WO2018043250A1 - Photosensitive resin composition, cured film, organic el display device, semiconductor electronic component and semiconductor device - Google Patents

Photosensitive resin composition, cured film, organic el display device, semiconductor electronic component and semiconductor device Download PDF

Info

Publication number
WO2018043250A1
WO2018043250A1 PCT/JP2017/030144 JP2017030144W WO2018043250A1 WO 2018043250 A1 WO2018043250 A1 WO 2018043250A1 JP 2017030144 W JP2017030144 W JP 2017030144W WO 2018043250 A1 WO2018043250 A1 WO 2018043250A1
Authority
WO
WIPO (PCT)
Prior art keywords
photosensitive resin
resin composition
film
acid
mass
Prior art date
Application number
PCT/JP2017/030144
Other languages
French (fr)
Japanese (ja)
Inventor
惇 早坂
洋平 木内
奥田 良治
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to JP2017545610A priority Critical patent/JP7062953B2/en
Publication of WO2018043250A1 publication Critical patent/WO2018043250A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/26Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/032Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders
    • G03F7/037Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders the binders being polyamides or polyimides
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/075Silicon-containing compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor

Definitions

  • the present invention relates to a photosensitive resin composition, a cured film using the same, an organic EL display device, a semiconductor electronic component, and a semiconductor device. More specifically, the present invention relates to a photosensitive resin composition suitably used for a surface protective film of a semiconductor element, an interlayer insulating film, an insulating layer of an organic electroluminescent element, and the like.
  • polyimide resins, polybenzoxazole resins, and the like that are excellent in heat resistance, mechanical properties, and the like have been widely used for surface protective films and interlayer insulating films of semiconductor elements of electronic devices.
  • polyimide or polybenzoxazole is used as a surface protective film or an interlayer insulating film
  • one method for forming a through hole or the like is etching using a positive photoresist.
  • the process includes application and peeling of a photoresist and is complicated. Therefore, studies have been made on heat-resistant materials imparted with photosensitivity for the purpose of rationalizing work processes.
  • Polyimide and polybenzoxazole can obtain a thin film having excellent heat resistance and mechanical properties by thermally dehydrating and cyclizing their precursor coating film, but in that case, at a high temperature around 350 ° C. Requires heat treatment.
  • MRAM Magnetic Resistive Random Access Memory
  • MRAM Magnetic Resistive Random Access Memory
  • a surface protective film is cured by heat treatment at a low temperature of about 250 ° C. or lower.
  • polyimide resins and polybenzoxazole resins that provide performance comparable to cured films cured by heat treatment at a high temperature of around 350 ° C.
  • a method for obtaining a polyimide-based resin and a polybenzoxazole-based resin that are cured by heat treatment at a low temperature a method of adding a ring closure accelerator, an organic group that promotes ring closure at a low temperature in the unit structure, A method of using polyimide or polybenzoxazole which has been previously ring-closed after imparting alkali solubility is known.
  • the photosensitive resin composition when used for applications such as semiconductors, the cured film obtained by heat treatment remains as a permanent film in the device, so the physical properties as the cured film are very important.
  • adhesion with the material formed on the surface of the semiconductor chip is important.
  • adhesion with a metal material used for electrodes, wiring, etc. is important.
  • the resin composition containing a resin that can be cured by heat treatment at a low temperature has a problem of low adhesion to the metal used as the wiring material.
  • a heat-resistant resin is considered not to have high adhesion strength to a metal material due to its rigid main chain structure, and in particular, in the case of a cured film of a resin composition imparted with photosensitivity, the photosensitive resin constituting the resin composition Since additives such as an agent, a sensitizer, an acid generator and a dissolution regulator remain in the cured film even after heat curing, the adhesion strength is lower than those containing no additive.
  • a positive photosensitive resin composition comprising an aqueous alkali soluble polymer, a photoacid generator, and a silane compound containing four or more specific functional groups directly bonded to an Al atom, Ti atom, or Si atom Products
  • a heat-resistant resin precursor compositions such as polyimide precursors, and specific amino compounds or thiol derivatives (see Patent Document 2) have been proposed.
  • the photosensitive resin composition and the heat-resistant resin precursor composition described in Patent Documents 1 and 2 generate an organic acid when used as a cured film, corrode metal wiring, especially copper, As a result, the adhesion may be reduced. Further, the cured film itself is decomposed by the generated organic acid, and the mechanical properties, particularly the elongation, may be lowered, resulting in lack of device reliability.
  • an object of the present invention is to provide a photosensitive resin composition that can provide a cured film having excellent adhesion to a metal material, particularly copper, even in heat treatment at a low temperature, and having a high elongation.
  • the photosensitive resin composition of this invention has the following structures. That is, it is a photosensitive resin composition comprising (A) an alkali-soluble resin having a structural unit represented by the general formula (1) and (B) a photocrosslinking agent.
  • A an alkali-soluble resin having a structural unit represented by the general formula (1)
  • B a photocrosslinking agent.
  • X 1 and X 2 represent a divalent to decavalent organic group
  • Y 1 represents a divalent to tetravalent organic group
  • Y 2 represents an aliphatic group having 2 or more carbon atoms.
  • the integer satisfying the range of n1 / (n1 + n2) ⁇ 1 and the arrangement of each repeating unit may be block-like or random.
  • the photosensitive resin composition of the present invention can provide a cured film having excellent adhesion to a metal material, particularly copper, and high elongation even in heat treatment at a low temperature.
  • FIG. 1 is an enlarged cross-sectional view of a pad portion of a semiconductor device having bumps.
  • 2a to 2f are diagrams showing a detailed manufacturing method of a semiconductor device having bumps.
  • 3a to 3f are explanatory views illustrating a method for manufacturing a semiconductor device in the RDL first method.
  • FIG. 4 is a cross-sectional view showing an example of a TFT substrate.
  • the photosensitive resin composition of the present invention includes (A) an alkali-soluble resin having a structural unit represented by the general formula (1), and (B) a photocrosslinking agent.
  • the component (A), the component (B), the component (C), the component (D), and the component (E) may be omitted.
  • the cured film formed by curing the photosensitive resin composition of the present invention preferably reduces the generation of organic acid by using a specific (B) photocrosslinking agent and suppresses corrosion of metals, particularly copper. , Adhesion can be improved. Moreover, it is preferable to add (C) component, and interaction with copper increases further, As a result, adhesiveness with a copper substrate improves.
  • the resin of (A) can easily be stretched by setting the diamine residue constituting the component (A), that is, Y 2 to have 2 or more carbon atoms. As a result, a cured film obtained by curing the photosensitive resin composition becomes a high elongation material.
  • the photosensitive resin composition of the present invention can obtain a cured film having high adhesion to a metal material, particularly copper, even in a heat treatment at a low temperature of 250 ° C. or less.
  • the (A) alkali-soluble resin of the present invention has a structural unit represented by the general formula (1).
  • X 1 and X 2 are divalent to decavalent organic groups, preferably aliphatic carboxylic acid residues.
  • Y 1 is a divalent to tetravalent organic group, preferably an organic group having an aromatic group, more preferably an organic group having a phenyl group.
  • Y 2 is a divalent organic group having an aliphatic structure having 2 or more carbon atoms, preferably an aliphatic diamine residue.
  • R 1 and R 2 represent hydrogen or an organic group having 1 to 20 carbon atoms.
  • n1 and n2 are integers satisfying the ranges of 1 ⁇ n1 ⁇ 500, 1 ⁇ n2 ⁇ 500, and 0.05 ⁇ n1 / (n1 + n2) ⁇ 1.
  • the arrangement of each repeating unit may be block or random.
  • the alkali-soluble resin is an alkali-soluble polyamide having an organic group derived from an aliphatic diamine and having a repeating unit represented by the general formula (1), and X 1 (COOH) 2 or X 2
  • It is a polyamide that can be obtained by polycondensation of bisaminophenol and diamine having the structure of NH 2 ) 2 (OH) 2 and Y 2 (NH 2 ) 2 .
  • the two groups of amino group and hydroxyl group of the bisaminophenol are in the ortho positions to each other, and this polyamide is dehydrated and ring-closed by heating at about 250 ° C. to 400 ° C.
  • the phenol moiety may change to benzoxazole.
  • the base polymer of the photosensitive resin composition of the present invention may or may not be closed after heat curing.
  • the alkali-soluble resin has a value of n1 / (n1 + n2) in the general formula (1) of 0.05 or more, preferably 0.5 or more, from the viewpoint of solubility in an alkali solution. It is more preferably 7 or more, and further preferably 0.8 or more. Further, from the viewpoint of low stress properties, the value of n1 / (n1 + n2) is less than 1, and more preferably 0.95 or less.
  • Examples of the dicarboxylic acid having a structure of X 1 (COOH) 2 or X 2 (COOH) 2 include the case where X 1 and X 2 are aromatic groups selected from the following structural formulas. It is not limited.
  • A represents — (direct bond), —O—, —S—, —SO 2 —, —COO—, —OCO—, —CONH—, —NHCO—, —C (CH 3 ) 2 —, (It has a divalent group selected from the group consisting of —C (CF 3 ) 2 —.)
  • X 1 and X 2 in the general formula (1) are structural units represented by the general formulas (2) to (4), respectively. It is preferable to have at least one of them.
  • dicarboxylic acid having the structure represented by the general formulas (2) to (4) examples include dimethylmalonic acid, ethylmalonic acid, isopropylmalonic acid, di-n-butylmalonic acid, succinic acid, and tetrafluorosuccinic acid.
  • the dicarboxylic acid having a structure of X 1 (COOH) 2 or X 2 (COOH) 2 is preferably succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid , Sebacic acid, 1,9-nonanedioic acid, dodecanedioic acid, tridecanedioic acid, tetradecanedioic acid, pentadecanedioic acid, hexadecanedioic acid, heptadecanedioic acid, octadecanedioic acid, nonadecanedioic acid, eicosanedioic acid, heneicosandioic acid Acid, docosanedioic acid, tricosanedioic acid, tetracosanedioic acid, penta
  • Y 2 has an aliphatic structure, preferably an aliphatic diamine residue, and more preferably an alkylene oxide structure represented by the general formula (5). It has a unit.
  • R 6 to R 9 each independently represents an alkylene group having 2 to 10 carbon atoms, and a, b and c are 0 ⁇ a ⁇ 20 and 0 ⁇ b ⁇ 20, respectively. It represents an integer in the range of 0 ⁇ c ⁇ 20, and the arrangement of each repeating unit may be block or random. * Indicates a chemical bond.
  • examples of the diamine having a structural unit represented by the general formula (5) as Y 2 include ethylenediamine, 1,3-diaminopropane, 2-methyl-1,3-propanediamine. 1,4-diaminobutane, 1,5-diaminopentane, 2-methyl-1,5-diaminopentane, 1,6-diaminohexane, 1,7-diaminoheptane, 1,8-diaminooctane, 1,9 -Diaminononane, 1,10-diaminodecane, 1,11-diaminoundecane, 1,12-diaminododecane, 1,2-cyclohexanediamine, 1,3-cyclohexanediamine, 1,4-cyclohexanediamine, 1,2-bis (Aminomethyl) cyclohexane, 1,3-bis (aminomethyl) cyclohexane,
  • the molecular structure of the structural unit represented by Y 2 in the general formula (1) is 150 or more, so that the polyamide structure of the component (A) becomes flexible and cured. High elongation when formed into a film. Furthermore, since the component (A) becomes flexible, the stress on the wafer when the cured film is formed can be relaxed, and the residual stress between the cured film and the substrate is reduced. As a result, the adhesion can be improved. In addition, the introduction of a low UV-absorbing flexible group improves i-ray transmission and can simultaneously achieve high sensitivity.
  • the molecular weight of the structural unit represented as Y 2 is preferably 150 or more, more preferably 600 or more, and still more preferably 900 or more. Moreover, if molecular weight is 2,000 or less, it is preferable at the point which maintains the solubility to an alkaline solution, 1800 or less is more preferable, and 1500 or less is further more preferable.
  • the molecular weight is more preferably 600 or more and 1,800 or less, and further preferably 900 or more and 1,500 or less. Thereby, elongation and a sensitivity can be raised more.
  • the molecular weight of Y 2 component in the general formula (1) of the resin of component (A) with respect to the diamine monomer containing Y 2 structure, for example to measure such in LC-MS, can be obtained as the molecular weight of the main signal.
  • component (A) in addition diamine having a structure of Y 2 (NH 2) 2, it may be copolymerized with other diamines.
  • other diamines include 3,4'-diaminodiphenyl ether, 4,4'-diaminodiphenyl ether, 3,4'-diaminodiphenylmethane, 4,4'-diaminodiphenylmethane, 3,4'-diaminodiphenylsulfone, 4 , 4'-diaminodiphenylsulfone, 3,4'-diaminodiphenyl sulfide, 4,4'-diaminodiphenyl sulfide, 1,4-bis (4-aminophenoxy) benzene, benzine, m-phenylenediamine, p-phenylenediamine 1,5-naphthalenediamine, 2,6-naphthalenediamine, bis (4-aminophenoxy) benzen
  • diamine to be copolymerized can be used as it is or as a corresponding diisocyanate compound or trimethylsilylated diamine. Moreover, you may use combining these 2 or more types of diamine components.
  • an aliphatic group having a siloxane structure may be copolymerized within a range where the heat resistance is not lowered, and the adhesion to the substrate can be improved.
  • the diamine component include those obtained by copolymerizing 1 to 15 mol% of bis (3-aminopropyl) tetramethyldisiloxane, bis (p-aminophenyl) octamethylpentasiloxane, and the like.
  • the resin of component (A) is end-capped with a main chain terminal such as monoamine, acid anhydride, monocarboxylic acid, monoacid chloride compound, monoactive ester compound, etc. It is preferable to seal with a stopper.
  • a terminal sealing agent having a hydroxyl group, a carboxyl group, a sulfonic acid group, a thiol group, a vinyl group, an ethynyl group, or an allyl group, the dissolution rate of the resin in an alkaline solution and the resulting curing can be obtained.
  • the mechanical properties of the membrane can be easily adjusted to a preferred range.
  • the introduction ratio of the end-capping agent is preferably 0.1 mol% in order to prevent the molecular weight of the resin of the component (A) from being increased and the solubility in an alkaline solution from being lowered with respect to the total amine component. More preferably, it is 5 mol% or more, and preferably 60 mol% or less, particularly preferably 50 mol in order to suppress a decrease in mechanical properties of the cured film obtained by lowering the molecular weight of the resin of component (A). % Or less.
  • a plurality of different end groups may be introduced by reacting a plurality of end-capping agents.
  • Monoamines include M-600, M-1000, M-2005, M-2070 (above trade name, manufactured by HUNTSMAN Co., Ltd.), aniline, 2-ethynylaniline, 3-ethynylaniline, 4-ethynylaniline, 5- Amino-8-hydroxyquinoline, 1-hydroxy-7-aminonaphthalene, 1-hydroxy-6-aminonaphthalene, 1-hydroxy-5-aminonaphthalene, 1-hydroxy-4-aminonaphthalene, 2-hydroxy-7-amino Naphthalene, 2-hydroxy-6-aminonaphthalene, 2-hydroxy-5-aminonaphthalene, 1-carboxy-7-aminonaphthalene, 1-carboxy-6-aminonaphthalene, 1-carboxy-5-aminonaphthalene, 2-carboxy -7-aminonaphthalene, 2-carboxy-6- Minonaphthalene, 2-carboxy-5-aminonaphthalene, 2-aminobenzo
  • Acid anhydrides such as phthalic anhydride, maleic anhydride, nadic anhydride, cyclohexanedicarboxylic anhydride, 3-hydroxyphthalic anhydride, etc., as acid anhydrides, monocarboxylic acids, monoacid chloride compounds, and monoactive ester compounds 3-carboxyphenol, 4-carboxyphenol, 3-carboxythiophenol, 4-carboxythiophenol, 1-hydroxy-7-carboxynaphthalene, 1-hydroxy-6-carboxynaphthalene, 1-hydroxy-5-carboxynaphthalene Monocarboxylic acids such as 1-mercapto-7-carboxynaphthalene, 1-mercapto-6-carboxynaphthalene, 1-mercapto-5-carboxynaphthalene, 3-carboxybenzenesulfonic acid, 4-carboxybenzenesulfonic acid, Monoacid chloride compounds in which these carboxyl groups are converted to acid chlorides, terephthalic acid, phthal
  • the component (A) used in the present invention may be copolymerized with another structure such as polyimide as long as it includes the structure represented by the general formula (1).
  • the component (A) may have other structures, but preferably has 10 to 100 mol% of the structural unit represented by the general formula (1).
  • the component (A) in the present invention preferably has a weight average molecular weight of 5,000 or more and 50,000 or less.
  • a weight average molecular weight 5,000 or more and 50,000 or less.
  • GPC gel permeation chromatography
  • the folding resistance after curing can be improved.
  • the weight average molecular weight is 50,000 or less
  • developability with an alkaline solution can be improved.
  • 20,000 or more is more preferable.
  • at least 1 type of weight average molecular weight should just be the said range.
  • the solvent used in the polymerization of the component (A) (hereinafter referred to as a polymerization solvent) is not particularly limited as long as it can dissolve the tetracarboxylic dianhydrides and diamines that are raw material monomers.
  • a polymerization solvent is not particularly limited as long as it can dissolve the tetracarboxylic dianhydrides and diamines that are raw material monomers.
  • the polymerization solvent is preferably used in an amount of 100 parts by mass or more, more preferably 150 parts by mass or more in order to dissolve the resin after the reaction with respect to 100 parts by mass of the obtained resin. Therefore, it is preferable to use 1,900 parts by mass or less, and more preferably 950 parts by mass or less.
  • the photosensitive resin composition of the present invention contains (B) a photocrosslinking agent.
  • the photocrosslinking agent is a negative type that is cured by light, and preferably contains (b-1) a photoinitiator and (b-2) a photopolymerizable compound.
  • Photoinitiators include, for example, benzophenones such as benzophenone, Michler's ketone, 4,4, -bis (diethylamino) benzophenone, 3,3,4,4, -tetra (t-butylperoxycarbonyl) benzophenone And benzylidenes such as 3,5-bis (diethylaminobenzylidene) -N-methyl-4-piperidone and 3,5-bis (diethylaminobenzylidene) -N-ethyl-4-piperidone, 7-diethylamino-3-thenonylcoumarin 4,6-dimethyl-3-ethylaminocoumarin, 3,3-carbonylbis (7-diethylaminocoumarin), 7-diethylamino-3- (1-methylbenzimidazolyl) coumarin, 3- (2-benzothiazolyl) -7- Coumarins such as diethylaminocoumarin, 2-t- Anthraquinones
  • 1-phenyl-1,2-propanedione-2- (o-ethoxycarbonyl) oxime, 1-phenyl-1,2-propanedione-2- (o-) is particularly preferable.
  • Benzoyl) oxime, bis ( ⁇ -isonitrosopropiophenoneoxime) isophthal, 1,2-octanedione-1- [4- (phenylthio) phenyl] -2- (o-benzoyloxime), OXE02, NCI-831 is there. These may be used alone or in combination of two or more.
  • the content of the photoinitiator is preferably 0.1 to 60 parts by mass, more preferably 0.2 to 40 parts by mass with respect to 100 parts by mass of the total amount of the component (A).
  • it is 0.1 part by mass or more, it is preferable in that sufficient radicals are generated by light irradiation and the sensitivity is improved, and when it is 60 parts by mass or less, the light non-irradiated part is cured by generation of excessive radicals. Alkali developability is improved.
  • the photopolymerizable compound is preferably a compound having an unsaturated carbon-carbon bond, that is, a polymerizable unsaturated compound.
  • unsaturated double bond functional groups such as vinyl group, allyl group, acryloyl group, methacryloyl group and / or unsaturated triple bond functional groups such as propargyl group.
  • conjugated vinyl groups and acryloyl groups A methacryloyl group is preferred in terms of polymerizability.
  • the number of functional groups contained is preferably 1 to 4 from the viewpoint of stability, and they may not be the same group.
  • the number average molecular weight of the photopolymerizable compound is not particularly limited, but the number average molecular weight is preferably 800 or less because of good compatibility with the polymer and the reactive diluent.
  • the number average molecular weight is preferably 30 or more for the purpose of suppressing the solubility in the developer after exposure.
  • polymerizable unsaturated compound examples include diethylene glycol diacrylate, triethylene glycol diacrylate, tetraethylene glycol diacrylate, diethylene glycol dimethacrylate, triethylene glycol dimethacrylate, tetraethylene glycol dimethacrylate, and trimethylol.
  • the content of the polymerizable unsaturated compound is preferably 1 to 40 parts by mass with respect to 100 parts by mass of the component (A).
  • Part or more is more preferable, and 20 parts by mass or less is more preferable for the purpose of obtaining a highly perpendicular pattern shape.
  • the photosensitive resin composition of the present invention can contain (C) a compound having at least one of an oxygen atom, a sulfur atom and a nitrogen atom in the molecule.
  • the component (C) in the present invention is a compound that interacts with metal, particularly copper, and by containing this, the adhesion between the heat-cured film and the metal material is greatly improved.
  • the component (C) in the present invention is preferably a compound represented by the general formula (6).
  • R 10 to R 12 each represents an oxygen atom, a sulfur atom, or a nitrogen atom, and at least one of R 10 to R 12 represents a sulfur atom.
  • R 10 represents an oxygen atom or a sulfur atom when l is 0, and a nitrogen atom when l is 1.
  • m and n are integers of 1 to 2, u and v are 0
  • R 11 and R 12 each represents an oxygen atom or a sulfur atom when u and v are 0, and represents a nitrogen atom when u and v are 1.
  • R 13 to R 17 are each independently selected.
  • R 13 to R 15 are hydrogen atom, alkyl group, cycloalkyl group, alkoxy group, alkyl ether group, alkylsilyl group, alkoxysilyl group, aryl group, aryl ether group, carboxyl group, carbonyl group, allyl group, vinyl A group, a heterocyclic group, a combination thereof, and the like, and may further have a substituent.
  • R 13 to R 17 may form a ring with groups adjacent to each other.
  • Examples of the compound represented by the general formula (6) include the following, but are not limited to the following structures.
  • the content of the component (C) is preferably 1 to 40 parts by mass with respect to 100 parts by mass of the component (A), and more preferably 3 parts by mass or more for the purpose of suppressing solubility in the developer after exposure. 20 mass parts or less are more preferable from a viewpoint of storage stability.
  • the photosensitive resin composition of the present invention preferably contains (D) an organic solvent having a boiling point of 200 ° C. or more and 260 ° C. or less at 1013 hPa, and (E) an organic solvent having a boiling point of 1013 hPa or more and 100 ° C. or more and less than 200 ° C.
  • the content of the organic solvent having a boiling point in the (D) 1013 hPa of 200 ° C. or more and 260 ° C. or less is 5% by mass or more and 70% by mass or less
  • the boiling point in the (E) 1013 hPa is 100 ° C. or more and 200 ° C.
  • the content of the organic solvent at a temperature lower than 0 ° C. is preferably 30% by mass or more and 95% by mass or less with respect to the total amount of the organic solvent.
  • the boiling point of component (D) at 1013 hPa is preferably 200 ° C. or higher, since it can mitigate a decrease in fluidity due to drying of the coating film at the time of coating and in the drying step. It is preferable at the point which suppresses the residual of the organic solvent to a conductive resin film, More preferably, it is 250 degrees C or less.
  • the content of the component (D) is 5% by mass or more and 70% by mass or less with respect to the total amount of the organic solvent.
  • the content of the component (D) is preferably 5% by mass or more, more preferably 15% by mass or more, and further preferably 30% by mass or more in that a sufficient step filling effect can be obtained by the presence of a high boiling point solvent.
  • the content of the component (D) is preferably 70% by mass or less from the viewpoint that the boiling point of the solvent contained in the photosensitive resin composition can be maintained to such an extent that it does not require time for the drying step. 60 mass% or less is more preferable and 50 mass% or less is still more preferable at the point which can suppress the residual
  • the component (D) is preferably one that dissolves the resin of the component (A). Specifically, 1,3-dimethyl-2-imidazolidinone (boiling point 220 ° C.), N, N-dimethylpropyleneurea (boiling point 246 ° C.), 3-methoxy-N, N-dimethylpropionamide (boiling point 216 ° C.) ), Deltavalerolactone (boiling point 230 ° C.), gamma butyrolactone (boiling point 203 ° C.), N-methyl-2-pyrrolidone (boiling point 204 ° C.), and the like.
  • the photosensitive resin composition of the present invention preferably contains (E) an organic solvent having a boiling point at 1013 hPa of 100 ° C. or higher and lower than 200 ° C.
  • the organic solvent having a boiling point at 1013 hPa of 100 ° C. or more and less than 200 ° C. can be removed from the coating film in a short time in the drying step.
  • the boiling point at 1013 hPa is 100 ° C. or higher, the situation where the resin component (A) is dissolved and the solid content is precipitated can be avoided.
  • the content of the component (E) is 30% by mass to 95% by mass with respect to the total amount of the organic solvent, and the total of the component (D) and the component (E) is 100% by mass with respect to the total amount of the organic solvent. It is as follows.
  • the content of the component (E) is preferably 30% by mass or more, more preferably 40% by mass or more, in that the boiling point of the solvent contained in the photosensitive resin composition can be maintained to such an extent that it does not require time for the drying step. 50 mass% or more is more preferable.
  • the content of the component (E) is preferably 95% by mass or less, more preferably 85% by mass or less, and more preferably 70% by mass or less in that a sufficient step filling effect can be obtained by combining with the component (D). Further preferred.
  • the effect of improving the level difference embedding accompanying maintaining the fluidity of the photosensitive resin composition at the time of coating and the subsequent drying step is remarkably exhibited.
  • ethyl lactate (boiling point 154 ° C.), butyl lactate (boiling point 186 ° C.), dipropylene glycol dimethyl ether (boiling point 171 ° C.), diethylene glycol dimethyl ether (boiling point 162 ° C.), diethylene glycol ethyl methyl ether (boiling point 176 ° C.), diethylene glycol Diethyl ether (bp 189 ° C.), 3-methoxybutyl acetate (bp 171 ° C.), ethylene glycol monoethyl ether acetate (bp 160 ° C.), diacetone alcohol (bp 166 ° C.), N-cyclohexyl-2-pyrrolidone (bp 154) ° C), N, N-dimethylformamide (boiling point 153 °
  • ethyl lactate diethylene glycol ethyl methyl ether, N, N-dimethylisobutyric acid amide, or propylene glycol monomethyl ether is more preferable.
  • the boiling point of organic solvents at 1013 hPa is described in the literature of “CRC Handbook of Chemistry and Physics” and “Aldrich Handbook of Fine Chemical and Laboratory Equipment”.
  • the boiling point of an organic solvent not described in the known literature can be measured by a commercially available boiling point measuring device, for example, FP81HT / FP81C (manufactured by METTLER TOLEDO).
  • the content of the total amount of the organic solvent of the present invention is preferably 50 parts by mass to 2000 parts by mass with respect to 100 parts by mass of the resin (A). It is preferable that it is 50 parts by mass or more from the viewpoint that the polymer dissolves in the organic solvent without precipitation, and more preferably 100 parts by mass or more. It is preferable that it is 2000 parts by mass or less in that it can be controlled to have a viscosity suitable for coating, and more preferably 1500 parts by mass.
  • the photosensitive resin composition of the present invention may contain a low molecular compound having a phenolic hydroxyl group as long as it does not reduce the shrinkage residual film ratio after curing.
  • a low molecular compound having a phenolic hydroxyl group By containing the low molecular weight compound having a phenolic hydroxyl group, it is easy to adjust the alkali solubility during pattern processing.
  • the content of the low molecular weight compound having a phenolic hydroxyl group that is preferable for the purpose of manifesting the effect is preferably 0.1 parts by mass or more, more preferably 1 part by mass or more with respect to 100 parts by mass of the component (A). From the viewpoint of maintaining mechanical properties such as elongation, it is preferably 30 parts by mass or less, more preferably 15 parts by mass or less.
  • the photosensitive resin composition of the present invention may contain a thermal crosslinking agent (F) as necessary.
  • a thermal crosslinking agent a compound having at least two alkoxymethyl groups and / or methylol groups and a compound having at least two epoxy groups and / or oxetanyl groups are preferably used, but are not limited thereto.
  • a condensation reaction is caused with the component (A) during curing after patterning to form a crosslinked structure, and mechanical properties such as elongation of the cured film are improved.
  • two or more kinds of thermal cross-linking agents may be used, which enables a wider range of designs.
  • Preferred examples of the compound having at least two alkoxymethyl groups and / or methylol groups include, for example, DML-PC, DML-PEP, DML-OC, DML-OEP, DML-34X, DML-PTBP, DML-PCHP, DML-OCHP, DML-PFP, DML-PSBP, DML-POP, DML-MBOC, DML-MBPC, DML-MTrisPC, DML-BisOC-Z, DML-BisOCHP-Z, DML-BPC, DML-BisOC-P, DMOM-PC, DMOM-PTBP, DMOM-MBPC, TriML-P, TriML-35XL, TML-HQ, TML-BP, TML-pp-BPF, TML-BPE, TML-BPA, TML-BPAF, TML-BPAP, TMOM-BP, T OM-BPE, TMOM-BPA, TMOM-BPAF, TMOM-BPAP
  • Preferred examples of the compound having at least two epoxy groups and / or oxetanyl groups include, for example, bisphenol A type epoxy resins, bisphenol A type oxetanyl resins, bisphenol F type epoxy resins, bisphenol F type oxetanyl resins, propylene glycol diesters.
  • examples thereof include, but are not limited to, epoxy group-containing silicones such as glycidyl ether, polypropylene glycol diglycidyl ether, and polymethyl (glycidyloxypropyl) siloxane.
  • EPICLON (registered trademark) 850-S, EPICLON HP-4032, EPICLON HP-7200, EPICLON HP-820, EPICLON HP-4700, EPICLON EXA-4710, EPICLON HP-4770, EPICLON EXA-859P EPICLON EXA-1514, EPICLON EXA-4880, EPICLON EXA-4850-150, EPICLON EXA-4850-1000, EPICLON EXA-4816, EPICLON EXA-4822 (trade name, manufactured by Dainippon Ink & Chemicals, Inc.)
  • Lika Resin (registered trademark) BEO-60E (trade name, manufactured by Shin Nippon Rika Co., Ltd.), EP-4003S, EP-4000S (trade names, Co., Ltd.) ADEKA), and the like, are available from each company. Two or more of these may be contained.
  • the content of the (F) thermal crosslinking agent used in the present invention is preferably 0.5 parts by mass or more, more preferably 1 part by mass or more, further preferably 3 parts by mass with respect to 100 parts by mass of the component (A). From the viewpoint of maintaining mechanical properties such as elongation, it is preferably 300 parts by mass or less, more preferably 200 parts by mass or less, still more preferably 100 parts by mass or less, still more preferably 70 parts by mass or less, and particularly preferably 40 parts by mass. It is below mass parts.
  • the photosensitive resin composition of the present invention includes surfactants, esters such as ethyl lactate and propylene glycol monomethyl ether acetate, alcohols such as ethanol, cyclohexanone, methyl for the purpose of improving the wettability with the substrate as necessary.
  • surfactants esters such as ethyl lactate and propylene glycol monomethyl ether acetate
  • alcohols such as ethanol, cyclohexanone
  • Ketones such as isobutyl ketone and ethers such as tetrahydrofuran and dioxane may be contained.
  • the preferable content of the compound used for the purpose of improving the wettability with these substrates is 0.001 part by mass or more with respect to 100 parts by mass of the component (A), preferably from the viewpoint of obtaining an appropriate film thickness. It is 1800 parts by mass or less, more preferably 1500 parts by mass or less.
  • the photosensitive resin composition of the present invention may contain inorganic particles.
  • Preferred specific examples include, but are not limited to, silicon oxide, titanium oxide, barium titanate, alumina, talc and the like.
  • the average primary particle size of these inorganic particles is preferably from 1 nm to 100 nm, more preferably from 10 nm to 60 nm, from the viewpoint of photosensitivity.
  • the individual particle diameters of these inorganic particles can be measured with a scanning electron microscope, for example, a scanning electron microscope manufactured by JEOL Ltd., JSM-6301NF.
  • the average primary particle diameter can be calculated by measuring the diameter of 100 particles randomly selected from the photograph and obtaining the arithmetic average thereof.
  • silane coupling agent such as trimethoxyaminopropyl silane, trimethoxy epoxy silane, trimethoxy vinyl silane, trimethoxy thiol propyl silane as long as storage stability is not impaired in order to enhance adhesion to the silicon substrate. May be.
  • the preferable content of the compound used for enhancing the adhesion to these silicon substrates is 0.01 parts by mass or more with respect to 100 parts by mass of the component (A), which is preferable from the viewpoint of maintaining mechanical properties such as elongation. Is 5 parts by mass or less.
  • the viscosity of the photosensitive resin composition of the present invention is preferably 2 to 5000 mPa ⁇ s.
  • the solid content concentration so that the viscosity is 2 mPa ⁇ s or more, it becomes easy to obtain a desired film thickness.
  • the viscosity is 5000 mPa ⁇ s or less, it becomes easy to obtain a highly uniform coating film.
  • a resin composition having such a viscosity can be easily obtained, for example, by setting the solid content concentration to 5 to 60% by mass.
  • the photosensitive resin composition of the present invention is applied to the substrate.
  • a wafer made of silicon, ceramics, gallium arsenide, or the like on which a metal is formed as an electrode or wiring is used, but is not limited thereto.
  • the application method include spin coating using a spinner, spray coating, and roll coating.
  • the coating film thickness varies depending on the coating method, the solid content concentration of the composition, the viscosity, and the like, but is usually applied so that the film thickness after drying is 0.1 to 150 ⁇ m.
  • the substrate can be pretreated with the above-described silane coupling agent.
  • Surface treatment is performed by spin coating, dipping, spray coating, steam treatment or the like. In some cases, a heat treatment at 50 to 300 ° C. is then performed to advance the reaction between the substrate and the silane coupling agent.
  • a method for producing a relief pattern of a cured film according to the present invention includes a step of applying a photosensitive resin composition on a substrate or laminating a photosensitive resin sheet on a substrate and drying to form a photosensitive resin film, a mask Or a step of exposing the photosensitive resin film using a direct drawing apparatus, a step of developing the exposed photosensitive resin film with an alkaline solution, and a heat treatment step of the photosensitive resin film after development.
  • a method for forming a photosensitive resin composition film on a substrate using the photosensitive resin composition of the present invention or a photosensitive sheet comprising the same will be described.
  • a varnish made of the photosensitive resin composition is applied on the substrate.
  • the coating method include spin coating using a spinner, spray coating, roll coating, slit coating, and screen printing.
  • the coating film thickness varies depending on the coating technique, the solid content concentration and the viscosity of the resin composition, etc., but it is usually preferable that the coating film thickness is 0.5 ⁇ m or more and 100 ⁇ m or less after drying.
  • the substrate coated with the photosensitive resin composition varnish is dried to obtain a photosensitive resin composition film.
  • the drying temperature and drying time may be in a range where the organic solvent can be volatilized, and it is preferable to appropriately set a range in which the photosensitive resin composition film is in an uncured or semi-cured state. Specifically, it is preferably performed in the range of 50 to 150 ° C. for 1 minute to several hours.
  • the photosensitive resin composition of the present invention when used as a photosensitive resin sheet, it is preferably applied to a support film and dried to form a photosensitive resin sheet.
  • the support film to be used is not particularly limited, various commercially available films such as a polyethylene terephthalate (PET) film, a polyphenylene sulfide film, and a polyimide film can be used.
  • PET polyethylene terephthalate
  • the bonding surface between the support film and the photosensitive resin sheet may be subjected to a surface treatment such as silicone, a silane coupling agent, an aluminum chelating agent, or polyurea in order to improve adhesion and peelability.
  • the thickness of the support film is not particularly limited, but is preferably in the range of 10 to 100 ⁇ m from the viewpoint of workability.
  • the photosensitive resin composition coated on the support film undergoes a drying process.
  • the drying temperature is preferably 50 ° C. or higher from the viewpoint of drying properties, and is preferably 150 ° C. or lower from the viewpoint of not impairing photosensitivity.
  • the film thickness of the photosensitive resin sheet is preferably 5 ⁇ m or more from the viewpoint of step embedding during lamination, and is preferably 150 ⁇ m or less from the viewpoint of film thickness uniformity.
  • the photosensitive resin sheet of this invention may have a protective film on a sheet
  • the photosensitive resin sheet surface can be protected from contaminants such as dust and dust in the atmosphere.
  • the protective film include polyolefin films and polyester films.
  • the protective film preferably has a small adhesive force with the photosensitive resin sheet.
  • the obtained photosensitive resin sheet is bonded to the substrate.
  • the substrate a wafer made of silicon, ceramics, gallium arsenide, or the like on which a metal is formed as an electrode or wiring is used, but is not limited thereto.
  • the thermocompression bonding can be performed by a heat press process, a heat laminating process, a heat vacuum laminating process, or the like.
  • the bonding temperature is preferably 40 ° C. or higher from the viewpoint of adhesion to the substrate and embedding. Further, the bonding temperature is preferably 150 ° C. or lower in order to prevent the photosensitive resin sheet from being cured at the time of bonding and deteriorating the resolution of pattern formation in the exposure / development process.
  • the photosensitive resin sheet formed from the photosensitive resin composition of the present invention, or a cured film obtained by curing the photosensitive resin composition is an organic material having a boiling point of 200 to 260 ° C. at (D) 1013 hPa in the cured film.
  • the amount of the solvent is preferably 0.005% by mass or more, more preferably 0.01% by mass or more, preferably 1% by mass or less, more preferably 0.5% by mass with respect to the total mass of the cured film. It may be the following.
  • the component (D) 0.005% by mass or more the adhesion to the copper substrate is further improved, and by making it 1% by mass or less, the component (D) itself becomes outgas so as not to impair the reliability. Can be.
  • the mass% of the component (D) in the cured film is determined by measuring the mass of the collected cured film by the purge-and-trap method, the TPD-MS method, etc., and determining the value as the alkali-soluble resin (A). By calculating from the specific gravity of the component, the mass% of the compound in the cured film can be calculated.
  • the photosensitive resin composition is applied on a substrate and dried to form a photosensitive resin film, or the photosensitive resin sheet is laminated on the substrate and dried to form a photosensitive resin film.
  • substrates used include glass substrates, silicon wafers, ceramics, gallium arsenide, organic circuit substrates, inorganic circuit substrates, and those in which circuit materials are arranged on these substrates. It is not limited to.
  • Examples of organic circuit boards include: glass substrate copper-clad laminates such as glass cloth / epoxy copper-clad laminates, composite copper-clad laminates such as glass nonwoven fabrics / epoxy copper-clad laminates, polyetherimide resin substrates, polyethers Examples include heat-resistant / thermoplastic substrates such as ketone resin substrates and polysulfone resin substrates, polyester copper-clad film substrates, and polyimide copper-clad film substrates.
  • Examples of the inorganic circuit board include ceramic substrates such as an alumina substrate, an aluminum nitride substrate, and a silicon carbide substrate, and metal substrates such as an aluminum base substrate and an iron base substrate.
  • circuit components include conductors containing metals such as silver, gold and copper, resistors containing inorganic oxides, low dielectrics containing glass materials and / or resins, resins and high Examples thereof include high dielectric materials containing dielectric constant inorganic particles, insulators containing glass-based materials, and the like.
  • the photosensitive resin film formed by the above method is irradiated with actinic radiation through a mask having a desired pattern and exposed, or exposed directly without using a mask using a drawing apparatus.
  • Actinic rays used for exposure include ultraviolet rays, visible rays, electron beams, X-rays, YAG lasers, etc., but in the present invention, such as i-rays (365 nm), h-rays (405 nm), and g-rays (436 nm) of mercury lamps. It is preferable to use ultraviolet rays.
  • the photosensitive sheet when the support is made of a material transparent to these rays, the exposure may be performed without peeling the support from the photosensitive sheet.
  • aqueous solution of a compound exhibiting alkalinity such as dimethylaminoethyl methacrylate, cyclohexylamine, ethylenediamine, hexamethylenediamine and the like is preferable.
  • these alkaline aqueous solutions may contain polar solvents such as N-methyl-2-pyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, ⁇ -butyrolactone, dimethylacrylamide, methanol, ethanol, Contains alcohols such as isopropanol, esters such as ethyl lactate and propylene glycol monomethyl ether acetate, ketones such as cyclopentanone, cyclohexanone, isobutyl ketone, and methyl isobutyl ketone alone or in combination of several kinds Good.
  • polar solvents such as N-methyl-2-pyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, ⁇ -butyrolactone, dimethylacrylamide, methanol, ethanol, Contains alcohols such as isopropanol, esters such as ethy
  • Development can be carried out by spraying the developer on the coating surface, immersing in the developer, applying ultrasonic waves while immersing, or spraying the developer while rotating the substrate.
  • the development conditions such as the development time and the temperature of the development step developer may be any conditions that can remove the unexposed areas. In order to process fine patterns or remove residues between patterns, It is preferable to further develop after the portion has been removed.
  • Rinsing with water may be performed after development.
  • alcohols such as ethanol and isopropyl alcohol
  • esters such as ethyl lactate and propylene glycol monomethyl ether acetate may be added to water for rinsing treatment.
  • This temperature is preferably in the range of 50 to 180 ° C, and more preferably in the range of 80 to 150 ° C.
  • the time is preferably 5 seconds to several hours.
  • heat drying may be performed in the range of 70 to 150 ° C.
  • the time is preferably 1 minute to several hours.
  • the substrate on which the patterned photosensitive resin film thus obtained is formed is cured at a temperature of 150 ° C. to 450 ° C.
  • This heat treatment is carried out for 5 minutes to 10 hours by selecting the temperature and increasing the temperature stepwise or by selecting a certain temperature range and continuously increasing the temperature.
  • a method of performing heat treatment at 110 ° C. and 250 ° C. for 60 minutes each, a method of linearly raising the temperature from room temperature to 220 ° C. over 2 hours, and the like can be mentioned.
  • the heat treatment is more preferably performed at 150 ° C. or higher.
  • the photosensitive resin composition in the present invention can provide a cured film having excellent adhesion even at low temperature baking of 250 ° C. or lower.
  • the cured film obtained by curing the photosensitive resin composition or photosensitive sheet of the present invention can be used for semiconductor devices and semiconductor electronic components.
  • the semiconductor device referred to in the present invention refers to a device represented by a storage device (memory) or a central processing unit (CPU), in which semiconductor chips are connected by a multilayer wiring called a rewiring layer, and a sealing resin such as epoxy Packaged using.
  • the semiconductor chip refers to a Si wafer having circuit elements.
  • the semiconductor electronic component referred to in the present invention refers to a device (surface acoustic wave filter) for extracting a specific frequency, an inductor, and a conductor.
  • the semiconductor device referred to in the present invention refers to all devices that can function by utilizing the characteristics of semiconductor elements.
  • An electro-optical device and a semiconductor circuit substrate in which a semiconductor element is connected to a substrate, a stack of a plurality of semiconductor elements, and an electronic device including these are all included in the semiconductor device. Further, electronic components such as a multilayer wiring board for connecting semiconductor elements are also included in the semiconductor device.
  • a semiconductor passivation film, a surface protection film of a semiconductor element, an interlayer insulating film between a semiconductor element and a wiring, an interlayer insulating film between a plurality of semiconductor elements, and an interlayer between wiring layers of a multilayer wiring for high-density mounting Although used suitably for uses, such as an insulating film and an insulating layer of an organic electroluminescent element, it is not restricted to this but can be used for various uses.
  • FIG. 1 is an enlarged cross-sectional view of a pad portion of a semiconductor device having bumps.
  • a passivation film 3 is formed on an input / output Al pad 2 in a silicon wafer 1, and a via hole is formed in the passivation film 3.
  • an insulating film 4 formed using the photosensitive resin composition of the present invention is formed thereon, and further a metal film 5 made of Cr, Ti or the like is formed so as to be connected to the Al pad 2. Yes.
  • the pads are insulated from each other.
  • a barrier metal 8 and a solder bump 10 are formed on the insulated pad.
  • a flexible component is introduced into the photosensitive resin composition, since the warpage of the wafer is small, exposure and transportation of the wafer can be performed with high accuracy.
  • polyimide resin and polybenzoxazole resin also have excellent mechanical properties, so stress from the sealing resin can be relaxed even during mounting, preventing damage to the low-k layer (low dielectric constant layer) and high reliability.
  • the semiconductor device can be provided.
  • the photosensitive resin composition of the present invention is applied to the silicon wafer 1 on which the Al pad 2 and the passivation film 3 are formed, and a patterned insulating film 4 is formed through a photolithography process.
  • the metal film 5 is formed by the sputtering method.
  • a metal wiring 6 is formed on the metal film 5 by a plating method.
  • the photosensitive resin composition of the present invention is applied, and an insulating film 7 is formed as a pattern as shown in 2d of FIG. 2 through a photolithography process.
  • a wiring can be further formed on the insulating film 7.
  • rewiring in the case of forming a multilayer wiring structure having two or more layers, by repeating the above process, two or more layers of rewiring were separated by an interlayer insulating film obtained from the photosensitive resin composition of the present invention.
  • a multilayer wiring structure can be formed.
  • the formed insulating film will come into contact with various chemicals multiple times, but since the insulating film obtained from the photosensitive resin composition of the present invention is excellent in adhesion and chemical resistance, A good multilayer wiring structure can be formed.
  • There is no upper limit to the number of layers in the multilayer wiring structure but 10 or fewer layers are often used.
  • a barrier metal 8 and a solder bump 10 are formed. Then, the wafer is diced along the scribe line 9 and cut into chips. If the insulating film 7 has no pattern formed on the scribe line 9 or a residue remains, cracks or the like occur during dicing, which affects the reliability of the chip. For this reason, it is very preferable to provide pattern processing excellent in thick film processing as in the present invention in order to obtain high reliability of the semiconductor device.
  • the photosensitive resin composition and photosensitive sheet of the present invention are also suitably used for fan-out wafer level packages (fan-out WLP).
  • the fan-out WLP is provided with an extended portion using a sealing resin such as epoxy resin around the semiconductor chip, rewiring from the electrode on the semiconductor chip to the extended portion, and mounting a solder ball on the extended portion.
  • a sealing resin such as epoxy resin around the semiconductor chip
  • rewiring from the electrode on the semiconductor chip to the extended portion and mounting a solder ball on the extended portion.
  • This is a semiconductor package that secures the necessary number of terminals.
  • wiring is installed so as to straddle the boundary line formed by the main surface of the semiconductor chip and the main surface of the sealing resin.
  • an interlayer insulating film is formed on a base material composed of two or more materials such as a semiconductor chip provided with metal wiring and a sealing resin, and wiring is formed on the interlayer insulating film.
  • wiring is installed so as to straddle the boundary line between the main surface of the semiconductor chip and the main surface of the printed circuit board.
  • an interlayer insulating film is formed on a substrate composed of two or more materials, and wiring is formed on the interlayer insulating film.
  • the cured film formed by curing the photosensitive resin composition or photosensitive sheet of the present invention has a high adhesion to a semiconductor chip provided with metal wiring, and also has a high adhesion to an epoxy resin or the like on a sealing resin. Therefore, it is suitably used as an interlayer insulating film provided on a substrate composed of two or more materials.
  • a process such as a chip-first method or a RDL-first (Redistribution Layer-first) method is applied to the fan-out WLP.
  • the chip first method as described above, first, semiconductor chips are arranged at arbitrary intervals on the upper surface of a support wafer serving as a support, and the semiconductor chips are sealed with resin to obtain a sealed wafer (pseudo wafer). . Next, the support wafer is separated and removed from the sealing wafer, and a wiring layer is formed on the exposed surface of the sealing wafer. Then, a plurality of device packages are obtained by dividing the sealing wafer between the semiconductor chips.
  • the RDL first method first, a wiring layer is formed on the upper surface of the supporting wafer, and a semiconductor chip is bonded to the wiring layer. Next, the semiconductor chip is sealed with resin to obtain a sealed wafer (pseudo wafer). Thereafter, the support wafer is separated and removed from the sealing wafer including the wiring layer, and the sealing wafer is divided between the semiconductor chips.
  • a semiconductor chip can be bonded while avoiding a defective portion of the wiring layer, so that the yield is easily increased as compared with the chip first method.
  • a method for manufacturing a semiconductor device in the RDL first method will be described with reference to FIG.
  • a barrier metal such as Ti is formed on the support substrate 11 by sputtering, and a Cu seed (seed layer) is further formed thereon by sputtering, and then an electrode pad 12 is formed by plating.
  • the photosensitive resin composition of the present invention is applied, and a patterned insulating film 13 is formed through a photolithography process.
  • step 3c a seed layer is formed again by a sputtering method, and a metal wiring 14 (rewiring layer) is formed by a plating method.
  • step 3e the photosensitive resin composition of the present invention is applied again, and after a photolithography process, a patterned insulating film is formed, and then a Cu post 15 is formed by a plating method.
  • the pitch of the Cu posts is equal to the pitch of the conductive portions of the semiconductor chip. That is, in order to make the rewiring layer multilayer while narrowing the metal wiring pitch, as shown in 3e of FIG.
  • the thickness of the interlayer insulating film is as follows: interlayer insulating film 1> interlayer insulating film 2> interlayer insulating film 3> Interlayer insulating film 4>. That is, a plurality of interlayer insulating films are stacked, a semiconductor chip is disposed substantially parallel to the interlayer insulating film, and the thickness of the interlayer insulating film disposed near the semiconductor chip is the thickness of the interlayer insulating film disposed further away. It will be thinner. Then, in the step 3f, the semiconductor chip 17 is connected through the solder bumps 16 to obtain a semiconductor device by the RDL first method having a multilayer wiring structure.
  • the photosensitive resin composition of the present invention is also suitably used for an organic EL display device.
  • the organic EL display device includes a drive circuit, a planarization layer, a first electrode, an insulating layer, a light emitting layer, and a second electrode on a substrate, and the planarization layer and / or the first electrode on the drive circuit.
  • the insulating layer is made of the cured film of the present invention.
  • Organic EL light-emitting materials are susceptible to deterioration due to moisture and may adversely affect the area ratio of the light-emitting portion relative to the area of the light-emitting pixels, but the cured film of the present invention has a low water absorption rate, so stable driving and light emission Characteristics are obtained.
  • an active matrix display device As an example, it has a TFT on a substrate made of glass, various plastics, etc., and a wiring located on a side portion of the TFT and connected to the TFT, and covers unevenness thereon.
  • the planarization layer is provided, and the display element is provided on the planarization layer.
  • the display element and the wiring are connected through a contact hole formed in the planarization layer.
  • FIG. 4 shows a cross-sectional view of an example of a TFT substrate.
  • bottom gate type or top gate type TFTs (thin film transistors) 18 are provided in a matrix, and the TFT insulating layer 20 is formed so as to cover the TFTs 18.
  • a wiring 19 connected to the TFT 18 is provided on the TFT insulating layer 20.
  • a planarizing layer 21 is provided on the TFT insulating layer 20 in a state where the wiring 19 is embedded.
  • a contact hole 24 reaching the wiring 19 is provided in the planarization layer 21.
  • An ITO (transparent electrode) 22 is formed on the planarizing layer 21 while being connected to the wiring 19 through the contact hole 24.
  • the ITO 22 serves as an electrode of a display element (for example, an organic EL element).
  • An insulating layer 25 is formed so as to cover the periphery of the ITO 22.
  • the organic EL element may be a top emission type that emits emitted light from the side opposite to the substrate 23 or a bottom emission type that extracts light from the substrate 23 side. In this manner, an active matrix organic EL display device in which the TFT 18 for driving the organic EL element is connected to each organic EL element is obtained.
  • the insulating layer 20, the planarizing layer 21, and / or the insulating layer 25 are a step of forming a photosensitive resin film made of the resin composition or resin sheet of the present invention, a step of exposing the photosensitive resin film, It can form by the process of developing the exposed photosensitive resin film, and the process of heat-processing the developed photosensitive resin film.
  • An organic EL display device can be obtained from the manufacturing method having these steps.
  • a silicon substrate that is a semiconductor circuit forming substrate manufactured by the chip first method or the RDL first method described above is used as a support substrate using a temporary bonding adhesive, a glass substrate, a film.
  • the wafer processed body is formed by adhering to the above.
  • the non-circuit forming surface (back surface) is polished to obtain a semiconductor circuit forming substrate having a thickness of 1 ⁇ m to 100 ⁇ m.
  • the molecular weight of the resin of component (A) was measured using a GPC (gel permeation chromatography) apparatus Waters 2690-996 (manufactured by Nippon Waters Co., Ltd.), and the developing solvent was N-methyl-2-pyrrolidone (hereinafter referred to as “the developing solvent”).
  • the molecular weight of the Y 2 component in the general formula (1) of the component (A) resin is measured by LC-MS (Q Exactive, Thermo SCIENTIFIC, Inc.) for the diamine monomer containing the Y 2 structure. The molecular weight can be obtained.
  • the sensitivity is 500 mJ / cm 2 or more, or the unexposed part is not completely dissolved and there is a residue C, and C is 300 mJ / cm 2 or more and less than 500 mJ / cm 2 is good B.
  • a sample having a value of less than 300 mJ / cm 2 was regarded as very good A.
  • the release surface was placed on a silicon wafer with a stage temperature of 80 ° C., a roll temperature of 80 ° C., a vacuum of 150 Pa, a sticking speed of 5 mm / sec, and a sticking pressure of 0
  • the film was laminated under the condition of 2 MPa, and the support film was peeled off to obtain a photosensitive resin film. Thereafter, the sensitivity was evaluated as described in (3-1).
  • Adhesion test An adhesion test with a metal material was performed by the following method. ⁇ Preparation of cure film> Copper was sputtered onto a silicon wafer, and a substrate (copper sputter substrate) having a metal material layer formed with a thickness of 200 nm on the surface was prepared. On this substrate, varnish was applied by spin coating using a spinner (Mikasa Co., Ltd.) and then baked at 120 ° C. for 3 minutes using a hot plate (D-SPIN manufactured by Dainippon Screen Mfg. Co., Ltd.). Finally, a pre-baked film having a thickness of 8 ⁇ m was produced.
  • a photosensitive resin sheet was prepared as described in (3-2) Evaluation of sensitivity, and a photosensitive resin film was prepared to have a thickness of 8 ⁇ m. Thereafter, the entire surface of the substrate was exposed at an exposure amount of 1000 mJ / cm 2 using an exposure machine i-line stepper NSR-2005i9C (manufactured by Nikon Corporation). Using a clean oven (CLH-21CD-S manufactured by Koyo Thermo System Co., Ltd.), these membranes were heated at 140 ° C. for 30 minutes under a nitrogen stream (oxygen concentration of 20 ppm or less), then further heated to 220 ° C. Cured for 1 hour to obtain a cured film.
  • ⁇ Adhesion characteristics evaluation> The substrate was divided into two, and each substrate was cut into 10 rows and 10 columns in a grid pattern at intervals of 2 mm using a single blade on the cured film. Of these, one sample substrate was used to count how many of the 100 cells were peeled by peeling with a cellophane tape, and the adhesion characteristics between the metal material and the cured film were evaluated.
  • the other sample substrate was subjected to PCT treatment for 400 hours under a saturated condition of 121 ° C. and 2 atm using a pressure cooker test (PCT) apparatus (HAST CHAMBER EHS-212MD manufactured by Tabais Peeck Co., Ltd.). Thereafter, the above-described peeling test was performed. In any of the substrates, the number of peeled off in the peeling test was A (excellent) when 10 or less, and B (good) when 10 or more and 20 or less, and C (insufficient) when 20 or more.
  • PCT pressure cooker test
  • This film was cut into strips having a width of 1 cm and a length of 9 cm, and using Tensilon RTM-100 (manufactured by Orientec Co., Ltd.) at a room temperature of 23.0 ° C. and a humidity of 45.0% RH, a tensile rate of 50 mm / The sample was pulled in minutes and the elongation at break was measured. The measurement was performed on 10 strips per specimen, and the average value of the top 5 points was obtained from the results. The elongation at break value of 60% or more was designated as A (excellent), 30% or more and less than 60% as B (good), and less than 30% as C (insufficient).
  • the collected components are thermally desorbed using a thermal desorption apparatus at a primary desorption condition of 260 ° C. for 15 minutes, a secondary adsorption desorption condition of ⁇ 27 ° C. and 320 ° C. for 5 minutes, and then a GC-MS apparatus 7890. / 5975C (manufactured by Agilent), GC-MS analysis was performed under the conditions of column temperature: 40 to 300 ° C., carrier gas: helium (1.5 mL / min), scan range: m / Z 29 to 600. The amount of gas generated was calculated by preparing a calibration curve by GC-MS analysis of each component (D) under the same conditions as described above.
  • the obtained value ( ⁇ g) was divided by an area of 5 cm 2 to obtain ⁇ g / cm 2 .
  • the value was divided by 100 times the specific gravity of the alkali-soluble resin (A) multiplied by the film thickness, and the total content of the compound (D) in the cured film was calculated.
  • 1,12-diaminododecane (5.01 g, 0.025 mol), 1,3-bis (3-aminopropyl) tetramethyldisiloxane (1.24 g, 0.0050 mol), PBOM (14. 33 g, 0.044 mol) was added together with 30 g of NMP and reacted at 85 ° C. for 1 hour.
  • 5-norbornene-2,3-dicarboxylic acid anhydride (3.94 g, 0.024 mol) was added as a terminal blocking agent together with 10 g of NMP and reacted at 85 ° C. for 30 minutes.
  • the mixture was cooled to room temperature, acetic acid (26.41 g, 0.50 mol) was added together with 58 g of NMP, and the mixture was stirred at room temperature for 1 hour. After stirring, the solution was poured into 3 L of water to obtain a white precipitate. The precipitate was collected by filtration, washed with water three times, and then dried for 3 days in a ventilator at 50 ° C. to obtain an alkali-soluble resin (A-1) powder.
  • the resin (A-1) had a weight average molecular weight of 33,000 and PDI of 2.1.
  • Synthesis Example 5 Synthesis of Alkali-Soluble Resin (A-5) According to Synthesis Example 1, BAHF (12.82 g, 0.035 mol), 3,3′-diamino-4,4′-dihydroxydiphenyl sulfone (9 .81 g, 0.035 mol), PBOM (31.53 g, 0.088 mol), ED-900 (22.50 g, 0.025 mol, manufactured by HUNTSMAN), 1,3-bis (3-amino) Propyl) tetramethyldisiloxane (1.24 g, 0.0050 mol), 5-norbornene-2,3-dicarboxylic anhydride (3.94 g, 0.024 mol), acetic acid (26.41 g, 0.50 mol) ) And NMP 300 g in the same manner to obtain an alkali-soluble resin (A-5) powder. As a result of evaluation by the above method, the resin (A-5) had a weight average molecular
  • Synthesis Example 7 Synthesis of Alkali-Soluble Resin (A-7) According to Synthesis Example 1, BAHF (27.47 g, 0.075 mol), PBOM (31.53 g, 0.088 mol), RT-1000 (20 0.000 g, 0.020 mol, manufactured by HUNTSMAN), 1,3-bis (3-aminopropyl) tetramethyldisiloxane (1.24 g, 0.0050 mol), 5-norbornene-2,3-dicarboxylic acid The same procedure was performed using acid anhydride (3.94 g, 0.024 mol), acetic acid (26.41 g, 0.50 mol), and 300 g of NMP to obtain an alkali-soluble resin (A-7) powder. As a result of evaluation by the above method, the resin (A-7) had a weight average molecular weight of 44,000 and PDI of 2.2.
  • the solution was poured into 3 liters of water, and the precipitate was collected, washed with pure water three times, and then decompressed to obtain an alkali-soluble resin (A-9).
  • the weight average molecular weight determined by GPC standard polystyrene conversion of (A-9) was 31,600, and the degree of dispersion was 2.0.
  • the resulting resin was cooled to room temperature to obtain a novolak resin (A-10) powder, and as a result of evaluation by the above method, the resin (A-10) had a weight average molecular weight of 3,500 and a PDI of 2 .8 Was Tsu.
  • the precipitate was collected by filtration, washed with water three times, and then dried for 3 days with a ventilator at 50 ° C. to obtain a powder of a closed ring polyimide resin (A-11).
  • the resin (A-11) had a weight average molecular weight of 27,000 and PDI of 2.0.
  • Example 1 will be described below in detail as an example.
  • 10 g of the obtained alkali-soluble resin (A-1) (B-1) 1.5 g of (b-1) photoinitiator (b-1) as a photocrosslinking agent, and (b-2) polymerizability 3.0 g of the following (b-1-2) as an unsaturated compound, and (C) 0.5 g of the following (C-1) is added as a compound having at least an oxygen atom or a sulfur atom or nitrogen atom in the molecule.
  • D 5 g of 3-methoxy-N, N-dimethylpropionamide (D-1) as an organic solvent having a boiling point of 200 ° C.
  • a varnish was prepared by adding 15 g of ethyl lactate (E-1) as a less organic solvent.
  • varnishes according to the compositions shown in Table 1 were prepared in Examples 2 to 21 and Comparative Examples 1 and 2.
  • the characteristics of the produced varnish were measured by the above evaluation method. The obtained results are shown in Table 1.
  • the solvents of Examples 1 to 21 and Comparative Examples 1 and 2 were all prepared with 5 g of 3-methoxy-N, N-dimethylpropionamide (D-1) and 15 g of ethyl lactate (E-1).
  • the photosensitive resin film is produced by distinguishing whether it is produced from a varnish or a sheet.
  • Photoinitiator (b-1-1) 1,2-octanedione-1- [4- (phenylthio) phenyl] -2- (o-benzoyloxime) (OXE02, manufactured by Ciba Specialty Chemicals)
  • E-1 Ethyl lactate Thermal cross-linking agent (F-1): NIKACALAC MX-

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Materials For Photolithography (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Electroluminescent Light Sources (AREA)
  • Polyamides (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

Provided is a photosensitive resin composition which forms a cured film that exhibits excellent adhesion to a metal material, especially to copper even during heat treatments at low temperatures, while having a high degree of elongation. This photosensitive resin composition is characterized by containing (A) an alkali-soluble resin having a structural unit represented by general formula (1) and (B) a photo-crosslinking agent. (In general formula (1), each of X1 and X2 represents an organic group having a valence of 2-10; Y1 represents an organic group having a valence of 2-4; Y2 represents a divalent organic group having an aliphatic structure with 2 or more carbon atoms; each of R1 and R2 represents a hydrogen atom or an organic group having 1-20 carbon atoms; each of p, q, r, s and t represents an integer satisfying 0 ≤ p ≤ 4, 0 ≤ q ≤ 4, 0 ≤ r ≤ 2, 0 ≤ s ≤ 4 and 0 ≤ t ≤ 4; each of n1 and n2 represents an integer satisfying 1 ≤ n1 ≤ 500, 1 ≤ n2 ≤ 500 and 0.05 ≤ n1/(n1 + n2) < 1; and the repeating units may be arranged in blocks or randomly.)

Description

感光性樹脂組成物、硬化膜、有機EL表示装置、半導体電子部品、半導体装置Photosensitive resin composition, cured film, organic EL display device, semiconductor electronic component, semiconductor device
 本発明は、感光性樹脂組成物、それを用いた硬化膜、有機EL表示装置、半導体電子部品、半導体装置に関する。より詳しくは、半導体素子の表面保護膜、層間絶縁膜、有機電界発光素子の絶縁層などに好適に用いられる感光性樹脂組成物に関する。 The present invention relates to a photosensitive resin composition, a cured film using the same, an organic EL display device, a semiconductor electronic component, and a semiconductor device. More specifically, the present invention relates to a photosensitive resin composition suitably used for a surface protective film of a semiconductor element, an interlayer insulating film, an insulating layer of an organic electroluminescent element, and the like.
 従来から、電子機器の半導体素子の表面保護膜や層間絶縁膜等には、耐熱性や機械特性等に優れたポリイミド系樹脂、ポリベンゾオキサゾール系樹脂などが広く使用されている。ポリイミドやポリベンゾオキサゾールを表面保護膜または層間絶縁膜として使用する場合、スルーホール等の形成方法の1つは、ポジ型のフォトレジストを用いるエッチングである。しかし、この方法では工程にフォトレジストの塗布や剥離が含まれ、煩雑であるという問題がある。そこで作業工程の合理化を目的に感光性を付与した耐熱性材料の検討がなされてきた。 Conventionally, polyimide resins, polybenzoxazole resins, and the like that are excellent in heat resistance, mechanical properties, and the like have been widely used for surface protective films and interlayer insulating films of semiconductor elements of electronic devices. When polyimide or polybenzoxazole is used as a surface protective film or an interlayer insulating film, one method for forming a through hole or the like is etching using a positive photoresist. However, in this method, there is a problem that the process includes application and peeling of a photoresist and is complicated. Therefore, studies have been made on heat-resistant materials imparted with photosensitivity for the purpose of rationalizing work processes.
 ポリイミドやポリベンゾオキサゾールは、それらの前駆体の塗膜を熱的に脱水閉環させて優れた耐熱性、機械特性を有する薄膜を得ることができるが、その場合、通常350℃前後の高温での加熱処理を必要とする。ところが、例えば次世代メモリとして有望なMRAM(Magnetoresistive Random Access Memory;磁気抵抗メモリ)などは高温プロセスに弱いため、表面保護膜においても、約250℃以下の低温での加熱処理で硬化し、従来の350℃前後の高温での加熱処理で硬化させた硬化膜と遜色ない性能が得られるポリイミド系樹脂、ポリベンゾオキサゾール系樹脂が求められている。 Polyimide and polybenzoxazole can obtain a thin film having excellent heat resistance and mechanical properties by thermally dehydrating and cyclizing their precursor coating film, but in that case, at a high temperature around 350 ° C. Requires heat treatment. However, for example, MRAM (Magnetic Resistive Random Access Memory), which is promising as a next-generation memory, is vulnerable to high-temperature processes. Therefore, even a surface protective film is cured by heat treatment at a low temperature of about 250 ° C. or lower. There is a need for polyimide resins and polybenzoxazole resins that provide performance comparable to cured films cured by heat treatment at a high temperature of around 350 ° C.
 低温での加熱処理で硬化するポリイミド系樹脂、ポリベンゾオキサゾール系樹脂を得る方法としては、閉環促進剤の添加や、単位構造中に低温での閉環を促進する有機基を導入する方法、また、アルカリ可溶性を付与した上であらかじめ閉環したポリイミドやポリベンゾオキサゾールを用いる方法などが知られている。 As a method for obtaining a polyimide-based resin and a polybenzoxazole-based resin that are cured by heat treatment at a low temperature, a method of adding a ring closure accelerator, an organic group that promotes ring closure at a low temperature in the unit structure, A method of using polyimide or polybenzoxazole which has been previously ring-closed after imparting alkali solubility is known.
 また、感光性樹脂組成物を半導体等の用途に用いる場合、加熱処理して得られる硬化膜はデバイス内に永久膜として残るため、硬化膜としての物性は非常に重要である。半導体パッケージにおける信頼性を確保するためには、半導体チップ表面に形成される材料との密着性が重要である。とりわけウェハレベルパッケージの配線層間の絶縁膜などの用途として用いる場合は、電極や配線などに用いる金属材料との密着性が重要となる。 Also, when the photosensitive resin composition is used for applications such as semiconductors, the cured film obtained by heat treatment remains as a permanent film in the device, so the physical properties as the cured film are very important. In order to ensure the reliability of the semiconductor package, adhesion with the material formed on the surface of the semiconductor chip is important. In particular, when used as an insulating film between wiring layers of a wafer level package, adhesion with a metal material used for electrodes, wiring, etc. is important.
 ところが、上記の低温での加熱処理で硬化可能な樹脂を含有する樹脂組成物は、これら配線材料として用いられる金属との密着性が低いという課題があった。 However, the resin composition containing a resin that can be cured by heat treatment at a low temperature has a problem of low adhesion to the metal used as the wiring material.
 耐熱性樹脂は一般的に、その剛直な主鎖構造から金属材料との密着強度が高くないとされ、特に、感光性を付与した樹脂組成物の硬化膜の場合、樹脂組成物を構成する感光剤、増感剤、酸発生剤および溶解調整剤などの添加物が加熱硬化後も硬化膜中に残存しているため、添加物を含有していないものよりも密着強度は低い。これらの解決策として、アルカリ水溶液可溶性重合体、光酸発生剤、および直接Al原子、Ti原子、Si原子と結合した特定の官能基を4つ以上含有するシラン化合物からなるポジ型感光性樹脂組成物(特許文献1参照)や、ポリイミド前駆体等の耐熱性樹脂前駆体および特定のアミノ化合物またはチオール誘導体からなる耐熱性樹脂前駆体組成物(特許文献2参照)が提案されている。 In general, a heat-resistant resin is considered not to have high adhesion strength to a metal material due to its rigid main chain structure, and in particular, in the case of a cured film of a resin composition imparted with photosensitivity, the photosensitive resin constituting the resin composition Since additives such as an agent, a sensitizer, an acid generator and a dissolution regulator remain in the cured film even after heat curing, the adhesion strength is lower than those containing no additive. As these solutions, a positive photosensitive resin composition comprising an aqueous alkali soluble polymer, a photoacid generator, and a silane compound containing four or more specific functional groups directly bonded to an Al atom, Ti atom, or Si atom Products (see Patent Document 1), heat-resistant resin precursor compositions such as polyimide precursors, and specific amino compounds or thiol derivatives (see Patent Document 2) have been proposed.
日本国特開2008-276190号公報(第1-3頁)Japanese Laid-Open Patent Publication No. 2008-276190 (page 1-3) 日本国特開2007-39486号公報(第1-3頁)Japanese Laid-Open Patent Publication No. 2007-39486 (page 1-3)
 しかしながら、特許文献1および2に記載されているような感光性樹脂組成物や耐熱性樹脂前駆体組成物は、硬化膜とした際に有機酸が発生し、金属配線、とりわけ銅を腐食し、結果密着性が低下する場合があった。更に硬化膜自身も、発生した有機酸により分解され、力学物性、とりわけ伸度が低下することによりデバイスの信頼性に欠ける場合があった。 However, the photosensitive resin composition and the heat-resistant resin precursor composition described in Patent Documents 1 and 2 generate an organic acid when used as a cured film, corrode metal wiring, especially copper, As a result, the adhesion may be reduced. Further, the cured film itself is decomposed by the generated organic acid, and the mechanical properties, particularly the elongation, may be lowered, resulting in lack of device reliability.
 そこで本発明は、低温での加熱処理においても金属材料、とりわけ銅との密着性に優れ、かつ高伸度を有する硬化膜を得られる、感光性樹脂組成物を提供することを目的とする。 Accordingly, an object of the present invention is to provide a photosensitive resin composition that can provide a cured film having excellent adhesion to a metal material, particularly copper, even in heat treatment at a low temperature, and having a high elongation.
 本発明の感光性樹脂組成物は以下の構成を有する。すなわち、(A)一般式(1)で表される構造単位を有するアルカリ可溶性樹脂、(B)光架橋剤を含むことを特徴とする感光性樹脂組成物である。
Figure JPOXMLDOC01-appb-C000005
(一般式(1)中、XおよびXは、2~10価の有機基を示し、Yは2~4価の有機基を示し、Yは、炭素数が2以上の脂肪族構造を有する2価の有機基を示し、RおよびRは、水素または炭素数1~20の有機基を示す。p、q、r、s、tは、0≦p≦4、0≦q≦4、0≦r≦2、0≦s≦4、0≦t≦4の範囲内の整数を表す。n1およびn2は、1≦n1≦500、1≦n2≦500、0.05≦n1/(n1+n2)<1の範囲内を満たす整数であって、各繰り返し単位の配列は、ブロック的でもランダム的でもよい。
The photosensitive resin composition of this invention has the following structures. That is, it is a photosensitive resin composition comprising (A) an alkali-soluble resin having a structural unit represented by the general formula (1) and (B) a photocrosslinking agent.
Figure JPOXMLDOC01-appb-C000005
(In the general formula (1), X 1 and X 2 represent a divalent to decavalent organic group, Y 1 represents a divalent to tetravalent organic group, and Y 2 represents an aliphatic group having 2 or more carbon atoms. A divalent organic group having a structure, wherein R 1 and R 2 represent hydrogen or an organic group having 1 to 20 carbon atoms, p, q, r, s, and t are 0 ≦ p ≦ 4, 0 ≦ q <= 4, 0 <= r <= 2, 0 <= s <= 4, 0 <= t <= 4 The integer in the range of 4 is represented, n1 and n2 are 1 <= n1 <= 500, 1 <= n2 <= 500, 0.05 <=. The integer satisfying the range of n1 / (n1 + n2) <1 and the arrangement of each repeating unit may be block-like or random.
 本発明の感光性樹脂組成物は、低温での加熱処理においても金属材料、とりわけ銅との密着性に優れ、かつ高伸度を有する硬化膜を得ることができる。 The photosensitive resin composition of the present invention can provide a cured film having excellent adhesion to a metal material, particularly copper, and high elongation even in heat treatment at a low temperature.
図1は、バンプを有する半導体装置のパット部分の拡大断面を示した図である。FIG. 1 is an enlarged cross-sectional view of a pad portion of a semiconductor device having bumps. 図2a~図2fは、バンプを有する半導体装置の詳細な作製方法を示した図である。2a to 2f are diagrams showing a detailed manufacturing method of a semiconductor device having bumps. 図3a~図3fは、RDLファースト法における半導体装置の作成法を例示する説明図である。3a to 3f are explanatory views illustrating a method for manufacturing a semiconductor device in the RDL first method. 図4は、TFT基板の一例を示す断面図である。FIG. 4 is a cross-sectional view showing an example of a TFT substrate.
 本発明の感光性樹脂組成物は、上記(A)一般式(1)で表される構造単位を有するアルカリ可溶性樹脂、(B)光架橋剤を含む。好ましくは、(C)分子内に酸素原子、硫黄原子、窒素原子のいずれかを有する化合物、および/または(D)1013hPaにおける沸点が200℃以上260℃以下の有機溶媒と(E)1013hPaにおける沸点が100℃以上200℃未満の有機溶媒、を含有する。以下(A)成分、(B)成分、(C)成分、(D)成分、(E)成分と省略する場合がある。 The photosensitive resin composition of the present invention includes (A) an alkali-soluble resin having a structural unit represented by the general formula (1), and (B) a photocrosslinking agent. Preferably, (C) a compound having any one of oxygen atom, sulfur atom and nitrogen atom in the molecule, and / or (D) an organic solvent having a boiling point at 1013 hPa of 200 ° C. or higher and 260 ° C. or lower, and (E) a boiling point at 1013 hPa Contains an organic solvent having a temperature of 100 ° C. or higher and lower than 200 ° C. Hereinafter, the component (A), the component (B), the component (C), the component (D), and the component (E) may be omitted.
 本発明の感光性樹脂組成物を硬化してなる硬化膜は、好ましくは特定の(B)光架橋剤を用いることにより有機酸の発生を低減し、金属、とりわけ銅の腐食を抑制することにより、密着性を優れたものにすることができる。また(C)成分を添加することが好ましく、更に銅との相互作用が高まり、結果、銅基板との密着性が向上する。 The cured film formed by curing the photosensitive resin composition of the present invention preferably reduces the generation of organic acid by using a specific (B) photocrosslinking agent and suppresses corrosion of metals, particularly copper. , Adhesion can be improved. Moreover, it is preferable to add (C) component, and interaction with copper increases further, As a result, adhesiveness with a copper substrate improves.
 また、伸度に優れる理由として、(A)成分を構成するジアミン残基、すなわちYの炭素数を2以上とすることで(A)の樹脂が伸びやすい骨格となる。この結果、前記感光性樹脂組成物を硬化してなる硬化膜は高伸度材料となる。 Further, as the reason for excellent elongation, the resin of (A) can easily be stretched by setting the diamine residue constituting the component (A), that is, Y 2 to have 2 or more carbon atoms. As a result, a cured film obtained by curing the photosensitive resin composition becomes a high elongation material.
 このため、本発明の感光性樹脂組成物は、250℃以下といった低温での加熱処理においても金属材料、とりわけ銅との密着性の高い硬化膜を得ることができる。 For this reason, the photosensitive resin composition of the present invention can obtain a cured film having high adhesion to a metal material, particularly copper, even in a heat treatment at a low temperature of 250 ° C. or less.
 本発明の(A)アルカリ可溶性樹脂は、一般式(1)で表される構造単位を有する。
Figure JPOXMLDOC01-appb-C000006
 一般式(1)中、XおよびXは、2~10価の有機基、好ましくは脂肪族カルボン酸残基である。
 Yは2~4価の有機基、好ましくは芳香族基を有する有機基、より好ましくはフェニル基を有する有機基である。
 Yは、炭素数が2以上の脂肪族構造を有する2価の有機基、好ましくは脂肪族ジアミン残基である。
 RおよびRは、水素または炭素数1~20の有機基を示す。
 またp、q、r、s、tは、0≦p≦4、0≦q≦4、0≦r≦2、0≦s≦4、0≦t≦4の範囲内の整数を表す。n1およびn2は、1≦n1≦500、1≦n2≦500、0.05≦n1/(n1+n2)<1の範囲内を満たす整数である。各繰り返し単位の配列は、ブロック的でもランダム的でもよい。
The (A) alkali-soluble resin of the present invention has a structural unit represented by the general formula (1).
Figure JPOXMLDOC01-appb-C000006
In the general formula (1), X 1 and X 2 are divalent to decavalent organic groups, preferably aliphatic carboxylic acid residues.
Y 1 is a divalent to tetravalent organic group, preferably an organic group having an aromatic group, more preferably an organic group having a phenyl group.
Y 2 is a divalent organic group having an aliphatic structure having 2 or more carbon atoms, preferably an aliphatic diamine residue.
R 1 and R 2 represent hydrogen or an organic group having 1 to 20 carbon atoms.
P, q, r, s, and t represent integers in the ranges of 0 ≦ p ≦ 4, 0 ≦ q ≦ 4, 0 ≦ r ≦ 2, 0 ≦ s ≦ 4, and 0 ≦ t ≦ 4. n1 and n2 are integers satisfying the ranges of 1 ≦ n1 ≦ 500, 1 ≦ n2 ≦ 500, and 0.05 ≦ n1 / (n1 + n2) <1. The arrangement of each repeating unit may be block or random.
 (A)アルカリ可溶性樹脂は、脂肪族ジアミンに由来する有機基を有し、前記一般式(1)で表される繰り返し単位を有するアルカリ可溶性ポリアミドであり、X(COOH)もしくはX(COOH)の構造を有するジカルボン酸、またはX(COZ)もしくはX(COZ)の構造を有するジカルボン酸誘導体(なおCOZは、カルボキシル基の酸誘導体を表す。)と、Y(NH(OH)及びY(NHの構造を有するビスアミノフェノール及びジアミンを重縮合させて得ることができるポリアミドである。ここで、前記ビスアミノフェノールの2組のアミノ基とヒドロキシル基はそれぞれお互いにオルト位にあるものであり、このポリアミドを約250℃~400℃で加熱することによって脱水閉環して、前記ビスアミノフェノール部位がベンゾオキサゾールに変化する場合がある。本発明の感光性樹脂組成物のベースポリマーは、加熱硬化後、閉環していても、閉環していなくてもよい。 (A) The alkali-soluble resin is an alkali-soluble polyamide having an organic group derived from an aliphatic diamine and having a repeating unit represented by the general formula (1), and X 1 (COOH) 2 or X 2 ( A dicarboxylic acid having a structure of (COOH) 2 , or a dicarboxylic acid derivative having a structure of X 1 (COZ) 2 or X 2 (COZ) 2 (COZ represents an acid derivative of a carboxyl group) and Y 1 ( It is a polyamide that can be obtained by polycondensation of bisaminophenol and diamine having the structure of NH 2 ) 2 (OH) 2 and Y 2 (NH 2 ) 2 . Here, the two groups of amino group and hydroxyl group of the bisaminophenol are in the ortho positions to each other, and this polyamide is dehydrated and ring-closed by heating at about 250 ° C. to 400 ° C. The phenol moiety may change to benzoxazole. The base polymer of the photosensitive resin composition of the present invention may or may not be closed after heat curing.
 (A)アルカリ可溶性樹脂は、アルカリ溶液溶解性の点から、一般式(1)中、n1/(n1+n2)の値は0.05以上であり、0.5以上であることが好ましく、0.7以上であることがより好ましく、0.8以上であることがさらに好ましい。また、低応力性の点から、n1/(n1+n2)の値は1未満であり、0.95以下がより好ましい。 (A) The alkali-soluble resin has a value of n1 / (n1 + n2) in the general formula (1) of 0.05 or more, preferably 0.5 or more, from the viewpoint of solubility in an alkali solution. It is more preferably 7 or more, and further preferably 0.8 or more. Further, from the viewpoint of low stress properties, the value of n1 / (n1 + n2) is less than 1, and more preferably 0.95 or less.
 また、X(COOH)もしくはX(COOH)の構造を有するジカルボン酸としては、X及びXが下記の構造式から選ばれた芳香族基の場合が挙げられるが、これらに限定されない。
Figure JPOXMLDOC01-appb-C000007
(式中、Aは―(直接結合)、―O―、―S―、―SO―、―COO―、―OCO―、―CONH―、―NHCO―、―C(CH―、―C(CF―からなる群から選択される2価の基を有する。)
Examples of the dicarboxylic acid having a structure of X 1 (COOH) 2 or X 2 (COOH) 2 include the case where X 1 and X 2 are aromatic groups selected from the following structural formulas. It is not limited.
Figure JPOXMLDOC01-appb-C000007
(In the formula, A represents — (direct bond), —O—, —S—, —SO 2 —, —COO—, —OCO—, —CONH—, —NHCO—, —C (CH 3 ) 2 —, (It has a divalent group selected from the group consisting of —C (CF 3 ) 2 —.)
 X(COZ)及びX(COZ)の構造を有するジカルボン酸誘導体としては、Zが炭素数1~12の有機基、もしくはハロゲン元素から選ばれた基であり、下記の構造式から選ばれた基であることが好ましい。
Figure JPOXMLDOC01-appb-C000008
(式中、Zb及びZcは、水素原子、メチル基、エチル基、プロピル基、イソプロピル基、t-ブチル基、トリフルオロメチル基、ハロゲン基、フェノキシ基、ニトロ基などが挙げられるが、これらに限定されない。)
As the dicarboxylic acid derivative having the structure of X 1 (COZ) 2 and X 2 (COZ) 2 , Z is a group selected from an organic group having 1 to 12 carbon atoms or a halogen element. A selected group is preferred.
Figure JPOXMLDOC01-appb-C000008
(In the formula, Zb and Zc include a hydrogen atom, a methyl group, an ethyl group, a propyl group, an isopropyl group, a t-butyl group, a trifluoromethyl group, a halogen group, a phenoxy group, and a nitro group. Not limited.)
 本発明において、より高伸度を有する硬化膜を得られるという観点で、一般式(1)中のX、Xがそれぞれ一般式(2)~(4)で表される構造単位のうち少なくともいずれかを有することが好ましい。 In the present invention, from the viewpoint that a cured film having higher elongation can be obtained, X 1 and X 2 in the general formula (1) are structural units represented by the general formulas (2) to (4), respectively. It is preferable to have at least one of them.
Figure JPOXMLDOC01-appb-C000009
(一般式(2)~(4)中、R、Rは、各々独立に、水素原子または、炭素数1~10のアルキル基を示し、Rは酸素原子または硫黄原子を含む炭素数1~5の有機基を示し、n3は1~20の範囲内の整数を表す。*は化学結合を示す。)
Figure JPOXMLDOC01-appb-C000009
(In the general formulas (2) to (4), R 3 and R 4 each independently represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, and R 5 represents a carbon number containing an oxygen atom or a sulfur atom. 1 to 5 represents an organic group, and n3 represents an integer within the range of 1 to 20. * represents a chemical bond.)
 一般式(2)~(4)で表される構造を有するジカルボン酸は、例えば、ジメチルマロン酸、エチルマロン酸、イソプロピルマロン酸、ジ-n-ブチルマロン酸、スクシン酸、テトラフルオロスクシン酸、メチルスクシン酸、2,2-ジメチルスクシン酸、2,3-ジメチルスクシン酸、ジメチルメチルスクシン酸、グルタル酸、ヘキサフルオログルタル酸、2-メチルグルタル酸、3-メチルグルタル酸、2,2-ジメチルグルタル酸、3,3-ジメチルグルタル酸、3-エチル-3-メチルグルタル酸、アジピン酸、オクタフルオロアジピン酸、3-メチルアジピン酸、オクタフルオロアジピン酸、ピメリン酸、2,2,6,6-テトラメチルピメリン酸、スベリン酸、ドデカフルオロスベリン酸、アゼライン酸、セバシン酸、ヘキサデカフルオロセバシン酸、1,9-ノナン二酸、ドデカン二酸、トリデカン二酸、テトラデカン二酸、ペンタデカン二酸、ヘキサデカン二酸、ヘプタデカン二酸、オクタデカン二酸、ノナデカン二酸、エイコサン二酸、ヘンエイコサン二酸、ドコサン二酸、トリコサン二酸、テトラコサン二酸、ペンタコサン二酸、ヘキサコサン二酸、ヘプタコサン二酸、オクタコサン二酸、ノナコサン二酸、トリアコンタン二酸、ヘントリアコンタン二酸、ドトリアコンタン二酸、ジグリコール酸、などが挙げられるが、これらに限定されない。本発明に用いる(A)成分において、X(COOH)もしくはX(COOH)の構造を有するジカルボン酸として好ましくは、スクシン酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、1,9-ノナン二酸、ドデカン二酸、トリデカン二酸、テトラデカン二酸、ペンタデカン二酸、ヘキサデカン二酸、ヘプタデカン二酸、オクタデカン二酸、ノナデカン二酸、エイコサン二酸、ヘンエイコサン二酸、ドコサン二酸、トリコサン二酸、テトラコサン二酸、ペンタコサン二酸、ヘキサコサン二酸、ヘプタコサン二酸、オクタコサン二酸、ノナコサン二酸、トリアコンタン二酸、ヘントリアコンタン二酸、ドトリアコンタン二酸、ジグリコール酸であるがこれらに限定されない。 Examples of the dicarboxylic acid having the structure represented by the general formulas (2) to (4) include dimethylmalonic acid, ethylmalonic acid, isopropylmalonic acid, di-n-butylmalonic acid, succinic acid, and tetrafluorosuccinic acid. Methylsuccinic acid, 2,2-dimethylsuccinic acid, 2,3-dimethylsuccinic acid, dimethylmethylsuccinic acid, glutaric acid, hexafluoroglutaric acid, 2-methylglutaric acid, 3-methylglutaric acid, 2, 2-dimethylglutaric acid, 3,3-dimethylglutaric acid, 3-ethyl-3-methylglutaric acid, adipic acid, octafluoroadipic acid, 3-methyladipic acid, octafluoroadipic acid, pimelic acid, 2,2, 6,6-tetramethylpimelic acid, suberic acid, dodecafluorosuberic acid, azelaic acid, sebacic acid, hexade Fluorosebacic acid, 1,9-nonanedioic acid, dodecanedioic acid, tridecanedioic acid, tetradecanedioic acid, pentadecanedioic acid, hexadecanedioic acid, heptadecanedioic acid, octadecanedioic acid, nonadecanedioic acid, eicosandioic acid, heneicosandioic acid Acid, docosanedioic acid, tricosanedioic acid, tetracosanedioic acid, pentacosanedioic acid, hexacosanedioic acid, heptacosanedioic acid, octacosanedioic acid, nonacosandioic acid, triacontanedioic acid, hentriacontanedioic acid, dotriacontanedioic acid , Diglycolic acid, and the like, but are not limited thereto. In the component (A) used in the present invention, the dicarboxylic acid having a structure of X 1 (COOH) 2 or X 2 (COOH) 2 is preferably succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid , Sebacic acid, 1,9-nonanedioic acid, dodecanedioic acid, tridecanedioic acid, tetradecanedioic acid, pentadecanedioic acid, hexadecanedioic acid, heptadecanedioic acid, octadecanedioic acid, nonadecanedioic acid, eicosanedioic acid, heneicosandioic acid Acid, docosanedioic acid, tricosanedioic acid, tetracosanedioic acid, pentacosanedioic acid, hexacosanedioic acid, heptacosanedioic acid, octacosanedioic acid, nonacosandioic acid, triacontanedioic acid, hentriacontanedioic acid, dotriacontanedioic acid , But is not limited to diglycolic acid.
 一般式(1)中、Y(NH(OH)の構造を有するアミノフェノールとしては、例えば、ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパン、ビス(3-アミノ-4-ヒドロキシフェニル)スルホン、ビス(3-アミノ-4-ヒドロキシフェニル)プロパン、ビス(3-アミノ-4-ヒドロキシフェニル)メタン、ビス(3-アミノ-4-ヒドロキシフェニル)エーテル、ビス(3-アミノ-4-ヒドロキシ)ビフェニル、ビス(3-アミノ-4-ヒドロキシフェニル)フルオレンなどのヒドロキシル基含有ジアミンなどを挙げることができる。また、これら2種以上のジアミン成分を組み合わせて用いてもよい。 In the general formula (1), examples of the aminophenol having the structure of Y 1 (NH 2 ) 2 (OH) 2 include bis (3-amino-4-hydroxyphenyl) hexafluoropropane and bis (3-amino- 4-hydroxyphenyl) sulfone, bis (3-amino-4-hydroxyphenyl) propane, bis (3-amino-4-hydroxyphenyl) methane, bis (3-amino-4-hydroxyphenyl) ether, bis (3- And hydroxyl group-containing diamines such as amino-4-hydroxy) biphenyl and bis (3-amino-4-hydroxyphenyl) fluorene. Moreover, you may use combining these 2 or more types of diamine components.
 Y(NHの構造を有するジアミンとしては、Yが脂肪族構造を有し、好ましくは脂肪族ジアミン残基であり、より好ましくは一般式(5)で表されるアルキレンオキシド構造単位を有するものである。
Figure JPOXMLDOC01-appb-C000010
(一般式(5)中、R~Rは、各々独立に、炭素数2~10のアルキレン基を示し、a、b、cはそれぞれ、0≦a≦20、0≦b≦20、0≦c≦20の範囲内の整数を表し、各繰り返し単位の配列は、ブロック的でもランダム的でもよい。*は化学結合を示す。)
As the diamine having the structure of Y 2 (NH 2 ) 2 , Y 2 has an aliphatic structure, preferably an aliphatic diamine residue, and more preferably an alkylene oxide structure represented by the general formula (5). It has a unit.
Figure JPOXMLDOC01-appb-C000010
(In the general formula (5), R 6 to R 9 each independently represents an alkylene group having 2 to 10 carbon atoms, and a, b and c are 0 ≦ a ≦ 20 and 0 ≦ b ≦ 20, respectively. It represents an integer in the range of 0 ≦ c ≦ 20, and the arrangement of each repeating unit may be block or random. * Indicates a chemical bond.)
 本発明に用いる(A)成分において、Yとして一般式(5)で表される構造単位を有するジアミンは、例えば、エチレンジアミン、1,3-ジアミノプロパン、2-メチル-1,3-プロパンジアミン、1,4-ジアミノブタン、1,5-ジアミノペンタン、2-メチル-1,5-ジアミノペンタン、1,6-ジアミノヘキサン、1,7-ジアミノヘプタン、1,8-ジアミノオクタン、1,9-ジアミノノナン、1,10-ジアミノデカン、1,11-ジアミノウンデカン、1,12-ジアミノドデカン、1,2-シクロヘキサンジアミン、1,3-シクロヘキサンジアミン、1,4-シクロヘキサンジアミン、1,2-ビス(アミノメチル)シクロヘキサン、1,3-ビス(アミノメチル)シクロヘキサン、1,4-ビス(アミノメチル)シクロヘキサン、4,4’-メチレンビス(シクロヘキシルアミン)、4,4’-メチレンビス(2-メチルシクロヘキシルアミン)、KH-511、ED-600、ED-900、ED-2003、EDR-148、EDR-176、D-200、D-400、D-2000、THF-100、THF-140、THF-170、RE-600、RE-900、RE-2000、RP-405、RP-409、RP-2005、RP-2009、RT-1000、HE-1000、HT-1100、HT-1700、(以上商品名、HUNTSMAN(株)製)などが挙げられるが、アルキレンオキシド構造を含んでいればよく、限定はされないが、―S―、―SO―、―SO―、―NH―、―NCH―、―N(CHCH)―、―N(CHCHCH)―、―N(CH(CH)―、―COO―、―CONH―、―OCONH―、―NHCONH―などの結合を含んでもよい。 In the component (A) used in the present invention, examples of the diamine having a structural unit represented by the general formula (5) as Y 2 include ethylenediamine, 1,3-diaminopropane, 2-methyl-1,3-propanediamine. 1,4-diaminobutane, 1,5-diaminopentane, 2-methyl-1,5-diaminopentane, 1,6-diaminohexane, 1,7-diaminoheptane, 1,8-diaminooctane, 1,9 -Diaminononane, 1,10-diaminodecane, 1,11-diaminoundecane, 1,12-diaminododecane, 1,2-cyclohexanediamine, 1,3-cyclohexanediamine, 1,4-cyclohexanediamine, 1,2-bis (Aminomethyl) cyclohexane, 1,3-bis (aminomethyl) cyclohexane, 1,4-bis (aminomethyl) E) Cyclohexane, 4,4′-methylenebis (cyclohexylamine), 4,4′-methylenebis (2-methylcyclohexylamine), KH-511, ED-600, ED-900, ED-2003, EDR-148, EDR -176, D-200, D-400, D-2000, THF-100, THF-140, THF-170, RE-600, RE-900, RE-2000, RP-405, RP-409, RP-2005 , RP-2009, RT-1000, HE-1000, HT-1100, HT-1700, (trade name, manufactured by HUNTSMAN Co., Ltd.), etc. -S-, -SO-, -SO 2- , -NH-, -NCH 3- , -N (CH 2 CH 3 ) A bond such as —, —N (CH 2 CH 2 CH 3 ) —, —N (CH (CH 3 ) 2 ) —, —COO—, —CONH—, —OCONH—, —NHCONH— may be included.
 また、本発明に用いる(A)成分において、一般式(1)中、Yとして表される構造単位の分子量が、150以上であることにより、(A)成分のポリアミド構造が柔軟となり、硬化膜とした際に高伸度となる。更に(A)成分が柔軟となることで硬化膜とした際のウェハへの応力を緩和することができ、硬化膜と基板との残留応力が低減する。結果、密着力を向上させることができる。また、低紫外線吸収性の柔軟性基の導入によりi線透過性が向上し高感度化も同時に実現できる。一般式(1)中、Yとして表される構造単位の分子量は、150以上が好ましく、600以上がより好ましく、900以上がさらに好ましい。また、分子量が2,000以下であれば、アルカリ溶液への溶解性を維持する点で好ましく、1800以下がより好ましく、1500以下がさらに好ましい。600以上、1,800以下の分子量であることがより好ましく、900以上、1,500以下の分子量であることがさらに好ましい。これにより、より伸度、感度を高めることができる。 In the component (A) used in the present invention, the molecular structure of the structural unit represented by Y 2 in the general formula (1) is 150 or more, so that the polyamide structure of the component (A) becomes flexible and cured. High elongation when formed into a film. Furthermore, since the component (A) becomes flexible, the stress on the wafer when the cured film is formed can be relaxed, and the residual stress between the cured film and the substrate is reduced. As a result, the adhesion can be improved. In addition, the introduction of a low UV-absorbing flexible group improves i-ray transmission and can simultaneously achieve high sensitivity. In the general formula (1), the molecular weight of the structural unit represented as Y 2 is preferably 150 or more, more preferably 600 or more, and still more preferably 900 or more. Moreover, if molecular weight is 2,000 or less, it is preferable at the point which maintains the solubility to an alkaline solution, 1800 or less is more preferable, and 1500 or less is further more preferable. The molecular weight is more preferably 600 or more and 1,800 or less, and further preferably 900 or more and 1,500 or less. Thereby, elongation and a sensitivity can be raised more.
 (A)成分の樹脂の一般式(1)におけるY成分の分子量は、Y構造を含むジアミンモノマーに関して、例えばLC-MSなどで測定し、主要シグナルの分子量として求めることができる。 The molecular weight of Y 2 component in the general formula (1) of the resin of component (A) with respect to the diamine monomer containing Y 2 structure, for example to measure such in LC-MS, can be obtained as the molecular weight of the main signal.
 また、本発明に用いる(A)成分は、Y(NHの構造を有するジアミン加えて、他のジアミンを共重合させてもよい。他のジアミンとしては、例えば、3,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルメタン、3,4’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルスルホン、3,4’-ジアミノジフェニルスルフィド、4,4’-ジアミノジフェニルスルフィド、1,4-ビス(4-アミノフェノキシ)ベンゼン、ベンジン、m-フェニレンジアミン、p-フェニレンジアミン、1,5-ナフタレンジアミン、2,6-ナフタレンジアミン、ビス(4-アミノフェノキシフェニル)スルホン、ビス(3-アミノフェノキシフェニル)スルホン、ビス(4-アミノフェノキシ)ビフェニル、ビス{4-(4-アミノフェノキシ)フェニル}エーテル、1,4-ビス(4-アミノフェノキシ)ベンゼン、2,2’-ジメチル-4,4’-ジアミノビフェニル、2,2’-ジエチル-4,4’-ジアミノビフェニル、3,3’-ジメチル-4,4’-ジアミノビフェニル、3,3’-ジエチル-4,4’-ジアミノビフェニル、2,2’,3,3’-テトラメチル-4,4’-ジアミノビフェニル、3,3’,4,4’-テトラメチル-4,4’-ジアミノビフェニル、2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノビフェニルなどの芳香族ジアミンや、これらの芳香族環の水素原子の一部を、炭素数1~10のアルキル基やフルオロアルキル基、ハロゲン原子などで置換した化合物、下記に示す構造を有するもの(式中、*は化学結合を示す。)などを挙げることができるが、これらに限定されない。共重合させる他のジアミンは、そのまま、あるいは対応するジイソシアネート化合物、トリメチルシリル化ジアミンとして使用できる。また、これら2種以上のジアミン成分を組み合わせて用いてもよい。 Moreover, used in the present invention component (A), in addition diamine having a structure of Y 2 (NH 2) 2, it may be copolymerized with other diamines. Examples of other diamines include 3,4'-diaminodiphenyl ether, 4,4'-diaminodiphenyl ether, 3,4'-diaminodiphenylmethane, 4,4'-diaminodiphenylmethane, 3,4'-diaminodiphenylsulfone, 4 , 4'-diaminodiphenylsulfone, 3,4'-diaminodiphenyl sulfide, 4,4'-diaminodiphenyl sulfide, 1,4-bis (4-aminophenoxy) benzene, benzine, m-phenylenediamine, p-phenylenediamine 1,5-naphthalenediamine, 2,6-naphthalenediamine, bis (4-aminophenoxyphenyl) sulfone, bis (3-aminophenoxyphenyl) sulfone, bis (4-aminophenoxy) biphenyl, bis {4- (4 -Aminophenoxy) phenyl} ether 1,4-bis (4-aminophenoxy) benzene, 2,2′-dimethyl-4,4′-diaminobiphenyl, 2,2′-diethyl-4,4′-diaminobiphenyl, 3,3′-dimethyl -4,4'-diaminobiphenyl, 3,3'-diethyl-4,4'-diaminobiphenyl, 2,2 ', 3,3'-tetramethyl-4,4'-diaminobiphenyl, 3,3', Aromatic diamines such as 4,4′-tetramethyl-4,4′-diaminobiphenyl, 2,2′-bis (trifluoromethyl) -4,4′-diaminobiphenyl, and hydrogen atoms of these aromatic rings And compounds having a structure shown below (in the formula, * indicates a chemical bond), etc., in which a part of is substituted with an alkyl group having 1 to 10 carbon atoms, a fluoroalkyl group or a halogen atom. Yes, but not limited to . Other diamine to be copolymerized can be used as it is or as a corresponding diisocyanate compound or trimethylsilylated diamine. Moreover, you may use combining these 2 or more types of diamine components.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 また、耐熱性を低下させない範囲で、シロキサン構造を有する脂肪族の基を共重合してもよく、基板との接着性を向上させることができる。具体的には、ジアミン成分として、ビス(3-アミノプロピル)テトラメチルジシロキサン、ビス(p-アミノフェニル)オクタメチルペンタシロキサンなどを1~15モル%共重合したものなどが挙げられる。1モル%以上共重合させる場合、シリコンウェハなどの基盤との接着性向上の点で、15モル%以下の場合、アルカリ溶液へ溶解性を低下させない点で好ましい。 In addition, an aliphatic group having a siloxane structure may be copolymerized within a range where the heat resistance is not lowered, and the adhesion to the substrate can be improved. Specifically, examples of the diamine component include those obtained by copolymerizing 1 to 15 mol% of bis (3-aminopropyl) tetramethyldisiloxane, bis (p-aminophenyl) octamethylpentasiloxane, and the like. In the case of copolymerization of 1 mol% or more, it is preferable from the viewpoint of improving the adhesion to a substrate such as a silicon wafer, and in the case of 15 mol% or less, the solubility in an alkaline solution is not lowered.
 また、感光性樹脂組成物の保存安定性を向上させるため、(A)成分の樹脂は主鎖末端をモノアミン、酸無水物、モノカルボン酸、モノ酸クロリド化合物、モノ活性エステル化合物などの末端封止剤で封止することが好ましい。また、樹脂の末端を水酸基、カルボキシル基、スルホン酸基、チオール基、ビニル基、エチニル基またはアリル基を有する末端封止剤により封止することで、樹脂のアルカリ溶液に対する溶解速度や得られる硬化膜の機械特性を好ましい範囲に容易に調整することができる。末端封止剤の導入割合は、全アミン成分に対して、(A)成分の樹脂の分子量が高くなり、アルカリ溶液への溶解性が低下することを抑制するため、好ましくは0.1モル%以上、特に好ましくは5モル%以上であり、(A)成分の樹脂の分子量が低くなることで、得られる硬化膜の機械特性低下を抑えるため、好ましくは60モル%以下、特に好ましくは50モル%以下である。複数の末端封止剤を反応させることにより、複数の異なる末端基を導入してもよい。 In order to improve the storage stability of the photosensitive resin composition, the resin of component (A) is end-capped with a main chain terminal such as monoamine, acid anhydride, monocarboxylic acid, monoacid chloride compound, monoactive ester compound, etc. It is preferable to seal with a stopper. In addition, by sealing the terminal of the resin with a terminal sealing agent having a hydroxyl group, a carboxyl group, a sulfonic acid group, a thiol group, a vinyl group, an ethynyl group, or an allyl group, the dissolution rate of the resin in an alkaline solution and the resulting curing can be obtained. The mechanical properties of the membrane can be easily adjusted to a preferred range. The introduction ratio of the end-capping agent is preferably 0.1 mol% in order to prevent the molecular weight of the resin of the component (A) from being increased and the solubility in an alkaline solution from being lowered with respect to the total amine component. More preferably, it is 5 mol% or more, and preferably 60 mol% or less, particularly preferably 50 mol in order to suppress a decrease in mechanical properties of the cured film obtained by lowering the molecular weight of the resin of component (A). % Or less. A plurality of different end groups may be introduced by reacting a plurality of end-capping agents.
 モノアミンとしては、M-600,M-1000,M-2005,M-2070(以上商品名、HUNTSMAN(株)製)、アニリン、2-エチニルアニリン、3-エチニルアニリン、4-エチニルアニリン、5-アミノ-8-ヒドロキシキノリン、1-ヒドロキシ-7-アミノナフタレン、1-ヒドロキシ-6-アミノナフタレン、1-ヒドロキシ-5-アミノナフタレン、1-ヒドロキシ-4-アミノナフタレン、2-ヒドロキシ-7-アミノナフタレン、2-ヒドロキシ-6-アミノナフタレン、2-ヒドロキシ-5-アミノナフタレン、1-カルボキシ-7-アミノナフタレン、1-カルボキシ-6-アミノナフタレン、1-カルボキシ-5-アミノナフタレン、2-カルボキシ-7-アミノナフタレン、2-カルボキシ-6-アミノナフタレン、2-カルボキシ-5-アミノナフタレン、2-アミノ安息香酸、3-アミノ安息香酸、4-アミノ安息香酸、4-アミノサリチル酸、5-アミノサリチル酸、6-アミノサリチル酸、2-アミノベンゼンスルホン酸、3-アミノベンゼンスルホン酸、4-アミノベンゼンスルホン酸、3-アミノ-4,6-ジヒドロキシピリミジン、2-アミノフェノール、3-アミノフェノール、4-アミノフェノール、2-アミノチオフェノール、3-アミノチオフェノール、4-アミノチオフェノールなどが好ましい。これらを2種以上用いてもよい。 Monoamines include M-600, M-1000, M-2005, M-2070 (above trade name, manufactured by HUNTSMAN Co., Ltd.), aniline, 2-ethynylaniline, 3-ethynylaniline, 4-ethynylaniline, 5- Amino-8-hydroxyquinoline, 1-hydroxy-7-aminonaphthalene, 1-hydroxy-6-aminonaphthalene, 1-hydroxy-5-aminonaphthalene, 1-hydroxy-4-aminonaphthalene, 2-hydroxy-7-amino Naphthalene, 2-hydroxy-6-aminonaphthalene, 2-hydroxy-5-aminonaphthalene, 1-carboxy-7-aminonaphthalene, 1-carboxy-6-aminonaphthalene, 1-carboxy-5-aminonaphthalene, 2-carboxy -7-aminonaphthalene, 2-carboxy-6- Minonaphthalene, 2-carboxy-5-aminonaphthalene, 2-aminobenzoic acid, 3-aminobenzoic acid, 4-aminobenzoic acid, 4-aminosalicylic acid, 5-aminosalicylic acid, 6-aminosalicylic acid, 2-aminobenzenesulfone Acid, 3-aminobenzenesulfonic acid, 4-aminobenzenesulfonic acid, 3-amino-4,6-dihydroxypyrimidine, 2-aminophenol, 3-aminophenol, 4-aminophenol, 2-aminothiophenol, 3- Aminothiophenol, 4-aminothiophenol and the like are preferable. Two or more of these may be used.
 酸無水物、モノカルボン酸、モノ酸クロリド化合物、モノ活性エステル化合物としては、無水フタル酸、無水マレイン酸、ナジック酸無水物、シクロヘキサンジカルボン酸無水物、3-ヒドロキシフタル酸無水物などの酸無水物、3-カルボキシフェノール、4-カルボキシフェノール、3-カルボキシチオフェノール、4-カルボキシチオフェノール、1-ヒドロキシ-7-カルボキシナフタレン、1-ヒドロキシ-6-カルボキシナフタレン、1-ヒドロキシ-5-カルボキシナフタレン、1-メルカプト-7-カルボキシナフタレン、1-メルカプト-6-カルボキシナフタレン、1-メルカプト-5-カルボキシナフタレン、3-カルボキシベンゼンスルホン酸、4-カルボキシベンゼンスルホン酸などのモノカルボン酸類およびこれらのカルボキシル基が酸クロリド化したモノ酸クロリド化合物、テレフタル酸、フタル酸、マレイン酸、シクロヘキサンジカルボン酸、1,5-ジカルボキシナフタレン、1,6-ジカルボキシナフタレン、1,7-ジカルボキシナフタレン、2,6-ジカルボキシナフタレンなどのジカルボン酸類の一方のカルボキシル基だけが酸クロリド化したモノ酸クロリド化合物、モノ酸クロリド化合物とN-ヒドロキシベンゾトリアゾールやイミダゾール、N-ヒドロキシ-5-ノルボルネン-2,3-ジカルボキシイミドとの反応により得られる活性エステル化合物などが好ましい。これらを2種以上用いてもよい。 Acid anhydrides such as phthalic anhydride, maleic anhydride, nadic anhydride, cyclohexanedicarboxylic anhydride, 3-hydroxyphthalic anhydride, etc., as acid anhydrides, monocarboxylic acids, monoacid chloride compounds, and monoactive ester compounds 3-carboxyphenol, 4-carboxyphenol, 3-carboxythiophenol, 4-carboxythiophenol, 1-hydroxy-7-carboxynaphthalene, 1-hydroxy-6-carboxynaphthalene, 1-hydroxy-5-carboxynaphthalene Monocarboxylic acids such as 1-mercapto-7-carboxynaphthalene, 1-mercapto-6-carboxynaphthalene, 1-mercapto-5-carboxynaphthalene, 3-carboxybenzenesulfonic acid, 4-carboxybenzenesulfonic acid, Monoacid chloride compounds in which these carboxyl groups are converted to acid chlorides, terephthalic acid, phthalic acid, maleic acid, cyclohexanedicarboxylic acid, 1,5-dicarboxynaphthalene, 1,6-dicarboxynaphthalene, 1,7-dicarboxyl Monoacid chloride compounds in which only one carboxyl group of dicarboxylic acids such as naphthalene and 2,6-dicarboxynaphthalene is acid chloride, monoacid chloride compounds and N-hydroxybenzotriazole, imidazole, N-hydroxy-5-norbornene- Active ester compounds obtained by reaction with 2,3-dicarboximide are preferred. Two or more of these may be used.
 また、本発明に用いる(A)成分の樹脂に導入された末端封止剤は、以下の方法で容易に検出できる。例えば、末端封止剤が導入された樹脂を、酸性溶液に溶解し、構成単位であるアミン成分と酸無水物成分に分解し、これをガスクロマトグラフィー(GC)や、NMR測定することにより、本発明に使用の末端封止剤を容易に検出できる。これとは別に、末端封止剤が導入された樹脂成分を直接、熱分解ガスクロマトグラフ(PGC)や赤外スペクトルおよび13C-NMRスペクトルで測定することによっても、容易に検出可能である。 Moreover, the terminal blocker introduce | transduced into resin of (A) component used for this invention can be easily detected with the following method. For example, a resin having a terminal blocking agent introduced therein is dissolved in an acidic solution and decomposed into an amine component and an acid anhydride component as structural units, and this is measured by gas chromatography (GC) or NMR measurement. The end-capping agent used in the present invention can be easily detected. Apart from this, the resin component into which the end-capping agent has been introduced can also be easily detected by directly measuring it with a pyrolysis gas chromatograph (PGC), infrared spectrum and 13 C-NMR spectrum.
 また、本発明に用いる(A)成分は、一般式(1)で表される構造を含んでいれば、ポリイミドなどの他の構造と共重合させてもよい。ここで(A)成分は他の構造を有しても良いが、一般式(1)で表される構造単位を10~100モル%有することが好ましい。 In addition, the component (A) used in the present invention may be copolymerized with another structure such as polyimide as long as it includes the structure represented by the general formula (1). Here, the component (A) may have other structures, but preferably has 10 to 100 mol% of the structural unit represented by the general formula (1).
 本発明における(A)成分は、重量平均分子量5,000以上50,000以下であることが好ましい。重量平均分子量は、GPC(ゲルパーミエーションクロマトグラフィー)によるポリスチレン換算で5,000以上とすることにより、硬化後の耐折れ性を向上させることができる。一方、重量平均分子量を50,000以下とすることにより、アルカリ溶液による現像性を向上させることができる。機械特性を得るため、20,000以上がより好ましい。また、アルカリ可溶性のポリアミドを2種以上含有する場合、少なくとも1種の重量平均分子量が上記範囲であればよい。 The component (A) in the present invention preferably has a weight average molecular weight of 5,000 or more and 50,000 or less. By setting the weight average molecular weight to 5,000 or more in terms of polystyrene by GPC (gel permeation chromatography), the folding resistance after curing can be improved. On the other hand, when the weight average molecular weight is 50,000 or less, developability with an alkaline solution can be improved. In order to obtain mechanical properties, 20,000 or more is more preferable. Moreover, when 2 or more types of alkali-soluble polyamide are contained, at least 1 type of weight average molecular weight should just be the said range.
 (A)成分の重合の際用いる溶媒(以下、重合溶媒と呼ぶ)は、原料モノマーであるテトラカルボン酸二無水物類とジアミン類を溶解できればよく、その種類は特に限定されない。例えば、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、1,3-ジメチル-2-イミダゾリジノン、N,N’-ジメチルプロピレン尿素、N,N-ジメチルイソ酪酸アミド、メトキシ-N,N-ジメチルプロピオンアミドのアミド類、γ-ブチロラクトン、γ-バレロラクトン、δ-バレロラクトン、γ-カプロラクトン、ε-カプロラクトン、α-メチル-γ-ブチロラクトンなどの環状エステル類、エチレンカーボネート、プロピレンカーボネートなどのカーボネート類、トリエチレングリコールなどのグリコール類、m-クレゾール、p-クレゾールなどのフェノール類、アセトフェノン、スルホラン、ジメチルスルホキシドなどを挙げることができる。重合溶媒は、得られる樹脂100質量部に対して、反応後の樹脂を溶解させるため、100質量部以上使用することが好ましく、150質量部以上使用することがより好ましく、沈殿回収時に樹脂を粉末として得るために1,900質量部以下使用することが好ましく、950質量部以下使用することがより好ましい。 The solvent used in the polymerization of the component (A) (hereinafter referred to as a polymerization solvent) is not particularly limited as long as it can dissolve the tetracarboxylic dianhydrides and diamines that are raw material monomers. For example, N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, 1,3-dimethyl-2-imidazolidinone, N, N′-dimethylpropyleneurea, N, N-dimethyliso Cyclic esters such as butyramide, methoxy-N, N-dimethylpropionamide amides, γ-butyrolactone, γ-valerolactone, δ-valerolactone, γ-caprolactone, ε-caprolactone, α-methyl-γ-butyrolactone And carbonates such as ethylene carbonate and propylene carbonate; glycols such as triethylene glycol; phenols such as m-cresol and p-cresol; acetophenone, sulfolane and dimethyl sulfoxide. The polymerization solvent is preferably used in an amount of 100 parts by mass or more, more preferably 150 parts by mass or more in order to dissolve the resin after the reaction with respect to 100 parts by mass of the obtained resin. Therefore, it is preferable to use 1,900 parts by mass or less, and more preferably 950 parts by mass or less.
 本発明の感光性樹脂組成物は、(B)光架橋剤を含有する。(B)光架橋剤は光によって硬化するネガタイプであり、(b-1)光開始剤および(b-2)光重合性化合物を含むことが好ましい。 The photosensitive resin composition of the present invention contains (B) a photocrosslinking agent. (B) The photocrosslinking agent is a negative type that is cured by light, and preferably contains (b-1) a photoinitiator and (b-2) a photopolymerizable compound.
 (b-1)光開始剤としては例えば、ベンゾフェノン、ミヒラーズケトン、4,4,-ビス(ジエチルアミノ)ベンゾフェノン、3,3,4,4,-テトラ(t-ブチルパーオキシカルボニル)ベンゾフェノンなどのベンゾフェノン類や3,5-ビス(ジエチルアミノベンジリデン)-N-メチル-4-ピペリドン、3,5-ビス(ジエチルアミノベンジリデン)-N-エチル-4-ピペリドンなどのベンジリデン類、7-ジエチルアミノ-3-テノニルクマリン、4,6-ジメチル-3-エチルアミノクマリン、3,3-カルボニルビス(7-ジエチルアミノクマリン)、7-ジエチルアミノ-3-(1-メチルベンゾイミダゾリル)クマリン、3-(2-ベンゾチアゾリル)-7-ジエチルアミノクマリンなどのクマリン類、2-t-ブチルアントラキノン、2-エチルアントラキノン、1,2-ベンズアントラキノンなどのアントラキノン類、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテルなどのベンゾイン類、エチレングリコールジ(3-メルカプトプロピオネート)、2-メルカプトベンズチアゾール、2-メルカプトベンゾキサゾール、2-メルカプトベンズイミダゾールなどのメルカプト類、N-フェニルグリシン、N-メチル-N-フェニルグリシン、N-エチル-N-(p-クロロフェニル)グリシン、N-(4-シアノフェニル)グリシンなどのグリシン類、1-フェニル-1,2-ブタンジオン-2-(o-メトキシカルボニル)オキシム、1-フェニル-1,2-プロパンジオン-2-(o(メトキシカルボニル)オキシム、1-フェニル-1,2-プロパンジオン-2-(o-エトキシカルボニル)オキシム、1-フェニル-1,2-プロパンジオン-2-(o-ベンゾイル)オキシム、ビス(α-イソニトロソプロピオフェノンオキシム)イソフタル、1,2-オクタンジオン-1-[4-(フェニルチオ)フェニル]-2-(o-ベンゾイルオキシム)、OXE02(商品名、チバスペシャルティケミカルズ(株)製)、NCI-831(商品名、株式会社ADEKA製)などのオキシム類、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタン-1-2-メチル-1[4-(メチルチオ)フェニル]-2-モリフォリノプロパン-1-オンなどのα-アミノアルキルフェノン類、2,2’-ビス(o-クロロフェニル)-4,4’,5,5’-テトラフェニルビイミダゾールなどが挙げられる。これらのうち上記オキシム類が好ましく、特に好ましくは、1-フェニル-1,2-プロパンジオン-2-(o-エトキシカルボニル)オキシム、1-フェニル-1,2-プロパンジオン-2-(o-ベンゾイル)オキシム、ビス(α-イソニトロソプロピオフェノンオキシム)イソフタル、1,2-オクタンジオン-1-[4-(フェニルチオ)フェニル]-2-(o-ベンゾイルオキシム)、OXE02、NCI-831である。これらは単独でまたは2種類以上を組み合わせて使用される。 (B-1) Photoinitiators include, for example, benzophenones such as benzophenone, Michler's ketone, 4,4, -bis (diethylamino) benzophenone, 3,3,4,4, -tetra (t-butylperoxycarbonyl) benzophenone And benzylidenes such as 3,5-bis (diethylaminobenzylidene) -N-methyl-4-piperidone and 3,5-bis (diethylaminobenzylidene) -N-ethyl-4-piperidone, 7-diethylamino-3-thenonylcoumarin 4,6-dimethyl-3-ethylaminocoumarin, 3,3-carbonylbis (7-diethylaminocoumarin), 7-diethylamino-3- (1-methylbenzimidazolyl) coumarin, 3- (2-benzothiazolyl) -7- Coumarins such as diethylaminocoumarin, 2-t- Anthraquinones such as tilanthraquinone, 2-ethylanthraquinone, 1,2-benzanthraquinone, benzoins such as benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, ethylene glycol di (3-mercaptopropionate), 2-mercapto Mercaptos such as benzthiazole, 2-mercaptobenzoxazole, 2-mercaptobenzimidazole, N-phenylglycine, N-methyl-N-phenylglycine, N-ethyl-N- (p-chlorophenyl) glycine, N- ( Glycines such as 4-cyanophenyl) glycine, 1-phenyl-1,2-butanedione-2- (o-methoxycarbonyl) oxime, 1-phenyl-1,2-propanedione-2- (o (methoxycarbo Oxime, 1-phenyl-1,2-propanedione-2- (o-ethoxycarbonyl) oxime, 1-phenyl-1,2-propanedione-2- (o-benzoyl) oxime, bis (α-iso Nitrosopropiophenone oxime) isophthal, 1,2-octanedione-1- [4- (phenylthio) phenyl] -2- (o-benzoyloxime), OXE02 (trade name, manufactured by Ciba Specialty Chemicals), NCI Oximes such as -831 (trade name, manufactured by ADEKA Corporation), 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butane-1-methyl-1 [4- (methylthio) Α-aminoalkylphenones such as phenyl] -2-morpholinopropan-1-one, 2,2′-bis (o-chlorophene) Le) -4,4 ', 5,5'-tetraphenyl biimidazole, and the like. Of these, the above oximes are preferable, and 1-phenyl-1,2-propanedione-2- (o-ethoxycarbonyl) oxime, 1-phenyl-1,2-propanedione-2- (o-) is particularly preferable. Benzoyl) oxime, bis (α-isonitrosopropiophenoneoxime) isophthal, 1,2-octanedione-1- [4- (phenylthio) phenyl] -2- (o-benzoyloxime), OXE02, NCI-831 is there. These may be used alone or in combination of two or more.
 これらの中で、上記のベンゾフェノン類、グリシン類、メルカプト類、オキシム類、α-アミノルキルフェノン類、2,2’-ビス(o-クロロフェニル)-4,4’,5,5’-テトラフェニルビイミダゾールから選択される組み合わせが光反応の点から好適である。 Among these, the above benzophenones, glycines, mercaptos, oximes, α-aminoalkylphenones, 2,2′-bis (o-chlorophenyl) -4,4 ′, 5,5′-tetraphenyl A combination selected from biimidazoles is preferred from the viewpoint of photoreaction.
 (b-1)光開始剤の含有量は、(A)成分の総量100質量部に対して、0.1~60質量部が好ましく、より好ましくは0.2~40質量部である。0.1質量部以上であると、光照射により十分なラジカルが発生し、感度が向上する点で好ましく、60質量部以下であると、過度なラジカルの発生によって光未照射部が硬化することなくアルカリ現像性が向上する。 (B-1) The content of the photoinitiator is preferably 0.1 to 60 parts by mass, more preferably 0.2 to 40 parts by mass with respect to 100 parts by mass of the total amount of the component (A). When it is 0.1 part by mass or more, it is preferable in that sufficient radicals are generated by light irradiation and the sensitivity is improved, and when it is 60 parts by mass or less, the light non-irradiated part is cured by generation of excessive radicals. Alkali developability is improved.
 (b-2)光重合性化合物としては、不飽和炭素-炭素結合を有する化合物、すなわち重合性不飽和化合物であることが好ましい。例えば、ビニル基、アリル基、アクリロイル基、メタクリロイル基等の不飽和二重結合官能基および/またはプロパルギル基などの不飽和三重結合官能基が挙げられ、これらの中でも共役型のビニル基やアクリロイル基、メタクリロイル基が重合性の面で好ましい。 (B-2) The photopolymerizable compound is preferably a compound having an unsaturated carbon-carbon bond, that is, a polymerizable unsaturated compound. Examples thereof include unsaturated double bond functional groups such as vinyl group, allyl group, acryloyl group, methacryloyl group and / or unsaturated triple bond functional groups such as propargyl group. Among them, conjugated vinyl groups and acryloyl groups A methacryloyl group is preferred in terms of polymerizability.
 またその官能基が含有される数としては安定性の点から1~4であることが好ましく、それぞれは同一の基でなくとも構わない。 Also, the number of functional groups contained is preferably 1 to 4 from the viewpoint of stability, and they may not be the same group.
 (b-2)光重合性化合物の数平均分子量は特に限定されることは無いが、ポリマーおよび反応性希釈剤との相溶性が良いことから、数平均分子量が800以下であることが好ましい。また、露光後の現像液に対する溶解性を抑止させる目的で、数平均分子量が30以上であることが好ましい。 (B-2) The number average molecular weight of the photopolymerizable compound is not particularly limited, but the number average molecular weight is preferably 800 or less because of good compatibility with the polymer and the reactive diluent. The number average molecular weight is preferably 30 or more for the purpose of suppressing the solubility in the developer after exposure.
 (b-2)重合性不飽和化合物として具体的には、ジエチレングリコールジアクリレート、トリエチレングリコールジアクリレート、テトラエチレングリコールジアクリレート、ジエチレングリコールジメタクリレート、トリエチレングリコールジメタクリレート、テトラエチレングリコールジメタクリレート、トリメチロールプロパンジアクリレート、トリメチロールプロパントリアクリレート、トリメチロールプロパンジメタクリレート、トリメチロールプロパントリメタクリレート、スチレン、α-メチルスチレン、1,2-ジヒドロナフタレン、1,3-ジイソプロペニルベンゼン、3-メチルスチレン、4-メチルスチレン、2-ビニルナフタレン、ブチルアクリレート、ブチルメタクリレート、イソブチルアクリレート、ヘキシルアクリレート、イソオクチルアクリレート、イソボルニルアクリレート、イソボルニルメタクリレート、シクロヘキシルメタクリレート、1,3-ブタンジオールジアクリレート、1,3-ブタンジオールジメタクリレート、ネオペンチルグリコールジアクリレート、1,4-ブタンジオールジアクリレート、1,4-ブタンジオールジメタクリレート、1,6-ヘキサンジオールジアクリレート、1,6-ヘキサンジオールジメタクリレート、1,9-ノナンジオールジメタクリレート、1,10-デカンジオールジメタクリレート、ジメチロール-トリシクロデカンジアクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、ペンタエリスリトールトリメタクリレート、ペンタエリスリトールテトラメタクリレート、ジペンタエリスリトールヘキサアクリレート、ジペンタエリスリトールヘキサメタクリレート、2-ヒドロキシエチルアクリレート、2-ヒドロキシエチルメタクリレート、1,3-ジアクリロイルオキシ-2-ヒドロキシプロパン、1,3-ジメタクリロイルオキシ-2-ヒドロキシプロパン、メチレンビスアクリルアミド、N,N-ジメチルアクリルアミド、N-メチロールアクリルアミド、2,2,6,6-テトラメチルピペリジニルメタクリレート、2,2,6,6-テトラメチルピペリジニルアクリレート、N-メチル-2,2,6,6-テトラメチルピペリジニルメタクリレート、N-メチル-2,2,6,6-テトラメチルピペリジニルアクリレート、エチレンオキシド変性ビスフェノールAジアクリレート、エチレンオキシド変性ビスフェノールAジメタクリレート、N-ビニルピロリドン、N-ビニルカプロラクタムなどが挙げられる。これらは単独で又は2種類以上を組み合わせて使用される。 (B-2) Specific examples of the polymerizable unsaturated compound include diethylene glycol diacrylate, triethylene glycol diacrylate, tetraethylene glycol diacrylate, diethylene glycol dimethacrylate, triethylene glycol dimethacrylate, tetraethylene glycol dimethacrylate, and trimethylol. Propanediacrylate, trimethylolpropane triacrylate, trimethylolpropane dimethacrylate, trimethylolpropane trimethacrylate, styrene, α-methylstyrene, 1,2-dihydronaphthalene, 1,3-diisopropenylbenzene, 3-methylstyrene, 4-methylstyrene, 2-vinylnaphthalene, butyl acrylate, butyl methacrylate, isobutyl acrylate, hex Acrylate, isooctyl acrylate, isobornyl acrylate, isobornyl methacrylate, cyclohexyl methacrylate, 1,3-butanediol diacrylate, 1,3-butanediol dimethacrylate, neopentyl glycol diacrylate, 1,4-butanediol Diacrylate, 1,4-butanediol dimethacrylate, 1,6-hexanediol diacrylate, 1,6-hexanediol dimethacrylate, 1,9-nonanediol dimethacrylate, 1,10-decanediol dimethacrylate, dimethylol- Tricyclodecane diacrylate, pentaerythritol triacrylate, pentaerythritol tetraacrylate, pentaerythritol trimethacrylate, pentaerythritol Tetramethacrylate, dipentaerythritol hexaacrylate, dipentaerythritol hexamethacrylate, 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate, 1,3-diacryloyloxy-2-hydroxypropane, 1,3-dimethacryloyloxy-2 -Hydroxypropane, methylenebisacrylamide, N, N-dimethylacrylamide, N-methylolacrylamide, 2,2,6,6-tetramethylpiperidinyl methacrylate, 2,2,6,6-tetramethylpiperidinyl acrylate, N-methyl-2,2,6,6-tetramethylpiperidinyl methacrylate, N-methyl-2,2,6,6-tetramethylpiperidinyl acrylate, ethylene oxide modified bisphenol A diaquo Rate, ethylene oxide-modified bisphenol A dimethacrylate, N- vinylpyrrolidone, etc. N- vinyl caprolactam. These may be used alone or in combination of two or more.
 これらのうち、特に好ましくは、1,9-ノナンジオールジメタクリレート、1,10-デカンジオールジメタクリレート、ジメチロール-トリシクロデカンジアクリレート、イソボルニルアクリレート、イソボルニルメタクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、ペンタエリスリトールトリメタクリレート、ペンタエリスリトールテトラメタクリレート、ジペンタエリスリトールヘキサアクリレート、ジペンタエリスリトールヘキサメタクリレート、メチレンビスアクリルアミド、N,N-ジメチルアクリルアミド、N-メチロールアクリルアミド、2,2,6,6-テトラメチルピペリジニルメタクリレート、2,2,6,6-テトラメチルピペリジニルアクリレート、N-メチル-2,2,6,6-テトラメチルピペリジニルメタクリレート、N-メチル-2,2,6,6-テトラメチルピペリジニルアクリレート、エチレンオキシド変性ビスフェノールAジアクリレート、エチレンオキシド変性ビスフェノールAジメタクリレート、N-ビニルピロリドン、N-ビニルカプロラクタムなどが挙げられる。 Of these, 1,9-nonanediol dimethacrylate, 1,10-decandiol dimethacrylate, dimethylol-tricyclodecane diacrylate, isobornyl acrylate, isobornyl methacrylate, pentaerythritol triacrylate, penta Erythritol tetraacrylate, pentaerythritol trimethacrylate, pentaerythritol tetramethacrylate, dipentaerythritol hexaacrylate, dipentaerythritol hexamethacrylate, methylenebisacrylamide, N, N-dimethylacrylamide, N-methylolacrylamide, 2,2,6,6- Tetramethylpiperidinyl methacrylate, 2,2,6,6-tetramethylpiperidinyl acrylate, N-methyl -2,2,6,6-tetramethylpiperidinyl methacrylate, N-methyl-2,2,6,6-tetramethylpiperidinyl acrylate, ethylene oxide modified bisphenol A diacrylate, ethylene oxide modified bisphenol A dimethacrylate, Examples thereof include N-vinyl pyrrolidone and N-vinyl caprolactam.
 (b-2)重合性不飽和化合物の含有量は、(A)成分100質量部に対して、1~40質量部が好ましく、露光後の現像液に対する溶解性を抑止させる目的で、3質量部以上がより好ましく、垂直性の高いパターン形状を得る目的で20質量部以下がより好ましい。 (B-2) The content of the polymerizable unsaturated compound is preferably 1 to 40 parts by mass with respect to 100 parts by mass of the component (A). For the purpose of suppressing the solubility in the developer after exposure, Part or more is more preferable, and 20 parts by mass or less is more preferable for the purpose of obtaining a highly perpendicular pattern shape.
 本発明の感光性樹脂組成物は(C)分子内に少なくとも酸素原子、硫黄原子、窒素原子のいずれかを有する化合物を含有することができる。本発明における(C)成分は金属、とりわけ銅と相互作用する化合物であり、これを含有することで加熱硬化後の膜と金属材料との密着性が大きく向上する。 The photosensitive resin composition of the present invention can contain (C) a compound having at least one of an oxygen atom, a sulfur atom and a nitrogen atom in the molecule. The component (C) in the present invention is a compound that interacts with metal, particularly copper, and by containing this, the adhesion between the heat-cured film and the metal material is greatly improved.
 本発明における(C)成分は、一般式(6)で表される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000013
(一般式(6)中、R10~R12は、酸素原子、硫黄原子、または窒素原子のいずれかを示し、R10~R12のうち少なくとも1つは硫黄原子を示す。lは0または1を示す。R10は、lが0の場合は酸素原子または硫黄原子を示し、lが1の場合は窒素原子を示す。m、nは1~2の整数を示し、u、vは0または1を示す。R11,R12は、u、vが0の場合は酸素原子または硫黄原子を示し、u、vが1の場合は窒素原子を示す。R13~R17は、各々独立に、水素原子または炭素数1~20の有機基を示す。)
 R13~R15としては、水素原子、アルキル基、シクロアルキル基、アルコキシ基、アルキルエーテル基、アルキルシリル基、アルコキシシリル基、アリール基、アリールエーテル基、カルボキシル基、カルボニル基、アリル基、ビニル基、複素環基、それらを組み合わせたものなど挙げられ、さらに置換基を有していてもよい。またR13~R17は、互いに隣接する基により環を形成してもよい。
The component (C) in the present invention is preferably a compound represented by the general formula (6).
Figure JPOXMLDOC01-appb-C000013
(In the general formula (6), R 10 to R 12 each represents an oxygen atom, a sulfur atom, or a nitrogen atom, and at least one of R 10 to R 12 represents a sulfur atom. R 10 represents an oxygen atom or a sulfur atom when l is 0, and a nitrogen atom when l is 1. m and n are integers of 1 to 2, u and v are 0 R 11 and R 12 each represents an oxygen atom or a sulfur atom when u and v are 0, and represents a nitrogen atom when u and v are 1. R 13 to R 17 are each independently selected. Represents a hydrogen atom or an organic group having 1 to 20 carbon atoms.)
R 13 to R 15 are hydrogen atom, alkyl group, cycloalkyl group, alkoxy group, alkyl ether group, alkylsilyl group, alkoxysilyl group, aryl group, aryl ether group, carboxyl group, carbonyl group, allyl group, vinyl A group, a heterocyclic group, a combination thereof, and the like, and may further have a substituent. R 13 to R 17 may form a ring with groups adjacent to each other.
 一般式(6)で表される化合物の例としては以下のものが挙げられるが、下記構造に限らない。 Examples of the compound represented by the general formula (6) include the following, but are not limited to the following structures.
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
 (C)成分の含有量は、(A)成分100質量部に対して、1~40質量部が好ましく、露光後の現像液に対する溶解性を抑止させる目的で、3質量部以上がより好ましく、保存安定性の観点で20質量部以下がより好ましい。 The content of the component (C) is preferably 1 to 40 parts by mass with respect to 100 parts by mass of the component (A), and more preferably 3 parts by mass or more for the purpose of suppressing solubility in the developer after exposure. 20 mass parts or less are more preferable from a viewpoint of storage stability.
 更に本発明の感光性樹脂組成物は、好ましくは(D)1013hPaにおける沸点が200℃以上260℃以下の有機溶媒、および(E)1013hPaにおける沸点が100℃以上200℃未満の有機溶媒を含有するとよく、前記(D)1013hPaにおける沸点が200℃以上260℃以下の有機溶媒の含有量が有機溶媒全量に対して5質量%以上70質量%以下、前記(E)1013hPaにおける沸点が100℃以上200℃未満の有機溶媒の含有量が有機溶媒全量に対して30質量%以上95質量%以下であるとよい。 Furthermore, the photosensitive resin composition of the present invention preferably contains (D) an organic solvent having a boiling point of 200 ° C. or more and 260 ° C. or less at 1013 hPa, and (E) an organic solvent having a boiling point of 1013 hPa or more and 100 ° C. or more and less than 200 ° C. Well, the content of the organic solvent having a boiling point in the (D) 1013 hPa of 200 ° C. or more and 260 ° C. or less is 5% by mass or more and 70% by mass or less, and the boiling point in the (E) 1013 hPa is 100 ° C. or more and 200 ° C. The content of the organic solvent at a temperature lower than 0 ° C. is preferably 30% by mass or more and 95% by mass or less with respect to the total amount of the organic solvent.
 (D)1013hPaにおける沸点が200℃以上260℃以下の有機溶媒を含有することで、塗布時およびその後の乾燥工程において感光性樹脂組成物の乾燥による流動性の低下を緩和し、基板の段差部埋め込み性を向上させることができる。(D)成分の1013hPaにおける沸点について、200℃以上であると、塗布時および乾燥工程での塗布膜の乾燥による流動性低下を緩和できる点で好ましく、260℃以下であると、焼成後の感光性樹脂膜への有機溶媒の残存を抑制する点で好ましく、より好ましくは250℃以下である。 (D) By containing an organic solvent having a boiling point at 1013 hPa of 200 ° C. or more and 260 ° C. or less, a decrease in fluidity due to drying of the photosensitive resin composition at the time of coating and the subsequent drying step is alleviated, and a step portion of the substrate The embedding property can be improved. The boiling point of component (D) at 1013 hPa is preferably 200 ° C. or higher, since it can mitigate a decrease in fluidity due to drying of the coating film at the time of coating and in the drying step. It is preferable at the point which suppresses the residual of the organic solvent to a conductive resin film, More preferably, it is 250 degrees C or less.
 本発明において、(D)成分の含有量は有機溶媒全量に対して5質量%以上70質量%以下である。(D)成分の含有量は、高沸点の溶媒の存在により十分な段差埋め込み効果を得られる点で、5質量%以上が好ましく、15質量%以上がより好ましく、30質量%以上がさらに好ましい。一方、(D)成分の含有量は、感光性樹脂組成物に含有する溶媒の沸点を乾燥工程に時間を要さない程度に維持できる点で、70質量%以下が好ましく、さらに、焼成後における膜への有機溶媒の残存を抑制できる点で、60質量%以下がより好ましく、50質量%以下がさらに好ましい。 In the present invention, the content of the component (D) is 5% by mass or more and 70% by mass or less with respect to the total amount of the organic solvent. The content of the component (D) is preferably 5% by mass or more, more preferably 15% by mass or more, and further preferably 30% by mass or more in that a sufficient step filling effect can be obtained by the presence of a high boiling point solvent. On the other hand, the content of the component (D) is preferably 70% by mass or less from the viewpoint that the boiling point of the solvent contained in the photosensitive resin composition can be maintained to such an extent that it does not require time for the drying step. 60 mass% or less is more preferable and 50 mass% or less is still more preferable at the point which can suppress the residual | survival of the organic solvent to a film | membrane.
 (D)成分としては、前記(A)成分の樹脂を溶解するものが好ましい。具体的には、1,3-ジメチル-2-イミダゾリジノン(沸点220℃)、N,N-ジメチルプロピレン尿素(沸点246℃)、3-メトキシ-N,N-ジメチルプロピオンアミド(沸点216℃)、デルタバレロラクトン(沸点230℃)、ガンマブチロラクトン(沸点203℃)、N-メチル-2-ピロリドン(沸点204℃)などが挙げられる。 The component (D) is preferably one that dissolves the resin of the component (A). Specifically, 1,3-dimethyl-2-imidazolidinone (boiling point 220 ° C.), N, N-dimethylpropyleneurea (boiling point 246 ° C.), 3-methoxy-N, N-dimethylpropionamide (boiling point 216 ° C.) ), Deltavalerolactone (boiling point 230 ° C.), gamma butyrolactone (boiling point 203 ° C.), N-methyl-2-pyrrolidone (boiling point 204 ° C.), and the like.
 また、本発明の感光性樹脂組成物は、(E)1013hPaにおける沸点が100℃以上200℃未満の有機溶媒を含有することが好ましい。(D)成分に加えて(E)1013hPaにおける沸点が100℃以上200℃未満の有機溶媒を含有することで、乾燥工程において塗布膜から有機溶媒を短時間で除去することができる。一方、1013hPaにおける沸点が100℃以上であれば、前記(A)の樹脂成分の溶解がすすみ、固形分が析出するような状況を回避できる。 The photosensitive resin composition of the present invention preferably contains (E) an organic solvent having a boiling point at 1013 hPa of 100 ° C. or higher and lower than 200 ° C. In addition to the component (D), the organic solvent having a boiling point at 1013 hPa of 100 ° C. or more and less than 200 ° C. can be removed from the coating film in a short time in the drying step. On the other hand, if the boiling point at 1013 hPa is 100 ° C. or higher, the situation where the resin component (A) is dissolved and the solid content is precipitated can be avoided.
 本発明において、(E)成分の含有量は有機溶媒全量に対して30質量%以上95質量%以下であり、(D)成分と(E)成分の合計は有機溶媒全量に対して100質量%以下である。(E)成分の含有量は、感光性樹脂組成物に含有する溶媒の沸点を乾燥工程に時間を要さない程度に維持できる点で、30質量%以上が好ましく、40質量%以上がより好ましく、50質量%以上がさらに好ましい。一方、(E)成分の含有量は、(D)成分との組み合わせにより十分な段差埋め込み効果を得られる点で、95質量%以下が好ましく、85質量%以下がより好ましく、70質量%以下がさらに好ましい。 In the present invention, the content of the component (E) is 30% by mass to 95% by mass with respect to the total amount of the organic solvent, and the total of the component (D) and the component (E) is 100% by mass with respect to the total amount of the organic solvent. It is as follows. The content of the component (E) is preferably 30% by mass or more, more preferably 40% by mass or more, in that the boiling point of the solvent contained in the photosensitive resin composition can be maintained to such an extent that it does not require time for the drying step. 50 mass% or more is more preferable. On the other hand, the content of the component (E) is preferably 95% by mass or less, more preferably 85% by mass or less, and more preferably 70% by mass or less in that a sufficient step filling effect can be obtained by combining with the component (D). Further preferred.
 有機溶媒として(D)成分、(E)成分を組み合わせることにより、塗布時およびその後の乾燥工程における感光性樹脂組成物の流動性保持に伴う段差埋め込み性向上の効果が顕著に奏される。 By combining the (D) component and the (E) component as the organic solvent, the effect of improving the level difference embedding accompanying maintaining the fluidity of the photosensitive resin composition at the time of coating and the subsequent drying step is remarkably exhibited.
 (E)成分としては、前記(A)成分の樹脂を溶解するものが好ましい。具体的には、乳酸エチル(沸点154℃)、乳酸ブチル(沸点186℃)、ジプロピレングリコールジメチルエーテル(沸点171℃)、ジエチレングリコールジメチルエーテル(沸点162℃)、ジエチレングリコールエチルメチルエーテル(沸点176℃)、ジエチレングリコールジエチルエーテル(沸点189℃)、3-メトキシブチルアセテート(沸点171℃)、エチレングリコールモノエチルエーテルアセテート(沸点160℃)、ジアセトンアルコール(沸点166℃)、N-シクロヘキシル-2-ピロリドン(沸点154℃)、N,N-ジメチルホルムアミド(沸点153℃)、N,N-ジメチルアセトアミド(沸点165℃)、ジメチルスルホキシド(沸点189℃)、プロピレングリコールモノメチルエーテルアセテート(沸点146℃)、N,N-ジメチルイソ酪酸アミド(沸点175℃)、エチレングリコールモノメチルエーテル(沸点124℃)、プロピレングリコールモノメチルエーテル(沸点120℃)などのアルキレングリコールモノアルキルエーテル類、プロピルアセテート(沸点102℃)、ブチルアセテート(沸点125℃)、イソブチルアセテート(沸点118℃)、などのアルキルアセテート類、メチルイソブチルケトン(沸点116℃)、メチルプロピルケトン(沸点102℃)などのケトン類、ブチルアルコール(沸点117℃)、イソブチルアルコール(沸点108℃)などのアルコール類などが挙げられる。感光性樹脂組成物の保存安定性および粘度安定性の観点から、乳酸エチルもしくはジエチレングリコールエチルメチルエーテルもしくはN,N-ジメチルイソ酪酸アミド、プロピレングリコールモノメチルエーテルがより好ましい。 As the component (E), those capable of dissolving the resin of the component (A) are preferable. Specifically, ethyl lactate (boiling point 154 ° C.), butyl lactate (boiling point 186 ° C.), dipropylene glycol dimethyl ether (boiling point 171 ° C.), diethylene glycol dimethyl ether (boiling point 162 ° C.), diethylene glycol ethyl methyl ether (boiling point 176 ° C.), diethylene glycol Diethyl ether (bp 189 ° C.), 3-methoxybutyl acetate (bp 171 ° C.), ethylene glycol monoethyl ether acetate (bp 160 ° C.), diacetone alcohol (bp 166 ° C.), N-cyclohexyl-2-pyrrolidone (bp 154) ° C), N, N-dimethylformamide (boiling point 153 ° C), N, N-dimethylacetamide (boiling point 165 ° C), dimethyl sulfoxide (boiling point 189 ° C), propylene glycol monomethyl ether acetate (Boiling point 146 ° C.), N, N-dimethylisobutyric acid amide (boiling point 175 ° C.), ethylene glycol monomethyl ether (boiling point 124 ° C.), propylene glycol monomethyl ether (boiling point 120 ° C.) and other alkylene glycol monoalkyl ethers, propyl acetate ( Alkyl acetates such as butyl acetate (boiling point 125 ° C.), isobutyl acetate (boiling point 118 ° C.), ketones such as methyl isobutyl ketone (boiling point 116 ° C.), methyl propyl ketone (boiling point 102 ° C.), butyl Examples include alcohols such as alcohol (boiling point 117 ° C.) and isobutyl alcohol (boiling point 108 ° C.). From the viewpoints of storage stability and viscosity stability of the photosensitive resin composition, ethyl lactate, diethylene glycol ethyl methyl ether, N, N-dimethylisobutyric acid amide, or propylene glycol monomethyl ether is more preferable.
 有機溶媒の1013hPa(大気圧下)における沸点は、「CRC Handbook of Chemistry and Physics」や「Aldrich Handbook of Fine Chemical and Laboratory Equipment」などの文献に記載されている。公知の文献に記載のない有機溶媒の沸点は、市販の沸点測定装置、例えば、FP81HT/FP81C(メトラー・トレド(株)製)により測定できる。 The boiling point of organic solvents at 1013 hPa (under atmospheric pressure) is described in the literature of “CRC Handbook of Chemistry and Physics” and “Aldrich Handbook of Fine Chemical and Laboratory Equipment”. The boiling point of an organic solvent not described in the known literature can be measured by a commercially available boiling point measuring device, for example, FP81HT / FP81C (manufactured by METTLER TOLEDO).
 本発明の有機溶媒全量の含有量は、(A)成分の樹脂100質量部に対して、50質量部~2000質量部が好ましい。50質量部以上であると、有機溶媒に対してポリマーが析出することなく溶解する点で好ましく、より好ましくは100質量部以上である。2000質量部以下であると、塗布に適した粘度に制御できる点で好ましく、より好ましくは1500質量部である。 The content of the total amount of the organic solvent of the present invention is preferably 50 parts by mass to 2000 parts by mass with respect to 100 parts by mass of the resin (A). It is preferable that it is 50 parts by mass or more from the viewpoint that the polymer dissolves in the organic solvent without precipitation, and more preferably 100 parts by mass or more. It is preferable that it is 2000 parts by mass or less in that it can be controlled to have a viscosity suitable for coating, and more preferably 1500 parts by mass.
 本発明の感光性樹脂組成物は、必要に応じてキュア後の収縮残膜率を小さくしない範囲でフェノール性水酸基を有する低分子化合物を含有してもよい。フェノール性水酸基を有する低分子化合物を含有することにより、パターン加工時のアルカリ溶解性の調節が容易になる。 The photosensitive resin composition of the present invention may contain a low molecular compound having a phenolic hydroxyl group as long as it does not reduce the shrinkage residual film ratio after curing. By containing the low molecular weight compound having a phenolic hydroxyl group, it is easy to adjust the alkali solubility during pattern processing.
 前記効果発現を目的とする場合に好ましいフェノール性水酸基を有する低分子化合物の含有量は、(A)成分100質量部に対して、好ましくは0.1質量部以上、より好ましくは1質量部以上であり、伸度等機械特性維持の観点で、好ましくは30質量部以下、より好ましくは15質量部以下である。 The content of the low molecular weight compound having a phenolic hydroxyl group that is preferable for the purpose of manifesting the effect is preferably 0.1 parts by mass or more, more preferably 1 part by mass or more with respect to 100 parts by mass of the component (A). From the viewpoint of maintaining mechanical properties such as elongation, it is preferably 30 parts by mass or less, more preferably 15 parts by mass or less.
 本発明の感光性樹脂組成物は、必要に応じて(F)熱架橋剤を含有してもよい。熱架橋剤としては、アルコキシメチル基および/またはメチロール基を少なくとも2つ有する化合物、エポキシ基および/またはオキセタニル基を少なくとも2つ有する化合物が好ましく用いられるが、これらに限定されない。これら化合物を含有することによって、パターニング後のキュア時に(A)成分と縮合反応を起こして架橋構造体となり、硬化膜の伸度等機械特性が向上する。また、熱架橋剤は2種類以上用いてもよく、これによってさらに幅広い設計が可能になる。 The photosensitive resin composition of the present invention may contain a thermal crosslinking agent (F) as necessary. As the thermal crosslinking agent, a compound having at least two alkoxymethyl groups and / or methylol groups and a compound having at least two epoxy groups and / or oxetanyl groups are preferably used, but are not limited thereto. By containing these compounds, a condensation reaction is caused with the component (A) during curing after patterning to form a crosslinked structure, and mechanical properties such as elongation of the cured film are improved. Further, two or more kinds of thermal cross-linking agents may be used, which enables a wider range of designs.
 アルコキシメチル基および/またはメチロール基を少なくとも2つ有する化合物の好ましい例としては、例えば、DML-PC、DML-PEP、DML-OC、DML-OEP、DML-34X、DML-PTBP、DML-PCHP、DML-OCHP、DML-PFP、DML-PSBP、DML-POP、DML-MBOC、DML-MBPC、DML-MTrisPC、DML-BisOC-Z、DML-BisOCHP-Z、DML-BPC、DML-BisOC-P、DMOM-PC、DMOM-PTBP、DMOM-MBPC、TriML-P、TriML-35XL、TML-HQ、TML-BP、TML-pp-BPF、TML-BPE、TML-BPA、TML-BPAF、TML-BPAP、TMOM-BP、TMOM-BPE、TMOM-BPA、TMOM-BPAF、TMOM-BPAP、HML-TPPHBA、HML-TPHAP、HMOM-TPPHBA、HMOM-TPHAP(以上、商品名、本州化学工業(株)製)、“NIKALAC”(登録商標) MX-290、NIKALAC MX-280、NIKALAC MX-270、NIKALAC MX-279、NIKALAC MW-100LM、NIKALAC MX-750LM(以上、商品名、(株)三和ケミカル製)が挙げられ、各社から入手可能である。これらを2種以上含有してもよい。 Preferred examples of the compound having at least two alkoxymethyl groups and / or methylol groups include, for example, DML-PC, DML-PEP, DML-OC, DML-OEP, DML-34X, DML-PTBP, DML-PCHP, DML-OCHP, DML-PFP, DML-PSBP, DML-POP, DML-MBOC, DML-MBPC, DML-MTrisPC, DML-BisOC-Z, DML-BisOCHP-Z, DML-BPC, DML-BisOC-P, DMOM-PC, DMOM-PTBP, DMOM-MBPC, TriML-P, TriML-35XL, TML-HQ, TML-BP, TML-pp-BPF, TML-BPE, TML-BPA, TML-BPAF, TML-BPAP, TMOM-BP, T OM-BPE, TMOM-BPA, TMOM-BPAF, TMOM-BPAP, HML-TPPHBA, HML-TPHAP, HMOM-TPPHBA, HMOM-TPHAP (above, trade name, manufactured by Honshu Chemical Industry Co., Ltd.), “NIKACALAC” ( Registered trademarks) MX-290, NIKALAC MX-280, NIKALAC MX-270, NIKALAC MX-279, NIKALAC MW-100LM, NIKACALAC MX-750LM (above, trade names, manufactured by Sanwa Chemical Co., Ltd.) Is available from Two or more of these may be contained.
 また、エポキシ基および/またはオキセタニル基を少なくとも2つ有する化合物の好ましい例としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールA型オキセタニル樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールF型オキセタニル樹脂、プロピレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、ポリメチル(グリシジロキシプロピル)シロキサン等のエポキシ基含有シリコーンなどを挙げることができるが、これらに限定されない。具体的には、“EPICLON”(登録商標)850-S、EPICLON HP-4032、EPICLON HP-7200、EPICLON HP-820、EPICLON HP-4700、EPICLON EXA-4710、EPICLON HP-4770、EPICLON EXA-859CRP、EPICLON EXA-1514、EPICLON EXA-4880、EPICLON EXA-4850-150、EPICLON EXA-4850-1000、EPICLON EXA-4816、EPICLON EXA-4822(以上商品名、大日本インキ化学工業(株)製)、“リカレジン”(登録商標)BEO-60E(商品名、新日本理化(株)製)、EP-4003S、EP-4000S(商品名、(株)ADEKA製)などが挙げられ、各社から入手可能である。これらを2種以上含有してもよい。 Preferred examples of the compound having at least two epoxy groups and / or oxetanyl groups include, for example, bisphenol A type epoxy resins, bisphenol A type oxetanyl resins, bisphenol F type epoxy resins, bisphenol F type oxetanyl resins, propylene glycol diesters. Examples thereof include, but are not limited to, epoxy group-containing silicones such as glycidyl ether, polypropylene glycol diglycidyl ether, and polymethyl (glycidyloxypropyl) siloxane. Specifically, “EPICLON” (registered trademark) 850-S, EPICLON HP-4032, EPICLON HP-7200, EPICLON HP-820, EPICLON HP-4700, EPICLON EXA-4710, EPICLON HP-4770, EPICLON EXA-859P EPICLON EXA-1514, EPICLON EXA-4880, EPICLON EXA-4850-150, EPICLON EXA-4850-1000, EPICLON EXA-4816, EPICLON EXA-4822 (trade name, manufactured by Dainippon Ink & Chemicals, Inc.) “Lika Resin” (registered trademark) BEO-60E (trade name, manufactured by Shin Nippon Rika Co., Ltd.), EP-4003S, EP-4000S (trade names, Co., Ltd.) ADEKA), and the like, are available from each company. Two or more of these may be contained.
 本発明に用いられる(F)熱架橋剤の含有量は、(A)成分100質量部に対して、好ましくは0.5質量部以上、より好ましくは1質量部以上、さらに好ましくは3質量部以上であり、伸度等機械特性維持の観点で、好ましくは300質量部以下、より好ましくは200質量部以下、さらに好ましくは100質量部以下、さらにより好ましくは70質量部以下、特に好ましくは40質量部以下である。 The content of the (F) thermal crosslinking agent used in the present invention is preferably 0.5 parts by mass or more, more preferably 1 part by mass or more, further preferably 3 parts by mass with respect to 100 parts by mass of the component (A). From the viewpoint of maintaining mechanical properties such as elongation, it is preferably 300 parts by mass or less, more preferably 200 parts by mass or less, still more preferably 100 parts by mass or less, still more preferably 70 parts by mass or less, and particularly preferably 40 parts by mass. It is below mass parts.
 本発明の感光性樹脂組成物は、必要に応じて基板との濡れ性を向上させる目的で界面活性剤、乳酸エチルやプロピレングリコールモノメチルエーテルアセテートなどのエステル類、エタノールなどのアルコール類、シクロヘキサノン、メチルイソブチルケトンなどのケトン類、テトラヒドロフラン、ジオキサンなどのエ-テル類を含有してもよい。 The photosensitive resin composition of the present invention includes surfactants, esters such as ethyl lactate and propylene glycol monomethyl ether acetate, alcohols such as ethanol, cyclohexanone, methyl for the purpose of improving the wettability with the substrate as necessary. Ketones such as isobutyl ketone and ethers such as tetrahydrofuran and dioxane may be contained.
 これらの基板との濡れ性を向上させる目的で用いる化合物の好ましい含有量は、(A)成分100質量部に対して0.001質量部以上であり、適度な膜厚を得る観点で、好ましくは1800質量部以下、より好ましくは1500質量部以下である。 The preferable content of the compound used for the purpose of improving the wettability with these substrates is 0.001 part by mass or more with respect to 100 parts by mass of the component (A), preferably from the viewpoint of obtaining an appropriate film thickness. It is 1800 parts by mass or less, more preferably 1500 parts by mass or less.
 本発明の感光性樹脂組成物は無機粒子を含んでもよい。好ましい具体例としては酸化珪素、酸化チタン、チタン酸バリウム、アルミナ、タルクなどが挙げられるがこれらに限定されない。 The photosensitive resin composition of the present invention may contain inorganic particles. Preferred specific examples include, but are not limited to, silicon oxide, titanium oxide, barium titanate, alumina, talc and the like.
 これら無機粒子の平均一次粒子径は感光性の観点から好ましくは1nm以上100nm以下、更に好ましくは10nm以上60nm以下である。これら無機粒子の個々の粒子径は、走査型電子顕微鏡、たとえば日本電子(株)社製走査型電子顕微鏡、JSM-6301NFにて測長できる。尚、平均一次粒子径は、写真から無作為に選んだ100個の粒子の直径を測長し、その算術平均を求めることにより算出できる。 The average primary particle size of these inorganic particles is preferably from 1 nm to 100 nm, more preferably from 10 nm to 60 nm, from the viewpoint of photosensitivity. The individual particle diameters of these inorganic particles can be measured with a scanning electron microscope, for example, a scanning electron microscope manufactured by JEOL Ltd., JSM-6301NF. The average primary particle diameter can be calculated by measuring the diameter of 100 particles randomly selected from the photograph and obtaining the arithmetic average thereof.
 また、シリコン基板との接着性を高めるために保存安定性を損なわない範囲で、トリメトキシアミノプロピルシラン、トリメトキシエポキシシラン、トリメトキシビニルシラン、トリメトキシチオールプロピルシランなどのシランカップリング剤を含有してもよい。 It also contains a silane coupling agent such as trimethoxyaminopropyl silane, trimethoxy epoxy silane, trimethoxy vinyl silane, trimethoxy thiol propyl silane as long as storage stability is not impaired in order to enhance adhesion to the silicon substrate. May be.
 これらのシリコン基板との接着性を高めるために用いる化合物の好ましい含有量は、(A)成分100質量部に対して0.01質量部以上であり、伸度等機械特性維持の観点で、好ましくは5質量部以下である。 The preferable content of the compound used for enhancing the adhesion to these silicon substrates is 0.01 parts by mass or more with respect to 100 parts by mass of the component (A), which is preferable from the viewpoint of maintaining mechanical properties such as elongation. Is 5 parts by mass or less.
 本発明の感光性樹脂組成物の粘度は、2~5000mPa・sが好ましい。粘度が2mPa・s以上となるように固形分濃度を調整することにより、所望の膜厚を得ることが容易になる。一方粘度が5000mPa・s以下であれば、均一性の高い塗布膜を得ることが容易になる。このような粘度を有する樹脂組成物は、例えば固形分濃度を5~60質量%にすることで容易に得ることができる。
 次に、本発明の感光性樹脂組成物を用いて樹脂パターンを形成する方法について説明する。
The viscosity of the photosensitive resin composition of the present invention is preferably 2 to 5000 mPa · s. By adjusting the solid content concentration so that the viscosity is 2 mPa · s or more, it becomes easy to obtain a desired film thickness. On the other hand, when the viscosity is 5000 mPa · s or less, it becomes easy to obtain a highly uniform coating film. A resin composition having such a viscosity can be easily obtained, for example, by setting the solid content concentration to 5 to 60% by mass.
Next, a method for forming a resin pattern using the photosensitive resin composition of the present invention will be described.
 本発明の感光性樹脂組成物を基板に塗布する。基板としてはシリコン、セラミックス類、ガリウムヒ素などのウェハ、または、その上に金属が電極、配線として形成されているものが用いられるが、これらに限定されない。塗布方法としてはスピンナを用いた回転塗布、スプレー塗布、ロールコーティングなどの方法がある。また、塗布膜厚は、塗布手法、組成物の固形分濃度、粘度などによって異なるが、通常、乾燥後の膜厚が0.1~150μmになるように塗布される。 The photosensitive resin composition of the present invention is applied to the substrate. As the substrate, a wafer made of silicon, ceramics, gallium arsenide, or the like on which a metal is formed as an electrode or wiring is used, but is not limited thereto. Examples of the application method include spin coating using a spinner, spray coating, and roll coating. The coating film thickness varies depending on the coating method, the solid content concentration of the composition, the viscosity, and the like, but is usually applied so that the film thickness after drying is 0.1 to 150 μm.
 シリコンウェハなどの基板と感光性樹脂組成物との接着性を高めるために、基板を前述のシランカップリング剤で前処理することもできる。例えば、シランカップリング剤をイソプロパノール、エタノール、メタノール、水、テトラヒドロフラン、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテル、乳酸エチル、アジピン酸ジエチルなどの溶媒に0.5~20質量%溶解させた溶液を、スピンコート、浸漬、スプレー塗布、蒸気処理などにより表面処理をする。場合によっては、その後50~300℃の熱処理を行い、基板とシランカップリング剤との反応を進行させる。 In order to enhance the adhesion between a substrate such as a silicon wafer and the photosensitive resin composition, the substrate can be pretreated with the above-described silane coupling agent. For example, a solution obtained by dissolving 0.5 to 20% by mass of a silane coupling agent in a solvent such as isopropanol, ethanol, methanol, water, tetrahydrofuran, propylene glycol monomethyl ether acetate, propylene glycol monomethyl ether, ethyl lactate, diethyl adipate, etc. Surface treatment is performed by spin coating, dipping, spray coating, steam treatment or the like. In some cases, a heat treatment at 50 to 300 ° C. is then performed to advance the reaction between the substrate and the silane coupling agent.
 次に、本発明の感光性樹脂組成物を用いて感光性樹脂パターンを形成する方法について説明する。本発明の硬化膜のレリーフパターンの製造方法は、感光性樹脂組成物を基板上に塗布し、または感光性樹脂シートを基板上にラミネートし、乾燥して感光性樹脂膜を形成する工程、マスクを介して、または直接描画装置を用いて感光性樹脂膜を露光する工程、露光後の感光性樹脂膜をアルカリ溶液で現像する工程、および現像後の感光性樹脂膜の加熱処理工程を含む。 Next, a method for forming a photosensitive resin pattern using the photosensitive resin composition of the present invention will be described. A method for producing a relief pattern of a cured film according to the present invention includes a step of applying a photosensitive resin composition on a substrate or laminating a photosensitive resin sheet on a substrate and drying to form a photosensitive resin film, a mask Or a step of exposing the photosensitive resin film using a direct drawing apparatus, a step of developing the exposed photosensitive resin film with an alkaline solution, and a heat treatment step of the photosensitive resin film after development.
 まず、本発明の感光性樹脂組成物、またはそれからなる感光性シートを用いて、基板上に感光性樹脂組成物膜を形成する方法について説明する。
 感光性樹脂組成物を用いる場合は、まず感光性樹脂組成物からなるワニスを基板上に塗布する。塗布方法としてはスピンナを用いた回転塗布、スプレー塗布、ロールコーティング、スリットコート、スクリーン印刷などの方法が挙げられる。また、塗布膜厚は、塗布手法、樹脂組成物の固形分濃度および粘度などによって異なるが、通常、乾燥後の膜厚が0.5μm以上100μm以下になるように塗布することが好ましい。次に、感光性樹脂組成物ワニスを塗布した基板を乾燥して、感光性樹脂組成物膜を得る。乾燥はオーブン、ホットプレート、赤外線などを使用することができる。乾燥温度および乾燥時間は、有機溶媒を揮発させることが可能な範囲であればよく、感光性樹脂組成物膜が未硬化または半硬化状態となるような範囲を適宜設定することが好ましい。具体的には、50~150℃の範囲で1分から数時間行うのが好ましい。
First, a method for forming a photosensitive resin composition film on a substrate using the photosensitive resin composition of the present invention or a photosensitive sheet comprising the same will be described.
When using the photosensitive resin composition, first, a varnish made of the photosensitive resin composition is applied on the substrate. Examples of the coating method include spin coating using a spinner, spray coating, roll coating, slit coating, and screen printing. Further, the coating film thickness varies depending on the coating technique, the solid content concentration and the viscosity of the resin composition, etc., but it is usually preferable that the coating film thickness is 0.5 μm or more and 100 μm or less after drying. Next, the substrate coated with the photosensitive resin composition varnish is dried to obtain a photosensitive resin composition film. For drying, an oven, a hot plate, infrared rays, or the like can be used. The drying temperature and drying time may be in a range where the organic solvent can be volatilized, and it is preferable to appropriately set a range in which the photosensitive resin composition film is in an uncured or semi-cured state. Specifically, it is preferably performed in the range of 50 to 150 ° C. for 1 minute to several hours.
 一方、本発明の感光樹脂組成物を感光性樹脂シートとする場合には、支持フィルム上に塗布、乾燥させ感光性樹脂シートを形成することが好ましい。用いる支持フィルムは、特に限定されないが、ポリエチレンテレフタレート(PET)フィルム、ポリフェニレンサルファイドフィルム、ポリイミドフィルムなど、通常市販されている各種のフィルムが使用可能である。支持フィルムと感光性樹脂シートとの接合面には、密着性と剥離性を向上させるために、シリコーン、シランカップリング剤、アルミキレート剤、ポリ尿素などの表面処理を施してもよい。また、支持フィルムの厚みは特に限定されないが、作業性の観点から、10~100μmの範囲であることが好ましい。支持フィルム上に塗布された感光性樹脂組成物は、乾燥工程を経る。乾燥温度は乾燥性の観点から50℃以上であることが好ましく、感光性を損なわない観点から150℃以下であることが好ましい。この際、感光性樹脂シートの膜厚は、ラミネート時の段差埋め込み性の観点から5μm以上であることが好ましく、膜厚均一性の観点から150μm以下であることが好ましい。 On the other hand, when the photosensitive resin composition of the present invention is used as a photosensitive resin sheet, it is preferably applied to a support film and dried to form a photosensitive resin sheet. Although the support film to be used is not particularly limited, various commercially available films such as a polyethylene terephthalate (PET) film, a polyphenylene sulfide film, and a polyimide film can be used. The bonding surface between the support film and the photosensitive resin sheet may be subjected to a surface treatment such as silicone, a silane coupling agent, an aluminum chelating agent, or polyurea in order to improve adhesion and peelability. The thickness of the support film is not particularly limited, but is preferably in the range of 10 to 100 μm from the viewpoint of workability. The photosensitive resin composition coated on the support film undergoes a drying process. The drying temperature is preferably 50 ° C. or higher from the viewpoint of drying properties, and is preferably 150 ° C. or lower from the viewpoint of not impairing photosensitivity. At this time, the film thickness of the photosensitive resin sheet is preferably 5 μm or more from the viewpoint of step embedding during lamination, and is preferably 150 μm or less from the viewpoint of film thickness uniformity.
 また、本発明の感光性樹脂シートは、表面を保護するために、シート上に保護フィルムを有してもよい。これにより、大気中のゴミやチリ等の汚染物質から感光性樹脂シート表面を保護することができる。
 保護フィルムとしては、ポリオレフィンフィルム、ポリエステルフィルム等が挙げられる。保護フィルムは、感光性樹脂シートとの接着力が小さいものが好ましい。
Moreover, in order to protect the surface, the photosensitive resin sheet of this invention may have a protective film on a sheet | seat. Thereby, the photosensitive resin sheet surface can be protected from contaminants such as dust and dust in the atmosphere.
Examples of the protective film include polyolefin films and polyester films. The protective film preferably has a small adhesive force with the photosensitive resin sheet.
 得られた感光性樹脂シートは基板に貼りあわせる。基板としては、シリコン、セラミックス類、ガリウムヒ素などのウェハ、または、その上に金属が電極、配線として形成されているものが用いられるが、これらに限定されない。感光性樹脂シートが保護フィルムを有する場合にはこれを剥離し、感光性樹脂シートと基板を対向させ、熱圧着により貼り合わせて、感光性樹脂組成物膜を得る。熱圧着は、熱プレス処理、熱ラミネート処理、熱真空ラミネート処理等によって行うことができる。貼り合わせ温度は、基板への密着性、埋め込み性の点から40℃以上が好ましい。また、貼り合わせ時に感光性樹脂シートが硬化し、露光・現像工程におけるパターン形成の解像度が悪くなることを防ぐために、貼り合わせ温度は150℃以下が好ましい。 The obtained photosensitive resin sheet is bonded to the substrate. As the substrate, a wafer made of silicon, ceramics, gallium arsenide, or the like on which a metal is formed as an electrode or wiring is used, but is not limited thereto. When the photosensitive resin sheet has a protective film, it is peeled off, and the photosensitive resin sheet and the substrate are opposed to each other and bonded together by thermocompression bonding to obtain a photosensitive resin composition film. The thermocompression bonding can be performed by a heat press process, a heat laminating process, a heat vacuum laminating process, or the like. The bonding temperature is preferably 40 ° C. or higher from the viewpoint of adhesion to the substrate and embedding. Further, the bonding temperature is preferably 150 ° C. or lower in order to prevent the photosensitive resin sheet from being cured at the time of bonding and deteriorating the resolution of pattern formation in the exposure / development process.
 本発明の感光性樹脂組成物から形成された感光性樹脂シート、または感光性樹脂組成物を硬化した硬化膜は、この硬化膜中における(D)1013hPaにおける沸点が200℃以上260℃以下の有機溶媒の量が、硬化膜の総質量に対して、好ましくは0.005質量%以上、より好ましくは0.01質量%以上であり、好ましくは1質量%以下、より好ましくは0.5質量%以下であるとよい。(D)成分を0.005質量%以上とすることで、銅基板との密着性が更に向上し、1質量%以下とすることで、(D)成分自身がアウトガスとなり信頼性を損なわないようにすることができる。硬化膜中の(D)成分の質量%は、採取した硬化膜をパージ・アンド・トラップ法やTPD-MS法等にて、該化合物の質量を測定し、その値をアルカリ可溶性樹脂(A)成分の比重から計算することで、硬化膜中における該化合物の質量%を算出することができる。 The photosensitive resin sheet formed from the photosensitive resin composition of the present invention, or a cured film obtained by curing the photosensitive resin composition, is an organic material having a boiling point of 200 to 260 ° C. at (D) 1013 hPa in the cured film. The amount of the solvent is preferably 0.005% by mass or more, more preferably 0.01% by mass or more, preferably 1% by mass or less, more preferably 0.5% by mass with respect to the total mass of the cured film. It may be the following. By making the component (D) 0.005% by mass or more, the adhesion to the copper substrate is further improved, and by making it 1% by mass or less, the component (D) itself becomes outgas so as not to impair the reliability. Can be. The mass% of the component (D) in the cured film is determined by measuring the mass of the collected cured film by the purge-and-trap method, the TPD-MS method, etc., and determining the value as the alkali-soluble resin (A). By calculating from the specific gravity of the component, the mass% of the compound in the cured film can be calculated.
 感光性樹脂組成物を基板上に塗布し乾燥して感光性樹脂膜を形成する工程、または感光性樹脂シートを基板上にラミネートし乾燥して感光性樹脂膜を形成する工程、いずれの場合にも、用いられる基板は、ガラス基板、シリコンウェハ、セラミックス類、ガリウムヒ素、有機系回路基板、無機系回路基板、およびこれらの基板に回路の構成材料が配置されたものなどが挙げられるが、これらに限定されない。有機系回路基板の例としては、ガラス布・エポキシ銅張積層板などのガラス基板銅張積層板、ガラス不織布・エポキシ銅張積層板などのコンポジット銅張積層板、ポリエーテルイミド樹脂基板、ポリエーテルケトン樹脂基板、ポリサルフォン系樹脂基板などの耐熱・熱可塑性基板、ポリエステル銅張フィルム基板、ポリイミド銅張フィルム基板などのフレキシブル基板が挙げられる。また、無機系回路基板の例は、アルミナ基板、窒化アルミニウム基板、炭化ケイ素基板などのセラミック基板、アルミニウムベース基板、鉄ベース基板などの金属系基板が挙げられる。回路の構成材料の例は、銀、金、銅などの金属を含有する導体、無機系酸化物などを含有する抵抗体、ガラス系材料および/または樹脂などを含有する低誘電体、樹脂や高誘電率無機粒子などを含有する高誘電体、ガラス系材料などを含有する絶縁体などが挙げられる。 In either case, the photosensitive resin composition is applied on a substrate and dried to form a photosensitive resin film, or the photosensitive resin sheet is laminated on the substrate and dried to form a photosensitive resin film. Examples of substrates used include glass substrates, silicon wafers, ceramics, gallium arsenide, organic circuit substrates, inorganic circuit substrates, and those in which circuit materials are arranged on these substrates. It is not limited to. Examples of organic circuit boards include: glass substrate copper-clad laminates such as glass cloth / epoxy copper-clad laminates, composite copper-clad laminates such as glass nonwoven fabrics / epoxy copper-clad laminates, polyetherimide resin substrates, polyethers Examples include heat-resistant / thermoplastic substrates such as ketone resin substrates and polysulfone resin substrates, polyester copper-clad film substrates, and polyimide copper-clad film substrates. Examples of the inorganic circuit board include ceramic substrates such as an alumina substrate, an aluminum nitride substrate, and a silicon carbide substrate, and metal substrates such as an aluminum base substrate and an iron base substrate. Examples of circuit components include conductors containing metals such as silver, gold and copper, resistors containing inorganic oxides, low dielectrics containing glass materials and / or resins, resins and high Examples thereof include high dielectric materials containing dielectric constant inorganic particles, insulators containing glass-based materials, and the like.
 次に、上記方法によって形成された感光性樹脂膜上に、所望のパターンを有するマスクを通して化学線を照射し、露光する、もしくは直接描画装置を用いてマスクを介さずに露光する。露光に用いられる化学線としては紫外線、可視光線、電子線、X線、YAGレーザーなどがあるが、本発明では水銀灯のi線(365nm)、h線(405nm)、g線(436nm)などの紫外線を用いるのが好ましい。感光性シートにおいて、支持体がこれらの光線に対して透明な材質である場合は、感光性シートから支持体を剥離せずに露光を行ってもよい。 Next, the photosensitive resin film formed by the above method is irradiated with actinic radiation through a mask having a desired pattern and exposed, or exposed directly without using a mask using a drawing apparatus. Actinic rays used for exposure include ultraviolet rays, visible rays, electron beams, X-rays, YAG lasers, etc., but in the present invention, such as i-rays (365 nm), h-rays (405 nm), and g-rays (436 nm) of mercury lamps. It is preferable to use ultraviolet rays. In the photosensitive sheet, when the support is made of a material transparent to these rays, the exposure may be performed without peeling the support from the photosensitive sheet.
 パターンを形成するには、露光後、現像液を用いて未露光部を除去する。現像液としては、水酸化テトラメチルアンモニウムの水溶液、ジエタノールアミン、ジエチルアミノエタノール、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム、トリエチルアミン、ジエチルアミン、メチルアミン、ジメチルアミン、酢酸ジメチルアミノエチル、ジメチルアミノエタノール、ジメチルアミノエチルメタクリレート、シクロヘキシルアミン、エチレンジアミン、ヘキサメチレンジアミンなどのアルカリ性を示す化合物の水溶液が好ましい。また場合によっては、これらのアルカリ水溶液にN-メチル-2-ピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド、γ-ブチロラクトン、ジメチルアクリルアミドなどの極性溶媒、メタノール、エタノール、イソプロパノールなどのアルコール類、乳酸エチル、プロピレングリコールモノメチルエーテルアセテートなどのエステル類、シクロペンタノン、シクロヘキサノン、イソブチルケトン、メチルイソブチルケトンなどのケトン類などを単独あるいは数種を組み合わせたものを含有してもよい。 To form a pattern, after exposure, the unexposed area is removed using a developer. As developer, aqueous solution of tetramethylammonium hydroxide, diethanolamine, diethylaminoethanol, sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, triethylamine, diethylamine, methylamine, dimethylamine, dimethylaminoethyl acetate, dimethylaminoethanol An aqueous solution of a compound exhibiting alkalinity such as dimethylaminoethyl methacrylate, cyclohexylamine, ethylenediamine, hexamethylenediamine and the like is preferable. In some cases, these alkaline aqueous solutions may contain polar solvents such as N-methyl-2-pyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, γ-butyrolactone, dimethylacrylamide, methanol, ethanol, Contains alcohols such as isopropanol, esters such as ethyl lactate and propylene glycol monomethyl ether acetate, ketones such as cyclopentanone, cyclohexanone, isobutyl ketone, and methyl isobutyl ketone alone or in combination of several kinds Good.
 現像は上記の現像液を被膜面にスプレーする、現像液中に浸漬する、あるいは浸漬しながら超音波をかける、基板を回転させながら現像液をスプレーするなどの方法によって行うことができる。現像時間や現像ステップ現像液の温度といった、現像時の条件は、未露光部が除去される条件であればよく、微細なパターンを加工したり、パターン間の残渣を除去するために、未露光部が除去されてからさらに現像を行うことが好ましい。 Development can be carried out by spraying the developer on the coating surface, immersing in the developer, applying ultrasonic waves while immersing, or spraying the developer while rotating the substrate. The development conditions such as the development time and the temperature of the development step developer may be any conditions that can remove the unexposed areas. In order to process fine patterns or remove residues between patterns, It is preferable to further develop after the portion has been removed.
 現像後は水にてリンス処理をしてもよい。ここでもエタノール、イソプロピルアルコールなどのアルコール類、乳酸エチル、プロピレングリコールモノメチルエーテルアセテートなどのエステル類などを水に加えてリンス処理をしても良い。 Rinsing with water may be performed after development. Here, alcohols such as ethanol and isopropyl alcohol, and esters such as ethyl lactate and propylene glycol monomethyl ether acetate may be added to water for rinsing treatment.
 現像時のパターンの解像度が向上したり、現像条件の許容幅が増大する場合には、現像前にベーク処理をする工程を取り入れても差し支えない。この温度としては50~180℃の範囲が好ましく、特に80~150℃の範囲がより好ましい。時間は5秒~数時間が好ましい。 If the pattern resolution at the time of development is improved or the allowable range of development conditions is increased, a process of baking before development may be incorporated. This temperature is preferably in the range of 50 to 180 ° C, and more preferably in the range of 80 to 150 ° C. The time is preferably 5 seconds to several hours.
 パターン形成後、感光性樹脂膜中に残存する溶剤、揮発分、水を低減する観点から、70~150℃の範囲で加熱乾燥しても良い。時間は1分~数時間が好ましい。 After the pattern formation, from the viewpoint of reducing the solvent, volatile matter, and water remaining in the photosensitive resin film, heat drying may be performed in the range of 70 to 150 ° C. The time is preferably 1 minute to several hours.
 このようにして得られた、パターン加工された感光性樹脂膜が形成された基板を150℃から450℃の温度をかけて硬化膜にする。この加熱処理は温度を選び、段階的に昇温するか、ある温度範囲を選び連続的に昇温しながら5分から10時間実施する。一例としては、110℃、250℃で各60分ずつ熱処理する方法、室温より220℃まで2時間かけて直線的に昇温する方法などが挙げられる。この際、高温の加熱やその繰り返しにより、素子の電気特性が変化する恐れや、基板の反りが大きくなる恐れがあるため、加熱処理は250℃以下で行われることが好ましい。また、架橋による耐薬品性の付与や密着改良剤と基板の相互作用を得るためには、加熱処理は、150℃以上で行われることがより好ましい。本発明における感光性樹脂組成物は、250℃以下の低温焼成においても、密着性に優れた硬化膜を得ることができる。 The substrate on which the patterned photosensitive resin film thus obtained is formed is cured at a temperature of 150 ° C. to 450 ° C. This heat treatment is carried out for 5 minutes to 10 hours by selecting the temperature and increasing the temperature stepwise or by selecting a certain temperature range and continuously increasing the temperature. As an example, a method of performing heat treatment at 110 ° C. and 250 ° C. for 60 minutes each, a method of linearly raising the temperature from room temperature to 220 ° C. over 2 hours, and the like can be mentioned. At this time, it is preferable that the heat treatment be performed at 250 ° C. or lower because there is a risk that the electrical characteristics of the element may change due to high-temperature heating or repetition thereof, and warping of the substrate may increase. In addition, in order to impart chemical resistance by crosslinking and obtain an interaction between the adhesion improving agent and the substrate, the heat treatment is more preferably performed at 150 ° C. or higher. The photosensitive resin composition in the present invention can provide a cured film having excellent adhesion even at low temperature baking of 250 ° C. or lower.
 本発明の感光性樹脂組成物や感光性シートを硬化した硬化膜は、半導体装置や半導体電子部品に使用することができる。本発明でいう半導体装置とは、記憶装置(メモリー)や、中央処理装置(CPU)に代表される装置を示し、半導体チップを再配線層と呼ばれる多層配線で接続し、エポキシ等の封止樹脂を用いてパッケージされたものである。ここで半導体チップとは回路素子を有するSiウェハ等を指す。また本発明でいう半導体電子部品とは特定の周波数を取り出す装置(表面弾性波フィルター)や、インダクタ、コンダクタを指す。本発明でいう半導体装置とは、半導体素子の特性を利用することで機能し得る装置全般を指す。半導体素子を基板に接続した電気光学装置や半導体回路基板、複数の半導体素子を積層したもの、並びにこれらを含む電子装置は、全て半導体装置に含まれる。また、半導体素子を接続するための多層配線板等の電子部品も半導体装置に含める。具体的には、半導体のパッシベーション膜、半導体素子の表面保護膜、半導体素子と配線の間の層間絶縁膜、複数の半導体素子の間の層間絶縁膜、高密度実装用多層配線の配線層間の層間絶縁膜、有機電界発光素子の絶縁層などの用途に好適に用いられるが、これに制限されず、様々な用途に用いることができる。 The cured film obtained by curing the photosensitive resin composition or photosensitive sheet of the present invention can be used for semiconductor devices and semiconductor electronic components. The semiconductor device referred to in the present invention refers to a device represented by a storage device (memory) or a central processing unit (CPU), in which semiconductor chips are connected by a multilayer wiring called a rewiring layer, and a sealing resin such as epoxy Packaged using. Here, the semiconductor chip refers to a Si wafer having circuit elements. The semiconductor electronic component referred to in the present invention refers to a device (surface acoustic wave filter) for extracting a specific frequency, an inductor, and a conductor. The semiconductor device referred to in the present invention refers to all devices that can function by utilizing the characteristics of semiconductor elements. An electro-optical device and a semiconductor circuit substrate in which a semiconductor element is connected to a substrate, a stack of a plurality of semiconductor elements, and an electronic device including these are all included in the semiconductor device. Further, electronic components such as a multilayer wiring board for connecting semiconductor elements are also included in the semiconductor device. Specifically, a semiconductor passivation film, a surface protection film of a semiconductor element, an interlayer insulating film between a semiconductor element and a wiring, an interlayer insulating film between a plurality of semiconductor elements, and an interlayer between wiring layers of a multilayer wiring for high-density mounting Although used suitably for uses, such as an insulating film and an insulating layer of an organic electroluminescent element, it is not restricted to this but can be used for various uses.
 次に、本発明の感光性樹脂組成物の、バンプを有する半導体装置への応用例について図面を用いて説明する。図1は、バンプを有する半導体装置のパッド部分の拡大断面図である。図1に示すように、シリコンウェハ1には入出力用のAlパッド2上にパッシベーション膜3が形成され、そのパッシベーション膜3にビアホールが形成されている。さらに、この上に本発明の感光性樹脂組成物を用いて形成された絶縁膜4が形成され、さらに、Cr、Ti等からなる金属膜5がAlパッド2と接続されるように形成されている。その金属膜5のハンダバンプ10の周辺をエッチングすることにより、各パッド間を絶縁する。絶縁されたパッドにはバリアメタル8とハンダバンプ10が形成されている。感光性樹脂組成物に柔軟成分を導入した場合は、ウェハの反りが小さいため、露光やウェハの運搬を高精度に行うことができる。また、ポリイミド樹脂やポリベンゾオキサゾール樹脂は機械特性にも優れるため、実装時も封止樹脂からの応力を緩和することできるため、low-k層(低誘電率層)のダメージを防ぎ、高信頼性の半導体装置を提供できる。 Next, application examples of the photosensitive resin composition of the present invention to a semiconductor device having bumps will be described with reference to the drawings. FIG. 1 is an enlarged cross-sectional view of a pad portion of a semiconductor device having bumps. As shown in FIG. 1, a passivation film 3 is formed on an input / output Al pad 2 in a silicon wafer 1, and a via hole is formed in the passivation film 3. Further, an insulating film 4 formed using the photosensitive resin composition of the present invention is formed thereon, and further a metal film 5 made of Cr, Ti or the like is formed so as to be connected to the Al pad 2. Yes. By etching the periphery of the solder bump 10 of the metal film 5, the pads are insulated from each other. A barrier metal 8 and a solder bump 10 are formed on the insulated pad. When a flexible component is introduced into the photosensitive resin composition, since the warpage of the wafer is small, exposure and transportation of the wafer can be performed with high accuracy. In addition, polyimide resin and polybenzoxazole resin also have excellent mechanical properties, so stress from the sealing resin can be relaxed even during mounting, preventing damage to the low-k layer (low dielectric constant layer) and high reliability. The semiconductor device can be provided.
 次に、バンプを有する半導体装置の詳細な作成方法について記す。図2の2aの工程において、Alパッド2およびパッシベーション膜3が形成されたシリコンウェハ1上に本発明の感光性樹脂組成物を塗布し、フォトリソ工程を経て、パターン形成された絶縁膜4を形成する。ついで2bの工程において金属膜5をスパッタリング法で形成する。図2の2cに示すように、金属膜5の上に金属配線6をメッキ法で成膜する。次に、図2の2d’に示すように、本発明の感光性樹脂組成物を塗布し、フォトリソ工程を経て図2の2dに示すようなパターンとして絶縁膜7を形成する。この際に、絶縁膜7の感光性樹脂組成物はスクライブライン9において、厚膜加工を行うことになる。絶縁膜7の上にさらに配線(いわゆる再配線)を形成することができる。2層以上の多層配線構造を形成する場合は、上記の工程を繰り返して行うことにより、2層以上の再配線が、本発明の感光性樹脂組成物から得られた層間絶縁膜により分離された多層配線構造を形成することができる。この際、形成された絶縁膜は複数回にわたり各種薬液と接触することになるが、本発明の感光性樹脂組成物から得られた絶縁膜は密着性と耐薬品性に優れているために、良好な多層配線構造を形成することができる。多層配線構造の層数には上限はないが、10層以下のものが多く用いられる。 Next, a detailed method for creating a semiconductor device having bumps will be described. 2A, the photosensitive resin composition of the present invention is applied to the silicon wafer 1 on which the Al pad 2 and the passivation film 3 are formed, and a patterned insulating film 4 is formed through a photolithography process. To do. Next, in the step 2b, the metal film 5 is formed by the sputtering method. As shown in 2c of FIG. 2, a metal wiring 6 is formed on the metal film 5 by a plating method. Next, as shown by 2d 'in FIG. 2, the photosensitive resin composition of the present invention is applied, and an insulating film 7 is formed as a pattern as shown in 2d of FIG. 2 through a photolithography process. At this time, the photosensitive resin composition of the insulating film 7 is subjected to thick film processing in the scribe line 9. A wiring (so-called rewiring) can be further formed on the insulating film 7. In the case of forming a multilayer wiring structure having two or more layers, by repeating the above process, two or more layers of rewiring were separated by an interlayer insulating film obtained from the photosensitive resin composition of the present invention. A multilayer wiring structure can be formed. At this time, the formed insulating film will come into contact with various chemicals multiple times, but since the insulating film obtained from the photosensitive resin composition of the present invention is excellent in adhesion and chemical resistance, A good multilayer wiring structure can be formed. There is no upper limit to the number of layers in the multilayer wiring structure, but 10 or fewer layers are often used.
 次いで、図2の2eおよび2fに示すように、バリアメタル8、ハンダバンプ10を形成する。そして、スクライブライン9に沿ってダイシングしてチップ毎に切り分ける。絶縁膜7がスクライブライン9においてパターンが形成されていない、または残渣が残っていた場合は、ダイシングの際クラック等が発生し、チップの信頼性に影響する。このため、本発明のように、厚膜加工に優れたパターン加工を提供できることは、半導体装置の高信頼性を得るために非常に好ましい。 Next, as shown in 2e and 2f of FIG. 2, a barrier metal 8 and a solder bump 10 are formed. Then, the wafer is diced along the scribe line 9 and cut into chips. If the insulating film 7 has no pattern formed on the scribe line 9 or a residue remains, cracks or the like occur during dicing, which affects the reliability of the chip. For this reason, it is very preferable to provide pattern processing excellent in thick film processing as in the present invention in order to obtain high reliability of the semiconductor device.
 また、本発明の感光性樹脂組成物や感光性シートは、ファンアウトウェハレベルパッケージ(ファンアウトWLP)にも好適に用いられる。ファンアウトWLPは、半導体チップの周辺にエポキシ樹脂等の封止樹脂を用いて拡張部分を設け、半導体チップ上の電極から該拡張部分まで再配線を施し、拡張部分にもはんだボールを搭載することで必要な端子数を確保した半導体パッケージである。ファンアウトWLPにおいては、半導体チップの主面と封止樹脂の主面とが形成する境界線を跨ぐように配線が設置される。すなわち、金属配線が施された半導体チップおよび封止樹脂という2種以上の材料から構成される基材の上に層間絶縁膜が形成され、該層間絶縁膜の上に配線が形成される。これ以外にも、半導体チップをガラスエポキシ樹脂基板に形成された凹部に埋め込んだタイプの半導体パッケージでは、半導体チップの主面とプリント基板の主面との境界線を跨ぐように配線が設置される。この態様においても、2種以上の材料から構成される基材の上に層間絶縁膜が形成され、該層間絶縁膜の上に配線が形成される。本発明の感光性樹脂組成物や感光性シートを硬化してなる硬化膜は、金属配線が施された半導体チップに高い密着力を有するとともに、エポキシ樹脂等へ封止樹脂にも高い密着力を有するため、2種以上の材料から構成される基材の上に設ける層間絶縁膜として好適に用いられる。 Further, the photosensitive resin composition and photosensitive sheet of the present invention are also suitably used for fan-out wafer level packages (fan-out WLP). The fan-out WLP is provided with an extended portion using a sealing resin such as epoxy resin around the semiconductor chip, rewiring from the electrode on the semiconductor chip to the extended portion, and mounting a solder ball on the extended portion. This is a semiconductor package that secures the necessary number of terminals. In the fan-out WLP, wiring is installed so as to straddle the boundary line formed by the main surface of the semiconductor chip and the main surface of the sealing resin. That is, an interlayer insulating film is formed on a base material composed of two or more materials such as a semiconductor chip provided with metal wiring and a sealing resin, and wiring is formed on the interlayer insulating film. In addition to this, in a semiconductor package of a type in which a semiconductor chip is embedded in a recess formed in a glass epoxy resin substrate, wiring is installed so as to straddle the boundary line between the main surface of the semiconductor chip and the main surface of the printed circuit board. . Also in this aspect, an interlayer insulating film is formed on a substrate composed of two or more materials, and wiring is formed on the interlayer insulating film. The cured film formed by curing the photosensitive resin composition or photosensitive sheet of the present invention has a high adhesion to a semiconductor chip provided with metal wiring, and also has a high adhesion to an epoxy resin or the like on a sealing resin. Therefore, it is suitably used as an interlayer insulating film provided on a substrate composed of two or more materials.
 また、ファンアウトWLPには、チップファースト(Chip-first)法やRDLファースト(Redistribution Layer-first)法といったプロセスが適用される。 Also, a process such as a chip-first method or a RDL-first (Redistribution Layer-first) method is applied to the fan-out WLP.
 チップファースト法は、上述のように、まず、支持体となる支持ウェハの上面に半導体チップを任意の間隔で配列し、この半導体チップを樹脂で封止して封止ウェハ(疑似ウェハ)を得る。次に、封止ウェハから支持ウェハを分離、除去して、露出させた封止ウェハの面に配線層を形成する。その後、半導体チップ間で封止ウェハを分割することにより、複数のデバイスパッケージが得られる。 In the chip first method, as described above, first, semiconductor chips are arranged at arbitrary intervals on the upper surface of a support wafer serving as a support, and the semiconductor chips are sealed with resin to obtain a sealed wafer (pseudo wafer). . Next, the support wafer is separated and removed from the sealing wafer, and a wiring layer is formed on the exposed surface of the sealing wafer. Then, a plurality of device packages are obtained by dividing the sealing wafer between the semiconductor chips.
 これに対して、RDLファースト法では、まず、支持ウェハの上面に配線層を形成し、この配線層に半導体チップを接合する。次に、半導体チップを樹脂で封止して封止ウェハ(疑似ウェハ)を得る。その後、配線層を含む封止ウェハから支持ウェハを分離、除去して、封止ウェハを半導体チップ間で分割する。このRDLファースト法は、配線層の不良部分を避けて半導体チップを接合できるので、チップファースト法と比較して歩留まりを高め易い。 In contrast, in the RDL first method, first, a wiring layer is formed on the upper surface of the supporting wafer, and a semiconductor chip is bonded to the wiring layer. Next, the semiconductor chip is sealed with resin to obtain a sealed wafer (pseudo wafer). Thereafter, the support wafer is separated and removed from the sealing wafer including the wiring layer, and the sealing wafer is divided between the semiconductor chips. In this RDL first method, a semiconductor chip can be bonded while avoiding a defective portion of the wiring layer, so that the yield is easily increased as compared with the chip first method.
 次にRDLファースト法における半導体装置の作成法について図3を用いて記載する。図3の3aにおいて支持基板11上にTiなどのバリアメタルをスパッタリング法で形成し、更にその上にCuシード(シード層)をスパッタリング法で形成後、メッキ法によって電極パッド12を形成する。ついでの3bの工程において本発明の感光性樹脂組成物を塗布し、フォトリソ工程を経て、パターン形成された絶縁膜13を形成する。ついで3cの工程において再びシード層をスパッタリング法で形成し、メッキ法によって金属配線14(再配線層)を形成する。以降半導体チップの導通部ピッチと金属配線のピッチを合わせるため、3bおよび3cの工程を繰り返し行い、3dに示すような多層配線構造を形成する。これにより、本発明の硬化膜が、再配線間の層間絶縁膜として配置される。ついで3eの工程において再び本発明の感光性樹脂組成物を塗布し、フォトリソ工程を経て、パターン形成された絶縁膜を形成後、Cuポスト15をメッキ法にて形成する。ここでCuポストのピッチと半導体チップの導通部ピッチは等しくなる。すなわち、金属配線ピッチを狭化しながら再配線層を多層化するため、図3の3eに示すように、層間絶縁膜の膜厚は、層間絶縁膜1>層間絶縁膜2>層間絶縁膜3>層間絶縁膜4>となる。すなわち、複数の層間絶縁膜が積層し、これと略平行に半導体チップが配置され、この半導体チップの近くに配置された層間絶縁膜の厚さが、より遠くに配置された層間絶縁膜の厚さよりも薄くなる。ついで3fの工程においてハンダバンプ16を介して半導体チップ17を接続し、多層配線構造を有するRDLファースト法での半導体装置を得ることができる。 Next, a method for manufacturing a semiconductor device in the RDL first method will be described with reference to FIG. In FIG. 3a, a barrier metal such as Ti is formed on the support substrate 11 by sputtering, and a Cu seed (seed layer) is further formed thereon by sputtering, and then an electrode pad 12 is formed by plating. In the subsequent step 3b, the photosensitive resin composition of the present invention is applied, and a patterned insulating film 13 is formed through a photolithography process. Next, in step 3c, a seed layer is formed again by a sputtering method, and a metal wiring 14 (rewiring layer) is formed by a plating method. Thereafter, the steps 3b and 3c are repeated in order to match the pitch of the conductive portion of the semiconductor chip and the pitch of the metal wiring to form a multilayer wiring structure as shown in 3d. Thereby, the cured film of this invention is arrange | positioned as an interlayer insulation film between rewiring. Next, in step 3e, the photosensitive resin composition of the present invention is applied again, and after a photolithography process, a patterned insulating film is formed, and then a Cu post 15 is formed by a plating method. Here, the pitch of the Cu posts is equal to the pitch of the conductive portions of the semiconductor chip. That is, in order to make the rewiring layer multilayer while narrowing the metal wiring pitch, as shown in 3e of FIG. 3, the thickness of the interlayer insulating film is as follows: interlayer insulating film 1> interlayer insulating film 2> interlayer insulating film 3> Interlayer insulating film 4>. That is, a plurality of interlayer insulating films are stacked, a semiconductor chip is disposed substantially parallel to the interlayer insulating film, and the thickness of the interlayer insulating film disposed near the semiconductor chip is the thickness of the interlayer insulating film disposed further away. It will be thinner. Then, in the step 3f, the semiconductor chip 17 is connected through the solder bumps 16 to obtain a semiconductor device by the RDL first method having a multilayer wiring structure.
 本発明の感光性樹脂組成物は有機EL表示装置にも好適に用いられる。該有機EL表示装置は、基板上に、駆動回路、平坦化層、第1電極、絶縁層、発光層および第2電極を有し、駆動回路上の平坦化層および/または第1電極上の絶縁層が本発明の硬化膜からなる。有機EL発光材料は水分による劣化を受けやすく、発光画素の面積に対する発光部の面積率低下など、悪影響を与える場合があるが、本発明の硬化膜は吸水率が低いため、安定した駆動および発光特性が得られる。アクティブマトリックス型の表示装置を例に挙げると、ガラスや各種プラスチックなどの基板上に、TFTと、TFTの側方部に位置しTFTと接続された配線とを有し、その上に凹凸を覆うようにして平坦化層を有し、さらに平坦化層上に表示素子が設けられている。表示素子と配線とは、平坦化層に形成されたコンタクトホールを介して接続される。 The photosensitive resin composition of the present invention is also suitably used for an organic EL display device. The organic EL display device includes a drive circuit, a planarization layer, a first electrode, an insulating layer, a light emitting layer, and a second electrode on a substrate, and the planarization layer and / or the first electrode on the drive circuit. The insulating layer is made of the cured film of the present invention. Organic EL light-emitting materials are susceptible to deterioration due to moisture and may adversely affect the area ratio of the light-emitting portion relative to the area of the light-emitting pixels, but the cured film of the present invention has a low water absorption rate, so stable driving and light emission Characteristics are obtained. Taking an active matrix display device as an example, it has a TFT on a substrate made of glass, various plastics, etc., and a wiring located on a side portion of the TFT and connected to the TFT, and covers unevenness thereon. Thus, the planarization layer is provided, and the display element is provided on the planarization layer. The display element and the wiring are connected through a contact hole formed in the planarization layer.
 図4にTFT基板の一例の断面図を示す。基板23上に、ボトムゲート型またはトップゲート型のTFT(薄膜トランジスタ)18が行列状に設けられており、このTFT18を覆う状態でTFT絶縁層20が形成されている。また、このTFT絶縁層20上にTFT18に接続された配線19が設けられている。さらにTFT絶縁層20上には、配線19を埋め込む状態で平坦化層21が設けられている。平坦化層21には、配線19に達するコンタクトホール24が設けられている。そして、このコンタクトホール24を介して、配線19に接続された状態で、平坦化層21上にITO(透明電極)22が形成されている。ここで、ITO22は、表示素子(例えば有機EL素子)の電極となる。そしてITO22の周縁を覆うように絶縁層25が形成される。有機EL素子は、基板23と反対側から発光光を放出するトップエミッション型でもよいし、基板23側から光を取り出すボトムエミッション型でもよい。このようにして、各有機EL素子にこれを駆動するためのTFT18を接続したアクティブマトリックス型の有機EL表示装置が得られる。 FIG. 4 shows a cross-sectional view of an example of a TFT substrate. On the substrate 23, bottom gate type or top gate type TFTs (thin film transistors) 18 are provided in a matrix, and the TFT insulating layer 20 is formed so as to cover the TFTs 18. A wiring 19 connected to the TFT 18 is provided on the TFT insulating layer 20. Further, a planarizing layer 21 is provided on the TFT insulating layer 20 in a state where the wiring 19 is embedded. A contact hole 24 reaching the wiring 19 is provided in the planarization layer 21. An ITO (transparent electrode) 22 is formed on the planarizing layer 21 while being connected to the wiring 19 through the contact hole 24. Here, the ITO 22 serves as an electrode of a display element (for example, an organic EL element). An insulating layer 25 is formed so as to cover the periphery of the ITO 22. The organic EL element may be a top emission type that emits emitted light from the side opposite to the substrate 23 or a bottom emission type that extracts light from the substrate 23 side. In this manner, an active matrix organic EL display device in which the TFT 18 for driving the organic EL element is connected to each organic EL element is obtained.
 かかる絶縁層20、平坦化層21および/または絶縁層25は、前述の通り本発明の樹脂組成物または樹脂シートからなる感光性樹脂膜を形成する工程、前記感光性樹脂膜を露光する工程、露光した感光性樹脂膜を現像する工程および現像した感光性樹脂膜を加熱処理する工程により形成することができる。これらの工程を有する製造方法より、有機EL表示装置を得ることができる。 As described above, the insulating layer 20, the planarizing layer 21, and / or the insulating layer 25 are a step of forming a photosensitive resin film made of the resin composition or resin sheet of the present invention, a step of exposing the photosensitive resin film, It can form by the process of developing the exposed photosensitive resin film, and the process of heat-processing the developed photosensitive resin film. An organic EL display device can be obtained from the manufacturing method having these steps.
 また半導体装置の製造では、例えば、上述したチップファースト法、RDLファースト法 によって製造された半導体回路形成基板であるシリコン基板を、仮貼り接着剤を用いて支持基板であるシリコン基板、ガラス基板、フィルムなどに接着しウェハ加工体を形成する。その後、非回路形成面(裏面)を研磨して厚み1μm以上100μm以下の半導体回路形成基板とする。 In the manufacture of semiconductor devices, for example, a silicon substrate that is a semiconductor circuit forming substrate manufactured by the chip first method or the RDL first method described above is used as a support substrate using a temporary bonding adhesive, a glass substrate, a film. The wafer processed body is formed by adhering to the above. Thereafter, the non-circuit forming surface (back surface) is polished to obtain a semiconductor circuit forming substrate having a thickness of 1 μm to 100 μm.
 以下、実施例を挙げて本発明を説明するが、本発明はこれらの例によって限定されるものではない。まず、各実施例および比較例における評価方法について説明する。感光性樹脂組成物(以下、「ワニス」と呼ぶ。)の評価においては、あらかじめ1μmのポリテトラフルオロエチレン製のフィルター(住友電気工業(株)製)で濾過したワニスを用いた。 Hereinafter, the present invention will be described with reference to examples, but the present invention is not limited to these examples. First, an evaluation method in each example and comparative example will be described. In the evaluation of the photosensitive resin composition (hereinafter referred to as “varnish”), a varnish previously filtered with a 1 μm polytetrafluoroethylene filter (manufactured by Sumitomo Electric Industries, Ltd.) was used.
 (1)分子量測定
 (A)成分の樹脂の分子量は、GPC(ゲルパーミエーションクロマトグラフィー)装置Waters2690-996(日本ウォーターズ(株)製)を用い、展開溶媒をN-メチル-2-ピロリドン(以降、「NMP」と呼ぶ。)として測定し、ポリスチレン換算で重量平均分子量(Mw)及び分散度(PDI=Mw/Mn)を計算した。(A)成分の樹脂の一般式(1)におけるY成分の分子量は、Y構造を含むジアミンモノマーに関して、LC-MS(Q Exactive、Thermo SCIENTIFIC, Inc.製)で測定し、主要シグナルの分子量として求めることができる。
(1) Molecular weight measurement The molecular weight of the resin of component (A) was measured using a GPC (gel permeation chromatography) apparatus Waters 2690-996 (manufactured by Nippon Waters Co., Ltd.), and the developing solvent was N-methyl-2-pyrrolidone (hereinafter referred to as “the developing solvent”). The weight average molecular weight (Mw) and dispersity (PDI = Mw / Mn) were calculated in terms of polystyrene. The molecular weight of the Y 2 component in the general formula (1) of the component (A) resin is measured by LC-MS (Q Exactive, Thermo SCIENTIFIC, Inc.) for the diamine monomer containing the Y 2 structure. The molecular weight can be obtained.
 (2)膜厚の測定方法
 プリベーク後、大日本スクリーン製造(株)製ラムダエースSTM-602を使用し、ポリイミドを基準とし、プリベーク後の膜は屈折率1.629として、キュア後の膜は屈折率1.773として測定した。
(2) Measuring method of film thickness After pre-baking, Lambda Ace STM-602 manufactured by Dainippon Screen Mfg. Co., Ltd. was used as the standard, the film after pre-baking was set to have a refractive index of 1.629, and the film after curing was The refractive index was measured as 1.773.
 (3-1)感度の評価(ワニスから直接感光性樹脂膜とする場合)
 ワニスを、120℃で3分間プリベーク後の膜厚が10μmになるように、8インチのシリコンウェハ上に塗布現像装置ACT-8(東京エレクトロン製)を用いてスピンコート法で塗布し、感光性樹脂膜を得た。これを露光機i線ステッパーNSR-2005i9C(ニコン製)を用いて露光した。露光後、ACT-8の現像装置を用いて、2.38質量%のテトラメチルアンモニウム溶液(多摩化学工業製)を用いてパドル法で現像液の吐出時間10秒、パドル時間40秒の現像を2回繰り返し、その後純水でリンス後、振り切り乾燥し、未露光部が完全に溶解している時の最低露光量を感度とした。その結果が、感度が500mJ/cm以上であるもの、または未露光部が完全に溶解せず残渣があるものを不十分C、300mJ/cm以上500mJ/cm未満のものを良好B、300mJ/cm未満のものをきわめて良好Aとした。
(3-1) Evaluation of sensitivity (in the case of using a photosensitive resin film directly from the varnish)
The varnish was coated on an 8-inch silicon wafer by spin coating using a coating / developing apparatus ACT-8 (manufactured by Tokyo Electron) so that the film thickness after pre-baking at 120 ° C. for 3 minutes was 10 μm. A resin film was obtained. This was exposed using an exposure machine i-line stepper NSR-2005i9C (manufactured by Nikon). After the exposure, using an ACT-8 developing device, a 2.38 mass% tetramethylammonium solution (manufactured by Tama Chemical Industry) was used for development with a developer discharge time of 10 seconds and a paddle time of 40 seconds. Repeated twice, rinsed with pure water, then shaken off and dried, and the minimum exposure when the unexposed area was completely dissolved was defined as sensitivity. As a result, the sensitivity is 500 mJ / cm 2 or more, or the unexposed part is not completely dissolved and there is a residue C, and C is 300 mJ / cm 2 or more and less than 500 mJ / cm 2 is good B. A sample having a value of less than 300 mJ / cm 2 was regarded as very good A.
 (3-2)感度の評価(ワニスから感光性樹脂シートを得たのち基板上に感光性樹脂膜とする場合)
 ワニスをコンマロールコーター((株)テクノスマート製、MODEL K202)を用いて、厚さ38μmのPETフィルム上に塗布し、75℃で6分間乾燥を行った後、保護フィルムとして、厚さ10μmのPPフィルムをラミネートし、感光性樹脂シートを得た。感光性樹脂シートの膜厚は10μmとなるように調整した。該剥離面を、シリコンウェハ上に、ラミネート装置((株)タカトリ製、VTM-200M)を用いて、ステージ温度80℃、ロール温度80℃、真空度150Pa、貼付速度5mm/秒、貼付圧力0.2MPaの条件でラミネートし、支持フィルムを剥離し、感光性樹脂膜とした。以降は(3-1)記載の通り感度の評価を実施した。
(3-2) Evaluation of sensitivity (when a photosensitive resin sheet is obtained from a varnish and then a photosensitive resin film is formed on the substrate)
The varnish was coated on a PET film having a thickness of 38 μm using a comma roll coater (manufactured by Techno Smart Co., Ltd., MODEL K202), dried at 75 ° C. for 6 minutes, and then having a thickness of 10 μm as a protective film. A PP film was laminated to obtain a photosensitive resin sheet. The film thickness of the photosensitive resin sheet was adjusted to 10 μm. Using a laminating apparatus (manufactured by Takatori Co., Ltd., VTM-200M), the release surface was placed on a silicon wafer with a stage temperature of 80 ° C., a roll temperature of 80 ° C., a vacuum of 150 Pa, a sticking speed of 5 mm / sec, and a sticking pressure of 0 The film was laminated under the condition of 2 MPa, and the support film was peeled off to obtain a photosensitive resin film. Thereafter, the sensitivity was evaluated as described in (3-1).
 (4)密着性試験
 次の方法にて金属材料との密着性試験を行なった。
 <キュア膜の作製>
 シリコンウェハ上に銅をスパッタリングし、それぞれ200nmの厚みで形成された金属材料層を表面に有する基板(銅スパッタ基板)を用意した。この基板上にワニスをスピンナ(ミカサ(株)製)を用いてスピンコート法で塗布し、次いでホットプレート(大日本スクリーン製造(株)製D-SPIN)を用いて120℃で3分ベークし、最終的に厚さ8μmのプリベーク膜を作製した。または感光性樹脂シートを(3―2)感度の評価に記載の通り作成し、感光性樹脂膜を厚さ8μmとなるよう作製した。その後、露光機i線ステッパーNSR-2005i9C(ニコン社製)を用いて1000mJ/cmの露光量にて基板全面を露光した。これらの膜をクリーンオーブン(光洋サーモシステム(株)製CLH-21CD-S)を用いて、窒素気流下(酸素濃度20ppm以下)、140℃で30分、次いでさらに昇温して220℃にて1時間キュアし、硬化膜を得た。
(4) Adhesion test An adhesion test with a metal material was performed by the following method.
<Preparation of cure film>
Copper was sputtered onto a silicon wafer, and a substrate (copper sputter substrate) having a metal material layer formed with a thickness of 200 nm on the surface was prepared. On this substrate, varnish was applied by spin coating using a spinner (Mikasa Co., Ltd.) and then baked at 120 ° C. for 3 minutes using a hot plate (D-SPIN manufactured by Dainippon Screen Mfg. Co., Ltd.). Finally, a pre-baked film having a thickness of 8 μm was produced. Alternatively, a photosensitive resin sheet was prepared as described in (3-2) Evaluation of sensitivity, and a photosensitive resin film was prepared to have a thickness of 8 μm. Thereafter, the entire surface of the substrate was exposed at an exposure amount of 1000 mJ / cm 2 using an exposure machine i-line stepper NSR-2005i9C (manufactured by Nikon Corporation). Using a clean oven (CLH-21CD-S manufactured by Koyo Thermo System Co., Ltd.), these membranes were heated at 140 ° C. for 30 minutes under a nitrogen stream (oxygen concentration of 20 ppm or less), then further heated to 220 ° C. Cured for 1 hour to obtain a cured film.
 <密着特性評価>
 基板を2分割し、それぞれの基板についてキュア後の膜に片刃を使用して2mm間隔で10行10列の碁盤目状の切り込みをいれた。このうち一方のサンプル基板を用い、セロハンテープによる引き剥がしによって100マスのうち何マス剥がれたかを計数し、金属材料/硬化膜間の密着特性の評価を行なった。また、もう一方のサンプル基板については、プレッシャークッカーテスト(PCT)装置(タバイエスペエック(株)製HAST CHAMBER EHS-211MD)を用いて121℃、2気圧の飽和条件で400時間PCT処理を行なった後、上記の引き剥がしテストを行なった。いずれの基板についても引き剥がしテストで剥がれ個数が10未満をA(優秀)、10以上20未満をB(良好)、20以上をC(不十分)とした。
<Adhesion characteristics evaluation>
The substrate was divided into two, and each substrate was cut into 10 rows and 10 columns in a grid pattern at intervals of 2 mm using a single blade on the cured film. Of these, one sample substrate was used to count how many of the 100 cells were peeled by peeling with a cellophane tape, and the adhesion characteristics between the metal material and the cured film were evaluated. The other sample substrate was subjected to PCT treatment for 400 hours under a saturated condition of 121 ° C. and 2 atm using a pressure cooker test (PCT) apparatus (HAST CHAMBER EHS-212MD manufactured by Tabais Peeck Co., Ltd.). Thereafter, the above-described peeling test was performed. In any of the substrates, the number of peeled off in the peeling test was A (excellent) when 10 or less, and B (good) when 10 or more and 20 or less, and C (insufficient) when 20 or more.
 (5)伸度評価
 ワニスを8インチのシリコンウェハ上に、120℃で3分間のプリベーク後の膜厚が11μmとなるように塗布現像装置ACT-8を用いてスピンコート法で塗布およびプリベークした。または感光性樹脂シートを(3―2)感度の評価に記載の通り作成し、感光性樹脂膜を厚さ11μmとなるよう作製した。その後、露光機i線ステッパーNSR-2005i9C(ニコン社製)を用いて1000mJ/cmの露光量にて基板全面を露光した。その後、イナートオーブンCLH-21CD-S(光洋サーモシステム(株)製)を用いて、酸素濃度20ppm以下で3.5℃/分で220℃まで昇温し、220℃で1時間加熱処理を行なった。温度が50℃以下になったところでウェハを取り出し、45質量%のフッ化水素酸に5分間浸漬することで、ウェハより樹脂組成物の膜を剥がした。この膜を幅1cm、長さ9cmの短冊状に切断し、テンシロンRTM-100((株)オリエンテック製)を用いて、室温23.0℃、湿度45.0%RH下で引張速度50mm/分で引っ張り、破断点伸度の測定を行なった。測定は1検体につき10枚の短冊について行ない、結果から上位5点の平均値を求めた。破断点伸度の値が60%以上のものをA(優秀)、30%以上60%未満のものをB(良好)、30%未満のものをC(不十分)とした。
(5) Evaluation of elongation The varnish was applied and prebaked on an 8-inch silicon wafer by spin coating using a coating / developing apparatus ACT-8 so that the film thickness after prebaking at 120 ° C. for 3 minutes was 11 μm. . Alternatively, a photosensitive resin sheet was prepared as described in (3-2) Evaluation of sensitivity, and a photosensitive resin film was prepared to have a thickness of 11 μm. Thereafter, the entire surface of the substrate was exposed at an exposure amount of 1000 mJ / cm 2 using an exposure machine i-line stepper NSR-2005i9C (manufactured by Nikon Corporation). Then, using an inert oven CLH-21CD-S (manufactured by Koyo Thermo System Co., Ltd.), the temperature was raised to 220 ° C. at 3.5 ° C./min at an oxygen concentration of 20 ppm or less, and heat treatment was performed at 220 ° C. for 1 hour. It was. When the temperature became 50 ° C. or lower, the wafer was taken out and immersed in 45% by mass of hydrofluoric acid for 5 minutes to peel off the resin composition film from the wafer. This film was cut into strips having a width of 1 cm and a length of 9 cm, and using Tensilon RTM-100 (manufactured by Orientec Co., Ltd.) at a room temperature of 23.0 ° C. and a humidity of 45.0% RH, a tensile rate of 50 mm / The sample was pulled in minutes and the elongation at break was measured. The measurement was performed on 10 strips per specimen, and the average value of the top 5 points was obtained from the results. The elongation at break value of 60% or more was designated as A (excellent), 30% or more and less than 60% as B (good), and less than 30% as C (insufficient).
(6)硬化膜中の(D)成分の総含有量の算出
 塗布現像装置Mark-7(東京エレクトロン(株)製)を用いて、8インチシリコンウェハ上にスピンコート法でワニスの塗布を行い、120℃で3分間ホットプレートにてベークをして膜厚3.2μmのプリベーク膜を作製した。その後、前記Mark-7の現像装置を用いて、2.38質量%のテトラメチルアンモニウム水溶液(多摩化学工業(株)製)を用いて現像した後、蒸留水でリンス後、振り切り乾燥し、現像後ベタ膜を窒素雰囲気下、200℃にて60分間キュアし、硬化膜を得た。
(6) Calculation of the total content of component (D) in the cured film Using a coating and developing apparatus Mark-7 (manufactured by Tokyo Electron Ltd.), varnish was applied on an 8-inch silicon wafer by spin coating. Baked on a hot plate at 120 ° C. for 3 minutes to produce a pre-baked film having a thickness of 3.2 μm. Thereafter, using the Mark-7 developing device, development was performed using a 2.38 mass% tetramethylammonium aqueous solution (manufactured by Tama Chemical Industry Co., Ltd.), rinsed with distilled water, shaken off, dried, and developed. The back solid film was cured at 200 ° C. for 60 minutes in a nitrogen atmosphere to obtain a cured film.
 得られた硬化膜の膜厚を測定し、そのうち1x5cm(面積5cm)を切り出して採取し、パージ・アンド・トラップ法にて吸着捕捉した。具体的には、採取した硬化膜をパージガスとしてヘリウムを用いて400℃で60分間加熱し、脱離した成分を吸着管に捕集した。 The thickness of the obtained cured film was measured, and 1 × 5 cm (area 5 cm 2 ) was cut out and collected, and adsorbed and trapped by a purge and trap method. Specifically, the collected cured film was heated at 400 ° C. for 60 minutes using helium as a purge gas, and the desorbed components were collected in an adsorption tube.
 捕集した成分を、熱脱離装置を用い、一次脱離条件260℃で15分、二次吸着脱離条件-27℃および320℃5分で熱脱離させ、次いで、GC-MS装置7890/5975C(Agilent社製)を用い、カラム温度:40~300℃、キャリアガス:ヘリウム(1.5mL/min)、スキャン範囲:m/Z29~600の条件で、GC-MS分析を実施した。(D)成分の各成分で上記と同一条件でGC-MS分析して検量線を作成することで、ガス発生量を算出した。 The collected components are thermally desorbed using a thermal desorption apparatus at a primary desorption condition of 260 ° C. for 15 minutes, a secondary adsorption desorption condition of −27 ° C. and 320 ° C. for 5 minutes, and then a GC-MS apparatus 7890. / 5975C (manufactured by Agilent), GC-MS analysis was performed under the conditions of column temperature: 40 to 300 ° C., carrier gas: helium (1.5 mL / min), scan range: m / Z 29 to 600. The amount of gas generated was calculated by preparing a calibration curve by GC-MS analysis of each component (D) under the same conditions as described above.
 得られた値(μg)を面積5cmで割り、μg/cmにした。その値をアルカリ可溶性樹脂(A)の比重に膜厚を掛けた値で割り100倍し、硬化膜中における化合物(D)の総含有量を算出した。 The obtained value (μg) was divided by an area of 5 cm 2 to obtain μg / cm 2 . The value was divided by 100 times the specific gravity of the alkali-soluble resin (A) multiplied by the film thickness, and the total content of the compound (D) in the cured film was calculated.
 [合成例1] アルカリ溶液可溶性樹脂(A-1)の合成
 乾燥窒素気流下、2,2-ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパン(以降、「BAHF」と呼ぶ。)(25.64g、0.070モル)をNMP185gに溶解させた。ここに、1,1’-(4,4’-オキシベンゾイル)ジイミダゾール(以降、「PBOM」と呼ぶ。)(17.20g、0.048モル)をNMP20gとともに加えて、85℃で3時間反応させた。続いて、1,12-ジアミノドデカン(5.01g、0.025モル)、1,3-ビス(3-アミノプロピル)テトラメチルジシロキサン(1.24g、0.0050モル)、PBOM(14.33g、0.044モル)をNMP30gとともに加えて、85℃で1時間反応させた。さらに、末端封止剤として、5-ノルボルネン-2,3-ジカルボン酸無水物(3.94g、0.024モル)をNMP10gとともに加えて、85℃で30分反応させた。反応終了後、室温まで冷却し、酢酸(26.41g、0.50モル)をNMP58gとともに加えて、室温で1時間撹拌した。撹拌終了後、溶液を水3Lに投入して白色沈殿を得た。この沈殿を濾過で集めて、水で3回洗浄した後、50℃の通風乾燥機で3日間乾燥し、アルカリ可溶性樹脂(A-1)の粉末を得た。上記の方法で評価した結果、樹脂(A-1)の重量平均分子量は33,000、PDIは2.1であった。
Synthesis Example 1 Synthesis of Alkaline Solution-Soluble Resin (A-1) 2,2-bis (3-amino-4-hydroxyphenyl) hexafluoropropane (hereinafter referred to as “BAHF”) under a dry nitrogen stream 25.64 g, 0.070 mol) was dissolved in 185 g of NMP. To this was added 1,1 ′-(4,4′-oxybenzoyl) diimidazole (hereinafter referred to as “PBOM”) (17.20 g, 0.048 mol) together with 20 g of NMP, and at 85 ° C. for 3 hours. Reacted. Subsequently, 1,12-diaminododecane (5.01 g, 0.025 mol), 1,3-bis (3-aminopropyl) tetramethyldisiloxane (1.24 g, 0.0050 mol), PBOM (14. 33 g, 0.044 mol) was added together with 30 g of NMP and reacted at 85 ° C. for 1 hour. Further, 5-norbornene-2,3-dicarboxylic acid anhydride (3.94 g, 0.024 mol) was added as a terminal blocking agent together with 10 g of NMP and reacted at 85 ° C. for 30 minutes. After completion of the reaction, the mixture was cooled to room temperature, acetic acid (26.41 g, 0.50 mol) was added together with 58 g of NMP, and the mixture was stirred at room temperature for 1 hour. After stirring, the solution was poured into 3 L of water to obtain a white precipitate. The precipitate was collected by filtration, washed with water three times, and then dried for 3 days in a ventilator at 50 ° C. to obtain an alkali-soluble resin (A-1) powder. As a result of evaluation by the above method, the resin (A-1) had a weight average molecular weight of 33,000 and PDI of 2.1.
 [合成例2] アルカリ可溶性樹脂(A-2)の合成
 前記合成例1に従って、BAHF(25.64g、0.070モル)、PBOM(31.53g、0.088モル)、プロピレンオキシド構造を含むD-400(10.00g、0.025モル)、1,3-ビス(3-アミノプロピル)テトラメチルジシロキサン(1.24g、0.0050モル)、5-ノルボルネン-2,3-ジカルボン酸無水物(3.94g、0.024モル)、酢酸(26.41g、0.50モル)、NMP300gを用いて同様に行い、アルカリ可溶性樹脂(A-2)の粉末を得た。上記の方法で評価した結果、樹脂(A-2)の重量平均分子量は34,000、PDIは2.2であった。
[Synthesis Example 2] Synthesis of Alkali-Soluble Resin (A-2) According to Synthesis Example 1, BAHF (25.64 g, 0.070 mol), PBOM (31.53 g, 0.088 mol), and propylene oxide structure are included. D-400 (10.00 g, 0.025 mol), 1,3-bis (3-aminopropyl) tetramethyldisiloxane (1.24 g, 0.0050 mol), 5-norbornene-2,3-dicarboxylic acid An alkali-soluble resin (A-2) powder was obtained in the same manner using anhydride (3.94 g, 0.024 mol), acetic acid (26.41 g, 0.50 mol), and NMP 300 g. As a result of evaluation by the above method, the resin (A-2) had a weight average molecular weight of 34,000 and PDI of 2.2.
 [合成例3] アルカリ可溶性樹脂(A-3)の合成
 前記合成例1に従って、BAHF(25.64g、0.070モル)、PBOM(31.53g、0.088モル)、エチレンオキシド及びプロピレンオキシド構造を含むED-600(15.00g、0.025モル、HUNTSMAN(株)製)、1,3-ビス(3-アミノプロピル)テトラメチルジシロキサン(1.24g、0.0050モル)、5-ノルボルネン-2,3-ジカルボン酸無水物(3.94g、0.024モル)、酢酸(26.41g、0.50モル)、NMP300gを用いて同様に行い、アルカリ可溶性樹脂(A-3)の粉末を得た。上記の方法で評価した結果、樹脂(A-3)の重量平均分子量は34,000、PDIは2.3であった。
[Synthesis Example 3] Synthesis of Alkali-Soluble Resin (A-3) According to Synthesis Example 1, BAHF (25.64 g, 0.070 mol), PBOM (31.53 g, 0.088 mol), ethylene oxide and propylene oxide structures ED-600 (15.00 g, 0.025 mol, manufactured by HUNTSMAN), 1,3-bis (3-aminopropyl) tetramethyldisiloxane (1.24 g, 0.0050 mol), 5- The same procedure was carried out using norbornene-2,3-dicarboxylic acid anhydride (3.94 g, 0.024 mol), acetic acid (26.41 g, 0.50 mol), and 300 g of NMP to obtain an alkali-soluble resin (A-3). A powder was obtained. As a result of evaluation by the above method, the resin (A-3) had a weight average molecular weight of 34,000 and PDI of 2.3.
 [合成例4] アルカリ可溶性樹脂(A-4)の合成
 前記合成例1に従って、BAHF(25.64g、0.070モル)、PBOM(31.53g、0.088モル)、エチレンオキシド及びプロピレンオキシド構造を含むED-900(22.50g、0.025モル、HUNTSMAN(株)製)、1,3-ビス(3-アミノプロピル)テトラメチルジシロキサン(1.24g、0.0050モル)、5-ノルボルネン-2,3-ジカルボン酸無水物(3.94g、0.024モル)、酢酸(26.41g、0.50モル)、NMP300gを用いて同様に行い、アルカリ可溶性樹脂(A-4)の粉末を得た。上記の方法で評価した結果、樹脂(A-4)の重量平均分子量は41,000、PDIは2.4であった。
[Synthesis Example 4] Synthesis of Alkali-Soluble Resin (A-4) According to Synthesis Example 1, BAHF (25.64 g, 0.070 mol), PBOM (31.53 g, 0.088 mol), ethylene oxide and propylene oxide structures ED-900 (22.50 g, 0.025 mol, manufactured by HUNTSMAN), 1,3-bis (3-aminopropyl) tetramethyldisiloxane (1.24 g, 0.0050 mol), 5- The same procedure was carried out using norbornene-2,3-dicarboxylic anhydride (3.94 g, 0.024 mol), acetic acid (26.41 g, 0.50 mol), and 300 g of NMP to obtain an alkali-soluble resin (A-4). A powder was obtained. As a result of evaluation by the above methods, the resin (A-4) had a weight average molecular weight of 41,000 and PDI of 2.4.
 [合成例5] アルカリ可溶性樹脂(A-5)の合成
 前記合成例1に従って、BAHF(12.82g、0.035モル)、3,3’-ジアミノ-4,4’-ジヒドロキシジフェニルスルホン(9.81g、0.035モル)、PBOM(31.53g、0.088モル)、ED-900(22.50g、0.025モル、HUNTSMAN(株)製)、1,3-ビス(3-アミノプロピル)テトラメチルジシロキサン(1.24g、0.0050モル)、5-ノルボルネン-2,3-ジカルボン酸無水物(3.94g、0.024モル)、酢酸(26.41g、0.50モル)、NMP300gを用いて同様に行い、アルカリ可溶性樹脂(A-5)の粉末を得た。上記の方法で評価した結果、樹脂(A-5)の重量平均分子量は51,000、PDIは2.4であった。
Synthesis Example 5 Synthesis of Alkali-Soluble Resin (A-5) According to Synthesis Example 1, BAHF (12.82 g, 0.035 mol), 3,3′-diamino-4,4′-dihydroxydiphenyl sulfone (9 .81 g, 0.035 mol), PBOM (31.53 g, 0.088 mol), ED-900 (22.50 g, 0.025 mol, manufactured by HUNTSMAN), 1,3-bis (3-amino) Propyl) tetramethyldisiloxane (1.24 g, 0.0050 mol), 5-norbornene-2,3-dicarboxylic anhydride (3.94 g, 0.024 mol), acetic acid (26.41 g, 0.50 mol) ) And NMP 300 g in the same manner to obtain an alkali-soluble resin (A-5) powder. As a result of evaluation by the above method, the resin (A-5) had a weight average molecular weight of 51,000 and PDI of 2.4.
 [合成例6] アルカリ可溶性樹脂(A-6)の合成
 前記合成例1に従って、BAHF(25.64g、0.070モル)、PBOM(31.53g、0.088モル)、プロピレンオキシド及びテトラメチレンオキシド構造を含むRT-1000(25.00g、0.025モル、HUNTSMAN(株)製)、1,3-ビス(3-アミノプロピル)テトラメチルジシロキサン(1.24g、0.0050モル)、5-ノルボルネン-2,3-ジカルボン酸無水物(3.94g、0.024モル)、酢酸(26.41g、0.50モル)、NMP300gを用いて同様に行い、アルカリ可溶性樹脂(A-6)の粉末を得た。上記の方法で評価した結果、樹脂(A-6)の重量平均分子量は37,000、PDIは1.8であった。
[Synthesis Example 6] Synthesis of Alkali-Soluble Resin (A-6) According to Synthesis Example 1, BAHF (25.64 g, 0.070 mol), PBOM (31.53 g, 0.088 mol), propylene oxide and tetramethylene RT-1000 containing an oxide structure (25.00 g, 0.025 mol, manufactured by HUNTSMAN), 1,3-bis (3-aminopropyl) tetramethyldisiloxane (1.24 g, 0.0050 mol), The same procedure was carried out using 5-norbornene-2,3-dicarboxylic anhydride (3.94 g, 0.024 mol), acetic acid (26.41 g, 0.50 mol), and 300 g of NMP, and an alkali-soluble resin (A-6 ) Was obtained. As a result of evaluation by the above method, the resin (A-6) had a weight average molecular weight of 37,000 and PDI of 1.8.
 [合成例7] アルカリ可溶性樹脂(A-7)の合成
 前記合成例1に従って、BAHF(27.47g、0.075モル)、PBOM(31.53g、0.088モル)、RT-1000(20.00g、0.020モル、HUNTSMAN(株)製)、1,3-ビス(3-アミノプロピル)テトラメチルジシロキサン(1.24g、0.0050モル)、5-ノルボルネン-2,3-ジカルボン酸無水物(3.94g、0.024モル)、酢酸(26.41g、0.50モル)、NMP300gを用いて同様に行い、アルカリ可溶性樹脂(A-7)の粉末を得た。上記の方法で評価した結果、樹脂(A-7)の重量平均分子量は44,000、PDIは2.2であった。
Synthesis Example 7 Synthesis of Alkali-Soluble Resin (A-7) According to Synthesis Example 1, BAHF (27.47 g, 0.075 mol), PBOM (31.53 g, 0.088 mol), RT-1000 (20 0.000 g, 0.020 mol, manufactured by HUNTSMAN), 1,3-bis (3-aminopropyl) tetramethyldisiloxane (1.24 g, 0.0050 mol), 5-norbornene-2,3-dicarboxylic acid The same procedure was performed using acid anhydride (3.94 g, 0.024 mol), acetic acid (26.41 g, 0.50 mol), and 300 g of NMP to obtain an alkali-soluble resin (A-7) powder. As a result of evaluation by the above method, the resin (A-7) had a weight average molecular weight of 44,000 and PDI of 2.2.
 [合成例8] アルカリ可溶性樹脂(A-8)の合成
 前記合成例1に従って、BAHF(25.64g、0.070モル)、PBOM(31.53g、0.088モル)、エチレンオキシド及びプロピレンオキシド構造を含むED-2003(50.00g、0.025モル、HUNTSMAN(株)製)、1,3-ビス(3-アミノプロピル)テトラメチルジシロキサン(1.24g、0.0050モル)、5-ノルボルネン-2,3-ジカルボン酸無水物(3.94g、0.024モル)、酢酸(26.41g、0.50モル)、NMP300gを用いて同様に行い、アルカリ可溶性樹脂(A-8)の粉末を得た。上記の方法で評価した結果、樹脂(A-8)の重量平均分子量は52,000、PDIは2.1であった。
[Synthesis Example 8] Synthesis of Alkali-Soluble Resin (A-8) According to Synthesis Example 1, BAHF (25.64 g, 0.070 mol), PBOM (31.53 g, 0.088 mol), ethylene oxide and propylene oxide structure ED-2003 (50.00 g, 0.025 mol, manufactured by HUNTSMAN), 1,3-bis (3-aminopropyl) tetramethyldisiloxane (1.24 g, 0.0050 mol), 5- The same procedure was carried out using norbornene-2,3-dicarboxylic anhydride (3.94 g, 0.024 mol), acetic acid (26.41 g, 0.50 mol), and 300 g of NMP, and the alkali-soluble resin (A-8) A powder was obtained. As a result of evaluation by the above method, the weight average molecular weight of the resin (A-8) was 52,000, and the PDI was 2.1.
[合成例9] アルカリ可溶性樹脂(A-9)の合成
 攪拌機、温度計を備えた0.2リットルのフラスコ中に、N-メチルピロリドン60gを仕込み、2,2-ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパン13.92g(38mmol)を添加し、攪拌溶解した。続いて、温度を0~5℃に保ちながら、セバシン酸ジクロリド9.56g(40mmol)を10分間で滴下した後、60分間攪拌を続けた。溶液を3リットルの水に投入し、析出物を回収し、これを純水で3回洗浄した後、減圧してアルカリ可溶性樹脂(A-9)を得た。(A-9)のGPC法標準ポリスチレン換算により求めた重量平均分子量は31,600、分散度は2.0であった。
[Synthesis Example 9] Synthesis of alkali-soluble resin (A-9) In a 0.2-liter flask equipped with a stirrer and a thermometer, 60 g of N-methylpyrrolidone was charged, and 2,2-bis (3-amino-4 -Hydroxyphenyl) hexafluoropropane (13.92 g, 38 mmol) was added and dissolved by stirring. Subsequently, 9.56 g (40 mmol) of sebacic acid dichloride was added dropwise over 10 minutes while maintaining the temperature at 0 to 5 ° C., and stirring was continued for 60 minutes. The solution was poured into 3 liters of water, and the precipitate was collected, washed with pure water three times, and then decompressed to obtain an alkali-soluble resin (A-9). The weight average molecular weight determined by GPC standard polystyrene conversion of (A-9) was 31,600, and the degree of dispersion was 2.0.
 [合成例10] ノボラック樹脂(A-10)の合成
 乾燥窒素気流下、m-クレゾール(70.2g、0.65モル)、p-クレゾール(37.8g、0.35モル)、37質量%ホルムアルデヒド水溶液(75.5g、(ホルムアルデヒド0.93モル)、シュウ酸二水和物(0.63g、0.005モル)、メチルイソブチルケトン264gを仕込んだ後、油浴中に浸し、反応液を還流させながら、4時間重縮合反応を行った。その後、油浴の温度を3時間かけて昇温し、その後に、フラスコ内の圧力を30~50mmHgまで減圧し、揮発分を除去し、溶解している樹脂を室温まで冷却して、ノボラック樹脂(A-10)の粉末を得た。上記の方法で評価した結果、樹脂(A-10)の重量平均分子量は3,500、PDIは2.8であった。
Synthesis Example 10 Synthesis of Novolak Resin (A-10) m-cresol (70.2 g, 0.65 mol), p-cresol (37.8 g, 0.35 mol), 37% by mass under a dry nitrogen stream An aqueous formaldehyde solution (75.5 g, (formaldehyde 0.93 mol), oxalic acid dihydrate (0.63 g, 0.005 mol), and 264 g of methyl isobutyl ketone were charged, and then immersed in an oil bath. The polycondensation reaction was carried out for 4 hours while refluxing, and then the temperature of the oil bath was raised over 3 hours, and then the pressure in the flask was reduced to 30-50 mmHg to remove volatiles and dissolution. The resulting resin was cooled to room temperature to obtain a novolak resin (A-10) powder, and as a result of evaluation by the above method, the resin (A-10) had a weight average molecular weight of 3,500 and a PDI of 2 .8 Was Tsu.
 [合成例11] 既閉環ポリイミド(A-11)の合成
 乾燥窒素気流下、BAHF(31.13g、0.085モル)、1,3-ビス(3-アミノプロピル)テトラメチルジシロキサン(1.24g、0.0050モル)、m-アミノフェノール(2.18g、0.020モル)をNMP250gに溶解させた。ここに4,4’-オキシジフタル酸無水物(31.02g、0.10モル)をNMP50gとともに加えて、60℃で1時間反応させ、次いで200℃で4時間撹拌した。撹拌終了後、溶液を水3Lに投入して白色沈殿を得た。この沈殿を濾過で集めて、水で3回洗浄した後、50℃の通風乾燥機で3日間乾燥し既閉環ポリイミド樹脂(A-11)の粉末を得た。上記の方法で評価した結果、樹脂(A-11)の重量平均分子量は27,000、PDIは2.0であった。
Synthesis Example 11 Synthesis of Ring-Closed Polyimide (A-11) BAHF (31.13 g, 0.085 mol), 1,3-bis (3-aminopropyl) tetramethyldisiloxane (1. 24 g, 0.0050 mol) and m-aminophenol (2.18 g, 0.020 mol) were dissolved in 250 g of NMP. To this, 4,4′-oxydiphthalic anhydride (31.02 g, 0.10 mol) was added together with 50 g of NMP, reacted at 60 ° C. for 1 hour, and then stirred at 200 ° C. for 4 hours. After stirring, the solution was poured into 3 L of water to obtain a white precipitate. The precipitate was collected by filtration, washed with water three times, and then dried for 3 days with a ventilator at 50 ° C. to obtain a powder of a closed ring polyimide resin (A-11). As a result of evaluation by the above method, the resin (A-11) had a weight average molecular weight of 27,000 and PDI of 2.0.
 [実施例1~21、比較例1、2]
 以下実施例1を例にあげ具体的に説明する。得られたアルカリ可溶性樹脂(A-1)10gに(B)光架橋剤として(b-1)光開始剤である下記(b-1-1)1.5gと、(b-2)重合性不飽和化合物である下記(b-1-2)3.0g、(C)分子内に少なくとも酸素原子、硫黄原子窒素原子のいずれかを有する化合物として、下記(C-1)を0.5g加え、(D)1013hPaにおける沸点が200℃以上260℃以下の有機溶媒として、3-メトキシ-N,N-ジメチルプロピオンアミド(D-1)を5g、(E)1013hPaにおける沸点が100℃以上200℃未満の有機溶媒として、乳酸エチル(E-1)15gを加えてワニスを作製した。実施例1と同様にして実施例2~21、比較例1、2を表1の組成の通りワニスを作製した。
 作製したワニスの特性を上記評価方法により測定した。得られた結果を表1に示す。なお実施例1~21、比較例1、2の溶剤は全て3-メトキシ-N,N-ジメチルプロピオンアミド(D-1)を5g、乳酸エチル(E-1)を15gとして実施した。
 ここで表中、形態の列には感光性樹脂膜の作製をワニスからの作製か、またはシートからの作製かを区別して記載する。
 アルカリ可溶性樹脂(A-1)~(A-9)、ノボラック樹脂(A-10)、既閉環ポリイミド(A-11):上記合成例1~11で調製
 光開始剤(b-1-1):1,2-オクタンジオン-1-[4-(フェニルチオ)フェニル]-2-(o-ベンゾイルオキシム)(OXE02、チバスペシャルティケミカルズ(株)製)
 光開始剤(b-1-2):NCI-831(商品名、株式会社ADEKA製、構造非開示)
 重合性不飽和化合物(b-2-1):1,9-ノナンジオールジメタクリレート
 C-1~C-5:下記式
Figure JPOXMLDOC01-appb-C000019
 D-1:3-メトキシ-N,N-ジメチルプロピオンアミド
 E-1:乳酸エチル
 熱架橋剤(F-1):NIKALAC MX-270(商品名、三和ケミカル(株)製)
[Examples 1 to 21, Comparative Examples 1 and 2]
Example 1 will be described below in detail as an example. 10 g of the obtained alkali-soluble resin (A-1) (B-1) 1.5 g of (b-1) photoinitiator (b-1) as a photocrosslinking agent, and (b-2) polymerizability 3.0 g of the following (b-1-2) as an unsaturated compound, and (C) 0.5 g of the following (C-1) is added as a compound having at least an oxygen atom or a sulfur atom or nitrogen atom in the molecule. (D) 5 g of 3-methoxy-N, N-dimethylpropionamide (D-1) as an organic solvent having a boiling point of 200 ° C. or higher and 260 ° C. or lower at 1013 hPa, and (E) a boiling point of 100 ° C. or higher and 200 ° C. at 1013 hPa. A varnish was prepared by adding 15 g of ethyl lactate (E-1) as a less organic solvent. In the same manner as in Example 1, varnishes according to the compositions shown in Table 1 were prepared in Examples 2 to 21 and Comparative Examples 1 and 2.
The characteristics of the produced varnish were measured by the above evaluation method. The obtained results are shown in Table 1. The solvents of Examples 1 to 21 and Comparative Examples 1 and 2 were all prepared with 5 g of 3-methoxy-N, N-dimethylpropionamide (D-1) and 15 g of ethyl lactate (E-1).
Here, in the column of the form, the photosensitive resin film is produced by distinguishing whether it is produced from a varnish or a sheet.
Alkali-soluble resins (A-1) to (A-9), novolak resin (A-10), closed ring polyimide (A-11): prepared in Synthesis Examples 1 to 11 Photoinitiator (b-1-1) : 1,2-octanedione-1- [4- (phenylthio) phenyl] -2- (o-benzoyloxime) (OXE02, manufactured by Ciba Specialty Chemicals)
Photoinitiator (b-1-2): NCI-831 (trade name, manufactured by ADEKA Corporation, structure not disclosed)
Polymerizable unsaturated compound (b-2-1): 1,9-nonanediol dimethacrylate C-1 to C-5:
Figure JPOXMLDOC01-appb-C000019
D-1: 3-methoxy-N, N-dimethylpropionamide E-1: Ethyl lactate Thermal cross-linking agent (F-1): NIKACALAC MX-270 (trade name, manufactured by Sanwa Chemical Co., Ltd.)
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000020
1 シリコンウェハ
2 アルミニウム(Al)パッド
3 パッシベーション膜
4 絶縁膜
5 金属(Cr、Ti等)膜
6 金属配線(Al、Cu等)
7 絶縁膜
8 バリアメタル
9 スクライブライン
10 ハンダバンプ
11 支持基板(ガラス基板、シリコンウェハ)
12 電極バッド(Cu)
13 絶縁膜
14 金属配線(Cu)
15 Cuポスト
16 ハンダバンプ
17 半導体チップ
18 TFT(薄膜トランジスタ)
19 配線
20 TFT絶縁層
21 平坦化層
22 ITO(透明電極)
23 基板
24 コンタクトホール
25 絶縁層
DESCRIPTION OF SYMBOLS 1 Silicon wafer 2 Aluminum (Al) pad 3 Passivation film 4 Insulating film 5 Metal (Cr, Ti, etc.) film 6 Metal wiring (Al, Cu, etc.)
7 Insulating film 8 Barrier metal 9 Scribe line 10 Solder bump 11 Support substrate (glass substrate, silicon wafer)
12 electrode pad (Cu)
13 Insulating film 14 Metal wiring (Cu)
15 Cu post 16 Solder bump 17 Semiconductor chip 18 TFT (thin film transistor)
19 Wiring 20 TFT insulation layer 21 Flattening layer 22 ITO (transparent electrode)
23 Substrate 24 Contact hole 25 Insulating layer

Claims (26)

  1.  (A)一般式(1)で表される構造単位を有するアルカリ可溶性樹脂、(B)光架橋剤を含むことを特徴とする感光性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
     
    (一般式(1)中、XおよびXは、2~10価の有機基を示し、Yは2~4価の有機基を示し、Yは、炭素数が2以上の脂肪族構造を有する2価の有機基を示し、RおよびRは、水素または炭素数1~20の有機基を示す。p、q、r、s、tは、0≦p≦4、0≦q≦4、0≦r≦2、0≦s≦4、0≦t≦4の範囲内の整数を表す。n1およびn2は、1≦n1≦500、1≦n2≦500、0.05≦n1/(n1+n2)<1の範囲内を満たす整数であって、各繰り返し単位の配列は、ブロック的でもランダム的でもよい。)
    A photosensitive resin composition comprising (A) an alkali-soluble resin having a structural unit represented by the general formula (1), and (B) a photocrosslinking agent.
    Figure JPOXMLDOC01-appb-C000001

    (In the general formula (1), X 1 and X 2 represent a divalent to decavalent organic group, Y 1 represents a divalent to tetravalent organic group, and Y 2 represents an aliphatic group having 2 or more carbon atoms. A divalent organic group having a structure, wherein R 1 and R 2 represent hydrogen or an organic group having 1 to 20 carbon atoms, p, q, r, s, and t are 0 ≦ p ≦ 4, 0 ≦ q <= 4, 0 <= r <= 2, 0 <= s <= 4, 0 <= t <= 4 The integer in the range of 4 is represented, n1 and n2 are 1 <= n1 <= 500, 1 <= n2 <= 500, 0.05 <=. (An integer satisfying the range of n1 / (n1 + n2) <1 and the arrangement of each repeating unit may be block or random.)
  2.  前記一般式(1)中のX、Xがそれぞれ、一般式(2)~(4)で表される構造単位のうち少なくともいずれかを有する、請求項1に記載の感光性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000002
    (一般式(2)~(4)中、R、Rは、各々独立に、水素原子または、炭素数1~10のアルキル基を示し、Rは酸素原子または硫黄原子を含む炭素数1~5の有機基を示し、n3は1~20の範囲内の整数を表す。*は化学結合を示す。)
    The photosensitive resin composition according to claim 1, wherein X 1 and X 2 in the general formula (1) each have at least one of the structural units represented by the general formulas (2) to (4). .
    Figure JPOXMLDOC01-appb-C000002
    (In the general formulas (2) to (4), R 3 and R 4 each independently represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, and R 5 represents a carbon number containing an oxygen atom or a sulfur atom. 1 to 5 represents an organic group, and n3 represents an integer within the range of 1 to 20. * represents a chemical bond.)
  3.  前記一般式(1)中のYが、脂肪族ジアミン残基である請求項1または2に記載の感光性樹脂組成物。 The photosensitive resin composition according to claim 1, wherein Y 2 in the general formula (1) is an aliphatic diamine residue.
  4.  前記一般式(1)中のYが、一般式(5)で表される構造単位を有する、請求項1~3のいずれかに記載の感光性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000003
    (一般式(5)中、R~Rは、各々独立に、炭素数2~10のアルキレン基を示し、a、b、cはそれぞれ、1≦a≦20、0≦b≦20、0≦c≦20の範囲内の整数を表し、各繰り返し単位の配列は、ブロック的でもランダム的でもよい。*は化学結合を示す。)
    The photosensitive resin composition according to claim 1, wherein Y 2 in the general formula (1) has a structural unit represented by the general formula (5).
    Figure JPOXMLDOC01-appb-C000003
    (In the general formula (5), R 6 to R 9 each independently represents an alkylene group having 2 to 10 carbon atoms, and a, b and c are 1 ≦ a ≦ 20, 0 ≦ b ≦ 20, It represents an integer in the range of 0 ≦ c ≦ 20, and the arrangement of each repeating unit may be block or random. * Indicates a chemical bond.)
  5.  前記一般式(1)中のYが、150以上2,000以下の分子量を有する、請求項1~4のいずれかに記載の感光性樹脂組成物。 The photosensitive resin composition according to claim 1, wherein Y 2 in the general formula (1) has a molecular weight of 150 or more and 2,000 or less.
  6.  前記(B)光架橋剤が、(b-1)光開始剤および(b-2)光重合性化合物を含む、請求項1~5のいずれかに記載の感光性樹脂組成物。 6. The photosensitive resin composition according to claim 1, wherein the (B) photocrosslinking agent comprises (b-1) a photoinitiator and (b-2) a photopolymerizable compound.
  7.  前記(b-2)光重合性化合物が、不飽和炭素-炭素結合を有する化合物である、請求項6に記載の感光性樹脂組成物。 The photosensitive resin composition according to claim 6, wherein the (b-2) photopolymerizable compound is a compound having an unsaturated carbon-carbon bond.
  8.  更に(C)分子内に少なくとも酸素原子、硫黄原子、窒素原子のいずれかを有する化合物を含む請求項1~7のいずれかに記載の感光性樹脂組成物。 The photosensitive resin composition according to any one of claims 1 to 7, further comprising (C) a compound having at least one of an oxygen atom, a sulfur atom and a nitrogen atom in the molecule.
  9.  前記(C)分子内に少なくとも酸素原子、硫黄原子窒素原子のいずれかを有する化合物が一般式(6)で表される化合物である、請求項8に記載の感光性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000004
    (一般式(6)中、R10~R12は、酸素原子、硫黄原子、または窒素原子のいずれかを示し、R10~R12のうち少なくとも1つは硫黄原子を示す。lは0または1を示す。R10は、lが0の場合は酸素原子または硫黄原子を示し、lが1の場合は窒素原子を示す。m、nは1~2の整数を示し、u、vは0または1を示す。R11,R12は、u、vが0の場合は酸素原子または硫黄原子を示し、u、vが1の場合は窒素原子を示す。R13~R17は、各々独立に、水素原子または炭素数1~20の有機基を示す。)
    The photosensitive resin composition according to claim 8, wherein the compound (C) having at least one of an oxygen atom and a sulfur atom or a nitrogen atom in the molecule is a compound represented by the general formula (6).
    Figure JPOXMLDOC01-appb-C000004
    (In the general formula (6), R 10 to R 12 each represents an oxygen atom, a sulfur atom, or a nitrogen atom, and at least one of R 10 to R 12 represents a sulfur atom. R 10 represents an oxygen atom or a sulfur atom when l is 0, and a nitrogen atom when l is 1. m and n are integers of 1 to 2, u and v are 0 R 11 and R 12 each represents an oxygen atom or a sulfur atom when u and v are 0, and represents a nitrogen atom when u and v are 1. R 13 to R 17 are each independently selected. Represents a hydrogen atom or an organic group having 1 to 20 carbon atoms.)
  10.  さらに、(D)1013hPaにおける沸点が200℃以上260℃以下の有機溶媒、および(E)1013hPaにおける沸点が100℃以上200℃未満の有機溶媒を含有し、
     前記(D)1013hPaにおける沸点が200℃以上260℃以下の有機溶媒の含有量が有機溶媒全量に対して5質量%以上70質量%以下であり、前記(E)1013hPaにおける沸点が100℃以上200℃未満の有機溶媒の含有量が有機溶媒全量に対して30質量%以上95質量%以下である請求項1~9のいずれかに記載の感光性樹脂組成物。
    And (D) an organic solvent having a boiling point at 1013 hPa of 200 ° C. or higher and 260 ° C. or lower, and (E) an organic solvent having a boiling point at 1013 hPa of 100 ° C. or higher and lower than 200 ° C.,
    The content of the organic solvent having a boiling point of 200 to 260 ° C. in (D) 1013 hPa is 5 to 70% by mass with respect to the total amount of the organic solvent, and the boiling point in 1013 hPa of 100 to 200 ° C. The photosensitive resin composition according to any one of claims 1 to 9, wherein the content of the organic solvent at a temperature lower than 0 ° C is 30% by mass or more and 95% by mass or less based on the total amount of the organic solvent.
  11.  請求項1~10のいずれかに記載の感光性樹脂組成物から形成された感光性樹脂シート。 A photosensitive resin sheet formed from the photosensitive resin composition according to any one of claims 1 to 10.
  12.  請求項1~10のいずれかに記載の感光性樹脂組成物または、請求項11記載の感光性樹脂シートを硬化した硬化膜。 A cured film obtained by curing the photosensitive resin composition according to any one of claims 1 to 10 or the photosensitive resin sheet according to claim 11.
  13.  前記(D)1013hPaにおける沸点が200℃以上260℃以下の有機溶媒を、0.005質量%以上1質量%以下含有する、請求項12に記載の硬化膜。 The cured film according to claim 12, comprising 0.005 mass% or more and 1 mass% or less of an organic solvent having a boiling point of 200C to 260C in (D) 1013 hPa.
  14.  請求項1~10のいずれかに記載の感光性樹脂組成物を基板上に塗布し、または請求項11に記載の感光性樹脂シートを基板上にラミネートし、乾燥して感光性樹脂膜を形成する工程、マスクを介して、または直接描画装置を用いて前記感光性樹脂膜を露光する工程、露光後の感光性樹脂膜をアルカリ溶液で現像する工程、および現像後の感光性樹脂膜の加熱処理工程を含む、硬化膜のレリーフパターンの製造方法。 A photosensitive resin composition according to any one of claims 1 to 10 is applied onto a substrate, or the photosensitive resin sheet according to claim 11 is laminated on a substrate and dried to form a photosensitive resin film. A step of exposing the photosensitive resin film through a mask or directly using a drawing apparatus, a step of developing the exposed photosensitive resin film with an alkaline solution, and heating of the photosensitive resin film after development. The manufacturing method of the relief pattern of a cured film including a process process.
  15.  前記樹脂組成物を基板上に塗布し、乾燥して樹脂膜を形成する工程が、スリットノズルを用いて基板上に塗布する工程を含む、請求項14に記載の硬化膜のレリーフパターンの製造方法。 The manufacturing method of the relief pattern of the cured film of Claim 14 with which the process of apply | coating the said resin composition on a board | substrate and drying and forming a resin film includes the process apply | coated on a board | substrate using a slit nozzle. .
  16.  請求項12または13に記載の硬化膜が、駆動回路上の平坦化層および第1電極上の絶縁層の少なくともいずれかに配置された有機EL表示装置。 14. An organic EL display device, wherein the cured film according to claim 12 or 13 is disposed on at least one of a planarizing layer on a drive circuit and an insulating layer on a first electrode.
  17.  請求項12または13に記載の硬化膜が、再配線間の層間絶縁膜として配置された、半導体電子部品。 A semiconductor electronic component in which the cured film according to claim 12 or 13 is disposed as an interlayer insulating film between rewirings.
  18.  前記再配線が銅金属配線であって、更にバンプを介して半導体チップと銅金属配線とを接続している請求項17に記載の半導体電子部品。 The semiconductor electronic component according to claim 17, wherein the rewiring is a copper metal wiring, and the semiconductor chip and the copper metal wiring are further connected via a bump.
  19.  前記銅金属配線からなる再配線層が少なくとも3層以上配置された、請求項17または18に記載の半導体電子部品。 The semiconductor electronic component according to claim 17 or 18, wherein at least three or more rewiring layers made of the copper metal wiring are arranged.
  20.  請求項17記載の層間絶縁膜が複数積層すると共に、これと略平行に配置された半導体チップを有し、該半導体チップの近くに配置された前記層間絶縁膜の厚さが、遠くに配置された前記層間絶縁膜の厚さよりも薄い請求項17~19のいずれかに記載の半導体電子部品。 A plurality of interlayer insulating films according to claim 17 are stacked, and a semiconductor chip is disposed substantially parallel to the interlayer insulating film, and the thickness of the interlayer insulating film disposed near the semiconductor chip is disposed far away. 20. The semiconductor electronic component according to claim 17, wherein the thickness is smaller than the thickness of the interlayer insulating film.
  21.  請求項12または13に記載の硬化膜を、仮貼り材料が配置された支持基板上に再配線間の層間絶縁膜として配置する工程と、その上に半導体チップと封止樹脂を配置する工程と、その後、仮貼り材料が配置された支持基板と再配線を剥離する工程を含む、半導体電子部品の製造方法。 A step of disposing the cured film according to claim 12 or 13 as an interlayer insulating film between rewirings on a support substrate on which a temporary attachment material is disposed, and a step of disposing a semiconductor chip and a sealing resin thereon Then, the manufacturing method of a semiconductor electronic component including the process of peeling a support substrate with which temporary sticking material was arrange | positioned, and rewiring.
  22.  請求項12または13に記載の硬化膜が、再配線間の層間絶縁膜として配置された、半導体装置。 14. A semiconductor device, wherein the cured film according to claim 12 or 13 is disposed as an interlayer insulating film between rewirings.
  23.  前記再配線が銅金属配線であって、更にバンプを介して半導体チップと銅金属配線とを接続している請求項22に記載の半導体装置。 23. The semiconductor device according to claim 22, wherein the rewiring is a copper metal wiring, and the semiconductor chip and the copper metal wiring are further connected via bumps.
  24.  前記銅金属配線からなる再配線層が少なくとも3層以上配置された、請求項22または23に記載の半導体装置。 24. The semiconductor device according to claim 22, wherein at least three or more rewiring layers made of the copper metal wiring are arranged.
  25.  請求項22記載の層間絶縁膜が複数積層すると共に、これと略平行に配置された半導体チップを有し、該半導体チップの近くに配置された前記層間絶縁膜の厚さが、遠くに配置された前記層間絶縁膜の厚さよりも薄い請求項22~24に記載の半導体装置。 A plurality of interlayer insulating films according to claim 22 are stacked, and the semiconductor chip has a semiconductor chip disposed substantially parallel to the interlayer insulating film, and the thickness of the interlayer insulating film disposed near the semiconductor chip is disposed far away. 25. The semiconductor device according to claim 22, wherein the thickness of the interlayer insulating film is thinner.
  26.  請求項12または13に記載の硬化膜を、仮貼り材料が配置された支持基板上に再配線間の層間絶縁膜として配置する工程と、その上に半導体チップと封止樹脂を配置する工程と、その後、仮貼り材料が配置された支持基板と再配線を剥離する工程を含む、半導体装置の製造方法。 A step of disposing the cured film according to claim 12 or 13 as an interlayer insulating film between rewirings on a support substrate on which a temporary attachment material is disposed, and a step of disposing a semiconductor chip and a sealing resin thereon Then, the manufacturing method of a semiconductor device including the process of peeling a support substrate with which temporary sticking material was arrange | positioned, and rewiring.
PCT/JP2017/030144 2016-08-29 2017-08-23 Photosensitive resin composition, cured film, organic el display device, semiconductor electronic component and semiconductor device WO2018043250A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017545610A JP7062953B2 (en) 2016-08-29 2017-08-23 Photosensitive resin composition, cured film, organic EL display device, semiconductor electronic component, semiconductor device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016-166701 2016-08-29
JP2016166702 2016-08-29
JP2016-166702 2016-08-29
JP2016166701 2016-08-29

Publications (1)

Publication Number Publication Date
WO2018043250A1 true WO2018043250A1 (en) 2018-03-08

Family

ID=61301876

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/030144 WO2018043250A1 (en) 2016-08-29 2017-08-23 Photosensitive resin composition, cured film, organic el display device, semiconductor electronic component and semiconductor device

Country Status (3)

Country Link
JP (1) JP7062953B2 (en)
TW (1) TW201816514A (en)
WO (1) WO2018043250A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018225676A1 (en) * 2017-06-06 2018-12-13 富士フイルム株式会社 Photosensitive resin composition, cured film, laminate, method for producing cured film, semiconductor device and compound
CN109742110A (en) * 2019-01-04 2019-05-10 京东方科技集团股份有限公司 Organic light emitting display and manufacturing method
WO2020196139A1 (en) * 2019-03-27 2020-10-01 東レ株式会社 Photosensitive resin composition, photosensitive resin sheet, method for producing hollow structure, and electronic component
JP2020196796A (en) * 2019-05-31 2020-12-10 太陽ホールディングス株式会社 Curable composition, dry film or prepreg, cured product, and electronic component
KR20210042049A (en) * 2018-08-06 2021-04-16 에이치디 마이크로시스템즈 가부시키가이샤 Photosensitive resin composition, manufacturing method of pattern cured film, cured film, interlayer insulating film, cover coat layer, surface protective film, and electronic parts

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI656605B (en) * 2018-06-27 2019-04-11 欣興電子股份有限公司 Method for manufacturing circuit board

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007004569A1 (en) * 2005-07-05 2007-01-11 Hitachi Chemical Company, Ltd. Photosensitive adhesive composition, and obtained using the same, adhesive film, adhesive sheet, semiconductor wafer with adhesive layer, semiconductor device and electronic part
JP2009294536A (en) * 2008-06-06 2009-12-17 Hitachi Chem Co Ltd Photosensitive resin composition and method for joining substrates
JP2010192867A (en) * 2009-01-20 2010-09-02 Renesas Electronics Corp Semiconductor integrated circuit device and semiconductor integrated circuit device manufacturing method
WO2011030744A1 (en) * 2009-09-10 2011-03-17 東レ株式会社 Photosensitive resin composition and method for producing photosensitive resin film
JP2012069734A (en) * 2010-09-24 2012-04-05 Toshiba Corp Manufacturing method of semiconductor device
JP2012133091A (en) * 2010-12-21 2012-07-12 Fujifilm Corp Photosensitive resin composition
JP2012212003A (en) * 2011-03-31 2012-11-01 Nippon Kayaku Co Ltd Photosensitive resin composition
WO2014024951A1 (en) * 2012-08-08 2014-02-13 旭化成イーマテリアルズ株式会社 Photosensitive film laminate, flexible printed wiring board, and method for manufacturing same
WO2015137281A1 (en) * 2014-03-14 2015-09-17 東レ株式会社 Photosensitive resin composition
WO2015199219A1 (en) * 2014-06-27 2015-12-30 富士フイルム株式会社 Thermal base generator, thermosetting resin composition, cured film, cured film manufacturing method, and semiconductor device

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007004569A1 (en) * 2005-07-05 2007-01-11 Hitachi Chemical Company, Ltd. Photosensitive adhesive composition, and obtained using the same, adhesive film, adhesive sheet, semiconductor wafer with adhesive layer, semiconductor device and electronic part
JP2009294536A (en) * 2008-06-06 2009-12-17 Hitachi Chem Co Ltd Photosensitive resin composition and method for joining substrates
JP2010192867A (en) * 2009-01-20 2010-09-02 Renesas Electronics Corp Semiconductor integrated circuit device and semiconductor integrated circuit device manufacturing method
WO2011030744A1 (en) * 2009-09-10 2011-03-17 東レ株式会社 Photosensitive resin composition and method for producing photosensitive resin film
JP2012069734A (en) * 2010-09-24 2012-04-05 Toshiba Corp Manufacturing method of semiconductor device
JP2012133091A (en) * 2010-12-21 2012-07-12 Fujifilm Corp Photosensitive resin composition
JP2012212003A (en) * 2011-03-31 2012-11-01 Nippon Kayaku Co Ltd Photosensitive resin composition
WO2014024951A1 (en) * 2012-08-08 2014-02-13 旭化成イーマテリアルズ株式会社 Photosensitive film laminate, flexible printed wiring board, and method for manufacturing same
WO2015137281A1 (en) * 2014-03-14 2015-09-17 東レ株式会社 Photosensitive resin composition
WO2015199219A1 (en) * 2014-06-27 2015-12-30 富士フイルム株式会社 Thermal base generator, thermosetting resin composition, cured film, cured film manufacturing method, and semiconductor device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018225676A1 (en) * 2017-06-06 2018-12-13 富士フイルム株式会社 Photosensitive resin composition, cured film, laminate, method for producing cured film, semiconductor device and compound
JPWO2018225676A1 (en) * 2017-06-06 2020-04-09 富士フイルム株式会社 Photosensitive resin composition, cured film, laminate, method for producing cured film, semiconductor device and compound
KR20210042049A (en) * 2018-08-06 2021-04-16 에이치디 마이크로시스템즈 가부시키가이샤 Photosensitive resin composition, manufacturing method of pattern cured film, cured film, interlayer insulating film, cover coat layer, surface protective film, and electronic parts
KR102671323B1 (en) 2018-08-06 2024-06-03 에이치디 마이크로시스템즈 가부시키가이샤 Photosensitive resin composition, method for producing patterned cured film, cured film, interlayer insulating film, cover coat layer, surface protective film, and electronic components
CN109742110A (en) * 2019-01-04 2019-05-10 京东方科技集团股份有限公司 Organic light emitting display and manufacturing method
CN109742110B (en) * 2019-01-04 2022-07-08 京东方科技集团股份有限公司 Organic light emitting display and method of manufacturing the same
US11796913B2 (en) 2019-01-04 2023-10-24 Chengdu Boe Optoelectronics Technology Co., Ltd. Organic light-emitting display device and manufacturing method thereof
WO2020196139A1 (en) * 2019-03-27 2020-10-01 東レ株式会社 Photosensitive resin composition, photosensitive resin sheet, method for producing hollow structure, and electronic component
JP2020196796A (en) * 2019-05-31 2020-12-10 太陽ホールディングス株式会社 Curable composition, dry film or prepreg, cured product, and electronic component
JP7264728B2 (en) 2019-05-31 2023-04-25 太陽ホールディングス株式会社 Curable compositions, dry films or prepregs, cured products, and electronic components

Also Published As

Publication number Publication date
JPWO2018043250A1 (en) 2019-06-24
JP7062953B2 (en) 2022-05-09
TW201816514A (en) 2018-05-01

Similar Documents

Publication Publication Date Title
JP6848434B2 (en) Resin and photosensitive resin composition
KR102456965B1 (en) Photosensitive resin composition, manufacturing method of cured resin film, and semiconductor device
JP7062953B2 (en) Photosensitive resin composition, cured film, organic EL display device, semiconductor electronic component, semiconductor device
JP7073717B2 (en) Diamine compound, heat-resistant resin and resin composition using it
US10584205B2 (en) Photosensitive resin composition
KR102364136B1 (en) photosensitive resin composition
JP6848491B2 (en) Diamine compound, heat-resistant resin and resin composition using it
JP2020033277A (en) Compound, resin using the same, resin composition, cured film, organic el display device, electronic component, semiconductor device, and method for manufacturing electronic component or semiconductor device
JP7318530B2 (en) Alkali-soluble resin, photosensitive resin composition, photosensitive sheet, cured film, interlayer insulating film or semiconductor protective film, method for producing relief pattern of cured film, electronic component or semiconductor device
JPWO2017122623A1 (en) Cured film and method for producing the same
JP7131133B2 (en) resin composition
JPWO2017057089A1 (en) Cured film and method for producing the same

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2017545610

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17846255

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17846255

Country of ref document: EP

Kind code of ref document: A1