structure, shape and material of the conventional reinforced concrete beam reinforcement, as a result of the angle hybrid beam reinforcement that can solve the problems of the conventional reinforcement while increasing the strength and rigidity of the reinforced concrete beam To provide a method for producing an angle-type hybrid beam reinforcement, and a construction method of the angle-type hybrid beam reinforcement.
본 발명이 해결하려는 과제들은 이상에서 언급한 과제들로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.Problems to be solved by the present invention are not limited to the above-mentioned problems, and other problems not mentioned will be clearly understood by those skilled in the art from the following description.
상기 과제를 해결하기 위한 본 발명의 일 실시예에 따른 앵글형 하이브리드 빔 보강재는, 철근 콘크리트 보의 보수 및 보강에 사용되는 앵글형 하이브리드 빔 보강재로서, 앵글형 알루미늄 빔 및 앵글형 알루미늄 빔의 표면에 부착되며, 유리 섬유 직물 프리프레그가 성형되어 형성된 유리 섬유 복합체를 포함한다. Angle-type hybrid beam reinforcement according to an embodiment of the present invention for solving the above problems, is an angle-type hybrid beam reinforcement used for repairing and reinforcement of reinforced concrete beams, is attached to the surface of the angle-type aluminum beam and angle-type aluminum beam, glass The fiber fabric prepreg is formed and includes a glass fiber composite formed.
상기 과제를 해결하기 위한 본 발명의 일 실시예에 따른 앵글형 하이브리드 빔 보강재의 제조 방법은, 분리형 금형의 하부 금형 내에 유리 섬유 직물 프리프레그를 위치시키는 단계, 유리 섬유 직물 프리프레그 상에 앵글형 알루미늄 빔을 적층하는 단계, 앵글형 알루미늄 빔 상에 유리 섬유 직물 프리프레그를 적층하는 단계, 분리형 금형의 상부 금형을 하부 금형과 조립하는 단계, 분리형 금형에 고온 처리 및 고압 처리를 적용하는 단계 및 분리형 금형을 분리한 후 제조된 앵글형 하이브리드 빔 보강재를 탈형하는 단계를 포함한다.According to an aspect of the present invention, there is provided a method of manufacturing an angle hybrid beam reinforcement, comprising: placing a glass fiber fabric prepreg in a lower mold of a detachable mold, and forming an angle aluminum beam on the glass fiber fabric prepreg. Laminating, laminating glass fiber fabric prepreg on the angled aluminum beam, assembling the upper mold of the detachable mold with the lower mold, applying high temperature treatment and high pressure treatment to the detachable mold, and separating the detachable mold Demolding the angular hybrid beam reinforcement produced afterwards.
상기 과제를 해결하기 위한 본 발명의 일 실시예에 따른 앵글형 하이브리드 빔 보강재의 시공 방법은, 철근 콘크리트 보 및 앵글형 하이브리드 빔 보강재에 접착제를 도포하고 철근 콘크리트 보와 앵글형 하이브리드 빔 보강재를 접합하는 단계 및 타정 공구의 정착핀을 이용하여 앵글형 하이브리드 빔 보강재를 철근 콘트리트 보에 고정하는 단계를 포함한다.The construction method of the angle-type hybrid beam stiffener according to an embodiment of the present invention for solving the above problems, the step of applying the adhesive to the reinforced concrete beam and the angle-type hybrid beam stiffener and bonding the reinforced concrete beam and the angle-type hybrid beam stiffener and tableting Securing the angled hybrid beam stiffener to the reinforced concrete beam using a fixing pin of the tool.
본 발명에 따르면, 철근 콘크리트의 강도와 강성을 증가시키면서도 기존 보강 공법의 통기성 문제, 조기 탈락, 시공성 문제와 같은 단점을 보완 해결할 수 있는 앵글형 하이브리드 빔 보강재, 앵글형 하이브리드 빔 보강재의 제조 방법 및 앵글형 하이브리드 빔 보강재의 시공 방법을 제공할 수 있다.According to the present invention, an angle hybrid beam reinforcement, an angle hybrid beam reinforcement manufacturing method, and an angle hybrid beam can be solved while increasing the strength and rigidity of reinforced concrete while solving the disadvantages such as breathability problems, premature dropout, and construction problems of the existing reinforcement method The construction method of a reinforcement can be provided.
도 1 은 본 발명의 일 실시예에 따른 앵글형 하이브리드 빔 보강재의 휨 보강용 폭방향 단면도이다.1 is a cross-sectional view in the width direction for flexural reinforcement of an angle-type hybrid beam reinforcement according to an embodiment of the present invention.
도 2 는 본 발명의 일 실시예에 따른 앵글형 하이브리드 빔 보강재를 휨 보강을 위해 철근 콘크리트 보에 부착한 모습을 나타낸 단면도이다.Figure 2 is a cross-sectional view showing a state in which the angle-type hybrid beam reinforcement according to an embodiment of the present invention attached to the reinforced concrete beam for bending reinforcement.
도 3 은 본 발명의 다른 실시예에 따른 앵글형 하이브리드 빔 보강재의 전단 보강용 폭방향 단면도이다.3 is a cross-sectional view for shear reinforcement in an angle-type hybrid beam reinforcement according to another embodiment of the present invention.
도 4 는 본 발명의 다른 실시예에 따른 앵글형 하이브리드 빔 보강재를 전단 보강을 위해 철근 콘크리트 보에 부착한 모습을 나타낸 단면도이다.Figure 4 is a cross-sectional view showing a state in which the angle-type hybrid beam reinforcement according to another embodiment of the present invention attached to the reinforced concrete beam for shear reinforcement.
도 5 는 본 발명에 따른 앵글형 하이브리드 빔 보강재의 유리 섬유 직물 프리프레그의 섬유 배열 방향을 나타낸 도면이다.5 is a view showing the fiber arrangement direction of the glass fiber fabric prepreg of the angle-type hybrid beam reinforcement according to the present invention.
도 6 은 본 발명에 따른 앵글형 하이브리드 빔 보강재의 제조 방법의 흐름도이다.6 is a flowchart of a method of manufacturing an angle hybrid beam reinforcement according to the present invention.
도 7 내지 10 은 본 발명에 따른 앵글형 하이브리드 빔 보강재의 제조 방법의 각 과정을 나타낸 사진이다.7 to 10 is a photograph showing each process of the manufacturing method of the angle-type hybrid beam reinforcement according to the present invention.
도 11 은 본 발명에 따른 앵글형 하이브리드 빔 보강재의 시공 방법의 흐름도이다.11 is a flowchart of a construction method of an angle-type hybrid beam reinforcement according to the present invention.
도 12 는 본 발명에 따른 앵글형 하이브리드 빔 보강재의 시공 방법에 사용되는 정착핀의 사진이다.12 is a photograph of the fixing pin used in the construction method of the angle-type hybrid beam reinforcement according to the present invention.
도 13 은 본 발명에 따른 앵글형 하이브리드 빔 보강재의 효과를 평가하기 위한 시험체를 나타낸 도면이다.13 is a view showing a test body for evaluating the effect of the angle-type hybrid beam reinforcement according to the present invention.
도 14 는 보강이 이루어지지 않은 철근 콘크리트 보의 하중 적용에 따른 파괴 양상을 나타낸 사진이다.14 is a photograph showing a fracture pattern according to the application of the load of the reinforced concrete beam is not reinforced.
도 15 는 본 발명의 일 실시예에 따른 앵글형 하이브리드 빔 휨 보강재로 보강이 이루어진 철근 콘크리트 보의 하중 적용에 따른 최종 파괴 양상을 나타낸 사진이다.15 is a photograph showing the final failure pattern according to the load application of the reinforced concrete beam reinforced with an angle-type hybrid beam bending stiffener according to an embodiment of the present invention.
도 16 은 본 발명의 다른 실시예에 따른 앵글형 하이브리드 빔 전단 보강재로 보강이 이루어진 철근 콘크리트 보의 하중 적용에 따른 최종 파괴 양상을 나타낸 사진이다.16 is a photograph showing the final failure pattern according to the load application of the reinforced concrete beam reinforced with an angle-type hybrid beam shear reinforcement according to another embodiment of the present invention.
도 17 은 보강이 이루어지지 않은 철근 콘크리트 보와 본 발명의 일 실시예에 따른 앵글형 하이브리드 빔 보강재로 보강이 이루어진 철근 콘크리트 보에 대하여 하중과 변위와의 관계를 비교한 그래프이다.17 is a graph comparing the relationship between the load and the displacement of the reinforced concrete beam not reinforced with reinforced concrete beams reinforced with an angle-type hybrid beam stiffener according to an embodiment of the present invention.
<부호의 설명><Description of the code>
10: 앵글형 알루미늄 빔 15: 중공10: angled aluminum beam 15: hollow
20: 유리 섬유 복합체 23, 27: 하면 부분20: glass fiber composite 23, 27: lower part
25, 29: 측면 부분 30, 50: 앵글형 하이브리드 빔 보강재25, 29: side portions 30, 50: angled hybrid beam reinforcement
40: 철근 콘크리트 보 60: 보호 필름40: reinforced concrete beam 60: protective film
70: 정착핀70: fixing pin
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성 요소를 지칭한다.Advantages and features of the present invention and methods for achieving them will be apparent with reference to the embodiments described below in detail with the accompanying drawings. However, the present invention is not limited to the embodiments disclosed below, but will be implemented in various forms, and only the present embodiments are intended to complete the disclosure of the present invention, and the general knowledge in the art to which the present invention pertains. It is provided to fully convey the scope of the invention to those skilled in the art, and the present invention is defined only by the scope of the claims. Like reference numerals refer to like elements throughout.
본 명세서에서 사용된 용어는 실시예들을 설명하기 위한 것이며 본 발명을 제한하고자 하는 것은 아니다. 본 명세서에서, 단수형은 문구에서 특별히 언급하지 않는 한 복수형도 포함한다. 명세서에서 사용되는 "포함한다(comprises)" 및/또는 "포함하는(comprising)"은 언급된 구성요소, 단계 및 동작은 하나 이상의 다른 구성요소, 단계 및 동작의 존재 또는 추가를 배제하지 않는다.The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. In this specification, the singular also includes the plural unless specifically stated otherwise in the phrase. As used herein, the words "comprises" and / or "comprising" do not exclude the presence or addition of one or more other components, steps, and actions.
도 1 내지 5 를 참조하여, 본 발명에 따른 앵글형 하이브리드 빔 보강재를 설명한다. 도 1 은 본 발명의 일 실시예에 따른 앵글형 하이브리드 빔 보강재의 휨 보강용 폭방향 단면도이다. 도 2 는 본 발명의 일 실시예에 따른 앵글형 하이브리드 빔 보강재를 휨 보강을 위해 철근 콘크리트 보에 부착한 모습을 나타낸 단면도이다. 도 3 은 본 발명의 다른 실시예에 따른 앵글형 하이브리드 빔 보강재의 전단 보강용 폭방향 단면도이다. 도 4 는 본 발명의 다른 실시예에 따른 앵글형 하이브리드 빔 보강재를 전단 보강을 위해 철근 콘크리트 보에 부착한 모습을 나타낸 단면도이다. 도 5 는 본 발명에 따른 앵글형 하이브리드 빔 보강재의 유리 섬유 직물 프리프레그의 섬유 배열 방향을 나타낸 도면이다. 1 to 5, an angle hybrid beam reinforcement according to the present invention will be described. 1 is a cross-sectional view in the width direction for flexural reinforcement of an angle-type hybrid beam reinforcement according to an embodiment of the present invention. Figure 2 is a cross-sectional view showing a state in which the angle-type hybrid beam reinforcement according to an embodiment of the present invention attached to the reinforced concrete beam for bending reinforcement. 3 is a cross-sectional view for shear reinforcement in an angle-type hybrid beam reinforcement according to another embodiment of the present invention. Figure 4 is a cross-sectional view showing a state in which the angle-type hybrid beam reinforcement according to another embodiment of the present invention attached to the reinforced concrete beam for shear reinforcement. 5 is a view showing the fiber arrangement direction of the glass fiber fabric prepreg of the angle-type hybrid beam reinforcement according to the present invention.
도 1 내지 5 를 참조하면, 본 발명에 따른 앵글형 하이브리드 빔 보강재(30, 50)는 앵글형 알루미늄 빔(10) 및 유리 섬유 복합체(20)를 포함하며, 추가적으로 보호 필름(60)을 포함할 수 있다.1 to 5, the angled hybrid beam reinforcement 30 and 50 according to the present invention may include an angled aluminum beam 10 and a glass fiber composite 20, and may further include a protective film 60. .
앵글형 알루미늄 빔(10)은 앵글형 하이브리드 빔 보강재(30, 50)의 기본 골격을 형성하는 부재이다. 앵글형 하이브리드 빔 보강재(30, 50)는 폭 방향 단면이 "ㄱ" 자 형상일 수 있으며, 철근 콘크리트 보(40)의 하면에 부착되는 하면 부분(23, 27) 및 철근 콘크리트 보(40)의 측면에 부착되는 측면 부분(25, 29)을 포함할 수 있다. 즉, 하면 부분(23, 27)과 측면 부분(25, 29)이 직각을 이루게 되어 앵글형 하이브리드 빔 보강재(30, 50)는 폭 방향 단면이 "ㄱ" 자 형상을 이루게 된다. 이러한 앵글형 하이브리드 빔 보강재(30)가 휨 보강용일 경우 하면 부분(23)의 폭(W1)이 측면 부분(25)의 폭(W2)보다 긴 형상을 지닐 수 있으며(도 1 및 2 참조), 앵글형 하이브리드 빔 보강재(50)가 전단 보강용일 경우 측면 부분(29)의 폭(W4)이 하면 부분(27)의 폭(W3)보다 긴 형상을 지닐 수 있다(도 3 및 4 참조).The angle aluminum beam 10 is a member which forms the basic frame | skeleton of the angle hybrid beam reinforcement 30,50. Angle-type hybrid beam stiffener (30, 50) may have a widthwise cross-section "a" shape, the lower surface portion 23, 27 and the side of the reinforced concrete beam 40 attached to the lower surface of the reinforced concrete beam 40 It may include side portions 25, 29 attached to it. That is, the lower surface portions 23 and 27 and the side portions 25 and 29 form a right angle so that the angle-type hybrid beam stiffeners 30 and 50 form a "-" shaped cross section in the width direction. When the angle-type hybrid beam stiffener 30 is for bending reinforcement, the width W1 of the lower portion 23 may have a shape longer than the width W2 of the side portion 25 (see FIGS. 1 and 2), and the angle type When the hybrid beam reinforcement 50 is for shear reinforcement, the width W4 of the side portion 29 may have a shape longer than the width W3 of the lower surface portion 27 (see FIGS. 3 and 4).
또한, 앵글형 알루미늄 빔(10) 내부에는 중공(15)이 형성될 수 있으며 이렇게 내부에 중공(15)에 형성됨에 따라 앵글형 알루미늄 빔(10)의 중량을 줄이면서도 강성이 개선되는 효과를 볼 수 있다.In addition, the hollow 15 may be formed inside the angle-type aluminum beam 10, and as the hollow 15 is formed therein, the rigidity may be improved while reducing the weight of the angle-type aluminum beam 10. .
앵글형 알루미늄 빔(10)의 재료는 AL 6063-T5 일 수 있으며, 앵글형 알루미늄 빔(10)은 AL 6063-T5 를 사용하여 금형에 의한 압출 가공으로 제작할 수 있다. AL 6063-T5 는 성형성 및 내식성이 우수하며, 그에 따라 AL 6063-T5 로 제조된 앵글형 알루미늄 빔(10)은 콘크리트 구조물의 강성, 강도, 휨강성 및 내력 증진에 기여한다. The material of the angled aluminum beam 10 may be AL 6063-T5, and the angled aluminum beam 10 may be manufactured by extrusion using a mold using AL 6063-T5. AL 6063-T5 is excellent in formability and corrosion resistance, and therefore the angled aluminum beam 10 made of AL 6063-T5 contributes to the enhancement of the rigidity, strength, flexural rigidity and strength of the concrete structure.
유리 섬유 복합체(20)는 유리 섬유 직물 프리프레그(Prepreg)가 성형되어 형성되며, 앵글형 알루미늄 빔(10)의 표면에 부착되어 앵글형 알루미늄 빔(10)을 감싸는 부재이다. 앵글형 하이브리드 빔 보강재(30, 50)의 기본 골격을 형성하는 앵글형 알루미늄 빔(10)은 가볍기 때문에 취급과 시공성을 향상시킬 수 있으나 강재보다는 강도가 작을 수 있는데, 유리 섬유 복합체(20)는 상대적으로 낮은 강도를 가지는 앵글형 알루미늄 빔(10)을 보강할 수 있고, 또한 앵글형 알루미늄 빔(10)을 감싸고 있기 때문에 부식 방지 및 내구성 향상에 기여한다.The glass fiber composite 20 is formed by forming a glass fiber fabric prepreg, and is a member that is attached to the surface of the angle aluminum beam 10 and surrounds the angle aluminum beam 10. The angle-type aluminum beam 10 forming the basic skeleton of the angle-type hybrid beam stiffeners 30 and 50 may be light and thus improve handling and constructability, but may have a smaller strength than steel, but the glass fiber composite 20 may be relatively low. Since the angle-type aluminum beam 10 having strength can be reinforced, and also the angle-type aluminum beam 10 is enclosed, it contributes to corrosion prevention and durability improvement.
또한, 상대적으로 낮은 탄성 계수를 갖는 앵글형 알루미늄 빔(10) 및 유리 섬유 복합체(20)는 철근 콘트리트 구조물과의 비부착으로 인한 전단 마찰을 줄일 수 있어 합성 거동을 유도할 수 있다.In addition, the angle-type aluminum beam 10 and the glass fiber composite 20 having a relatively low modulus of elasticity can reduce shear friction due to non-adherence with the reinforced concrete structure, thereby inducing a synthetic behavior.
한편, 유리 섬유 복합체(20)의 원재료인 프리프레그란 연속된 유리/탄소 장섬유를 강도와 강성을 가장 효과적으로 발휘 가능하도록 직조하고, 여기에 액상의 열경화성 수지를 미리 함침시킨 성형 재료로서, 복합재료 성형방법 중 Auto-Clave 성형법에 주로 쓰이는 재료이다. Meanwhile, prepregran, a raw material of the glass fiber composite 20, is a molding material in which continuous glass / carbon long fibers are woven so as to exhibit the strength and rigidity most effectively, and impregnated with the liquid thermosetting resin in advance. It is a material mainly used in Auto-Clave molding method among molding methods.
철근 콘크리트 보(40)에 대한 보강 및 보수에 사용되는 하이브리드 빔의 물리적 특성에 맞게 섬유를 배열한 프리프레그를 적용할 수 있는데, 프리프레그는 기존의 일방향 장섬유를 이용한 보강재에 비해 다방향성을 가질 수 있으며, 그에 따라 유리 섬유 직물 프리프레그의 섬유 배열은 다방향성을 지니게 된다. 이러한 다방향성은 외력에 저항하는 방향 및 외력에 저항하는 방향에 수직인 방향을 포함할 수 있으며, 도 5 를 참조하면 앵글형 하이브리드 빔 보강재(30, 50)의 길이 방향이 0° 방향이라고 할 때, 유리 섬유 직물 프리프레그의 섬유 배열의 패턴은 0° 방향인 경우, +45° 방향인 경우, 90° 방향인 경우, -45° 방향인 경우를 포함할 수 있고, 이를 표현하면 0°/90°/+45°/-45°/90°/0° 와 같이 표현될 수 있다.It is possible to apply a prepreg in which fibers are arranged in accordance with the physical characteristics of the hybrid beam used for reinforcement and repair of the reinforced concrete beam 40. The prepreg has a multidirectionality as compared with the conventional unidirectional long fiber reinforcement. The fiber arrangement of the glass fiber fabric prepregs may thus be multidirectional. Such multi-directionality may include a direction perpendicular to an external force and a direction perpendicular to the external force. Referring to FIG. 5, when the length direction of the angle-type hybrid beam reinforcement 30 or 50 is 0 °, The pattern of the fiber arrangement of the glass fiber fabric prepreg may include the case of the 0 ° direction, the + 45 ° direction, the 90 ° direction, and the -45 ° direction, which is 0 ° / 90 °. It can be expressed as / + 45 ° / -45 ° / 90 ° / 0 °.
한편, 섬유 배열이 단방향일 경우 편심 등으로 섬유 배열 방향과 다른 방향으로 힘이 작용하게 되면 섬유 배열이 흐트러져 하이브리드 재료의 구조 성능을 모두 발휘할 수 없게 된다. 반면에, 본 발명에 따른 유리 섬유 직물 프리프레그는 단방향이 아닌 다방향의 섬유 배열 패턴을 가짐으로써 하이브리드 재료의 구조 성능을 모두 발휘할 수 있고 요구되는 기계적 특성이 구현될 수 있다.On the other hand, when the fiber arrangement is unidirectional, when a force is applied in a direction different from the fiber arrangement direction due to eccentricity or the like, the fiber arrangement is disturbed and thus the structural performance of the hybrid material cannot be exhibited. On the other hand, the glass fiber fabric prepreg according to the present invention can exhibit all the structural performance of the hybrid material by having a multi-directional fiber arrangement pattern instead of unidirectional, and the required mechanical properties can be realized.
보호 필름(60)은 유리 섬유 복합체(20)의 표면에 부착되는 부재로서, 자외선 및 해수를 차단하고 그에 따라 내부식성을 향상시키며, 본 발명에 따른 앵글형 하이브리드 빔 보강재(30, 50)가 다양한 외관을 갖도록 한다. 또한, 공사 후 도장 및 몰탈 처리 등 보강 공사 시 후처리 공정을 없애거나 최소화하여 공기와 비용을 절감 할 수 있다. 앵글형 하이브리드 빔 보강재(30, 50)는 이러한 보호 필름(60)을 구성으로 포함할 수도 있고 경우에 따라서는 포함하지 않을 수도 있다.The protective film 60 is a member attached to the surface of the glass fiber composite 20, blocks ultraviolet rays and seawater and thereby improves corrosion resistance, and the angle-type hybrid beam reinforcement 30 or 50 according to the present invention has various appearances. To have. In addition, it can reduce air and cost by eliminating or minimizing the post-treatment process during reinforcement work such as painting and mortar treatment after construction. The angled hybrid beam reinforcement 30, 50 may or may not include such a protective film 60 in some cases.
추가적으로, 본 발명에 따른 앵글형 하이브리드 빔 보강재(30, 50)는 전체 형상이 앵글형 빔 형상이며, 예를 들어 휨 보강용 보강재(30)의 경우(도 1 참조) 하면 부분의 폭(W1) 및 측면 부분의 폭(W2)의 길이가 각각 200mm 및 100mm 이고, 전단 보강용 보강재(50)의 경우(도 3 참조) 하면 부분의 폭(W3) 및 측면 부분의 폭(W4)의 길이가 각각 100mm 및 300mm 인 앵글형 빔 형상일 수 있다. 따라서, 구조 단면의 확대로 인해 1회 시공으로도 넓은 면적의 보강 시공이 가능하고, 사각형 형태의 구조물에 적용이 가능하며, 또한 처짐이 방지되고 보강 성능이 우수하며 보강재의 경량화로 취급이 용이하다.In addition, the angle-type hybrid beam reinforcement (30, 50) according to the present invention is the overall shape of the angle beam shape, for example, in the case of the reinforcement (30) for bending reinforcement (see Fig. 1) the width W1 and the side of the lower portion The width W2 of the portion is 200 mm and 100 mm, respectively, and in the case of the reinforcement material 50 for shear reinforcement (see FIG. 3), the width W3 of the lower portion and the width W4 of the side portion are 100 mm and It may be an angled beam shape of 300mm. Therefore, due to the expansion of the structural section, it is possible to reinforce a large area even in one construction, to be applied to a rectangular structure, to prevent sag, to have excellent reinforcement performance, and to be easily handled by lightening the reinforcing material. .
이상 본 발명에 따른 앵글형 하이브리드 빔 보강재를 설명하였으며, 이하 도 6 내지 10 을 참조하여 본 발명에 따른 앵글형 하이브리드 빔 보강재의 제조 방법을 설명한다. 도 6 은 본 발명에 따른 앵글형 하이브리드 빔 보강재의 제조 방법의 흐름도이다. 도 7 내지 10 은 본 발명에 따른 앵글형 하이브리드 빔 보강재의 제조 방법의 각 과정을 나타낸 사진이다.The angle hybrid beam reinforcement according to the present invention has been described above. Hereinafter, a method of manufacturing the angle hybrid beam reinforcement according to the present invention will be described with reference to FIGS. 6 to 10. 6 is a flowchart of a method of manufacturing an angle hybrid beam reinforcement according to the present invention. 7 to 10 is a photograph showing each process of the manufacturing method of the angle-type hybrid beam reinforcement according to the present invention.
도 6 을 참조하면, 본 발명에 따른 앵글형 하이브리드 빔 보강재의 제조 방법은, 분리형 금형의 하부 금형 내에 유리 섬유 직물 프리프레그를 위치시키는 단계(S10), 유리 섬유 직물 프리프레그 상에 앵글형 알루미늄 빔을 적층하는 단계(S20), 앵글형 알루미늄 빔 상에 유리 섬유 직물 프리프레그를 적층하는 단계(S30), 분리형 금형의 상부 금형을 하부 금형과 조립하는 단계(S40), 분리형 금형에 고온 처리 및 고압 처리를 적용하는 단계(S50) 및 분리형 금형을 분리한 후 제조된 앵글형 하이브리드 빔 보강재를 탈형하는 단계(S60)를 포함한다.Referring to Figure 6, in the manufacturing method of the angle-type hybrid beam reinforcement according to the present invention, the step of placing the glass fiber fabric prepreg in the lower mold of the detachable mold (S10), laminating the angle-type aluminum beam on the glass fiber fabric prepreg (S20), stacking the glass fiber fabric prepreg on the angle aluminum beam (S30), assembling the upper mold of the detachable mold with the lower mold (S40), and applying the high temperature treatment and the high pressure treatment to the detachable mold. And a step (S60) of demolding the manufactured angle-type hybrid beam reinforcement after separating the detachable mold (S50).
도 6 및 7 을 참조하면, 분리형 금형의 하부 금형 내에 유리 섬유 직물 프리프레그를 위치시키는 단계(S10), 유리 섬유 직물 프리프레그 상에 앵글형 알루미늄 빔을 적층하는 단계(S20) 및 앵글형 알루미늄 빔 상에 유리 섬유 직물 프리프레그를 적층하는 단계(S30)는, 분리형 금형의 상부 금형과 하부 금형을 분리한 상태에서 하부 금형 내에 유리 섬유 직물 프리프레그를 위치시키고, 유리 섬유 직물 프리프레그 상에 앵글형 알루미늄 빔(10)을 적층하고, 이후 앵글형 알루미늄 빔(10) 상에 유리 섬유 직물 프리프레그를 적층하게 된다.6 and 7, the step S10 of positioning the glass fiber fabric prepreg in the lower mold of the detachable mold, the step of laminating the angled aluminum beam on the glass fiber fabric prepreg (S20) and the angle aluminum beam on the Laminating the glass fiber fabric prepreg (S30), by positioning the glass fiber fabric prepreg in the lower mold in the state of separating the upper mold and the lower mold of the detachable mold, the angle-type aluminum beam ( 10) and then the glass fiber fabric prepreg on the angled aluminum beam 10.
도 8 을 참조하면, 하부 금형 내에 유리 섬유 직물 프리프레그, 앵글형 알루미늄 빔(10) 및 유리 섬유 직물 프리프레그를 차례대로 적층시킨 후, 맨 위에 위치한 유리 섬유 직물 프리프레그 상에 추가적으로 보호 필름(60)을 적층할 수 있다.Referring to FIG. 8, after the glass fiber fabric prepreg, the angled aluminum beam 10 and the glass fiber fabric prepreg are sequentially laminated in the lower mold, an additional protective film 60 is placed on the glass fiber fabric prepreg positioned on the top. Can be laminated.
도 6 및 9 를 참조하면, 분리형 금형의 상부 금형을 하부 금형과 조립하는 단계(S40)는, 하부 금형 내에 유리 섬유 직물 프리프레그, 앵글형 알루미늄 빔(10), 유리 섬유 직물 프리프레그 및 보호 필름(60)을 모두 적층시킨 후, 상부 금형을 덮으면서 상부 금형과 하부 금형을 조립하게 된다. 6 and 9, the step (S40) of assembling the upper mold of the detachable mold with the lower mold includes a glass fiber fabric prepreg, an angled aluminum beam 10, a glass fiber fabric prepreg, and a protective film in the lower mold ( After stacking all of 60), the upper mold and the lower mold are assembled while covering the upper mold.
도 6 을 참조하면, 분리형 금형에 고온 처리 및 고압 처리를 적용하는 단계(S50)는, 상부 금형과 하부 금형이 조립된 후에 조립된 분리형 금형에 고온 및 고압 처리인 핫 프레스(HOT PRESS) 공법이 적용될 수 있다. 구체적으로, 고온 처리는 140℃에서 수행되며, 고압 처리는 7kgf/cm2의 압력으로 120분 동안 수행될 수 있으나, 이러한 온도, 압력 및 시간에 한정되는 것은 아니며, 경우에 따라서 다양한 제조 조건이 적용될 수 있다.Referring to FIG. 6, in the step S50 of applying the high temperature treatment and the high pressure treatment to the detachable mold, the hot press method of hot and high pressure treatment is performed on the detachable mold assembled after the upper mold and the lower mold are assembled. Can be applied. Specifically, the high temperature treatment is carried out at 140 ℃, the high pressure treatment may be carried out for 120 minutes at a pressure of 7kgf / cm 2 , but is not limited to such temperature, pressure and time, various manufacturing conditions may be applied in some cases Can be.
본 발명에 따른 제조 방법의 경우, 유리 섬유 직물 프리프레그를 앵글형 알루미늄 빔(10)과 일체화 시키기 위해 상부/하부 분리형 금형을 사용하며, 이렇게 상부/하부 분리형 금형을 사용한 핫 프레스 공법을 사용함으로써 기존의 탄소섬유 부착 등의 Hand lay-up 공법과 일방향 장섬유를 이용한 인발 공법(Pultrusion)으로 제작한 평판형 보강재에 비해 기계적 물성이 우수한 보강재를 제조할 수 있고, 또한 금형에 고온, 고압을 적용함으로써 조직이 치밀하고 균일한 품질의 제품을 다량으로 생산할 수 있다.In the manufacturing method according to the present invention, a top / bottom split mold is used to integrate the glass fiber fabric prepreg with the angled aluminum beam 10, and thus, by using a hot press method using a top / bottom split mold, Compared to the flat reinforcement made by the hand lay-up method such as carbon fiber attachment and the pultrusion method using unidirectional long fibers, it is possible to manufacture the reinforcement which has excellent mechanical properties, and by applying high temperature and high pressure to the mold It is possible to produce large quantities of this dense and uniform quality product.
도 6 을 참조하면, 분리형 금형을 분리한 후 제조된 앵글형 하이브리드 빔 보강재를 탈형하는 단계(S60)는, 핫 프레스 공정이 종료된 후 상부 금형을 하부 금형으로부터 분리하고 제조된 앵글형 하이브리드 빔 보강재(30, 50)를 금형으로부터 탈형하게 된다. 탈형된 앵글형 하이브리드 빔 보강재(30, 50)는 앵글형 알루미늄 빔(10), 앵글형 알루미늄 빔(10)을 둘러싸는 유리 섬유 복합체(20) 및 보호 필름(60)을 포함할 수 있다.Referring to FIG. 6, the step (S60) of demolding the manufactured angular hybrid beam reinforcement after separating the detachable mold (S60) separates the upper mold from the lower mold after the hot pressing process is finished, and manufactures the angular hybrid beam reinforcement (30). , 50) is demolded from the mold. The demolded angled hybrid beam reinforcement 30, 50 may include an angled aluminum beam 10, a glass fiber composite 20 surrounding the angled aluminum beam 10, and a protective film 60.
이상 본 발명에 따른 앵글형 하이브리드 빔 보강재(30, 50)의 제조 방법을 설명하였으나, 추가적으로 후처리 과정을 설명한다.The method of manufacturing the angle-type hybrid beam reinforcement (30, 50) according to the present invention has been described above, but further describes the post-processing process.
앵글형 하이브리드 빔 보강재(30, 50)를 탈형한 후에 제품 사이즈에 맞게 성형 완료된 앵글형 하이브리드 빔 보강재(30, 50)의 폭을 절단기로 커팅할 수 있다. 또한, 도 10 을 참조하면, 철근 콘크리트 보(40)와의 부착 성능을 높이기 위해서 성형 완료된 앵글형 하이브리드 빔 보강재(30, 50)의 면 중에서 철근 콘크리트 보(40)와의 접착면을 샌딩 처리할 수 있다. After demolding the angle-type hybrid beam reinforcement (30, 50), the width of the angle-type hybrid beam reinforcement (30, 50) molded to fit the product size can be cut with a cutter. In addition, referring to FIG. 10, in order to increase the attachment performance with the reinforced concrete beam 40, the adhesive surface with the reinforced concrete beam 40 may be sanded from the surfaces of the formed angle-type hybrid beam reinforcement 30 and 50.
이상 본 발명에 따른 앵글형 하이브리드 빔 보강재의 제조 방법을 설명하였으며, 이하 도 11 및 12 를 참조하여 본 발명에 따른 앵글형 하이브리드 빔 보강재의 시공 방법을 설명한다. 도 11 은 본 발명에 따른 앵글형 하이브리드 빔 보강재의 시공 방법의 흐름도이다. 도 12 는 본 발명에 따른 앵글형 하이브리드 빔 보강재의 시공 방법에 사용되는 정착핀의 사시도이다.The method of manufacturing the angle hybrid beam reinforcement according to the present invention has been described above. Hereinafter, the construction method of the angle hybrid beam reinforcement according to the present invention will be described with reference to FIGS. 11 and 12. 11 is a flowchart of a construction method of an angle-type hybrid beam reinforcement according to the present invention. 12 is a perspective view of a fixing pin used in the construction method of the angle-type hybrid beam reinforcement according to the present invention.
도 11 을 참조하면, 본 발명에 따른 앵글형 하이브리드 빔 보강재의 시공 방법은, 철근 콘크리트 보 및 앵글형 하이브리드 빔 보강재에 접착제를 도포하고 철근 콘크리트 보와 앵글형 하이브리드 빔 보강재를 접합하는 단계(S70) 및 타정 공구의 정착핀을 이용하여 앵글형 하이브리드 빔 보강재를 철근 콘트리트 보에 고정하는 단계(S80)를 포함한다.Referring to Figure 11, the construction method of the angle-type hybrid beam reinforcement according to the present invention, applying an adhesive to the reinforced concrete beam and the angle-type hybrid beam reinforcement and bonding the reinforced concrete beam and the angle-type hybrid beam reinforcement (S70) and tableting tool Fixing the angle-type hybrid beam reinforcement to the reinforced concrete beam using the fixing pin of (S80).
도 11 을 참조하면, 철근 콘크리트 보 및 앵글형 하이브리드 빔 보강재에 접착제를 도포하고 철근 콘크리트 보와 앵글형 하이브리드 빔 보강재를 접합하는 단계(S70)는, 우선 앵글형 하이브리드 빔 보강재(30, 50)가 접합될 철근 콘크리트 보(40)의 면에 대한 그라인딩 작업, 철근 콘크리트 보(40)의 마감 모르타르를 제거하는 작업, 철근 콘크리트 보(40)의 균열에 대한 보수 작업, 및 철근 콘크리트 보(40)의 요철면을 평탄화하는 작업 중 어느 하나 이상의 작업을 수행하는 전처리 공정을 수행할 수 있다. 또한, 전처리 공정 이후에 철근 콘크리트 보(40)에 프라이머를 도포할 수 있다. Referring to FIG. 11, the step of applying the adhesive to the reinforced concrete beam and the angle hybrid beam reinforcement and joining the reinforced concrete beam and the angle hybrid beam reinforcement (S70), first, the reinforcing bars to which the angle hybrid beam reinforcement 30 and 50 are to be joined. Grinding work on the surface of the concrete beam 40, removing the finishing mortar of the reinforced concrete beam 40, repair work for the crack of the reinforced concrete beam 40, and the uneven surface of the reinforced concrete beam 40 A pretreatment process may be performed to perform any one or more of the planarization operations. In addition, the primer may be applied to the reinforced concrete beam 40 after the pretreatment process.
이렇게, 철근 콘크리트 보(40) 및 앵글형 하이브리드 빔 보강재(30, 50)에 접착제를 도포하기 전에 전처리 공정을 수행하고 프라이머를 도포함으로써 철근 콘크리트 보(40) 및 앵글형 하이브리드 빔 보강재(30, 50) 간의 부착력을 증대시킬 수 있다.Thus, before the adhesive is applied to the reinforced concrete beams 40 and the angled hybrid beam stiffeners 30 and 50, a pretreatment process is performed and the primer is applied to the space between the reinforced concrete beams 40 and the angled hybrid beam stiffeners 30 and 50. Adhesion can be increased.
전처리 공정 및 프라이머 도포 이후, 철근 콘크리트 보(40) 및 앵글형 하이브리드 빔 보강재(30, 50)에 접착제를 도포하고 철근 콘크리트 보(40)와 앵글형 하이브리드 빔 보강재(30, 50)를 접합한다. 이 때 접착제로는 에폭시가 사용될 수 있다.After the pretreatment process and primer application, the adhesive is applied to the reinforced concrete beam 40 and the angled hybrid beam reinforcement (30, 50) and the reinforced concrete beam 40 and the angled hybrid beam reinforcement (30, 50) are bonded. At this time, epoxy may be used as the adhesive.
도 12 를 참조하면, 타정 공구의 정착핀을 이용하여 앵글형 하이브리드 빔 보강재를 철근 콘크리트 보에 고정하는 단계(S80)는, 접합된 철근 콘크리트 보(40)와 앵글형 하이브리드 빔 보강재(30, 50)에 대하여 타정 공구를 통해 정착핀(70)을 발사하여 앵글형 하이브리드 빔 보강재(30, 50)를 철근 콘크리트 보(40)에 고정한다.Referring to FIG. 12, the fixing of the angle-type hybrid beam reinforcement to the reinforced concrete beam by using the fixing pin of the tableting tool (S80) may be performed on the bonded reinforced concrete beam 40 and the angle-type hybrid beam reinforcement 30, 50. The fixing pin 70 is fired through the tableting tool to fix the angle-type hybrid beam stiffeners 30 and 50 to the reinforced concrete beam 40.
기존에는 보강 대상 콘크리트 구조물에 접착제를 도포하고 앵커 볼트를 설치하여 고정하는 공법을 이용하거나, 에폭시 충진에 의한 보강재 정착 방법을 사용했으나, 본 발명에 따른 시공 방법은 타정 공구 및 정착핀(70)을 사용함으로써 모재의 손상이 없고 보강재를 고정하기 위한 추가적인 시설이나 장비가 필요치 않아 시공이 용이하고, 보강재의 경량화가 이루어지고, 완제품 형태로 제작되어 현장 접근성 및 공기를 단축시킬 수 있다. 또한, 기존에는 에폭시 양생에 상온 하에서 1~3일 가량이 소요되지만 정착핀(70) 작업으로 에폭시 양생기간 및 후처리가 필요하지 않게 된다. 한편, 정착핀(70)은 스테인리스 스틸 핀일 수 있으며, 앞부분이 뾰족한 형상을 지니고 있을 수 있다.Conventionally, a method of applying an adhesive to a concrete structure to be reinforced and fixing by installing anchor bolts, or using a method of fixing reinforcement by epoxy filling, the construction method according to the present invention uses a tableting tool and a fixing pin 70. By using it, there is no damage to the base material and no additional facility or equipment for fixing the reinforcement is easy to install, the weight of the reinforcement is made light, and it is manufactured in the form of a finished product to reduce the site access and air. In addition, the conventional epoxy curing takes about 1 to 3 days at room temperature, but does not require the epoxy curing period and post-treatment by the fixing pin 70 work. On the other hand, the fixing pin 70 may be a stainless steel pin, the front portion may have a pointed shape.
추가적으로, 철근 콘크리트 보(40)와 앵글형 하이브리드 빔 보강재(30, 50) 사이에 틈새가 있을 경우 마감 실링제를 이용하여 메움 시공을 하면서 마무리 작업을 수행할 수 있다.In addition, when there is a gap between the reinforced concrete beam 40 and the angle-type hybrid beam reinforcement (30, 50) it can be done while finishing the filling construction using the finishing sealant.
이상 본 발명에 따른 앵글형 하이브리드 빔 보강재의 시공 방법을 설명하였으며, 이하 도 13 내지 17 을 참조하여 본 발명에 따른 앵글형 하이브리드 빔 보강재의 효과를 살펴본다. 도 13 은 본 발명에 따른 앵글형 하이브리드 빔 보강재의 효과를 평가하기 위한 시험체를 나타낸 도면이다. 도 14 는 보강이 이루어지지 않은 철근 콘크리트 보의 하중 적용에 따른 파괴 양상을 나타낸 사진이다. 도 15 는 본 발명의 일 실시예에 따른 앵글형 하이브리드 빔 보강재로 휨 보강이 이루어진 철근 콘크리트 보의 하중 적용에 따른 파괴 양상을 나타낸 사진이다. 도 16 은 본 발명의 다른 실시예에 따른 앵글형 하이브리드 빔 보강재로 전단 보강이 이루어진 철근 콘크리트 보의 하중 적용에 따른 파괴 양상을 나타낸 사진이다. 도 17 은 보강이 이루어지지 않은 철근 콘크리트 보와 본 발명의 일 실시예에 따른 앵글형 하이브리드 빔 보강재로 보강이 이루어진 철근 콘크리트 보에 대하여 하중과 변위와의 관계를 비교한 그래프이다.The construction method of the angle-type hybrid beam reinforcement according to the present invention has been described above. Hereinafter, the effect of the angle-type hybrid beam reinforcement according to the present invention will be described with reference to FIGS. 13 to 17. 13 is a view showing a test body for evaluating the effect of the angle-type hybrid beam reinforcement according to the present invention. 14 is a photograph showing a fracture pattern according to the application of the load of the reinforced concrete beam is not reinforced. 15 is a photograph showing a fracture pattern according to the application of the load of the reinforced concrete beam with flexural reinforcement to the angle-type hybrid beam stiffener according to an embodiment of the present invention. 16 is a photograph showing a fracture pattern according to the load application of the reinforced concrete beam shear shear reinforcement with an angle-type hybrid beam stiffener according to another embodiment of the present invention. 17 is a graph comparing the relationship between the load and the displacement of the reinforced concrete beam not reinforced with reinforced concrete beams reinforced with an angle-type hybrid beam stiffener according to an embodiment of the present invention.
우선 도 13 과 같이, 시험체 3종류, 즉 보강이 이루어지지 않은 철근 콘크리트 보(기준 시험체), 횜 보강이 이루어진 철근 콘크리트 보(휨 보강 시험체) 및 전단 보강이 이루어진 철근 콘크리트 보(전단 보강 시험체)를 준비하고, 각 시험체에 하중이 가해질 수 있도록 시험 환경을 설계한다.First, as shown in Fig. 13, three types of test bodies, namely, reinforced concrete beams (reference specimens) without reinforcement, reinforced concrete beams with flexural reinforcement (flexural reinforcement specimens) and reinforced concrete beams with shear reinforcement (shear reinforcement specimens) Prepare and design the test environment so that each specimen is loaded.
도 14 는 보강이 이루어지지 않은 철근 콘크리트 보(40)에 하중을 적용하고, 그에 따른 파괴 양상을 보여주고 있는데, 이러한 구조는 콘크리트의 압축력과 철근의 인장력이 결합하여 휨에 저항하는 시스템이다. FIG. 14 applies a load to the reinforced concrete beam 40 without reinforcement, and shows a fracture pattern according to this structure. This structure is a system in which a compressive force of concrete and a tensile force of reinforcing bars are combined to resist bending.
파괴 양상으로는, 휨 균열이 중앙 하중 부여 구간에서 발생하였으며, 하중이 증가하면서 중앙에서 양방향으로 균열이 발생하였다. 하중이 계속 증가하다가 철근이 항복되면서 하중은 크게 증가하지 않았으며, 시험체의 중앙 처짐이 크게 발생함을 알 수 있다.In the failure mode, flexural cracking occurred in the center load section, and cracking occurred in both directions from the center as the load increased. As the load continued to increase and the bar yielded, the load did not increase significantly and the central deflection of the test specimen occurred.
도 15 는 본 발명의 일 실시예에 따른 앵글형 하이브리드 빔 보강재(30)로 보강이 이루어진 철근 콘크리트 보(40)에 하중을 적용하고, 그에 따른 파괴 양상을 보여주고 있는데, 이러한 구조는 콘크리트의 압축력과 인장철근의 인장력 이외에 추가적으로 앵글형 하이브리드 빔 보강재(30)의 인장력이 더해져서 휨에 저항하는 시스템이다.15 is a load applied to the reinforced concrete beam 40 is reinforced with an angle-type hybrid beam stiffener 30 in accordance with an embodiment of the present invention, and shows a fracture pattern according to this, the structure and the compression force of the concrete In addition to the tensile force of the reinforcing bar is added to the tensile force of the angle-type hybrid beam reinforcement 30 is a system that resists bending.
파괴 양상으로는, 하중 부여가 시작되면 앵글형 하이브리드 빔 보강재(30)와 인장 철근은 동시에 인장력을 부담을 하게 된다. 그러다 임의 하중에 이르게 되면 철근이 먼저 항복을 하고 곧이어 많은 하중을 앵글형 하이브리드 빔 보강재(30)가 부담을 하다 최대 휨 구간에서 파단이 일어난다.In the failure aspect, when the load is started, the angle-type hybrid beam stiffener 30 and the tensile reinforcing bar bear the tensile force at the same time. Then, when the load reaches a random load, the reinforcing bar first yields, and the load of the angle-type hybrid beam reinforcement 30 is borne by a large load, and the fracture occurs in the maximum bending section.
기준 시험체의 균열 양상과 휨 보강 시험체의 균열 양상을 비교해 보면, 기준 시험체의 균열이 더 넓게 분포하는 것을 볼 수 있으며, 이는 앵글형 하이브리드 빔 보강재(30)가 균열을 억제하며 균열의 진전을 막는 것임을 알 수 있다. 또한, 시험 종료시까지 보강재의 파괴나 철근 콘크리트 보(40)와의 분리는 발생하지 않았다.Comparing the cracking pattern of the reference specimen with the cracking pattern of the flexural reinforcement specimen, it can be seen that the cracking of the reference specimen is more widely distributed, indicating that the angle-type hybrid beam stiffener 30 suppresses the cracking and prevents the growth of the cracking. Can be. In addition, fracture of the reinforcement and separation from the reinforced concrete beam 40 did not occur until the end of the test.
도 16 은 본 발명의 다른 실시예에 따른 앵글형 하이브리드 빔 보강재(50)로 보강이 이루어진 철근 콘크리트 보(40)에 하중을 적용하고, 그에 따른 파괴 양상을 보여주고 있다.16 is applied to the reinforced concrete beam 40 made of an angle-type hybrid beam stiffener 50 in accordance with another embodiment of the present invention, and shows the fracture accordingly.
파괴 양상으로는, 시험 초기에 하중이 증가해도 균열의 큰 변화는 나타나지 않았다. 시험체가 항복 내력에 도달하면서 중앙 기점부터 휨 균열이 발생하기 시작 하였다. 하중이 증가하여 변위가 증가함에 휨 균열이 진전되고 균열의 수가 증가 하였다. 전단 균열은 항복 하중 이후에도 발생되지 않았고, 일반적으로 보강된 시험체가 어느 이상의 하중을 받게 되면 콘크리트 계면과 보강재 사이에 전단응력이 발생하게 되고 이 전단응력을 콘크리트와 보강재 사이의 부착력이 견디지 못하면 계면 파단, 즉 두 재료가 분리되면서 탈락이 발생한다. 그러나 본 시험에서는 실험 종료시까지 앵글형 하이브리드 빔 보강재(30)의 파괴나 철근 콘크리트 보(40)와의 계면 분리에 의한 탈락 현상은 발생하지 않았다. In terms of failure, even if the load increased at the beginning of the test, there was no significant change in cracking. As the specimen reached yield strength, flexural cracking began to occur from the central point. As load increased, displacement increased, flexural cracks developed and the number of cracks increased. Shear cracking did not occur even after the yield load.In general, when the reinforced specimen is subjected to more than one load, shear stress occurs between the concrete interface and the reinforcement, and if the shear stress cannot withstand the adhesion between the concrete and the reinforcement, the interface fracture, In other words, the separation of the two materials occurs. However, in this test, the fall-off phenomenon due to the breakage of the angle-type hybrid beam stiffener 30 or the interface separation with the reinforced concrete beam 40 did not occur until the end of the experiment.
이는 앵글형 하이브리드 빔 보강재(30)의 전단 보강 내력이 재료가 가진 성능과 부착력을 최대한 발휘하고 있는 것으로 가장 이상적인 파괴모드라 할 수 있다.The shear reinforcement strength of the angle-type hybrid beam reinforcement 30 exhibits the best performance and adhesion of the material and can be said to be the most ideal failure mode.
도 17 은 보강이 이루어지지 않은 철근 콘크리트 보(specimen 1)와 본 발명의 일 실시예에 따른 앵글형 하이브리드 빔 보강재(30)로 보강이 이루어진 철근 콘크리트 보(specimen 2)에 대하여 하중과 변위와의 관계를 비교한 그래프이다.FIG. 17 shows the relationship between load and displacement for reinforced concrete beams (specimen 1) without reinforcement and reinforced concrete beams (specimen 2) with reinforcement with angle-type hybrid beam reinforcement 30 according to an embodiment of the present invention. This is a graph comparing.
기준 시험체(specimen 1)에 비해서 앵글형 하이브리드 빔 보강재(30)로 보강된 시험체(specimen 2)의 초기 균열 하중, 강성 및 최대 하중이 증가한 것으로 나타났다. 기준 시험체의 초기 균열 하중은 11.6kN이며, 보강 시험체는 18.1kN으로 나타났다. 이는 앵글형 하이브리드 빔 보강재(30)가 콘크리트의 인장부에 보강되면서 초기균열을 억제하는 것으로 판단된다. 기준 시험체와 보강된 시험체의 강성은 초기균열 발생하기 전까지는 큰 차이를 보이지 않았으나 초기 균열 이후의 강성 차는 나타났으며, 최대 하중 또한 기준 시험체와 비교하여 크게 증가한 것으로 나타났다. 또한 기준 시험체보다 더 높은 하중에서 항복하면서 연성구간이 더 크게 거동함으로써 휨 보강 효과를 기대할 수 있다.Compared with the reference specimen (specimen 1), the initial crack load, stiffness and maximum load of the specimen (specimen 2) reinforced with the angle-type hybrid beam stiffener 30 were increased. The initial crack load of the reference specimen was 11.6 kN and the reinforcement specimen was 18.1 kN. It is determined that the angle-type hybrid beam reinforcement 30 suppresses initial cracking while being reinforced in the tension portion of the concrete. The stiffness of the reference specimen and the reinforced specimen did not show a big difference until the initial crack occurred, but the stiffness difference after the initial cracking appeared, and the maximum load also increased significantly compared to the reference specimen. In addition, the flexural reinforcement effect can be expected as the ductile section behaves larger while yielding at higher loads than the reference specimen.
이상 살펴본 바와 같이, 본 발명에 따른 앵글형 하이브리드 빔 보강재(30, 50)로 보강된 철근 콘크리트 보(40)는 초기 균열 하중, 강성 및 최대 하중이 증가하였는바 본 발명에 따른 앵글형 하이브리드 빔 보강재(30, 50)는 보강 수행 능력이 아주 우수함을 알 수 있다.As described above, the reinforced concrete beam 40 reinforced with the angle-type hybrid beam reinforcement (30, 50) according to the present invention increased the initial crack load, stiffness and maximum load bar angle hybrid beam reinforcement (30) according to the present invention , 50) shows very good performance of reinforcement.
이상 첨부된 도면을 참조하여 본 발명의 실시예를 설명하였지만, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명이 그 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.Although embodiments of the present invention have been described above with reference to the accompanying drawings, those skilled in the art to which the present invention pertains may implement the present invention in other specific forms without changing the technical spirit or essential features thereof. I can understand that. Therefore, it should be understood that the embodiments described above are exemplary in all respects and not restrictive.

Claims (19)

  1. 철근 콘크리트 보의 보수 및 보강에 사용되는 앵글형 하이브리드 빔 보강재로서,Angle type hybrid beam reinforcement used for repair and reinforcement of reinforced concrete beams,
    앵글형 알루미늄 빔; 및Angled aluminum beams; And
    상기 앵글형 알루미늄 빔의 표면에 부착되며, 유리 섬유 직물 프리프레그(Prepreg)가 성형되어 형성된 유리 섬유 복합체를 포함하는 앵글형 하이브리드 빔 보강재.An angle-type hybrid beam reinforcement is attached to the surface of the angle-type aluminum beam, comprising a glass fiber composite formed by forming a glass fiber fabric prepreg (Prepreg).
  2. 제 1 항에 있어서,The method of claim 1,
    상기 유리 섬유 직물 프리프레그의 섬유 배열은 다방향성을 지니는 앵글형 하이브리드 빔 보강재.And wherein the fiber arrangement of the fiberglass fabric prepreg is multidirectional.
  3. 제 2 항에 있어서,The method of claim 2,
    상기 다방향성은 외력에 저항하는 방향 및 상기 외력에 저항하는 방향에 수직인 방향을 포함하는 앵글형 하이브리드 빔 보강재.Wherein said multidirectionality includes a direction resisting external force and a direction perpendicular to the direction resisting said external force.
  4. 제 2 항에 있어서,The method of claim 2,
    앵글형 하이브리드 빔 보강재의 길이 방향이 0° 방향이라고 할 때, 상기 섬유 배열의 패턴은, 0° 방향인 경우, +45° 방향인 경우, 90° 방향인 경우 및 -45° 방향인 경우를 포함하는 앵글형 하이브리드 빔 보강재.When the longitudinal direction of the angle hybrid beam reinforcement is in the 0 ° direction, the pattern of the fiber array includes the case in the 0 ° direction, in the + 45 ° direction, in the 90 ° direction and in the -45 ° direction. Angled hybrid beam reinforcement.
  5. 제 1 항에 있어서,The method of claim 1,
    상기 앵글형 알루미늄 빔에는 중공이 형성된 앵글형 하이브리드 빔 보강재.An angle-type hybrid beam reinforcement having a hollow formed in the angle-type aluminum beam.
  6. 제 1 항에 있어서,The method of claim 1,
    상기 유리 섬유 직물 복합체의 표면에 부착된 보호 필름을 더 포함하는 앵글형 하이브리드 빔 보강재.An angle hybrid beam reinforcement further comprising a protective film attached to the surface of the glass fiber fabric composite.
  7. 제 1 항에 있어서,The method of claim 1,
    상기 철근 콘크리트 보에 접착하는 접착면은 샌딩 처리된 앵글형 하이브리드 빔 보강재.Bonding surface for bonding to the reinforced concrete beam is a sanding angle hybrid beam reinforcement.
  8. 제 1 항에 있어서,The method of claim 1,
    상기 앵글형 알루미늄 빔의 재료는 AL 6063-T5 인 앵글형 하이브리드 빔 보강재.The angle-type aluminum beam material is AL 6063-T5 angle hybrid beam reinforcement.
  9. 제 1 항에 있어서,The method of claim 1,
    앵글형 하이브리드 빔 보강재는 폭 방향 단면이 "ㄱ" 자 형상이며, 철근 콘크리트 보의 하면에 부착되는 하면 부분 및 철근 콘크리트 보의 측면에 부착되는 측면 부분을 포함하고,The angled hybrid beam reinforcement has a widthwise cross-section of "a" shape and includes a lower surface portion attached to the lower surface of the reinforced concrete beam and a side portion attached to the side of the reinforced concrete beam,
    앵글형 하이브리드 빔 보강재가 휨 보강용일 경우 하면 부분의 폭이 측면 부분의 폭보다 긴 앵글형 하이브리드 빔 보강재.Angle hybrid beam stiffener, when the angle hybrid beam reinforcement is for flexural reinforcement, the width of the lower part is longer than the width of the side part.
  10. 제 1 항에 있어서,The method of claim 1,
    앵글형 하이브리드 빔 보강재는 폭 방향 단면이 "ㄱ" 자 형상이며, 철근 콘크리트 보의 하면에 부착되는 하면 부분 및 철근 콘크리트 보의 측면에 부착되는 측면 부분을 포함하고,The angled hybrid beam reinforcement has a widthwise cross-section of "a" shape and includes a lower surface portion attached to the lower surface of the reinforced concrete beam and a side portion attached to the side of the reinforced concrete beam,
    앵글형 하이브리드 빔 보강재가 전단 보강용일 경우 측면 부분의 폭이 하면 부분의 폭보다 긴 앵글형 하이브리드 빔 보강재.Angle hybrid beam stiffeners for shear reinforcement. Angle hybrid beam stiffeners with a width of the side portion longer than the width of the lower portion.
  11. 제 1 항에 기재된 앵글형 하이브리드 빔 보강재의 제조 방법으로서,As a manufacturing method of the angle type hybrid beam reinforcement of Claim 1,
    분리형 금형의 하부 금형 내에 유리 섬유 직물 프리프레그를 위치시키는 단계;Positioning the glass fiber fabric prepreg in the bottom mold of the detachable mold;
    유리 섬유 직물 프리프레그 상에 앵글형 알루미늄 빔을 적층하는 단계;Stacking an angled aluminum beam on a glass fiber fabric prepreg;
    앵글형 알루미늄 빔 상에 유리 섬유 직물 프리프레그를 적층하는 단계;Laminating glass fiber fabric prepregs on the angled aluminum beams;
    분리형 금형의 상부 금형을 하부 금형과 조립하는 단계;Assembling the upper mold of the split mold with the lower mold;
    분리형 금형에 고온 처리 및 고압 처리를 적용하는 단계; 및Applying a high temperature treatment and a high pressure treatment to the separate mold; And
    분리형 금형을 분리한 후 제조된 앵글형 하이브리드 빔 보강재를 탈형하는 단계를 포함하는 앵글형 하이브리드 빔 보강재의 제조 방법.A method of manufacturing an angle hybrid beam reinforcement comprising the step of demolding the manufactured angle-type hybrid beam reinforcement after separating the separate mold.
  12. 제 11 항에 있어서,The method of claim 11,
    앵글형 알루미늄 빔 상에 유리 섬유 직물 프리프레그를 적층하는 단계 이후, After laminating the fiberglass fabric prepreg on the angled aluminum beam,
    적층된 유리 섬유 직물 프리프레그 상에 보호 필름을 적층하는 단계를 더 포함하는 앵글형 하이브리드 빔 보강재의 제조 방법.A method of making an angle hybrid beam reinforcement further comprising the step of laminating a protective film on the laminated glass fiber fabric prepreg.
  13. 제 11 항에 있어서,The method of claim 11,
    고온 처리는 140℃에서 수행되며, 고압 처리는 7kgf/cm2의 압력으로 120분 동안 수행되는 앵글형 하이브리드 빔 보강재의 제조 방법.The high temperature treatment is carried out at 140 ° C, the high pressure treatment is carried out for 120 minutes at a pressure of 7 kgf / cm 2 .
  14. 제 11 항에 있어서,The method of claim 11,
    탈형된 앵글형 하이브리드 빔 보강재의 면 중에서 철근 콘크리트 보와의 접착면을 샌딩 처리하는 단계를 더 포함하는 앵글형 하이브리드 빔 보강재의 제조 방법.The method of manufacturing an angle-type hybrid beam stiffener further comprising the step of sanding the adhesive surface with the reinforced concrete beams from the surface of the demolded angle-type hybrid beam stiffener.
  15. 제 11 항에 있어서,The method of claim 11,
    탈형된 앵글형 하이브리드 빔 보강재의 폭을 커팅하는 단계를 더 포함하는 앵글형 하이브리드 빔 보강재의 제조 방법.And cutting the width of the demolded angle hybrid beam reinforcement.
  16. 제 1 항에 기재된 앵글형 하이브리드 빔 보강재의 시공 방법으로서,As a construction method of the angle type hybrid beam reinforcement of Claim 1,
    철근 콘크리트 보 및 앵글형 하이브리드 빔 보강재에 접착제를 도포하고 철근 콘크리트 보와 앵글형 하이브리드 빔 보강재를 접합하는 단계; 및 Applying an adhesive to the reinforced concrete beam and the angled hybrid beam stiffener and joining the reinforced concrete beam and the angled hybrid beam stiffener; And
    타정 공구의 정착핀을 이용하여 앵글형 하이브리드 빔 보강재를 철근 콘트리트 보에 고정하는 단계를 포함하는 앵글형 하이브리드 빔 보강재의 시공 방법.A method of constructing an angle hybrid beam reinforcement comprising fixing an angle hybrid beam reinforcement to a reinforced concrete beam using a fixing pin of a tableting tool.
  17. 제 16 항에 있어서,The method of claim 16,
    철근 콘크리트 보와 앵글형 하이브리드 빔 보강재에 접착제를 도포하고 접합하는 단계 이전에,Before applying and bonding the adhesive to reinforced concrete beams and angled hybrid beam stiffeners,
    철근 콘크리트 보에 프라이머를 도포하는 단계를 더 포함하는 앵글형 하이브리드 빔 보강재의 시공 방법.Construction method of the angle-type hybrid beam reinforcement further comprising the step of applying a primer to the reinforced concrete beam.
  18. 제 17 항에 있어서,The method of claim 17,
    철근 콘크리트 보에 프라이머를 도포하는 단계 이전에,Before the step of applying a primer on reinforced concrete beams,
    앵글형 하이브리드 빔 보강재가 접합될 철근 콘크리트 보의 면에 대한 그라인딩 작업, 철근 콘크리트 보의 마감 모르타르를 제거하는 작업, 철근 콘크리트 보의 균열에 대한 보수 작업, 및 철근 콘크리트 보의 요철면을 평탄화하는 작업 중 어느 하나 이상의 작업을 수행하는 전처리 단계를 더 포함하는 앵글형 하이브리드 빔 보강재의 시공 방법.Grinding the face of reinforced concrete beams to which the angled hybrid beam stiffener will be joined, removing the finishing mortar of reinforced concrete beams, repairing cracks in reinforced concrete beams, and flattening the uneven surface of reinforced concrete beams Construction method of the angle-type hybrid beam reinforcement further comprising a pretreatment step for performing any one or more operations.
  19. 제 16 항에 있어서,The method of claim 16,
    정착핀을 이용하여 앵글형 하이브리드 빔 보강재를 철근 콘트리트 보에 고정하는 단계 이후,After fixing the angle hybrid beam reinforcement to the reinforced concrete beam using the fixing pin,
    철근 콘트리트 보와 앵글형 하이브리드 빔 보강재 사이에 틈새가 있을 경우 마감 실링제를 이용하여 메움 시공을 하는 단계를 더 포함하는 앵글형 하이브리드 빔 보강재의 시공 방법.If there is a gap between the reinforced concrete beam and the angle-type hybrid beam reinforcement, the method of construction of the angle-type hybrid beam reinforcement further comprising the step of filling using a sealing sealant.
PCT/KR2017/009070 2016-08-30 2017-08-21 Angle type hybrid beam reinforcement, method for manufacturing angle type hybrid beam reinforcement, and method for constructing angle type hybrid beam reinforcement WO2018043970A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0110518 2016-08-30
KR1020160110518A KR101736040B1 (en) 2016-08-30 2016-08-30 A reinforced member of an angle type hybrid beam, manufacturing method thereof and constructing method thereof

Publications (1)

Publication Number Publication Date
WO2018043970A1 true WO2018043970A1 (en) 2018-03-08

Family

ID=59035394

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/009070 WO2018043970A1 (en) 2016-08-30 2017-08-21 Angle type hybrid beam reinforcement, method for manufacturing angle type hybrid beam reinforcement, and method for constructing angle type hybrid beam reinforcement

Country Status (2)

Country Link
KR (1) KR101736040B1 (en)
WO (1) WO2018043970A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108254267A (en) * 2018-04-23 2018-07-06 深圳市仟亿建筑技术有限公司 There are skin anti-shear concrete strength test test specimen, testing equipment and test method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110685455A (en) * 2019-10-22 2020-01-14 卡本科技集团股份有限公司 High-strength steel wire cloth right-angle reinforcing mode

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010024043A (en) * 1997-09-16 2001-03-26 아사무라 타카싯 Structure for reinforcing concrete member and reinforcing method
JP2002256707A (en) * 2000-12-28 2002-09-11 Sho Bond Constr Co Ltd Sheet and method for repairing and reinforcing concrete structure
KR100456378B1 (en) * 2001-12-21 2004-11-16 주식회사 포스코건설 Panel for reinforcing con'c body and reinforcing method using the same
KR20050065972A (en) * 2003-12-26 2005-06-30 한국건설기술연구원 Device and method for reinforcing concrete structure
KR100925530B1 (en) * 2009-07-28 2009-11-05 매일종합건설(주) Steel and fiber composite panel for concrete structure reinforcement and the concrete structure means of reinforcement work for which this production technique and this were used
JP2011169085A (en) * 2010-02-22 2011-09-01 Mbs Inc Reinforced coating method of concrete structure surface, reinforced coating structure of concrete structure, and reinforced coating structure

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010024043A (en) * 1997-09-16 2001-03-26 아사무라 타카싯 Structure for reinforcing concrete member and reinforcing method
JP2002256707A (en) * 2000-12-28 2002-09-11 Sho Bond Constr Co Ltd Sheet and method for repairing and reinforcing concrete structure
KR100456378B1 (en) * 2001-12-21 2004-11-16 주식회사 포스코건설 Panel for reinforcing con'c body and reinforcing method using the same
KR20050065972A (en) * 2003-12-26 2005-06-30 한국건설기술연구원 Device and method for reinforcing concrete structure
KR100925530B1 (en) * 2009-07-28 2009-11-05 매일종합건설(주) Steel and fiber composite panel for concrete structure reinforcement and the concrete structure means of reinforcement work for which this production technique and this were used
JP2011169085A (en) * 2010-02-22 2011-09-01 Mbs Inc Reinforced coating method of concrete structure surface, reinforced coating structure of concrete structure, and reinforced coating structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108254267A (en) * 2018-04-23 2018-07-06 深圳市仟亿建筑技术有限公司 There are skin anti-shear concrete strength test test specimen, testing equipment and test method

Also Published As

Publication number Publication date
KR101736040B1 (en) 2017-05-16

Similar Documents

Publication Publication Date Title
US20150113913A1 (en) Hollow structure, and preparation method thereof
EP3243647B1 (en) Method and apparatus to remove gas and vapor from a panel for a decorative layer
US20230279624A1 (en) Composite structural panel and method of fabrication
WO2018043970A1 (en) Angle type hybrid beam reinforcement, method for manufacturing angle type hybrid beam reinforcement, and method for constructing angle type hybrid beam reinforcement
WO2014054868A1 (en) Functional film for improving impregnation properties of composite material and method for manufacturing composite material using same
CN111231442A (en) Large-size multi-axial composite material bearing plate taking pultruded profile as sandwich and preparation method thereof
Canning et al. MANUFACTURE, TESTING AND NUMERICAL ANALYSIS OF AN INNOVATIVE POLYMER COMPOSITE/CONCRETE STRUCTURAL UNIT.
CN101665001A (en) Preparation process of composite material corrugated sandwich plates
WO2017204558A1 (en) Reinforced composite and product including same
CN103448338B (en) Metal plate/fiber mixed reinforced sandwich plate
CN212021859U (en) Large-size multi-axial composite material bearing plate taking pultruded profile as sandwich
CN112757733A (en) High-performance fully-coated glass fiber reinforced plastic grating plate and coating process thereof
CN106703288B (en) Method for manufacturing carbon fiber grid composite plate concrete continuous beam
WO2017099379A1 (en) Z-pinning patch and method for integrally binding combinations using same
JP3415107B2 (en) Method for reinforcing concrete structure and reinforcing structure
WO2018056554A1 (en) Heartwood for sandwich panel, sandwich panel, and method for producing sandwich panel
RU2507352C1 (en) Panel of middle layer and method of its production
CN110802851A (en) Method for integrally forming composite material T-shaped reinforced structure product
WO2018124354A1 (en) Method for fabricating fiber-reinforced plastic composite material covered with sheet metal skins, and composite material component for lightweight structure fabricated by same
WO2018044007A1 (en) Fiber-reinforced composite material and automobile interior/exterior material employing same
KR20180091144A (en) Elastomeric composite structure for elastomeric bearing and manufacturing method thereof
CN109476040B (en) Method and apparatus for producing concrete elements
JPH03169963A (en) Cement panel and preparation thereof
CN112895115B (en) Combined BFRP-FRCM composite layer steel mold and using method thereof
CN220566119U (en) Evacuation platform board

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17846895

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17846895

Country of ref document: EP

Kind code of ref document: A1