WO2018042095A1 - Procédé de production de gaz de synthèse mettant en œuvre une unité de reformage du méthane à la vapeur - Google Patents

Procédé de production de gaz de synthèse mettant en œuvre une unité de reformage du méthane à la vapeur Download PDF

Info

Publication number
WO2018042095A1
WO2018042095A1 PCT/FR2017/052175 FR2017052175W WO2018042095A1 WO 2018042095 A1 WO2018042095 A1 WO 2018042095A1 FR 2017052175 W FR2017052175 W FR 2017052175W WO 2018042095 A1 WO2018042095 A1 WO 2018042095A1
Authority
WO
WIPO (PCT)
Prior art keywords
walls
oxygen
furnace
burners
reforming
Prior art date
Application number
PCT/FR2017/052175
Other languages
English (en)
Inventor
Daniel Gary
Diana TUDORACHE
Fouad Ammouri
Original Assignee
L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude filed Critical L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude
Publication of WO2018042095A1 publication Critical patent/WO2018042095A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/384Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts the catalyst being continuously externally heated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/06Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds in tube reactors; the solid particles being arranged in tubes
    • B01J8/062Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds in tube reactors; the solid particles being arranged in tubes being installed in a furnace
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0233Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0811Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel
    • C01B2203/0816Heating by flames
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • C01B2203/1241Natural gas or methane

Definitions

  • the present invention relates to a process for producing synthesis gas using a methane reforming unit with steam.
  • SMR Steam reforming
  • synthesis gas a mixture composed mainly of hydrogen and carbon monoxide from a gaseous feed of reactants consisting essentially of hydrocarbons and carbon monoxide. water vapor which react together in a catalytic tubular reactor.
  • This technology one of the most used for the production of hydrogen in particular, is based on the catalytic reactions at high temperature (800-950 ° C) of light hydrocarbons with water vapor. Highly endothermic, these reactions require heat input.
  • This heat is usually provided by the combustion of a fuel with air using burners located in a radiant furnace in which the reforming tubes are arranged.
  • the fumes from the combustion flow outside the tubes in the furnace and provide the reactants, by radiation and convection, the heat required for reforming.
  • the reformers we are considering here are steam reformers of usual geometry.
  • the furnaces have a number of burners arranged in rows on side walls in the case of so-called “sidefired” SMRs and so-called “terrace wall” SMRs, or at the oven vault in the case of SMRs known as “terrace walls”. top-fired “; more rarely, the burners are placed in the floor of the oven in the case of "bottom-fired”.
  • a solution is to add oxygen to the combustion air stream.
  • One solution of the present invention is a synthesis gas production process employing a steam methane reforming unit (SMR) comprising:
  • a reforming furnace at least a portion of the walls is covered by a refractory coating to improve the overall emissivity coefficient of the walls to a value greater than 0.4.
  • furnace walls can be made of fibers and refractory bricks and have a basic emissivity coefficient of the order of 0.25.
  • the emissivity coefficient corresponds to the radiative flux emitted by a surface element (in the context of the invention with respect to the walls of the radiant furnace) at a given temperature, relative to the reference value that is the radiative flux emitted by a black body at the same temperature. Since the latter value is the maximum possible value, the emissivity coefficient of a wall will always be a surface property of between 0 and 1.
  • the coating is generally a refractory paint (mixture between for example metal oxides with an aluminosilicate or an iron-rich silica) applied by projection via for example the use of an industrial gun.
  • the thickness of the refractory lining will be less than one millimeter.
  • Such a coating improves the radiation of the walls promoting the transfer of heat between the walls of the furnace.
  • the method according to the invention may have one or more of the following characteristics:
  • the refractory lining makes it possible to improve the overall emissivity coefficient of the walls to a value greater than 0.65.
  • the addition of oxygen is such that the oxygen content in the air stream is between 20.5% and 23.5%; - at least a third of the walls of the furnace is covered by the refractory lining,
  • one third of the walls of the furnace having the refractory lining correspond to one third of the walls closest to the burners
  • the heat released by the burners is between 1.0 MW and 3.0 MW for a furnace with burners arranged at the level of the vault of the furnace and between 0.25 MW and 0.75 MW for a furnace with burners arranged in rows on the side walls,
  • the refractory lining has a thickness less than one millimeter
  • the refractory coating is chosen from alumino-silicates, silicas rich in iron oxide, preferably doped with metal oxides (Ti, Ni, Cr, Co or other transition metals),
  • the reforming furnace comprises reforming tubes
  • the reforming tubes are made of a material of HP Alloy type rich in Cr and Ni (for example Manaurite marketed by Manoir Industries) and preferably manufactured by centrifugation,
  • the addition of oxygen is carried out by addition of a stream comprising between 90% and 100% of oxygen.
  • the method according to the invention combines the oxy-combustion, that is to say the addition of oxygen in the combustion air stream, and the refractory coating on at least a portion of the furnace walls SMR.
  • This combination can be applied to furnaces having a number of burners arranged in rows on side walls in the case of so-called “side-fired” SMRs and so-called “terrace wall” SMRs, or at the level of the oven vault in the case of "top-fired” SMRs; it can also be applied for furnaces with burners placed in the floor of the oven in the case of "bottom-fired”.
  • furnaces comprising burners arranged in rows on side walls, that is to say for so-called “side-fired” furnaces.
  • Figure 2 illustrates a method according to the invention for a side-fired type furnace.
  • the feed gas containing mainly methane and water vapor is fed into catalytic tubular reactors.
  • synthesis gas mainly containing hydrogen and carbon monoxide
  • heat is provided by the combustion of at least one fuel, the most common natural gas, associated in the process. majority of the units to a recycled gas from the syngas purification systems.
  • Air is drawn in from the atmosphere and with its oxygen content, below 21%, maintains combustion. The air can be preheated before being sent to the burners, either in the flue gas heat recovery system, as shown in the figure, or synthesis gas.
  • the reforming unit will have at least a portion of the walls of the furnace coated with a high-emissivity paint and the combustion air will be enriched in oxygen which can expect a content of 23.5%.
  • Another possibility is offered by the invention: keep the same consumption of natural gas and obtain a larger flow of synthesis gas.
  • the operator will have the choice between obtaining a larger flow of synthesis gas or reducing his consumption of natural gas.
  • the advantages of the addition of oxygen in the air flow are: reducing the amount of nitrogen in the flue gases, thereby reducing the amount of heat loss by the combustion gases and thus increasing the heat available for the process,
  • Table 1 shows that the addition of oxygen in the combustion air stream leads to an increase in the adiabatic temperature of the flame of a burner fed with natural gas.
  • the radiation heat transfer from the furnace wall into the tubes is due to the refractory temperature and radiation properties such as the emissivity which can be improved by applying a paint to the walls surrounding the furnace.
  • the heat flux transferred to the reforming tubes is improved, which consequently increases the efficiency of the reforming reaction and thus the production flow rate of synthesis gas.
  • the impact of the combination of oxygen addition in the airflow - refractory coating is quantified through a specific one-dimensional software consisting of two coupled parts: a combustion chamber model on one side and tubes of reforming on the other side.
  • Figure 3 shows that the combination of oxygen addition in the airflow - refractory lining improves the heat transfer to the reforming tubes. This improvement is shown regardless of the mode of operation chosen: mode with reduction of natural gas consumption due to the addition of oxygen (Figure 3a) or mode with increase in the production of synthesis gas ( Figure 3b).
  • the benefit of oxygen addition can be limited by increasing the temperature of the combustion gases (Fig. 4) which is associated with an increase in NOx production inside the furnace, particularly when Increased synthesis gas production is required ( Figure 4a).
  • the increase in the temperature of the flue gases for a "natural gas consumption reduction" process is represented in FIG. 4b.
  • the temperature of the combustion gases in the furnace is controlled and always remains lower than the reference value.
  • reference value is meant a basic process without addition of oxygen or implementation of a refractory coating.
  • the maximum operating temperature of the reforming tubes included in the reforming furnace depends on several factors, including the mechanical loading of the tubes, the mechanical properties of the alloys used for the tubes and the desired service life of the tubes exposed to creep and thermal aging.
  • any intensification of the heat transferred to the tubes has a direct positive impact, either by increasing productivity or improving the compactness of the combustion chamber which is valuable in terms of expenditure.
  • the intensification of the transferred heat should not lead to excessive skin temperatures for the reforming tubes (eg temperatures above 1000 ° C). Indeed, such excessive skin temperatures cause a reduction in the life of the reforming tubes or require the use of stronger alloys which would be much more expensive.
  • Table 3 summarizes the qualitative advantages of the combination of the addition of oxygen in the air stream and the refractory lining of at least a portion of the furnace walls as mentioned in the process according to the invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

Procédé de production de gaz de synthèse mettant en œuvre une unité de reformage du méthane à la vapeur (SMR) comprenant : - l'addition d'oxygène dans le flux d'air de combustion alimentant les brûleurs de l'unité SMR et - la mise en œuvre d'un four de reformage dont au moins une partie des parois est recouverte par un revêtement réfractaire permettant d'améliorer le coefficient d'émissivité global des parois à une valeur supérieure à 0,4.

Description

Procédé de production de gaz de synthèse mettant en œuvre une unité de reformage du méthane à la vapeur
La présente invention est relative à un procédé de production de gaz de synthèse mettant en oeuvre une unité de reformage du méthane à la vapeur.
Le reformage à la vapeur (en langue anglaise steam méthane reforming ou SMR) permet de produire du gaz de synthèse, mélange composé principalement d'hydrogène et de monoxyde de carbone à partir d'une charge gazeuse de réactants constituée essentiellement d'hydrocarbures et de vapeur d'eau qui réagissent ensemble dans un réacteur tubulaire catalytique. Cette technologie, une des plus utilisées pour la production d'hydrogène notamment, est basée sur les réactions catalytiques à haute température (800-950°C) des hydrocarbures légers avec la vapeur d'eau. Fortement endothermiques, ces réactions nécessitent un apport de chaleur.
Cette chaleur est habituellement fournie par la combustion d'un combustible avec de l'air à l'aide de brûleurs situés dans un four radiant dans lequel sont disposés les tubes de reformage. Les fumées provenant de la combustion circulent à l'extérieur des tubes disposés dans le four et apportent aux réactants, par rayonnement et convection, la chaleur nécessaire au reformage.
Les reformeurs que nous considérons ici sont des reformeurs à la vapeur de géométrie usuelle. Les fours comportent un certain nombre de brûleurs disposés en rangées sur des parois latérales dans le cas des SMR dits « side- fired » et des SMR dits « terrace wall », ou au niveau de la voûte du four dans le cas des SMR dits « top-fired » ; plus rarement, les brûleurs sont placés dans le plancher du four dans le cas des « bottom-fired ». Ces différents types de brûleurs sont représentés par la figure 1.
Afin d'améliorer le procédé et en particulier d'améliorer la génération de chaleur une solution est d'ajouter de l'oxygène dans le flux d'air de combustion.
Cependant cette amélioration est limitée par l'augmentation de la température des gaz de combustion qui est associée à une augmentation de la production de NOx. Or, l'émission des NOx est actuellement réglementée et les dispositifs de réduction des NOx sont coûteux.
Partant de là, un problème qui se pose est de fournir un procédé SMR amélioré c'est-à- dire ne présentant pas les inconvénients liés à l'augmentation de la production de NOx.
Une solution de la présente invention est un procédé de production de gaz de synthèse mettant en oeuvre une unité de reformage du méthane à la vapeur (SMR) comprenant :
- l'addition d'oxygène dans le flux d'air de combustion alimentant les brûleurs de l'unité SMR et
- la mise en oeuvre d'un four de reformage dont au moins une partie des parois est recouverte par un revêtement réfractaire permettant d'améliorer le coefficient d'émissivité global des parois à une valeur supérieure à 0,4.
Notons que les parois du four peuvent être faites en fibres et ou briques réfractaires et ont un coefficient d'émissivité de base de l'ordre de 0,25.
Le coefficient d'émissivité correspond aux flux radiatif émis par un élément de surface (dans le cadre de l'invention s'agissant des parois du four radiant) à température donnée, rapporté à la valeur de référence qu'est le flux radiatif émis par un corps noir à cette même température. Cette dernière valeur étant la valeur maximale possible, le coefficient d'émissivité d'une paroi sera toujours une propriété de surface comprise entre 0 et 1.
Le revêtement est en général une peinture réfractaire (mixture entre par exemple des oxydes métalliques avec un alumino-silicate ou une silice riche en fer) appliquée par projection via par exemple l'utilisation d'un pistolet industriel. L'épaisseur du revêtement réfractaire sera inférieure au millimètre.
Un tel revêtement améliore le rayonnement des parois favorisant le transfert de chaleur entre les parois du four.
Selon le cas, le procédé selon l'invention peut présenter une ou plusieurs des caractéristiques suivantes :
- le revêtement réfractaire permet d'améliorer le coefficient d'émissivité global des parois à une valeur supérieure à 0,65.
- l'addition d'oxygène est telle que la teneur en oxygène dans le flux d'air est comprise entre 20.5% et 23, 5%, - au moins un tiers des parois du four est recouvert par le revêtement réfractaire,
- le tiers des parois du four présentant le revêtement réfractaire correspond au tiers des parois le plus proche des brûleurs,
- la chaleur libérée par les brûleurs est comprise entre 1,0 MW et 3,0 MW pour un four avec brûleurs disposés au niveau de la voûte du four et entre 0,25 MW et 0,75 MW pour un four avec brûleurs disposés en rangées sur les parois latérales,
- le revêtement réfractaire présente une épaisseur inférieure au millimètre,
- le revêtement réfractaire est choisi parmi les alumino-silicates, les silices riches en oxyde de fer, de préférence dopés par des oxydes métalliques (Ti, Ni, Cr, Co ou autres métaux de transition),
- le four de reformage comprend des tubes de reformage,
- les tubes de reformage sont fabriqués en un matériau de type HP Alloy riche en Cr et Ni (par exemple la Manaurite commercialisée par Manoir Industries) et fabriqués de préférence traditionnellement par centrifugation,
- l'addition d'oxygène s'effectue par addition d'un flux comprenant entre 90% et 100% d'oxygène.
Le procédé selon l'invention associe l'oxy-combustion, c'est-à-dire l'addition d'oxygène dans le flux d'air de combustion, et le revêtement réfractaire sur au moins une partie des parois du four SMR.
Cette association peut être appliquée pour des fours comportant un certain nombre de brûleurs disposés en rangées sur des parois latérales dans le cas des SMR dits « side- fired » et des SMR dits « terrace wall », ou au niveau de la voûte du four dans le cas des SMR dits « top- fired » ; elle peut-être également appliquée pour des fours comportant des brûleurs placés dans le plancher du four dans le cas des « bottom-fired ».
Par la suite par souci de simplicité, sauf indication contraire toutes les quantifications seront données pour des fours comportant des brûleurs disposés en rangées sur des parois latérales, c'est-à-dire pour des fours dits « side-fired ».
La figure 2 illustre un procédé selon l'invention pour un four de type side-fired. Le gaz d'alimentation contenant principalement du méthane et de la vapeur d'eau est envoyé dans des réacteurs tubulaires catalytiques. Pour que le mélange puisse réagir et produire du gaz de synthèse, contenant majoritairement de l'hydrogène et du monoxyde de carbone, de la chaleur est apportée par la combustion d'au moins un carburant, le plus courant du gaz naturel, associé dans la majorité des unités à un gaz recyclé à partir des systèmes de purification du gaz de synthèse. L'air est aspiré de l'atmosphère et grâce à son contenu en oxygène, au dessous du 21%, entretient la combustion. L'air peut être préchauffé avant d'être envoyé aux brûleurs, soit dans le système de récupération de la chaleur provenant des fumées, comme illustré dans la figure, ou du gaz de synthèse.
Selon l'invention, l'unité de reformage aura au moins une partie des parois du four revêtit d'une peinture à haute émissivité et l'air de combustion sera enrichie en oxygène qui pourra attendre un contenu de 23.5%.
Notons que le procédé selon l'invention peut être mis en place dans de nouvelles installations mais aussi dans des anciennes installations pendant une période de maintenance. L'addition d'oxygène est limitée à 23,5% afin d'utiliser la technologie actuelle de la soufflerie d'air et d'éviter les contraintes de sécurité supplémentaires liés à l'équipement de base du flux d'oxygène et à la manipulation de l'oxygène.
Grâce au procédé selon l'invention, en gardant le débit de gaz de synthèse constant, la consommation de gaz de synthèse va diminuer. En effet l'addition d'oxygène permet de réduire la consommation de gaz naturel.
Une autre possibilité est offerte par l'invention : garder la même consommation de gaz naturel et obtenir un débit de gaz de synthèse plus important.
Aussi grâce à l'invention l'exploitant aura le choix entre obtenir un débit de gaz de synthèse plus important ou réduire sa consommation de gaz naturel.
Pour une addition d'oxygène telle que la teneur en oxygène dans le flux d'air augmente de 20.5% à 23,0%, on obtient soit une consommation de gaz naturel réduite de 7% soit une production de gaz de synthèse augmentée de 6%.
De manière plus précise les avantages de l'addition d'oxygène dans le flux d'air sont : - la réduction de la quantité d'azote dans les gaz de combustion, d'où la diminution de la quantité des pertes de chaleur par les gaz de combustion et donc l'augmentation de la chaleur disponible pour le processus,
- une augmentation de la température adiabatique de flamme de l'ordre de +100°C et une augmentation de l'émissivité des gaz de combustion en raison des concentrations plus élevées de C02 et H20, et par conséquent une amélioration du transfert de chaleur vers les tubes de reformage.
Le tableau 1 montre que l'addition d'oxygène dans le flux d'air de combustion conduit à une augmentation de la température adiabatique de la flamme d'un brûleur alimenté au gaz naturel.
Figure imgf000006_0001
Tableau 1
Notons que dans le procédé selon l'invention moins de C02 est rejeté dans l'atmosphère due à une consommation moindre de gaz naturel.
D'un point de vue économique même si l'addition d'oxygène dans le flux d'air de combustion présente un coût, le surplus de chaleur se trouvant disponible pour le processus fait que le coût global d'exploitation est réduit et des économies peuvent être obtenues.
Concernant l'impact du revêtement réfractaire, rappelons que dans un four SMR, le transfert de chaleur par convection est négligeable par rapport au transfert de chaleur par rayonnement (environ 95% de la chaleur transférée pendant un procédé SMR est due à un phénomène de rayonnement).
Le transfert de chaleur par rayonnement depuis la paroi du four dans les tubes est dû à la température réfractaire et aux propriétés de rayonnement telles que l'émissivité qui peut être améliorée par l'application d'une peinture sur les parois entourant le four.
Grâce au revêtement réfractaire le flux de chaleur transféré aux tubes de reformage est amélioré ce qui augmente en conséquence le rendement de la réaction de reformage donc le débit de production de gaz de synthèse. Concernant l'impact de la combinaison addition d'oxygène dans le flux d'air - revêtement réfractaire est quantifié grâce à un logiciel spécifique mono-dimensionnel composé de deux parties couplées : un modèle de chambre de combustion d'un côté et des tubes de reformage de l'autre côté.
Les comparaisons entre le procédé selon l'invention et les procédés avec seulement addition d'oxygène ou seulement la mise en oeuvre du revêtement réfractaire ou les procédés de base sans addition d'oxygène ni mise en oeuvre d'un revêtement réfractaire sont réalisées pour un four dit « side-fired » avec l'hypothèse d'une alimentation constante, d'une température de l'air de combustion constante, d'un excès constant d'oxygène dans les gaz de combustion et une température du gaz de synthèse constante.
La figure 3 montre que la combinaison addition d'oxygène dans le flux d'air - revêtement réfractaire permet d'améliorer le transfert de chaleur aux tubes de reformage. Cette amélioration est montrée quelque soit le mode de fonctionnement choisi : mode avec réduction de la consommation de gaz naturel en raison de l'addition d'oxygène (Figure 3a) ou mode avec augmentation de la production de gaz de synthèse (Figure 3b).
Un meilleur transfert de chaleur aux tubes de reformage conduit à un gain de rendement du four qui peut être valorisé en fonction de la volonté de l'exploitant : produire plus de gaz de synthèse ou réduire la consommation de gaz naturel. Les gains d'efficacité pour les deux modes de fonctionnement sont résumés dans le tableau 2. Dans l'exemple choisi pour illustrer l'invention, l'addition d'oxygène a un impact plus important lorsque la teneur en oxygène est augmentée à 23% en comparaison avec l'addition d'un revêtement réfractaire appliqué sur la totalité des parois du four lorsque le coefficient d'émissivité initialement à 0,24 passe à 0,61. On observe à la dernière ligne du tableau 2 que les gains apportés par l'addition d'oxygène et le revêtement réfractaire se cumulent.
Figure imgf000008_0001
Tableau 2
Le bénéfice de l'addition d'oxygène peut être limité par l'augmentation de la température des gaz de combustion (figure 4) qui est associée à une augmentation de la production de NOx à l'intérieur du four, en particulier lorsqu'une augmentation de la production de gaz de synthèse est demandée (figure 4a). L'augmentation de la température des gaz de combustion pour un procédé en mode « réduction de la consommation de gaz naturel » est représenté figure 4b.
En combinant l'addition d'oxygène dans le flux d'air et le revêtement réfractaire d'au moins une partie des parois du four comme mentionné dans le procédé selon l'invention, la température des gaz de combustion dans le four est contrôlée et reste toujours inférieure à la valeur de référence. Par « valeur de référence » on entend un procédé de base sans addition d'oxygène ni mise en oeuvre d'un revêtement réfractaire.
Par conséquent la solution selon l'invention surmonte la nécessité d'un dispositif coûteux de réduction des NOx.
Par ailleurs, l'addition d'oxygène dans le flux d'air non combinée au revêtement réfractaire entraine une augmentation de la température des parois du four en particulier dans les régions où la chaleur du brûleur est libérée (figure 5) ; ces régions seront alors à long terme fragilisées. Notons que cet inconvénient peut être surmonté en combinant l'addition d'oxygène dans le flux d'air et le revêtement réfractaire d'au moins une partie des parois du four comme mentionné dans le procédé selon l'invention. Ceci est dû au fait que le revêtement réfractaire réduit considérablement la température des parois du four, et par conséquent les pertes de chaleur à travers les parois (cf. figure 6).
Globalement en combinant l'addition d'oxygène dans le flux d'air et le revêtement réfractaire d'au moins une partie des parois du four comme mentionné dans le procédé selon l'invention, on observe moins de perte de chaleur à travers les parois du four que dans un procédé mettant en uvre uniquement l'addition d'oxygène dans le flux d'air.
La température de fonctionnement maximale des tubes de reformage compris dans le four de reformage dépend de plusieurs facteurs, notamment de la charge mécanique des tubes, des propriétés mécaniques des alliages utilisés pour les tubes et de la durée de vie souhaitée des tubes exposés au fluage et au vieillissement thermique.
Toute intensification de la chaleur transférée aux tubes a un impact positif direct, soit en augmentant la productivité ou en améliorant la compacité de la chambre de combustion qui est précieuse en termes de dépenses. Cependant l'intensification de la chaleur transférée ne doit pas conduire à des températures de peau excessives pour les tubes de reformage (par exemple des températures supérieures à 1000°C). En effet de telles températures de peau excessives entraînent une réduction de la durée de vie des tubes de reformage ou nécessitent l'utilisation d'alliages plus résistants qui seraient beaucoup plus chers.
En combinant l'addition d'oxygène dans le flux d'air et le revêtement réfractaire d'au moins une partie des parois du four comme mentionné dans le procédé selon l'invention, on observe une augmentation de moins de 10°C de la température des tubes et ceci quelque soit le mode de fonctionnement choisi : réduction de la consommation de gaz naturel ou augmentation de la production de gaz de synthèse.
Le tableau 3 résume les avantages qualitatifs de la combinaison de l'addition d'oxygène dans le flux d'air et du revêtement réfractaire d'au moins une partie des parois du four comme mentionné dans le procédé selon l'invention. 9
Figure imgf000010_0001
Tableau 3

Claims

Revendications
1. Procédé de production de gaz de synthèse mettant en oeuvre une unité de reformage du méthane à la vapeur (SMR) comprenant :
- l'addition d'oxygène dans le flux d'air de combustion alimentant les brûleurs de l'unité SMR et - la mise en oeuvre d'un four de reformage dont au moins un tiers des parois est recouvert par un revêtement réfractaire permettant d'améliorer le coefficient d'émissivité global des parois à une valeur supérieure à 0,4, avec le tiers des parois du four présentant le revêtement réfractaire correspondant au tiers des parois le plus proche des brûleurs.
2. Procédé selon la revendication 1, caractérisé en ce que le revêtement réfractaire permet d'améliorer le coefficient d'émissivité global des parois à une valeur supérieure à 0,65.
3. Procédé selon l'une des revendications 1 ou 2, caractérisé en ce que l'addition d'oxygène est telle que la teneur en oxygène dans le flux d'air est comprise entre 20.5% et 23, 5%.
4. Procédé selon l'une des revendications 1 à 3, caractérisé en ce que la chaleur libérée par les brûleurs est comprise entre 1,0 MW et 3,0 MW pour un four avec brûleurs disposés au niveau de la voûte du four et entre 0,25 MW et 0,75 MW pour un four avec brûleurs disposés en rangées sur les parois latérales.
5. Procédé selon l'une des revendications 1 à 4, caractérisé en ce que le revêtement réfractaire présente une épaisseur inférieure au millimètre.
6. Procédé selon l'une des revendications 1 à 5, caractérisé en ce que le revêtement réfractaire est choisi parmi les alumino-silicates, les silices riches en oxyde de fer, de préférence dopés par des oxydes métalliques.
7. Procédé selon l'une des revendications 1 à 6, caractérisé en ce que le four de reformage comprend des tubes de reformage.
8. Procédé selon la revendication 7, caractérisé en ce que les tubes de reformage sont fabriqués en un matériau de type HP Alloy riche en Cr et Ni et fabriqués de préférence traditionnellement par centrifugation.
9. Procédé selon l'une des revendications 1 à 8, caractérisé en ce que l'addition d'oxygène s'effectue par addition d'un flux comprenant entre 90% et 100% d'oxygène.
PCT/FR2017/052175 2016-08-30 2017-08-03 Procédé de production de gaz de synthèse mettant en œuvre une unité de reformage du méthane à la vapeur WO2018042095A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1658041 2016-08-30
FR1658041A FR3055328B1 (fr) 2016-08-30 2016-08-30 Procede de production de gaz de synthese mettant en œuvre une unite de reformage du methane a la vapeur

Publications (1)

Publication Number Publication Date
WO2018042095A1 true WO2018042095A1 (fr) 2018-03-08

Family

ID=57121413

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2017/052175 WO2018042095A1 (fr) 2016-08-30 2017-08-03 Procédé de production de gaz de synthèse mettant en œuvre une unité de reformage du méthane à la vapeur

Country Status (2)

Country Link
FR (1) FR3055328B1 (fr)
WO (1) WO2018042095A1 (fr)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3450507A (en) * 1966-10-27 1969-06-17 Chemical Construction Corp Integrated reforming of hydrocarbons
US20060277828A1 (en) * 2005-06-14 2006-12-14 Licht William R Axial convective reformer
US20070104641A1 (en) * 2005-11-08 2007-05-10 Ahmed M M Method of controlling oxygen addition to a steam methane reformer
US20120145965A1 (en) * 2009-06-09 2012-06-14 Sundrop Fuels, Inc. Various methods and apparatuses for an ultra-high heat flux chemical reactor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3450507A (en) * 1966-10-27 1969-06-17 Chemical Construction Corp Integrated reforming of hydrocarbons
US20060277828A1 (en) * 2005-06-14 2006-12-14 Licht William R Axial convective reformer
US20070104641A1 (en) * 2005-11-08 2007-05-10 Ahmed M M Method of controlling oxygen addition to a steam methane reformer
US20120145965A1 (en) * 2009-06-09 2012-06-14 Sundrop Fuels, Inc. Various methods and apparatuses for an ultra-high heat flux chemical reactor

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
EBRAHIMI H ET AL: "Effect of design parameters on performance of a top fired natural gas reformer", APPLIED THERMAL ENGINEERING, PERGAMON, OXFORD, GB, vol. 28, no. 17-18, 1 December 2008 (2008-12-01), pages 2203 - 2211, XP024529376, ISSN: 1359-4311, [retrieved on 20080112], DOI: 10.1016/J.APPLTHERMALENG.2007.12.018 *
FARHADI F ET AL: "Radiative models for the furnace side of a bottom-fired reformer", APPLIED THERMAL ENGINEERING, PERGAMON, OXFORD, GB, vol. 25, no. 14-15, 1 October 2005 (2005-10-01), pages 2398 - 2411, XP027682174, ISSN: 1359-4311, [retrieved on 20051001] *
ZAMANIYAN A ET AL: "Software development for design and simulation of terraced wall and top fired primary steam reformers", COMPUTERS & CHEMICAL ENGINEERING, PERGAMON PRESS, OXFORD, GB, vol. 32, no. 7, 24 July 2008 (2008-07-24), pages 1433 - 1446, XP022628048, ISSN: 0098-1354, [retrieved on 20080428], DOI: 10.1016/J.COMPCHEMENG.2007.06.011 *

Also Published As

Publication number Publication date
FR3055328B1 (fr) 2021-04-30
FR3055328A1 (fr) 2018-03-02

Similar Documents

Publication Publication Date Title
WO2022153720A1 (fr) Dispositif de décomposition d'ammoniac
EP3087040B1 (fr) Procédé et installation de combustion avec récupération d'énergie optimisée
EP2551243A1 (fr) Installation et procédé hybrides de fusion de verre
EP2935132B1 (fr) Recuperation energetique des fumees d'un four de fusion avec une turbine à gaz et des échangeurs de chaleur
JP2009298974A (ja) ガス化ガスの改質方法及び装置
WO2018042095A1 (fr) Procédé de production de gaz de synthèse mettant en œuvre une unité de reformage du méthane à la vapeur
EP3087041B1 (fr) Combustion avec récupération de chaleur ameliorée
EP2935133A1 (fr) Recuperation energetique des fumees d'un four de fusion au moyen d'une turbine a gaz et des échangeurs de chaleur
FR2640728A1 (fr) Procede et appareil de reduction de la formation d'oxydes d'azote pendant une combustion
FR2853953A1 (fr) Procede de combustion etagee d'un combustible liquide et d'un oxydant dans un four
FR3030689A1 (fr) Oxy-bruleur pour gaz combustible a bas pouvoir calorifique et son utilisation
CA2971982C (fr) Reduction thermique de soufre
FR2952051A1 (fr) Procedes et systemes pour l'elimination de hcn
FR2918656A1 (fr) Procede de regulation du debit de gaz combustible lors de la phase de demarrage d'un four de reformage.
EP2181198A1 (fr) Procede de mise en uvre d'une ligne de recuit ou de galvanisation en continu d'une bande metallique
US20100186552A1 (en) Melting starting material in a cupola furnace
AU2011200177B2 (en) Method for combustion of a low-grade fuel
EP0922668B9 (fr) Dispositif pour la fabrication de bromure d'hydrogène
JPH07277701A (ja) 還元性ガス製造方法
EP3844102A1 (fr) Procédé de production d'un gaz de synthèse par traitement d'un flux gazeux contenant du co2 et un ou plusieurs hydrocarbures
EP2143932A1 (fr) Procédé de contrôle de la température des gaz dans un circuit de re-circulation de gaz d'échappement
FR2500478A2 (fr) Procede pour reduire la consommation d'agents reducteurs dans un appareil de reduction-fusion des minerais metalliques, notamment dans un haut fourneau siderurgique
FR2805604A1 (fr) Procede de reglage de la teneur en vapeur d'eau dans un four a tres haute temperature
WO2003086967A2 (fr) Procede de controle de l'oxydation partielle d'un gaz comprenant du sulfure d'hydrogene a l'aide d'air et d'oxygene
FR2932792A1 (fr) Procede de production de gaz de synthese par reformage a la vapeur d'hydrocarbures utilisant de l'air enrichi en oxygene en tant que comburant

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17755217

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17755217

Country of ref document: EP

Kind code of ref document: A1