WO2018042974A1 - Pump device - Google Patents

Pump device Download PDF

Info

Publication number
WO2018042974A1
WO2018042974A1 PCT/JP2017/027415 JP2017027415W WO2018042974A1 WO 2018042974 A1 WO2018042974 A1 WO 2018042974A1 JP 2017027415 W JP2017027415 W JP 2017027415W WO 2018042974 A1 WO2018042974 A1 WO 2018042974A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
current
deviation
command
pressure
Prior art date
Application number
PCT/JP2017/027415
Other languages
French (fr)
Japanese (ja)
Inventor
滋 辻
東山 祐三
寛昭 和田
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2018537042A priority Critical patent/JP6687117B2/en
Publication of WO2018042974A1 publication Critical patent/WO2018042974A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/40Regulating or controlling the amount of current drawn or delivered by the motor for controlling the mechanical load

Definitions

  • the present invention relates to a pump device used, for example, for positive airway pressure (PAP).
  • PAP positive airway pressure
  • CPAP device a continuous positive airway pressure (hereinafter, CPAP device) device
  • OSA obstructive sleep apnea syndrome
  • CPAP device a continuous positive airway pressure (CPAP) device
  • CPAP device has a pump device with a built-in fan, and feeds gas (for example, air) from a main body of the device to a mask mounted on a patient's face at a pressure higher than atmospheric pressure. This gas spreads the airway and suppresses throat blockage.
  • gas for example, air
  • the CPAP device for example, there is a device that measures a gas flow rate by a flow sensor provided in a gas supply path and supplies a gas having a predetermined pressure.
  • a device for example, there is a device that estimates a flow rate from a motor current of a motor driving a fan using a look-up table and supplies a gas having a predetermined pressure.
  • the present invention has been made to solve the above-mentioned problems, and its object is to provide a pump device that is used for positive airway pressure and that enables the pressure of the gas supplied at a desired timing to be changed. There is to do.
  • a pump device that solves the above problem is a pump device that is used for positive airway pressure, and includes a fan, a drive unit that rotationally drives the fan, and a drive that controls driving of the fan via the drive unit.
  • a control circuit ; an inflow port through which fluid flows; a discharge port through which the fluid is discharged by rotational driving of the fan; a current command value estimating unit that estimates an estimated current command value from a rotational speed command of the fan;
  • a current value measuring unit that measures an actual current value flowing through the unit, a current that compares the estimated current command value with the actual current value, and obtains a current deviation that is a deviation between the estimated current command value and the actual current value
  • a value comparison unit a differentiation unit that obtains a deviation differential value obtained by differentiating the current deviation, a rotation speed control unit that generates the rotation speed command based on the current deviation and the deviation differential value, and the rotation speed command Based on Having a drive unit for supplying a driving current to the driving unit.
  • the current deviation of the difference between the estimated current command value estimated from the rotational speed of the fan supplying the fluid and the actual current flowing in the drive unit that drives the fan is obtained. Then, the rotational speed of the fan is controlled based on the current deviation and the deviation differential value obtained by differentiating the current deviation. Fluid is discharged at a pressure corresponding to the rotational speed of the fan.
  • the rotation speed control unit lowers the rotation speed command when the current deviation and the deviation differential value are smaller than the corresponding determination values.
  • the rotational speed command is lowered.
  • the deviation differential value indicates a change in current deviation. Therefore, when the deviation differential value is used, the determination timing is earlier than when only the current deviation is used. For this reason, the number of rotations of the fan can be reduced at an early timing.
  • the differentiating unit obtains a first deviation differential value obtained by differentiating the current deviation once and a second deviation differential value obtained by differentiating the current deviation twice, and the rotational speed control.
  • the unit preferably generates the rotational speed command based on at least one of the first deviation differential value and the second deviation differential value and a current deviation.
  • the flow rate can be controlled without using a sensor that measures the flow rate of the fluid or performing complicated control such as a lookup table. Further, by using the second deviation differential value obtained by differentiating the current deviation twice, the determination timing is earlier than in the case where the current deviation is used, and the timing for controlling the rotational speed of the fan is earlier.
  • the rotation speed control unit is configured so that the rotation speed is determined when at least one of the first deviation differential value, the second deviation differential value, and the current deviation are smaller than corresponding determination values. It is preferable to reduce the command.
  • the fan speed is reduced.
  • the deviation differential value indicates a change in current deviation. Therefore, compared with the case where only the current deviation is used, the timing in the determination when the first and second deviation differential values are used is earlier. For this reason, the number of rotations of the fan can be reduced at an early timing.
  • the rotation speed control unit obtains a correction command value based on the current deviation and the deviation differential value, and calculates a pressure command value based on a reference pressure command value and the correction command value.
  • the rotation speed command is generated based on the pressure command value
  • the current command value estimation unit estimates a torque command in the drive unit based on the rotation speed command, and the estimated current based on the torque command. It is preferable to estimate the command value.
  • the determination value to be compared with the current deviation and the deviation differential value is set according to the expiration state. According to this configuration, in the pump device used for positive airway pressure, it is possible to control the rotation of the fan at a timing according to expiration, for example, to reduce the flow rate of the fluid to be discharged.
  • the pump device of the present invention in the pump device used for positive airway pressure, it is possible to change the pressure of the gas supplied at a desired timing.
  • (A) is a sectional side view of the CPAP device
  • (b) is a plan sectional view of the CPAP device.
  • Schematic which shows the use condition of a CPAP apparatus.
  • the block diagram which shows the electrical constitution of a CPAP apparatus.
  • the block diagram which shows schematic structure of a control part.
  • the wave form diagram which shows the operation state of a CPAP apparatus.
  • a continuous positive airway pressure (CPAP) device (simply CPAP device) 10 as a pump device is connected to a mask 62 via a tube 61.
  • the mask 62 is attached to the face of the patient 63.
  • the CPAP device 10 supplies a gas (for example, air) having a desired pressure to the patient 63 through the tube 61 and the mask 62.
  • the CPAP device 10 estimates the state of the patient 63 (for example, during expiration) and controls the pressure of the gas supplied to the patient 63 at the estimated timing.
  • the CPAP device 10 includes a housing 11, a display unit 12 and an operation unit 13 disposed on the upper surface of the housing 11.
  • the CPAP device 10 displays various types of information including setting values on the display unit 12. Further, the CPAP device 10 sets various information including setting values based on the operation of the operation unit 13.
  • the set value includes the pressure value of the gas to be supplied and the flow rate value of the gas.
  • the set value includes the pressure value of the gas supplied during expiration.
  • the CPAP device 10 estimates the expiration timing of the patient 63 wearing the mask 62. Then, the pressure value of the gas to be supplied is controlled at the estimated expiration timing. For example, the CPAP device 10 supplies gas at a standard pressure value.
  • the standard pressure value is a pressure value designated by a doctor, for example, and is 1000 [Pa], for example. Then, the CPAP device 10 changes the pressure of the gas to be supplied to the exhalation pressure value at the estimated expiration timing.
  • the exhalation pressure value is 700 [Pa], for example. That is, the CPAP device 10 alternately controls the pressure of the gas supplied according to the state of the patient 63 (exhalation, inspiration) to the standard pressure value and the exhalation pressure value.
  • the CPAP device 10 includes a housing 11, and a fan unit 20 and a control unit 30 provided in the housing 11.
  • the housing 11 has a suction port 14 for sucking gas and a discharge port 15 for discharging the sucked gas.
  • a tube 61 shown in FIG. 2 is connected to the discharge port 15.
  • the interior of the housing 11 has a blower chamber 17 and a control chamber 18 that are partitioned by a standing partition wall 16.
  • a fan unit 20 is disposed in the blower chamber 17.
  • the fan unit 20 includes a fan case 21, a fan 22 accommodated in the fan case 21, and a motor 23 (denoted as “M” in the drawing) as a drive source for driving the fan 22.
  • the fan case 21 has a suction port 21a that opens downward and a discharge port 21b that projects to the side.
  • the discharge port 21 b of the fan case 21 communicates with the discharge port 15 of the housing 11.
  • the motor 23 is attached to the upper surface of the fan case 21, and the rotating shaft 23 a of the motor 23 is inserted into the fan case 21.
  • the fan 22 is attached to the rotating shaft 23 a of the motor 23.
  • the fan 22 is, for example, a centrifugal fan.
  • gas is taken into the blower chamber 17 from the suction port 14 as indicated by an arrow in FIG. Further, as indicated by the arrows, the gas is sucked into the fan case 21 from the blower chamber 17 through the suction port 21a. And the gas inside the fan case 21 is discharged from the discharge port 21b.
  • the discharged gas is sent from the discharge port 15 of the housing 11 to the patient 63 via the tube 61 and the mask 62 shown in FIG.
  • a control unit 30 is disposed in the control room 18.
  • the control unit 30 includes, for example, a circuit board and a plurality of electronic components mounted on the circuit board.
  • the control unit 30 rotationally drives the fan 22 based on detection results from various sensors described later. Further, the control unit 30 estimates the state of the patient 63 (for example, exhalation timing) based on detection results from various sensors. Then, the control unit 30 controls the pressure of the gas discharged from the discharge port 21b based on the estimated state of the patient 63.
  • FIG. 3 shows the electrical configuration of the CPAP device 10.
  • the CPAP device 10 includes a display unit 12, an operation unit 13, a motor 23, a control unit 30, a pressure sensor 41, and a current sensor 42 as a current value measurement unit.
  • the pressure sensor 41 is provided in the fan case 21 shown in FIG. 1A, detects the pressure inside the fan case 21, and outputs a pressure detection signal.
  • the current sensor 42 detects a drive current supplied to the motor 23 and outputs a current detection signal corresponding to the drive current.
  • the set value includes a standard pressure value, a pressure value during expiration, and a determination value.
  • the control unit 30 determines the rotation speed of the motor 23 based on the pressure detection signal of the pressure sensor 41, the actual current value Ir detected by the current sensor 42, and various set values.
  • the gas is discharged from the CPAP device 10 by the rotation of the motor 23. That is, the control unit 30 controls the pressure of the gas discharged from the CPAP device 10 based on the deviation (difference value) between the pressure command value and the actual pressure value.
  • FIG. 4 is a partial block circuit diagram of the control unit 30 and shows a control block related to driving of the motor 23.
  • the control unit 30 includes adders 31 and 32, a controller 33, a current command value estimation unit 34, a current value comparison unit 35, a differentiator 36, a second differentiator 37, a determination unit 38, and a drive unit 39 ("D" in the figure). ).
  • the adder 31 is supplied with a reference pressure command value P0 as a command value (set value).
  • the adder 31 is supplied with a correction command value Pc corresponding to the determination result of the determination unit 38.
  • the adder 31 adds a negative correction command value Pc to the reference pressure command value P0, that is, calculates a deviation (difference value) between the reference pressure command value P0 and the correction command value Pc, and uses the calculation result as the pressure command.
  • the value P1 is output to the adder 32.
  • the adder 32 adds a negative pressure detection value Pr to the pressure command value P1, that is, calculates a deviation (difference value) between the pressure command value P1 and the pressure detection value Pr, and calculates the calculation result as a pressure deviation value P2. To the controller 33.
  • the controller 33 outputs a rotational speed command Vm corresponding to the pressure deviation value P2 to the drive unit 39.
  • the rotational speed command Vm is a rotational speed command for driving the motor 23 and is a rotational speed command for the fan 22 that is rotationally driven by the motor 23.
  • the drive unit 39 supplies a drive current corresponding to the rotational speed command Vm to the motor 23.
  • the motor 23 rotates according to the supplied drive current. Therefore, the motor 23 rotates at the rotation speed corresponding to the pressure deviation value P2 by the rotation speed command Vm.
  • the rotation speed command Vm is supplied to the current command value estimation unit 34.
  • the current command value estimation unit 34 estimates the estimated current command value Ie in the motor 23 based on the rotation speed command Vm.
  • a value of torque generated in the motor 23 with respect to the rotation speed command Vm (for example, a table or a calculation formula) is set.
  • the current command value estimation unit 34 is set with a torque constant unique to the motor 23.
  • the current command value estimation unit 34 estimates a torque command for the rotation speed command Vm. Then, the current command value estimation unit 34 estimates the estimated current command value Ie in the motor 23 based on the estimated torque command and the torque constant.
  • the estimated current command value Ie is supplied to the current value comparison unit 35.
  • the current value comparing unit 35 is supplied with the actual current value Ir detected by the current sensor 42 shown in FIG.
  • the actual current value Ir indicates an actual current value (actual current value) in the motor 23.
  • the current value comparison unit 35 calculates a deviation (difference value) between the estimated current command value Ie and the actual current value Ir, and outputs the calculation result as a current deviation D0.
  • the current deviation D0 is supplied to the determination unit 38, the differentiator 36, and the twice differentiator 37.
  • the differentiator 36 outputs the result obtained by differentiating the current deviation D0 once to the determination unit 38 as the first deviation differential value D1.
  • the twice differentiator 37 outputs the result obtained by differentiating the current deviation D0 twice to the determination unit 38 as the second deviation differential value D2.
  • the determination value is stored in the determination unit 38.
  • the determination value includes a determination value corresponding to the current deviation D0, a first differential determination value corresponding to the first deviation differential value D1, and a second differential determination value corresponding to the second deviation differential value D2.
  • the determination unit 38 compares the current deviation D0, the first deviation differential value D1, the second deviation differential value D2, and the determination value, the first differential determination value, and the second differential determination value, respectively, and based on the comparison result It is determined whether or not it is the expiration timing.
  • the determination value and the first and second differential determination values are set and stored in advance based on experiments and simulations. As an example, the determination value is “ ⁇ 0.005”, the first differential determination value is “ ⁇ 4”, and the second differential determination value is “0”.
  • FIG. 5 is a flowchart for determining the expiration state.
  • the determination unit 38 compares the current deviation D0 with the determination value, step S1, compares the first deviation differential value D1 with the first differential determination value, and compares the second deviation differential value D2 with the second differential determination.
  • Step S3 for comparing the value is executed to determine whether or not the patient is in the expired state.
  • the execution order of steps S1 to S3 can be arbitrarily changed. For example, steps S1 to S3 may be executed simultaneously.
  • the determination unit 38 determines that the current deviation D0 is smaller than the determination value (YES in S1), the first deviation differential value D1 is smaller than the first differential determination value (YES in S2), and the second When the deviation differential value D2 is smaller than the second differential determination value (YES in S3), it is determined as an expired state.
  • the determination unit 38 determines NO in one or more of steps S1 to S3, the determination unit 38 determines that it is not in the expired state.
  • the determination unit 38 determines when the current deviation D0, the first deviation differential value D1, and the second deviation differential value D2 are smaller than the corresponding determination value and the first and second differential determination values.
  • the determination unit 38 outputs the first correction value as the correction command value Pc when it is determined as the expiration state, and outputs the second correction value as the correction command value Pc when it is determined that the state is not the expiration state.
  • the first correction value is set to set the discharge pressure of the CPAP device 10 as the exhalation pressure value, and is set to, for example, “50 Pa”.
  • the second correction value is set so that the discharge pressure of the CPAP device 10 is a standard command value, and is set to “0”, for example.
  • the correction command value Pc is supplied to the adder 31 described above.
  • the adder 31 adds a negative correction command value Pc to the standard command value, that is, subtracts the correction command value Pc from the standard command value. That is, when it is determined that the patient is in the expired state, the pressure command value P1 that is reduced from the standard command value is generated based on the correction command value Pc.
  • the motor 23 is driven so as to satisfy the pressure command value P1.
  • the control unit 30 of the CPAP device 10 obtains an estimated current command value Ie obtained by estimating the current value flowing through the fan 22 from the rotation speed command Vm for the motor 23 that rotationally drives the fan 22.
  • the actual current value Ir of the fan 22 is obtained by the current sensor 42.
  • the current (actual current value Ir) flowing through the motor 23 varies depending on the respiratory state of the patient 63 to which the mask 62 is attached.
  • the respiratory state in the patient 63 appears as a change in load on the motor 23. For example, when the patient 63 is in an inhalation state, the load on the motor 23 is small, and when the patient 63 is in an exhalation state, the load on the motor 23 is large.
  • FIG. 6 shows the estimated current command value Ie and the actual current value Ir in the motor 23.
  • the horizontal axis represents time, and the vertical axis represents the current value.
  • the waveforms shown in FIG. 6 indicate the estimated current command value Ie and the actual current value Ir when artificially repeating exhalation and exhaustion. Further, the waveform is offset to show the difference between the estimated current command value Ie and the actual current value Ir, and the estimated current command value Ie is shown as the center.
  • the respiratory state can be determined based on the difference between the estimated current command value Ie and the actual current value Ir.
  • the control unit 30 obtains a difference between the estimated current command value Ie and the actual current value Ir as a current deviation D0. Furthermore, the control unit 30 obtains a deviation differential value obtained by differentiating the current deviation D0. In the present embodiment, the control unit 30 obtains a first deviation differential value D1 obtained by differentiating the current deviation D0 once and a second deviation differential value D2 obtained by differentiating the current deviation D0 twice.
  • FIG. 7 shows waveforms of the gas flow rate value AF due to the breathing of the patient 63, the current deviation D0, the first deviation differential value D1, and the second deviation differential value D2.
  • the waveform shown in FIG. 7 shows the case where exhalation and inhalation are artificially reproduced.
  • the waveform of the second deviation differential value D2 indicates the result of quantization (“0” or “1”) based on a predetermined threshold (for example, the third determination value). For example, “1” is set when the second deviation differential value D2 is smaller than the threshold value, and “0” is set when the second deviation differential value D2 is equal to or larger than the threshold value.
  • the control unit 30 determines the state of breathing based on the current deviation D0 and the first and second deviation differential values D1 and D2. For example, the control unit 30 determines that the current deviation D0 is smaller than the determination value ( ⁇ 0.005), the first deviation differential value D1 is smaller than the first differentiation determination value ( ⁇ 4), and the second deviation differential value D2 Is smaller than the second differential determination value (0), it is determined as an expired state. If the control unit 30 determines that the state is an exhalation state, the control unit 30 reduces the rotational speed command Vm for the motor 23 and decreases the rotational speed of the fan 22. Thereby, the pressure of the gas supplied with respect to the patient 63 becomes low. As a result, the difficulty in breathing in the patient 63 is reduced.
  • the control unit 30 acquires the correction command value Pc based on the current deviation D0 and the first and second deviation differential values D1, D2, and the pressure command value P1 based on the reference pressure command value P0 and the correction command value Pc. Is calculated. Then, the control unit 30 outputs a rotational speed command Vm that designates the rotational speed of the fan that is driven via the drive unit based on the pressure command value P1. The control unit 30 estimates a torque command in the motor 23 based on the rotational speed command Vm, and estimates an estimated current command value Ie based on the torque command.
  • a torque command in the motor 23 can be estimated based on the rotation speed command Vm of the motor 23, and the estimated current command value Ie in the motor 23 can be easily estimated based on the torque command. Then, by obtaining the correction command value Pc based on the result of comparing the estimated current command value Ie and the actual current value Ir, the rotational speed command Vm to the motor 23, that is, the rotational speed of the fan 22 can be obtained with a simple configuration. It can be easily changed.
  • the control unit 30 of the CPAP device 10 obtains an estimated current command value Ie obtained by estimating the current value flowing through the motor 23 from the rotation speed command Vm for the motor 23 that rotationally drives the fan 22.
  • the actual current value Ir of the fan 22 is obtained by the current sensor 42.
  • the current (actual current value Ir) flowing through the motor 23 varies depending on the respiratory state of the patient 63 to which the mask 62 is attached.
  • the respiratory state in the patient 63 appears as a change in load on the motor 23. For example, when the patient 63 is in an inhalation state, the load on the motor 23 is small, and when the patient 63 is in an exhalation state, the load on the motor 23 is large. Therefore, it is possible to determine the respiratory state (exhaled breath, inhaled, etc.) based on the difference between the actual current value Ir that changes according to the load and the estimated current command value Ie.
  • the control unit 30 obtains the difference between the estimated current command value Ie and the actual current value Ir as a current deviation D0. Furthermore, the control unit 30 obtains a deviation differential value obtained by differentiating the current deviation D0. In the present embodiment, the control unit 30 obtains a first deviation differential value D1 obtained by differentiating the current deviation D0 once and a second deviation differential value D2 obtained by differentiating the current deviation D0 twice. The timing at which the first deviation differential value D1 obtained by differentiating the current deviation D0 once approaches the timing at which the gas flow rate value AF changes compared to the change in the current deviation D0.
  • the control unit 30 determines the breathing state based on the current deviation D0 and the first and second deviation differential values D1 and D2. For example, the control unit 30 determines that the current deviation D0 is smaller than the determination value ( ⁇ 0.005), the first deviation differential value D1 is smaller than the first differentiation determination value ( ⁇ 4), and the second deviation differential value D2 Is smaller than the second differential determination value (0), it is determined as an expired state.
  • the control unit 30 determines that the state is an exhalation state, the control unit 30 can lower the rotational speed command Vm for the motor 23 and reduce the rotational speed of the fan 22. As a result, the pressure (gas flow rate) of the gas supplied to the patient 63 is lowered. As a result, the difficulty in breathing in the patient 63 can be reduced.
  • the determination unit 38 of the control unit 30 acquires the correction command value Pc based on the current deviation D0 and the first and second deviation differential values D1 and D2, and determines the reference pressure command value P0 and the correction command value Pc. Based on the above, the pressure command value P1 is calculated. Then, the control unit 30 outputs a rotation speed command Vm of the motor 23 that drives the fan 22 based on the pressure command value P1.
  • the current command value estimation unit 34 estimates a torque command in the motor 23 based on the rotation speed command Vm, and estimates an estimated current command value Ie based on the torque command. Therefore, the estimated current command value Ie in the motor 23 can be easily estimated based on the rotational speed command Vm of the motor 23.
  • the rotational speed command Vm to the motor 23, that is, the rotational speed of the fan 22 can be obtained with a simple configuration. It can be easily changed.
  • each said embodiment in the following aspects.
  • gas for example, air
  • breathable gas including a predetermined amount of gas
  • the CPAP apparatus was illustrated as a use of a pump apparatus, you may use for the use which supplies the liquid as a fluid.
  • the determination is made using the current deviation D0, the first deviation differential value D1 obtained by differentiating the current deviation D0 once, and the second deviation differential value D2 obtained by differentiating twice.
  • the determination may be made using the current deviation D0 and the first deviation differential value D1.
  • expiration as compared with the case where the expiration state (expiration timing) is determined using only the current deviation D0, the estimated expiration timing is earlier, and the fluid discharge pressure can be suitably controlled. Further, expiration (expiration timing) may be determined using the current deviation D0 and the second deviation differential value D2.
  • the second differential derivative value D2 is calculated using the two-time differentiator 37.
  • the second differential derivative value D2 may be obtained, for example, two one-time differentiators. You may make it obtain the 2nd deviation differential value D2 differentiated twice using.
  • the circuit unit included in the control unit 30 may be changed as appropriate.
  • the drive unit 39 shown in FIG. 4 may be provided in a part different from the control unit 30.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Mechanical Engineering (AREA)
  • Emergency Medicine (AREA)
  • Pulmonology (AREA)
  • Anesthesiology (AREA)
  • Power Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Hematology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Control Of Positive-Displacement Air Blowers (AREA)

Abstract

The present invention provides a CPAP device which is used for positive airway pressure and which changes the pressure of a gas to be supplied at desired timing. The CPAP device has a fan and a control unit 30 for controlling rotation of the fan. A current command value estimation unit 34 of the control unit 30 outputs an estimated current command value Ie, which is an estimate, based on a rotation speed command Vm to a motor 23 which rotates the fan, of the actual current value of the motor 23. A current value comparison unit 35 outputs, as a current deviation D0, the difference between an actual current value Ir flowing through the motor 23 and the estimated current command value Ie. Differentiators 36, 37 obtain deviation differential values D1, D2 by differentiating the current deviation D0. A determination unit 38 outputs a corrected pressure value Pc on the basis of the current deviation D0 and the deviation differential values D1, D2. Then, the rotation speed of the fan is controlled in accordance with the rotation speed command Vm generated on the basis of a reference pressure command value P0 and the corrected pressure value Pc.

Description

ポンプ装置Pump device
 本発明は、例えば陽性気道圧(PAP:Positive Airway Pressure)のために用いられるポンプ装置に関するものである。 The present invention relates to a pump device used, for example, for positive airway pressure (PAP).
 従来、閉塞性睡眠時無呼吸症候群(OSA)などの睡眠関連の障害の治療用として、例えば、持続陽性気道圧(CPAP:Continuous Positive Airway Pressure)装置(以下、CPAP装置)が用いられる(例えば、特許文献1参照)。このCPAP装置は、ファンを内蔵したポンプ装置を有し、患者の顔に装着されたマスクに装置本体から大気圧より高い圧力で気体(例えば空気)を送り込む。この気体によって気道を押し広げ、のどの塞がりを抑制する。 Conventionally, as a treatment for sleep-related disorders such as obstructive sleep apnea syndrome (OSA), for example, a continuous positive airway pressure (CPAP) device (hereinafter, CPAP device) is used (for example, CPAP device) Patent Document 1). This CPAP device has a pump device with a built-in fan, and feeds gas (for example, air) from a main body of the device to a mask mounted on a patient's face at a pressure higher than atmospheric pressure. This gas spreads the airway and suppresses throat blockage.
 CPAP装置としては、例えば気体の供給経路に設けられた流量センサによって気体の流量を測定し、所定の圧力の気体を供給するものがある。また、別のCPAP装置としては、例えばファンを駆動するモータのモータ電流からルックアップテーブルを用いて流量を推定し、所定の圧力の気体を供給するものがある。 As the CPAP device, for example, there is a device that measures a gas flow rate by a flow sensor provided in a gas supply path and supplies a gas having a predetermined pressure. As another CPAP device, for example, there is a device that estimates a flow rate from a motor current of a motor driving a fan using a look-up table and supplies a gas having a predetermined pressure.
特表2008-518646号公報Special table 2008-518646 gazette
 ところで、マスクに供給する気体の圧力を所望のタイミングで変更することが求められている。例えば、常時一定の圧力にて気体を供給すると、呼気状態、つまり息を吐くときにも一定の圧力の気体が供給されるため、患者が息苦しさを感じる場合がある。このため、患者の呼気タイミングに応じて、患者に装着されたマスクに供給する気体の圧力を低下させることが求められる。しかしながら、上記のようなCPAP装置は、所望の圧力にて気体を供給するものであるため、患者の状態に応じたタイミングで圧力を変更することができないという問題がある。 Incidentally, it is required to change the pressure of the gas supplied to the mask at a desired timing. For example, if gas is supplied at a constant pressure at all times, the patient may feel breathless because the gas at a constant pressure is supplied even when exhaling, that is, when exhaling. For this reason, it is calculated | required that the pressure of the gas supplied to the mask with which the patient was mounted | worn is reduced according to a patient's expiration timing. However, since the CPAP device as described above supplies gas at a desired pressure, there is a problem that the pressure cannot be changed at a timing according to the patient's condition.
 本発明は上記問題点を解決するためになされたものであって、その目的は、陽性気道圧のために用いられ、所望のタイミングで供給する気体の圧力の変更を可能としたポンプ装置を提供することにある。 The present invention has been made to solve the above-mentioned problems, and its object is to provide a pump device that is used for positive airway pressure and that enables the pressure of the gas supplied at a desired timing to be changed. There is to do.
 上記課題を解決するポンプ装置は、陽性気道圧のために用いられるポンプ装置であって、ファンと、前記ファンを回転駆動する駆動部と、前記駆動部を介して前記ファンの駆動を制御する駆動制御回路と、流体が流入する流入口と、前記ファンの回転駆動によって前記流体を吐出する吐出口と、前記ファンの回転数指令から推定電流指令値を推定する電流指令値推定部と、前記駆動部に流れる実電流値を測定する電流値測定部と、前記推定電流指令値と前記実電流値とを比較し、前記推定電流指令値と前記実電流値の偏差である電流偏差を取得する電流値比較部と、前記電流偏差を微分した偏差微分値を取得する微分手段と、前記電流偏差及び前記偏差微分値に基づいて前記回転数指令を生成する回転数制御部と、前記回転数指令に基づいて前記駆動部に駆動電流を供給するドライブ部と、を有する。 A pump device that solves the above problem is a pump device that is used for positive airway pressure, and includes a fan, a drive unit that rotationally drives the fan, and a drive that controls driving of the fan via the drive unit. A control circuit; an inflow port through which fluid flows; a discharge port through which the fluid is discharged by rotational driving of the fan; a current command value estimating unit that estimates an estimated current command value from a rotational speed command of the fan; A current value measuring unit that measures an actual current value flowing through the unit, a current that compares the estimated current command value with the actual current value, and obtains a current deviation that is a deviation between the estimated current command value and the actual current value A value comparison unit, a differentiation unit that obtains a deviation differential value obtained by differentiating the current deviation, a rotation speed control unit that generates the rotation speed command based on the current deviation and the deviation differential value, and the rotation speed command Based on Having a drive unit for supplying a driving current to the driving unit.
 この構成によれば、流体を供給するファンの回転数から推定した推定電流指令値と、ファンを駆動する駆動部に流れる実電流との差の電流偏差を得る。そして、電流偏差とその電流偏差を微分した偏差微分値とに基づいて、ファンの回転数を制御する。このファンの回転数に応じた圧力にて流体が吐出される。これにより、流体の流量を計測するセンサを用いることや、ルックアップテーブルなどのように複雑な制御を行うことなく所望のタイミングにてファンの回転数の制御が可能であるため、コストの低減を図ることができる。また、電流偏差を微分した偏差微分値を用いることで、電流偏差を用いた場合に比べ判定のタイミングが早くなり、ファンの回転を制御するタイミングが早くなる。 According to this configuration, the current deviation of the difference between the estimated current command value estimated from the rotational speed of the fan supplying the fluid and the actual current flowing in the drive unit that drives the fan is obtained. Then, the rotational speed of the fan is controlled based on the current deviation and the deviation differential value obtained by differentiating the current deviation. Fluid is discharged at a pressure corresponding to the rotational speed of the fan. This makes it possible to control the rotational speed of the fan at a desired timing without using a sensor that measures the flow rate of the fluid or performing complicated control such as a look-up table. Can be planned. Further, by using the differential derivative value obtained by differentiating the current deviation, the determination timing is earlier than that when the current deviation is used, and the timing for controlling the rotation of the fan is earlier.
 上記のポンプ装置において、前記回転数制御部は、前記電流偏差及び前記偏差微分値がそれぞれに対応する判定値より小さい場合に前記回転数指令を低下させることが好ましい。 In the above pump device, it is preferable that the rotation speed control unit lowers the rotation speed command when the current deviation and the deviation differential value are smaller than the corresponding determination values.
 この構成によれば、電流偏差と偏差微分値がそれぞれに対応する判定値より小さい場合に回転数指令を低下させる。ここで、偏差微分値は、電流偏差の変化を示す。従って、電流偏差のみを用いた場合に比べ、偏差微分値を用いた場合は判定におけるタイミングが早くなる。このため、早いタイミングでファンの回転数を低下させることができる。 According to this configuration, when the current deviation and the deviation differential value are smaller than the corresponding determination values, the rotational speed command is lowered. Here, the deviation differential value indicates a change in current deviation. Therefore, when the deviation differential value is used, the determination timing is earlier than when only the current deviation is used. For this reason, the number of rotations of the fan can be reduced at an early timing.
 上記のポンプ装置において、前記微分手段は、前記電流偏差を1回微分した第1の偏差微分値と、前記電流偏差を2回微分した第2の偏差微分値とを取得し、前記回転数制御部は、前記第1の偏差微分値と前記第2の偏差微分値との少なくとも一方と電流偏差とに基づいて前記回転数指令を生成することが好ましい。 In the above pump device, the differentiating unit obtains a first deviation differential value obtained by differentiating the current deviation once and a second deviation differential value obtained by differentiating the current deviation twice, and the rotational speed control. The unit preferably generates the rotational speed command based on at least one of the first deviation differential value and the second deviation differential value and a current deviation.
 この構成によれば、流体の流量を計測するセンサを用いることや、ルックアップテーブルなどのように複雑な制御を行うことなく流量の制御が可能となる。また、電流偏差を2回微分した第2の偏差微分値を用いることで、電流偏差を用いた場合に比べ判定のタイミングが早くなり、ファンの回転数を制御するタイミングが早くなる。 According to this configuration, the flow rate can be controlled without using a sensor that measures the flow rate of the fluid or performing complicated control such as a lookup table. Further, by using the second deviation differential value obtained by differentiating the current deviation twice, the determination timing is earlier than in the case where the current deviation is used, and the timing for controlling the rotational speed of the fan is earlier.
 上記のポンプ装置において、前記回転数制御部は、前記第1の偏差微分値と前記第2の偏差微分値の少なくとも一方と前記電流偏差とがそれぞれに対応する判定値より小さい場合に前記回転数指令を低下させることが好ましい。 In the above pump device, the rotation speed control unit is configured so that the rotation speed is determined when at least one of the first deviation differential value, the second deviation differential value, and the current deviation are smaller than corresponding determination values. It is preferable to reduce the command.
 この構成によれば、第1の偏差微分値と第2の偏差微分値の少なくとも一方と電流偏差がそれぞれに対応する判定値より小さい場合にファンの回転数を低下させる。ここで、偏差微分値は、電流偏差の変化を示す。従って、電流偏差のみを用いた場合に比べ、第1,第2の偏差微分値を用いた場合の判定におけるタイミングが早くなる。このため、早いタイミングでファンの回転数を低下させることができる。 According to this configuration, when at least one of the first differential differential value and the second differential differential value and the current deviation are smaller than the corresponding determination values, the fan speed is reduced. Here, the deviation differential value indicates a change in current deviation. Therefore, compared with the case where only the current deviation is used, the timing in the determination when the first and second deviation differential values are used is earlier. For this reason, the number of rotations of the fan can be reduced at an early timing.
 上記のポンプ装置において、前記回転数制御部は、前記電流偏差及び前記偏差微分値に基づいて補正指令値を取得し、基準圧力指令値と前記補正指令値とに基づいて圧力指令値を算出し、前記圧力指令値に基づいて前記回転数指令を生成し、前記電流指令値推定部は、前記回転数指令に基づいて前記駆動部におけるトルク指令を推定し、前記トルク指令に基づいて前記推定電流指令値を推定することが好ましい。 In the pump device, the rotation speed control unit obtains a correction command value based on the current deviation and the deviation differential value, and calculates a pressure command value based on a reference pressure command value and the correction command value. The rotation speed command is generated based on the pressure command value, and the current command value estimation unit estimates a torque command in the drive unit based on the rotation speed command, and the estimated current based on the torque command. It is preferable to estimate the command value.
 この構成によれば、駆動部への回転数指令に基づいて駆動部におけるトルク指令を推定し、そのトルク指令に基づいて駆動部における推定電流指令値を容易に推定することができる。そして、推定電流指令値と実電流値とを比較した結果に基づいて補正指令値を取得することで、駆動部への回転数指令、つまりファンの回転数を変更することが可能となる。 According to this configuration, it is possible to estimate the torque command in the drive unit based on the rotational speed command to the drive unit, and easily estimate the estimated current command value in the drive unit based on the torque command. Then, by acquiring the correction command value based on the result of comparing the estimated current command value and the actual current value, it is possible to change the rotation speed command to the drive unit, that is, the fan rotation speed.
 上記のポンプ装置において、前記電流偏差及び前記偏差微分値と比較する判定値は、呼気状態に応じて設定されることが好ましい。
 この構成によれば、陽性気道圧のために用いられるポンプ装置において、呼気に応じたタイミングでファンの回転を制御し、例えば吐出する流体の流量を低下させることが可能となる。
In the above pump device, it is preferable that the determination value to be compared with the current deviation and the deviation differential value is set according to the expiration state.
According to this configuration, in the pump device used for positive airway pressure, it is possible to control the rotation of the fan at a timing according to expiration, for example, to reduce the flow rate of the fluid to be discharged.
 本発明のポンプ装置によれば、陽性気道圧のために用いられるポンプ装置において、所望のタイミングで供給する気体の圧力の変更を可能とすることができる。 According to the pump device of the present invention, in the pump device used for positive airway pressure, it is possible to change the pressure of the gas supplied at a desired timing.
(a)はCPAP装置の側断面図、(b)はCPAP装置の平断面図。(A) is a sectional side view of the CPAP device, (b) is a plan sectional view of the CPAP device. CPAP装置の使用状態を示す概略図。Schematic which shows the use condition of a CPAP apparatus. CPAP装置の電気的構成を示すブロック図。The block diagram which shows the electrical constitution of a CPAP apparatus. 制御部の概略構成を示すブロック図。The block diagram which shows schematic structure of a control part. 呼気状態を判定するためのフローチャート。The flowchart for determining an expiration state. CPAP装置の動作状態を示す波形図。The wave form diagram which shows the operation state of a CPAP apparatus. CPAP装置の動作状態を示す波形図。The wave form diagram which shows the operation state of a CPAP apparatus.
 以下、一実施形態を説明する。
 なお、添付図面は、理解を容易にするために構成要素を拡大して示している場合がある。構成要素の寸法比率は実際のものと、または別の図面中のものと異なる場合がある。また、断面図では、理解を容易にするために、一部の構成要素のハッチングを省略している場合がある。
Hereinafter, an embodiment will be described.
In the accompanying drawings, components may be shown in an enlarged manner for easy understanding. The dimensional ratios of the components may be different from the actual ones or in other drawings. Further, in the cross-sectional view, some components may not be hatched for easy understanding.
 図2に示すように、ポンプ装置としての持続陽性気道圧(CPAP:Continuous Positive Airway Pressure)装置(単にCPAP装置)10は、チューブ61を介してマスク62に接続される。マスク62は、患者63の顔に装着される。CPAP装置10は、チューブ61とマスク62を介して患者63に所望の圧力の気体(例えば空気)を供給する。また、CPAP装置10は、患者63の状態(例えば呼気時)を推定し、その推定したタイミングで患者63に供給する気体の圧力を制御する。 As shown in FIG. 2, a continuous positive airway pressure (CPAP) device (simply CPAP device) 10 as a pump device is connected to a mask 62 via a tube 61. The mask 62 is attached to the face of the patient 63. The CPAP device 10 supplies a gas (for example, air) having a desired pressure to the patient 63 through the tube 61 and the mask 62. The CPAP device 10 estimates the state of the patient 63 (for example, during expiration) and controls the pressure of the gas supplied to the patient 63 at the estimated timing.
 CPAP装置10は、筐体11と、筐体11の上面に配置された表示部12と操作部13とを備えている。CPAP装置10は、設定値を含む各種情報を表示部12に表示する。また、CPAP装置10は、操作部13の操作に基づいて、設定値を含む各種情報を設定する。設定値は、供給する気体の圧力値、気体の流量値を含む。また、設定値は、呼気時に供給する気体の圧力値を含む。 The CPAP device 10 includes a housing 11, a display unit 12 and an operation unit 13 disposed on the upper surface of the housing 11. The CPAP device 10 displays various types of information including setting values on the display unit 12. Further, the CPAP device 10 sets various information including setting values based on the operation of the operation unit 13. The set value includes the pressure value of the gas to be supplied and the flow rate value of the gas. The set value includes the pressure value of the gas supplied during expiration.
 CPAP装置10は、マスク62が装着された患者63の呼気タイミングを推定する。そして、推定した呼気タイミングにて、供給する気体の圧力値を制御する。例えば、CPAP装置10は、標準圧力値にて気体を供給する。標準圧力値は、例えば医師により指定された圧力値であり、例えば1000[Pa]である。そして、CPAP装置10は、推定した呼気タイミングにて、供給する気体の圧力を呼気時圧力値に変更する。呼気時圧力値は、例えば700[Pa]である。つまり、CPAP装置10は、患者63の状態(呼気、吸気)に応じて供給する気体の圧力を、標準圧力値と呼気時圧力値とに交互に制御する。 The CPAP device 10 estimates the expiration timing of the patient 63 wearing the mask 62. Then, the pressure value of the gas to be supplied is controlled at the estimated expiration timing. For example, the CPAP device 10 supplies gas at a standard pressure value. The standard pressure value is a pressure value designated by a doctor, for example, and is 1000 [Pa], for example. Then, the CPAP device 10 changes the pressure of the gas to be supplied to the exhalation pressure value at the estimated expiration timing. The exhalation pressure value is 700 [Pa], for example. That is, the CPAP device 10 alternately controls the pressure of the gas supplied according to the state of the patient 63 (exhalation, inspiration) to the standard pressure value and the exhalation pressure value.
 図1(a)及び図1(b)に示すように、CPAP装置10は、筐体11と、筐体11に内設されたファンユニット20及び制御ユニット30を有している。筐体11は、気体を吸入する吸入口14と、吸入した気体を吐出する吐出口15とを有している。吐出口15には、図2に示すチューブ61が連結される。筐体11の内部は、立設された区画壁16によって区画された送風室17と制御室18とを有している。 As shown in FIG. 1A and FIG. 1B, the CPAP device 10 includes a housing 11, and a fan unit 20 and a control unit 30 provided in the housing 11. The housing 11 has a suction port 14 for sucking gas and a discharge port 15 for discharging the sucked gas. A tube 61 shown in FIG. 2 is connected to the discharge port 15. The interior of the housing 11 has a blower chamber 17 and a control chamber 18 that are partitioned by a standing partition wall 16.
 図1(b)に示すように、送風室17にはファンユニット20が配設されている。ファンユニット20は、ファンケース21と、ファンケース21に収容されたファン22と、ファン22を駆動する駆動源としてのモータ23(図中「M」と表記)とを有している。 As shown in FIG. 1B, a fan unit 20 is disposed in the blower chamber 17. The fan unit 20 includes a fan case 21, a fan 22 accommodated in the fan case 21, and a motor 23 (denoted as “M” in the drawing) as a drive source for driving the fan 22.
 ファンケース21は、下方に開口する吸入口21aと、側面に突出する排出口21bとを有している。ファンケース21の排出口21bは、筐体11の吐出口15と連通している。モータ23はファンケース21の上面に取着され、そのモータ23の回転軸23aはファンケース21内に挿入されている。ファン22は、モータ23の回転軸23aに取着されている。 The fan case 21 has a suction port 21a that opens downward and a discharge port 21b that projects to the side. The discharge port 21 b of the fan case 21 communicates with the discharge port 15 of the housing 11. The motor 23 is attached to the upper surface of the fan case 21, and the rotating shaft 23 a of the motor 23 is inserted into the fan case 21. The fan 22 is attached to the rotating shaft 23 a of the motor 23.
 ファン22は例えば遠心ファンである。モータ23によってファン22が回転駆動されると、図1(a)に矢印にて示すように気体が吸入口14から送風室17の内部へと取り込まれる。更に、矢印にて示すように、気体は、送風室17内から吸入口21aを介してファンケース21の内部へと吸入される。そして、ファンケース21内部の気体は、排出口21bから吐出される。その吐出される気体は、筐体11の吐出口15から、図2に示すチューブ61及びマスク62を介して患者63へと送られる。 The fan 22 is, for example, a centrifugal fan. When the fan 22 is rotationally driven by the motor 23, gas is taken into the blower chamber 17 from the suction port 14 as indicated by an arrow in FIG. Further, as indicated by the arrows, the gas is sucked into the fan case 21 from the blower chamber 17 through the suction port 21a. And the gas inside the fan case 21 is discharged from the discharge port 21b. The discharged gas is sent from the discharge port 15 of the housing 11 to the patient 63 via the tube 61 and the mask 62 shown in FIG.
 制御室18には制御ユニット30が配設されている。制御ユニット30は、例えば、回路基板と、回路基板に実装された複数の電子部品とを含む。制御ユニット30は、後述する各種センサによる検出結果に基づいてファン22を回転駆動する。また、制御ユニット30は、各種センサによる検出結果に基づいて、患者63の状態(例えば呼気タイミング)を推定する。そして、制御ユニット30は、推定した患者63の状態に基づいて、排出口21bから吐出する気体の圧力を制御する。 A control unit 30 is disposed in the control room 18. The control unit 30 includes, for example, a circuit board and a plurality of electronic components mounted on the circuit board. The control unit 30 rotationally drives the fan 22 based on detection results from various sensors described later. Further, the control unit 30 estimates the state of the patient 63 (for example, exhalation timing) based on detection results from various sensors. Then, the control unit 30 controls the pressure of the gas discharged from the discharge port 21b based on the estimated state of the patient 63.
 図3は、CPAP装置10の電気的構成を示す。
 図3に示すように、CPAP装置10は、表示部12、操作部13、モータ23、制御ユニット30、圧力センサ41、電流値測定部としての電流センサ42を有している。
FIG. 3 shows the electrical configuration of the CPAP device 10.
As shown in FIG. 3, the CPAP device 10 includes a display unit 12, an operation unit 13, a motor 23, a control unit 30, a pressure sensor 41, and a current sensor 42 as a current value measurement unit.
 圧力センサ41は、図1(a)に示すファンケース21に設けられ、ファンケース21の内部の圧力を検出し、圧力検出信号を出力する。電流センサ42は、モータ23に供給する駆動電流を検出し、駆動電流に応じた電流検出信号を出力する。 The pressure sensor 41 is provided in the fan case 21 shown in FIG. 1A, detects the pressure inside the fan case 21, and outputs a pressure detection signal. The current sensor 42 detects a drive current supplied to the motor 23 and outputs a current detection signal corresponding to the drive current.
 制御ユニット30には、各種設定値が記憶されている。設定値は、標準圧力値、呼気時圧力値、判定値、を含む。
 制御ユニット30は、圧力センサ41の圧力検出信号と、電流センサ42により検出された実電流値Irと、各種の設定値に基づいて、モータ23の回転数を決定する。そのモータ23の回転により、CPAP装置10から気体が吐出される。つまり、制御ユニット30は、圧力指令値と実際の圧力値の偏差(差分値)に基づいて、CPAP装置10が吐出する気体の圧力を制御する。
Various setting values are stored in the control unit 30. The set value includes a standard pressure value, a pressure value during expiration, and a determination value.
The control unit 30 determines the rotation speed of the motor 23 based on the pressure detection signal of the pressure sensor 41, the actual current value Ir detected by the current sensor 42, and various set values. The gas is discharged from the CPAP device 10 by the rotation of the motor 23. That is, the control unit 30 controls the pressure of the gas discharged from the CPAP device 10 based on the deviation (difference value) between the pressure command value and the actual pressure value.
 図4は、制御ユニット30の一部ブロック回路図を示し、モータ23の駆動に係る制御ブロックを示す。
 制御ユニット30は、加算器31,32、コントローラ33、電流指令値推定部34、電流値比較部35、微分器36、2回微分器37、判定部38、ドライブ部39(図中「D」と表記)を有している。
FIG. 4 is a partial block circuit diagram of the control unit 30 and shows a control block related to driving of the motor 23.
The control unit 30 includes adders 31 and 32, a controller 33, a current command value estimation unit 34, a current value comparison unit 35, a differentiator 36, a second differentiator 37, a determination unit 38, and a drive unit 39 ("D" in the figure). ).
 加算器31には、指令値(設定値)として基準圧力指令値P0が供給される。また、この加算器31には、判定部38の判定結果に応じた補正指令値Pcが供給される。加算器31は、基準圧力指令値P0に対して、負の補正指令値Pcを加算、つまり基準圧力指令値P0と補正指令値Pcの偏差(差分値)を算出し、その算出結果を圧力指令値P1として加算器32に出力する。 The adder 31 is supplied with a reference pressure command value P0 as a command value (set value). The adder 31 is supplied with a correction command value Pc corresponding to the determination result of the determination unit 38. The adder 31 adds a negative correction command value Pc to the reference pressure command value P0, that is, calculates a deviation (difference value) between the reference pressure command value P0 and the correction command value Pc, and uses the calculation result as the pressure command. The value P1 is output to the adder 32.
 加算器32には、図3に示す圧力センサ41により検出された圧力検出値Prが供給される。加算器32は、圧力指令値P1に対して、負の圧力検出値Prを加算、つまり圧力指令値P1と圧力検出値Prの偏差(差分値)を算出し、その算出結果を圧力偏差値P2としてコントローラ33に出力する。 The pressure detection value Pr detected by the pressure sensor 41 shown in FIG. The adder 32 adds a negative pressure detection value Pr to the pressure command value P1, that is, calculates a deviation (difference value) between the pressure command value P1 and the pressure detection value Pr, and calculates the calculation result as a pressure deviation value P2. To the controller 33.
 コントローラ33は、圧力偏差値P2に対応する回転数指令Vmをドライブ部39に出力する。回転数指令Vmは、モータ23を駆動する回転数指令であり、モータ23によって回転駆動されるファン22の回転数指令である。ドライブ部39は、回転数指令Vmに応じた駆動電流をモータ23に供給する。モータ23は、供給される駆動電流に応じて回転する。従って、回転数指令Vmにより、モータ23は、圧力偏差値P2に対応する回転数にて回転する。また、回転数指令Vmは、電流指令値推定部34に供給される。 The controller 33 outputs a rotational speed command Vm corresponding to the pressure deviation value P2 to the drive unit 39. The rotational speed command Vm is a rotational speed command for driving the motor 23 and is a rotational speed command for the fan 22 that is rotationally driven by the motor 23. The drive unit 39 supplies a drive current corresponding to the rotational speed command Vm to the motor 23. The motor 23 rotates according to the supplied drive current. Therefore, the motor 23 rotates at the rotation speed corresponding to the pressure deviation value P2 by the rotation speed command Vm. The rotation speed command Vm is supplied to the current command value estimation unit 34.
 電流指令値推定部34は、回転数指令Vmに基づいて、モータ23における推定電流指令値Ieを推定する。電流指令値推定部34には、回転数指令Vmに対してモータ23において発生するトルクの値(例えばテーブルや計算式)が設定されている。また、電流指令値推定部34は、モータ23に固有のトルク定数が設定されている。電流指令値推定部34は、回転数指令Vmに対するトルク指令を推定する。そして、電流指令値推定部34は、推定したトルク指令とトルク定数に基づいてモータ23における推定電流指令値Ieを推定する。 The current command value estimation unit 34 estimates the estimated current command value Ie in the motor 23 based on the rotation speed command Vm. In the current command value estimation unit 34, a value of torque generated in the motor 23 with respect to the rotation speed command Vm (for example, a table or a calculation formula) is set. The current command value estimation unit 34 is set with a torque constant unique to the motor 23. The current command value estimation unit 34 estimates a torque command for the rotation speed command Vm. Then, the current command value estimation unit 34 estimates the estimated current command value Ie in the motor 23 based on the estimated torque command and the torque constant.
 その推定電流指令値Ieは、電流値比較部35に供給される。電流値比較部35には、図3に示す電流センサ42により検出された実電流値Irが供給される。この実電流値Irは、モータ23における実際の電流値(実電流値)を示す。電流値比較部35は、推定電流指令値Ieと実電流値Irとの偏差(差分値)を算出し、その算出結果を電流偏差D0として出力する。電流偏差D0は、判定部38、微分器36、2回微分器37に供給される。 The estimated current command value Ie is supplied to the current value comparison unit 35. The current value comparing unit 35 is supplied with the actual current value Ir detected by the current sensor 42 shown in FIG. The actual current value Ir indicates an actual current value (actual current value) in the motor 23. The current value comparison unit 35 calculates a deviation (difference value) between the estimated current command value Ie and the actual current value Ir, and outputs the calculation result as a current deviation D0. The current deviation D0 is supplied to the determination unit 38, the differentiator 36, and the twice differentiator 37.
 微分器36は、電流偏差D0を1回微分した結果を第1の偏差微分値D1として判定部38に出力する。2回微分器37は、電流偏差D0を2回微分した結果を第2の偏差微分値D2として判定部38に出力する。 The differentiator 36 outputs the result obtained by differentiating the current deviation D0 once to the determination unit 38 as the first deviation differential value D1. The twice differentiator 37 outputs the result obtained by differentiating the current deviation D0 twice to the determination unit 38 as the second deviation differential value D2.
 判定部38には、判定値が記憶される。判定値は、電流偏差D0に対応する判定値、第1の偏差微分値D1に対応する第1微分判定値、第2の偏差微分値D2に対応する第2微分判定値を含む。判定部38は、電流偏差D0、第1の偏差微分値D1、第2の偏差微分値D2と、判定値、第1微分判定値、第2微分判定値をそれぞれ比較し、比較結果に基づいて、呼気タイミングか否かを判定する。判定値、第1,第2微分判定値は、実験やシミュレーションに基づいて予め設定され記憶される。一例として、判定値は「-0.005」、第1微分判定値は「-4」、第2微分判定値は「0」である。 The determination value is stored in the determination unit 38. The determination value includes a determination value corresponding to the current deviation D0, a first differential determination value corresponding to the first deviation differential value D1, and a second differential determination value corresponding to the second deviation differential value D2. The determination unit 38 compares the current deviation D0, the first deviation differential value D1, the second deviation differential value D2, and the determination value, the first differential determination value, and the second differential determination value, respectively, and based on the comparison result It is determined whether or not it is the expiration timing. The determination value and the first and second differential determination values are set and stored in advance based on experiments and simulations. As an example, the determination value is “−0.005”, the first differential determination value is “−4”, and the second differential determination value is “0”.
 そして、判定部38は、判定結果に応じた補正指令値Pcを出力する。
 図5は呼気状態を判定するためのフローチャートである。判定部38は、電流偏差D0と判定値とを比較するステップS1、第1の偏差微分値D1と第1微分判定値とを比較するステップS2、第2の偏差微分値D2と第2微分判定値とを比較するステップS3を実行して呼気状態かどうかを判定する。ステップS1~S3の実行順序は任意に変更することができ、例えばステップS1~S3は同時に実行されてもよい。図示した例では、判定部38は、電流偏差D0が判定値よりも小さく(S1でYES)、第1の偏差微分値D1が第1微分判定値よりも小さく(S2でYES)、第2の偏差微分値D2が第2微分判定値よりも小さい(S3でYES)とき、呼気状態と判定する。判定部38は、ステップS1~S3の一つ以上でNOと判断したとき、呼気状態でないと判定する。そして、判定部38は、電流偏差D0、第1の偏差微分値D1、及び第2の偏差微分値D2が対応する判定値及び第1,第2微分判定値よりも小さくなったときを呼気タイミングとする。判定部38は、呼気状態と判定した場合、第1の補正値を補正指令値Pcとして出力し、呼気状態ではないと判定した場合、第2の補正値を補正指令値Pcとして出力する。第1の補正値は、CPAP装置10の吐出圧力を呼気時圧力値とするために設定され、例えば「50Pa」に設定される。第2の補正値は、CPAP装置10の吐出圧力を標準指令値とするように設定され、例えば「0」に設定される。
Then, the determination unit 38 outputs a correction command value Pc corresponding to the determination result.
FIG. 5 is a flowchart for determining the expiration state. The determination unit 38 compares the current deviation D0 with the determination value, step S1, compares the first deviation differential value D1 with the first differential determination value, and compares the second deviation differential value D2 with the second differential determination. Step S3 for comparing the value is executed to determine whether or not the patient is in the expired state. The execution order of steps S1 to S3 can be arbitrarily changed. For example, steps S1 to S3 may be executed simultaneously. In the illustrated example, the determination unit 38 determines that the current deviation D0 is smaller than the determination value (YES in S1), the first deviation differential value D1 is smaller than the first differential determination value (YES in S2), and the second When the deviation differential value D2 is smaller than the second differential determination value (YES in S3), it is determined as an expired state. When the determination unit 38 determines NO in one or more of steps S1 to S3, the determination unit 38 determines that it is not in the expired state. The determination unit 38 determines when the current deviation D0, the first deviation differential value D1, and the second deviation differential value D2 are smaller than the corresponding determination value and the first and second differential determination values. And The determination unit 38 outputs the first correction value as the correction command value Pc when it is determined as the expiration state, and outputs the second correction value as the correction command value Pc when it is determined that the state is not the expiration state. The first correction value is set to set the discharge pressure of the CPAP device 10 as the exhalation pressure value, and is set to, for example, “50 Pa”. The second correction value is set so that the discharge pressure of the CPAP device 10 is a standard command value, and is set to “0”, for example.
 補正指令値Pcは、上述の加算器31に供給される。加算器31は、標準指令値に対して、負の補正指令値Pcを加算、つまり標準指令値から補正指令値Pcを減算する。つまり、呼気状態と判定した場合、補正指令値Pcに基づいて標準指令値から減圧した圧力指令値P1を生成する。この圧力指令値P1を満たすように、モータ23を駆動する。 The correction command value Pc is supplied to the adder 31 described above. The adder 31 adds a negative correction command value Pc to the standard command value, that is, subtracts the correction command value Pc from the standard command value. That is, when it is determined that the patient is in the expired state, the pressure command value P1 that is reduced from the standard command value is generated based on the correction command value Pc. The motor 23 is driven so as to satisfy the pressure command value P1.
 次に、上記のCPAP装置10の作用を説明する。
 CPAP装置10の制御ユニット30は、ファン22を回転駆動するモータ23に対する回転数指令Vmから、ファン22に流れる電流値を推定した推定電流指令値Ieを得る。ファン22の実電流値Irは、電流センサ42により得られる。モータ23に流れる電流(実電流値Ir)は、マスク62が取着された患者63の呼吸状態により変化する。患者63における呼吸状態は、モータ23に対する負荷の変化として現れる。例えば、患者63が吸気状態にあるとき、モータ23に対する負荷は小さくなり、患者63が呼気状態にあるとき、モータ23に対する負荷は大きくなる。
Next, the operation of the CPAP device 10 will be described.
The control unit 30 of the CPAP device 10 obtains an estimated current command value Ie obtained by estimating the current value flowing through the fan 22 from the rotation speed command Vm for the motor 23 that rotationally drives the fan 22. The actual current value Ir of the fan 22 is obtained by the current sensor 42. The current (actual current value Ir) flowing through the motor 23 varies depending on the respiratory state of the patient 63 to which the mask 62 is attached. The respiratory state in the patient 63 appears as a change in load on the motor 23. For example, when the patient 63 is in an inhalation state, the load on the motor 23 is small, and when the patient 63 is in an exhalation state, the load on the motor 23 is large.
 図6は、モータ23における推定電流指令値Ieと実電流値Irを示す。図6において、横軸は時間、縦軸は電流値である。なお、図6に示す波形は、人工的に呼気と排気とを繰り返すようにしたときの推定電流指令値Ieと実電流値Irとを示す。また、推定電流指令値Ieと実電流値Irとの差を示すように、波形をオフセットして推定電流指令値Ieを中心にして示している。図6に示すように、推定電流指令値Ieと実電流値Irとの差により、呼吸状態(呼気、吸気など)を判定することができる。 FIG. 6 shows the estimated current command value Ie and the actual current value Ir in the motor 23. In FIG. 6, the horizontal axis represents time, and the vertical axis represents the current value. Note that the waveforms shown in FIG. 6 indicate the estimated current command value Ie and the actual current value Ir when artificially repeating exhalation and exhaustion. Further, the waveform is offset to show the difference between the estimated current command value Ie and the actual current value Ir, and the estimated current command value Ie is shown as the center. As shown in FIG. 6, the respiratory state (exhaled breath, inhaled, etc.) can be determined based on the difference between the estimated current command value Ie and the actual current value Ir.
 そして、制御ユニット30は、推定電流指令値Ieと実電流値Irとの差を電流偏差D0として得る。さらに、制御ユニット30は、電流偏差D0を微分した偏差微分値を得る。本実施形態において、制御ユニット30は、電流偏差D0を1回微分した第1の偏差微分値D1と、電流偏差D0を2回微分した第2の偏差微分値D2を得る。 Then, the control unit 30 obtains a difference between the estimated current command value Ie and the actual current value Ir as a current deviation D0. Furthermore, the control unit 30 obtains a deviation differential value obtained by differentiating the current deviation D0. In the present embodiment, the control unit 30 obtains a first deviation differential value D1 obtained by differentiating the current deviation D0 once and a second deviation differential value D2 obtained by differentiating the current deviation D0 twice.
 図7は、患者63の呼吸による気体の流量値AFと、電流偏差D0、第1の偏差微分値D1、第2の偏差微分値D2の波形を示す。なお、図7に示す波形は、人工的に呼気と吸気とを再現した場合を示す。そして、第2の偏差微分値D2の波形は、所定のしきい値(例えば第3判定値)に基づいて量子化(「0」又は「1」)した結果を示している。例えば、第2の偏差微分値D2がしきい値より小さい場合を「1」とし、第2の偏差微分値D2がしきい値以上の場合を「0」とする。 FIG. 7 shows waveforms of the gas flow rate value AF due to the breathing of the patient 63, the current deviation D0, the first deviation differential value D1, and the second deviation differential value D2. In addition, the waveform shown in FIG. 7 shows the case where exhalation and inhalation are artificially reproduced. The waveform of the second deviation differential value D2 indicates the result of quantization (“0” or “1”) based on a predetermined threshold (for example, the third determination value). For example, “1” is set when the second deviation differential value D2 is smaller than the threshold value, and “0” is set when the second deviation differential value D2 is equal to or larger than the threshold value.
 図7に示すように、電流偏差D0を1回微分した第1の偏差微分値D1の変化するタイミングは、電流偏差D0の変化に比べ、気体の流量値AFが変化するタイミングに近づく。また、電流偏差D0を2回微分した第2の偏差微分値D2の変化するタイミングは、第1の偏差微分値D1の変化に比べ、気体の流量値AFが変化するタイミングに近づく。したがって、電流偏差D0、第1,第2の偏差微分値D1,D2を用いることで、呼吸を判定するタイミングを、実際の呼気のタイミングに近づけることができる。そして、電流偏差D0、第1,第2の偏差微分値D1,D2を用いることで、ノイズ等による誤判定を防止することができる。 As shown in FIG. 7, the timing at which the first deviation differential value D1 obtained by differentiating the current deviation D0 once approaches the timing at which the gas flow rate value AF changes compared to the change in the current deviation D0. In addition, the timing at which the second deviation differential value D2 obtained by differentiating the current deviation D0 twice approaches the timing at which the gas flow rate value AF changes compared to the change in the first deviation differential value D1. Therefore, by using the current deviation D0 and the first and second differential differential values D1 and D2, the timing for determining respiration can be brought close to the actual expiration timing. And the misjudgment by noise etc. can be prevented by using the electric current deviation D0 and the 1st, 2nd deviation differential value D1, D2.
 制御ユニット30は、電流偏差D0、第1,第2の偏差微分値D1,D2に基づいて、呼吸の状態を判定する。例えば、制御ユニット30は、電流偏差D0が判定値(-0.005)より小さい、第1の偏差微分値D1が第1の微分判定値(-4)より小さい、第2の偏差微分値D2が第2の微分判定値(0)より小さい場合に、呼気状態と判定する。そして、制御ユニット30は、呼気状態と判定した場合、モータ23に対する回転数指令Vmを低くし、ファン22の回転数を低下させる。これにより、患者63に対して供給する気体の圧力が低くなる。この結果、患者63における息苦しさが低減される。 The control unit 30 determines the state of breathing based on the current deviation D0 and the first and second deviation differential values D1 and D2. For example, the control unit 30 determines that the current deviation D0 is smaller than the determination value (−0.005), the first deviation differential value D1 is smaller than the first differentiation determination value (−4), and the second deviation differential value D2 Is smaller than the second differential determination value (0), it is determined as an expired state. If the control unit 30 determines that the state is an exhalation state, the control unit 30 reduces the rotational speed command Vm for the motor 23 and decreases the rotational speed of the fan 22. Thereby, the pressure of the gas supplied with respect to the patient 63 becomes low. As a result, the difficulty in breathing in the patient 63 is reduced.
 制御ユニット30は、電流偏差D0と第1,第2の偏差微分値D1,D2に基づいて補正指令値Pcを取得し、基準圧力指令値P0と補正指令値Pcとに基づいて圧力指令値P1を算出する。そして、制御ユニット30は、圧力指令値P1に基づいて駆動部を介して駆動するファンの回転数を指定する回転数指令Vmを出力する。制御ユニット30は、回転数指令Vmに基づいてモータ23におけるトルク指令を推定し、トルク指令に基づいて推定電流指令値Ieを推定する。従って、モータ23の回転数指令Vmに基づいてモータ23におけるトルク指令を推定し、そのトルク指令に基づいてモータ23における推定電流指令値Ieを容易に推定することができる。そして、推定電流指令値Ieと実電流値Irとを比較した結果に基づいて補正指令値Pcを取得することで、モータ23への回転数指令Vm、つまりファン22の回転数を単純な構成で容易に変更することが可能となる。 The control unit 30 acquires the correction command value Pc based on the current deviation D0 and the first and second deviation differential values D1, D2, and the pressure command value P1 based on the reference pressure command value P0 and the correction command value Pc. Is calculated. Then, the control unit 30 outputs a rotational speed command Vm that designates the rotational speed of the fan that is driven via the drive unit based on the pressure command value P1. The control unit 30 estimates a torque command in the motor 23 based on the rotational speed command Vm, and estimates an estimated current command value Ie based on the torque command. Therefore, a torque command in the motor 23 can be estimated based on the rotation speed command Vm of the motor 23, and the estimated current command value Ie in the motor 23 can be easily estimated based on the torque command. Then, by obtaining the correction command value Pc based on the result of comparing the estimated current command value Ie and the actual current value Ir, the rotational speed command Vm to the motor 23, that is, the rotational speed of the fan 22 can be obtained with a simple configuration. It can be easily changed.
 以上記述したように、本実施形態によれば、以下の効果を奏する。
 (1)CPAP装置10の制御ユニット30は、ファン22を回転駆動するモータ23に対する回転数指令Vmから、モータ23に流れる電流値を推定した推定電流指令値Ieを得る。ファン22の実電流値Irは、電流センサ42により得られる。モータ23に流れる電流(実電流値Ir)は、マスク62が取着された患者63の呼吸状態により変化する。患者63における呼吸状態は、モータ23に対する負荷の変化として現れる。例えば、患者63が吸気状態にあるとき、モータ23に対する負荷は小さくなり、患者63が呼気状態にあるとき、モータ23に対する負荷は大きくなる。従って、負荷に応じて変化する実電流値Irと推定電流指令値Ieとの差により、呼吸状態(呼気、吸気など)を判定することができる。
As described above, according to the present embodiment, the following effects can be obtained.
(1) The control unit 30 of the CPAP device 10 obtains an estimated current command value Ie obtained by estimating the current value flowing through the motor 23 from the rotation speed command Vm for the motor 23 that rotationally drives the fan 22. The actual current value Ir of the fan 22 is obtained by the current sensor 42. The current (actual current value Ir) flowing through the motor 23 varies depending on the respiratory state of the patient 63 to which the mask 62 is attached. The respiratory state in the patient 63 appears as a change in load on the motor 23. For example, when the patient 63 is in an inhalation state, the load on the motor 23 is small, and when the patient 63 is in an exhalation state, the load on the motor 23 is large. Therefore, it is possible to determine the respiratory state (exhaled breath, inhaled, etc.) based on the difference between the actual current value Ir that changes according to the load and the estimated current command value Ie.
 (2)制御ユニット30は、推定電流指令値Ieと実電流値Irとの差を電流偏差D0として得る。さらに、制御ユニット30は、電流偏差D0を微分した偏差微分値を得る。本実施形態において、制御ユニット30は、電流偏差D0を1回微分した第1の偏差微分値D1と、電流偏差D0を2回微分した第2の偏差微分値D2を得る。電流偏差D0を1回微分した第1の偏差微分値D1の変化するタイミングは、電流偏差D0の変化に比べ、気体の流量値AFが変化するタイミングに近づく。また、電流偏差D0を2回微分した第2の偏差微分値D2の変化するタイミングは、第1の偏差微分値D1の変化に比べ、気体の流量値AFが変化するタイミングに近づく。したがって、電流偏差D0、第1,第2の偏差微分値D1,D2を用いることで、呼吸を判定するタイミングを、実際の呼気のタイミングに近づけることができる。そして、電流偏差D0、第1,第2の偏差微分値D1,D2を用いることで、ノイズ等による誤判定を防止することができる。 (2) The control unit 30 obtains the difference between the estimated current command value Ie and the actual current value Ir as a current deviation D0. Furthermore, the control unit 30 obtains a deviation differential value obtained by differentiating the current deviation D0. In the present embodiment, the control unit 30 obtains a first deviation differential value D1 obtained by differentiating the current deviation D0 once and a second deviation differential value D2 obtained by differentiating the current deviation D0 twice. The timing at which the first deviation differential value D1 obtained by differentiating the current deviation D0 once approaches the timing at which the gas flow rate value AF changes compared to the change in the current deviation D0. In addition, the timing at which the second deviation differential value D2 obtained by differentiating the current deviation D0 twice approaches the timing at which the gas flow rate value AF changes compared to the change in the first deviation differential value D1. Therefore, by using the current deviation D0 and the first and second differential differential values D1 and D2, the timing for determining respiration can be brought close to the actual expiration timing. And the misjudgment by noise etc. can be prevented by using the electric current deviation D0 and the 1st, 2nd deviation differential value D1, D2.
 (3)制御ユニット30は、電流偏差D0、第1,第2の偏差微分値D1,D2に基づいて、呼吸の状態を判定する。例えば、制御ユニット30は、電流偏差D0が判定値(-0.005)より小さい、第1の偏差微分値D1が第1の微分判定値(-4)より小さい、第2の偏差微分値D2が第2の微分判定値(0)より小さい場合に、呼気状態と判定する。そして、制御ユニット30は、呼気状態と判定した場合、モータ23に対する回転数指令Vmを低くし、ファン22の回転数を低下させることができる。この結果、患者63に対して供給する気体の圧力(気体の流量)が低くなる。この結果、患者63における息苦しさを低減することができる。 (3) The control unit 30 determines the breathing state based on the current deviation D0 and the first and second deviation differential values D1 and D2. For example, the control unit 30 determines that the current deviation D0 is smaller than the determination value (−0.005), the first deviation differential value D1 is smaller than the first differentiation determination value (−4), and the second deviation differential value D2 Is smaller than the second differential determination value (0), it is determined as an expired state. When the control unit 30 determines that the state is an exhalation state, the control unit 30 can lower the rotational speed command Vm for the motor 23 and reduce the rotational speed of the fan 22. As a result, the pressure (gas flow rate) of the gas supplied to the patient 63 is lowered. As a result, the difficulty in breathing in the patient 63 can be reduced.
 (4)制御ユニット30の判定部38は、電流偏差D0と第1,第2の偏差微分値D1,D2に基づいて補正指令値Pcを取得し、基準圧力指令値P0と補正指令値Pcとに基づいて圧力指令値P1を算出する。そして、制御ユニット30は、圧力指令値P1に基づいて、ファン22を駆動するモータ23の回転数指令Vmを出力する。電流指令値推定部34は、回転数指令Vmに基づいてモータ23におけるトルク指令を推定し、トルク指令に基づいて推定電流指令値Ieを推定する。従って、モータ23の回転数指令Vmに基づいて、モータ23における推定電流指令値Ieを容易に推定することができる。そして、推定電流指令値Ieと実電流値Irとを比較した結果に基づいて補正指令値Pcを取得することで、モータ23への回転数指令Vm、つまりファン22の回転数を単純な構成で容易に変更することができる。 (4) The determination unit 38 of the control unit 30 acquires the correction command value Pc based on the current deviation D0 and the first and second deviation differential values D1 and D2, and determines the reference pressure command value P0 and the correction command value Pc. Based on the above, the pressure command value P1 is calculated. Then, the control unit 30 outputs a rotation speed command Vm of the motor 23 that drives the fan 22 based on the pressure command value P1. The current command value estimation unit 34 estimates a torque command in the motor 23 based on the rotation speed command Vm, and estimates an estimated current command value Ie based on the torque command. Therefore, the estimated current command value Ie in the motor 23 can be easily estimated based on the rotational speed command Vm of the motor 23. Then, by obtaining the correction command value Pc based on the result of comparing the estimated current command value Ie and the actual current value Ir, the rotational speed command Vm to the motor 23, that is, the rotational speed of the fan 22 can be obtained with a simple configuration. It can be easily changed.
 尚、上記各実施形態は、以下の態様で実施してもよい。
 ・上記実施形態では、流体として気体(例えば空気)を供給する場合について説明したが、気体として例えば呼吸可能気体(所定量のガスを含むもの)としてもよい。また、上記実施形態では、ポンプ装置の用途としてCPAP装置を例示したが、流体として液体を供給する用途に用いられてもよい。
In addition, you may implement each said embodiment in the following aspects.
In the above-described embodiment, the case where gas (for example, air) is supplied as the fluid has been described. However, for example, breathable gas (including a predetermined amount of gas) may be used as the gas. Moreover, in the said embodiment, although the CPAP apparatus was illustrated as a use of a pump apparatus, you may use for the use which supplies the liquid as a fluid.
 ・上記実施形態では、電流偏差D0と、電流偏差D0を1回微分した第1の偏差微分値D1と2回微分した第2の偏差微分値D2とを用いて判定を行うようにした。これに対し、電流偏差D0と第1の偏差微分値D1とを用いて判定を行うようにしてもよい。この場合、電流偏差D0のみを用いて呼気状態(呼気タイミング)の判定を行う場合に比して、推定した呼気タイミングが早くなり、流体の吐出圧力を好適に制御することができる。また、電流偏差D0と第2の偏差微分値D2とを用いて呼気(呼気タイミング)の判定を行うようにしてもよい。 In the above embodiment, the determination is made using the current deviation D0, the first deviation differential value D1 obtained by differentiating the current deviation D0 once, and the second deviation differential value D2 obtained by differentiating twice. In contrast, the determination may be made using the current deviation D0 and the first deviation differential value D1. In this case, as compared with the case where the expiration state (expiration timing) is determined using only the current deviation D0, the estimated expiration timing is earlier, and the fluid discharge pressure can be suitably controlled. Further, expiration (expiration timing) may be determined using the current deviation D0 and the second deviation differential value D2.
 ・上記実施形態では、2回微分器37を用いて第2の偏差微分値D2を算出するようにしたが、第2の偏差微分値D2が得られればよく、例えば2個の1回微分器を用いて2回微分した第2の偏差微分値D2を得るようにしてもよい。 In the above embodiment, the second differential derivative value D2 is calculated using the two-time differentiator 37. However, the second differential derivative value D2 may be obtained, for example, two one-time differentiators. You may make it obtain the 2nd deviation differential value D2 differentiated twice using.
 ・上記実施形態において、制御ユニット30に含まれる回路部を適宜変更してもよい。例えば、図4に示すドライブ部39を制御ユニット30とは別の部分に設けるようにしてもよい。 In the above embodiment, the circuit unit included in the control unit 30 may be changed as appropriate. For example, the drive unit 39 shown in FIG. 4 may be provided in a part different from the control unit 30.
 10…ポンプ装置としての持続陽性気道圧(CPAP)装置、11…筐体、14…流入口、15…吐出口、21…ファン、23…モータ(駆動部)、30…制御ユニット、31,32…加算器(回転数制御部)、33…コントローラ(回転数制御部)、34…電流指令値推定部、35…電流値比較部、36…微分器(微分手段)、37…2回微分器(微分手段)、38…判定部(回転数制御部)、42…電流センサ(電流値測定部)、Ir…実電流値、Ie…推定電流指令値、D0…電流偏差、D1…第1の偏差微分値(偏差微分値)、D2…第2の偏差微分値(偏差微分値)、Vm…回転数指令、P0…基準圧力指令値、Pc…補正指令値、P1…圧力指令値。 DESCRIPTION OF SYMBOLS 10 ... Continuous positive airway pressure (CPAP) apparatus as a pump apparatus, 11 ... Housing | casing, 14 ... Inlet, 15 ... Discharge port, 21 ... Fan, 23 ... Motor (drive part), 30 ... Control unit, 31 and 32 ... adder (rotation speed control unit), 33 ... controller (rotation speed control part), 34 ... current command value estimation part, 35 ... current value comparison part, 36 ... differentiator (differentiating means), 37 ... double differentiator (Differentiating means), 38 ... determination unit (rotation speed control unit), 42 ... current sensor (current value measuring unit), Ir ... actual current value, Ie ... estimated current command value, D0 ... current deviation, D1 ... first Deviation differential value (deviation differential value), D2 ... second deviation differential value (deviation differential value), Vm ... rotational speed command, P0 ... reference pressure command value, Pc ... correction command value, P1 ... pressure command value.

Claims (6)

  1.  陽性気道圧のために用いられるポンプ装置であって、
     ファンと、
     前記ファンを回転駆動する駆動部と、
     流体が流入する流入口と、
     前記ファンの回転駆動によって前記流体を吐出する吐出口と、
     前記ファンの回転数指令から推定電流指令値を推定する電流指令値推定部と、
     前記駆動部に流れる実電流値を測定する電流値測定部と、
     前記推定電流指令値と前記実電流値とを比較し、前記推定電流指令値と前記実電流値の偏差である電流偏差を取得する電流値比較部と、
     前記電流偏差を微分した偏差微分値を取得する微分手段と、
     前記電流偏差及び前記偏差微分値に基づいて前記回転数指令を生成する回転数制御部と、
     前記回転数指令に基づいて前記駆動部に駆動電流を供給するドライブ部と、
    を有するポンプ装置。
    A pumping device used for positive airway pressure,
    With fans,
    A drive unit for rotationally driving the fan;
    An inlet into which the fluid flows,
    A discharge port for discharging the fluid by rotational driving of the fan;
    A current command value estimator for estimating an estimated current command value from the rotational speed command of the fan;
    A current value measuring unit for measuring an actual current value flowing through the driving unit;
    A current value comparison unit that compares the estimated current command value with the actual current value and obtains a current deviation that is a deviation between the estimated current command value and the actual current value;
    Differentiating means for obtaining a deviation differential value obtained by differentiating the current deviation;
    A rotation speed control unit that generates the rotation speed command based on the current deviation and the deviation differential value;
    A drive unit for supplying a drive current to the drive unit based on the rotation speed command;
    Having a pump device.
  2.  前記回転数制御部は、前記電流偏差及び前記偏差微分値がそれぞれに対応する判定値より小さい場合に前記回転数指令を低下させること、
    を特徴とする請求項1に記載のポンプ装置。
    The rotational speed control unit reduces the rotational speed command when the current deviation and the deviation differential value are smaller than the corresponding determination values;
    The pump device according to claim 1.
  3.  前記微分手段は、前記電流偏差を1回微分した第1の偏差微分値と、前記電流偏差を2回微分した第2の偏差微分値とを取得し、
     前記回転数制御部は、前記第1の偏差微分値と前記第2の偏差微分値との少なくとも一方と電流偏差とに基づいて前記回転数指令を生成すること、
    を特徴とする請求項1に記載のポンプ装置。
    The differentiating means obtains a first deviation differential value obtained by differentiating the current deviation once and a second deviation differential value obtained by differentiating the current deviation twice,
    The rotational speed control unit generates the rotational speed command based on at least one of the first deviation differential value and the second deviation differential value and a current deviation;
    The pump device according to claim 1.
  4.  前記回転数制御部は、前記第1の偏差微分値と前記第2の偏差微分値の少なくとも一方と前記電流偏差とがそれぞれに対応する判定値より小さい場合に前記回転数指令を低下させること、
    を特徴とする請求項3に記載のポンプ装置。
    The rotational speed control unit reduces the rotational speed command when at least one of the first deviation differential value, the second deviation differential value, and the current deviation is smaller than a corresponding determination value;
    The pump device according to claim 3.
  5.  前記回転数制御部は、前記電流偏差及び前記偏差微分値に基づいて補正指令値を取得し、基準圧力指令値と前記補正指令値とに基づいて圧力指令値を算出し、前記圧力指令値に基づいて前記回転数指令を生成し、
     前記電流指令値推定部は、前記回転数指令に基づいて前記駆動部におけるトルク指令を推定し、前記トルク指令に基づいて前記推定電流指令値を推定すること、
    を特徴とする請求項1~4のいずれか1項に記載のポンプ装置。
    The rotation speed control unit obtains a correction command value based on the current deviation and the deviation differential value, calculates a pressure command value based on a reference pressure command value and the correction command value, and sets the pressure command value Based on the rotation speed command,
    The current command value estimating unit estimates a torque command in the drive unit based on the rotation speed command, and estimates the estimated current command value based on the torque command;
    The pump device according to any one of claims 1 to 4, wherein:
  6.  前記電流偏差及び前記偏差微分値と比較する判定値は、呼気状態に応じて設定されること、を特徴とする請求項1~5のいずれか1項に記載のポンプ装置。 The pump device according to any one of claims 1 to 5, wherein a determination value to be compared with the current deviation and the deviation differential value is set according to an expiration state.
PCT/JP2017/027415 2016-08-29 2017-07-28 Pump device WO2018042974A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018537042A JP6687117B2 (en) 2016-08-29 2017-07-28 Pump device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-167233 2016-08-29
JP2016167233 2016-08-29

Publications (1)

Publication Number Publication Date
WO2018042974A1 true WO2018042974A1 (en) 2018-03-08

Family

ID=61301209

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/027415 WO2018042974A1 (en) 2016-08-29 2017-07-28 Pump device

Country Status (2)

Country Link
JP (1) JP6687117B2 (en)
WO (1) WO2018042974A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021041285A (en) * 2018-06-05 2021-03-18 株式会社村田製作所 Cpap apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5740795A (en) * 1993-12-03 1998-04-21 Resmed Limited, An Australian Company Estimation of flow and detection of breathing in CPAP treatment
JP2008518646A (en) * 2004-11-04 2008-06-05 レスメド リミテッド Use of motor speed in PAP equipment to estimate flow rate

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002161886A (en) * 2000-11-27 2002-06-07 Tsurumi Mfg Co Ltd Erroneous action prevention device in rotation speed control of submerged electric pump
JP2005083316A (en) * 2003-09-10 2005-03-31 Boc Edwards Kk Motor control system and vacuum pump mounting the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5740795A (en) * 1993-12-03 1998-04-21 Resmed Limited, An Australian Company Estimation of flow and detection of breathing in CPAP treatment
JP2008518646A (en) * 2004-11-04 2008-06-05 レスメド リミテッド Use of motor speed in PAP equipment to estimate flow rate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021041285A (en) * 2018-06-05 2021-03-18 株式会社村田製作所 Cpap apparatus
JP7015900B2 (en) 2018-06-05 2022-02-15 株式会社村田製作所 CPAP device

Also Published As

Publication number Publication date
JPWO2018042974A1 (en) 2019-03-28
JP6687117B2 (en) 2020-04-22

Similar Documents

Publication Publication Date Title
JP7410202B2 (en) Flow path sensing for flow therapy devices
AU2004292337B2 (en) Methods and apparatus for the systemic control of ventilatory support in the presence of respiratory insufficiency
JP5814791B2 (en) Ventilator with limp mode
JP6760398B2 (en) CPAP device
JP2020519375A (en) Methods and devices for the treatment of respiratory disorders
WO2018042974A1 (en) Pump device
JP6486821B2 (en) Ventilator, system for determining inhaled oxygen concentration during ventilation, and method for operating the same
JP7151860B2 (en) CPAP device
JP2015519119A5 (en)
KR20160098918A (en) Apparatus and method for driving blower of medical ventilator
JP6780711B2 (en) Fluid control device
AU2013206648B2 (en) Methods and Apparatus for the Systemic Control of Ventilatory Support in the Presence of Respiratory Insufficiency

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018537042

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17845983

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17845983

Country of ref document: EP

Kind code of ref document: A1