WO2018042968A1 - Sound oscillation simulation program - Google Patents

Sound oscillation simulation program Download PDF

Info

Publication number
WO2018042968A1
WO2018042968A1 PCT/JP2017/027367 JP2017027367W WO2018042968A1 WO 2018042968 A1 WO2018042968 A1 WO 2018042968A1 JP 2017027367 W JP2017027367 W JP 2017027367W WO 2018042968 A1 WO2018042968 A1 WO 2018042968A1
Authority
WO
WIPO (PCT)
Prior art keywords
parameter
characteristic
sound
calculation unit
dimension
Prior art date
Application number
PCT/JP2017/027367
Other languages
French (fr)
Japanese (ja)
Inventor
洋祐 田部
和人 大山
吉田 毅
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to DE112017003671.2T priority Critical patent/DE112017003671T5/en
Publication of WO2018042968A1 publication Critical patent/WO2018042968A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/23Design optimisation, verification or simulation using finite element methods [FEM] or finite difference methods [FDM]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/15Vehicle, aircraft or watercraft design
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Systems or methods specially adapted for specific business sectors, e.g. utilities or tourism
    • G06Q50/04Manufacturing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2111/00Details relating to CAD techniques
    • G06F2111/10Numerical modelling
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/10Noise analysis or noise optimisation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/30Computing systems specially adapted for manufacturing

Definitions

  • the present invention relates to a sound vibration simulation program.
  • model-based development in which performance and function evaluations that have been performed in tests using prototypes in the past, is performed upstream by simulation, has become widespread.
  • model-based development in order to model products composed of parts from different fields such as electricity, machinery, and fluid, the energy flow between parts is defined by the amount that defines energy (potential difference amount) and strength (
  • potential difference amount the amount that defines energy
  • strength There is known a method of expressing by exchanging a two-dimensional quantity (flow quantity) (for example, Patent Document 1).
  • the sound and vibration simulation program causes the computer to generate sound of the structure attached to the part based on the first parameter and / or the second parameter input as an action from the part.
  • FIG. 1 is a diagram showing an example of a whole product simulator in which a sound vibration simulation model is incorporated.
  • FIG. 2 is a diagram illustrating an example of a part shape represented by a finite element model.
  • FIG. 3 is a diagram for explaining hardware on which the sound and vibration simulation program according to the present embodiment is executed.
  • FIG. 4 is a diagram illustrating a processing procedure in the overall product simulator.
  • FIG. 5 is a diagram illustrating a comparative example.
  • FIG. 6 shows an example of a functional block diagram.
  • FIG. 1 is a diagram for explaining a first embodiment of the present invention, and is a diagram showing an overall product simulator 13.
  • FIG. 1 is a diagram showing an example of an overall product simulator 13 constructed by incorporating the sound vibration simulation model 10 of the present embodiment into a product operation model.
  • the overall product simulator 13 includes a product operation simulator 3 and two sound vibration simulation models 10.
  • the product operation simulator 3 has a plurality of part models 4 which are functional models of parts constituting the product.
  • the product operation simulator 3 reproduces the energy balance between components during product operation by exchanging the first parameter P1 and the second parameter P2 between the plurality of component models 4.
  • the first parameter P1 and the second parameter P2 express the energy exchanged between the component models 4, and the dimension of the first parameter P1 is the power [J / s] or the work [J].
  • the dimension is divided by the dimension of the two parameters P2. That is, the product of the dimension of the first parameter P1 and the dimension of the second parameter P2 is the dimension of work [J / s] or work [J].
  • One of the first parameter P1 and the second parameter P2 corresponds to the above-described difference amount, and the other corresponds to the flow amount.
  • the plurality of component models 4 are composed of component models such as an inverter, a motor, a gear box, and a vehicle.
  • component models such as an inverter, a motor, a gear box, and a vehicle.
  • the first parameter P1 and the second parameter P2 exchanged between the inverter and the motor one is a voltage and the other is a current.
  • the first parameter P1 and the second parameter P2 exchanged between the motor and the gear box one is the rotational speed and the other is the torque.
  • two sound vibration simulation models 10 ⁇ / b> A and 10 ⁇ / b> B are provided as the sound vibration simulation model 10.
  • the sound vibration simulation model 10A simulates the vibration of the first part
  • the sound vibration simulation model 10B simulates the vibration of the second part.
  • the sound vibration simulation model 10 receives the first parameter P1 and receives the second parameter P2, the first calculation unit 8 (8A to 8C) that transmits the second parameter P2, the second parameter P2, and the first parameter P1. And the second arithmetic unit 9 (9A to 9C) for transmitting.
  • the first calculation unit 8 is expressed as a function F1 including a first parameter P1 and a first characteristic C1 related to the shape of the component
  • the second calculation unit 9 calculates a second characteristic C2 related to the second parameter P2 and the shape of the component. It is represented as a function F2 containing.
  • the first characteristic C1 is a dimension ratio of the second parameter P2, and the second characteristic C2 is a dimension ratio of the first parameter P1.
  • each part model 4 represents the physical characteristics of the part as a lumped constant.
  • the characteristics related to the shape of the part are configured by vibration characteristics and stress characteristics at each point obtained by discretizing the shape of the part by modeling using the finite element method. I did it.
  • FIG. 2 is a diagram illustrating an example of a part shape (part model 20) represented by a finite element model.
  • the part model 20 is represented by a tetrahedron shape having four discrete nodes 200a to 200d.
  • vibration occurs in the structure of the part represented by the tetrahedral shape in FIG. 2, energy is exchanged between adjacent nodes. That is, each node can be considered to correspond to a part model in the energy model, and the first and second parameters are exchanged between the nodes.
  • the first parameter P1 and the second parameter P2 are exchanged between the node and the other component connected.
  • the exchange of the first parameter P1 and the second parameter P2 is defined by the first calculation unit 8 (8A to 8C) and the second calculation unit 9 (9A to 9C) shown in FIG.
  • the first calculation unit 8 and the second calculation unit 9 are expressed as functions including parameters and characteristics, but the shape of the function is determined according to the characteristics to be simulated.
  • a function corresponding to the simulation of the vibration of the structure is applied.
  • the same concept as in the case of the energy model in Patent Document 1 can be applied.
  • the component model 4 is configured in the same manner as the functional block when the first parameter P1 and the second parameter P2 are vibration system parameters.
  • FIG. 6 shows an example of a functional block diagram.
  • the sound vibration simulation model 10 described above is given as a program for executing the processing represented by such a functional block diagram.
  • the second calculation unit 9 is set at the node 200a and the second calculation unit 9 is set at the node 200b. It is a functional block diagram at the time of setting 1 calculating part 8.
  • the second calculation unit 9 receives the second parameter P2A output from the component model 4 and the second parameter P2C transmitted from the first calculation unit 8, and receives the first parameter P1D and the first calculation unit 8 in the component model 4. To the first parameter P1C.
  • the second characteristic C2 of vibration related to the shape at the node 200a is integrated, and the second parameter P2B is output.
  • the second characteristic is a dimensional ratio of velocity [m / s], and is obtained from eigenvalue analysis of the part model 20 expressed by the finite element method.
  • First parameter P1A first conversion characteristic 201 ⁇ (second parameter P2B-second parameter P2C) ... (1)
  • the first conversion characteristic 201 has a function of converting the dimension of the second parameter P2 into the dimension of the first parameter P1, such as the mass characteristic and plastic deformation of the part model 20, and can be obtained by a finite element method or the like. Can do.
  • the output first parameter P1A is branched by a branch 202 into a first parameter P1B directed to the part model 4 and a first parameter P1C directed to the first calculation unit 8.
  • the second characteristic C2 of vibration relating to the shape at the node 200a is integrated, and the first parameter P1D is output.
  • the second conversion characteristic 203 is the dimension of the first parameter P1, such as the rigidity characteristic and viscous friction of the component model 20. It has a function of converting to the dimension of the second parameter P2.
  • the vibration characteristic of the structure that is, the vibration characteristic related to the shape at each node is expressed by the first characteristic C1 and the second characteristic C2.
  • a first characteristic C1 and a second characteristic C2 as shown in FIG. 2B are respectively set at the nodes 200a to 200d of the component model 20 shown in FIG.
  • FIG. 2B shows both the case where the product of the dimension of the first parameter P1 and the dimension of the second parameter P2 is the work rate [J / s] and the case of the work [J].
  • the first characteristic C1 is represented by the ratio of force [N]
  • the second characteristic C2 is Expressed as a ratio of velocity [m / s].
  • the first parameter P1 is a velocity [m / s] or a displacement [m]
  • the second parameter P2 is a force [N]. That is, the first computing unit 8 outputs the second parameter P2 of the force dimension from the first parameter P1 of the speed dimension and the first characteristic C1 of the force ratio.
  • the second calculator 9 outputs the second parameter of the speed dimension from the second parameter P2 of the force dimension and the second characteristic C2 of the speed ratio.
  • the first characteristic C1 is represented by the ratio of force [N]
  • the second characteristic C2 is represented by the ratio of displacement [m]. This indicates that when a force is applied to a node, a displacement that is a constant multiple of the second characteristic C2 occurs at that node. Since the part model 20 is a solid element, each node has a three-dimensional motion (displacement), and the velocity, displacement, and force are composed of components in three directions of X, Y, and Z.
  • any of the nodes can be applied to connection points connected to the component model 4.
  • the first calculation unit 8 or the second calculation unit 9 between the component model 4 and the first characteristic C1 or the second characteristic of the nodes 200b and 200c It is expressed as a function including two characteristics C2. Since the displacement of one node affects other nodes, for example, the second parameter P2 output from the first calculation unit 8A shown in FIG. 1 is not only the component model 4 but also the second calculation unit 9A. , 9B.
  • the database 16A stores a first characteristic C1 and a second characteristic C2 related to the nodes 200a to 200d.
  • the database 16B is a database provided for the sound vibration simulation model 10B and is configured in the same manner as the database 16A.
  • the first calculation units 8A and 8B and the second calculation units 9A and 9B of the sound vibration simulation model 10A shown in FIG. 1 are configured by adopting some of these 24 characteristics. That is, the total number of degrees of freedom f1 of the database of the first characteristic C1 and the degree of freedom f2 of the database of the second characteristic C2 is determined by the first calculation units 8A and 8B and the second calculation units 9A and 9B of the sound vibration simulation model 10A. More than the total number.
  • the change of the mounting position can be reproduced by changing the characteristics adopted in the first calculation units 8A and 8B and the second calculation units 9A and 9B of the sound vibration simulation model 10A.
  • the characteristic of the first calculation unit 8A and the second calculation unit 9A is the node 200a.
  • 200b is used, but by changing the characteristic of the second arithmetic unit 9A to the characteristic of the node 200c, the difference in energy balance when the mounting position is changed can be estimated.
  • the dimension of the first parameter P1 is the volume velocity [m 3 / s]
  • the dimension of the second parameter P2 is the sound pressure [Pa].
  • the product of dimensions is the dimension of work [J]
  • the dimension of the first parameter P1 is volume [m 3 ]
  • the dimension of the second parameter P2 is sound pressure [Pa].
  • the sound vibration simulation of the sound field model is compared to the sound vibration simulation model 10A that simulates the vibration of the structure. Connect the model 10B.
  • the sound vibration simulation model 10B simulates noise based on the simulation result of the sound vibration simulation model 10A.
  • FIG. 3 is a diagram showing a schematic configuration of a computer 100 constituting hardware for executing a program (sound vibration simulation program) related to the sound vibration simulation model 10.
  • the computer 100 includes a CPU 101, a memory 102, an input device 103, a hard disk 104, and a display 105. These are connected via a system bus 106.
  • the CPU 101 functions as a control / arithmetic unit of the computer 100 and executes the sound vibration simulation model 10 program. Further, the CPU 101 executes the program of the product operation simulator 3. That is, the entire product simulator 13 includes a program for the product operation simulator 3 and a program for the sound vibration simulation model 10.
  • the memory 102 is, for example, a RAM (Random Access Memory), functions as a work area of the CPU 101, and stores data being processed.
  • the hard disk 104 stores programs, data, and the like that make up the entire product simulator 13. These programs and data are loaded into the memory 102 by the CPU 101.
  • the input device 103 is a keyboard or a mouse, for example, and functions as an input unit for an operator to input an instruction.
  • FIG. 4 is a diagram for explaining a processing procedure in the overall product simulator 13.
  • step S1 an input / output process of a connection point of a structure which is a sound vibration simulation target is performed.
  • the operator uses the input device 103 to specify a node corresponding to the connection point of the structure.
  • the node parameters applied to the connection points are read from the database 16 and the computing units corresponding to the connection points are set.
  • the first calculation unit 8 that receives the first parameter P1 and transmits the second parameter P2 is set for the connection point.
  • step S2 the input from the connection point to the product operation simulator 3 and the sound vibration simulation model 10 is set.
  • the input to the product operation simulator 3 is the second parameter P 2 transmitted by the first calculation unit 8
  • the sound vibration simulation model 10 Is the first parameter P1 received by the first calculation unit 8.
  • step S3 numerical integration is performed, the current state of the product motion simulator 3 and sound vibration simulation model 10A corresponding to the input set in step S2 is obtained, and the output from the connection point is calculated.
  • the output from the product operation simulator 3 is the first parameter P ⁇ b> 1 received by the first calculation unit 8.
  • the numerical integration step does not have to be the same between the product motion simulator 3 and the sound vibration simulation model 10. That is, the product motion simulator 3 and the sound vibration simulation model 10 may independently perform numerical integration according to their respective time scales.
  • step S4 the continuation of calculation is confirmed.
  • step S2 the continuation of calculation is confirmed.
  • the sound vibration simulation model 10 receives the first parameter P1 from the part model and determines the second parameter P2 as the part when the product dimension is the power factor or the work dimension and the first parameter P1 and the second parameter P2.
  • a first calculation unit 8 that transmits to the model, and a first calculation unit 9 that receives the second parameter P2 from the component model and transmits the first parameter P1 to the component model are provided. Therefore, by incorporating such a sound vibration simulation model 10 into the product operation simulator 3, it becomes possible to examine the energy balance of the entire product operation.
  • the CPU 101 executes the program (sound and vibration simulation program) of the sound and vibration simulation model 10 according to the present embodiment, so that the computer 100 has the structure attached to the part to be simulated by the part model 4. It functions as a sound vibration simulator that performs sound vibration simulation.
  • the sound vibration simulation program corresponds to the input first parameter P1 with the second parameter P2 having a dimension obtained by dividing the CPU 101 of the computer 100 by the power or the dimension of the work by the dimension of the first parameter P1.
  • the first computing unit 8 to output or the second parameter P1 having a dimension obtained by dividing the work rate or the work dimension by the dimension of the second parameter P2 and corresponding to the input second parameter P2 It functions as the calculation unit 9.
  • the first calculation unit 8 is expressed as a function including the first parameter P1 and the first characteristic C1
  • the second calculation unit 9 is expressed as a function including the second parameter P2 and the second characteristic C2.
  • the first characteristic C1 and the second characteristic C2 are characteristics that characterize the shape of the structure in the sound vibration simulation.
  • the first characteristic C1 is a dimensional ratio of the second parameter P2, and the second characteristic C2 is the second characteristic C2. The ratio of the dimension of one parameter P1.
  • the simulation including the exchange of energy between the component model 4 and the sound and vibration simulation model 10 is provided by providing the sound and vibration simulation model 10 with the first calculation unit 8 and the second calculation unit 9 as described above. It can be performed.
  • the entire product simulator 13 capable of examining the energy balance of the entire product operation can be configured.
  • the 1st calculating part 8 and the 2nd calculating part 9 are functions containing the 1st characteristic C1 and the 2nd characteristic C2 regarding the shape of the components (structure) which are simulation objects, they are three-dimensional part shapes. It is possible to reproduce the sound and vibration characteristics of dependent products more accurately.
  • FIG. 5 is a diagram showing a comparative example.
  • the method described in Patent Document 1 cannot directly evaluate the sound vibration performance of a product that depends on the three-dimensional part shape.
  • a method has been proposed in which a three-dimensional shape of a product is modeled by a finite element method or the like, and an excitation force calculated separately outside the model is input and evaluated (for example, JP, 2015-11567, A).
  • the excitation force is output from the product operation simulator 3 to which Patent Literature 1 is applied, and the excitation force is modeled as described in Patent Literature 2.
  • a method of simulating sound vibration by giving it to the converted sound vibration simulator 6 can be considered.
  • the product operation simulator 3 reproduces the energy balance between components during product operation by exchanging the first parameter P1 and the second parameter P2 in the plurality of component models 4. Regarding the sound vibration of the corresponding product, the vibration force 5 output from the product operation simulator 3 is applied to the sound vibration simulator 6 to reproduce the sound vibration. Therefore, the energy balance during product operation and the energy balance of sound and vibration are calculated independently by different simulators, and there is a problem that the overall energy balance is not established.
  • the first calculation unit 8 and the second calculation unit 9 described above are provided and the exchange of energy between the component model 4 and the structure is reproduced, the energy balance of the entire product operation is reduced.
  • the entire product simulator 13 that can be considered can be configured.
  • program of the sound and vibration simulation model 10 of the present embodiment can be operated as a single unit, and is not necessarily incorporated into the product operation simulator 3 and operated as the entire product simulator 13.
  • the hard disk 104 of the computer 100 having the first characteristic C1 and the second characteristic C2 associated with the nodes 200a to 200d, the first characteristic C1 and the second characteristic C2 associated with the nodes 200a to 200d, That is, it functions as a data storage unit that stores the database 16A.
  • the change of the mounting position can be reproduced by changing the characteristics adopted in the first calculation unit 8 and the second calculation unit 9 of the sound vibration simulation model 10, and the energy balance when the mounting position is changed. It is possible to estimate the difference.
  • by rewriting each characteristic of the database 16A to a characteristic when the shape of the structure is changed it is possible to easily cope with a change in the shape of the structure.

Abstract

The purpose of the present invention is to provide a sound oscillation simulation model which is incorporated into a product operation simulator which simulates an operation of a product overall and with which it is possible to examine the energy balance of said product overall. This sound oscillation simulation program causes a computer to function as either: a first computation unit 8 which, in accordance with an inputted first parameter P1, outputs a second parameter P2 which has a dimension which results when a dimension of power or work is divided by a dimension of the first parameter P1; or a second computation unit 9 which outputs the first parameter P1 in accordance with the inputted second parameter P2. The first computation unit 8 is represented as a function which includes the first parameter P1 and a first characteristic C1. The second computation unit 9 is represented as a function which includes the second parameter P2 and a second characteristic C2. The first characteristic C1 and the second characteristic C2 are characteristics which characterize a shape of a structure. The first characteristic C1 is a ratio of the dimension of the second parameter P2 and the second characteristic C2 is a ratio of the dimension of the first parameter P1.

Description

音振動シミュレーションプログラムSound vibration simulation program
 本発明は、音振動シミュレーションプログラムに関する。 The present invention relates to a sound vibration simulation program.
 製品開発の短期化や最適化を目的として、従来、試作品を用いた試験で行っていた性能や機能評価を、シミュレーションによって開発上流で行うモデルベース開発が普及している。モデルベース開発では、電気や機械、流体などの異なる分野の部品から構成される製品をモデル化するために、部品間のエネルギーの流れを、エネルギーを規定する量(位差量)と強さ(流動量)という2次元量のやり取りにより表現する方法が知られている(例えば、特許文献1)。 For the purpose of shortening and optimizing product development, model-based development, in which performance and function evaluations that have been performed in tests using prototypes in the past, is performed upstream by simulation, has become widespread. In model-based development, in order to model products composed of parts from different fields such as electricity, machinery, and fluid, the energy flow between parts is defined by the amount that defines energy (potential difference amount) and strength ( There is known a method of expressing by exchanging a two-dimensional quantity (flow quantity) (for example, Patent Document 1).
 しかしながら、特許文献1に記載の技術では、部品の物理特性を集中定数として表すので、製品動作時のエネルギー収支の計算は可能であるが、3次元部品形状に依存する製品の音振動性能を直接評価することができない。そのため、製品の音振動性能を評価するためには、例えば、特許文献2に記載のような音振動特性分析方法を用いる必要がある。この分析方法は、製品の3次元形状を有限要素法などでモデル化し、モデル外部で別途計算した加振力を入力して評価するものである。 However, in the technique described in Patent Document 1, since the physical characteristics of parts are expressed as lumped constants, the energy balance during product operation can be calculated, but the sound vibration performance of products that depend on the three-dimensional part shape is directly measured. Cannot be evaluated. Therefore, in order to evaluate the sound vibration performance of a product, for example, it is necessary to use a sound vibration characteristic analysis method as described in Patent Document 2. In this analysis method, a three-dimensional shape of a product is modeled by a finite element method or the like, and an excitation force separately calculated outside the model is input and evaluated.
特開2002-175338号公報JP 2002-175338 A
 しかしながら、特許文献1に記載の技術に特許文献2に記載の分析方法を適用して音振動特性を分析する方法では、特許文献1に記載の製品動作シミュレータから出力された加振力を特許文献に2に記載の音振動シミュレータに入力して、音振動を再現することになる。この場合、製品動作時のエネルギー収支と音振動のエネルギー収支とは別々のシミュレータにより独立して計算されるため、全体のエネルギー収支が成立しないという問題があった。 However, in the method of analyzing sound vibration characteristics by applying the analysis method described in Patent Document 2 to the technique described in Patent Document 1, the excitation force output from the product operation simulator described in Patent Document 1 is used as the patent document. The sound vibration is reproduced by inputting into the sound vibration simulator described in 2 above. In this case, since the energy balance at the time of product operation and the energy balance of sound vibration are calculated independently by different simulators, there is a problem that the overall energy balance is not established.
 本発明の第1の態様によると、音振動シミュレーションプログラムは、部品からの作用として入力される第1パラメータ及び/または第2パラメータに基づいて、コンピュータを、前記部品に取り付けられた構造体の音振動シミュレーションを行う音振動シミュレータとして機能させるための音振動シミュレーションプログラムであって、仕事率または仕事の次元を前記第1パラメータの次元で除した次元を有する第2パラメータを、入力される前記第1パラメータに対応して出力する第1演算部、または、前記第1パラメータを入力される前記第2パラメータに対応して出力する第2演算部、として前記コンピュータを機能させ、前記第1演算部は、前記第1パラメータおよび第1特性を含む関数として表され、前記第2演算部は、前記第2パラメータおよび第2特性を含む関数として表され、前記第1特性および前記第2特性は、前記音振動シミュレーションにおける前記構造体の形状を特徴付ける特性であって、前記第1特性は、前記第2パラメータの次元の比率であり、前記第2特性は、前記第1パラメータの次元の比率である。 According to the first aspect of the present invention, the sound and vibration simulation program causes the computer to generate sound of the structure attached to the part based on the first parameter and / or the second parameter input as an action from the part. A sound / vibration simulation program for functioning as a sound / vibration simulator for performing vibration simulation, wherein a second parameter having a dimension obtained by dividing a work rate or a work dimension by a dimension of the first parameter is input. Causing the computer to function as a first calculation unit that outputs corresponding to a parameter, or a second calculation unit that outputs corresponding to the second parameter to which the first parameter is input, , Expressed as a function including the first parameter and the first characteristic, the second calculation unit, It is expressed as a function including two parameters and a second characteristic, and the first characteristic and the second characteristic are characteristics that characterize the shape of the structure in the sound vibration simulation, and the first characteristic is the second characteristic. It is a ratio of the dimension of the parameter, and the second characteristic is a ratio of the dimension of the first parameter.
 本発明によれば、製品全体の動作をシミュレーションする製品動作シミュレータに組み込んで製品全体のエネルギー収支の検討が可能な音振動シミュレーションモデルを提供できる。 According to the present invention, it is possible to provide a sound vibration simulation model that can be incorporated into a product operation simulator for simulating the operation of the entire product and can examine the energy balance of the entire product.
図1は、音振動シミュレーションモデルが組み込まれた製品全体シミュレータの一例を示す図である。FIG. 1 is a diagram showing an example of a whole product simulator in which a sound vibration simulation model is incorporated. 図2は、有限要素モデルにより表された部品形状の一例を示す図である。FIG. 2 is a diagram illustrating an example of a part shape represented by a finite element model. 図3は、本実施の形態の音振動シミュレーションプログラムが実行されるハードウェアを説明する図である。FIG. 3 is a diagram for explaining hardware on which the sound and vibration simulation program according to the present embodiment is executed. 図4は、製品全体シミュレータにおける処理手順を説明する図である。FIG. 4 is a diagram illustrating a processing procedure in the overall product simulator. 図5は、比較例を示す図である。FIG. 5 is a diagram illustrating a comparative example. 図6は、機能ブロック図の一例を示したものである。FIG. 6 shows an example of a functional block diagram.
 以下、図を参照して本発明を実施するための形態について説明する。
-第1の実施の形態-
 図1は本発明の第1の実施形態を説明する図であり、製品全体シミュレータ13を示す図である。図1は、本実施の形態の音振動シミュレーションモデル10を製品動作モデルに組込んで構築した、製品全体シミュレータ13の一例を示す図である。製品全体シミュレータ13は、製品動作シミュレータ3と、2つの音振動シミュレーションモデル10とで構成されている。
Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings.
-First embodiment-
FIG. 1 is a diagram for explaining a first embodiment of the present invention, and is a diagram showing an overall product simulator 13. FIG. 1 is a diagram showing an example of an overall product simulator 13 constructed by incorporating the sound vibration simulation model 10 of the present embodiment into a product operation model. The overall product simulator 13 includes a product operation simulator 3 and two sound vibration simulation models 10.
 製品動作シミュレータ3は、製品を構成する部品の機能モデルである部品モデル4を複数有する。部品モデル4では、部品の物理特性は集中定数として表されている。製品動作シミュレータ3においては、複数の部品モデル4間における第1パラメータP1と第2パラメータP2のやり取りによって、製品動作時の部品間のエネルギー収支を再現する。第1パラメータP1と第2パラメータP2は部品モデル4間でやりとりされるエネルギーを表現するものであり、第1パラメータP1の次元は、仕事率[J/s]または仕事[J]の次元を第2パラメータP2の次元で除した次元になっている。すなわち、第1パラメータP1の次元と第2パラメータP2の次元との積は、仕事率[J/s]または仕事[J]の次元になっている。なお、第1パラメータP1および第2パラメータP2の一方が前述した位差量に対応し、他方が流動量に対応する。 The product operation simulator 3 has a plurality of part models 4 which are functional models of parts constituting the product. In the part model 4, the physical characteristics of the parts are expressed as lumped constants. The product operation simulator 3 reproduces the energy balance between components during product operation by exchanging the first parameter P1 and the second parameter P2 between the plurality of component models 4. The first parameter P1 and the second parameter P2 express the energy exchanged between the component models 4, and the dimension of the first parameter P1 is the power [J / s] or the work [J]. The dimension is divided by the dimension of the two parameters P2. That is, the product of the dimension of the first parameter P1 and the dimension of the second parameter P2 is the dimension of work [J / s] or work [J]. One of the first parameter P1 and the second parameter P2 corresponds to the above-described difference amount, and the other corresponds to the flow amount.
 例えば、製品動作シミュレータ3が電気車両の電動パワートレーンに関するものである場合には、複数の部品モデル4は、インバータ、モータ、ギアボックス、車両等の部品モデルで構成される。インバータとモータとの間でやり取りされる第1パラメータP1および第2パラメータP2の場合、一方は電圧であり他方は電流である。また、モータとギアボックスとの間でやり取りされる第1パラメータP1および第2パラメータP2の場合、一方は回転速度であり他方はトルクである。 For example, when the product operation simulator 3 is related to an electric power train of an electric vehicle, the plurality of component models 4 are composed of component models such as an inverter, a motor, a gear box, and a vehicle. In the case of the first parameter P1 and the second parameter P2 exchanged between the inverter and the motor, one is a voltage and the other is a current. In the case of the first parameter P1 and the second parameter P2 exchanged between the motor and the gear box, one is the rotational speed and the other is the torque.
 図1に示す例では、音振動シミュレーションモデル10として、2つの音振動シミュレーションモデル10A,10Bが設けられている。ここでは、部品モデル4に取り付けられた第1の部品に対して、さらに第2の部品が取り付けられている場合を例に示した。ここでは、音振動シミュレーションモデル10Aは第1の部品の振動をシミュレートし、音振動シミュレーションモデル10Bは第2の部品の振動をシミュレートする。 In the example shown in FIG. 1, two sound vibration simulation models 10 </ b> A and 10 </ b> B are provided as the sound vibration simulation model 10. Here, the case where the second component is further attached to the first component attached to the component model 4 is shown as an example. Here, the sound vibration simulation model 10A simulates the vibration of the first part, and the sound vibration simulation model 10B simulates the vibration of the second part.
 音振動シミュレーションモデル10は、第1パラメータP1を受信し、かつ、第2パラメータP2を送信する第1演算部8(8A~8C)と、第2パラメータP2を受信し、かつ、第1パラメータP1を送信する第2演算部9(9A~9C)とで構成されている。第1演算部8は、第1パラメータP1および部品の形状に関する第1特性C1を含む関数F1として表わされ、第2演算部9は、第2パラメータP2および部品の形状に関する第2特性C2を含む関数F2として表わされる。 The sound vibration simulation model 10 receives the first parameter P1 and receives the second parameter P2, the first calculation unit 8 (8A to 8C) that transmits the second parameter P2, the second parameter P2, and the first parameter P1. And the second arithmetic unit 9 (9A to 9C) for transmitting. The first calculation unit 8 is expressed as a function F1 including a first parameter P1 and a first characteristic C1 related to the shape of the component, and the second calculation unit 9 calculates a second characteristic C2 related to the second parameter P2 and the shape of the component. It is represented as a function F2 containing.
 すなわち、第1演算部8は、P2=F1(C1,P1)のように、第1特性C1により第1パラメータP1を第2パラメータP2に変換するものである。同様に、第2演算部9は、P1=F2(C2,P2)のように、第2特性C2により第2パラメータP2を第1パラメータP1に変換するものである。 That is, the first calculation unit 8 converts the first parameter P1 into the second parameter P2 by the first characteristic C1 as P2 = F1 (C1, P1). Similarly, the 2nd calculating part 9 converts the 2nd parameter P2 into the 1st parameter P1 by the 2nd characteristic C2 like P1 = F2 (C2, P2).
 なお、第1特性C1は、第2パラメータP2の次元の比率であり、第2特性C2は、第1パラメータP1の次元の比率である。 The first characteristic C1 is a dimension ratio of the second parameter P2, and the second characteristic C2 is a dimension ratio of the first parameter P1.
 製品動作シミュレータ3の部品モデル4の場合には、前述したように、各部品モデル4は部品の物理特性を集中定数として表している。一方、本実施の形態の音振動シミュレーションモデル10では、有限要素法を用いたモデル化により、部品の形状に関する特性を、部品の形状を離散化した各点での振動特性や応力特性で構成するようにした。 In the case of the part model 4 of the product operation simulator 3, as described above, each part model 4 represents the physical characteristics of the part as a lumped constant. On the other hand, in the sound vibration simulation model 10 of the present embodiment, the characteristics related to the shape of the part are configured by vibration characteristics and stress characteristics at each point obtained by discretizing the shape of the part by modeling using the finite element method. I did it.
 図2は、有限要素モデルにより表された部品形状(部品モデル20)の一例を示す図である。部品モデル20は、離散化された4つの節点200a~200dを有する四面体形状で表されている。図2の四面体形状で表される部品の構造体に振動が生じると、隣接する節点との間でエネルギーのやり取りが生じる。すなわち、各節点のそれぞれが、エネルギーモデルにおける部品モデルに対応するものと考えることができ、各節点間において第1および第2パラメータのやり取りが行われる。 FIG. 2 is a diagram illustrating an example of a part shape (part model 20) represented by a finite element model. The part model 20 is represented by a tetrahedron shape having four discrete nodes 200a to 200d. When vibration occurs in the structure of the part represented by the tetrahedral shape in FIG. 2, energy is exchanged between adjacent nodes. That is, each node can be considered to correspond to a part model in the energy model, and the first and second parameters are exchanged between the nodes.
 また、いずれかの節点に対応する位置において他の部品と接続すると、その節点と接続された他の部品との間で第1パラメータP1および第2パラメータP2のやり取りが行われる。この第1パラメータP1および第2パラメータP2のやり取りが、図1に示した第1演算部8(8A~8C),第2演算部9(9A~9C)によって規定される。上述したように、第1演算部8および第2演算部9はパラメータと特性とを含む関数として表されるが、関数の形はどのような特性をシミュレートするかに応じて決まる。例えば、ここでは、構造体の振動のシミュレーションに対応した関数が適用される。関数の決定方法についての詳細説明は省略するが、特許文献1におけるエネルギーモデルの場合と同様の考え方を適用することができる。例えば、部品モデル4において、第1パラメータP1および第2パラメータP2が振動系のパラメータである場合の機能ブロックと同様に構成される。 In addition, when connected to another component at a position corresponding to any node, the first parameter P1 and the second parameter P2 are exchanged between the node and the other component connected. The exchange of the first parameter P1 and the second parameter P2 is defined by the first calculation unit 8 (8A to 8C) and the second calculation unit 9 (9A to 9C) shown in FIG. As described above, the first calculation unit 8 and the second calculation unit 9 are expressed as functions including parameters and characteristics, but the shape of the function is determined according to the characteristics to be simulated. For example, here, a function corresponding to the simulation of the vibration of the structure is applied. Although a detailed description of the function determination method is omitted, the same concept as in the case of the energy model in Patent Document 1 can be applied. For example, the component model 4 is configured in the same manner as the functional block when the first parameter P1 and the second parameter P2 are vibration system parameters.
 図6は、機能ブロック図の一例を示したものである。上述した音振動シミュレーションモデル10は、このような機能ブロック図で表現される処理を実行するプログラムとして与えられる。ここで示す例は、第1パラメータを速度[m/s]、第2パラメータを力[N]の振動系として表わした部品モデル20において、節点200aに第2演算部9を、節点200bに第1演算部8を設定した場合の機能ブロック図である。 FIG. 6 shows an example of a functional block diagram. The sound vibration simulation model 10 described above is given as a program for executing the processing represented by such a functional block diagram. In the example shown here, in the part model 20 in which the first parameter is expressed as a vibration system of velocity [m / s] and the second parameter is force [N], the second calculation unit 9 is set at the node 200a and the second calculation unit 9 is set at the node 200b. It is a functional block diagram at the time of setting 1 calculating part 8. FIG.
 具体的に、第2演算部9の演算機能を詳細に説明する。第2演算部9は、部品モデル4が出力する第2パラメータP2Aと、第1演算部8が送信する第2パラメータP2Cを受信し、部品モデル4に第1パラメータP1Dと、第1演算部8に第1パラメータP1Cを送信する。そのうち、第2パラメータP2Aに対しては、まず、節点200aにおける形状に関する振動の第2特性C2が積算され、第2パラメータP2Bが出力される。ここで、第2特性は速度[m/s]の次元の比率であり、有限要素法により表された部品モデル20の固有値解析から得られるものである。 Specifically, the calculation function of the second calculation unit 9 will be described in detail. The second calculation unit 9 receives the second parameter P2A output from the component model 4 and the second parameter P2C transmitted from the first calculation unit 8, and receives the first parameter P1D and the first calculation unit 8 in the component model 4. To the first parameter P1C. Among these, for the second parameter P2A, first, the second characteristic C2 of vibration related to the shape at the node 200a is integrated, and the second parameter P2B is output. Here, the second characteristic is a dimensional ratio of velocity [m / s], and is obtained from eigenvalue analysis of the part model 20 expressed by the finite element method.
 つぎに、第1変換特性201に、第2パラメータP2Bおよび第2パラメータP2Cが入力され、第1パラメータP1Aが出力される。第1変換特性201の機能は、式を用いると次式(1)のように表わすことができる。
 第1パラメータP1A=第1変換特性201
              ×(第2パラメータP2B-第2パラメータP2C)
                               ・・・(1)
Next, the second parameter P2B and the second parameter P2C are input to the first conversion characteristic 201, and the first parameter P1A is output. The function of the first conversion characteristic 201 can be expressed as the following expression (1) using an expression.
First parameter P1A = first conversion characteristic 201
× (second parameter P2B-second parameter P2C)
... (1)
 ここで第1変換特性201は、部品モデル20の質量特性や塑性変形など、第2パラメータP2の次元を第1パラメータP1の次元に変換する機能を有しており、有限要素法などで得ることができる。出力された第1パラメータP1Aは、分岐202により、部品モデル4に向かう第1パラメータP1Bと、第1演算部8に向かう第1パラメータP1Cに分岐される。第1パラメータP1Bに対しては、節点200aにおける形状に関する振動の第2特性C2が積算され、第1パラメータP1Dが出力される。 Here, the first conversion characteristic 201 has a function of converting the dimension of the second parameter P2 into the dimension of the first parameter P1, such as the mass characteristic and plastic deformation of the part model 20, and can be obtained by a finite element method or the like. Can do. The output first parameter P1A is branched by a branch 202 into a first parameter P1B directed to the part model 4 and a first parameter P1C directed to the first calculation unit 8. For the first parameter P1B, the second characteristic C2 of vibration relating to the shape at the node 200a is integrated, and the first parameter P1D is output.
 なお、第1演算部8についての詳細説明は第2演算部9と同様のため省略するが、第2変換特性203は、部品モデル20の剛性特性や粘性摩擦など、第1パラメータP1の次元を第2パラメータP2の次元に変換する機能を有している。 Although the detailed description of the first calculation unit 8 is the same as that of the second calculation unit 9, the second conversion characteristic 203 is the dimension of the first parameter P1, such as the rigidity characteristic and viscous friction of the component model 20. It has a function of converting to the dimension of the second parameter P2.
 一方、構造体の振動特性、すなわち、各節点における形状に関する振動特性は上述した第1特性C1および第2特性C2で表現される。図2(a)に示す部品モデル20の各節点200a~200dには、図2(b)に示すような第1特性C1および第2特性C2がそれぞれ設定される。図2(b)では、第1パラメータP1の次元と第2パラメータP2の次元との積が仕事率[J/s]の場合と、仕事[J]の場合との両方を示した。 On the other hand, the vibration characteristic of the structure, that is, the vibration characteristic related to the shape at each node is expressed by the first characteristic C1 and the second characteristic C2. A first characteristic C1 and a second characteristic C2 as shown in FIG. 2B are respectively set at the nodes 200a to 200d of the component model 20 shown in FIG. FIG. 2B shows both the case where the product of the dimension of the first parameter P1 and the dimension of the second parameter P2 is the work rate [J / s] and the case of the work [J].
 音振動シミュレーションモデル10Aでは振動のシミュレーションが行われるので、次元の積が仕事率[J/s]の場合には、第1特性C1は力[N]の比率で表され、第2特性C2は速度[m/s]の比率で表される。これは、節点に力が作用したときに、その節点に第2特性C2の定数倍の速度が生じることを表している。振動シミュレーションの場合、第1パラメータP1は速度[m/s]または変位[m]となり、第2パラメータP2は力[N]となる。すなわち、第1演算部8では、速度の次元の第1パラメータP1および力の比率の第1特性C1から、力の次元の第2パラメータP2が出力される。第2演算部9では、力の次元の第2パラメータP2および速度の比率の第2特性C2から、速度の次元の第2パラメータが出力される。 Since the vibration simulation is performed in the sound vibration simulation model 10A, when the product of dimensions is the power [J / s], the first characteristic C1 is represented by the ratio of force [N], and the second characteristic C2 is Expressed as a ratio of velocity [m / s]. This indicates that when a force is applied to a node, a speed that is a constant multiple of the second characteristic C2 is generated at the node. In the vibration simulation, the first parameter P1 is a velocity [m / s] or a displacement [m], and the second parameter P2 is a force [N]. That is, the first computing unit 8 outputs the second parameter P2 of the force dimension from the first parameter P1 of the speed dimension and the first characteristic C1 of the force ratio. The second calculator 9 outputs the second parameter of the speed dimension from the second parameter P2 of the force dimension and the second characteristic C2 of the speed ratio.
 また、次元の積が仕事[J]の場合には、第1特性C1は力[N]の比率で表され、第2特性C2は変位[m]の比率で表される。これは、節点に力が作用したときに、その節点に第2特性C2の定数倍の変位が生じることを表している。なお、部品モデル20はソリッド要素のため各節点は3次元における運動(変位)となり、速度、変位、力はX,Y,Zの3方向の成分から成る。 Also, when the product of dimensions is work [J], the first characteristic C1 is represented by the ratio of force [N], and the second characteristic C2 is represented by the ratio of displacement [m]. This indicates that when a force is applied to a node, a displacement that is a constant multiple of the second characteristic C2 occurs at that node. Since the part model 20 is a solid element, each node has a three-dimensional motion (displacement), and the velocity, displacement, and force are composed of components in three directions of X, Y, and Z.
 図2の部品モデル20は4つの節点200a~200dを有しているが、いずれの節点も、部品モデル4と接続される接続点に適用することが可能である。例えば、節点200b、200cを部品モデル4との接続点に選択した場合、部品モデル4との間の第1演算部8または第2演算部9は、節点200b、200cの第1特性C1または第2特性C2を含む関数として表される。なお、一つの節点の変位は他の節点へ影響を及ぼすので、例えば、図1に示す第1演算部8Aから出力される第2パラメータP2は、部品モデル4だけでなく、第2演算部9A,9Bにも入力される。 2 has four nodes 200a to 200d, any of the nodes can be applied to connection points connected to the component model 4. For example, when the nodes 200b and 200c are selected as connection points with the component model 4, the first calculation unit 8 or the second calculation unit 9 between the component model 4 and the first characteristic C1 or the second characteristic of the nodes 200b and 200c It is expressed as a function including two characteristics C2. Since the displacement of one node affects other nodes, for example, the second parameter P2 output from the first calculation unit 8A shown in FIG. 1 is not only the component model 4 but also the second calculation unit 9A. , 9B.
 なお、部品モデル4との接続点である節点に対して第1演算部8および第2演算部9のどちらを適用するかは、例えば、次のように行われる。すなわち、部品モデル4の接続点の剛性が、部品モデル20の接続点の剛性に対して十分高い場合は、部品モデル4は速度[m/s]、または変位[m]を出力すると考えられるため、それらを受信し、力を部品モデル4に対して送信する第1演算部8を適用する。逆に、部品モデル4の接続点の剛性が、部品モデル20の接続点の剛性に対して十分低い場合は、部品モデル4は力[N]を出力すると考えられるため、力を受信し、速度[m/s]、または変位[m]を部品モデル4に対して送信する第2演算部9を適用する。 Note that which of the first calculation unit 8 and the second calculation unit 9 is applied to a node that is a connection point with the component model 4 is performed as follows, for example. That is, when the rigidity of the connection point of the component model 4 is sufficiently higher than the rigidity of the connection point of the component model 20, the component model 4 is considered to output a speed [m / s] or a displacement [m]. The first calculation unit 8 that receives them and transmits the force to the component model 4 is applied. Conversely, if the rigidity of the connection point of the part model 4 is sufficiently lower than the rigidity of the connection point of the part model 20, the part model 4 is considered to output a force [N]. A second calculation unit 9 that transmits [m / s] or displacement [m] to the component model 4 is applied.
 データベース16Aには、各節点200a~200dに関する第1特性C1および第2特性C2が記憶されている。なお、データベース16Bは音振動シミュレーションモデル10Bに対して設けられたデータベースであり、データベース16Aの場合と同様に構成されている。 The database 16A stores a first characteristic C1 and a second characteristic C2 related to the nodes 200a to 200d. The database 16B is a database provided for the sound vibration simulation model 10B and is configured in the same manner as the database 16A.
 図2(b)に示したように、ソリッド要素の場合、一つの節点は第1特性C1と第2特性C2とを合わせて6個の特性を持つので、図2(a)に示すような4つの節点を有する部品モデル20の場合、合計で24個の特性を有することになる。図1に示す音振動シミュレーションモデル10Aの第1演算部8A、8Bや第2演算部9A、9Bは、これら24個の特性の一部を採用して構成されている。つまり、第1特性C1のデータベースの自由度f1と第2特性C2のデータベースの自由度f2の総数は、音振動シミュレーションモデル10Aの有する第1演算部8A、8Bおよび第2演算部9A、9Bの総数以上となっている。 As shown in FIG. 2B, in the case of a solid element, since one node has six characteristics including the first characteristic C1 and the second characteristic C2, as shown in FIG. In the case of the part model 20 having four nodes, it has 24 characteristics in total. The first calculation units 8A and 8B and the second calculation units 9A and 9B of the sound vibration simulation model 10A shown in FIG. 1 are configured by adopting some of these 24 characteristics. That is, the total number of degrees of freedom f1 of the database of the first characteristic C1 and the degree of freedom f2 of the database of the second characteristic C2 is determined by the first calculation units 8A and 8B and the second calculation units 9A and 9B of the sound vibration simulation model 10A. More than the total number.
 これにより、音振動シミュレーションモデル10Aの第1演算部8A、8Bや第2演算部9A、9Bで採用する特性を変更することで、取り付け位置の変更を再現することができる。例えば、図1において、部品モデル4と部品モデル20との取り付け位置が図2(a)の節点200a、200bであった場合、第1演算部8A、第2演算部9Aの特性には節点200a、200bの特性が用いられるが、第2演算部9Aの特性を節点200cの特性に変更することで、取付け位置を変更した場合のエネルギー収支の違いを推定することができる。 Thereby, the change of the mounting position can be reproduced by changing the characteristics adopted in the first calculation units 8A and 8B and the second calculation units 9A and 9B of the sound vibration simulation model 10A. For example, in FIG. 1, when the attachment positions of the component model 4 and the component model 20 are the nodes 200a and 200b in FIG. 2A, the characteristic of the first calculation unit 8A and the second calculation unit 9A is the node 200a. 200b is used, but by changing the characteristic of the second arithmetic unit 9A to the characteristic of the node 200c, the difference in energy balance when the mounting position is changed can be estimated.
 また、例えば、データベース16Aの第1特性C1と第2特性C2を、4面体形状の部品モデル20から、その他の形状部品の特性に書き換えることで、形状変更した際の製品全体のエネルギー収支を検討できる効果がある。 In addition, for example, by rewriting the first characteristic C1 and the second characteristic C2 of the database 16A from the tetrahedral part model 20 to the characteristics of other shape parts, the energy balance of the entire product when the shape is changed is examined. There is an effect that can be done.
 なお、音振動シミュレーションモデル10として音場モデルを用いる場合には、次元の積が仕事率[J/s]の場合には、第1パラメータP1の次元は体積速度[m3/s]となり、第2パラメータP2の次元は音圧[Pa]となる。また、次元の積が仕事[J]の次元の場合には、第1パラメータP1の次元は体積[m3]となり、第2パラメータP2の次元は音圧[Pa]となる。これにより、仕事率、または、仕事として製品全体のエネルギー収支を検討することができる。 When a sound field model is used as the sound vibration simulation model 10, when the product of dimensions is the power [J / s], the dimension of the first parameter P1 is the volume velocity [m 3 / s] The dimension of the second parameter P2 is the sound pressure [Pa]. When the product of dimensions is the dimension of work [J], the dimension of the first parameter P1 is volume [m 3 ], and the dimension of the second parameter P2 is sound pressure [Pa]. Thereby, the energy balance of the whole product can be examined as a work rate or work.
 例えば、部品モデル20で表される構造体が振動して発生する騒音をシミュレートする場合には、構造体の振動をシミュレートする音振動シミュレーションモデル10Aに対して、音場モデルの音振動シミュレーションモデル10Bを接続する。音振動シミュレーションモデル10Bは、音振動シミュレーションモデル10Aのシミュレーション結果に基づいて騒音をシミュレートする。 For example, when simulating the noise generated by the vibration of the structure represented by the component model 20, the sound vibration simulation of the sound field model is compared to the sound vibration simulation model 10A that simulates the vibration of the structure. Connect the model 10B. The sound vibration simulation model 10B simulates noise based on the simulation result of the sound vibration simulation model 10A.
 図3は、音振動シミュレーションモデル10に関するプログラム(音振動シミュレーションプログラム)を実行するハードウェアを構成するコンピュータ100の、概略構成を示す図である。コンピュータ100は、CPU101と、メモリ102と、入力装置103と、ハードディスク104と、ディスプレイ105とを備えている。これらは、システムバス106を介して接続されている。CPU101は、コンピュータ100の制御・演算部として機能し、音振動シミュレーションモデル10のプログラムを実行する。また、CPU101は、製品動作シミュレータ3のプログラムを実行する。すなわち、製品全体シミュレータ13は、製品動作シミュレータ3のプログラムと音振動シミュレーションモデル10のプログラムとで構成される。 FIG. 3 is a diagram showing a schematic configuration of a computer 100 constituting hardware for executing a program (sound vibration simulation program) related to the sound vibration simulation model 10. The computer 100 includes a CPU 101, a memory 102, an input device 103, a hard disk 104, and a display 105. These are connected via a system bus 106. The CPU 101 functions as a control / arithmetic unit of the computer 100 and executes the sound vibration simulation model 10 program. Further, the CPU 101 executes the program of the product operation simulator 3. That is, the entire product simulator 13 includes a program for the product operation simulator 3 and a program for the sound vibration simulation model 10.
 メモリ102は、例えばRAM(Random Access Memory)であり、CPU101の作業領域として機能し、処理途中のデータ等が記憶される。ハードディスク104には、製品全体シミュレータ13を構成するプログラムやデータ等が記憶されている。これらのプログラムやデータは、CPU101によってメモリ102にロードされる。入力装置103は、例えばキーボードやマウスであり、オペレータが指示を入力するための入力部として機能する。 The memory 102 is, for example, a RAM (Random Access Memory), functions as a work area of the CPU 101, and stores data being processed. The hard disk 104 stores programs, data, and the like that make up the entire product simulator 13. These programs and data are loaded into the memory 102 by the CPU 101. The input device 103 is a keyboard or a mouse, for example, and functions as an input unit for an operator to input an instruction.
 図4は、製品全体シミュレータ13における処理手順を説明する図である。製品全体シミュレータ13の処理が開始されると、まず、ステップS1において、音振動シミュレーション対象である構造体の接続点の入出力処理が行われる。オペレータは、入力装置103を用いて、構造体の接続点に対応する節点を指定する。そして、接続点の設定情報に基づいて、接続点に適用された節点のパラメータをデータベース16から読み出し、接続点に対応する演算部をそれぞれ設定する。例えば、第1パラメータP1を受信し、第2パラメータP2を送信する第1演算部8を、接続点に対して設定する。 FIG. 4 is a diagram for explaining a processing procedure in the overall product simulator 13. When the process of the whole product simulator 13 is started, first, in step S1, an input / output process of a connection point of a structure which is a sound vibration simulation target is performed. The operator uses the input device 103 to specify a node corresponding to the connection point of the structure. Then, based on the connection point setting information, the node parameters applied to the connection points are read from the database 16 and the computing units corresponding to the connection points are set. For example, the first calculation unit 8 that receives the first parameter P1 and transmits the second parameter P2 is set for the connection point.
 ステップS2では、製品動作シミュレータ3および音振動シミュレーションモデル10への、接続点からの入力を設定する。例えば、音振動シミュレーションモデル10の接続点が第1演算部8を有する場合、製品動作シミュレータ3への入力は、第1演算部8が送信する第2パラメータP2であり、音振動シミュレーションモデル10への入力は、第1演算部8が受信する第1パラメータP1である。 In step S2, the input from the connection point to the product operation simulator 3 and the sound vibration simulation model 10 is set. For example, when the connection point of the sound vibration simulation model 10 has the first calculation unit 8, the input to the product operation simulator 3 is the second parameter P 2 transmitted by the first calculation unit 8, and the sound vibration simulation model 10 Is the first parameter P1 received by the first calculation unit 8.
 ステップS3では、数値積分を行い、ステップS2で設定した入力に応じた製品動作シミュレータ3および音振動シミュレーションモデル10Aの現在の状態を求め、接続点からの出力を計算する。例えば、音振動シミュレーションモデル10Aの接続点が第1演算部8を有する場合、製品動作シミュレータ3からの出力は、第1演算部8が受信する第1パラメータP1であり、音振動シミュレーションモデル10からの出力は、第1演算部8が送信する第2パラメータP2である。 In step S3, numerical integration is performed, the current state of the product motion simulator 3 and sound vibration simulation model 10A corresponding to the input set in step S2 is obtained, and the output from the connection point is calculated. For example, when the connection point of the sound vibration simulation model 10 </ b> A has the first calculation unit 8, the output from the product operation simulator 3 is the first parameter P <b> 1 received by the first calculation unit 8. Is the second parameter P2 transmitted by the first calculation unit 8.
 なお、数値積分のステップは、製品動作シミュレータ3と音振動シミュレーションモデル10とで、一致している必要はない。すなわち、製品動作シミュレータ3と音振動シミュレーションモデル10とは、それぞれの時間スケールに応じた数値積分を独立に行っても良い。 It should be noted that the numerical integration step does not have to be the same between the product motion simulator 3 and the sound vibration simulation model 10. That is, the product motion simulator 3 and the sound vibration simulation model 10 may independently perform numerical integration according to their respective time scales.
 ステップS4では、計算の継続を確認する。継続する場合はステップS2に進み、終了する場合は計算を終了する。 In step S4, the continuation of calculation is confirmed. When continuing, it progresses to step S2, and complete | finishes calculation, when complete | finishing.
 このように、音振動シミュレーションモデル10は、積の次元が仕事率または仕事の次元と第1パラメータP1および第2パラメータP2に関して、部品モデルから第1パラメータP1を受信して第2パラメータP2を部品モデルに送信する第1演算部8や、部品モデルから第2パラメータP2を受信して第1パラメータP1を部品モデルに送信する第1演算部9を備える。そのため、そのような音振動シミュレーションモデル10を製品動作シミュレータ3に組み込むことで、製品動作全体のエネルギー収支を検討することが可能となる。 As described above, the sound vibration simulation model 10 receives the first parameter P1 from the part model and determines the second parameter P2 as the part when the product dimension is the power factor or the work dimension and the first parameter P1 and the second parameter P2. A first calculation unit 8 that transmits to the model, and a first calculation unit 9 that receives the second parameter P2 from the component model and transmits the first parameter P1 to the component model are provided. Therefore, by incorporating such a sound vibration simulation model 10 into the product operation simulator 3, it becomes possible to examine the energy balance of the entire product operation.
 上述したように、本実施の形態の音振動シミュレーションモデル10のプログラム(音振動シミュレーションプログラム)をCPU101が実行することにより、コンピュータ100は、部品モデル4がシミュレートする部品に取り付けられた構造体の音振動シミュレーションを行う音振動シミュレータとして機能する。 As described above, the CPU 101 executes the program (sound and vibration simulation program) of the sound and vibration simulation model 10 according to the present embodiment, so that the computer 100 has the structure attached to the part to be simulated by the part model 4. It functions as a sound vibration simulator that performs sound vibration simulation.
 そして、音振動シミュレーションプログラムは、コンピュータ100のCPU101を、仕事率または仕事の次元を第1パラメータP1の次元で除した次元を有する第2パラメータP2を、入力される第1パラメータP1に対応して出力する第1演算部8、または、仕事率または仕事の次元を第2パラメータP2の次元で除した次元を有する第1パラメータP1を、入力される第2パラメータP2に対応して出力する第2演算部9として機能させる。第1演算部8は、第1パラメータP1および第1特性C1を含む関数として表され、第2演算部9は、第2パラメータP2および第2特性C2を含む関数として表される。第1特性C1および第2特性C2は、音振動シミュレーションにおける構造体の形状を特徴付ける特性であって、第1特性C1は、第2パラメータP2の次元の比率であり、第2特性C2は、第1パラメータP1の次元の比率である。 The sound vibration simulation program corresponds to the input first parameter P1 with the second parameter P2 having a dimension obtained by dividing the CPU 101 of the computer 100 by the power or the dimension of the work by the dimension of the first parameter P1. The first computing unit 8 to output or the second parameter P1 having a dimension obtained by dividing the work rate or the work dimension by the dimension of the second parameter P2 and corresponding to the input second parameter P2 It functions as the calculation unit 9. The first calculation unit 8 is expressed as a function including the first parameter P1 and the first characteristic C1, and the second calculation unit 9 is expressed as a function including the second parameter P2 and the second characteristic C2. The first characteristic C1 and the second characteristic C2 are characteristics that characterize the shape of the structure in the sound vibration simulation. The first characteristic C1 is a dimensional ratio of the second parameter P2, and the second characteristic C2 is the second characteristic C2. The ratio of the dimension of one parameter P1.
 このように、音振動シミュレーションモデル10に上述のような第1演算部8および第2演算部9を設けることで、部品モデル4と音振動シミュレーションモデル10との間のエネルギーのやり取りを含めたシミュレーションを行うことができる。その結果、製品動作全体のエネルギー収支を検討可能な製品全体シミュレータ13を構成することができる。また、第1演算部8および第2演算部9は、シミュレート対象である部品(構造体)の形状に関する第1特性C1と第2特性C2とを含む関数であるため、3次元部品形状に依存する製品の音振動特性をより正確に再現することができる。 In this way, the simulation including the exchange of energy between the component model 4 and the sound and vibration simulation model 10 is provided by providing the sound and vibration simulation model 10 with the first calculation unit 8 and the second calculation unit 9 as described above. It can be performed. As a result, the entire product simulator 13 capable of examining the energy balance of the entire product operation can be configured. Moreover, since the 1st calculating part 8 and the 2nd calculating part 9 are functions containing the 1st characteristic C1 and the 2nd characteristic C2 regarding the shape of the components (structure) which are simulation objects, they are three-dimensional part shapes. It is possible to reproduce the sound and vibration characteristics of dependent products more accurately.
 図5は比較例を示す図である。前述したように、特許文献1に記載の方法では、3次元部品形状に依存する製品の音振動性能を直接評価することができない。一方、製品の音振動性能の評価に関しては、製品の3次元形状を有限要素法などでモデル化し、モデル外部で別途計算した加振力を入力して評価する手法が提案されている(例えば、特開2015-11567号公報)。 FIG. 5 is a diagram showing a comparative example. As described above, the method described in Patent Document 1 cannot directly evaluate the sound vibration performance of a product that depends on the three-dimensional part shape. On the other hand, regarding the evaluation of the sound vibration performance of a product, a method has been proposed in which a three-dimensional shape of a product is modeled by a finite element method or the like, and an excitation force calculated separately outside the model is input and evaluated (for example, JP, 2015-11567, A).
 そのため、音振動をシミュレーションしようとした場合、図5に示すように、特許文献1を適用した製品動作シミュレータ3から加振力を出力させ、その加振力を特許文献2に記載のようにモデル化された音振動シミュレータ6に与えて、音振動をシミュレーションする方法が考えられる。 Therefore, when trying to simulate the sound vibration, as shown in FIG. 5, the excitation force is output from the product operation simulator 3 to which Patent Literature 1 is applied, and the excitation force is modeled as described in Patent Literature 2. A method of simulating sound vibration by giving it to the converted sound vibration simulator 6 can be considered.
 製品動作シミュレータ3は、複数の部品モデル4における第1パラメータP1と第2パラメータP2のやり取りによって、製品動作時の部品間のエネルギー収支を再現する。該当製品の音振動に関しては、製品動作シミュレータ3から出力された加振力5を音振動シミュレータ6に与えて、音振動を再現することになる。したがって、製品動作時のエネルギー収支と、音振動のエネルギー収支とは、別々のシミュレータにより独立して計算されるため、全体のエネルギー収支が成立しないという問題があった。 The product operation simulator 3 reproduces the energy balance between components during product operation by exchanging the first parameter P1 and the second parameter P2 in the plurality of component models 4. Regarding the sound vibration of the corresponding product, the vibration force 5 output from the product operation simulator 3 is applied to the sound vibration simulator 6 to reproduce the sound vibration. Therefore, the energy balance during product operation and the energy balance of sound and vibration are calculated independently by different simulators, and there is a problem that the overall energy balance is not established.
 一方、本実施の形態では、上述した第1演算部8や第2演算部9を備え、部品モデル4と構造体とエネルギーのやり取りを再現するようにしているので、製品動作全体のエネルギー収支を検討可能な製品全体シミュレータ13を構成することができる。 On the other hand, in the present embodiment, since the first calculation unit 8 and the second calculation unit 9 described above are provided and the exchange of energy between the component model 4 and the structure is reproduced, the energy balance of the entire product operation is reduced. The entire product simulator 13 that can be considered can be configured.
 なお、本実施の形態の音振動シミュレーションモデル10のプログラムは、単体としても動作可能であり、必ずしも製品動作シミュレータ3に組込んで製品全体シミュレータ13として動作させる必要はない。 Note that the program of the sound and vibration simulation model 10 of the present embodiment can be operated as a single unit, and is not necessarily incorporated into the product operation simulator 3 and operated as the entire product simulator 13.
 さらに、節点200a~200dに対応付けられた第1特性C1および第2特性C2を有し、コンピュータ100のハードディスク104を、節点200a~200dに対応付けられた第1特性C1および第2特性C2、すなわちデータベース16Aを格納するデータ格納部として機能させる。それによって、音振動シミュレーションモデル10の第1演算部8や第2演算部9で採用する特性を変更することで、取り付け位置の変更を再現することができ、取付け位置を変更した場合のエネルギー収支の違いを推定することが可能となる。また、データベース16Aの各特性を構造体の形状を変更した場合の特性に書き替えることで、構造体の形状変更にも容易に対応することができる。 Further, the hard disk 104 of the computer 100 having the first characteristic C1 and the second characteristic C2 associated with the nodes 200a to 200d, the first characteristic C1 and the second characteristic C2 associated with the nodes 200a to 200d, That is, it functions as a data storage unit that stores the database 16A. Thereby, the change of the mounting position can be reproduced by changing the characteristics adopted in the first calculation unit 8 and the second calculation unit 9 of the sound vibration simulation model 10, and the energy balance when the mounting position is changed. It is possible to estimate the difference. In addition, by rewriting each characteristic of the database 16A to a characteristic when the shape of the structure is changed, it is possible to easily cope with a change in the shape of the structure.
 上記では、種々の実施の形態および変形例を説明したが、本発明はこれらの内容に限定されるものではない。本発明の技術的思想の範囲内で考えられるその他の態様も本発明の範囲内に含まれる。 Although various embodiments and modifications have been described above, the present invention is not limited to these contents. Other embodiments conceivable within the scope of the technical idea of the present invention are also included in the scope of the present invention.
 3…製品動作シミュレータ、4,20…部品モデル、8,8A~8C…第1演算部、9,9A~9C…第2演算部、10,10A,10B…音振動シミュレーションモデル、13…製品全体シミュレータ、16A,16B…データベース、100…コンピュータ、101…CPU、P1…第1パラメータ、P2…第2パラメータ 3 ... Product operation simulator, 4, 20 ... Parts model, 8, 8A to 8C ... First calculation unit, 9, 9A-9C ... Second calculation unit, 10, 10A, 10B ... Sound vibration simulation model, 13 ... Entire product Simulator, 16A, 16B ... database, 100 ... computer, 101 ... CPU, P1 ... first parameter, P2 ... second parameter

Claims (4)

  1.  部品からの作用として入力される第1パラメータ及び/または第2パラメータに基づいて、コンピュータを、前記部品に取り付けられた構造体の音振動シミュレーションを行う音振動シミュレータとして機能させるための音振動シミュレーションプログラムであって、
     仕事率または仕事の次元を前記第1パラメータの次元で除した次元を有する第2パラメータを、入力される前記第1パラメータに対応して出力する第1演算部、または、前記第1パラメータを入力される前記第2パラメータに対応して出力する第2演算部、として前記コンピュータを機能させ、
     前記第1演算部は、前記第1パラメータおよび第1特性を含む関数として表され、
     前記第2演算部は、前記第2パラメータおよび第2特性を含む関数として表され、
     前記第1特性および前記第2特性は、前記音振動シミュレーションにおける前記構造体の形状を特徴付ける特性であって、
     前記第1特性は、前記第2パラメータの次元の比率であり、前記第2特性は、前記第1パラメータの次元の比率である、音振動シミュレーションプログラム。
    A sound and vibration simulation program for causing a computer to function as a sound and vibration simulator for performing sound and vibration simulation of a structure attached to a part based on the first parameter and / or the second parameter input as an action from the part Because
    A first computing unit that outputs a second parameter having a dimension obtained by dividing a work rate or a work dimension by the dimension of the first parameter, corresponding to the input first parameter, or input the first parameter The computer is caused to function as a second calculation unit that outputs in response to the second parameter,
    The first calculation unit is expressed as a function including the first parameter and a first characteristic,
    The second calculation unit is represented as a function including the second parameter and a second characteristic,
    The first characteristic and the second characteristic are characteristics that characterize the shape of the structure in the sound vibration simulation,
    The sound vibration simulation program, wherein the first characteristic is a dimensional ratio of the second parameter, and the second characteristic is a dimensional ratio of the first parameter.
  2.  請求項1に記載の音振動シミュレーションプログラムにおいて、
     前記音振動シミュレータは、前記部品に取り付けられた構造体の形状を複数の節点に離散化して音振動シミュレーションを行う、音振動シミュレーションプログラム。
    In the sound and vibration simulation program according to claim 1,
    The sound vibration simulator is a sound vibration simulation program for performing sound vibration simulation by discretizing the shape of the structure attached to the component into a plurality of nodes.
  3.  請求項2に記載の音振動シミュレーションプログラムにおいて、
     前記節点に対応付けられた前記第1特性および前記第2特性を有し、
     前記コンピュータを、前記節点に対応付けられた前記第1特性および前記第2特性を格納するデータ格納部として機能させる、音振動シミュレーションプログラム。
    In the sound vibration simulation program according to claim 2,
    Having the first characteristic and the second characteristic associated with the node;
    A sound and vibration simulation program that causes the computer to function as a data storage unit that stores the first characteristic and the second characteristic associated with the node.
  4.  請求項3に記載の音振動シミュレーションプログラムにおいて、
     前記第1演算部または前記第2演算部を1つ以上有するように、前記コンピュータを機能させ、
     前記データ格納部に格納される前記第1特性および前記第2特性の総数は、前記第1演算部および前記第2演算部を合計した数以上である、音振動シミュレーションプログラム。
    In the sound and vibration simulation program according to claim 3,
    Causing the computer to function so as to have one or more of the first calculation unit or the second calculation unit;
    The sound vibration simulation program, wherein the total number of the first characteristics and the second characteristics stored in the data storage unit is equal to or greater than the total number of the first calculation unit and the second calculation unit.
PCT/JP2017/027367 2016-08-31 2017-07-28 Sound oscillation simulation program WO2018042968A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112017003671.2T DE112017003671T5 (en) 2016-08-31 2017-07-28 Schalloszillations simulation program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-169606 2016-08-31
JP2016169606A JP6663825B2 (en) 2016-08-31 2016-08-31 Sound and vibration simulation program

Publications (1)

Publication Number Publication Date
WO2018042968A1 true WO2018042968A1 (en) 2018-03-08

Family

ID=61300615

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/027367 WO2018042968A1 (en) 2016-08-31 2017-07-28 Sound oscillation simulation program

Country Status (3)

Country Link
JP (1) JP6663825B2 (en)
DE (1) DE112017003671T5 (en)
WO (1) WO2018042968A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003075248A (en) * 2001-09-07 2003-03-12 Takeshi Toi Acoustic vibration analysis method and apparatus
JP2014035679A (en) * 2012-08-09 2014-02-24 Mitsubishi Motors Corp Acoustic vibration analysis method and acoustic vibration analysis device for vehicle
JP2015185143A (en) * 2014-03-26 2015-10-22 マツダ株式会社 Vibration analyzer and vibration analysis method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05233556A (en) * 1992-02-25 1993-09-10 Hitachi Chem Co Ltd Information processor containing plural processing units
JP4743944B2 (en) 2000-08-25 2011-08-10 鎮男 角田 Simulation model creation method and system and storage medium
JP6107473B2 (en) 2013-06-28 2017-04-05 三菱自動車工業株式会社 Body characteristic analysis method and body characteristic analysis auxiliary device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003075248A (en) * 2001-09-07 2003-03-12 Takeshi Toi Acoustic vibration analysis method and apparatus
JP2014035679A (en) * 2012-08-09 2014-02-24 Mitsubishi Motors Corp Acoustic vibration analysis method and acoustic vibration analysis device for vehicle
JP2015185143A (en) * 2014-03-26 2015-10-22 マツダ株式会社 Vibration analyzer and vibration analysis method

Also Published As

Publication number Publication date
DE112017003671T5 (en) 2019-04-11
JP6663825B2 (en) 2020-03-13
JP2018036863A (en) 2018-03-08

Similar Documents

Publication Publication Date Title
Choi et al. Structural sensitivity analysis and optimization 1: linear systems
CN107291973A (en) For the emulation augmented reality system of urgent behavior
US20090259329A1 (en) Processing device and method for structure data representing a physical structure
Callejo et al. Sensitivity-based, multi-objective design of vehicle suspension systems
Lingfei et al. Condensation modeling of the bolted joint structure with the effect of nonlinear dynamics
Fehr et al. Morembs—a model order reduction package for elastic multibody systems and beyond
Li et al. Improved explicit co-simulation methods incorporating relaxation techniques
Seth et al. Development of a dual-handed haptic assembly system: SHARP
Fehr et al. Interface and model reduction for efficient explicit simulations-a case study with nonlinear vehicle crash models
Louca et al. Energy-based model reduction methodology for automated modeling
Larsson Multibody dynamic simulation in product development
Hartmann et al. 12 Model order reduction and digital twins
WO2018042968A1 (en) Sound oscillation simulation program
Anderl et al. Simulations with NX/Simcenter 3D: Kinematics, FEA, CFD, EM and Data Management
Callejo et al. Vehicle suspension identification via algorithmic computation of state and design sensitivities
Hutcheson et al. Function-based behavioral modeling
Schulz et al. Crashing in cyberspace-evaluating structural behaviour of car bodies in a virtual environment
Makkonen On multi body systems simulation in product design
Navarro et al. Arbitrary-Order Sensitivity Analysis in Wave Propagation Problems Using Hypercomplex Spectral Finite Element Method
Rückwald et al. Reduced isogeometric analysis models for impact simulations
Louca A frequency-based interpretation of energy-based model reduction of linear systems
Hampl Advanced simulation techniques in vehicle noise and vibration refinement
Sivertsen et al. Automation in the Virtual Testing of Mechanical Systems: Theories and Implementation Techniques
He et al. Toward a shape-performance integrated digital twin based on hybrid reduced-order modeling for engineering structures
Günther et al. A modular technique for automotive system simulation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17845977

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17845977

Country of ref document: EP

Kind code of ref document: A1