WO2018041296A1 - Sensor assembly for determining a number of rotations of a permanent magnet - Google Patents

Sensor assembly for determining a number of rotations of a permanent magnet Download PDF

Info

Publication number
WO2018041296A1
WO2018041296A1 PCT/DE2017/100676 DE2017100676W WO2018041296A1 WO 2018041296 A1 WO2018041296 A1 WO 2018041296A1 DE 2017100676 W DE2017100676 W DE 2017100676W WO 2018041296 A1 WO2018041296 A1 WO 2018041296A1
Authority
WO
WIPO (PCT)
Prior art keywords
permanent magnet
magnetic field
sensor
distance
field direction
Prior art date
Application number
PCT/DE2017/100676
Other languages
German (de)
French (fr)
Inventor
Jean-Francois Heyd
Wai-Wai Buchet
Original Assignee
Schaeffler Technologies AG & Co. KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schaeffler Technologies AG & Co. KG filed Critical Schaeffler Technologies AG & Co. KG
Priority to CN201780046459.7A priority Critical patent/CN109564106B/en
Priority to KR1020197005514A priority patent/KR102462298B1/en
Priority to DE112017004298.4T priority patent/DE112017004298A5/en
Priority to US16/316,811 priority patent/US10739163B2/en
Publication of WO2018041296A1 publication Critical patent/WO2018041296A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/142Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices
    • G01D5/145Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices influenced by the relative movement between the Hall device and magnetic fields
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D23/00Details of mechanically-actuated clutches not specific for one distinct type
    • F16D23/02Arrangements for synchronisation, also for power-operated clutches
    • F16D23/08Arrangements for synchronisation, also for power-operated clutches with a blocking mechanism that only releases the clutching member on synchronisation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D23/00Details of mechanically-actuated clutches not specific for one distinct type
    • F16D23/12Mechanical clutch-actuating mechanisms arranged outside the clutch as such
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D28/00Electrically-actuated clutches
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H25/00Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms
    • F16H25/18Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms for conveying or interconverting oscillating or reciprocating motions
    • F16H25/20Screw mechanisms
    • F16H25/2015Means specially adapted for stopping actuators in the end position; Position sensing means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/02Permanent magnets [PM]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D23/00Details of mechanically-actuated clutches not specific for one distinct type
    • F16D23/02Arrangements for synchronisation, also for power-operated clutches
    • F16D23/04Arrangements for synchronisation, also for power-operated clutches with an additional friction clutch
    • F16D23/06Arrangements for synchronisation, also for power-operated clutches with an additional friction clutch and a blocking mechanism preventing the engagement of the main clutch prior to synchronisation
    • F16D2023/0643Synchro friction clutches with flat plates, discs or lamellae
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D23/00Details of mechanically-actuated clutches not specific for one distinct type
    • F16D23/12Mechanical clutch-actuating mechanisms arranged outside the clutch as such
    • F16D2023/123Clutch actuation by cams, ramps or ball-screw mechanisms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2300/00Special features for couplings or clutches
    • F16D2300/18Sensors; Details or arrangements thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H25/00Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms
    • F16H25/18Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms for conveying or interconverting oscillating or reciprocating motions
    • F16H25/20Screw mechanisms
    • F16H25/22Screw mechanisms with balls, rollers, or similar members between the co-operating parts; Elements essential to the use of such members
    • F16H25/2247Screw mechanisms with balls, rollers, or similar members between the co-operating parts; Elements essential to the use of such members with rollers
    • F16H25/2252Planetary rollers between nut and screw
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D2205/00Indexing scheme relating to details of means for transferring or converting the output of a sensing member
    • G01D2205/20Detecting rotary movement
    • G01D2205/26Details of encoders or position sensors specially adapted to detect rotation beyond a full turn of 360°, e.g. multi-rotation

Definitions

  • the invention relates to a sensor arrangement for determining a number of revolutions of a permanent magnet.
  • the permanent magnet is in particular arranged rotatable relative to a stationary first sensor.
  • the sensor arrangement is provided for determining a number of revolutions of a drive unit of an actuator, preferably a clutch actuator.
  • the clutch actuator is in particular for actuating a clutch, for. B. a friction clutch, a motor vehicle.
  • the drive unit is in particular a rotor of an electric motor, which is connected in a rotationally fixed manner to the permanent magnet, so that the number of revolutions of the rotor can be determined.
  • On the number of revolutions of the rotor is in particular a position of a displaceable in an axial direction, actuation unit of the actuator along the axial direction determinable.
  • the object of the present invention is to at least partially solve the problems known from the prior art.
  • a particularly suitable sensor arrangement for determining a number of revolutions of a permanent magnet is to be proposed, wherein the number of revolutions of a drive unit of an actuator should be determinable over the number of revolutions of the permanent magnet.
  • the object is solved by the features of the independent claim.
  • Advantageous developments are the subject of the dependent claims. The features listed individually in the claims can be combined in a technologically meaningful manner and can be supplemented by explanatory facts from the description and details of the figures, with further embodiments of the invention are shown.
  • the invention relates to a sensor arrangement for determining a number of revolutions of a permanent magnet, wherein end faces of the permanent magnet each lie in an X-Y plane and a central axis extends transversely to the X-Y plane and coaxial with a rotation axis of the permanent magnet; wherein the permanent magnet has exactly two poles arranged in the X-Y plane on opposite sides of the permanent magnet so that the permanent magnet is diametrically magnetized; wherein the permanent magnet has an opening coaxial with the central axis; wherein an inner peripheral surface and an outer peripheral surface each extend substantially parallel to the central axis; wherein a, relative to the rotatable about the axis of rotation rotatable permanent magnet arranged first sensor in an axial direction, that is parallel to the axis of rotation, at a distance from the permanent magnet and in a radial direction radially outside the outer peripheral surface is arranged at a distance from the axis of rotation; wherein the distance is selected such that a vector sum of a
  • the distance between the axis of rotation and a center of the first sensor along the radial direction is determined.
  • a magnetic field of the permanent magnet has a magnetic flux that can be represented at any position in the magnetic field by a vector; wherein the vector comprises a tangential magnetic field direction, a radial magnetic field direction and a normal magnetic field direction; wherein the tangential magnetic field direction is parallel to the XY plane and parallel to an orientation of the poles; in which the radial magnetic field direction is parallel to the XY plane and transverse to the orientation of the poles; wherein the normal magnetic field direction is transverse to the tangential magnetic field direction and the radial magnetic field direction; wherein the first sensor is a multi-turn sensor suitable for determining a number of revolutions of the permanent magnet, the first sensor for determining the number of revolutions detecting magnetic field directions of magnetic flux in the radial magnetic field direction and the tangential magnetic field direction.
  • the inner peripheral surface and / or the outer peripheral surface may have a different shape from a parallel extension to the central axis, z. B. a curvature or conicity or the like.
  • the permanent magnet in particular has a substantially hollow cylindrical shape and a central axis extending between two, in particular parallel to each other end faces along a rotation axis.
  • the permanent magnet is diametrically magnetized, i. H. the two magnetic poles are each disposed on an outer circumferential surface, on opposite sides of the permanent magnet.
  • the poles can be connected by a straight line that intersects the axis of rotation of the permanent magnet.
  • the opening arranged coaxially with the central axis extends from the first end side to the second end side.
  • the inner peripheral surface formed by the opening extends parallel to the central axis and is in particular circular.
  • the outer peripheral surface is in particular circular.
  • the first limit is 12 mT [MilliTesla], preferably 15 mT, and the second limit is 37 mT, preferably 35 mT.
  • the diameter of the outer peripheral surface is in particular an average diameter. That if deviations from a circular shape or from an outer peripheral surface parallel to the rotation axis are present, the average diameter, averaged by surface portions arranged at different diameters, can be used to determine the diameter of the outer circumferential surface.
  • the distance is determined between each other, along the axial direction, nearest points of the first sensor and permanent magnet.
  • the first sensor with a maximum deviation of 10% of the determined distance from the axis of rotation is to be arranged.
  • the permanent magnet between the end faces has a thickness of 3 to 6 mm.
  • the arrangement of the first sensor at a predetermined distance from the axis of rotation or to the outer peripheral surface of the permanent magnet surprisingly leads to a smaller difference between a minimum vector sum and a maximum vector sum of the magnetic flux density in the radial magnetic field direction and the tangential magnetic field direction, in particular over the service life of the permanent magnet and taking into account the case of use occurring tolerances. Furthermore, a smaller spread of the vector sum occurs.
  • tolerances occurring in the application in particular tolerances with respect to the distance in the radial direction and with respect to a distance in the axial direction between the first sensor and the permanent magnet, which may occur during assembly of the sensor arrangement or when arranged in an actuator and the possibly can additionally vary during rotation of the permanent magnet, lead to larger errors in the measurement of the number of revolutions of the permanent magnet.
  • the difference between the minimum vector sum and the maximum vector sum could be significantly reduced.
  • the sensor arrangement comprises a second sensor, which is arranged stationary relative to the rotatable permanent magnet, wherein the second sensor is a single-turn sensor which is suitable for determining an angular position within a single revolution of the permanent magnet.
  • the first sensor and the second sensor detect differently aligned magnetic fluxes.
  • the second sensor detects the exact angular position of the permanent magnet within one revolution and the first sensor the number of revolutions. Together, such a precise angular position or a position along an axial direction of an actuator can be provided.
  • the first and the second sensor in the axial direction, ie parallel to the axis of rotation, equally spaced from the permanent magnet, in particular in a common XY plane.
  • an actuator at least comprising a shaft having a rotation axis and a sensor arrangement according to the invention, wherein the permanent magnet is arranged coaxially to the shaft and rotatably connected to the shaft.
  • the actuator is a clutch actuator, wherein the actuator comprises a drive unit as a shaft and an actuating unit, wherein the actuating unit is displaceable by an rotation of the drive unit along an axial direction, wherein at least the number of revolutions of the drive unit and thus a position of the Actuator along the axial direction can be determined.
  • the actuator comprises a planetary roller screw (PWG) as an actuating unit.
  • PWG planetary roller screw
  • Such an actuator with a Planetenskylzgewindespindel is z. B. from WO 2015/1 17612 A1, which is hereby incorporated by reference in its entirety in terms of the structure of the actuator proposed therein.
  • the actuator comprises an electric motor with a stator and a rotor, wherein the rotor forms the shaft.
  • the rotor is rotatably connected to a sleeve of a planetary gear, which comprises the Planetendoilzgewindespindel, and supported in the sleeve planet carriers, so that a rotatably supported Planetenannalzgewindespindel upon rotation of the rotor and the sleeve supported in the planet carrier in the axial direction is.
  • the Planetenskylzgewindespindel in this case forms the actuator of the actuator.
  • FIGS. show particularly preferred embodiments, to which the invention is not limited.
  • the figures and in particular the illustrated proportions are only schematic.
  • Like reference numerals designate like objects. Show it: 1 shows an actuator with a sensor arrangement in a side view in section;
  • FIG. 3 shows the sensor arrangement from FIG. 2 in a side view in section
  • FIG. 4 shows the sensor arrangement from FIGS. 2 and 3 in a further side view in FIG
  • FIG. 5 shows the course of the magnetic flux density of the magnetic flux in the magnetic field directions over a distance from the axis of rotation.
  • a hollow cylindrical permanent magnet 1 is arranged coaxially to a rotation axis 8.
  • a stationary relative to the rotatable permanent magnet 1 second sensor 50 is used to determine the angular position 3 of the permanent magnet.
  • the second sensor 50 is a single-turn sensor having a measuring range of 360 degrees.
  • a single-turn sensor is a sensor that can not detect a number of revolutions 36, as it only resolves an angular range of 360 degrees (ie it detects an angular position within one revolution 36).
  • the second sensor 50 is arranged in a radial direction 35 at a distance from the axis of rotation 8.
  • the second sensor 50 is thus not arranged on the axis of rotation 8 of the permanent magnet 1, but at a distance from the axis of rotation 8.
  • the second sensor 50 is arranged in the axial direction 34, ie parallel to the axis of rotation 8, at a distance from the permanent magnet 1 ,
  • the sensor arrangement 3 comprises a first sensor 3 arranged stationary relative to the rotatable permanent magnet 1, the first sensor 33 being a multi-turn sensor suitable for determining a number of revolutions 36 of the permanent magnet 1.
  • the first sensor 33 is in the axial direction 34, ie parallel to the axis of rotation 8, at a distance 19 from the permanent magnet 1 and in the radial direction 35 radially outward of the second sensor 50 and at a distance 20 from the axis of rotation 8.
  • the first sensor 33 detects the magnetic field directions of the magnetic flux 27 in the radial magnetic field direction 30 and the tangential magnetic field direction 29 for determining the number of revolutions 36.
  • the second sensor 50 thus detects the exact angular position of the permanent magnet 1 within one revolution 36 and the first sensor 33 the number of revolutions 36. Together, a precise angular position or a position 42 along an axial direction 34 of an actuator 37 can be provided.
  • the actuator 37 comprises a shaft 38 with a rotation axis 8 and a sensor arrangement 2, wherein the permanent magnet 1 is arranged coaxially to the shaft 38 and rotatably connected to the shaft 38.
  • the actuator 37 is a clutch actuator, wherein the actuator 37 comprises a drive unit 39 as a shaft 38 and an actuator unit 40, wherein the actuator unit 40 by a rotation 41 of the drive unit 39 along the axial direction 34 is displaceable, wherein at least the number of revolutions of the drive unit 39 and thus a position 42 of the actuating unit 40 along the axial direction 34 can be determined.
  • Actuator 37 comprises a planetary roller screw spindle (PWG) 43 as actuating unit 40.
  • PWG planetary roller screw spindle
  • Such an actuator 37 with a planetary roller screw 43 is known from WO 2015/1 17612 A1, which is hereby incorporated by reference in its entirety with respect to the construction of the actuator proposed therein.
  • the actuator 37 comprises an electric motor 45 with a stator 46 and a rotor 47, wherein the rotor 47 forms the shaft 38.
  • the rotor 47 is rotatably connected to a sleeve 48 of the Planetenxxlzgewindespindel 43 comprehensive planetary gear 44, and supported in the sleeve 48 planet carriers 49 so that a rotatably supported Planetenskylzgewindespindel 43 upon rotation 41 of the rotor 47 and supported in the sleeve 48 Planet carrier 49 in the axial direction 34 is displaced.
  • the Planetenskylzgewindespindel 43 forms the actuator unit 40 of the actuator 37th
  • FIG. 2 shows a sensor arrangement 2 in a plan view along the axial direction 34.
  • FIG. 3 shows the sensor arrangement 2 from FIG. 2 in a side view in section AA.
  • FIGS. 2 and 3 will be described jointly below.
  • the sensor arrangement 2 comprises the first sensor 33 and the permanent magnet 1.
  • the end faces 4, 5 of the permanent magnet 1 lie in an XY plane 6, and a central axis 7 extends transversely to the XY plane 6 and coaxially with a rotation axis 8 of the permanent magnet 1.
  • the permanent magnet 1 has exactly two poles 9, 10, which are arranged in the XY plane 6 on opposite sides 1 1, 12 of the permanent magnet 1, so that the permanent magnet 1 is diametrically magnetized.
  • a magnetic field 26 of the permanent magnet 1 has a magnetic flux 27 which can be represented at any position 28 in the magnetic field 26 by a vector.
  • the vector comprises a tangential magnetic field direction 29, a radial magnetic field direction 30 and a normal (axial) magnetic field direction 31; the tangential magnetic field direction 29 being parallel to the XY plane 6 and parallel to the orientation 32 of the poles 9, 10; wherein the radial magnetic field direction 30 is parallel to the X-Y plane 6 and transverse to the orientation 32 of the poles 9, 10; wherein the normal magnetic field direction 31 extends transversely to the tangential magnetic field direction 29 and the radial magnetic field direction 30.
  • the permanent magnet 1 shown here is a hollow cylinder with an outer circumferential line 16 in circular form 18, ie with a diameter 25, and a central axis 7 which extends between two mutually parallel end faces 4, 5 along a rotation axis 8.
  • the permanent magnet 1 is diametrically magnetized, that is, the two magnetic poles 9, 10 are respectively disposed on the outer peripheral surface 15, on opposite sides 1 1, 12 of the permanent magnet 1.
  • the poles 9, 10 can be connected to each other by a straight line that intersects the central axis 8 of the permanent magnet 1 (see arrow for alignment 32).
  • the first sensor 33 is arranged in a radial direction 35 at a distance 20 from the axis of rotation 8 and from the permanent magnet or its outer circumferential surface 15.
  • the first sensor 33 is thus not arranged on the axis of rotation 8 of the permanent magnet 1, but at a distance 20 from the axis of rotation 8.
  • the first sensor 33 is in the axial direction 34, ie parallel to the axis of rotation 8, at a distance 19 from the permanent magnet 1 arranged.
  • the permanent magnet 1 shown here has coaxial with the central axis 7 an opening 13, wherein an inner peripheral surface 14 and an outer peripheral surface 15 each extend parallel to the central axis 7.
  • the 4 shows the sensor arrangement 2 from FIGS. 2 and 3 in a further side view in section.
  • the distance 19 is determined between each other, along the axial direction 34, nearest points of the first sensor 33 and permanent magnet 1.
  • the permanent magnet 1 between the end faces 4, 5 has a thickness 53 of 3 to 6 mm.
  • the distance 20 is determined between the axis of rotation 8 and a center of the first sensor 33 along the radial direction 35.
  • FIG. 5 shows the course of the magnetic flux density 51 of the magnetic flux 27 in the magnetic field directions 29, 30 over a distance 20 of the first sensor 33 from the axis of rotation 8.
  • the wide curves for the radial flux density 21 and the tangential flux density 22 already take into account a possible Deviation of a distance 19 of +/- 0.5 mm (see shaded representation of the permanent magnet in Fig. 4).
  • the first sensor 33 is to be arranged opposite the axis of rotation 33 (see shaded representation of the first sensor 33 in FIG. 4).

Abstract

The invention relates to a sensor assembly (2) for determining a number of rotations (36) of a permanent magnet (1). Each end surface (4, 5) of the permanent magnet lies on an X-Y plane (6), and a central axis (7) extends transversely to the X-Y plane and coaxially to a rotational axis (8) of the permanent magnet. The permanent magnet has an opening (13) coaxially to the central axis and precisely two poles (9, 10) which are arranged on opposite sides (11, 12) of the permanent magnet on the X-Y plane such that the permanent magnet is magnetized diametrically. An internal circumferential surface (14) and an external circumferential surface (15) each extends substantially parallel to the central axis. A first sensor (33) is arranged in a stationary manner relative to the permanent magnet, which can be rotated about the rotational axis, wherein the first sensor is arranged at a distance from the permanent magnet in an axial direction (34), i.e. parallel to the rotational axis, and at a distance (20) from the rotational axis in a radial direction (35) radially outside of the external circumferential surface. The distance is selected such that a vector sum of a radial flux density (21) and a tangential flux density (22) do not fall below a first threshold (23) and do not exceed a second threshold (24).

Description

Sensoranordnung zur Bestimmung einer Anzahl von Umdrehungen eines  Sensor arrangement for determining a number of revolutions of a
Permanentmagneten  permanent magnets
Die Erfindung betrifft eine Sensoranordnung zur Bestimmung einer Anzahl von Umdrehungen eines Permanentmagneten. Der Permanentmagnet ist insbesondere drehbar gegenüber einem ortsfesten ersten Sensor angeordnet. Insbesondere ist die Sensoranordnung zur Bestimmung einer Anzahl von Umdrehungen einer Antriebseinheit eines Aktors, bevorzugt eines Kupplungsaktors, vorgesehen. Der Kupplungsaktor ist insbesondere zur Betätigung einer Kupplung, z. B. einer Reibkupplung, eines Kraftfahrzeuges vorgesehen. Die Antriebseinheit ist insbesondere ein Rotor eines Elektromotors, der mit dem Permanentmagneten drehfest verbunden ist, so dass Anzahl von Umdrehungen des Rotors bestimmbar ist. Über die Anzahl von Umdrehungen des Rotors ist insbesondere eine Stellung einer, in einer axialen Richtung verlagerbaren, Betätigungseinheit des Aktors entlang der axialen Richtung bestimmbar. The invention relates to a sensor arrangement for determining a number of revolutions of a permanent magnet. The permanent magnet is in particular arranged rotatable relative to a stationary first sensor. In particular, the sensor arrangement is provided for determining a number of revolutions of a drive unit of an actuator, preferably a clutch actuator. The clutch actuator is in particular for actuating a clutch, for. B. a friction clutch, a motor vehicle. The drive unit is in particular a rotor of an electric motor, which is connected in a rotationally fixed manner to the permanent magnet, so that the number of revolutions of the rotor can be determined. On the number of revolutions of the rotor is in particular a position of a displaceable in an axial direction, actuation unit of the actuator along the axial direction determinable.
Bei Kupplungsaktoren ist eine genaue Bestimmung der axialen Position einer Betätigungseinheit bzw. der Winkelposition z. B. eines Rotors notwendig. Bei neuen Konstruktionen solcher Kupplungsaktoren ist es nun notwendig, die dafür verwendeten Sensoren in einem Abstand von einer Drehachse anzuordnen. Dabei müssen auch dynamische Toleranzen (also im Betrieb des Kupplungsaktors auftretende Abweichungen von einer Ausgangslage) berücksichtigt werden, z. B. eine Exzentrizität einzelner Komponenten sowie ein sich ändernder Luftspalt zwischen erstem Sensor und einem verwendeten Permanentmagneten. In clutch actuators an accurate determination of the axial position of an actuator or the angular position z. B. a rotor necessary. In new constructions of such clutch actuators, it is now necessary to arrange the sensors used for this purpose at a distance from an axis of rotation. In this case, dynamic tolerances (ie occurring during operation of the clutch actuator deviations from a starting position) must be taken into account, for. B. an eccentricity of individual components and a changing air gap between the first sensor and a permanent magnet used.
Hiervon ausgehend liegt der vorliegenden Erfindung die Aufgabe zugrunde, die aus dem Stand der Technik bekannten Probleme zumindest teilweise zu lösen. Insbesondere soll eine besonders geeignete Sensoranordnung zur Bestimmung einer Anzahl von Umdrehungen eines Permanentmagneten vorgeschlagen werden, wobei über die Anzahl von Umdrehungen des Permanentmagneten die Anzahl von Umdrehungen einer Antriebseinheit eines Aktors bestimmbar sein soll. Die Aufgabe wird durch die Merkmale des unabhängigen Patentanspruchs gelöst. Vorteilhafte Weiterbildungen sind Gegenstand der abhängigen Patentansprüche. Die in den Patentansprüchen einzeln aufgeführten Merkmale sind in technologisch sinnvoller Weise miteinander kombinierbar und können durch erläuternde Sachverhalte aus der Beschreibung und Details aus den Figuren ergänzt werden, wobei weitere Ausführungsvarianten der Erfindung aufgezeigt werden. Proceeding from this, the object of the present invention is to at least partially solve the problems known from the prior art. In particular, a particularly suitable sensor arrangement for determining a number of revolutions of a permanent magnet is to be proposed, wherein the number of revolutions of a drive unit of an actuator should be determinable over the number of revolutions of the permanent magnet. The object is solved by the features of the independent claim. Advantageous developments are the subject of the dependent claims. The features listed individually in the claims can be combined in a technologically meaningful manner and can be supplemented by explanatory facts from the description and details of the figures, with further embodiments of the invention are shown.
Die Erfindung betrifft eine Sensoranordnung zur Bestimmung einer Anzahl von Umdrehungen eines Permanentmagneten, wobei Stirnflächen des Permanentmagneten jeweils in einer X-Y-Ebene liegen und sich eine zentrale Achse quer zu der X-Y-Ebene und koaxial zu einer Drehachse des Permanentmagneten erstreckt; wobei der Permanentmagnet genau zwei Pole aufweist, die in der X-Y-Ebene an einander gegenüberliegenden Seiten des Permanentmagneten angeordnet sind, so dass der Permanentmagnet diametral magnetisiert ist; wobei der Permanentmagnet koaxial zu der zentralen Achse eine Öffnung aufweist; wobei eine Innenumfangsfläche und eine Au- ßenumfangsfläche sich jeweils im Wesentlichen parallel zu der zentralen Achse erstrecken; wobei ein, gegenüber dem um die Drehachse drehbaren Permanentmagnet ortsfest angeordneter erster Sensor in einer axialen Richtung, also parallel zur Drehachse, in einer Distanz von dem Permanentmagneten und in einer radialen Richtung radial außerhalb der Außenumfangsfläche in einem Abstand von der Drehachse angeordnet ist; wobei der Abstand so gewählt ist, dass eine Vektorsumme einer radialen Flussdichte und einer tangentialen Flussdichte einen ersten Grenzwert nicht unterschreitet und einen zweiten Grenzwert nicht überschreitet. The invention relates to a sensor arrangement for determining a number of revolutions of a permanent magnet, wherein end faces of the permanent magnet each lie in an X-Y plane and a central axis extends transversely to the X-Y plane and coaxial with a rotation axis of the permanent magnet; wherein the permanent magnet has exactly two poles arranged in the X-Y plane on opposite sides of the permanent magnet so that the permanent magnet is diametrically magnetized; wherein the permanent magnet has an opening coaxial with the central axis; wherein an inner peripheral surface and an outer peripheral surface each extend substantially parallel to the central axis; wherein a, relative to the rotatable about the axis of rotation rotatable permanent magnet arranged first sensor in an axial direction, that is parallel to the axis of rotation, at a distance from the permanent magnet and in a radial direction radially outside the outer peripheral surface is arranged at a distance from the axis of rotation; wherein the distance is selected such that a vector sum of a radial flux density and a tangential flux density does not fall below a first limit value and does not exceed a second limit value.
Insbesondere wird der Abstand zwischen Drehachse und einer Mitte des ersten Sensors entlang der radialen Richtung bestimmt. In particular, the distance between the axis of rotation and a center of the first sensor along the radial direction is determined.
Insbesondere weist ein Magnetfeld des Permanentmagneten einen magnetischen Fluss aufweist, der an jeder Position im Magnetfeld durch einen Vektor darstellbar ist; wobei der Vektor eine tangentiale Magnetfeldrichtung, eine radiale Magnetfeldrichtung und eine normale Magnetfeldrichtung umfasst; wobei die tangentiale Magnetfeldrichtung parallel zur X-Y-Ebene und parallel zu einer Ausrichtung der Pole verläuft; wobei die radiale Magnetfeldrichtung parallel zur X-Y-Ebene und quer zur Ausrichtung der Pole verläuft; wobei die normale Magnetfeldrichtung quer zur der tangentialen Magnetfeldrichtung und der radialen Magnetfeldrichtung verläuft; wobei der erste Sensor ein Multiturnsensor ist, der zur Bestimmung einer Anzahl von Umdrehungen des Permanentmagneten geeignet ist, wobei der erste Sensor zur Bestimmung der Anzahl von Umdrehungen die Magnetfeldrichtungen des magnetischen Flusses in der radialen Magnetfeldrichtung und der tangentialen Magnetfeldrichtung erfasst. In particular, a magnetic field of the permanent magnet has a magnetic flux that can be represented at any position in the magnetic field by a vector; wherein the vector comprises a tangential magnetic field direction, a radial magnetic field direction and a normal magnetic field direction; wherein the tangential magnetic field direction is parallel to the XY plane and parallel to an orientation of the poles; in which the radial magnetic field direction is parallel to the XY plane and transverse to the orientation of the poles; wherein the normal magnetic field direction is transverse to the tangential magnetic field direction and the radial magnetic field direction; wherein the first sensor is a multi-turn sensor suitable for determining a number of revolutions of the permanent magnet, the first sensor for determining the number of revolutions detecting magnetic field directions of magnetic flux in the radial magnetic field direction and the tangential magnetic field direction.
Insbesondere können die Innenumfangsfläche und/oder die Außenumfangsfläche eine, von einer parallelen Erstreckung zu der zentralen Achse abweichende Gestalt aufweisen, z. B. eine Krümmung oder Konizität oder ähnliches. In particular, the inner peripheral surface and / or the outer peripheral surface may have a different shape from a parallel extension to the central axis, z. B. a curvature or conicity or the like.
Der Permanentmagnet hat insbesondere eine im Wesentlichen hohlzylindrische Form und eine zentrale Achse, die sich zwischen zwei, insbesondere zueinander parallelen Stirnflächen entlang einer Drehachse erstreckt. Der Permanentmagnet ist diametral magnetisiert, d. h. die beiden magnetischen Pole sind jeweils an einer Außenumfangsfläche, an einander gegenüberliegenden Seiten des Permanentmagneten angeordnet. Die Pole können durch eine Gerade, die die Drehachse des Permanentmagneten schneidet, miteinander verbunden werden. Die Lage der Magnetfeldrichtungen, der Ebene und der zentralen Achse werden in der Figurenbeschreibung weiter erläutert. The permanent magnet in particular has a substantially hollow cylindrical shape and a central axis extending between two, in particular parallel to each other end faces along a rotation axis. The permanent magnet is diametrically magnetized, i. H. the two magnetic poles are each disposed on an outer circumferential surface, on opposite sides of the permanent magnet. The poles can be connected by a straight line that intersects the axis of rotation of the permanent magnet. The position of the magnetic field directions, the plane and the central axis are further explained in the figure description.
Die koaxial zu der zentralen Achse angeordnete Öffnung erstreckt sich von der ersten Stirnseite zu der zweiten Stirnseite. Die durch die Öffnung gebildete Innenumfangsfläche erstreckt sich parallel zu der zentralen Achse und ist insbesondere kreisförmig. The opening arranged coaxially with the central axis extends from the first end side to the second end side. The inner peripheral surface formed by the opening extends parallel to the central axis and is in particular circular.
Die Außenumfangsfläche ist insbesondere kreisförmig. The outer peripheral surface is in particular circular.
Insbesondere beträgt der erste Grenzwert 12 mT [MilliTesla], bevorzugt 15 mT, und der zweite Grenzwert 37 mT, bevorzugt 35 mT. In particular, the first limit is 12 mT [MilliTesla], preferably 15 mT, and the second limit is 37 mT, preferably 35 mT.
Insbesondere ist der Abstand durch Abstand = k * Durchmesser Außenumfangsfläche + R0 bestimmt, wobei k und R0 in Abhängigkeit von zumindest dem Durchmesser der Außenumfangsfläche und der Distanz bestimmt sind. In particular, the distance is through Distance = k * diameter outer peripheral surface + R 0 determined, where k and R 0 are determined depending on at least the diameter of the outer peripheral surface and the distance.
Der Durchmesser der Außenumfangsfläche ist insbesondere ein durchschnittlicher Durchmesser. D.h. sollten Abweichungen von einer Kreisform oder von einer zu der Drehachse parallelen Außenumfangsfläche vorliegen, kann der durchschnittliche Durchmesser, gemittelt nach Flächenanteilen, die auf unterschiedlichen Durchmessern angeordnet sind, zur Bestimmung des Durchmessers der Außenumfangsfläche herangezogen werden. The diameter of the outer peripheral surface is in particular an average diameter. That if deviations from a circular shape or from an outer peripheral surface parallel to the rotation axis are present, the average diameter, averaged by surface portions arranged at different diameters, can be used to determine the diameter of the outer circumferential surface.
Die Distanz wird insbesondere zwischen den einander, entlang der axialen Richtung, nächsten Punkten von erstem Sensor und Permanentmagnet bestimmt. In particular, the distance is determined between each other, along the axial direction, nearest points of the first sensor and permanent magnet.
Insbesondere gilt bei einer Distanz zwischen 3 und 6 mm [Millimeter] und einem Durchmesser der Außenumfangsfläche zwischen 18 und 30 mm für k und R0: In particular, at a distance between 3 and 6 mm [millimeter] and a diameter of the outer peripheral surface between 18 and 30 mm for k and R 0 :
k = 0,36 und k = 0.36 and
Ro = 7,45. Ro = 7.45.
Insbesondere ist der erste Sensor mit einer maximalen Abweichung von 10 % von dem ermittelten Abstand gegenüber der Drehachse anzuordnen. In particular, the first sensor with a maximum deviation of 10% of the determined distance from the axis of rotation is to be arranged.
Insbesondere weist der Permanentmagnet zwischen den Stirnflächen eine Dicke von 3 bis 6 mm auf. In particular, the permanent magnet between the end faces has a thickness of 3 to 6 mm.
Die Anordnung des ersten Sensors in einem vorbestimmten Abstand zur Drehachse bzw. zur Außenumfangsfläche des Permanentmagnete führt überraschenderweise zu einer geringeren Differenz zwischen einer minimalen Vektorsumme und einer maximalen Vektorsumme der magnetischen Flussdichte in der radialen Magnetfeldrichtung und der tangentialen Magnetfeldrichtung, insbesondere über die Einsatzzeit bzw. Lebensdauer des Permanentmagneten und unter Berücksichtigung der im Einsatzfall auftretenden Toleranzen. Weiterhin tritt eine geringere Streuung der Vektorsumme auf. The arrangement of the first sensor at a predetermined distance from the axis of rotation or to the outer peripheral surface of the permanent magnet surprisingly leads to a smaller difference between a minimum vector sum and a maximum vector sum of the magnetic flux density in the radial magnetic field direction and the tangential magnetic field direction, in particular over the service life of the permanent magnet and taking into account the case of use occurring tolerances. Furthermore, a smaller spread of the vector sum occurs.
Die im Einsatzfall auftretenden Toleranzen (insbesondere Toleranzen hinsichtlich des Abstands in der radialen Richtung und hinsichtlich einer Distanz in der axialen Richtung zwischen dem ersten Sensor und dem Permanentmagneten), die bei Zusammenbau der Sensoranordnung bzw. bei Anordnung in einem Aktor auftreten können und die ggf. bei Drehung des Permanentmagneten zusätzlich variieren können, führen zu größeren Fehlern bei der Messung der Anzahl von Umdrehungen des Permanentmagneten. The tolerances occurring in the application (in particular tolerances with respect to the distance in the radial direction and with respect to a distance in the axial direction between the first sensor and the permanent magnet), which may occur during assembly of the sensor arrangement or when arranged in an actuator and the possibly can additionally vary during rotation of the permanent magnet, lead to larger errors in the measurement of the number of revolutions of the permanent magnet.
Infolge der Anordnung des ersten Sensors in einem berechneten Abstand von der Drehachse konnte die Differenz zwischen der minimalen Vektorsumme und der maximalen Vektorsumme deutlich reduziert werden. Due to the arrangement of the first sensor at a calculated distance from the rotation axis, the difference between the minimum vector sum and the maximum vector sum could be significantly reduced.
Insbesondere umfasst die Sensoranordnung einen, gegenüber dem drehbaren Permanentmagneten ortsfest angeordneten zweiten Sensor, wobei der zweite Sensor ein Singleturnsensor ist, der zur Bestimmung einer Winkelposition innerhalb einer einzigen Umdrehung des Permanentmagneten geeignet ist. In particular, the sensor arrangement comprises a second sensor, which is arranged stationary relative to the rotatable permanent magnet, wherein the second sensor is a single-turn sensor which is suitable for determining an angular position within a single revolution of the permanent magnet.
Bevorzugt erfassen der erste Sensor und der zweite Sensor unterschiedlich ausgerichtete magnetische Flüsse. Dabei erfasst der zweite Sensor die genaue Winkelposition des Permanentmagneten innerhalb einer Umdrehung und der erste Sensor die Anzahl der Umdrehungen. Zusammen kann so eine genaue Winkelposition bzw. eine Stellung entlang einer axialen Richtung eines Aktors bereitgestellt werden. Preferably, the first sensor and the second sensor detect differently aligned magnetic fluxes. The second sensor detects the exact angular position of the permanent magnet within one revolution and the first sensor the number of revolutions. Together, such a precise angular position or a position along an axial direction of an actuator can be provided.
Dabei wird für die Sensoranordnung lediglich ein Permanentmagnet benötigt, dessen Magnetfeld durch zwei Sensoren erfasst wird. In this case, only one permanent magnet is required for the sensor arrangement, whose magnetic field is detected by two sensors.
Bevorzugt sind der erste und der zweite Sensor in der axialen Richtung, also parallel zur Drehachse, gleichermaßen beabstandet von dem Permanentmagneten angeordnet, insbesondere in einer gemeinsamen X-Y-Ebene. Es wird weiter ein Aktor vorgeschlagen, zumindest umfassend eine Welle mit einer Drehachse sowie eine erfindungsgemäße Sensoranordnung, wobei der Permanentmagnet koaxial zur Welle angeordnet und drehfest mit der Welle verbunden ist. Preferably, the first and the second sensor in the axial direction, ie parallel to the axis of rotation, equally spaced from the permanent magnet, in particular in a common XY plane. It is further proposed an actuator, at least comprising a shaft having a rotation axis and a sensor arrangement according to the invention, wherein the permanent magnet is arranged coaxially to the shaft and rotatably connected to the shaft.
Insbesondere ist der Aktor ein Kupplungsaktor, wobei der Aktor eine Antriebseinheit als Welle und eine Betätigungseinheit umfasst, wobei die Betätigungseinheit durch eine Drehung der Antriebseinheit entlang einer axialen Richtung verlagerbar ist, wobei durch die Sensoranordnung zumindest die Anzahl von Umdrehungen der Antriebseinheit und damit eine Stellung der Betätigungseinheit entlang der axialen Richtung bestimmbar ist. In particular, the actuator is a clutch actuator, wherein the actuator comprises a drive unit as a shaft and an actuating unit, wherein the actuating unit is displaceable by an rotation of the drive unit along an axial direction, wherein at least the number of revolutions of the drive unit and thus a position of the Actuator along the axial direction can be determined.
Bevorzugt umfasst der Aktor eine Planetenwälzgewindespindel (PWG) als Betätigungseinheit. Ein solcher Aktor mit einer Planetenwälzgewindespindel ist z. B. aus der WO 2015/1 17612 A1 bekannt, die hinsichtlich des Aufbaus des dort vorgeschlagenen Aktors hiermit vollumfänglich in Bezug genommen wird. Preferably, the actuator comprises a planetary roller screw (PWG) as an actuating unit. Such an actuator with a Planetenwälzgewindespindel is z. B. from WO 2015/1 17612 A1, which is hereby incorporated by reference in its entirety in terms of the structure of the actuator proposed therein.
Insbesondere umfasst der Aktor einen Elektromotor mit einem Stator und einem Rotor, wobei der Rotor die Welle bildet. In particular, the actuator comprises an electric motor with a stator and a rotor, wherein the rotor forms the shaft.
Im Falle des PWG ist der Rotor mit einer Hülse eines Planetengetriebes, das die Planetenwälzgewindespindel umfasst, und den in der Hülse abgestützten Planetenträgern drehfest verbunden, so dass eine drehfest abgestützte Planetenwälzgewindespindel bei Drehung des Rotors und der in der Hülse abgestützten Planetenträger in der axialen Richtung verlagerbar ist. Die Planetenwälzgewindespindel bildet in diesem Fall die Betätigungseinheit des Aktors. In the case of the PWG, the rotor is rotatably connected to a sleeve of a planetary gear, which comprises the Planetenwälzgewindespindel, and supported in the sleeve planet carriers, so that a rotatably supported Planetenwälzgewindespindel upon rotation of the rotor and the sleeve supported in the planet carrier in the axial direction is. The Planetenwälzgewindespindel in this case forms the actuator of the actuator.
Die Erfindung sowie das technische Umfeld werden nachfolgend anhand der Figuren näher erläutert. Die Figuren zeigen besonders bevorzugte Ausführungsbeispiele, auf die die Erfindung jedoch nicht beschränkt ist. Insbesondere ist darauf hinzuweisen, dass die Figuren und insbesondere die dargestellten Größenverhältnisse nur schematisch sind. Gleiche Bezugszeichen bezeichnen gleiche Gegenstände. Es zeigen: Fig. 1 : einen Aktor mit einer Sensoranordnung in einer Seitenansicht im Schnitt; The invention and the technical environment will be explained in more detail with reference to FIGS. The figures show particularly preferred embodiments, to which the invention is not limited. In particular, it should be noted that the figures and in particular the illustrated proportions are only schematic. Like reference numerals designate like objects. Show it: 1 shows an actuator with a sensor arrangement in a side view in section;
Fig. 2: eine Sensoranordnung in einer Draufsicht; 2 shows a sensor arrangement in a plan view;
Fig. 3: die Sensoranordnung aus Fig. 2 in einer Seitenansicht im Schnitt; 3 shows the sensor arrangement from FIG. 2 in a side view in section;
Fig. 4: die Sensoranordnung aus Fig. 2 und 3 in einer weiteren Seitenansicht im 4 shows the sensor arrangement from FIGS. 2 and 3 in a further side view in FIG
Schnitt; und  Cut; and
Fig. 5: den Verlauf der magnetischen Flussdichte des magnetischen Flusses in den Magnetfeldrichtungen über einem Abstand von der Drehachse. 5 shows the course of the magnetic flux density of the magnetic flux in the magnetic field directions over a distance from the axis of rotation.
Fig. 1 zeigt einen Aktor 37 mit einer Sensoranordnung 3 in einer Seitenansicht im Schnitt. Ein hohlzylindrischer Permanentmagnet 1 ist koaxial zu einer Drehachse 8 angeordnet. Ein gegenüber dem drehbaren Permanentmagneten 1 ortsfest angeordneter zweiter Sensor 50 dient zur Bestimmung der Winkelposition 3 des Permanentmagneten 1 . Der zweite Sensor 50 ist ein Singleturnsensor, der einen Messbereich von 360 Winkelgrad aufweist. Ein Singleturnsensor ist ein Sensor, der keine Anzahl von Umdrehungen 36 erfassen kann, da er nur einen Winkelbereich von 360 Winkelgrad auflöst (er erfasst also eine Winkelposition innerhalb einer Umdrehung 36). 1 shows an actuator 37 with a sensor arrangement 3 in a side view in section. A hollow cylindrical permanent magnet 1 is arranged coaxially to a rotation axis 8. A stationary relative to the rotatable permanent magnet 1 second sensor 50 is used to determine the angular position 3 of the permanent magnet. 1 The second sensor 50 is a single-turn sensor having a measuring range of 360 degrees. A single-turn sensor is a sensor that can not detect a number of revolutions 36, as it only resolves an angular range of 360 degrees (ie it detects an angular position within one revolution 36).
Der zweite Sensor 50 ist in einer radialen Richtung 35 beabstandet von der Drehachse 8 angeordnet. Der zweite Sensor 50 ist also nicht auf der Drehachse 8 des Permanentmagneten 1 angeordnet, sondern in einem Abstand von der Drehachse 8. Der zweite Sensor 50 ist in der axialen Richtung 34, also parallel zur Drehachse 8, in einer Distanz von dem Permanentmagneten 1 angeordnet. The second sensor 50 is arranged in a radial direction 35 at a distance from the axis of rotation 8. The second sensor 50 is thus not arranged on the axis of rotation 8 of the permanent magnet 1, but at a distance from the axis of rotation 8. The second sensor 50 is arranged in the axial direction 34, ie parallel to the axis of rotation 8, at a distance from the permanent magnet 1 ,
Weiter umfasst die Sensoranordnung 3 einen, gegenüber dem drehbaren Permanentmagneten 1 ortsfest angeordneten ersten Sensor 3, wobei der erste Sensor 33 ein Multiturnsensor ist, der zur Bestimmung einer Anzahl von Umdrehungen 36 des Permanentmagneten 1 geeignet ist. Der erste Sensor 33 ist in der axialen Richtung 34, also parallel zur Drehachse 8, in einer Distanz 19 von dem Permanentmagneten 1 und in der radialen Richtung 35 radial außen von dem zweiten Sensor 50 und in einem Abstand 20 von der Drehachse 8 angeordnet. Der erste Sensor 33 erfasst zur Bestimmung der Anzahl von Umdrehungen 36 die Magnetfeldrichtungen des magnetischen Flusses 27 in der radialen Magnetfeldrichtung 30 und der tangentialen Magnetfeldrichtung 29. Furthermore, the sensor arrangement 3 comprises a first sensor 3 arranged stationary relative to the rotatable permanent magnet 1, the first sensor 33 being a multi-turn sensor suitable for determining a number of revolutions 36 of the permanent magnet 1. The first sensor 33 is in the axial direction 34, ie parallel to the axis of rotation 8, at a distance 19 from the permanent magnet 1 and in the radial direction 35 radially outward of the second sensor 50 and at a distance 20 from the axis of rotation 8. The first sensor 33 detects the magnetic field directions of the magnetic flux 27 in the radial magnetic field direction 30 and the tangential magnetic field direction 29 for determining the number of revolutions 36.
Der zweite Sensor 50 erfasst also die genaue Winkelposition des Permanentmagneten 1 innerhalb einer Umdrehung 36 und der erste Sensor 33 die Anzahl der Umdrehungen 36. Zusammen kann so eine genaue Winkelposition bzw. eine Stellung 42 entlang einer axialen Richtung 34 eines Aktors 37 bereitgestellt werden. The second sensor 50 thus detects the exact angular position of the permanent magnet 1 within one revolution 36 and the first sensor 33 the number of revolutions 36. Together, a precise angular position or a position 42 along an axial direction 34 of an actuator 37 can be provided.
Dabei wird für die Sensoranordnung 2 lediglich ein Permanentmagnet 1 benötigt, dessen Magnetfeld 26 durch zwei Sensoren 33, 50 erfasst wird. In this case, only one permanent magnet 1 is required for the sensor arrangement 2, whose magnetic field 26 is detected by two sensors 33, 50.
Der Aktor 37 umfasst eine Welle 38 mit einer Drehachse 8 sowie eine Sensoranordnung 2, wobei der Permanentmagnet 1 koaxial zur Welle 38 angeordnet und drehfest mit der Welle 38 verbunden ist. The actuator 37 comprises a shaft 38 with a rotation axis 8 and a sensor arrangement 2, wherein the permanent magnet 1 is arranged coaxially to the shaft 38 and rotatably connected to the shaft 38.
Der Aktor 37 ist ein Kupplungsaktor, wobei der Aktor 37 eine Antriebseinheit 39 als Welle 38 und eine Betätigungseinheit 40 umfasst, wobei die Betätigungseinheit 40 durch eine Drehung 41 der Antriebseinheit 39 entlang der axialen Richtung 34 verlagerbar ist, wobei durch die Sensoranordnung 2 zumindest die Anzahl von Umdrehungen der Antriebseinheit 39 und damit eine Stellung 42 der Betätigungseinheit 40 entlang der axialen Richtung 34 bestimmbar ist. The actuator 37 is a clutch actuator, wherein the actuator 37 comprises a drive unit 39 as a shaft 38 and an actuator unit 40, wherein the actuator unit 40 by a rotation 41 of the drive unit 39 along the axial direction 34 is displaceable, wherein at least the number of revolutions of the drive unit 39 and thus a position 42 of the actuating unit 40 along the axial direction 34 can be determined.
Der Aktor 37 umfasst eine Planetenwälzgewindespindel (PWG) 43 als Betätigungseinheit 40. Ein solcher Aktor 37 mit einer Planetenwälzgewindespindel 43 ist aus der WO 2015/1 17612 A1 bekannt, die hinsichtlich des Aufbaus des dort vorgeschlagenen Aktors hiermit vollumfänglich in Bezug genommen wird. Der Aktor 37 umfasst einen Elektromotor 45 mit einem Stator 46 und einem Rotor 47, wobei der Rotor 47 die Welle 38 bildet. Der Rotor 47 ist mit einer Hülse 48, des die Planetenwälzgewindespindel 43 umfassenden Planetengetriebes 44, und mit den in der Hülse 48 abgestützten Planetenträgern 49 drehfest verbunden, so dass eine drehfest abgestützte Planetenwälzgewindespindel 43 bei Drehung 41 des Rotors 47 und der in der Hülse 48 abgestützten Planetenträger 49 in der axialen Richtung 34 verlagerbar ist. Die Planetenwälzgewindespindel 43 bildet die Betätigungseinheit 40 des Aktors 37. Actuator 37 comprises a planetary roller screw spindle (PWG) 43 as actuating unit 40. Such an actuator 37 with a planetary roller screw 43 is known from WO 2015/1 17612 A1, which is hereby incorporated by reference in its entirety with respect to the construction of the actuator proposed therein. The actuator 37 comprises an electric motor 45 with a stator 46 and a rotor 47, wherein the rotor 47 forms the shaft 38. The rotor 47 is rotatably connected to a sleeve 48 of the Planetenwälzgewindespindel 43 comprehensive planetary gear 44, and supported in the sleeve 48 planet carriers 49 so that a rotatably supported Planetenwälzgewindespindel 43 upon rotation 41 of the rotor 47 and supported in the sleeve 48 Planet carrier 49 in the axial direction 34 is displaced. The Planetenwälzgewindespindel 43 forms the actuator unit 40 of the actuator 37th
Fig. 2 zeigt eine Sensoranordnung 2 in einer Draufsicht entlang der axialen Richtung 34. Fig. 3 zeigt die Sensoranordnung 2 aus Fig. 2 in einer Seitenansicht im Schnitt A- A. Die Fig. 2 und 3 werden im Folgenden gemeinsam beschrieben. 2 shows a sensor arrangement 2 in a plan view along the axial direction 34. FIG. 3 shows the sensor arrangement 2 from FIG. 2 in a side view in section AA. FIGS. 2 and 3 will be described jointly below.
Die Sensoranordnung 2 umfasst den ersten Sensor 33 und den Permanentmagneten 1 . Die Stirnflächen 4, 5 des Permanentmagneten 1 liegen in einer X-Y-Ebene 6 und eine zentrale Achse 7 erstreckt sich quer zu der X-Y-Ebene 6 und koaxial zu einer Drehachse 8 des Permanentmagneten 1 . Der Permanentmagnet 1 weist genau zwei Pole 9, 10 auf, die in der X-Y-Ebene 6 an einander gegenüberliegenden Seiten 1 1 , 12 des Permanentmagneten 1 angeordnet sind, so dass der Permanentmagnet 1 diametral magnetisiert ist. Ein Magnetfeld 26 des Permanentmagneten 1 weist einen magnetischen Fluss 27 auf, der an jeder Position 28 im Magnetfeld 26 durch einen Vektor darstellbar ist. Der Vektor umfasst eine tangentiale Magnetfeldrichtung 29, eine radiale Magnetfeldrichtung 30 und eine normale (axiale) Magnetfeldrichtung 31 ; wobei die tangentiale Magnetfeldrichtung 29 parallel zur X-Y-Ebene 6 und parallel zur Ausrichtung 32 der Pole 9, 10 verläuft; wobei die radiale Magnetfeldrichtung 30 parallel zur X- Y-Ebene 6 und quer zur Ausrichtung 32 der Pole 9, 10 verläuft; wobei die normale Magnetfeldrichtung 31 quer zur der tangentialen Magnetfeldrichtung 29 und der radialen Magnetfeldrichtung 30 verläuft. Ein gegenüber dem drehbaren Permanentmagneten 1 ortsfest angeordneter erster Sensor 33 erfasst zur Bestimmung der Anzahl von Umdrehungen 36 des Permanentmagneten 1 die Magnetfeldrichtungen 29, 30, 31 des magnetischen Flusses 27 in der tangentialen Magnetfeldrichtung 29 und der radialen Magnetfeldrichtung 30. Der hier dargestellte Permanentmagnet 1 ist ein Hohlzylinder mit einer Außenum- fangslinie 16 in Kreisform 18, d. h. mit einem Durchmesser 25, und einer zentralen Achse 7, die sich zwischen zwei, zueinander parallelen Stirnflächen 4, 5 entlang einer Drehachse 8 erstreckt. Der Permanentmagnet 1 ist diametral magnetisiert, d. h. die beiden magnetischen Pole 9, 10 sind jeweils an der Außenumfangsfläche15, an einander gegenüberliegenden Seiten 1 1 , 12 des Permanentmagneten 1 angeordnet. Die Pole 9, 10 können durch eine Gerade, die die zentrale Achse 8 des Permanentmagneten 1 schneidet, miteinander verbunden werden (siehe Pfeil für Ausrichtung 32). The sensor arrangement 2 comprises the first sensor 33 and the permanent magnet 1. The end faces 4, 5 of the permanent magnet 1 lie in an XY plane 6, and a central axis 7 extends transversely to the XY plane 6 and coaxially with a rotation axis 8 of the permanent magnet 1. The permanent magnet 1 has exactly two poles 9, 10, which are arranged in the XY plane 6 on opposite sides 1 1, 12 of the permanent magnet 1, so that the permanent magnet 1 is diametrically magnetized. A magnetic field 26 of the permanent magnet 1 has a magnetic flux 27 which can be represented at any position 28 in the magnetic field 26 by a vector. The vector comprises a tangential magnetic field direction 29, a radial magnetic field direction 30 and a normal (axial) magnetic field direction 31; the tangential magnetic field direction 29 being parallel to the XY plane 6 and parallel to the orientation 32 of the poles 9, 10; wherein the radial magnetic field direction 30 is parallel to the X-Y plane 6 and transverse to the orientation 32 of the poles 9, 10; wherein the normal magnetic field direction 31 extends transversely to the tangential magnetic field direction 29 and the radial magnetic field direction 30. A stationary relative to the rotatable permanent magnet 1 first sensor 33 detected to determine the number of revolutions 36 of the permanent magnet 1, the magnetic field directions 29, 30, 31 of the magnetic flux 27 in the tangential magnetic field direction 29 and the radial magnetic field direction 30th The permanent magnet 1 shown here is a hollow cylinder with an outer circumferential line 16 in circular form 18, ie with a diameter 25, and a central axis 7 which extends between two mutually parallel end faces 4, 5 along a rotation axis 8. The permanent magnet 1 is diametrically magnetized, that is, the two magnetic poles 9, 10 are respectively disposed on the outer peripheral surface 15, on opposite sides 1 1, 12 of the permanent magnet 1. The poles 9, 10 can be connected to each other by a straight line that intersects the central axis 8 of the permanent magnet 1 (see arrow for alignment 32).
Der erste Sensor 33 ist in einer radialen Richtung 35 in einem Abstand 20 von der Drehachse 8 und von dem Permanentmagneten bzw. dessen Außenumfangsfläche 15 angeordnet. Der erste Sensor 33 ist also nicht auf der Drehachse 8 des Permanentmagneten 1 angeordnet, sondern in einem Abstand 20 von der Drehachse 8. Der erste Sensor 33 ist in der axialen Richtung 34, also parallel zur Drehachse 8, in einer Distanz 19 von dem Permanentmagneten 1 angeordnet. The first sensor 33 is arranged in a radial direction 35 at a distance 20 from the axis of rotation 8 and from the permanent magnet or its outer circumferential surface 15. The first sensor 33 is thus not arranged on the axis of rotation 8 of the permanent magnet 1, but at a distance 20 from the axis of rotation 8. The first sensor 33 is in the axial direction 34, ie parallel to the axis of rotation 8, at a distance 19 from the permanent magnet 1 arranged.
Der hier dargestellte Permanentmagnet 1 weist koaxial zu der zentralen Achse 7 eine Öffnung 13 auf, wobei eine Innenumfangsfläche 14 und eine Außenumfangsfläche 15 sich jeweils parallel zu der zentralen Achse 7 erstrecken. The permanent magnet 1 shown here has coaxial with the central axis 7 an opening 13, wherein an inner peripheral surface 14 and an outer peripheral surface 15 each extend parallel to the central axis 7.
Fig. 4 zeigt die Sensoranordnung 2 aus Fig. 2 und 3 in einer weiteren Seitenansicht im Schnitt. Die Distanz 19 wird zwischen den einander, entlang der axialen Richtung 34, nächsten Punkten von erstem Sensor 33 und Permanentmagnet 1 bestimmt. Weiter weist der Permanentmagnet 1 zwischen den Stirnflächen 4, 5 eine Dicke 53 von 3 bis 6 mm auf. Der Abstand 20 wird zwischen Drehachse 8 und einer Mitte des ersten Sensors 33 entlang der radialen Richtung 35 bestimmt. 4 shows the sensor arrangement 2 from FIGS. 2 and 3 in a further side view in section. The distance 19 is determined between each other, along the axial direction 34, nearest points of the first sensor 33 and permanent magnet 1. Next, the permanent magnet 1 between the end faces 4, 5 has a thickness 53 of 3 to 6 mm. The distance 20 is determined between the axis of rotation 8 and a center of the first sensor 33 along the radial direction 35.
Die im Einsatzfall auftretenden Toleranzen (insbesondere Toleranzen hinsichtlich des Abstands 20 in der radialen Richtung 35 und hinsichtlich einer Distanz 19 in der axialen Richtung 34 zwischen dem ersten Sensor 33 und dem Permanentmagneten 1 ), die bei Zusammenbau der Sensoranordnung 2 bzw. bei Anordnung in einem Aktor 37 auftreten können und die ggf. bei Drehung des Permanentmagneten 1 zusätzlich variieren können (hier als schattiert angedeutet), führen zu größeren Fehlern bei der Messung der Anzahl von Umdrehungen des Permanentmagneten 1 . The tolerances occurring in the application (in particular tolerances with respect to the distance 20 in the radial direction 35 and with respect to a distance 19 in the axial direction 34 between the first sensor 33 and the permanent magnet 1), which can occur during assembly of the sensor arrangement 2 or when arranged in an actuator 37 and which may additionally vary when rotating the permanent magnet 1 (indicated here as shaded), lead to larger errors in the measurement of the number of revolutions of the permanent magnet. 1
Infolge der Anordnung des ersten Sensors 33 in einem berechneten Abstand 20 von der Drehachse 8 bzw. zur Außenumfangsfläche 15 des Permanentmagneten 1 konnte die Differenz zwischen der minimalen Vektorsumme und der maximalen Vektorsumme deutlich reduziert werden. Weiterhin tritt eine geringere Streuung der Vektorsumme auf. As a result of the arrangement of the first sensor 33 at a calculated distance 20 from the axis of rotation 8 and the outer peripheral surface 15 of the permanent magnet 1, the difference between the minimum vector sum and the maximum vector sum could be significantly reduced. Furthermore, a smaller spread of the vector sum occurs.
Fig. 5 zeigt den Verlauf der magnetischen Flussdichte 51 des magnetischen Flusses 27 in den Magnetfeldrichtungen 29, 30 über einem Abstand 20 des ersten Sensors 33 von der Drehachse 8. Die breiten Kurven für die radiale Flussdichte 21 und die tangentiale Flussdichte 22 berücksichtigen bereits eine mögliche Abweichung einer Distanz 19 von +/- 0,5 mm (siehe schattierte Darstellung des Permanentmagneten in Fig. 4). 5 shows the course of the magnetic flux density 51 of the magnetic flux 27 in the magnetic field directions 29, 30 over a distance 20 of the first sensor 33 from the axis of rotation 8. The wide curves for the radial flux density 21 and the tangential flux density 22 already take into account a possible Deviation of a distance 19 of +/- 0.5 mm (see shaded representation of the permanent magnet in Fig. 4).
In diesem Bereich 54 um einen (idealen) Abstand 20 ist der erste Sensor 33 gegenüber der Drehachse 33 anzuordnen (siehe schattierte Darstellung des ersten Sensors 33 in Fig. 4). In this area 54 by an (ideal) distance 20, the first sensor 33 is to be arranged opposite the axis of rotation 33 (see shaded representation of the first sensor 33 in FIG. 4).
Bezuqszeichenliste Permanentmagnet Reference list permanent magnet
Sensoranordnung sensor arrangement
Winkelposition angular position
erste Stirnfläche first end face
zweite Stirnfläche second end face
X-Y-Ebene X-Y plane
zentrale Achse central axis
Drehachse axis of rotation
erster Pol first pole
zweiter Pol second pole
erste Seite first page
zweite Seite second page
Öffnung opening
Innenumfangsfläche Inner circumferential surface
Außenumfangsfläche Outer circumferential surface
Außenumfangslinie Outer circumferential line
Querschnitt cross-section
Kreisform circularity
Distanz distance
Abstand distance
radiale Flussdichte radial flux density
tangentiale Flussdichte tangential flux density
erster Grenzwert first limit
zweiter Grenzwert second limit
Durchmesser diameter
Magnetfeld magnetic field
magnetischer Fluss magnetic river
Position position
tangentiale Magnetfeldrichtung radiale Magnetfeldrichtung normale Magnetfeldrichtung Ausrichtung tangential magnetic field direction radial magnetic field direction normal magnetic field direction alignment
erster Sensor first sensor
axiale Richtung axial direction
radiale Richtung radial direction
Umdrehung revolution
Aktor actuator
Welle wave
Antriebseinheit drive unit
Betätigungseinheit operating unit
Drehung rotation
Stellung position
Planetenwälzgewindespindel Planetengetriebe Planetary roller screw planetary gear
Elektromotor electric motor
Stator stator
Rotor rotor
Hülse shell
Planetenträger planet carrier
zweiter Sensor second sensor
magnetische Flussdichte Winkel magnetic flux density angle
Dicke thickness
Bereich Area

Claims

Patentansprüche claims
1 . Sensoranordnung (2) zur Bestimmung einer Anzahl von Umdrehungen (36) eines Permanentmagneten (1 ), wobei Stirnflächen (4, 5) des Permanentmagneten (1 ) jeweils in einer X-Y-Ebene (6) liegen und sich eine zentrale Achse (7) quer zu der X-Y-Ebene (6) und koaxial zu einer Drehachse (8) des Permanentmagneten (1 ) erstreckt; wobei der Permanentmagnet (1 ) genau zwei Pole (9, 10) aufweist, die in der X-Y-Ebene (6) an einander gegenüberliegenden Seiten (1 1 , 12) des Permanentmagneten (1 ) angeordnet sind, so dass der Permanentmagnet (1 ) diametral magnetisiert ist; wobei der Permanentmagnet (1 ) koaxial zu der zentralen Achse (7) eine Öffnung (13) aufweist; wobei eine Innenumfangsfläche (14) und eine Außenumfangsfläche (15) sich jeweils im Wesentlichen parallel zu der zentralen Achse (7) erstrecken; wobei ein, gegenüber dem um die Drehachse (8) drehbaren Permanentmagnet (1 ) ortsfest angeordneter erster Sensor (33) in einer axialen Richtung (34), also parallel zur Drehachse (8), in einer Distanz (19) von dem Permanentmagneten (1 ) und in einer radialen Richtung (35) radial außerhalb der Außenumfangsfläche (15) in einem Abstand (20) von der Drehachse (8) angeordnet ist; wobei der Abstand (20) so gewählt ist, dass eine Vektorsumme einer radialen Flussdichte (21 ) und einer tangentialen Flussdichte (22) einen ersten Grenzwert (23) nicht unterschreitet und einen zweiten Grenzwert (24) nicht überschreitet. 1 . Sensor arrangement (2) for determining a number of revolutions (36) of a permanent magnet (1), wherein end faces (4, 5) of the permanent magnet (1) each lie in an XY plane (6) and a central axis (7) transversely to the XY plane (6) and coaxial with a rotation axis (8) of the permanent magnet (1); wherein the permanent magnet (1) has exactly two poles (9, 10) which are arranged in the XY plane (6) on opposite sides (11, 12) of the permanent magnet (1) such that the permanent magnet (1) is diametrically magnetized; wherein the permanent magnet (1) has an opening (13) coaxial with the central axis (7); wherein an inner peripheral surface (14) and an outer peripheral surface (15) each extend substantially parallel to the central axis (7); wherein a first sensor (33) fixedly arranged relative to the permanent magnet (1) rotatable about the rotation axis (8) in an axial direction (34), ie parallel to the axis of rotation (8), at a distance (19) from the permanent magnet (1 ) and in a radial direction (35) radially outside the outer peripheral surface (15) at a distance (20) from the rotation axis (8) is arranged; wherein the distance (20) is selected such that a vector sum of a radial flux density (21) and a tangential flux density (22) does not fall below a first limit value (23) and does not exceed a second limit value (24).
2. Sensoranordnung (2) nach Anspruch 1 , wobei ein Magnetfeld (26) des Permanentmagneten (1 ) einen magnetischen Fluss (27) aufweist, der an jeder Position2. Sensor arrangement (2) according to claim 1, wherein a magnetic field (26) of the permanent magnet (1) has a magnetic flux (27), which at each position
(28) im Magnetfeld (26) durch einen Vektor darstellbar ist; wobei der Vektor eine tangentiale Magnetfeldrichtung (29), eine radiale Magnetfeldrichtung (30) und eine normale Magnetfeldrichtung (31 ) umfasst; wobei die tangentiale Magnetfeldrichtung (26) parallel zur X-Y-Ebene (6) und parallel zu einer Ausrichtung (32) der Pole (9, 10) verläuft; wobei die radiale Magnetfeldrichtung (30) parallel zur X- Y-Ebene (6) und quer zur Ausrichtung (32) der Pole (9, 10) verläuft; wobei die normale Magnetfeldrichtung (31 ) quer zur der tangentialen Magnetfeldrichtung(28) in the magnetic field (26) can be represented by a vector; the vector comprising a tangential magnetic field direction (29), a radial magnetic field direction (30) and a normal magnetic field direction (31); the tangential magnetic field direction (26) being parallel to the X-Y plane (6) and parallel to an orientation (32) of the poles (9, 10); the radial magnetic field direction (30) being parallel to the XY plane (6) and transverse to the orientation (32) of the poles (9, 10); the normal magnetic field direction (31) being transverse to the tangential magnetic field direction
(29) und der radialen Magnetfeldrichtung (30) verläuft; wobei der erste Sensor (33) ein Multiturnsensor ist, der zur Bestimmung einer Anzahl von Umdrehungen (36) des Permanentmagneten (3) geeignet ist, wobei der erste Sensor (33) zur Bestimmung der Anzahl von Umdrehungen (36) die Magnetfeldrichtungen (29, 30) des magnetischen Flusses (14) in der radialen Magnetfeldrichtung (29) und der tangentialen Magnetfeldrichtung (30) erfasst. (29) and the radial magnetic field direction (30); the first sensor (33) is a multi-turn sensor, which is suitable for determining a number of revolutions (36) of the permanent magnet (3), wherein the first sensor (33) for determining the number of revolutions (36), the magnetic field directions (29, 30) of the magnetic Flow (14) in the radial magnetic field direction (29) and the tangential magnetic field direction (30) detected.
3. Sensoranordnung (2) nach einem der vorhergehenden Ansprüche, wobei der erste Grenzwert (23) 12 mT [MilliTesla] und der zweite Grenzwert (24) 37 mT beträgt. 3. Sensor arrangement (2) according to one of the preceding claims, wherein the first limit value (23) is 12 mT [MilliTesla] and the second limit value (24) is 37 mT.
4. Sensoranordnung (2) nach einem der vorhergehenden Ansprüche, wobei der Abstand (20) durch 4. Sensor arrangement (2) according to one of the preceding claims, wherein the distance (20) through
Abstand = k * Durchmesser Außenumfangsfläche + R0 ; Distance = k * diameter outer peripheral surface + R 0 ;
bestimmt ist; wobei k und R0 in Abhängigkeit von zumindest dem Durchmesseris determined; where k and R 0 are dependent on at least the diameter
(25) der Außenumfangsfläche (15) und der Distanz (19) bestimmt sind. (25) of the outer peripheral surface (15) and the distance (19) are determined.
5. Sensoranordnung (2) nach Anspruch 4, wobei bei einer Distanz (19) zwischen 3 und 6 mm [Millimeter] und einem Durchmesser (25) der Außenumfangsfläche (15) zwischen 18 und 30 mm für k und R0 gilt: 5. Sensor arrangement (2) according to claim 4, wherein at a distance (19) between 3 and 6 mm [millimeters] and a diameter (25) of the outer peripheral surface (15) between 18 and 30 mm for k and R 0 :
k = 0,36 und  k = 0.36 and
Ro = 7,45.  Ro = 7.45.
6. Sensoranordnung (2) nach einem der Ansprüche 4 oder 5, wobei der Permanentmagnet (1 ) zwischen den Stirnflächen (4, 5) eine Dicke (53) von 3 bis 6 mm aufweist. 6. Sensor arrangement (2) according to any one of claims 4 or 5, wherein the permanent magnet (1) between the end faces (4, 5) has a thickness (53) of 3 to 6 mm.
7. Aktor (37), zumindest umfassend eine Welle (38) mit einer Drehachse (8) sowie eine Sensoranordnung (2) nach einem der vorhergehenden Ansprüche 1 bis 6, wobei der Permanentmagnet (1 ) koaxial zur Welle (38) angeordnet und drehfest mit der Welle (38) verbunden ist. 7. Actuator (37), at least comprising a shaft (38) having a rotation axis (8) and a sensor arrangement (2) according to one of the preceding claims 1 to 6, wherein the permanent magnet (1) arranged coaxially with the shaft (38) and rotationally fixed is connected to the shaft (38).
8. Aktor (37) nach Anspruch 7, wobei der Aktor (37) ein Kupplungsaktor ist, wobei der Aktor (37) eine Antriebseinheit (39) als Welle (38) und eine Betätigungseinheit (40) umfasst, wobei die Betätigungseinheit (40) durch eine Drehung (41 ) der Antriebseinheit (39) entlang einer axialen Richtung (34) verlagerbar ist, wobei durch die Sensoranordnung (2) zumindest die Anzahl von Umdrehungen (36) der Antriebseinheit (39) und damit eine Stellung (42) der Betätigungseinheit (40) entlang der axialen Richtung (34) bestimmbar ist. 8. actuator (37) according to claim 7, wherein the actuator (37) is a clutch actuator, wherein the actuator (37) comprises a drive unit (39) as a shaft (38) and an actuating unit (40), wherein the actuating unit (40). by a rotation (41) of the drive unit (39) along an axial direction (34) is displaceable, wherein by the sensor arrangement (2) at least the number of revolutions (36) of the drive unit (39) and thus a position (42) of the actuating unit (40) along the axial direction (34) can be determined.
PCT/DE2017/100676 2016-08-30 2017-08-10 Sensor assembly for determining a number of rotations of a permanent magnet WO2018041296A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201780046459.7A CN109564106B (en) 2016-08-30 2017-08-10 Sensor device for determining the number of revolutions of a permanent magnet
KR1020197005514A KR102462298B1 (en) 2016-08-30 2017-08-10 Sensor assembly for measuring the number of turns of a permanent magnet
DE112017004298.4T DE112017004298A5 (en) 2016-08-30 2017-08-10 Sensor arrangement for determining a number of revolutions of a permanent magnet
US16/316,811 US10739163B2 (en) 2016-08-30 2017-08-10 Sensor assembly for determining a number of rotations of a permanent magnet

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102016216326.4A DE102016216326A1 (en) 2016-08-30 2016-08-30 Sensor arrangement for determining a number of revolutions of a permanent magnet
DE102016216326.4 2016-08-30

Publications (1)

Publication Number Publication Date
WO2018041296A1 true WO2018041296A1 (en) 2018-03-08

Family

ID=59713745

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2017/100676 WO2018041296A1 (en) 2016-08-30 2017-08-10 Sensor assembly for determining a number of rotations of a permanent magnet

Country Status (5)

Country Link
US (1) US10739163B2 (en)
KR (1) KR102462298B1 (en)
CN (1) CN109564106B (en)
DE (2) DE102016216326A1 (en)
WO (1) WO2018041296A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT523216A1 (en) * 2019-11-29 2021-06-15 B & R Ind Automation Gmbh Determination of the position of a movable component relative to a stationary component

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5602472A (en) * 1993-01-15 1997-02-11 Hughes Electronics Apparatus and method for determining angular position and rotational speed using a rotating magnet and a directional magnetometer
DE10334869B3 (en) * 2003-07-29 2004-09-16 Tech3 E.K. Rotation angle sensor has a rotating shaft with attached permanent magnets, with angular measurements based on both axial displacement of the shaft and sinusoidal and cosinusoidal signals generated by it
EP1610095A1 (en) * 2004-06-21 2005-12-28 HERA Rotterdam B.V. Rotation detector for determining the absolute angular position of a shaft
DE102009039574A1 (en) * 2008-09-08 2010-03-11 Infineon Technologies Ag Off-center angle measuring system
DE102014116844A1 (en) * 2013-11-19 2015-06-03 Infineon Technologies Ag Non-axial magnetic field angle sensors
WO2015117612A2 (en) 2014-02-06 2015-08-13 Schaeffler Technologies AG & Co. KG Actuator comprising a planetary roller screw

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2919385B1 (en) * 2007-07-24 2009-10-09 Moving Magnet Tech Mmt NON-CONTACT MAGNETIC SENSOR WITH ABSOLUTE MULTITOUR POSITION WITH THROUGH SHAFT
JP2009109274A (en) * 2007-10-29 2009-05-21 Aisin Seiki Co Ltd Rotation angle detection device
US8030917B2 (en) * 2007-12-11 2011-10-04 Nippon Soken, Inc. Over one turn rotation angle sensor using rotating magnetic field
DE102009001253B3 (en) * 2009-03-02 2010-06-24 Zf Friedrichshafen Ag Multi-speed transmission
JP2010249670A (en) * 2009-04-16 2010-11-04 Yazaki Corp Rotation angle sensor
JP5358367B2 (en) * 2009-09-15 2013-12-04 日本電産サンキョー株式会社 Encoder system
DE102011103576A1 (en) * 2011-05-30 2012-12-06 Megamotive Gmbh & Co. Kg Rotational angle sensor, has sensor device comprising magnet and potentiometer wiper that are displaced along shaft during rotation of sensor device in linear manner, and sensor element attached to magnet and wiper
JP6089943B2 (en) * 2013-05-09 2017-03-08 日立金属株式会社 Rotation angle sensor
US20150160042A1 (en) * 2013-09-11 2015-06-11 Bourns, Inc. Devices and methods related to high-resolution multi-turn sensors
KR102214250B1 (en) * 2013-10-01 2021-02-09 섀플러 테크놀로지스 아게 운트 코. 카게 Positioning an overmolded stator for a clutch actuator or a transmission actuator and introducing a rotor position magnet into such an actuator
DE102014207139A1 (en) * 2014-04-14 2015-10-15 Robert Bosch Gmbh Measuring device for a contactless rotation angle detection
US10168184B2 (en) 2015-08-12 2019-01-01 Infineon Technologies Ag Angle sensing in an off-axis configuration
US10605626B2 (en) * 2017-06-12 2020-03-31 Infineon Technologies Ag Angle sensor bridges including star-connected magnetoresistive elements

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5602472A (en) * 1993-01-15 1997-02-11 Hughes Electronics Apparatus and method for determining angular position and rotational speed using a rotating magnet and a directional magnetometer
DE10334869B3 (en) * 2003-07-29 2004-09-16 Tech3 E.K. Rotation angle sensor has a rotating shaft with attached permanent magnets, with angular measurements based on both axial displacement of the shaft and sinusoidal and cosinusoidal signals generated by it
EP1610095A1 (en) * 2004-06-21 2005-12-28 HERA Rotterdam B.V. Rotation detector for determining the absolute angular position of a shaft
DE102009039574A1 (en) * 2008-09-08 2010-03-11 Infineon Technologies Ag Off-center angle measuring system
DE102014116844A1 (en) * 2013-11-19 2015-06-03 Infineon Technologies Ag Non-axial magnetic field angle sensors
WO2015117612A2 (en) 2014-02-06 2015-08-13 Schaeffler Technologies AG & Co. KG Actuator comprising a planetary roller screw

Also Published As

Publication number Publication date
CN109564106A (en) 2019-04-02
CN109564106B (en) 2022-04-12
US10739163B2 (en) 2020-08-11
KR20190045180A (en) 2019-05-02
DE102016216326A1 (en) 2018-03-01
DE112017004298A5 (en) 2019-06-06
KR102462298B1 (en) 2022-11-03
US20190234761A1 (en) 2019-08-01

Similar Documents

Publication Publication Date Title
DE102011075548B4 (en) Bearing with an energy detection unit, in particular spherical roller bearings for supporting a roller
DE102008060262B4 (en) Sensor system for electrical machines with multi-pole sensor magnets and at least one Hall IC
WO2007122055A1 (en) Magnetic rotational angle transducer
WO2011144476A1 (en) Roller bearing with integrated generator
DE102010021159B4 (en) Rolling bearings with an integrated permanent-magnet electric machine
DE102011121842A1 (en) Device for measuring torque, direction of rotation and Drehverwidigkeit a shaft of a transmission, in particular an output shaft of an azimuth gear of a wind turbine
EP3563472A1 (en) Brushless electrical maschine
EP0920605B1 (en) Magnetic position sensor
DE102018204338A1 (en) Hinge assembly
WO2012017007A2 (en) Compact electrical machine
WO2018041296A1 (en) Sensor assembly for determining a number of rotations of a permanent magnet
DE102016212925A1 (en) Permanent magnet for a sensor arrangement for determining an angular position of the permanent magnet
WO2016180411A1 (en) Sensor arrangement with an angle sensor, and rolling bearing arrangement with a sensor arrangement
WO2018113833A1 (en) Sensor arrangement
DE102006031718A1 (en) Rolling bearings with integrated rotary encoder
EP2568259B1 (en) Encoder ring and system
WO2018114326A1 (en) Galvanometer drive with multi-layer permanent magnets
WO2014094752A1 (en) Sensor arrangement having an angle sensor and a rolling bearing arrangement
EP3669440A1 (en) Rotor of an electric machine
DE102007034640A1 (en) Body with an angle scaling and its use
DE102017222402B4 (en) Angle of rotation measuring device
DE102016213591B3 (en) Bearing arrangement with measuring arrangement for measuring a force and / or a moment
WO2010003801A1 (en) System for detecting a rotating magnetic field
EP2940432B1 (en) Angle sensor
DE102021204177A1 (en) Rotor assembly and motor assembly

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17758035

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197005514

Country of ref document: KR

Kind code of ref document: A

REG Reference to national code

Ref country code: DE

Ref legal event code: R225

Ref document number: 112017004298

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17758035

Country of ref document: EP

Kind code of ref document: A1