WO2018042538A1 - Particle beam radiation apparatus - Google Patents

Particle beam radiation apparatus Download PDF

Info

Publication number
WO2018042538A1
WO2018042538A1 PCT/JP2016/075459 JP2016075459W WO2018042538A1 WO 2018042538 A1 WO2018042538 A1 WO 2018042538A1 JP 2016075459 W JP2016075459 W JP 2016075459W WO 2018042538 A1 WO2018042538 A1 WO 2018042538A1
Authority
WO
WIPO (PCT)
Prior art keywords
inward
particle beam
outward
pole tip
flat portion
Prior art date
Application number
PCT/JP2016/075459
Other languages
French (fr)
Japanese (ja)
Inventor
智媛 李
山本 和男
松田 哲也
博光 井上
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2016/075459 priority Critical patent/WO2018042538A1/en
Priority to TW106115777A priority patent/TW201811395A/en
Publication of WO2018042538A1 publication Critical patent/WO2018042538A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/01Devices for producing movement of radiation source during therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy

Definitions

  • the present invention relates to a particle beam irradiation apparatus for irradiating an affected area such as cancer with a charged particle beam such as a proton beam or a carbon ion beam.
  • Patent Document 1 discloses a particle beam irradiation apparatus in which a cyclotron, which is a particle beam circular acceleration means for generating a charged particle beam such as a proton beam and accelerating to high energy, is arranged outside a rotating gantry (see FIG. 23 of Patent Document 1). And a particle beam irradiation apparatus (see FIG. 1 of Patent Document 1) in which a cyclotron is mounted on a rotating gantry.
  • the structure of an electromagnet that applies a magnetic field to the particle beam acceleration orbital surface is constituted by a superconducting coil.
  • Patent Document 1 describes that the particle beam circular acceleration means mounted on the rotating gantry may be a synchrocyclotron. While the cyclotron outputs a charged particle beam as a continuous beam, the synchrocyclotron is configured to output a charged particle beam as a pulse beam.
  • a circular ion accelerator (particle beam circular acceleration means) of a synchrocyclotron equipped with a superconducting coil is described in Patent Document 2, for example.
  • the synchrocyclotron of Patent Document 2 includes a superconducting coil pair, a cryostat that holds the superconducting coil pair under vacuum, and a magnetic yoke structure that surrounds the cryostat.
  • the magnetic yoke structure includes an upper yoke 31, a lower yoke 32, magnetic pole part pairs 33 and 34, and a return yoke 35.
  • the magnetic yoke structure magnetic pole part pair (upper magnetic pole part 33, lower magnetic pole part 34) is disposed in an internal space including the coil axis (center axis 50) of the superconducting coil pair (upper coil 20, lower coil 25). .
  • the upper magnetic pole portion 33 connected to the upper yoke 31 and the lower magnetic pole portion 34 connected to the lower yoke 32 are respectively extended to the vicinity of the particle beam acceleration orbit plane of the synchrocyclotron.
  • the upper magnetic pole part connected to the upper yoke and the lower magnetic pole part connected to the lower yoke are usually connected to the synchrocyclotron particle beam, as in the synchrocyclotron disclosed in Patent Document 2. It is extended to the vicinity of the acceleration orbital surface.
  • Patent Document 1 describes a particle beam therapy system in which a cyclotron is mounted on a rotating gantry.
  • a cyclotron is mounted on a rotating gantry.
  • the magnetic yoke structure surrounding the superconducting coil pair and the cryostat is heavy, it is necessary to use a large and durable rotating gantry.
  • the building of the facility where the rotating gantry is installed must have a large and strong building that can hold heavy objects.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to obtain a compact particle beam irradiation apparatus by mounting a lightweight accelerator by adopting a superconducting air-core coil on a rotating gantry. To.
  • the particle beam irradiation apparatus of the present invention generates a charged particle beam and accelerates it while rotating it by a magnetic field, a beam transport system for transporting a charged particle beam accelerated by the particle beam circular accelerator, and beam transport An irradiation field forming device that irradiates a target with a charged particle beam transported by the system, and a rotating gantry that supports the particle beam circular accelerator, beam transport system, and irradiation field forming device and that rotates the irradiation direction of the charged particle beam A particle beam irradiation apparatus.
  • the particle beam circular accelerator is an acceleration cavity for accelerating a charged particle beam, a pair of superconducting coils arranged symmetrically with respect to the acceleration orbital surface of the charged particle beam, and an inner surface of the superconducting coil. And a pair of pole tips that form a magnetic field distribution in which a charged particle beam circulates in an acceleration cavity from a magnetic field generated by a superconducting coil.
  • the pole tip of the particle beam irradiation device has a different thickness in the radial direction, which is the thickness of the inward surface facing the acceleration orbital surface and the outward surface farther from the inward surface, and is perpendicular to the radial direction of the superconducting coil.
  • the central part containing the coil axis passing through the center of the superconducting coil and the radially outer peripheral part are thinner than the central part and the outer peripheral part and have the smallest thin part. It is characterized in that more than half of the arrangement area is arranged on the outer peripheral side with respect to the intermediate line between the coil shaft and the outer peripheral end of the pole tip.
  • the particle beam circular accelerator includes a pair of superconducting coils and a pair of pole tips disposed inside the superconducting coils, and more than an intermediate line between the coil shaft and the outer peripheral end of the pole tip. Since the thin part of the pole tip is arranged so as to be more than half on the outer peripheral side, a lightweight accelerator can be mounted on the rotating gantry, and the particle beam irradiation apparatus can be miniaturized.
  • FIG. 3 is a bird's-eye view of the fixed structure and the pole tip in FIG. 2. It is a figure explaining the beam emission of the particle beam circular accelerator of FIG. It is sectional drawing which shows the 1st example of the pole tip of FIG.
  • FIG. 6 is a bird's-eye view of the pole tip in FIG. 5. It is a figure which shows the outward surface of the pole tip of FIG. It is a figure which shows the magnetic field distribution of the particle beam circular accelerator of FIG. It is a figure which shows the magnetic field distribution of the superconducting coil of FIG.
  • FIG. 21 is a bird's-eye view of the fixed structure and the pole tip of FIG. 20. It is sectional drawing which shows the 1st example of the pole tip of FIG. 20, and a superconducting coil. It is sectional drawing which shows the 1st example of the pole tip of FIG. It is a figure which shows the inward surface of the pole tip of FIG. It is a figure which shows the outward surface of the pole tip of FIG. It is an enlarged view of the pole tip of FIG. It is sectional drawing which shows the 2nd example of the pole tip of FIG. It is a bird's-eye view of the pole tip of FIG.
  • FIG. 31 is a bird's-eye view of the pole tip of FIG. 30. It is a figure which shows the outward surface of the pole tip of FIG.
  • FIG. 1 is a schematic configuration diagram of a particle beam irradiation apparatus according to Embodiment 1 of the present invention
  • FIG. 2 is a cross-sectional view illustrating a schematic configuration of a particle beam circular accelerator according to Embodiment 1 of the present invention
  • FIG. 3 is a bird's-eye view of the fixed structure and the pole tip of FIG.
  • FIG. 4 is a view for explaining beam emission of the particle beam circular accelerator of FIG.
  • FIG. 5 is a cross-sectional view showing a first example of the pole tip of FIG. 6 is a bird's-eye view of the pole tip of FIG. 5, and
  • FIG. 7 is a view showing the outward surface of the pole tip of FIG.
  • FIG. 8 is a diagram showing the magnetic field distribution of the particle beam circular accelerator of FIG. 2
  • FIG. 9 is a diagram showing the magnetic field distribution of the superconducting coil of FIG.
  • FIG. 10 is a diagram showing the pole tip of FIG. 2 and the magnetic field distribution of the pole tip.
  • FIG. 11 is a cross-sectional view showing a second example of the pole tip of FIG. 12 is a bird's-eye view of the pole tip shown in FIG. 11, and
  • FIG. 13 is a view showing an outward surface of the pole tip shown in FIG.
  • FIG. 14 is a cross-sectional view showing a third example of the pole tip of FIG. 15 is a bird's-eye view of the pole tip shown in FIG. 14, and FIG.
  • FIG. 16 is a view showing the outward surface of the pole tip shown in FIG. 17 is a cross-sectional view showing a fourth example of the pole tip of FIG. 18 is a bird's-eye view of the pole tip of FIG. 17, and FIG. 19 is a view showing the outward surface of the pole tip of FIG.
  • the particle beam irradiation apparatus 59 of the first embodiment generates a particle beam such as a proton beam, that is, a charged particle beam 16 (see FIG. 4), and emits a charged particle beam 16 that is accelerated while being rotated by a magnetic field.
  • a particle beam such as a proton beam, that is, a charged particle beam 16 (see FIG. 4)
  • a charged particle beam 16 see FIG. 4
  • the irradiation field forming device 56 for irradiating the patient 58 as an irradiation target, the particle beam circular accelerator 51, the beam transport system 54, and the irradiation field forming device 56 are supported (mounted), and charged particles from any direction with respect to the patient 58
  • a rotating gantry 60 for irradiating the beam 16 is provided.
  • the patient 58 is mounted and fixed on a treatment table 57 installed in the treatment room 65.
  • the beam transport system 54 includes a beam transport tube 55 through which the charged particle beam 16 passes, a plurality of quadrupole electromagnets 52a, 52b, 52c, and 52d that focus the charged particle beam 16, and a plurality of deflections that bend the trajectory of the charged particle beam 16. Electromagnets 53a and 53b are provided.
  • the rotating gantry 60 includes rotating frames 61a and 61b, rollers 62a and 62b that rotatably support the rotating frames 61a and 61b, a rotation driving device 63 that drives the rotating frames 61a and 61b, and rotating frames 61a and 61b.
  • a counterweight 64 that balances the weight in a state in which the device is attached is provided.
  • the rotating gantry 60 is installed on a building floor 68 arranged at a position lower than the floor of the treatment room 65. Between the treatment room 65 and the particle beam circular accelerator 51, a shielding structure 66 for shielding radiation, which is formed in a cylindrical shape with the particle beam circular accelerator 51 side closed, is installed. On the treatment room ceiling 67, floor, and wall of the treatment room 65, there is provided a device passage groove 69 that is a notch or the like that allows the irradiation field forming device 56 to rotate around the rotation axis of the rotating gantry 60.
  • the acceleration orbit plane of the charged particle beam 16 is perpendicular to the central axis of the rotating frames 61a and 61b, that is, the rotating axis of the rotating gantry 60.
  • the charged particle beam 16 is configured to be emitted from the outer periphery of the particle beam circular accelerator 51 in a direction perpendicular to the central axis (upward in FIG. 1). That is, the particle beam circular accelerator 51 is connected to the beam transport system 54 such that the acceleration orbit plane of the charged particle beam 16 is mounted at right angles to the rotation axis of the rotating gantry 60.
  • the charged particle beam 16 emitted from the particle beam circular accelerator 51 is focused by the quadrupole electromagnets 52a, 52b, 52c, and 52d, the transport direction is changed by the deflection electromagnets 53a and 53b, and transported through the beam transport tube 55 to be irradiated.
  • the forming device 56 is entered.
  • the charged particle beam 16 is irradiated to the target (affected part) of the cancer cell of the patient 58 that is the irradiation target placed on the treatment table 57 by the irradiation field forming device 56.
  • a particle beam circular accelerator 51, quadrupole electromagnets 52a, 52b, 52c, 52d, deflection electromagnets 53a, 53b, and an irradiation field forming device 56 are attached to rotating frames 61a, 61b.
  • the rotary frames 61a and 61b are configured to rotate, and the irradiation field forming device 56 is disposed so that the extension line in the irradiation direction of the charged particle beam 16 and the center line of the rotation axis intersect.
  • the irradiation field forming apparatus 56 is rotatably arranged by the rotating gantry 60, and the irradiation field forming apparatus 56 intersects the extension line in the irradiation direction of the charged particle beam 16 and the rotation axis. Therefore, it is possible to irradiate the cancer cells of the patient 58 with a particle beam from an arbitrary direction.
  • the particle beam circular accelerator 51 includes a cryostat 1 that maintains a vacuum inside, a fixed structure 2, superconducting coils 3a and 3b that generate a deflection magnetic field, active shield coils 4a and 4b that reduce a leakage magnetic field, and heat transfer. Plates 5a, 5b, 6a, 6b, pole tips 7a, 7b, ion source 8 for generating charged particles, Dee electrode 9, dummy Dee electrode 10, and acceleration cavity for accelerating charged particles (charged particle beam 16) 11 is provided.
  • the particle beam circular accelerator 51 is, for example, a synchrocyclotron or a cyclotron.
  • the coil shaft 17 is a central axis perpendicular to the radial direction of the superconducting coils 3a and 3b and passing through the centers of the superconducting coils 3a and 3b.
  • the pole tips 7a and 7b are arranged inside the superconducting coils 3a and 3b, and form a magnetic field distribution in which the charged particles circulate in the acceleration cavity 11.
  • a center line 28 perpendicular to the radial direction of the pole tips 7a and 7b and passing through the centers of the pole tips 7a and 7b is disposed on the coil shaft 17. As shown in FIG.
  • the charged particles generated in the ion source 8 are distributed between the magnetic field distribution formed by the superconducting coils 3 a and 3 b and the pole tips 7 a and 7 b, the dee electrode 9, and the dummy dee electrode 10.
  • the generated high-frequency electric field accelerates the midplane 12 that is the acceleration orbital surface, and circulates while increasing the orbital radius.
  • the pole tips 7a and 7b form a magnetic field distribution for circulating charged particles (charged particle beam 16) in the acceleration cavity 11 from the magnetic field generated by the superconducting coils 3a and 3b.
  • the particle beam circular accelerator 51 is an accelerator that does not include a yoke as in Patent Document 2, and includes an air core coil (air core type coil) and a pole tip disposed inside the air core coil.
  • Superconducting coils 3a and 3b and active shield coils 4a and 4b are air-core coils.
  • Superconducting coil 3a, heat transfer plate 5a, pole tip 7a, active shield coil 4a, heat transfer plate 6a, superconducting coil 3b, heat transfer plate 5b, pole tip 7b, active shield coil 4b, heat transfer plate 6b are midplanes. 12 are arranged symmetrically.
  • the pole tip 7a and the pole tip 7b have the same planar shape and cross-sectional shape.
  • the heat transfer plates 5 a and 5 b are connected to the superconducting coils 3 a and 3 b and the fixed structure 2, respectively, and dissipate heat generated in the superconducting coils 3 a and 3 b to the fixed structure 2.
  • the heat transfer plates 6 a and 6 b are connected to the active shield coils 4 a and 4 b and the fixed structure 2, respectively, and radiate heat generated in the active shield coils 4 a and 4 b to the fixed structure 2.
  • the fixed structure 2 includes a top plate 41, a bottom plate 42, an outer peripheral cylinder 43, and an inner peripheral cylinder 44, and has a cylindrical shape in which a central portion surrounded by the inner peripheral cylinder 44 is hollowed out.
  • Superconducting coils 3a and 3b, heat transfer plates 5a and 5b, pole tips 7a and 7b, active shield coils 4a and 4b, heat transfer plates 6a and 6b, ion source 8, dee electrode 9 and dummy dee electrode 10 are fixed structures. Fixed to the body 2. Specifically, pole tips 7a and 7b, an ion source 8, a dee electrode 9, and a dummy dee electrode 10 are disposed in the center, and an acceleration cavity 11 is formed in the center.
  • the superconducting coils 3a and 3b, the heat transfer plates 5a and 5b, the pole tips 7a and 7b, the active shield coils 4a and 4b, and the heat transfer plates 6a and 6b are the top plate 41, the bottom plate 42, the outer cylinder 43, and the inner cylinder. It is fixed in a closed space surrounded by 44.
  • the particle beam circular accelerator 51 generates a high-frequency electric field between the dee electrode 9 and the dummy dee electrode 10 to accelerate charged particles generated in the ion source 8.
  • the charged particles pass through the Dee electrode 9 and the dummy Dee electrode 10 alternately and are accelerated to increase the orbit radius while keeping the rotation period constant.
  • the charged particles are accelerated to obtain a predetermined kinetic energy, and are emitted to the beam transport system 54 by the beam extraction device 15.
  • a beam transport tube 55 extending from the outer periphery of the cryostat 1 is connected to the fixed structure 2.
  • the fixed structure 2 has an opening communicating with the beam transport tube 55.
  • the Y axis which is the direction in which the high-frequency electric field is generated, and the X axis perpendicular to the Y axis are shown.
  • the pole chip is generally denoted by 7, and 7a and 7b are used in the case of distinction.
  • the pole tip 7 is arranged on the side of the midplane 12 (see FIG. 2), that is, an inward surface 18 facing the midplane 12, and a midplane rather than the inward surface 18.
  • 12 has an outward surface 22 arranged far from 12, and has a cross-sectional shape in which the thickness of the inward surface 18 and the outward surface 22 changes from the center line 28 toward the outer peripheral side.
  • Center line 28 is perpendicular to midplane 12.
  • the pole tip 7 which is the first example of the pole tip shown in FIGS. 5 to 7 is an example in which the inward surface 18 and the outward surface 22 are uneven.
  • the pole tip 7 has a circular outer periphery of the outward face 22 and the inward face 18.
  • the pole tip 7 has, on the outward face 22 side, an outward convex part 24 formed so as to enclose the center line 28, an outward flat part 23 formed on the outer peripheral side of the outward convex part 24, An outward-side outer peripheral convex portion 25 formed on the outer peripheral side of the side flat portion 23 is provided. Further, the pole tip 7 has, on the inward surface 18 side, an inward convex portion 20 formed so as to contain the center line 28, and an inward flat portion 19 formed on the outer peripheral side of the inward convex portion 20. The inward-side outer peripheral convex portion 21 is provided on the outer peripheral side of the inward-side flat portion 19. The outward flat portion 23 and the inward flat portion 19 are parallel to the midplane 12.
  • the outward flat portion 23 is formed closest to the inner peripheral surface 13, and the inward flat portion 19 is formed closest to the outward surface 22.
  • the outward-side convex portion 24 and the outward-side outer peripheral convex portion 25 protrude from the outward-side flat portion 23 in the direction of the coil shaft 17 (center line 28) and away from the inward surface 18.
  • the inward-side convex portion 20 and the inward-side outer peripheral convex portion 21 protrude from the inward-side flat portion 19 in the direction of the coil shaft 17 (center line 28) and away from the outward surface 22.
  • the boundary which divides the part 21 is the flat part thickness intermediate line 45 of the intermediate
  • the outward convex portion 24, the outward flat portion 23, the outward peripheral convex portion 25, and the inward convex portion 20 are used.
  • the range of the inward-side flat portion 19 and the inward-side outer peripheral convex portion 21 will be described.
  • the outward-side convex portion 24 is between the broken line A2 and the broken line A3, and the outward-side flat portion 23 is between the broken line A1 and the broken line A2, and between the broken line A3 and the broken line A4.
  • the convex portion 25 is between the broken line A1 and the left end and between the broken line A4 and the right end.
  • the inward convex portion 20 is between the broken line B2 and the broken line B3, and the inward side flat portion 19 is between the broken line B1 and the broken line B2 and between the broken line B3 and the broken line B4.
  • the side outer peripheral convex portion 21 is between the broken line B1 and the left end and between the broken line B4 and the right end.
  • the intermediate line 29 is an intermediate line between the center line 28 and the outer peripheral end of the pole tip 7.
  • the outer peripheral ends of the pole tip 7 are a left end and a right end of the pole tip 7 in FIG.
  • the intermediate line 29 is a line parallel to the center line 28.
  • the thickness perpendicular to the midplane 12 changes from the center line 28 toward the outer peripheral side.
  • the thickness in the direction of the left end from the center line 28 is thickest at the central portion through which the center line 28 passes, decreases toward the broken line A2, becomes thinnest between the broken line A2 and the broken line B1, and increases toward the left end. It has become. Between the broken line A2 and the broken line B1, it is the thin part 26 with the thinnest thickness in the vertical direction.
  • the thickness in the right end direction from the center line 28 is thickest at the central portion through which the center line 28 passes, decreases toward the broken line A3, becomes thinnest between the broken line A3 and the broken line B4, and increases toward the right end. It has become. Between the broken line A3 and the broken line B4 is the thin portion 26 having the smallest thickness in the vertical direction.
  • the thickest central part is the thickest part (top) of the outward convex part 24 and the thickest part of the inward convex part 20.
  • the thin part 26 on the left side and the thin part 26 on the right side in FIG. 5 are formed concentrically with the center line 28 as the center, like the inward flat part 19 and the outward flat part 23.
  • FIG. 8 shows a magnetic field distribution 31 formed in the superconducting coil 3a and the pole tip 7a in the particle beam circular accelerator 51.
  • FIG. 9 shows the magnetic field distribution 32 of the superconducting coil 3 a in the particle beam circular accelerator 51.
  • the outer peripheral side cross section of superconducting coil 3a, 3b was shown with the broken line.
  • FIG. 10 shows the pole tip 7a in the particle beam circular accelerator 51 and the magnetic field distribution 33 of the pole tip 7a.
  • the horizontal axis is the radial position R from the center line 28, and the vertical axis is the magnetic field in the direction of the center line 28, that is, the magnetic field Bz in the Z direction.
  • the direction of the magnetic field Bz from the inward surface 18 toward the outward surface 22 is a positive direction.
  • the horizontal axis is the radial position R from the center line 28, and the vertical axis is the position in the center line 28 direction, that is, the position Z in the Z direction.
  • the magnetic field distribution formed in the superconducting coil 3b and the pole tip 7b is a distribution obtained by inverting the magnetic field distribution 31 around the horizontal axis.
  • the magnetic field distribution formed in the superconducting coil 3b is a distribution obtained by inverting the magnetic field distribution 32 around the horizontal axis.
  • the magnetic field distribution formed on the pole tip 7b is a distribution obtained by inverting the magnetic field distribution 33 around the horizontal axis.
  • the magnetic field distribution 31 gradually decreases from the center line 28 where the radial position R is zero to the position ra1 in the radial direction, and decreases rapidly from the position ra1 to zero at the position ra2.
  • the magnetic field from the center line 28 to the position ra1 has a magnetic field strength for circulating the charged particles in the acceleration cavity 11, and the magnetic field from the position ra1 to the position ra2 has a magnetic field strength for emitting the charged particle beam 16 to the outside. That is, it has a magnetic field strength that does not cause the charged particles to circulate.
  • the magnetic field distribution 32 gradually increases from the center line 28 toward the position rc1 in the radial direction, and gradually decreases away from the position rc1.
  • the magnetic field distribution 33 gradually decreases from the center line 28 toward the position rp2 toward the position rp2 in the radial direction based on the change in the radial thickness of the pole tip 7a, becomes minimal at the position rp2, and then increases to the position rp3. And then decreases to zero at position rp4.
  • the magnetic field distribution 33 will be described in detail with reference to FIG.
  • the position rp1 is a boundary point where the thickness of the inward convex portion 20 decreases.
  • a broken line C1 is a line passing through the boundary between the outward-side convex part 24 and the outward-side flat part 23, and a broken line C2 is a line passing through the boundary between the inward-side flat part 19 and the inward-side outer peripheral convex part 21.
  • the broken line C3 is a line passing through the boundary where the thickness of the outward-side outer peripheral convex portion 25 is maximum, and the broken line C4 is a line passing through the outer peripheral end of the pole tip 7a.
  • the area between the broken line C1 and the broken line C2 is the thin part 26 of the pole tip 7a, and the area between the broken line C3 and the broken line C4 is the outer peripheral thick part 27 that is the maximum thickness at the outer peripheral part of the pole tip 7a. is there.
  • the thickness of the pole tip 7a decreases from the position rp1 toward the outer peripheral side to the broken line C1.
  • the thickness of the pole tip 7a is minimized from the broken line C1 to the broken line C2, increases from the broken line C2 to the broken line C3, and maintains the maximum thickness at the outer periphery from the broken line C3 to the broken line C4.
  • the thickness of the outer peripheral thick part 27 is equal to or thicker than the thickness in the central part.
  • the thickness of the outer peripheral thick portion 27 is determined according to the decreasing gradient of the magnetic field strength from the position rp3 to the position rp4 of the magnetic field distribution 33.
  • FIG. 10 shows a quadrant 30 that is an intermediate line between the intermediate line 29 and the outer peripheral end of the pole tip 7a. Since the intermediate line 29 is an intermediate line between the center line 28 and the outer peripheral end of the pole tip 7a, the quadrant 30 is a line passing through a position of a quarter of the radius from the outer peripheral end of the pole tip 7a. In FIG. 10, the position rp2 at which the magnetic field intensity of the magnetic field distribution 33 becomes the minimum value is in the region of the thin portion 26 that is on the outer peripheral side of the intermediate line 29 of the pole tip 7a and on the outer peripheral side of the quadrant 30. Exists.
  • a position rp3 at which the magnetic field intensity of the magnetic field distribution 33 becomes a maximum value exists in the region of the outer peripheral thick portion 27 of the pole tip 7a.
  • the regions rp2 of the desired minimum value of the magnetic field distribution 33 are respectively set in the regions of the thin portion 26 and the outer peripheral thick portion 27 of the pole tip 7a. Further, adjustment may be made so as to include the position rp3 of the maximum value of the desired magnetic field distribution 33. Further, by adjusting the thickness of the thin portion 26 of the pole tip 7a, the position rp2 of the minimum value of the desired magnetic field distribution 33 can be adjusted. Similarly, the position rp3 of the maximum value of the desired magnetic field distribution 33 can be adjusted by adjusting the thickness of the outer peripheral thick portion 27 of the pole tip 7a.
  • the desired minimum position rp2 of the magnetic field distribution 33 can be changed by the arrangement position of the thin portion 26 of the pole tip 7 and the thickness of the thin portion 26.
  • the position rp3 of the desired maximum value of the magnetic field distribution 33 can be changed by the arrangement position of the outer peripheral thick portion 27 of the pole tip 7 and the thickness of the outer peripheral thick portion 27. Since the outer peripheral thick portion 27 of the pole tip 7 includes the outer peripheral end, the arrangement position of the outer peripheral thick portion 27 can be rephrased as the radial width of the outer peripheral thick portion 27.
  • the first method is to increase the thickness of the pole tip 7.
  • the second method is to bring the pole tip 7 closer to the midplane 12.
  • the desired magnetic field distribution 33 can be obtained by determining the thickness of the pole tip 7 according to the radial position and determining the arrangement position of the pole tip 7.
  • the pole tip 7 of the first example shown in FIGS. 5 to 7 has irregularities on the inward surface 18 and the outward surface 22, and the radial width of the inward flat portion 19 of the inward surface 18 is flat on the outward side of the outward surface 22. This is an example wider than the section 23.
  • the pole tip 7 of the first example is also an example in which the area of the inward flat portion 19 of the inward surface 18 is wider than the outward flat portion 23 of the outward surface 22.
  • the shape accuracy of the inward surface 18 on the side facing the midplane 12 is the outward surface 22. It is necessary to be higher than the shape accuracy.
  • the pole tip 7 of the first example has a sufficiently high machining accuracy because the area of the inward flat portion 19 in the inward surface 18 on the side facing the midplane 12 is wider than the outward flat portion 23 of the outward surface 22. can do. Therefore, the pole tip 7 of the first example can form the desired magnetic field distribution 33 with high accuracy.
  • the pole tip 7 forming one desired magnetic field distribution 33 has an infinite number of cross-sectional shapes, and is not limited to the examples shown in FIGS. 5 to 7, and other pole tips may be used.
  • a second example of the pole tip shown in FIGS. 11 to 13 will be described.
  • the reference numeral of the pole tip of the second example is 34 to distinguish it from the pole tip of the first example.
  • the pole tip 34 of the second example differs from the pole tip 7 of the first example in that there is no inward convex portion 20 on the inward surface 18.
  • the pole tip 34 of the second example shown in FIGS. 11 to 13 shows an example in which the radial position and the radial width of the thin portion 26 are different from those of the pole tip 7 of the first example.
  • the outward-side convex portion 24 is between the broken line A2 and the broken line A3, and the outward-side flat portion 23 is between the broken line A1 and the broken line A2, and between the broken line A3 and the broken line A4.
  • the convex portion 25 is between the broken line A1 and the left end and between the broken line A4 and the right end.
  • the inward flat portion 19 is between the broken line B1 and the broken line B2, and the inward outer peripheral convex portion 21 is between the broken line B1 and the left end and between the broken line B2 and the right end.
  • the outer peripheral ends of the pole tip 34 are a left end and a right end of the pole tip 34 in FIG.
  • the thickness perpendicular to the midplane 12 changes from the center line 28 toward the outer peripheral side.
  • the pole tip 34 is thickest at the left end and the right end.
  • the thickness in the left end direction from the center line 28 decreases from the thickest portion (top) of the outward convex portion 24 through which the center line 28 passes toward the broken line A2, and is thinnest between the broken line A2 and the broken line B1. And thicker towards the left end. Between the broken line A2 and the broken line B1, it is the thin part 26 with the thinnest thickness in the vertical direction.
  • the thickness in the right end direction from the center line 28 decreases from the thickest portion (top) of the outward convex portion 24 through which the center line 28 passes toward the broken line A3, and is thinnest between the broken line A3 and the broken line B2. It becomes thicker toward the right end. Between the broken line A3 and the broken line B2, it is the thin part 26 with the thinnest thickness in the vertical direction.
  • the left thin part 26 and the right thin part 26 in FIG. 11 are formed concentrically with the center line 28 as the center, like the outward flat part 23 and the like.
  • the pole tip 34 of the second example has a sufficiently high machining accuracy because the area of the inward flat portion 19 in the inward surface 18 on the side facing the midplane 12 is larger than the outward flat portion 23 of the outward surface 22. can do. Therefore, the pole tip 34 of the second example can form the desired magnetic field distribution 33 with high accuracy. Since the pole tip 34 of the second example does not have the inward-side convex portion 20 on the inward surface 18, the slope at which the magnetic field distribution 33 decreases can be made gentler than that of the pole tip 7 of the first example. The reverse is true for the pole tip 7 of the first example.
  • the magnetic field distribution 33 is reduced compared to the pole tip 34 of the second example in which the inward convex portion 20 is not present on the inward surface 18.
  • the inclination can be made steep.
  • a third example of the pole tip shown in FIGS. 14 to 16 will be described.
  • the symbol of the pole tip of the third example is set to 35 to distinguish it from the pole tip of the first example and the second example.
  • the pole tip 35 of the third example is different from the pole tip 7 of the first example in that there is no inward convex portion 20 on the inward surface 18 like the pole tip 34 of the second example.
  • the pole tip 35 of the third example shown in FIGS. 14 to 16 is different from the pole tip 7 of the first example in the radial position and radial width of the thin portion 26 as in the pole tip 34 of the second example.
  • An example is shown.
  • the pole tip 35 of the third example is different from the pole tip 34 of the second example in that the thicknesses of the outward-side convex portion 24 and the outward-side outer peripheral convex portion 25 are changed stepwise. 14 to 16, from the outward flat part 23 to the thickest part (top) of the outward convex part 24, and from the outward flat part 23 to the thickest part (top) of the outward peripheral convex part 25.
  • An example is shown in which the wall thickness changes stepwise due to three flat portions.
  • the outward convex part 24 is between the broken line A2 and the broken line A3, and the outward flat part 23 is between the broken line A1 and the broken line A2 and between the broken line A3 and the broken line A4.
  • the convex portion 25 is between the broken line A1 and the left end and between the broken line A4 and the right end.
  • the inward flat portion 19 is between the broken line B1 and the broken line B2, and the inward outer peripheral convex portion 21 is between the broken line B1 and the left end and between the broken line B2 and the right end.
  • the outer peripheral ends of the pole tip 35 are a left end and a right end of the pole tip 35 in FIG.
  • the thickness in the direction perpendicular to the midplane 12 changes from the center line 28 toward the outer peripheral side.
  • the pole tip 35 is thickest at the left end and the right end.
  • the thickness in the left end direction from the center line 28 decreases from the thickest portion (top) of the outward convex portion 24 through which the center line 28 passes toward the broken line A2, and is thinnest between the broken line A2 and the broken line B1. And thicker towards the left end. Between the broken line A2 and the broken line B1, it is the thin part 26 with the thinnest thickness in the vertical direction.
  • the thickness in the right end direction from the center line 28 decreases from the thickest portion (top) of the outward convex portion 24 through which the center line 28 passes toward the broken line A3, and is thinnest between the broken line A3 and the broken line B2. It becomes thicker toward the right end. Between the broken line A3 and the broken line B2, it is the thin part 26 with the thinnest thickness in the vertical direction. Note that the left thin portion 26 and the right thin portion 26 in FIG. 14 are formed concentrically around the center line 28 as in the case of the outward flat portion 23 and the like.
  • the pole tip 35 of the third example has a sufficiently high machining accuracy because the area of the inward flat portion 19 in the inward surface 18 on the side facing the midplane 12 is wider than the outward flat portion 23 of the outward surface 22. can do. Further, in the pole tip 35 of the third example, since the thicknesses of the outward-side convex portion 24 and the outward-side outer peripheral convex portion 25 are changed stepwise, the processing of the outward surface 22 is easy, and the pole tip is formed. Cost can be reduced. Therefore, the pole tip 35 of the third example can form the desired magnetic field distribution 33 with sufficient accuracy while reducing the production cost. The pole tip 35 of the third example is inferior in formation accuracy of the desired magnetic field distribution 33 compared to the pole tip 7 of the first example.
  • the desired magnetic field distribution 33 can be formed with sufficient accuracy, that is, with high accuracy. it can. Since the pole tip 35 of the third example does not have the inward-side convex portion 20 on the inward surface 18, the slope at which the magnetic field distribution 33 decreases can be made gentler than that of the pole tip 7 of the first example.
  • a fourth example of the pole tip shown in FIGS. 17 to 19 will be described.
  • the sign of the pole tip of the fourth example is set to 36 to distinguish it from the pole tip of the first example to the third example.
  • the pole tip 36 of the fourth example differs from the pole tip 7 of the first example in that the thickness and arrangement position of the inward convex portion 20 on the inward surface 18 are the same as the outward convex portion 24 of the outward surface 22.
  • the pole tip 36 of the fourth example shown in FIGS. 17 to 19 shows an example in which the cross-sectional shape of the inward surface 18 and the cross-sectional shape of the outward surface 22 are the same.
  • the outward convex part 24 is between the broken line A2 and the broken line A3, and the outward flat part 23 is between the broken line A1 and the broken line A2 and between the broken line A3 and the broken line A4.
  • the convex portion 25 is between the broken line A1 and the left end and between the broken line A4 and the right end.
  • the inward convex portion 20 is between the broken line B2 and the broken line B3, and the inward side flat portion 19 is between the broken line B1 and the broken line B2 and between the broken line B3 and the broken line B4.
  • the side outer peripheral convex portion 21 is between the broken line B1 and the left end and between the broken line B4 and the right end.
  • the thickness in the direction perpendicular to the midplane 12 changes from the center line 28 toward the outer peripheral side.
  • the thickest part (top) of the outward convex part 24 through which the center line 28 passes and the thickest part of the inward peripheral convex part 21 are the thickest.
  • the thickness in the left end direction from the center line 28 decreases toward the broken lines A2 and B2 from the thickest portions of the outward convex portion 24 and the inward outer peripheral convex portion 21 through which the central line 28 passes, and from the broken lines A2 and B2.
  • the distance between the broken lines A1 and B1 is the thinnest and thicker toward the left end.
  • the thin portion 26 is the thinnest in the vertical direction.
  • the thickness in the right end direction from the center line 28 decreases from the thickest portions of the outward convex portion 24 and the inward outer peripheral convex portion 21 through which the central line 28 passes toward the broken lines A3 and B3, and from the broken lines A3 and B3.
  • the portion between the broken lines A4 and B4 is the thinnest and thicker toward the right end.
  • Between the broken lines A3 and B3 and the broken lines A4 and B4 is the thin portion 26 having the smallest thickness in the vertical direction.
  • the thin part 26 on the left side and the thin part 26 on the right side in FIG. 17 are formed concentrically with the center line 28 as the center, similarly to the outward flat part 23 and the inward flat part 19.
  • the cross-sectional shape of the inward surface 18 and the cross-sectional shape of the outward surface 22 are the same, so the processing of the inward surface 18 and the processing of the outward surface 22 can be made the same. Therefore, it is possible to reduce the production cost of the pole tip.
  • the particle beam circular accelerator 51 of the first embodiment includes superconducting coils 3a and 3b that are air-core coils (air-core coils), and a pair of pole tips 7a and 7b (a pair of superconducting coils 3a and 3b).
  • the pole tips 34, 34, 35, 35, 36, and 36) are provided, so that the weight can be reduced compared to an accelerator having a yoke as in Patent Document 2. Since the particle beam circular accelerator 51 of the first embodiment is light in weight, it can be mounted on a rotating gantry that is smaller than the conventional one.
  • the particle beam circular accelerator 51 includes superconducting coils 3a and 3b that are air-core coils (air-core type coils) and a pair of pole tips 7a and 7b (a pair) disposed inside them.
  • the pole tips 34, 34, 35, 35, 36, 36) are provided, so that a sufficient Z-direction magnetic field can be generated while being lightweight, and sufficient charged particles equivalent to the conventional one can be emitted. it can.
  • the rotating gantry 60 can be reduced in size. it can. Moreover, since the particle beam irradiation apparatus 59 of Embodiment 1 can make the rotating gantry 60 small, a particle beam irradiation apparatus can be reduced in size. Moreover, since the particle beam irradiation apparatus 59 of Embodiment 1 can be made smaller than before, the installation area in which the particle beam irradiation apparatus is installed can be reduced, and the particle beam irradiation apparatus and the particle beam irradiation apparatus are installed. The cost of the building can be reduced.
  • the particle beam irradiation apparatus 59 of the first embodiment generates the charged particle beam 16 and accelerates it while rotating it with a magnetic field, and the charged particles accelerated by the particle beam circular accelerator 51.
  • a beam transport system 54 that transports the beam 16, an irradiation field forming device 56 that irradiates the irradiation target (patient 58) with the charged particle beam 16 transported by the beam transport system 54, a particle beam circular accelerator 51, and a beam transport system 54.
  • the particle beam irradiation apparatus includes a rotating gantry 60 that supports the irradiation field forming apparatus 56 and rotates the irradiation direction of the charged particle beam 16.
  • the particle beam circular accelerator 51 includes an acceleration cavity 11 for accelerating the charged particle beam 16, a pair of superconducting coils 3a and 3b arranged symmetrically with respect to the acceleration orbit plane (midplane 12) of the charged particle beam 16, and superconductivity. Arranged inside the coils 3a and 3b and symmetrically with respect to the acceleration orbit plane (midplane 12), the charged particle beam 16 circulates in the acceleration cavity 11 from the magnetic field generated by the superconducting coils 3a and 3b. A pair of pole tips 7a and 7b for forming a magnetic field distribution is provided.
  • the pole tips 7a and 7b of the particle beam irradiation device 59 have a radial thickness in the radial direction, which is the thickness of the inward surface 18 facing the acceleration track surface (midplane 12) and the outward surface 22 farther away from the inward surface 18.
  • the inner part inward-side outer convex part 21, outward-side outer convex part 25), the central part (inward-side convex part 20, outward-side convex part 24) and the outer peripheral part (inward-side outer convex part 21, outward-side outer convex part)
  • the thin portion 26 is thinner than the portion 25) and has the smallest thin portion 26.
  • the thin portion 26 has a region that is more than half of the radially arranged region, the coil shaft 17 and the outer peripheral ends of the pole tips 7a and 7b. So that it is on the outer peripheral side of the intermediate line 29 Characterized in that the location.
  • the particle beam irradiation apparatus 59 of the first embodiment includes a pair of superconducting coils 3a and 3b and a pair of pole tips 7a and 7b arranged inside the superconducting coils 3a and 3b. Since the thin portions 26 of the pole tips 7a and 7b are arranged so as to be more than half on the outer peripheral side of the intermediate line 29 between the coil shaft 17 and the outer peripheral ends of the pole tips 7a and 7b, a lightweight accelerator A certain particle beam circular accelerator 51 can be mounted on the rotating gantry 60, and the particle beam irradiation apparatus can be reduced in size.
  • FIG. FIG. 20 is a cross-sectional view showing a schematic configuration of the particle beam circular accelerator according to the second embodiment of the present invention.
  • 21 is a bird's-eye view of the fixed structure and the pole tip shown in FIG. 20
  • FIG. 22 is a cross-sectional view showing a first example of the pole tip shown in FIG. 20 and a superconducting coil.
  • 23 is a cross-sectional view showing a first example of the pole tip of FIG. 24 is a diagram showing the inward surface of the pole tip in FIG. 23, and
  • FIG. 25 is a diagram showing the outward surface of the pole tip in FIG.
  • FIG. 26 is an enlarged view of the pole tip of FIG. FIG.
  • FIG. 27 is a cross-sectional view showing a second example of the pole tip of FIG. 28 is a bird's-eye view of the pole tip shown in FIG. 27, and FIG. 29 is a diagram showing an inward surface of the pole tip shown in FIG. 30 is a cross-sectional view showing a third example of the pole tip of FIG. 31 is a bird's-eye view of the pole tip shown in FIG. 30, and FIG. 32 is a view showing an outward surface of the pole tip shown in FIG.
  • the particle beam circular accelerator 51 of the second embodiment is different from the particle beam circular accelerator 51 of the first embodiment in that the outward surface 22 or the inward surface 18 includes pole tips 37a and 37b that are flat.
  • the reference numeral of the pole tip is generally 37, and 37a and 37b are used in the case of distinction.
  • the pole tip 37 is an example in which the outward surface 22 is flat.
  • the pole tip 37 has a cross-sectional shape in which the thickness that is the thickness of the inward surface 18 and the outward surface 22 changes from the center line 28 toward the outer peripheral side.
  • a pole tip 37, which is a first example of the pole tip shown in FIGS. 23 to 26, is an example in which the outward face 22 is flat and the inward face 18 is uneven. As shown in FIGS.
  • the pole tip 37 has a circular outer periphery on the outward face 22 and the inward face 18. Further, the pole tip 37 is thickened by a plurality of flat portions from the inward-side outer peripheral convex portion 21 positioned on the left outer peripheral end side to the inward-side outer peripheral convex portion 21 positioned on the right outer peripheral end side in FIG. An example of a step-like change is shown. As shown in the enlarged view of FIG. 26, each of the plurality of flat portions is a narrow flat portion 40 having a narrow radial width. In FIG. 26, reference numerals 40a, 40b, 40c, 40d, 40e, 40f, 40g, and 40h are given to distinguish some narrow flat portions.
  • the broken line BB is the broken line B2 or the broken line B3.
  • the broken line BB represents the broken line B2, and the inwardly located on the right outer peripheral end side.
  • the broken line BB represents the broken line B3.
  • the change in the thickness of the pole tip 37 will be described using broken lines B1, B2, B3, and B4 parallel to the center line 28. Since the pole tip 37 has irregularities on the inward surface 18, the thickness in the direction perpendicular to the midplane 12 changes from the center line 28 toward the outer peripheral side. Between the left outer peripheral edge and the broken line B1 and between the broken line B4 and the right outer peripheral edge is the inward-side outer peripheral convex part 21, and this inward-side outer peripheral convex part 21 has the thickest thickness. That is, the pole tip 37 is thickest at the left end and the right end.
  • the thickness in the direction of the left end from the center line 28 decreases from the center part through which the center line 28 passes toward the broken line B2, and the narrow flat part 40f on the outer peripheral side from the broken line B2 is the thinnest region.
  • the thickness increases from the flat portion 40f toward the left end.
  • the thickness in the right end direction from the center line 28 decreases from the central portion through which the center line 28 passes toward the broken line B3, and the narrow flat portion (narrow flat portion 40f) on the outer peripheral side from the broken line B3 is the thinnest region. It is thicker from the narrow flat part (narrow flat part 40f) toward the left end.
  • the region of the narrow flat portion 40f having the smallest thickness corresponds to the thin portion 26 described in the first embodiment. This thin portion 26 is shown in FIG.
  • the thickness of the pole tip 37 in the region of the narrow flat portion 40f is the thickness t1.
  • the central portion through which the center line 28 passes is the summit where the central portion is higher than the periphery if FIG. 23 is turned upside down. Therefore, it can be said that the central portion through which the center line 28 passes is the upper part of the reverse apex. In other drawings, if a certain part is higher than the periphery and is on the top if it is turned upside down, that part is appropriately referred to as the inverted top.
  • FIG. 22 shows the radial positions of the thin-walled portion 26 with the smallest thickness and the outer-walled thick portion 27 with the thickest thickness.
  • the pole tip 37a and the superconducting coil 3a are shown, but the thin portion 26 and the outer peripheral thick portion 27 of the pole tip 37b are also at the same radial position.
  • the horizontal axis is the radial position R from the center line 28, and the vertical axis is the position in the center line 28 direction, that is, the position Z in the Z direction.
  • the center line 28 has a radial position R of zero, the right outer peripheral edge is r1, and the left outer peripheral edge is -r1.
  • the intermediate line 29 is an intermediate line between the center line 28 and the outer peripheral end of the pole tip 37. Intermediate line 29 is at r1 / 2 and -r1 / 2.
  • FIG. 22 between the broken line C ⁇ b> 5 and the broken line C ⁇ b> 6 is the inward-side outer peripheral convex portion 21 (see FIG. 23) and the outer peripheral thick portion 27.
  • the broken line C7 and the broken line C8 is an inward-side outer peripheral convex portion 21 (see FIG. 23), and both are outer peripheral thick portions 27.
  • the pole tip 37 (37a, 37b) has a minimum and maximum magnetic field strength on the outer peripheral side as shown in FIG. A magnetic field distribution 33 having a value can be generated.
  • FIG. 22 in order to distinguish the right side and the left side of the pole tip 37a, the description has been made using the positive and negative positions of the radial position R. However, the pole tip 37 is centered on the center line 28. Because of the concentric shape, it can be said that the thin portion 26 has a radial position from the center line 28 on the outer peripheral side from r1 / 2.
  • the outward face 22 is flat and the wall thickness is changed stepwise. Therefore, the processing of the outward face 22 and the inward face 18 is easy. The production cost can be reduced. Further, since the pole tip 37 can be finely changed in thickness using a large number of narrow flat portions, a complicated shape can be realized while reducing the production cost.
  • the pole tip that forms one desired magnetic field distribution 33 has an infinite number of cross-sectional shapes. Therefore, the pole tip with the outward face 22 or the inward face 18 being flat is not limited to the pole tip 37. Other pole tips may be used.
  • a second example of the pole tip according to the second embodiment shown in FIGS. 27 to 29 will be described.
  • the reference number of the pole tip of the second example is 38 in order to distinguish it from the first example to the fourth example pole tip of the first embodiment and the pole tip of the first example of the second embodiment.
  • the pole tip 38 of the second example is the first example in that the inward surface 18 includes the inward convex portion 20, the inward flat portion 19, and the inward outer peripheral convex portion 21 without using the plurality of narrow flat portions 40. Different from the pole tip 37.
  • the inward convex portion 20 is between the broken line B2 and the broken line B3, and the inward side flat portion 19 is between the broken line B1 and the broken line B2 and between the broken line B3 and the broken line B4.
  • the convex portion 21 is between the broken line B1 and the left end and between the broken line B4 and the right end.
  • the intermediate line 29 is an intermediate line between the center line 28 and the outer peripheral end of the pole tip 38.
  • the outer peripheral ends of the pole tip 38 are a left end and a right end of the pole tip 38 in FIG.
  • the thickness in the direction perpendicular to the midplane 12 changes from the center line 28 toward the outer peripheral side.
  • the thickest portion (inverted top) of the inward convex portion 20 through which the center line 28 passes is the thickest.
  • the thickness in the direction of the left end from the center line 28 decreases from the thickest part (the reverse top) of the inward-side outer peripheral convex part 21 through which the center line 28 passes from the broken line B2 to the broken line B1. It is the thinnest and thicker toward the left end. Between the broken line B2 and the broken line B1, it is the thin part 26 with the thinnest thickness in the vertical direction.
  • the thickness in the right end direction from the center line 28 decreases toward the broken line B3 from the thickest part (upper top part) of the inward-side outer peripheral convex part 21 through which the center line 28 passes, and between the broken line B3 and the broken line B4. It is the thinnest and thicker toward the right end. Between the broken line B3 and the broken line B4 is the thin portion 26 having the smallest thickness in the vertical direction. Note that the left thin portion 26 and the right thin portion 26 in FIG. 27 are formed concentrically around the center line 28, as in the inward flat portion 19.
  • the pole tip 38 of the second example has a flat outward surface 22, the pole tip can be easily processed, and the cost for creating the pole tip can be reduced.
  • a third example of the pole tip according to the second embodiment shown in FIGS. 30 to 31 will be described.
  • the reference number of the pole tip of the third example is set to 39 to distinguish it from the first example to the fourth example pole tip of the first embodiment, the first example of the second embodiment, and the second example pole tip.
  • the pole tip 39 of the third example differs from the pole tip 38 of the second example in that the inward surface 18 is flat and includes an outward-side convex portion 24, an outward-side flat portion 23, and an outward-side outer peripheral convex portion 25.
  • the thickness in the direction perpendicular to the midplane 12 changes from the center line 28 toward the outer peripheral side.
  • the pole tip 39 is thickest at the thickest portion (top) of the outward convex portion 24 through which the center line 28 passes.
  • the thickness in the left end direction from the center line 28 decreases from the thickest portion (top) of the outward convex portion 24 through which the center line 28 passes toward the broken line A2, and is thinnest between the broken line A2 and the broken line A1. And thicker towards the left end. Between the broken line A2 and the broken line A1, it is the thin part 26 with the thinnest thickness in the vertical direction.
  • the thickness in the right end direction from the center line 28 decreases from the thickest portion (top) of the outward convex portion 24 through which the center line 28 passes toward the broken line A3, and is thinnest between the broken line A3 and the broken line A4. It becomes thicker toward the right end. Between the broken line A3 and the broken line A4 is the thin part 26 with the smallest thickness in the vertical direction. In addition, the thin part 26 on the left side and the thin part 26 on the right side in FIG. 30 are formed concentrically with the center line 28 as the center, similarly to the outward flat part 23.
  • the pole tip 39 of the third example has a flat inward surface 18 so that the pole tip can be easily processed and the cost for producing the pole tip can be reduced. Further, in the pole tip 39 of the third example, since the area of the inward surface 18 on the side facing the midplane 12 is wider than the outward flat portion 23 of the outward surface 22, the machining accuracy can be sufficiently increased. . Therefore, the pole tip 39 of the third example can form the desired one magnetic field distribution 33 with higher accuracy than the pole tip 38 of the second example.
  • the particle beam circular accelerator 51 of the second embodiment includes superconducting coils 3a and 3b that are air-core coils (air-core coils), and a pair of pole tips 37a and 37b (a pair of superconducting coils 3a and 3b).
  • the pole tips 38, 38, 39, 39) are provided, so that the weight can be reduced as compared with an accelerator having a yoke as in Patent Document 2. Since the particle beam circular accelerator 51 of the second embodiment is light in weight, it can be mounted on a rotating gantry that is smaller than the conventional one.
  • the particle beam irradiation apparatus 59 according to the second embodiment in which the particle beam circular accelerator 51 according to the second embodiment is mounted on the rotating gantry 60 is a light particle beam circular accelerator that is lighter than an accelerator having a yoke as in Patent Document 2. Since 51 is mounted on the rotating gantry 60, the rotating gantry 60 can be reduced in size. In the particle beam irradiation apparatus 59 of the second embodiment, since the rotating gantry 60 can be reduced in size, the particle beam irradiation apparatus can be reduced in size.
  • the particle beam irradiation apparatus 59 of Embodiment 2 can be made smaller than before, the installation area in which the particle beam irradiation apparatus is installed can be reduced, and the particle beam irradiation apparatus and the particle beam irradiation apparatus are installed. The cost of the building can be reduced.

Abstract

The purpose of the present invention is to provide a small particle beam radiation apparatus which has a rotational gantry that is equipped with an accelerator which is lightweight due to employing a superconducting air core coil. This particle beam radiation apparatus (59) includes a particle beam circular accelerator (51) that is supported by a rotational gantry (60), a beam transport system (54), and a radiation field forming device (56). The particle beam circular accelerator (51) includes: a pair of superconducting coils (3a, 3b) which are symmetrically arranged with respect to an acceleration trajectory surface (12); and a pair of pole tips (7a,7b) which are arranged inside the superconducting coils (3a, 3b), are symmetrically arranged with respect to the acceleration trajectory surface (12), and produce, from a magnetic field generated by the superconducting coils (3a, 3b), a magnetic field distribution that causes a charged particle beam (16) to move orbitally in an accelerating cavity (11). Each pole tip (7a,7b) has a thin portion (26) which is where the thickness between the inner surface (18) and outer surface (22) is smallest, the thin portion (26) being arranged such that at least half of the thin portion (26) is present on the outer periphery side of an intermediate line (29) which is located midway between a coil axis (17) and the outer peripheral edge of the pole tip (7a,7b).

Description

粒子線照射装置Particle beam irradiation equipment
 本発明は、陽子線や炭素イオン線などの荷電粒子ビームを癌等の患部に照射して治療する粒子線照射装置に関するものである。 The present invention relates to a particle beam irradiation apparatus for irradiating an affected area such as cancer with a charged particle beam such as a proton beam or a carbon ion beam.
 特許文献1には、陽子線等の荷電粒子ビームを発生し、高エネルギーに加速する粒子線円形加速手段であるサイクロトロンが回転ガントリの外部に配置された粒子線照射装置(特許文献1の図23参照)と、サイクロトロンが回転ガントリに搭載された粒子線照射装置(特許文献1の図1参照)が記載されている。このサイクロトロンは、粒子線加速軌道面に磁界を与える電磁石の構造が超電導コイルにより構成されている。また、特許文献1には、回転ガントリに搭載された粒子線円形加速手段がシンクロサイクロトロンとしてもよいことが記載されている。サイクロトロンは荷電粒子ビームを連続ビームとして出力するが、シンクロサイクロトロンは荷電粒子ビームをパルスビームとして出力するように構成されている。 Patent Document 1 discloses a particle beam irradiation apparatus in which a cyclotron, which is a particle beam circular acceleration means for generating a charged particle beam such as a proton beam and accelerating to high energy, is arranged outside a rotating gantry (see FIG. 23 of Patent Document 1). And a particle beam irradiation apparatus (see FIG. 1 of Patent Document 1) in which a cyclotron is mounted on a rotating gantry. In this cyclotron, the structure of an electromagnet that applies a magnetic field to the particle beam acceleration orbital surface is constituted by a superconducting coil. Further, Patent Document 1 describes that the particle beam circular acceleration means mounted on the rotating gantry may be a synchrocyclotron. While the cyclotron outputs a charged particle beam as a continuous beam, the synchrocyclotron is configured to output a charged particle beam as a pulse beam.
 超電導コイルを備えたシンクロサイクロトロンの円形イオン加速器(粒子線円形加速手段)は、例えば特許文献2に記載されている。特許文献2のシンクロサイクロトロンは、超電導コイル対と、超電導コイル対を真空下で保持するクライオスタットと、クライオスタットを囲む磁気ヨーク構造を備えている。磁気ヨーク構造は、上部ヨーク31、下部ヨーク32、磁極部ペア33、34、リターンヨーク35を備えている。磁気ヨーク構造の磁極部ペア(上部磁極部33、下部磁極部34)は、超電導コイル対(上部コイル20、下部コイル25)のコイル軸(中心軸50)を包含する内部空間に配置されている。上部ヨーク31に接続された上部磁極部33と下部ヨーク32に接続された下部磁極部34は、それぞれシンクロサイクロトロンの粒子線加速軌道面近傍まで延伸して配置されている。また、超電導コイルを備えたサイクロトロンにおいても、通常、特許文献2のシンクロサイクロトロンと同様に、上部ヨークに接続された上部磁極部と下部ヨークに接続された下部磁極部は、それぞれシンクロサイクロトロンの粒子線加速軌道面近傍まで延伸して配置される。 A circular ion accelerator (particle beam circular acceleration means) of a synchrocyclotron equipped with a superconducting coil is described in Patent Document 2, for example. The synchrocyclotron of Patent Document 2 includes a superconducting coil pair, a cryostat that holds the superconducting coil pair under vacuum, and a magnetic yoke structure that surrounds the cryostat. The magnetic yoke structure includes an upper yoke 31, a lower yoke 32, magnetic pole part pairs 33 and 34, and a return yoke 35. The magnetic yoke structure magnetic pole part pair (upper magnetic pole part 33, lower magnetic pole part 34) is disposed in an internal space including the coil axis (center axis 50) of the superconducting coil pair (upper coil 20, lower coil 25). . The upper magnetic pole portion 33 connected to the upper yoke 31 and the lower magnetic pole portion 34 connected to the lower yoke 32 are respectively extended to the vicinity of the particle beam acceleration orbit plane of the synchrocyclotron. Also, in a cyclotron equipped with a superconducting coil, the upper magnetic pole part connected to the upper yoke and the lower magnetic pole part connected to the lower yoke are usually connected to the synchrocyclotron particle beam, as in the synchrocyclotron disclosed in Patent Document 2. It is extended to the vicinity of the acceleration orbital surface.
特許第3472657号公報(図1、図23)Japanese Patent No. 3472657 (FIGS. 1 and 23) 公開US2013/0270451A1(0027段~0031段、図1、図2)Published US 2013 / 0270451A1 (Steps 0027 to 0031, FIGS. 1 and 2)
 特許文献1には、サイクロトロンが回転ガントリに搭載された粒子線治療装置が記載されているが、超電導コイル対及びクライオスタットを囲む磁気ヨーク構造は重量が重いため、大型で丈夫な回転ガントリを用いる必要があり、さらに回転ガントリを設置する施設の建屋も大型で重量物を保持できる丈夫な建屋が必要であった。 Patent Document 1 describes a particle beam therapy system in which a cyclotron is mounted on a rotating gantry. However, since the magnetic yoke structure surrounding the superconducting coil pair and the cryostat is heavy, it is necessary to use a large and durable rotating gantry. In addition, the building of the facility where the rotating gantry is installed must have a large and strong building that can hold heavy objects.
 本発明は上記のような課題を解決するためになされたものであり、超電導空芯コイルを採用することにより軽量化した加速器を回転ガントリに搭載し、小型の粒子線照射装置を得ることを目的にする。 The present invention has been made to solve the above-described problems, and an object of the present invention is to obtain a compact particle beam irradiation apparatus by mounting a lightweight accelerator by adopting a superconducting air-core coil on a rotating gantry. To.
 本発明の粒子線照射装置は、荷電粒子ビームを発生し、磁界により回転させながら加速する粒子線円形加速器と、粒子線円形加速器により加速された荷電粒子ビームを輸送するビーム輸送系と、ビーム輸送系で輸送された荷電粒子ビームを照射対象に照射する照射野形成装置と、粒子線円形加速器、ビーム輸送系、照射野形成装置を支持し、荷電粒子ビームの照射方向を回転させる回転ガントリを備えた粒子線照射装置である。粒子線円形加速器は、荷電粒子ビームを加速する加速空洞と、荷電粒子ビームの加速軌道面に対して対称に配置された一対の超電導コイルと、超電導コイルの内側に配置され、加速軌道面に対して対称に配置されると共に、超電導コイルにより発生された磁場から荷電粒子ビームを加速空洞にて周回させる磁場分布を形成する、一対のポールチップを備える。粒子線照射装置のポールチップは、加速軌道面に対向する内向面と内向面よりも遠方の外向面との厚さである肉厚が径方向において異なっており、超電導コイルの径方向に垂直で超電導コイルの中心を通るコイル軸を内包する中央部及び径方向の外周部の内側に、中央部及び外周部よりも肉厚が薄く、かつ最小の肉薄部を有し、肉薄部は、径方向の配置領域における半分以上の領域が、コイル軸とポールチップの外周端との中間の中間線よりも外周側になるように配置されたことを特徴とする。 The particle beam irradiation apparatus of the present invention generates a charged particle beam and accelerates it while rotating it by a magnetic field, a beam transport system for transporting a charged particle beam accelerated by the particle beam circular accelerator, and beam transport An irradiation field forming device that irradiates a target with a charged particle beam transported by the system, and a rotating gantry that supports the particle beam circular accelerator, beam transport system, and irradiation field forming device and that rotates the irradiation direction of the charged particle beam A particle beam irradiation apparatus. The particle beam circular accelerator is an acceleration cavity for accelerating a charged particle beam, a pair of superconducting coils arranged symmetrically with respect to the acceleration orbital surface of the charged particle beam, and an inner surface of the superconducting coil. And a pair of pole tips that form a magnetic field distribution in which a charged particle beam circulates in an acceleration cavity from a magnetic field generated by a superconducting coil. The pole tip of the particle beam irradiation device has a different thickness in the radial direction, which is the thickness of the inward surface facing the acceleration orbital surface and the outward surface farther from the inward surface, and is perpendicular to the radial direction of the superconducting coil. The central part containing the coil axis passing through the center of the superconducting coil and the radially outer peripheral part are thinner than the central part and the outer peripheral part and have the smallest thin part. It is characterized in that more than half of the arrangement area is arranged on the outer peripheral side with respect to the intermediate line between the coil shaft and the outer peripheral end of the pole tip.
 本発明の粒子線照射装置は、粒子線円形加速器が一対の超電導コイルと超電導コイルの内側に配置された一対のポールチップを備え、コイル軸とポールチップの外周端との中間の中間線よりも外周側に半分以上存在するようにポールチップの肉薄部が配置されたので、軽量な加速器を回転ガントリに搭載でき、粒子線照射装置を小型にすることができる。 In the particle beam irradiation apparatus of the present invention, the particle beam circular accelerator includes a pair of superconducting coils and a pair of pole tips disposed inside the superconducting coils, and more than an intermediate line between the coil shaft and the outer peripheral end of the pole tip. Since the thin part of the pole tip is arranged so as to be more than half on the outer peripheral side, a lightweight accelerator can be mounted on the rotating gantry, and the particle beam irradiation apparatus can be miniaturized.
本発明の実施の形態1による粒子線照射装置の概略構成図である。It is a schematic block diagram of the particle beam irradiation apparatus by Embodiment 1 of this invention. 本発明の実施の形態1による粒子線円形加速器の概略構成を示す断面図である。It is sectional drawing which shows schematic structure of the particle beam circular accelerator by Embodiment 1 of this invention. 図2の固定構造体及びポールチップの鳥瞰図である。FIG. 3 is a bird's-eye view of the fixed structure and the pole tip in FIG. 2. 図1の粒子線円形加速器のビーム出射を説明する図である。It is a figure explaining the beam emission of the particle beam circular accelerator of FIG. 図2のポールチップの第一例を示す断面図である。It is sectional drawing which shows the 1st example of the pole tip of FIG. 図5のポールチップの鳥瞰図である。FIG. 6 is a bird's-eye view of the pole tip in FIG. 5. 図5のポールチップの外向面を示す図である。It is a figure which shows the outward surface of the pole tip of FIG. 図2の粒子線円形加速器の磁界分布を示す図である。It is a figure which shows the magnetic field distribution of the particle beam circular accelerator of FIG. 図2の超電導コイルの磁界分布を示す図である。It is a figure which shows the magnetic field distribution of the superconducting coil of FIG. 図2のポールチップ及びポールチップの磁界分布を示す図である。It is a figure which shows the magnetic field distribution of the pole tip of FIG. 2, and a pole tip. 図2のポールチップの第二例を示す断面図である。It is sectional drawing which shows the 2nd example of the pole tip of FIG. 図11のポールチップの鳥瞰図である。It is a bird's-eye view of the pole tip of FIG. 図11のポールチップの外向面を示す図である。It is a figure which shows the outward surface of the pole tip of FIG. 図2のポールチップの第三例を示す断面図である。It is sectional drawing which shows the 3rd example of the pole tip of FIG. 図14のポールチップの鳥瞰図である。It is a bird's-eye view of the pole tip of FIG. 図14のポールチップの外向面を示す図である。It is a figure which shows the outward surface of the pole tip of FIG. 図2のポールチップの第四例を示す断面図である。It is sectional drawing which shows the 4th example of the pole tip of FIG. 図17のポールチップの鳥瞰図である。It is a bird's-eye view of the pole tip of FIG. 図17のポールチップの外向面を示す図である。It is a figure which shows the outward surface of the pole tip of FIG. 本発明の実施の形態2による粒子線円形加速器の概略構成を示す断面図である。It is sectional drawing which shows schematic structure of the particle beam circular accelerator by Embodiment 2 of this invention. 図20の固定構造体及びポールチップの鳥瞰図である。FIG. 21 is a bird's-eye view of the fixed structure and the pole tip of FIG. 20. 図20のポールチップの第一例及び超電導コイルを示す断面図である。It is sectional drawing which shows the 1st example of the pole tip of FIG. 20, and a superconducting coil. 図20のポールチップの第一例を示す断面図である。It is sectional drawing which shows the 1st example of the pole tip of FIG. 図23のポールチップの内向面を示す図である。It is a figure which shows the inward surface of the pole tip of FIG. 図23のポールチップの外向面を示す図である。It is a figure which shows the outward surface of the pole tip of FIG. 図23のポールチップの拡大図である。It is an enlarged view of the pole tip of FIG. 図20のポールチップの第二例を示す断面図である。It is sectional drawing which shows the 2nd example of the pole tip of FIG. 図27のポールチップの鳥瞰図である。It is a bird's-eye view of the pole tip of FIG. 図27のポールチップの内向面を示す図である。It is a figure which shows the inward surface of the pole tip of FIG. 図20のポールチップの第三例を示す断面図である。It is sectional drawing which shows the 3rd example of the pole tip of FIG. 図30のポールチップの鳥瞰図である。FIG. 31 is a bird's-eye view of the pole tip of FIG. 30. 図30のポールチップの外向面を示す図である。It is a figure which shows the outward surface of the pole tip of FIG.
実施の形態1.
 図1は本発明の実施の形態1による粒子線照射装置の概略構成図であり、図2は本発明の実施の形態1による粒子線円形加速器の概略構成を示す断面図である。図3は図2の固定構造体及びポールチップの鳥瞰図である。図4は図1の粒子線円形加速器のビーム出射を説明する図である。図5は、図2のポールチップの第一例を示す断面図である。図6は図5のポールチップの鳥瞰図であり、図7は図5のポールチップの外向面を示す図である。図8は図2の粒子線円形加速器の磁界分布を示す図であり、図9は図2の超電導コイルの磁界分布を示す図である。図10は、図2のポールチップ及びポールチップの磁界分布を示す図である。図11は、図2のポールチップの第二例を示す断面図である。図12は図11のポールチップの鳥瞰図であり、図13は図11のポールチップの外向面を示す図である。図14は、図2のポールチップの第三例を示す断面図である。図15は図14のポールチップの鳥瞰図であり、図16は図14のポールチップの外向面を示す図である。図17は、図2のポールチップの第四例を示す断面図である。図18は図17のポールチップの鳥瞰図であり、図19は図17のポールチップの外向面を示す図である。
Embodiment 1 FIG.
FIG. 1 is a schematic configuration diagram of a particle beam irradiation apparatus according to Embodiment 1 of the present invention, and FIG. 2 is a cross-sectional view illustrating a schematic configuration of a particle beam circular accelerator according to Embodiment 1 of the present invention. FIG. 3 is a bird's-eye view of the fixed structure and the pole tip of FIG. FIG. 4 is a view for explaining beam emission of the particle beam circular accelerator of FIG. FIG. 5 is a cross-sectional view showing a first example of the pole tip of FIG. 6 is a bird's-eye view of the pole tip of FIG. 5, and FIG. 7 is a view showing the outward surface of the pole tip of FIG. 8 is a diagram showing the magnetic field distribution of the particle beam circular accelerator of FIG. 2, and FIG. 9 is a diagram showing the magnetic field distribution of the superconducting coil of FIG. FIG. 10 is a diagram showing the pole tip of FIG. 2 and the magnetic field distribution of the pole tip. FIG. 11 is a cross-sectional view showing a second example of the pole tip of FIG. 12 is a bird's-eye view of the pole tip shown in FIG. 11, and FIG. 13 is a view showing an outward surface of the pole tip shown in FIG. FIG. 14 is a cross-sectional view showing a third example of the pole tip of FIG. 15 is a bird's-eye view of the pole tip shown in FIG. 14, and FIG. 16 is a view showing the outward surface of the pole tip shown in FIG. 17 is a cross-sectional view showing a fourth example of the pole tip of FIG. 18 is a bird's-eye view of the pole tip of FIG. 17, and FIG. 19 is a view showing the outward surface of the pole tip of FIG.
 実施の形態1の粒子線照射装置59は、陽子線などの粒子線、すなわち荷電粒子ビーム16(図4参照)を発生し、磁界により回転させながら加速した荷電粒子ビーム16を出射する粒子線円形加速器51と、この粒子線円形加速器51により必要なエネルギーまで加速された荷電粒子ビーム16を照射野形成装置56へ輸送するビーム輸送系54と、ビーム輸送系54で輸送された荷電粒子ビーム16を照射対象である患者58に照射する照射野形成装置56と、粒子線円形加速器51、ビーム輸送系54、照射野形成装置56を支持(搭載)し、患者58に対して任意の方向から荷電粒子ビーム16を照射する回転ガントリ60を備える。患者58は、治療室65に設置された治療台57に搭載されて固定されている。ビーム輸送系54は、荷電粒子ビーム16が通過するビーム輸送管55と、荷電粒子ビーム16を集束する複数の四極電磁石52a、52b、52c、52dと、荷電粒子ビーム16の軌道を曲げる複数の偏向電磁石53a、53bを備える。回転ガントリ60は、回転枠61a、61bと、回転枠61a、61bをそれぞれ回動自在に支持するローラ62a、62bと、回転枠61a、61bを駆動する回転駆動装置63と、回転枠61a、61bに機器が取り付けられた状態で重量のバランスをとるカウンタウエイト64を備える。回転ガントリ60は、治療室65の床よりも低い位置に配置された建屋床68に設置されている。治療室65と粒子線円形加速器51との間には、粒子線円形加速器51側が閉じられた筒状に形成された、放射線を遮蔽する遮蔽構造体66が設置されている。治療室65の治療室天井67、床、壁には、照射野形成装置56が回転ガントリ60の回転軸の周りの回転可能にする切込み等である装置通過溝69が設けられている。 The particle beam irradiation apparatus 59 of the first embodiment generates a particle beam such as a proton beam, that is, a charged particle beam 16 (see FIG. 4), and emits a charged particle beam 16 that is accelerated while being rotated by a magnetic field. An accelerator 51, a beam transport system 54 for transporting the charged particle beam 16 accelerated to the required energy by the particle beam circular accelerator 51 to the irradiation field forming device 56, and the charged particle beam 16 transported by the beam transport system 54 The irradiation field forming device 56 for irradiating the patient 58 as an irradiation target, the particle beam circular accelerator 51, the beam transport system 54, and the irradiation field forming device 56 are supported (mounted), and charged particles from any direction with respect to the patient 58 A rotating gantry 60 for irradiating the beam 16 is provided. The patient 58 is mounted and fixed on a treatment table 57 installed in the treatment room 65. The beam transport system 54 includes a beam transport tube 55 through which the charged particle beam 16 passes, a plurality of quadrupole electromagnets 52a, 52b, 52c, and 52d that focus the charged particle beam 16, and a plurality of deflections that bend the trajectory of the charged particle beam 16. Electromagnets 53a and 53b are provided. The rotating gantry 60 includes rotating frames 61a and 61b, rollers 62a and 62b that rotatably support the rotating frames 61a and 61b, a rotation driving device 63 that drives the rotating frames 61a and 61b, and rotating frames 61a and 61b. A counterweight 64 that balances the weight in a state in which the device is attached is provided. The rotating gantry 60 is installed on a building floor 68 arranged at a position lower than the floor of the treatment room 65. Between the treatment room 65 and the particle beam circular accelerator 51, a shielding structure 66 for shielding radiation, which is formed in a cylindrical shape with the particle beam circular accelerator 51 side closed, is installed. On the treatment room ceiling 67, floor, and wall of the treatment room 65, there is provided a device passage groove 69 that is a notch or the like that allows the irradiation field forming device 56 to rotate around the rotation axis of the rotating gantry 60.
 図1に記載した粒子線照射装置59は、粒子線円形加速器51を荷電粒子ビーム16の加速軌道面が回転枠61a、61bの中心軸、すなわち回転ガントリ60の回転軸に対して直角方向になるように支持し、荷電粒子ビーム16が粒子線円形加速器51の外周から中心軸の直角方向(図1における上方)に出射するように構成されている。すなわち、粒子線円形加速器51は荷電粒子ビーム16の加速軌道面が回転ガントリ60の回転軸に対して直角に搭載されて、ビーム輸送系54と連結されている。粒子線円形加速器51から出射した荷電粒子ビーム16は、四極電磁石52a、52b、52c、52dによって集束され、偏向電磁石53a、53bによって輸送方向が変えられ、ビーム輸送管55内を輸送されて照射野形成装置56に入る。照射野形成装置56により、治療台57上に載せられた照射対象である患者58のがん細胞の標的(患部)に荷電粒子ビーム16が照射される。粒子線照射装置59は、粒子線円形加速器51、四極電磁石52a、52b、52c、52d、偏向電磁石53a、53b、及び照射野形成装置56が回転枠61a、61bに取り付けられ、回転駆動装置63により回転枠61a、61bを回転させるように構成され、照射野形成装置56が、荷電粒子ビーム16の照射方向の延長線と回転軸の中心線とが交わるように配置されている。したがって、粒子線照射装置59は、照射野形成装置56が回転ガントリ60により回転可能に配置されると共に、照射野形成装置56が荷電粒子ビーム16の照射方向の延長線と回転軸とが交わるように配置されるので、患者58のがん細胞へ粒子線を任意の方向から照射することができる。 In the particle beam irradiation apparatus 59 shown in FIG. 1, in the particle beam circular accelerator 51, the acceleration orbit plane of the charged particle beam 16 is perpendicular to the central axis of the rotating frames 61a and 61b, that is, the rotating axis of the rotating gantry 60. The charged particle beam 16 is configured to be emitted from the outer periphery of the particle beam circular accelerator 51 in a direction perpendicular to the central axis (upward in FIG. 1). That is, the particle beam circular accelerator 51 is connected to the beam transport system 54 such that the acceleration orbit plane of the charged particle beam 16 is mounted at right angles to the rotation axis of the rotating gantry 60. The charged particle beam 16 emitted from the particle beam circular accelerator 51 is focused by the quadrupole electromagnets 52a, 52b, 52c, and 52d, the transport direction is changed by the deflection electromagnets 53a and 53b, and transported through the beam transport tube 55 to be irradiated. The forming device 56 is entered. The charged particle beam 16 is irradiated to the target (affected part) of the cancer cell of the patient 58 that is the irradiation target placed on the treatment table 57 by the irradiation field forming device 56. In the particle beam irradiation device 59, a particle beam circular accelerator 51, quadrupole electromagnets 52a, 52b, 52c, 52d, deflection electromagnets 53a, 53b, and an irradiation field forming device 56 are attached to rotating frames 61a, 61b. The rotary frames 61a and 61b are configured to rotate, and the irradiation field forming device 56 is disposed so that the extension line in the irradiation direction of the charged particle beam 16 and the center line of the rotation axis intersect. Therefore, in the particle beam irradiation apparatus 59, the irradiation field forming apparatus 56 is rotatably arranged by the rotating gantry 60, and the irradiation field forming apparatus 56 intersects the extension line in the irradiation direction of the charged particle beam 16 and the rotation axis. Therefore, it is possible to irradiate the cancer cells of the patient 58 with a particle beam from an arbitrary direction.
 粒子線円形加速器51は、内部を真空に保持するクライオスタット1と、固定構造体2と、偏向磁場を発生する超電導コイル3a、3bと、漏洩磁場を低減するアクティブシールドコイル4a、4bと、伝熱板5a、5b、6a、6bと、ポールチップ7a、7bと、荷電粒子を発生するイオン源8と、ディー電極9と、ダミーディー電極10、荷電粒子(荷電粒子ビーム16)を加速する加速空洞11を備える。粒子線円形加速器51は、例えば、シンクロサイクロトロン又はサイクロトロンである。コイル軸17は、超電導コイル3a、3bの径方向に垂直で超電導コイル3a、3bの中心を通る中心軸である。ポールチップ7a、7bは、超電導コイル3a、3bの内側に配置され、加速空洞11において荷電粒子を周回させる磁場分布を形成する。ポールチップ7a、7bの径方向に垂直でポールチップ7a、7bの中心を通る中心線28は、コイル軸17上に配置される。図4に示すように、イオン源8にて発生された荷電粒子は、超電導コイル3a、3b及びポールチップ7a、7bにより形成された磁場分布とディー電極9と、ダミーディー電極10との間に発生された高周波電界とにより、加速軌道面であるミッドプレーン12上を加速され、軌道半径を増大しながら周回する。ポールチップ7a、7bは、超電導コイル3a、3bにより発生された磁場から荷電粒子(荷電粒子ビーム16)を加速空洞11にて周回させる磁場分布を形成する。 The particle beam circular accelerator 51 includes a cryostat 1 that maintains a vacuum inside, a fixed structure 2, superconducting coils 3a and 3b that generate a deflection magnetic field, active shield coils 4a and 4b that reduce a leakage magnetic field, and heat transfer. Plates 5a, 5b, 6a, 6b, pole tips 7a, 7b, ion source 8 for generating charged particles, Dee electrode 9, dummy Dee electrode 10, and acceleration cavity for accelerating charged particles (charged particle beam 16) 11 is provided. The particle beam circular accelerator 51 is, for example, a synchrocyclotron or a cyclotron. The coil shaft 17 is a central axis perpendicular to the radial direction of the superconducting coils 3a and 3b and passing through the centers of the superconducting coils 3a and 3b. The pole tips 7a and 7b are arranged inside the superconducting coils 3a and 3b, and form a magnetic field distribution in which the charged particles circulate in the acceleration cavity 11. A center line 28 perpendicular to the radial direction of the pole tips 7a and 7b and passing through the centers of the pole tips 7a and 7b is disposed on the coil shaft 17. As shown in FIG. 4, the charged particles generated in the ion source 8 are distributed between the magnetic field distribution formed by the superconducting coils 3 a and 3 b and the pole tips 7 a and 7 b, the dee electrode 9, and the dummy dee electrode 10. The generated high-frequency electric field accelerates the midplane 12 that is the acceleration orbital surface, and circulates while increasing the orbital radius. The pole tips 7a and 7b form a magnetic field distribution for circulating charged particles (charged particle beam 16) in the acceleration cavity 11 from the magnetic field generated by the superconducting coils 3a and 3b.
 粒子線円形加速器51は、特許文献2のようなヨークを備えない加速器であり、空芯コイル(空芯型コイル)と空芯コイルの内側に配置されたポールチップを備えた加速器である。超電導コイル3a、3bとアクティブシールドコイル4a、4bは、空芯コイルである。超電導コイル3a、伝熱板5a、ポールチップ7a、アクティブシールドコイル4a、伝熱板6aと、超電導コイル3b、伝熱板5b、ポールチップ7b、アクティブシールドコイル4b、伝熱板6bは、ミッドプレーン12に対して対称に配置される。ポールチップ7aとポールチップ7bは、平面形状及び断面形状が同一である。伝熱板5a、5bは、それぞれ超電導コイル3a、3bと固定構造体2とに連結され、超電導コイル3a、3bで発生した熱を固定構造体2に放熱する。伝熱板6a、6bは、それぞれアクティブシールドコイル4a、4bと固定構造体2とに連結され、アクティブシールドコイル4a、4bで発生した熱を固定構造体2に放熱する。 The particle beam circular accelerator 51 is an accelerator that does not include a yoke as in Patent Document 2, and includes an air core coil (air core type coil) and a pole tip disposed inside the air core coil. Superconducting coils 3a and 3b and active shield coils 4a and 4b are air-core coils. Superconducting coil 3a, heat transfer plate 5a, pole tip 7a, active shield coil 4a, heat transfer plate 6a, superconducting coil 3b, heat transfer plate 5b, pole tip 7b, active shield coil 4b, heat transfer plate 6b are midplanes. 12 are arranged symmetrically. The pole tip 7a and the pole tip 7b have the same planar shape and cross-sectional shape. The heat transfer plates 5 a and 5 b are connected to the superconducting coils 3 a and 3 b and the fixed structure 2, respectively, and dissipate heat generated in the superconducting coils 3 a and 3 b to the fixed structure 2. The heat transfer plates 6 a and 6 b are connected to the active shield coils 4 a and 4 b and the fixed structure 2, respectively, and radiate heat generated in the active shield coils 4 a and 4 b to the fixed structure 2.
 固定構造体2は、天板41、底板42、外周筒43、内周筒44を備えており、内周筒44で囲まれた中央部がくり抜かれた円筒形状をしている。超電導コイル3a、3b、伝熱板5a、5b、ポールチップ7a、7b、アクティブシールドコイル4a、4b、伝熱板6a、6b、イオン源8、ディー電極9、ダミーディー電極10は、それぞれ固定構造体2に固定される。具体的には、中央部にポールチップ7a、7b、イオン源8、ディー電極9、ダミーディー電極10が配置され、この中央部に加速空洞11が形成される。また、超電導コイル3a、3b、伝熱板5a、5b、ポールチップ7a、7b、アクティブシールドコイル4a、4b、伝熱板6a、6bは、天板41、底板42、外周筒43、内周筒44で囲まれた閉空間に固定される。 The fixed structure 2 includes a top plate 41, a bottom plate 42, an outer peripheral cylinder 43, and an inner peripheral cylinder 44, and has a cylindrical shape in which a central portion surrounded by the inner peripheral cylinder 44 is hollowed out. Superconducting coils 3a and 3b, heat transfer plates 5a and 5b, pole tips 7a and 7b, active shield coils 4a and 4b, heat transfer plates 6a and 6b, ion source 8, dee electrode 9 and dummy dee electrode 10 are fixed structures. Fixed to the body 2. Specifically, pole tips 7a and 7b, an ion source 8, a dee electrode 9, and a dummy dee electrode 10 are disposed in the center, and an acceleration cavity 11 is formed in the center. The superconducting coils 3a and 3b, the heat transfer plates 5a and 5b, the pole tips 7a and 7b, the active shield coils 4a and 4b, and the heat transfer plates 6a and 6b are the top plate 41, the bottom plate 42, the outer cylinder 43, and the inner cylinder. It is fixed in a closed space surrounded by 44.
 図4に示すように、粒子線円形加速器51は、ディー電極9と、ダミーディー電極10との間に高周波電界を発生させ、イオン源8にて発生された荷電粒子を加速する。荷電粒子は、ディー電極9と、ダミーディー電極10とを交互に通過して加速され、回転周期を一定に保ちながら軌道半径を増大させる。荷電粒子は、加速されて所定の運動エネルギーを得て、ビーム出射装置15によりビーム輸送系54に出射される。クライオスタット1の外周から延伸したビーム輸送管55が固定構造体2に接続されている。固定構造体2は、ビーム輸送管55と連通する開口を有している。図4において、高周波電界が発生する方向であるY軸と、Y軸に垂直なX軸を示した。 As shown in FIG. 4, the particle beam circular accelerator 51 generates a high-frequency electric field between the dee electrode 9 and the dummy dee electrode 10 to accelerate charged particles generated in the ion source 8. The charged particles pass through the Dee electrode 9 and the dummy Dee electrode 10 alternately and are accelerated to increase the orbit radius while keeping the rotation period constant. The charged particles are accelerated to obtain a predetermined kinetic energy, and are emitted to the beam transport system 54 by the beam extraction device 15. A beam transport tube 55 extending from the outer periphery of the cryostat 1 is connected to the fixed structure 2. The fixed structure 2 has an opening communicating with the beam transport tube 55. In FIG. 4, the Y axis, which is the direction in which the high-frequency electric field is generated, and the X axis perpendicular to the Y axis are shown.
 次に、ポールチップ7a、7bについて説明する。このポールチップの符号は、総括的に7を用い、区別して説明する場合に7a、7bを用いる。図5、図6に示すように、ポールチップ7は、ミッドプレーン12(図2参照)の側に配置され、すなわちミッドプレーン12に対向している内向面18と、内向面18よりもミッドプレーン12から遠方に配置された外向面22を備えており、内向面18と外向面22との厚さである肉厚が中心線28から外周側に向かって変化する断面形状を有している。中心線28はミッドプレーン12に垂直である。図5から図7に示したポールチップの第一例であるポールチップ7は、内向面18及び外向面22に凹凸がある例である。ポールチップ7は、図7に示すように外向面22及び内向面18の外周は円形である。 Next, the pole tips 7a and 7b will be described. The pole chip is generally denoted by 7, and 7a and 7b are used in the case of distinction. As shown in FIGS. 5 and 6, the pole tip 7 is arranged on the side of the midplane 12 (see FIG. 2), that is, an inward surface 18 facing the midplane 12, and a midplane rather than the inward surface 18. 12 has an outward surface 22 arranged far from 12, and has a cross-sectional shape in which the thickness of the inward surface 18 and the outward surface 22 changes from the center line 28 toward the outer peripheral side. Center line 28 is perpendicular to midplane 12. The pole tip 7 which is the first example of the pole tip shown in FIGS. 5 to 7 is an example in which the inward surface 18 and the outward surface 22 are uneven. As shown in FIG. 7, the pole tip 7 has a circular outer periphery of the outward face 22 and the inward face 18.
 ポールチップ7は、外向面22の側において、中心線28を内包するように形成された外向側凸部24と、外向側凸部24の外周側に形成された外向側平坦部23と、外向側平坦部23の外周側に形成された外向側外周凸部25を備えている。また、ポールチップ7は、内向面18の側において、中心線28を内包するように形成された内向側凸部20と、内向側凸部20の外周側に形成された内向側平坦部19と、内向側平坦部19の外周側に形成された内向側外周凸部21を備えている。外向側平坦部23及び内向側平坦部19は、ミッドプレーン12と平行である。外向側平坦部23は内周面13に最も近くに形成され、内向側平坦部19は外向面22に最も近くに形成されている。外向側凸部24、外向側外周凸部25は、外向側平坦部23からコイル軸17(中心線28)の方向でかつ内向面18から離れる方向に突出している。内向側凸部20、内向側外周凸部21は、内向側平坦部19からコイル軸17(中心線28)の方向でかつ外向面22から離れる方向に突出している。なお、外向面22の側における外向側凸部24、外向側平坦部23、外向側外周凸部25と、内向面18の側における内向側凸部20、内向側平坦部19、内向側外周凸部21を分ける境界は、例えば外向側平坦部23と内向側平坦部19との肉厚の中間の平坦部肉厚中間線45である。 The pole tip 7 has, on the outward face 22 side, an outward convex part 24 formed so as to enclose the center line 28, an outward flat part 23 formed on the outer peripheral side of the outward convex part 24, An outward-side outer peripheral convex portion 25 formed on the outer peripheral side of the side flat portion 23 is provided. Further, the pole tip 7 has, on the inward surface 18 side, an inward convex portion 20 formed so as to contain the center line 28, and an inward flat portion 19 formed on the outer peripheral side of the inward convex portion 20. The inward-side outer peripheral convex portion 21 is provided on the outer peripheral side of the inward-side flat portion 19. The outward flat portion 23 and the inward flat portion 19 are parallel to the midplane 12. The outward flat portion 23 is formed closest to the inner peripheral surface 13, and the inward flat portion 19 is formed closest to the outward surface 22. The outward-side convex portion 24 and the outward-side outer peripheral convex portion 25 protrude from the outward-side flat portion 23 in the direction of the coil shaft 17 (center line 28) and away from the inward surface 18. The inward-side convex portion 20 and the inward-side outer peripheral convex portion 21 protrude from the inward-side flat portion 19 in the direction of the coil shaft 17 (center line 28) and away from the outward surface 22. It should be noted that the outward convex portion 24, the outward flat portion 23, the outward outward convex portion 25 on the outward surface 22 side, the inward convex portion 20, the inward flat portion 19, and the inward peripheral convex portion on the inward surface 18 side. The boundary which divides the part 21 is the flat part thickness intermediate line 45 of the intermediate | middle thickness of the outward flat part 23 and the inward flat part 19, for example.
 中心線28に平行な破線A1、A2、A3、A4、B1、B2、B3、B4を用いて、外向側凸部24、外向側平坦部23、外向側外周凸部25、内向側凸部20、内向側平坦部19、内向側外周凸部21の範囲を説明する。図5において、外向側凸部24は破線A2と破線A3との間であり、外向側平坦部23は破線A1と破線A2との間及び破線A3と破線A4との間であり、外向側外周凸部25は破線A1と左側端との間及び破線A4と右側端との間である。また、図5において、内向側凸部20は破線B2と破線B3との間であり、内向側平坦部19は破線B1と破線B2との間及び破線B3と破線B4との間であり、内向側外周凸部21は破線B1と左側端との間及び破線B4と右側端との間である。中間線29は中心線28とポールチップ7の外周端との中間の線である。ポールチップ7の外周端は、図5においてポールチップ7の左側端と右側端である。中間線29は中心線28に平行な線である。 Using the broken lines A1, A2, A3, A4, B1, B2, B3, and B4 parallel to the center line 28, the outward convex portion 24, the outward flat portion 23, the outward peripheral convex portion 25, and the inward convex portion 20 are used. The range of the inward-side flat portion 19 and the inward-side outer peripheral convex portion 21 will be described. In FIG. 5, the outward-side convex portion 24 is between the broken line A2 and the broken line A3, and the outward-side flat portion 23 is between the broken line A1 and the broken line A2, and between the broken line A3 and the broken line A4. The convex portion 25 is between the broken line A1 and the left end and between the broken line A4 and the right end. In FIG. 5, the inward convex portion 20 is between the broken line B2 and the broken line B3, and the inward side flat portion 19 is between the broken line B1 and the broken line B2 and between the broken line B3 and the broken line B4. The side outer peripheral convex portion 21 is between the broken line B1 and the left end and between the broken line B4 and the right end. The intermediate line 29 is an intermediate line between the center line 28 and the outer peripheral end of the pole tip 7. The outer peripheral ends of the pole tip 7 are a left end and a right end of the pole tip 7 in FIG. The intermediate line 29 is a line parallel to the center line 28.
 ポールチップ7は、内向面18及び外向面22に凹凸があるので、ミッドプレーン12に垂直方向の肉厚は中心線28から外周側に向かって変化している。中心線28から左側端方向における肉厚は、中心線28が通過する中央部が最も厚く、破線A2に向かって減少し、破線A2から破線B1の間が最も薄くなり、左側端に向かって厚くなっている。破線A2から破線B1の間は、垂直方向の肉厚が最も薄い肉薄部26である。中心線28から右側端方向における肉厚は、中心線28が通過する中央部が最も厚く、破線A3に向かって減少し、破線A3から破線B4の間が最も薄くなり、右側端に向かって厚くなっている。破線A3から破線B4の間は、垂直方向の肉厚が最も薄い肉薄部26である。肉厚が最も厚い中央部は、外向側凸部24の最厚部(頂上部)であり、かつ内向側凸部20の最厚部の部分である。なお、図5における左側の肉薄部26と右側の肉薄部26は、内向側平坦部19及び外向側平坦部23等と同様に、中心線28を中心として同心円状に形成されている。 Since the pole tip 7 has irregularities on the inward surface 18 and the outward surface 22, the thickness perpendicular to the midplane 12 changes from the center line 28 toward the outer peripheral side. The thickness in the direction of the left end from the center line 28 is thickest at the central portion through which the center line 28 passes, decreases toward the broken line A2, becomes thinnest between the broken line A2 and the broken line B1, and increases toward the left end. It has become. Between the broken line A2 and the broken line B1, it is the thin part 26 with the thinnest thickness in the vertical direction. The thickness in the right end direction from the center line 28 is thickest at the central portion through which the center line 28 passes, decreases toward the broken line A3, becomes thinnest between the broken line A3 and the broken line B4, and increases toward the right end. It has become. Between the broken line A3 and the broken line B4 is the thin portion 26 having the smallest thickness in the vertical direction. The thickest central part is the thickest part (top) of the outward convex part 24 and the thickest part of the inward convex part 20. In addition, the thin part 26 on the left side and the thin part 26 on the right side in FIG. 5 are formed concentrically with the center line 28 as the center, like the inward flat part 19 and the outward flat part 23.
 次に、図8から図10を用いて、超電導コイル3a、3bとポールチップ7により形成される磁界分布を説明する。図8には、粒子線円形加速器51における超電導コイル3a及びポールチップ7aに形成される磁界分布31を示した。図9には、粒子線円形加速器51における超電導コイル3aの磁界分布32を示した。また、超電導コイル3a、3bの外周側断面を破線示した。図10には、粒子線円形加速器51におけるポールチップ7aとポールチップ7aの磁界分布33を示した。磁界分布の図において、横軸は中心線28からの径方向の位置Rであり、縦軸は中心線28方向の磁界、すなわちZ方向の磁界Bzである。磁界Bzは内向面18から外向面22へ向かう方向が正方向である。径方向の位置Rは、中心線28から外周端へ向かう方向が正方向である。図10に示したポールチップ形状図において、横軸は中心線28からの径方向の位置Rであり、縦軸は中心線28方向の位置、すなわちZ方向の位置Zである。なお、超電導コイル3b及びポールチップ7bに形成される磁界分布は、磁界分布31が横軸を中心に反転した分布になる。超電導コイル3bに形成される磁界分布は、磁界分布32が横軸を中心に反転した分布になる。ポールチップ7bに形成される磁界分布は、磁界分布33が横軸を中心に反転した分布になる。 Next, the magnetic field distribution formed by the superconducting coils 3a and 3b and the pole tip 7 will be described with reference to FIGS. FIG. 8 shows a magnetic field distribution 31 formed in the superconducting coil 3a and the pole tip 7a in the particle beam circular accelerator 51. FIG. 9 shows the magnetic field distribution 32 of the superconducting coil 3 a in the particle beam circular accelerator 51. Moreover, the outer peripheral side cross section of superconducting coil 3a, 3b was shown with the broken line. FIG. 10 shows the pole tip 7a in the particle beam circular accelerator 51 and the magnetic field distribution 33 of the pole tip 7a. In the magnetic field distribution diagram, the horizontal axis is the radial position R from the center line 28, and the vertical axis is the magnetic field in the direction of the center line 28, that is, the magnetic field Bz in the Z direction. The direction of the magnetic field Bz from the inward surface 18 toward the outward surface 22 is a positive direction. In the radial position R, the direction from the center line 28 toward the outer peripheral edge is the positive direction. In the pole tip shape diagram shown in FIG. 10, the horizontal axis is the radial position R from the center line 28, and the vertical axis is the position in the center line 28 direction, that is, the position Z in the Z direction. The magnetic field distribution formed in the superconducting coil 3b and the pole tip 7b is a distribution obtained by inverting the magnetic field distribution 31 around the horizontal axis. The magnetic field distribution formed in the superconducting coil 3b is a distribution obtained by inverting the magnetic field distribution 32 around the horizontal axis. The magnetic field distribution formed on the pole tip 7b is a distribution obtained by inverting the magnetic field distribution 33 around the horizontal axis.
 磁界分布31は、径方向の位置Rがゼロである中心線28から径方向に向かって位置ra1まで緩やかに減少し、位置ra1から遠方は急激に減少し、位置ra2にて磁界強度がゼロになる。中心線28から位置ra1までの磁界は加速空洞11内の荷電粒子を周回させる磁界強度を有しており、位置ra1から位置ra2までの磁界は荷電粒子ビーム16を外部に出射するための磁界強度、すなわち荷電粒子を周回させない磁界強度を有している。 The magnetic field distribution 31 gradually decreases from the center line 28 where the radial position R is zero to the position ra1 in the radial direction, and decreases rapidly from the position ra1 to zero at the position ra2. Become. The magnetic field from the center line 28 to the position ra1 has a magnetic field strength for circulating the charged particles in the acceleration cavity 11, and the magnetic field from the position ra1 to the position ra2 has a magnetic field strength for emitting the charged particle beam 16 to the outside. That is, it has a magnetic field strength that does not cause the charged particles to circulate.
 磁界分布32は、中心線28から径方向に向かって位置rc1まで緩やかに増大し、位置rc1から遠方は緩やかに減少する。磁界分布33は、ポールチップ7aにおける径方向の肉厚変化に基づいて、中心線28から径方向に向かって位置rp2まで緩やかに減少し、位置rp2にて極小になり、その後増加して位置rp3にて極大になり、その後減少し位置rp4にてゼロになる。磁界分布32と磁界分布33を重ねることで、粒子線円形加速器51に必要な所望の磁界分布31を得ることができる。 The magnetic field distribution 32 gradually increases from the center line 28 toward the position rc1 in the radial direction, and gradually decreases away from the position rc1. The magnetic field distribution 33 gradually decreases from the center line 28 toward the position rp2 toward the position rp2 in the radial direction based on the change in the radial thickness of the pole tip 7a, becomes minimal at the position rp2, and then increases to the position rp3. And then decreases to zero at position rp4. By superimposing the magnetic field distribution 32 and the magnetic field distribution 33, a desired magnetic field distribution 31 necessary for the particle beam circular accelerator 51 can be obtained.
 磁界分布33について、図10を用いて詳しく説明する。位置rp1は内向側凸部20の厚さが減少する境界点である。破線C1は外向側凸部24と外向側平坦部23との境界を通る線であり、破線C2は内向側平坦部19と内向側外周凸部21との境界を通る線である。破線C3は外向側外周凸部25における厚さが最大になる境界を通る線であり、破線C4はポールチップ7aの外周端を通る線である。破線C1と破線C2との間の領域がポールチップ7aの肉薄部26であり、破線C3と破線C4との間の領域がポールチップ7aの外周部における最大肉厚となる外周肉厚部27である。ポールチップ7aの肉厚は位置rp1より外周側へ向かって破線C1まで減少する。ポールチップ7aの肉厚は、破線C1から破線C2まで最小となり、破線C2から破線C3まで増加し、破線C3から破線C4まで外周部における最大肉厚を維持している。なお、外周肉厚部27の肉厚は、中央部における肉厚と同等又は厚くなっている。外周肉厚部27の肉厚は、磁界分布33の位置rp3から位置rp4における磁界強度の減少傾きに応じて決定する。外周肉厚部27の肉厚が厚いほど、磁界分布33の位置rp3から位置rp4における磁界強度の減少傾きが急になる。 The magnetic field distribution 33 will be described in detail with reference to FIG. The position rp1 is a boundary point where the thickness of the inward convex portion 20 decreases. A broken line C1 is a line passing through the boundary between the outward-side convex part 24 and the outward-side flat part 23, and a broken line C2 is a line passing through the boundary between the inward-side flat part 19 and the inward-side outer peripheral convex part 21. The broken line C3 is a line passing through the boundary where the thickness of the outward-side outer peripheral convex portion 25 is maximum, and the broken line C4 is a line passing through the outer peripheral end of the pole tip 7a. The area between the broken line C1 and the broken line C2 is the thin part 26 of the pole tip 7a, and the area between the broken line C3 and the broken line C4 is the outer peripheral thick part 27 that is the maximum thickness at the outer peripheral part of the pole tip 7a. is there. The thickness of the pole tip 7a decreases from the position rp1 toward the outer peripheral side to the broken line C1. The thickness of the pole tip 7a is minimized from the broken line C1 to the broken line C2, increases from the broken line C2 to the broken line C3, and maintains the maximum thickness at the outer periphery from the broken line C3 to the broken line C4. In addition, the thickness of the outer peripheral thick part 27 is equal to or thicker than the thickness in the central part. The thickness of the outer peripheral thick portion 27 is determined according to the decreasing gradient of the magnetic field strength from the position rp3 to the position rp4 of the magnetic field distribution 33. The greater the thickness of the outer peripheral thick portion 27, the steeper the decreasing gradient of the magnetic field strength from the position rp3 to the position rp4 of the magnetic field distribution 33.
 図10には、中間線29とポールチップ7aの外周端との中間の線である四分線30を示した。中間線29は中心線28とポールチップ7aの外周端との中間の線なので、四分線30はポールチップ7aの外周端から半径の1/4の位置を通過する線である。図10において、磁界分布33の磁界強度が極小値となる位置rp2は、ポールチップ7aの中間線29よりも外周側にあり、かつ四分線30よりも外周側にある肉薄部26の領域に存在する。磁界分布33の磁界強度が極大値となる位置rp3は、ポールチップ7aの外周肉厚部27の領域に存在する。図10に示すように極小値及び極大値を有する磁界分布33を得るには、ポールチップ7aの肉薄部26及び外周肉厚部27の領域を、それぞれ希望する磁界分布33の極小値の位置rp2及び希望する磁界分布33の極大値の位置rp3を含むように調整すればよい。また、ポールチップ7aの肉薄部26の厚さを調整することで、希望する磁界分布33の極小値の位置rp2を調整することができる。同様に、ポールチップ7aの外周肉厚部27の厚さを調整することで、希望する磁界分布33の極大値の位置rp3を調整することができる。 FIG. 10 shows a quadrant 30 that is an intermediate line between the intermediate line 29 and the outer peripheral end of the pole tip 7a. Since the intermediate line 29 is an intermediate line between the center line 28 and the outer peripheral end of the pole tip 7a, the quadrant 30 is a line passing through a position of a quarter of the radius from the outer peripheral end of the pole tip 7a. In FIG. 10, the position rp2 at which the magnetic field intensity of the magnetic field distribution 33 becomes the minimum value is in the region of the thin portion 26 that is on the outer peripheral side of the intermediate line 29 of the pole tip 7a and on the outer peripheral side of the quadrant 30. Exists. A position rp3 at which the magnetic field intensity of the magnetic field distribution 33 becomes a maximum value exists in the region of the outer peripheral thick portion 27 of the pole tip 7a. As shown in FIG. 10, in order to obtain the magnetic field distribution 33 having the minimum value and the maximum value, the regions rp2 of the desired minimum value of the magnetic field distribution 33 are respectively set in the regions of the thin portion 26 and the outer peripheral thick portion 27 of the pole tip 7a. Further, adjustment may be made so as to include the position rp3 of the maximum value of the desired magnetic field distribution 33. Further, by adjusting the thickness of the thin portion 26 of the pole tip 7a, the position rp2 of the minimum value of the desired magnetic field distribution 33 can be adjusted. Similarly, the position rp3 of the maximum value of the desired magnetic field distribution 33 can be adjusted by adjusting the thickness of the outer peripheral thick portion 27 of the pole tip 7a.
 希望する磁界分布33の極小値の位置rp2は、ポールチップ7の肉薄部26の配置位置及び肉薄部26の厚さで変化することができる。また、同様に、希望する磁界分布33の極大値の位置rp3は、ポールチップ7の外周肉厚部27の配置位置及び外周肉厚部27の厚さで変化することができる。なお、ポールチップ7の外周肉厚部27は、外周端を含んでいるで、外周肉厚部27の配置位置は外周肉厚部27の径方向幅と言い換えることもできる。 The desired minimum position rp2 of the magnetic field distribution 33 can be changed by the arrangement position of the thin portion 26 of the pole tip 7 and the thickness of the thin portion 26. Similarly, the position rp3 of the desired maximum value of the magnetic field distribution 33 can be changed by the arrangement position of the outer peripheral thick portion 27 of the pole tip 7 and the thickness of the outer peripheral thick portion 27. Since the outer peripheral thick portion 27 of the pole tip 7 includes the outer peripheral end, the arrangement position of the outer peripheral thick portion 27 can be rephrased as the radial width of the outer peripheral thick portion 27.
 ポールチップ7によるZ方向磁界の強度を強くするには、2つの方法がある。第一の方法は、ポールチップ7の肉厚を厚くすることである。第二の方法は、ポールチップ7をミッドプレーン12に近付けることである。 There are two methods for increasing the strength of the magnetic field in the Z direction by the pole tip 7. The first method is to increase the thickness of the pole tip 7. The second method is to bring the pole tip 7 closer to the midplane 12.
 したがって、ポールチップ7の肉厚を径方向位置に応じて決定し、ポールチップ7の配置位置を決定することで、希望する磁界分布33を得ることができる。希望する一の磁界分布33を形成するポールチップ7の断面形状は無数にある。図5から図7に示した第一例のポールチップ7は、内向面18及び外向面22に凹凸があり、内向面18の内向側平坦部19の径方向幅が外向面22の外向側平坦部23よりも広い例である。また、第一例のポールチップ7は、内向面18の内向側平坦部19の面積が外向面22の外向側平坦部23よりもが広い例でもある。 Therefore, the desired magnetic field distribution 33 can be obtained by determining the thickness of the pole tip 7 according to the radial position and determining the arrangement position of the pole tip 7. There are an infinite number of cross-sectional shapes of the pole tip 7 forming the desired magnetic field distribution 33. The pole tip 7 of the first example shown in FIGS. 5 to 7 has irregularities on the inward surface 18 and the outward surface 22, and the radial width of the inward flat portion 19 of the inward surface 18 is flat on the outward side of the outward surface 22. This is an example wider than the section 23. Further, the pole tip 7 of the first example is also an example in which the area of the inward flat portion 19 of the inward surface 18 is wider than the outward flat portion 23 of the outward surface 22.
 ポールチップ7による磁界分布を高精度にするには、ポールチップ7の形状を高精度に形成することが必要であるが、ミッドプレーン12に対向する側の内向面18の形状精度は外向面22の形状精度よりも高いことが必要である。第一例のポールチップ7は、ミッドプレーン12に対向する側の内向面18における内向側平坦部19の面積が外向面22の外向側平坦部23よりもが広いので、機械加工精度を十分高くすることができる。したがって、第一例のポールチップ7は、希望する磁界分布33を高精度に形成することができる。 In order to make the magnetic field distribution by the pole tip 7 highly accurate, it is necessary to form the pole tip 7 with high accuracy, but the shape accuracy of the inward surface 18 on the side facing the midplane 12 is the outward surface 22. It is necessary to be higher than the shape accuracy. The pole tip 7 of the first example has a sufficiently high machining accuracy because the area of the inward flat portion 19 in the inward surface 18 on the side facing the midplane 12 is wider than the outward flat portion 23 of the outward surface 22. can do. Therefore, the pole tip 7 of the first example can form the desired magnetic field distribution 33 with high accuracy.
 前述したように、希望する一の磁界分布33を形成するポールチップ7の断面形状は無数にあるので、図5から図7に示した例に限られず、他のポールチップでもよい。図11から図13に示したポールチップの第二例を説明する。第二例のポールチップの符号は、第一例のポールチップと区別するために34とした。第二例のポールチップ34は、内向面18に内向側凸部20がない点で第一例のポールチップ7と異なる。また、図11から図13に示した第二例のポールチップ34は、肉薄部26の径方向位置と径方向幅が第一例のポールチップ7と異なる例を示した。 As described above, the pole tip 7 forming one desired magnetic field distribution 33 has an infinite number of cross-sectional shapes, and is not limited to the examples shown in FIGS. 5 to 7, and other pole tips may be used. A second example of the pole tip shown in FIGS. 11 to 13 will be described. The reference numeral of the pole tip of the second example is 34 to distinguish it from the pole tip of the first example. The pole tip 34 of the second example differs from the pole tip 7 of the first example in that there is no inward convex portion 20 on the inward surface 18. The pole tip 34 of the second example shown in FIGS. 11 to 13 shows an example in which the radial position and the radial width of the thin portion 26 are different from those of the pole tip 7 of the first example.
 図11において、外向側凸部24は破線A2と破線A3との間であり、外向側平坦部23は破線A1と破線A2との間及び破線A3と破線A4との間であり、外向側外周凸部25は破線A1と左側端との間及び破線A4と右側端との間である。また、図11において、内向側平坦部19は破線B1と破線B2との間であり、内向側外周凸部21は破線B1と左側端との間及び破線B2と右側端との間である。ポールチップ34の外周端は、図11においてポールチップ34の左側端と右側端である。 In FIG. 11, the outward-side convex portion 24 is between the broken line A2 and the broken line A3, and the outward-side flat portion 23 is between the broken line A1 and the broken line A2, and between the broken line A3 and the broken line A4. The convex portion 25 is between the broken line A1 and the left end and between the broken line A4 and the right end. In FIG. 11, the inward flat portion 19 is between the broken line B1 and the broken line B2, and the inward outer peripheral convex portion 21 is between the broken line B1 and the left end and between the broken line B2 and the right end. The outer peripheral ends of the pole tip 34 are a left end and a right end of the pole tip 34 in FIG.
 ポールチップ34は、内向面18及び外向面22に凹凸があるので、ミッドプレーン12に垂直方向の肉厚は中心線28から外周側に向かって変化している。ポールチップ34の肉厚は、左側端及び右側端が最も厚い。中心線28から左側端方向における肉厚は、中心線28が通過する外向側凸部24の最厚部(頂上部)から破線A2に向かって減少し、破線A2から破線B1の間が最も薄くなり、左側端に向かって厚くなっている。破線A2から破線B1の間は、垂直方向の肉厚が最も薄い肉薄部26である。中心線28から右側端方向における肉厚は、中心線28が通過する外向側凸部24の最厚部(頂上部)から破線A3に向かって減少し、破線A3から破線B2の間が最も薄くなり、右側端に向かって厚くなっている。破線A3から破線B2の間は、垂直方向の肉厚が最も薄い肉薄部26である。なお、図11における左側の肉薄部26と右側の肉薄部26は、外向側平坦部23等と同様に、中心線28を中心として同心円状に形成されている。 Since the pole tip 34 has irregularities on the inward surface 18 and the outward surface 22, the thickness perpendicular to the midplane 12 changes from the center line 28 toward the outer peripheral side. The pole tip 34 is thickest at the left end and the right end. The thickness in the left end direction from the center line 28 decreases from the thickest portion (top) of the outward convex portion 24 through which the center line 28 passes toward the broken line A2, and is thinnest between the broken line A2 and the broken line B1. And thicker towards the left end. Between the broken line A2 and the broken line B1, it is the thin part 26 with the thinnest thickness in the vertical direction. The thickness in the right end direction from the center line 28 decreases from the thickest portion (top) of the outward convex portion 24 through which the center line 28 passes toward the broken line A3, and is thinnest between the broken line A3 and the broken line B2. It becomes thicker toward the right end. Between the broken line A3 and the broken line B2, it is the thin part 26 with the thinnest thickness in the vertical direction. In addition, the left thin part 26 and the right thin part 26 in FIG. 11 are formed concentrically with the center line 28 as the center, like the outward flat part 23 and the like.
 第二例のポールチップ34は、ミッドプレーン12に対向する側の内向面18における内向側平坦部19の面積が外向面22の外向側平坦部23よりもが広いので、機械加工精度を十分高くすることができる。したがって、第二例のポールチップ34は、希望する磁界分布33を高精度に形成することができる。第二例のポールチップ34は、内向面18に内向側凸部20がないので、第一例のポールチップ7よりも磁界分布33が減少する傾きを緩くすることができる。なお、第一例のポールチップ7には逆のことが言える。すなわち、第一例のポールチップ7は、内向面18に内向側凸部20があるので、内向面18に内向側凸部20がない第二例のポールチップ34よりも磁界分布33が減少する傾きを急峻にすることができる。 The pole tip 34 of the second example has a sufficiently high machining accuracy because the area of the inward flat portion 19 in the inward surface 18 on the side facing the midplane 12 is larger than the outward flat portion 23 of the outward surface 22. can do. Therefore, the pole tip 34 of the second example can form the desired magnetic field distribution 33 with high accuracy. Since the pole tip 34 of the second example does not have the inward-side convex portion 20 on the inward surface 18, the slope at which the magnetic field distribution 33 decreases can be made gentler than that of the pole tip 7 of the first example. The reverse is true for the pole tip 7 of the first example. That is, since the pole tip 7 of the first example has the inward convex portion 20 on the inward surface 18, the magnetic field distribution 33 is reduced compared to the pole tip 34 of the second example in which the inward convex portion 20 is not present on the inward surface 18. The inclination can be made steep.
 図14から図16に示したポールチップの第三例を説明する。第三例のポールチップの符号は、第一例及び第二例のポールチップと区別するために35とした。第三例のポールチップ35は、第二例のポールチップ34と同様に内向面18に内向側凸部20がない点で第一例のポールチップ7と異なる。また、図14から図16に示した第三例のポールチップ35は、第二例のポールチップ34と同様に肉薄部26の径方向位置と径方向幅が第一例のポールチップ7と異なる例を示した。第三例のポールチップ35は、外向側凸部24及び外向側外周凸部25の肉厚が階段状に変化している点で、第二例のポールチップ34と異なる。図14から図16では、外向側平坦部23から外向側凸部24の最厚部(頂上部)まで、及び外向側平坦部23から外向側外周凸部25の最厚部(頂上部)まで、3段の平坦部により肉厚が階段状に変化する例を示した。 A third example of the pole tip shown in FIGS. 14 to 16 will be described. The symbol of the pole tip of the third example is set to 35 to distinguish it from the pole tip of the first example and the second example. The pole tip 35 of the third example is different from the pole tip 7 of the first example in that there is no inward convex portion 20 on the inward surface 18 like the pole tip 34 of the second example. Further, the pole tip 35 of the third example shown in FIGS. 14 to 16 is different from the pole tip 7 of the first example in the radial position and radial width of the thin portion 26 as in the pole tip 34 of the second example. An example is shown. The pole tip 35 of the third example is different from the pole tip 34 of the second example in that the thicknesses of the outward-side convex portion 24 and the outward-side outer peripheral convex portion 25 are changed stepwise. 14 to 16, from the outward flat part 23 to the thickest part (top) of the outward convex part 24, and from the outward flat part 23 to the thickest part (top) of the outward peripheral convex part 25. An example is shown in which the wall thickness changes stepwise due to three flat portions.
 図14において、外向側凸部24は破線A2と破線A3との間であり、外向側平坦部23は破線A1と破線A2との間及び破線A3と破線A4との間であり、外向側外周凸部25は破線A1と左側端との間及び破線A4と右側端との間である。また、図14において、内向側平坦部19は破線B1と破線B2との間であり、内向側外周凸部21は破線B1と左側端との間及び破線B2と右側端との間である。ポールチップ35の外周端は、図14においてポールチップ35の左側端と右側端である。 In FIG. 14, the outward convex part 24 is between the broken line A2 and the broken line A3, and the outward flat part 23 is between the broken line A1 and the broken line A2 and between the broken line A3 and the broken line A4. The convex portion 25 is between the broken line A1 and the left end and between the broken line A4 and the right end. In FIG. 14, the inward flat portion 19 is between the broken line B1 and the broken line B2, and the inward outer peripheral convex portion 21 is between the broken line B1 and the left end and between the broken line B2 and the right end. The outer peripheral ends of the pole tip 35 are a left end and a right end of the pole tip 35 in FIG.
 ポールチップ35は、内向面18及び外向面22に凹凸があるので、ミッドプレーン12に垂直方向の肉厚は中心線28から外周側に向かって変化している。ポールチップ35の肉厚は、左側端及び右側端が最も厚い。中心線28から左側端方向における肉厚は、中心線28が通過する外向側凸部24の最厚部(頂上部)から破線A2に向かって減少し、破線A2から破線B1の間が最も薄くなり、左側端に向かって厚くなっている。破線A2から破線B1の間は、垂直方向の肉厚が最も薄い肉薄部26である。中心線28から右側端方向における肉厚は、中心線28が通過する外向側凸部24の最厚部(頂上部)から破線A3に向かって減少し、破線A3から破線B2の間が最も薄くなり、右側端に向かって厚くなっている。破線A3から破線B2の間は、垂直方向の肉厚が最も薄い肉薄部26である。なお、図14における左側の肉薄部26と右側の肉薄部26は、外向側平坦部23等と同様に、中心線28を中心として同心円状に形成されている。 Since the pole tip 35 has irregularities on the inward surface 18 and the outward surface 22, the thickness in the direction perpendicular to the midplane 12 changes from the center line 28 toward the outer peripheral side. The pole tip 35 is thickest at the left end and the right end. The thickness in the left end direction from the center line 28 decreases from the thickest portion (top) of the outward convex portion 24 through which the center line 28 passes toward the broken line A2, and is thinnest between the broken line A2 and the broken line B1. And thicker towards the left end. Between the broken line A2 and the broken line B1, it is the thin part 26 with the thinnest thickness in the vertical direction. The thickness in the right end direction from the center line 28 decreases from the thickest portion (top) of the outward convex portion 24 through which the center line 28 passes toward the broken line A3, and is thinnest between the broken line A3 and the broken line B2. It becomes thicker toward the right end. Between the broken line A3 and the broken line B2, it is the thin part 26 with the thinnest thickness in the vertical direction. Note that the left thin portion 26 and the right thin portion 26 in FIG. 14 are formed concentrically around the center line 28 as in the case of the outward flat portion 23 and the like.
 第三例のポールチップ35は、ミッドプレーン12に対向する側の内向面18における内向側平坦部19の面積が外向面22の外向側平坦部23よりもが広いので、機械加工精度を十分高くすることができる。また、第三例のポールチップ35は、外向側凸部24及び外向側外周凸部25の肉厚が階段状に変化しているので、外向面22の加工が容易であり、ポールチップの作成コストを低減することができる。したがって、第三例のポールチップ35は、作成コストの低減を図りながら、希望する磁界分布33を十分な精度で形成することができる。第三例のポールチップ35は、第一例のポールチップ7に比べれば希望する磁界分布33の形成精度は劣るが、十分な精度で、すなわち高精度で希望する磁界分布33を形成することができる。第三例のポールチップ35は、内向面18に内向側凸部20がないので、第一例のポールチップ7よりも磁界分布33が減少する傾きを緩くすることができる。 The pole tip 35 of the third example has a sufficiently high machining accuracy because the area of the inward flat portion 19 in the inward surface 18 on the side facing the midplane 12 is wider than the outward flat portion 23 of the outward surface 22. can do. Further, in the pole tip 35 of the third example, since the thicknesses of the outward-side convex portion 24 and the outward-side outer peripheral convex portion 25 are changed stepwise, the processing of the outward surface 22 is easy, and the pole tip is formed. Cost can be reduced. Therefore, the pole tip 35 of the third example can form the desired magnetic field distribution 33 with sufficient accuracy while reducing the production cost. The pole tip 35 of the third example is inferior in formation accuracy of the desired magnetic field distribution 33 compared to the pole tip 7 of the first example. However, the desired magnetic field distribution 33 can be formed with sufficient accuracy, that is, with high accuracy. it can. Since the pole tip 35 of the third example does not have the inward-side convex portion 20 on the inward surface 18, the slope at which the magnetic field distribution 33 decreases can be made gentler than that of the pole tip 7 of the first example.
 図17から図19に示したポールチップの第四例を説明する。第四例のポールチップの符号は、第一例から第三例のポールチップと区別するために36とした。第四例のポールチップ36は、内向面18における内向側凸部20の肉厚及び配置位置を外向面22の外向側凸部24と同等にした点で第一例のポールチップ7と異なる。また、図17から図19に示した第四例のポールチップ36は、内向面18の断面形状と外向面22の断面形状が同じである例を示した。 A fourth example of the pole tip shown in FIGS. 17 to 19 will be described. The sign of the pole tip of the fourth example is set to 36 to distinguish it from the pole tip of the first example to the third example. The pole tip 36 of the fourth example differs from the pole tip 7 of the first example in that the thickness and arrangement position of the inward convex portion 20 on the inward surface 18 are the same as the outward convex portion 24 of the outward surface 22. The pole tip 36 of the fourth example shown in FIGS. 17 to 19 shows an example in which the cross-sectional shape of the inward surface 18 and the cross-sectional shape of the outward surface 22 are the same.
 図17において、外向側凸部24は破線A2と破線A3との間であり、外向側平坦部23は破線A1と破線A2との間及び破線A3と破線A4との間であり、外向側外周凸部25は破線A1と左側端との間及び破線A4と右側端との間である。また、図17において、内向側凸部20は破線B2と破線B3との間であり、内向側平坦部19は破線B1と破線B2との間及び破線B3と破線B4との間であり、内向側外周凸部21は破線B1と左側端との間及び破線B4と右側端との間である。 In FIG. 17, the outward convex part 24 is between the broken line A2 and the broken line A3, and the outward flat part 23 is between the broken line A1 and the broken line A2 and between the broken line A3 and the broken line A4. The convex portion 25 is between the broken line A1 and the left end and between the broken line A4 and the right end. In FIG. 17, the inward convex portion 20 is between the broken line B2 and the broken line B3, and the inward side flat portion 19 is between the broken line B1 and the broken line B2 and between the broken line B3 and the broken line B4. The side outer peripheral convex portion 21 is between the broken line B1 and the left end and between the broken line B4 and the right end.
 ポールチップ36は、内向面18及び外向面22に凹凸があるので、ミッドプレーン12に垂直方向の肉厚は中心線28から外周側に向かって変化している。ポールチップ36の肉厚は、中心線28が通過する外向側凸部24の最厚部(頂上部)及び内向側外周凸部21の最厚部が最も厚い。中心線28から左側端方向における肉厚は、中心線28が通過する外向側凸部24及び内向側外周凸部21の最厚部から破線A2及びB2に向かって減少し、破線A2及びB2から破線A1及びB1の間が最も薄くなり、左側端に向かって厚くなっている。破線A2及びB2から破線A1及びB1の間は、垂直方向の肉厚が最も薄い肉薄部26である。中心線28から右側端方向における肉厚は、中心線28が通過する外向側凸部24及び内向側外周凸部21の最厚部から破線A3及びB3に向かって減少し、破線A3及びB3から破線A4及びB4の間が最も薄くなり、右側端に向かって厚くなっている。破線A3及びB3から破線A4及びB4の間は、垂直方向の肉厚が最も薄い肉薄部26である。なお、図17における左側の肉薄部26と右側の肉薄部26は、外向側平坦部23及び内向側平坦部19と同様に、中心線28を中心として同心円状に形成されている。 Since the pole tip 36 has irregularities on the inward surface 18 and the outward surface 22, the thickness in the direction perpendicular to the midplane 12 changes from the center line 28 toward the outer peripheral side. As for the thickness of the pole tip 36, the thickest part (top) of the outward convex part 24 through which the center line 28 passes and the thickest part of the inward peripheral convex part 21 are the thickest. The thickness in the left end direction from the center line 28 decreases toward the broken lines A2 and B2 from the thickest portions of the outward convex portion 24 and the inward outer peripheral convex portion 21 through which the central line 28 passes, and from the broken lines A2 and B2. The distance between the broken lines A1 and B1 is the thinnest and thicker toward the left end. Between the broken lines A2 and B2 and the broken lines A1 and B1, the thin portion 26 is the thinnest in the vertical direction. The thickness in the right end direction from the center line 28 decreases from the thickest portions of the outward convex portion 24 and the inward outer peripheral convex portion 21 through which the central line 28 passes toward the broken lines A3 and B3, and from the broken lines A3 and B3. The portion between the broken lines A4 and B4 is the thinnest and thicker toward the right end. Between the broken lines A3 and B3 and the broken lines A4 and B4 is the thin portion 26 having the smallest thickness in the vertical direction. In addition, the thin part 26 on the left side and the thin part 26 on the right side in FIG. 17 are formed concentrically with the center line 28 as the center, similarly to the outward flat part 23 and the inward flat part 19.
 第四例のポールチップ36は、内向面18の断面形状と外向面22の断面形状が同じなので、内向面18の加工と外向面22の加工を同じにできるので、すなわち切削加工を共通にできるので、ポールチップの作成コストを低減することができる。 In the pole tip 36 of the fourth example, the cross-sectional shape of the inward surface 18 and the cross-sectional shape of the outward surface 22 are the same, so the processing of the inward surface 18 and the processing of the outward surface 22 can be made the same. Therefore, it is possible to reduce the production cost of the pole tip.
 実施の形態1の粒子線円形加速器51は、空芯コイル(空芯型コイル)である超電導コイル3a、3bと、超電導コイル3a、3bの内側に配置された一対のポールチップ7a、7b(一対のポールチップ34、34、35、35、36、36)を備えたので、特許文献2のようなヨークを備えた加速器に比べて重量を軽くすることができる。実施の形態1の粒子線円形加速器51は、重量を軽いので、従来よりも小型の回転ガントリに搭載することができる。 The particle beam circular accelerator 51 of the first embodiment includes superconducting coils 3a and 3b that are air-core coils (air-core coils), and a pair of pole tips 7a and 7b (a pair of superconducting coils 3a and 3b). The pole tips 34, 34, 35, 35, 36, and 36) are provided, so that the weight can be reduced compared to an accelerator having a yoke as in Patent Document 2. Since the particle beam circular accelerator 51 of the first embodiment is light in weight, it can be mounted on a rotating gantry that is smaller than the conventional one.
 ヨークを備えたシンクロサイクロトロンを単純に軽量化すると、出射可能な荷電粒子の出射数が低下してしまう。これに対して、実施の形態1の粒子線円形加速器51は、空芯コイル(空芯型コイル)である超電導コイル3a、3bとこれらの内側に配置された一対のポールチップ7a、7b(一対のポールチップ34、34、35、35、36、36)を備えたので、軽量でありながら、十分なZ方向磁界を発生させることができ、従来と同等の十分な荷電粒子を出射することができる。 If the synchrocyclotron equipped with a yoke is simply reduced in weight, the number of emitted charged particles can be reduced. On the other hand, the particle beam circular accelerator 51 according to the first embodiment includes superconducting coils 3a and 3b that are air-core coils (air-core type coils) and a pair of pole tips 7a and 7b (a pair) disposed inside them. The pole tips 34, 34, 35, 35, 36, 36) are provided, so that a sufficient Z-direction magnetic field can be generated while being lightweight, and sufficient charged particles equivalent to the conventional one can be emitted. it can.
 実施の形態1の粒子線照射装置59は、特許文献2のようなヨークを備えた加速器に比べて軽い粒子線円形加速器51を回転ガントリ60に搭載できるので、回転ガントリ60を小型にすることができる。また、実施の形態1の粒子線照射装置59は、回転ガントリ60が小型にできるので、粒子線照射装置を小型にすることができる。また、実施の形態1の粒子線照射装置59は、従来よりも小型にできるので、粒子線照射装置を設置する設置エリアを縮小することができ、粒子線照射装置及び粒子線照射装置を設置する建屋のコストを低減することができる。 Since the particle beam irradiation apparatus 59 of Embodiment 1 can mount the light particle beam circular accelerator 51 in the rotating gantry 60 compared with the accelerator provided with the yoke like patent document 2, the rotating gantry 60 can be reduced in size. it can. Moreover, since the particle beam irradiation apparatus 59 of Embodiment 1 can make the rotating gantry 60 small, a particle beam irradiation apparatus can be reduced in size. Moreover, since the particle beam irradiation apparatus 59 of Embodiment 1 can be made smaller than before, the installation area in which the particle beam irradiation apparatus is installed can be reduced, and the particle beam irradiation apparatus and the particle beam irradiation apparatus are installed. The cost of the building can be reduced.
 以上のように、実施の形態1の粒子線照射装置59は、荷電粒子ビーム16を発生し、磁界により回転させながら加速する粒子線円形加速器51と、粒子線円形加速器51により加速された荷電粒子ビーム16を輸送するビーム輸送系54と、ビーム輸送系54で輸送された荷電粒子ビーム16を照射対象(患者58)に照射する照射野形成装置56と、粒子線円形加速器51、ビーム輸送系54、照射野形成装置56を支持し、荷電粒子ビーム16の照射方向を回転させる回転ガントリ60を備えた粒子線照射装置である。粒子線円形加速器51は、荷電粒子ビーム16を加速する加速空洞11と、荷電粒子ビーム16の加速軌道面(ミッドプレーン12)に対して対称に配置された一対の超電導コイル3a、3bと、超電導コイル3a、3bの内側に配置され、加速軌道面(ミッドプレーン12)に対して対称に配置されると共に、超電導コイル3a、3bにより発生された磁場から荷電粒子ビーム16を加速空洞11にて周回させる磁場分布を形成する、一対のポールチップ7a、7bを備える。粒子線照射装置59のポールチップ7a、7bは、加速軌道面(ミッドプレーン12)に対向する内向面18と内向面18よりも遠方の外向面22との厚さである肉厚が径方向において異なっており、超電導コイル3a、3bの径方向に垂直で超電導コイル3a、3bの中心を通るコイル軸17を内包する中央部(内向側凸部20、外向側凸部24)及び径方向の外周部(内向側外周凸部21、外向側外周凸部25)の内側に、中央部(内向側凸部20、外向側凸部24)及び外周部(内向側外周凸部21、外向側外周凸部25)よりも肉厚が薄く、かつ最小の肉薄部26を有し、肉薄部26は、径方向の配置領域における半分以上の領域が、コイル軸17とポールチップ7a、7bの外周端との中間の中間線29よりも外周側になるように配置されたことを特徴とする。実施の形態1の粒子線照射装置59は、この特徴により、粒子線円形加速器51が一対の超電導コイル3a、3bと超電導コイル3a、3bの内側に配置された一対のポールチップ7a、7bを備え、コイル軸17とポールチップ7a、7bの外周端との中間の中間線29よりも外周側に半分以上存在するようにポールチップ7a、7bの肉薄部26が配置されたので、軽量な加速器である粒子線円形加速器51を回転ガントリ60に搭載でき、粒子線照射装置を小型にすることができる。 As described above, the particle beam irradiation apparatus 59 of the first embodiment generates the charged particle beam 16 and accelerates it while rotating it with a magnetic field, and the charged particles accelerated by the particle beam circular accelerator 51. A beam transport system 54 that transports the beam 16, an irradiation field forming device 56 that irradiates the irradiation target (patient 58) with the charged particle beam 16 transported by the beam transport system 54, a particle beam circular accelerator 51, and a beam transport system 54. The particle beam irradiation apparatus includes a rotating gantry 60 that supports the irradiation field forming apparatus 56 and rotates the irradiation direction of the charged particle beam 16. The particle beam circular accelerator 51 includes an acceleration cavity 11 for accelerating the charged particle beam 16, a pair of superconducting coils 3a and 3b arranged symmetrically with respect to the acceleration orbit plane (midplane 12) of the charged particle beam 16, and superconductivity. Arranged inside the coils 3a and 3b and symmetrically with respect to the acceleration orbit plane (midplane 12), the charged particle beam 16 circulates in the acceleration cavity 11 from the magnetic field generated by the superconducting coils 3a and 3b. A pair of pole tips 7a and 7b for forming a magnetic field distribution is provided. The pole tips 7a and 7b of the particle beam irradiation device 59 have a radial thickness in the radial direction, which is the thickness of the inward surface 18 facing the acceleration track surface (midplane 12) and the outward surface 22 farther away from the inward surface 18. A central portion (inward convex portion 20 and outward convex portion 24) that includes a coil shaft 17 that is perpendicular to the radial direction of the superconducting coils 3a and 3b and passes through the centers of the superconducting coils 3a and 3b, and a radially outer periphery. The inner part (inward-side outer convex part 21, outward-side outer convex part 25), the central part (inward-side convex part 20, outward-side convex part 24) and the outer peripheral part (inward-side outer convex part 21, outward-side outer convex part) The thin portion 26 is thinner than the portion 25) and has the smallest thin portion 26. The thin portion 26 has a region that is more than half of the radially arranged region, the coil shaft 17 and the outer peripheral ends of the pole tips 7a and 7b. So that it is on the outer peripheral side of the intermediate line 29 Characterized in that the location. Due to this feature, the particle beam irradiation apparatus 59 of the first embodiment includes a pair of superconducting coils 3a and 3b and a pair of pole tips 7a and 7b arranged inside the superconducting coils 3a and 3b. Since the thin portions 26 of the pole tips 7a and 7b are arranged so as to be more than half on the outer peripheral side of the intermediate line 29 between the coil shaft 17 and the outer peripheral ends of the pole tips 7a and 7b, a lightweight accelerator A certain particle beam circular accelerator 51 can be mounted on the rotating gantry 60, and the particle beam irradiation apparatus can be reduced in size.
実施の形態2.
 図20は、本発明の実施の形態2による粒子線円型加速器の概略構成を示す断面図である。図21は図20の固定構造体及びポールチップの鳥瞰図であり、図22は図20のポールチップの第一例及び超電導コイルを示す断面図である。図23は、図20のポールチップの第一例を示す断面図である。図24は図23のポールチップの内向面を示す図であり、図25は図23のポールチップの外向面を示す図である。図26は、図23のポールチップの拡大図である。図27は、図20のポールチップの第二例を示す断面図である。図28は図27のポールチップの鳥瞰図であり、図29は図27のポールチップの内向面を示す図である。図30は、図20のポールチップの第三例を示す断面図である。図31は図30のポールチップの鳥瞰図であり、図32は図30のポールチップの外向面を示す図である。
Embodiment 2. FIG.
FIG. 20 is a cross-sectional view showing a schematic configuration of the particle beam circular accelerator according to the second embodiment of the present invention. 21 is a bird's-eye view of the fixed structure and the pole tip shown in FIG. 20, and FIG. 22 is a cross-sectional view showing a first example of the pole tip shown in FIG. 20 and a superconducting coil. 23 is a cross-sectional view showing a first example of the pole tip of FIG. 24 is a diagram showing the inward surface of the pole tip in FIG. 23, and FIG. 25 is a diagram showing the outward surface of the pole tip in FIG. FIG. 26 is an enlarged view of the pole tip of FIG. FIG. 27 is a cross-sectional view showing a second example of the pole tip of FIG. 28 is a bird's-eye view of the pole tip shown in FIG. 27, and FIG. 29 is a diagram showing an inward surface of the pole tip shown in FIG. 30 is a cross-sectional view showing a third example of the pole tip of FIG. 31 is a bird's-eye view of the pole tip shown in FIG. 30, and FIG. 32 is a view showing an outward surface of the pole tip shown in FIG.
 実施の形態2の粒子線円形加速器51は、外向面22又は内向面18が平坦なポールチップ37a、37bを備える点で実施の形態1の粒子線円形加速器51と異なる。このポールチップの符号は、総括的に37を用い、区別して説明する場合に37a、37bを用いる。ポールチップ37は、外向面22が平坦な例である。ポールチップ37は、内向面18と外向面22との厚さである肉厚が中心線28から外周側に向かって変化する断面形状を有している。図23から図26に示したポールチップの第一例であるポールチップ37は、外向面22が平坦であり、内向面18に凹凸がある例である。ポールチップ37は、図24、図25に示すように外向面22及び内向面18の外周は円形である。また、ポールチップ37は、図23において左の外周端側に位置する内向側外周凸部21から右の外周端側に位置する内向側外周凸部21まで、複数段の平坦部により肉厚が階段状に変化する例を示した。図26の拡大図に示したように、複数段の平坦部のそれぞれは、径方向幅の狭い狭平坦部40である。なお、図26では、一部の狭平坦部を区別するために、40a、40b、40c、40d、40e、40f、40g、40hの符号を付した。また、破線BBは、破線B2又は破線B3であり、左の外周端側に位置する内向側外周凸部21の場合に破線BBは破線B2を表しており、右の外周端側に位置する内向側外周凸部21の場合に破線BBは破線B3を表している。 The particle beam circular accelerator 51 of the second embodiment is different from the particle beam circular accelerator 51 of the first embodiment in that the outward surface 22 or the inward surface 18 includes pole tips 37a and 37b that are flat. The reference numeral of the pole tip is generally 37, and 37a and 37b are used in the case of distinction. The pole tip 37 is an example in which the outward surface 22 is flat. The pole tip 37 has a cross-sectional shape in which the thickness that is the thickness of the inward surface 18 and the outward surface 22 changes from the center line 28 toward the outer peripheral side. A pole tip 37, which is a first example of the pole tip shown in FIGS. 23 to 26, is an example in which the outward face 22 is flat and the inward face 18 is uneven. As shown in FIGS. 24 and 25, the pole tip 37 has a circular outer periphery on the outward face 22 and the inward face 18. Further, the pole tip 37 is thickened by a plurality of flat portions from the inward-side outer peripheral convex portion 21 positioned on the left outer peripheral end side to the inward-side outer peripheral convex portion 21 positioned on the right outer peripheral end side in FIG. An example of a step-like change is shown. As shown in the enlarged view of FIG. 26, each of the plurality of flat portions is a narrow flat portion 40 having a narrow radial width. In FIG. 26, reference numerals 40a, 40b, 40c, 40d, 40e, 40f, 40g, and 40h are given to distinguish some narrow flat portions. The broken line BB is the broken line B2 or the broken line B3. In the case of the inward-side outer peripheral convex portion 21 located on the left outer peripheral end side, the broken line BB represents the broken line B2, and the inwardly located on the right outer peripheral end side. In the case of the side outer periphery convex part 21, the broken line BB represents the broken line B3.
 中心線28に平行な破線B1、B2、B3、B4を用いて、ポールチップ37の肉厚の変化を説明する。ポールチップ37は、内向面18に凹凸があるので、ミッドプレーン12に垂直方向の肉厚は中心線28から外周側に向かって変化している。左の外周端と破線B1との間、及び破線B4と右の外周端との間が内向側外周凸部21であり、この内向側外周凸部21が最も厚い肉厚を有している。すなわち、ポールチップ37の肉厚は、左側端及び右側端が最も厚い。中心線28から左側端方向における肉厚は、中心線28が通過する中央部から破線B2に向かって減少し、破線B2から外周側の狭平坦部40fが最も薄い領域になっており、この狭平坦部40fから左側端に向かって厚くなっている。中心線28から右側端方向における肉厚は、中心線28が通過する中央部から破線B3に向かって減少し、破線B3から外周側の狭平坦部(狭平坦部40f)が最も薄い領域になっており、この狭平坦部(狭平坦部40f)から左側端に向かって厚くなっている。肉厚が最も薄い狭平坦部40fの領域は、実施の形態1で説明した肉薄部26に相当する。この肉薄部26は、図22に示した。狭平坦部40fの領域におけるポールチップ37の肉厚は、厚さt1である。中心線28が通過する中央部は、図23を上下反転させれば、この中央部が周辺よりも高くなっている頂上である。したがって、中心線28が通過する中央部は、逆頂上部ともいえる。なお、他の図においても、上下反転させれば、ある部分部が周辺よりも高くて頂上となっている場合は、適宜、その部分を逆頂上部と呼ぶ。 The change in the thickness of the pole tip 37 will be described using broken lines B1, B2, B3, and B4 parallel to the center line 28. Since the pole tip 37 has irregularities on the inward surface 18, the thickness in the direction perpendicular to the midplane 12 changes from the center line 28 toward the outer peripheral side. Between the left outer peripheral edge and the broken line B1 and between the broken line B4 and the right outer peripheral edge is the inward-side outer peripheral convex part 21, and this inward-side outer peripheral convex part 21 has the thickest thickness. That is, the pole tip 37 is thickest at the left end and the right end. The thickness in the direction of the left end from the center line 28 decreases from the center part through which the center line 28 passes toward the broken line B2, and the narrow flat part 40f on the outer peripheral side from the broken line B2 is the thinnest region. The thickness increases from the flat portion 40f toward the left end. The thickness in the right end direction from the center line 28 decreases from the central portion through which the center line 28 passes toward the broken line B3, and the narrow flat portion (narrow flat portion 40f) on the outer peripheral side from the broken line B3 is the thinnest region. It is thicker from the narrow flat part (narrow flat part 40f) toward the left end. The region of the narrow flat portion 40f having the smallest thickness corresponds to the thin portion 26 described in the first embodiment. This thin portion 26 is shown in FIG. The thickness of the pole tip 37 in the region of the narrow flat portion 40f is the thickness t1. The central portion through which the center line 28 passes is the summit where the central portion is higher than the periphery if FIG. 23 is turned upside down. Therefore, it can be said that the central portion through which the center line 28 passes is the upper part of the reverse apex. In other drawings, if a certain part is higher than the periphery and is on the top if it is turned upside down, that part is appropriately referred to as the inverted top.
 図22には、肉厚が最も薄い肉薄部26と肉厚が最も厚い外周肉厚部27の径方向位置を示した。図22では、ポールチップ37aと超電導コイル3aを示したが、ポールチップ37bにおける肉薄部26及び外周肉厚部27も同じ径方向位置にある。図22において、横軸は中心線28からの径方向の位置Rであり、縦軸は中心線28方向の位置、すなわちZ方向の位置Zである。中心線28は径方向の位置Rがゼロであり、右の外周端はr1であり、左の外周端は-r1である。中間線29は中心線28とポールチップ37の外周端との中間の線である。中間線29は、r1/2と-r1/2にある。図22において、破線C5と破線C6との間は内向側外周凸部21(図23参照)であり、外周肉厚部27である。破線C7と破線C8との間は内向側外周凸部21(図23参照)であり、いずれも外周肉厚部27である。肉薄部26は少なくとも径方向位置がr1/2又は-r1/2により外周側にあれば、このポールチップ37(37a、37b)は、図10のように外周側に磁界強度が極小値と極大値を有する磁界分布33を生成することができる。なお、図22において、ポールチップ37aの右側と左側を区別するために、径方向の位置Rの正方向と負方向の位置を用いて説明したが、ポールチップ37は中心線28を中心にした同心形状なので、肉薄部26は中心線28から径方向位置がr1/2より外周側にあるといえる。 FIG. 22 shows the radial positions of the thin-walled portion 26 with the smallest thickness and the outer-walled thick portion 27 with the thickest thickness. In FIG. 22, the pole tip 37a and the superconducting coil 3a are shown, but the thin portion 26 and the outer peripheral thick portion 27 of the pole tip 37b are also at the same radial position. In FIG. 22, the horizontal axis is the radial position R from the center line 28, and the vertical axis is the position in the center line 28 direction, that is, the position Z in the Z direction. The center line 28 has a radial position R of zero, the right outer peripheral edge is r1, and the left outer peripheral edge is -r1. The intermediate line 29 is an intermediate line between the center line 28 and the outer peripheral end of the pole tip 37. Intermediate line 29 is at r1 / 2 and -r1 / 2. In FIG. 22, between the broken line C <b> 5 and the broken line C <b> 6 is the inward-side outer peripheral convex portion 21 (see FIG. 23) and the outer peripheral thick portion 27. Between the broken line C7 and the broken line C8 is an inward-side outer peripheral convex portion 21 (see FIG. 23), and both are outer peripheral thick portions 27. If the thin portion 26 is at least on the outer peripheral side in the radial direction by r1 / 2 or -r1 / 2, the pole tip 37 (37a, 37b) has a minimum and maximum magnetic field strength on the outer peripheral side as shown in FIG. A magnetic field distribution 33 having a value can be generated. In FIG. 22, in order to distinguish the right side and the left side of the pole tip 37a, the description has been made using the positive and negative positions of the radial position R. However, the pole tip 37 is centered on the center line 28. Because of the concentric shape, it can be said that the thin portion 26 has a radial position from the center line 28 on the outer peripheral side from r1 / 2.
 実施の形態2の第一例のポールチップ37は、外向面22が平坦であり、肉厚が階段状に変化しているので、外向面22及び内向面18の加工が容易であり、ポールチップの作成コストを低減することができる。また、ポールチップ37は、多数の狭平坦部を用いて細かく肉厚を変化させることができるので、作成コストを低減しながら複雑な形状を実現できる。 In the pole tip 37 of the first example of the second embodiment, the outward face 22 is flat and the wall thickness is changed stepwise. Therefore, the processing of the outward face 22 and the inward face 18 is easy. The production cost can be reduced. Further, since the pole tip 37 can be finely changed in thickness using a large number of narrow flat portions, a complicated shape can be realized while reducing the production cost.
 実施の形態1で説明したように、希望する一の磁界分布33を形成するポールチップの断面形状は無数にあるので、外向面22又は内向面18が平坦なポールチップもポールチップ37に限らず、他のポールチップでもよい。図27から図29に示した、実施の形態2のポールチップの第二例を説明する。第二例のポールチップの符号は、実施の形態1の第一例から第四例のポールチップ、実施の形態2の第一例のポールチップと区別するために38とした。第二例のポールチップ38は、内向面18が複数の狭平坦部40を用いずに、内向側凸部20、内向側平坦部19、内向側外周凸部21を備える点で第一例のポールチップ37と異なる。 As described in the first embodiment, the pole tip that forms one desired magnetic field distribution 33 has an infinite number of cross-sectional shapes. Therefore, the pole tip with the outward face 22 or the inward face 18 being flat is not limited to the pole tip 37. Other pole tips may be used. A second example of the pole tip according to the second embodiment shown in FIGS. 27 to 29 will be described. The reference number of the pole tip of the second example is 38 in order to distinguish it from the first example to the fourth example pole tip of the first embodiment and the pole tip of the first example of the second embodiment. The pole tip 38 of the second example is the first example in that the inward surface 18 includes the inward convex portion 20, the inward flat portion 19, and the inward outer peripheral convex portion 21 without using the plurality of narrow flat portions 40. Different from the pole tip 37.
 図27において、内向側凸部20は破線B2と破線B3との間であり、内向側平坦部19は破線B1と破線B2との間及び破線B3と破線B4との間であり、内向側外周凸部21は破線B1と左側端との間及び破線B4と右側端との間である。中間線29は中心線28とポールチップ38の外周端との中間の線である。ポールチップ38の外周端は、図27においてポールチップ38の左側端と右側端である。 In FIG. 27, the inward convex portion 20 is between the broken line B2 and the broken line B3, and the inward side flat portion 19 is between the broken line B1 and the broken line B2 and between the broken line B3 and the broken line B4. The convex portion 21 is between the broken line B1 and the left end and between the broken line B4 and the right end. The intermediate line 29 is an intermediate line between the center line 28 and the outer peripheral end of the pole tip 38. The outer peripheral ends of the pole tip 38 are a left end and a right end of the pole tip 38 in FIG.
 ポールチップ38は、内向面18に凹凸があるので、ミッドプレーン12に垂直方向の肉厚は中心線28から外周側に向かって変化している。ポールチップ38の肉厚は、中心線28が通過する内向側凸部20の最厚部(逆頂上部)が最も厚い。中心線28から左側端方向における肉厚は、中心線28が通過する内向側外周凸部21の最厚部(逆頂上部)から破線B2に向かって減少し、破線B2から破線B1の間が最も薄くなり、左側端に向かって厚くなっている。破線B2から破線B1の間は、垂直方向の肉厚が最も薄い肉薄部26である。中心線28から右側端方向における肉厚は、中心線28が通過する内向側外周凸部21の最厚部(逆頂上部)から破線B3に向かって減少し、破線B3から破線B4の間が最も薄くなり、右側端に向かって厚くなっている。破線B3から破線B4の間は、垂直方向の肉厚が最も薄い肉薄部26である。なお、図27における左側の肉薄部26と右側の肉薄部26は、内向側平坦部19と同様に、中心線28を中心として同心円状に形成されている。 Since the pole tip 38 has irregularities on the inward surface 18, the thickness in the direction perpendicular to the midplane 12 changes from the center line 28 toward the outer peripheral side. As for the thickness of the pole tip 38, the thickest portion (inverted top) of the inward convex portion 20 through which the center line 28 passes is the thickest. The thickness in the direction of the left end from the center line 28 decreases from the thickest part (the reverse top) of the inward-side outer peripheral convex part 21 through which the center line 28 passes from the broken line B2 to the broken line B1. It is the thinnest and thicker toward the left end. Between the broken line B2 and the broken line B1, it is the thin part 26 with the thinnest thickness in the vertical direction. The thickness in the right end direction from the center line 28 decreases toward the broken line B3 from the thickest part (upper top part) of the inward-side outer peripheral convex part 21 through which the center line 28 passes, and between the broken line B3 and the broken line B4. It is the thinnest and thicker toward the right end. Between the broken line B3 and the broken line B4 is the thin portion 26 having the smallest thickness in the vertical direction. Note that the left thin portion 26 and the right thin portion 26 in FIG. 27 are formed concentrically around the center line 28, as in the inward flat portion 19.
 第二例のポールチップ38は、外向面22が平坦なので、ポールチップの加工が容易であり、ポールチップの作成コストを低減することができる。 Since the pole tip 38 of the second example has a flat outward surface 22, the pole tip can be easily processed, and the cost for creating the pole tip can be reduced.
 図30から図31に示した実施の形態2のポールチップの第三例を説明する。第三例のポールチップの符号は、実施の形態1の第一例から第四例のポールチップ、実施の形態2の第一例、第二例のポールチップと区別するために39とした。第三例のポールチップ39は、内向面18が平坦であり、外向側凸部24、外向側平坦部23、外向側外周凸部25を備える点で第二例のポールチップ38と異なる。 A third example of the pole tip according to the second embodiment shown in FIGS. 30 to 31 will be described. The reference number of the pole tip of the third example is set to 39 to distinguish it from the first example to the fourth example pole tip of the first embodiment, the first example of the second embodiment, and the second example pole tip. The pole tip 39 of the third example differs from the pole tip 38 of the second example in that the inward surface 18 is flat and includes an outward-side convex portion 24, an outward-side flat portion 23, and an outward-side outer peripheral convex portion 25.
 ポールチップ39は、外向面22に凹凸があるので、ミッドプレーン12に垂直方向の肉厚は中心線28から外周側に向かって変化している。ポールチップ39の肉厚は、中心線28が通過する外向側凸部24の最厚部(頂上部)が最も厚い。中心線28から左側端方向における肉厚は、中心線28が通過する外向側凸部24の最厚部(頂上部)から破線A2に向かって減少し、破線A2から破線A1の間が最も薄くなり、左側端に向かって厚くなっている。破線A2から破線A1の間は、垂直方向の肉厚が最も薄い肉薄部26である。中心線28から右側端方向における肉厚は、中心線28が通過する外向側凸部24の最厚部(頂上部)から破線A3に向かって減少し、破線A3から破線A4の間が最も薄くなり、右側端に向かって厚くなっている。破線A3から破線A4の間は、垂直方向の肉厚が最も薄い肉薄部26である。なお、図30における左側の肉薄部26と右側の肉薄部26は、外向側平坦部23と同様に、中心線28を中心として同心円状に形成されている。 Since the pole tip 39 has irregularities on the outward surface 22, the thickness in the direction perpendicular to the midplane 12 changes from the center line 28 toward the outer peripheral side. The pole tip 39 is thickest at the thickest portion (top) of the outward convex portion 24 through which the center line 28 passes. The thickness in the left end direction from the center line 28 decreases from the thickest portion (top) of the outward convex portion 24 through which the center line 28 passes toward the broken line A2, and is thinnest between the broken line A2 and the broken line A1. And thicker towards the left end. Between the broken line A2 and the broken line A1, it is the thin part 26 with the thinnest thickness in the vertical direction. The thickness in the right end direction from the center line 28 decreases from the thickest portion (top) of the outward convex portion 24 through which the center line 28 passes toward the broken line A3, and is thinnest between the broken line A3 and the broken line A4. It becomes thicker toward the right end. Between the broken line A3 and the broken line A4 is the thin part 26 with the smallest thickness in the vertical direction. In addition, the thin part 26 on the left side and the thin part 26 on the right side in FIG. 30 are formed concentrically with the center line 28 as the center, similarly to the outward flat part 23.
 第三例のポールチップ39は、内向面18が平坦なので、ポールチップの加工が容易であり、ポールチップの作成コストを低減することができる。また、第三例のポールチップ39は、ミッドプレーン12に対向する側の内向面18の面積が外向面22の外向側平坦部23よりもが広いので、機械加工精度を十分高くすることができる。したがって、第三例のポールチップ39は、希望する一の磁界分布33を第二例のポールチップ38よりも高精度に形成することができる。 The pole tip 39 of the third example has a flat inward surface 18 so that the pole tip can be easily processed and the cost for producing the pole tip can be reduced. Further, in the pole tip 39 of the third example, since the area of the inward surface 18 on the side facing the midplane 12 is wider than the outward flat portion 23 of the outward surface 22, the machining accuracy can be sufficiently increased. . Therefore, the pole tip 39 of the third example can form the desired one magnetic field distribution 33 with higher accuracy than the pole tip 38 of the second example.
 実施の形態2の粒子線円形加速器51は、空芯コイル(空芯型コイル)である超電導コイル3a、3bと、超電導コイル3a、3bの内側に配置された一対のポールチップ37a、37b(一対のポールチップ38、38、39、39)を備えたので、特許文献2のようなヨークを備えた加速器に比べて重量を軽くすることができる。実施の形態2の粒子線円形加速器51は、重量を軽いので、従来よりも小型の回転ガントリに搭載することができる。 The particle beam circular accelerator 51 of the second embodiment includes superconducting coils 3a and 3b that are air-core coils (air-core coils), and a pair of pole tips 37a and 37b (a pair of superconducting coils 3a and 3b). The pole tips 38, 38, 39, 39) are provided, so that the weight can be reduced as compared with an accelerator having a yoke as in Patent Document 2. Since the particle beam circular accelerator 51 of the second embodiment is light in weight, it can be mounted on a rotating gantry that is smaller than the conventional one.
 実施の形態2の粒子線円形加速器51が回転ガントリ60に搭載された、実施の形態2の粒子線照射装置59は、特許文献2のようなヨークを備えた加速器に比べて軽い粒子線円形加速器51が回転ガントリ60に搭載されたので、回転ガントリ60を小型にすることができる。また、実施の形態2の粒子線照射装置59は、回転ガントリ60が小型にできるので、粒子線照射装置を小型にすることができる。また、実施の形態2の粒子線照射装置59は、従来よりも小型にできるので、粒子線照射装置を設置する設置エリアを縮小することができ、粒子線照射装置及び粒子線照射装置を設置する建屋のコストを低減することができる。 The particle beam irradiation apparatus 59 according to the second embodiment in which the particle beam circular accelerator 51 according to the second embodiment is mounted on the rotating gantry 60 is a light particle beam circular accelerator that is lighter than an accelerator having a yoke as in Patent Document 2. Since 51 is mounted on the rotating gantry 60, the rotating gantry 60 can be reduced in size. In the particle beam irradiation apparatus 59 of the second embodiment, since the rotating gantry 60 can be reduced in size, the particle beam irradiation apparatus can be reduced in size. Moreover, since the particle beam irradiation apparatus 59 of Embodiment 2 can be made smaller than before, the installation area in which the particle beam irradiation apparatus is installed can be reduced, and the particle beam irradiation apparatus and the particle beam irradiation apparatus are installed. The cost of the building can be reduced.
 なお、本発明は、その発明の範囲内において、各実施の形態を組み合わせたり、各実施の形態を適宜、変形、省略することが可能である。 It should be noted that the present invention can be combined with each other within the scope of the invention, and each embodiment can be modified or omitted as appropriate.
 3a、3b…超電導コイル、7、7a、7b…ポールチップ、11…加速空洞、12…ミッドプレーン、16…荷電粒子ビーム、17…コイル軸、18…内向面、19…内向側平坦部、20…内向側凸部、21…内向側外周凸部、22…外向面、23…外向側平坦部、24…外向側凸部、25…外向側外周凸部、26…肉薄部、28…中心線、29…中間線、34、35、36、37、37a、37b…ポールチップ、51…粒子線円形加速器、54…ビーム輸送系、56…照射野形成装置、58…患者、59…粒子線照射装置、60…回転ガントリ 3a, 3b ... superconducting coil, 7, 7a, 7b ... pole tip, 11 ... acceleration cavity, 12 ... midplane, 16 ... charged particle beam, 17 ... coil axis, 18 ... inward surface, 19 ... inward flat portion, 20 ... inward convex part, 21 ... inward peripheral convex part, 22 ... outward surface, 23 ... outward flat part, 24 ... outward convex part, 25 ... outward peripheral convex part, 26 ... thin part, 28 ... center line , 29 ... Intermediate line, 34, 35, 36, 37, 37a, 37b ... Pole tip, 51 ... Particle beam circular accelerator, 54 ... Beam transport system, 56 ... Irradiation field forming device, 58 ... Patient, 59 ... Particle beam irradiation Equipment, 60 ... rotating gantry

Claims (9)

  1.  荷電粒子ビームを発生し、磁界により回転させながら加速する粒子線円形加速器と、前記粒子線円形加速器により加速された前記荷電粒子ビームを輸送するビーム輸送系と、前記ビーム輸送系で輸送された前記荷電粒子ビームを照射対象に照射する照射野形成装置と、前記粒子線円形加速器、前記ビーム輸送系、前記照射野形成装置を支持し、前記荷電粒子ビームの照射方向を回転させる回転ガントリを備えた粒子線照射装置であって、
    前記粒子線円形加速器は、
    前記荷電粒子ビームを加速する加速空洞と、
    前記荷電粒子ビームの加速軌道面に対して対称に配置された一対の超電導コイルと、
    前記超電導コイルの内側に配置され、前記加速軌道面に対して対称に配置されると共に、前記超電導コイルにより発生された磁場から前記荷電粒子ビームを前記加速空洞にて周回させる磁場分布を形成する、一対のポールチップを備え、
    前記ポールチップは、
    前記加速軌道面に対向する内向面と前記内向面よりも遠方の外向面との厚さである肉厚が径方向において異なっており、
    前記超電導コイルの径方向に垂直で前記超電導コイルの中心を通るコイル軸を内包する中央部及び径方向の外周部の内側に、前記中央部及び前記外周部よりも前記肉厚が薄く、かつ最小の肉薄部を有し、
    前記肉薄部は、径方向の配置領域における半分以上の領域が、前記コイル軸と前記ポールチップの外周端との中間の中間線よりも外周側になるように配置されたことを特徴とする粒子線照射装置。
    A particle beam circular accelerator that generates a charged particle beam and accelerates it while rotating by a magnetic field, a beam transport system that transports the charged particle beam accelerated by the particle beam circular accelerator, and the transported by the beam transport system An irradiation field forming apparatus that irradiates a charged particle beam to an irradiation target, and a rotating gantry that supports the particle beam circular accelerator, the beam transport system, and the irradiation field forming apparatus and that rotates the irradiation direction of the charged particle beam. A particle beam irradiation device,
    The particle beam circular accelerator is
    An acceleration cavity for accelerating the charged particle beam;
    A pair of superconducting coils arranged symmetrically with respect to the acceleration orbital plane of the charged particle beam;
    Arranged inside the superconducting coil, symmetrically arranged with respect to the acceleration orbital plane, and forming a magnetic field distribution that circulates the charged particle beam in the acceleration cavity from the magnetic field generated by the superconducting coil; With a pair of pole tips,
    The pole tip is
    The thickness which is the thickness of the inward surface facing the acceleration orbital surface and the outward surface farther away from the inward surface is different in the radial direction,
    Inside the central portion and the outer peripheral portion in the radial direction that includes the coil axis perpendicular to the radial direction of the superconducting coil and passing through the center of the superconducting coil, the thickness is smaller than the central portion and the outer peripheral portion, and the minimum With a thin part of
    Particles characterized in that the thin portion is arranged such that more than half of the radial arrangement region is on the outer peripheral side of the intermediate line between the coil shaft and the outer peripheral end of the pole tip X-ray irradiation device.
  2.  前記ポールチップは、前記外向面において、前記内向面に最も近い外向側平坦部と、前記外向側平坦部から前記コイル軸の方向でかつ前記内向面から離れる方向に突出した外向面側の凸部を有し、
    前記肉薄部は前記外向側平坦部の領域に含まれており、
    前記外向側平坦部の面積は前記内向面における平坦部の面積よりも小さいことを特徴とする請求項1記載の粒子線照射装置。
    The pole tip includes, on the outward face, an outwardly flat part closest to the inward face, and an outwardly facing convex part projecting from the outwardly flat part in the direction of the coil axis and away from the inward face. Have
    The thin portion is included in a region of the outward flat portion,
    The particle beam irradiation apparatus according to claim 1, wherein an area of the outward flat portion is smaller than an area of the flat portion on the inward surface.
  3.  前記ポールチップは、前記内向面において、前記外向面に最も近い内向側平坦部と、前記内向側平坦部から前記コイル軸の方向でかつ前記外向面から離れる方向に突出した内向面側の凸部を有し、
    前記肉薄部は前記内向側平坦部の領域に含まれており、
    前記外向側平坦部の面積は前記内向側平坦部の面積よりも小さいことを特徴とする請求項2記載の粒子線照射装置。
    The pole tip has an inward flat portion closest to the outward surface on the inward surface, and a convex portion on the inward surface side protruding from the inward flat portion in the direction of the coil axis and away from the outward surface. Have
    The thin portion is included in a region of the inward flat portion,
    The particle beam irradiation apparatus according to claim 2, wherein an area of the outward flat portion is smaller than an area of the inward flat portion.
  4.  前記ポールチップは、前記内向面が平坦であることを特徴とする請求項2記載の粒子線照射装置。 3. The particle beam irradiation apparatus according to claim 2, wherein the inward surface of the pole tip is flat.
  5.  前記ポールチップは、
    前記外向面において、前記内向面に最も近い外向側平坦部と、前記外向側平坦部から前記コイル軸の方向でかつ前記内向面から離れる方向に突出した外向面側の凸部を有し、
    前記内向面において、前記外向面に最も近い内向側平坦部と、前記内向側平坦部から前記コイル軸の方向でかつ前記外向面から離れる方向に突出した内向面側の凸部を有し、
    前記外向側平坦部と前記外向面側の凸部との境界が前記内向側平坦部と前記内向面側の凸部との境界と、同一の径方向位置になっており、
    前記肉薄部は、前記外向側平坦部及び前記内向側平坦部の領域に含まれていることを特徴とする請求項1記載の粒子線照射装置。
    The pole tip is
    In the outward surface, it has an outward flat portion closest to the inward surface, and an outward surface convex portion protruding from the outward flat portion in the direction of the coil axis and away from the inward surface,
    In the inward surface, it has an inward flat portion closest to the outward surface, and a convex portion on the inward surface side that protrudes from the inward flat portion in the direction of the coil axis and away from the outward surface,
    The boundary between the outward flat portion and the convex portion on the outward surface side is the same radial position as the boundary between the inward flat portion and the convex portion on the inward surface side,
    The particle beam irradiation apparatus according to claim 1, wherein the thin portion is included in a region of the outward flat portion and the inward flat portion.
  6.  前記外向面における前記外向面側の凸部は、前記肉厚が階段状に変化していることを特徴とする請求項2から4のいずれか1項に記載の粒子線照射装置。 The particle beam irradiation apparatus according to any one of claims 2 to 4, wherein the thickness of the convex portion on the outward surface side in the outward surface changes in a stepped manner.
  7.  前記外向面における前記外向面側の凸部及び前記内向面における前記内向面側の凸部は、前記肉厚が階段状に変化していることを特徴とする請求項5記載の粒子線照射装置。 6. The particle beam irradiation apparatus according to claim 5, wherein the thickness of the convex portion on the outward surface side in the outward surface and the convex portion on the inward surface side in the inward surface are changed in a stepped manner. .
  8.  前記ポールチップは、前記外向面が平坦であり、
    前記内向面において、前記外向面に最も近い内向側平坦部と、前記内向側平坦部から前記コイル軸の方向でかつ前記外向面から離れる方向に突出した内向面側の凸部を有し、
    前記肉薄部は前記内向側平坦部の領域に含まれており、
    前記内向面側の凸部は、前記肉厚が階段状に変化していることを特徴とする請求項1記載の粒子線照射装置。
    The pole tip has a flat outward surface,
    In the inward surface, it has an inward flat portion closest to the outward surface, and a convex portion on the inward surface side that protrudes from the inward flat portion in the direction of the coil axis and away from the outward surface,
    The thin portion is included in a region of the inward flat portion,
    The particle beam irradiation apparatus according to claim 1, wherein the thickness of the convex portion on the inward surface side changes in a stepped manner.
  9.  前記ポールチップは、前記外向面が平坦であり、
    前記内向面において、前記外向面に最も近い内向側平坦部と、前記内向側平坦部から前記コイル軸の方向でかつ前記外向面から離れる方向に突出した内向面側の凸部を有し、
    前記肉薄部は前記内向側平坦部の領域に含まれていることを特徴とする請求項1記載の粒子線照射装置。
    The pole tip has a flat outward surface,
    In the inward surface, it has an inward flat portion closest to the outward surface, and a convex portion on the inward surface side that protrudes from the inward flat portion in the direction of the coil axis and away from the outward surface,
    The particle beam irradiation apparatus according to claim 1, wherein the thin portion is included in a region of the inward flat portion.
PCT/JP2016/075459 2016-08-31 2016-08-31 Particle beam radiation apparatus WO2018042538A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2016/075459 WO2018042538A1 (en) 2016-08-31 2016-08-31 Particle beam radiation apparatus
TW106115777A TW201811395A (en) 2016-08-31 2017-05-12 Particle beam irradiation apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/075459 WO2018042538A1 (en) 2016-08-31 2016-08-31 Particle beam radiation apparatus

Publications (1)

Publication Number Publication Date
WO2018042538A1 true WO2018042538A1 (en) 2018-03-08

Family

ID=61300379

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/075459 WO2018042538A1 (en) 2016-08-31 2016-08-31 Particle beam radiation apparatus

Country Status (2)

Country Link
TW (1) TW201811395A (en)
WO (1) WO2018042538A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000164399A (en) * 1998-11-30 2000-06-16 Mitsubishi Electric Corp Cyclotron device
JP3472657B2 (en) * 1996-01-18 2003-12-02 三菱電機株式会社 Particle beam irradiation equipment
JP2009524200A (en) * 2006-01-19 2009-06-25 マサチューセッツ・インスティテュート・オブ・テクノロジー Magnet structure for particle acceleration
JP2013543248A (en) * 2010-11-22 2013-11-28 マサチューセッツ インスティテュート オブ テクノロジー Compact low temperature weakly focused superconducting cyclotron
JP2014236005A (en) * 2013-05-31 2014-12-15 メビオン・メディカル・システムズ・インコーポレーテッド Active return system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3472657B2 (en) * 1996-01-18 2003-12-02 三菱電機株式会社 Particle beam irradiation equipment
JP2000164399A (en) * 1998-11-30 2000-06-16 Mitsubishi Electric Corp Cyclotron device
JP2009524200A (en) * 2006-01-19 2009-06-25 マサチューセッツ・インスティテュート・オブ・テクノロジー Magnet structure for particle acceleration
JP2013543248A (en) * 2010-11-22 2013-11-28 マサチューセッツ インスティテュート オブ テクノロジー Compact low temperature weakly focused superconducting cyclotron
JP2014236005A (en) * 2013-05-31 2014-12-15 メビオン・メディカル・システムズ・インコーポレーテッド Active return system

Also Published As

Publication number Publication date
TW201811395A (en) 2018-04-01

Similar Documents

Publication Publication Date Title
US11114269B2 (en) Bremsstrahlung target for radiation therapy system
US8779393B2 (en) Charged particle beam irradiation system and neutron beam irradiation system
JP4474549B2 (en) Irradiation field forming device
WO2012014705A1 (en) Charged particle beam irradiation device
US8866109B2 (en) Charged-particle beam irradiation device
JP5336991B2 (en) Electromagnet for controlling charged particle beam and irradiation treatment apparatus provided with the same
US10256004B2 (en) Particle-beam control electromagnet and irradiation treatment apparatus equipped therewith
JP6519932B2 (en) Particle therapy device with MRI
US8350226B2 (en) Methods and systems for treating cancer using external beam radiation
JP6144175B2 (en) Neutron capture therapy device
JP6091263B2 (en) Particle therapy equipment
JP6012848B2 (en) Electromagnetic support
JP2002186676A (en) Collimator and radiotherapy device using the same
JP6622142B2 (en) Particle beam transport device and irradiation treatment device
WO2018042538A1 (en) Particle beam radiation apparatus
CN110124213B (en) Multi-leaf collimator and radiotherapy device with same
WO2013157116A1 (en) Gantry-type particle beam illumination device, and particle beam therapy device comprising same
TWI515026B (en) Septum magnet and particle beam therapy system
JP7259144B1 (en) Particle beam therapy system manufacturing method and particle beam therapy system
JP6712461B2 (en) Particle acceleration system and method for adjusting particle acceleration system
JP2018011872A (en) Neutron capture therapy system
JP2014138669A (en) Charged particle beam therapy apparatus
JP2023148368A (en) Particle beam treatment device
WO2019097618A1 (en) Particle ray accelerator and particle ray therapeutic device using same
JP2020018629A (en) Charged particle beam therapy apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16915099

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16915099

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP