WO2018041197A1 - 手术机器人的成像工具与手术工具展开实施、退出方法 - Google Patents

手术机器人的成像工具与手术工具展开实施、退出方法 Download PDF

Info

Publication number
WO2018041197A1
WO2018041197A1 PCT/CN2017/099847 CN2017099847W WO2018041197A1 WO 2018041197 A1 WO2018041197 A1 WO 2018041197A1 CN 2017099847 W CN2017099847 W CN 2017099847W WO 2018041197 A1 WO2018041197 A1 WO 2018041197A1
Authority
WO
WIPO (PCT)
Prior art keywords
state
tool
imaging
surgical tool
surgical
Prior art date
Application number
PCT/CN2017/099847
Other languages
English (en)
French (fr)
Inventor
徐凯
戴正晨
赵彬
赵江然
阳志雄
刘欢
梅务昆
Original Assignee
北京术锐技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201610798191.XA external-priority patent/CN106236273B/zh
Priority claimed from CN201610797600.4A external-priority patent/CN106236271B/zh
Priority claimed from CN201610796025.6A external-priority patent/CN106236268B/zh
Application filed by 北京术锐技术有限公司 filed Critical 北京术锐技术有限公司
Publication of WO2018041197A1 publication Critical patent/WO2018041197A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots

Definitions

  • the invention relates to a method for using a medical device, in particular to an imaging tool and a surgical tool for implementing and exiting a surgical robot.
  • an object of the present invention is to provide an imaging tool and a surgical tool for implementing and exiting a surgical robot, which can effectively ensure the normal operation of single-hole laparoscopic surgery.
  • an imaging tool and a surgical tool deployment implementation and exit method of a surgical robot characterized in that the method comprises the following steps: Step 1: setting a control terminal, and controlling The control system of the end and the execution end; the main control end includes a remote operation device and a main control computer; and the controlled end includes an embedded computer, an embedded computer for imaging, an embedded computer for a surgical tool, an imaging tool driving module, and a surgical tool driving mode.
  • the execution end includes an imaging tool, a surgical tool and a surgical actuator; Step 2: the imaging tool is deployed and implemented, and enters the telescopic movement state of the imaging tool; Step 3: the surgical tool is deployed and implemented, and enters the teleoperation movement state of the surgical tool; Step 4: When the surgical tool teleoperation movement state and the imaging tool teleoperation movement state are finished, the surgical tool is withdrawn, and then the imaging tool is withdrawn.
  • the imaging tool deployment method is similar to the surgical tool deployment method, and the imaging tool deployment method or the surgical tool deployment method is to use the imaging tool driving module and the imaging tool or the surgical tool.
  • the driving module and the surgical tool are sequentially switched from the initial state to the imaging tool driving module or the surgical tool driving module returning to the state, the imaging tool or the surgical tool externally to be mounted, the imaging tool or the surgical tool externally mounted state, the imaging tool and
  • the multi-lumen tube enters the surgical incision state or the surgical tool extends out of the multi-lumen tube state, the imaging tool body is in a closed posture state or the surgical tool body is in a straight state, the imaging tool is in a deployed state or the surgical tool is deployed, the imaging tool or the surgical tool remains current
  • the posture state and the teleoperation movement state of the imaging tool or the surgical tool are completed, and the deployment method of the surgical tool further includes an electric cutting/coagulation state under the remote operation of the surgical tool.
  • the imaging tool driving module and the surgical tool driving module are similar to the process of switching from the initial state to the zero return state, and the process is as follows: 1) the main control computer receives the imaging tool driving module or the surgical tool driving module zero return instruction, And the generated new state signal is sent to the embedded computer via the local area network, and the embedded computer switches the state of the imaging tool driving module or the surgical tool driving module to a zero return state; 2) the embedded computer passes the state switching signal through the local area network feedback To the main control computer, the main control computer transmits the zero return status information to the display of the main control terminal for display; 3) the embedded computer sends a state switching signal to the embedded computer for imaging or the embedded computer through the local area network for imaging, for imaging
  • the embedded computer or the surgical tool uses an embedded computer to send a control signal to the control module of the imaging tool driving module or the surgical tool driving module through the communication bus, so that the imaging tool driving module or the surgical tool driving module performs a zero return operation; 4) Embedded computer monitors imaging embedded through communication bus Computer or
  • the process of the imaging tool driving module and the surgical tool driving module is switched from the home return state to the external body to be installed state, wherein the state switching action of the imaging tool driving module is completed by the imaging tool driving module.
  • the state switching action of the surgical tool driving module is automatically triggered after the surgical tool driving module completes the zero return operation; at this time, the output shafts of the motor in the imaging tool driving module and the surgical tool driving module are all turned.
  • the control module in the imaging tool drive module or the surgical tool drive module sends a state switching signal to the embedded computer for imaging or the embedded computer through the communication bus; the embedded computer or surgical tool for imaging The embedded computer sends a new status signal to the embedded computer through the local area network; 2) the embedded computer switches the state corresponding to the imaging tool driving module or the surgical tool driving module to the external standby state; 3) the embedded computer switches the state The signal is returned to the main control computer through the local area network, and the main control computer will be body Status information transmission to be mounted to the host monitor display.
  • the imaging tool driving module and the imaging tool are similar to the surgical tool driving module and the surgical tool being switched from the externally mounted state to the externally mounted state, and the process is as follows: 1) the imaging tool and the imaging tool driving module or The surgical tool and the surgical tool drive module are connected by a sterile barrier, and the multi-lumen tube and the base are connected through a sterile barrier; the imaging tool drive module or the surgical tool drive module is coupled to the imaging tool or the surgery respectively.
  • the couplings in the tool are connected together to transmit motion; 2) the imaging tool or the distal end of the surgical tool extends into and through the lumen in the multi-lumen tube, and the imaging illumination module carried at the end of the imaging tool is attached to the end of the multi-lumen tube And maintain the surgical actuator carried at the end of the surgical tool inside the multi-lumen tube; 3) the reading chip in the imaging tool driving module or the surgical tool driving module is connected with the information label on the imaging tool or the surgical tool, and reads Take the chip to read the relevant information stored in the information tag; if the reading chip fails to successfully read the relevant information in the information tag, the imaging tool or the surgical tool does not After the installation is completed, go to the next step; where the relevant information includes the size, the number of uses and the type of tool information; 4) the reading chip uploads relevant information to the embedded computer for imaging or the embedded tool for the surgical tool through the communication bus Computers, imaging embedded computers or surgical tools use embedded computers to take corresponding control parameters and strategies based on relevant information.
  • the process of switching the imaging tool driving module and the imaging tool from the externally mounted state to the imaging tool and the multi-lumen tube into the surgical incision state is as follows: 1) the main control computer receives the imaging tool and the multi-lumen tube enters the surgical incision instruction, and The generated new state signal is sent to the embedded computer through the local area network, and the embedded computer switches the state corresponding to the imaging tool driving module and the imaging tool to the imaging tool and the multi-lumen tube into the surgical incision state; 2) the embedded computer switches the state switching signal Return to the main control computer through the local area network, master The computer transmits the imaging tool and the multi-lumen tube into the surgical incision state information to the display of the main control terminal for display.
  • the imaging tool driving module and the imaging tool switch from the imaging tool and the multi-lumen tube into the surgical incision state to the closed state of the imaging tool body and the surgical tool driving module, and the surgical tool extends from the surgical tool to the multi-lumen tube state.
  • the process of switching to the stereo state of the surgical tool is similar, and the process is as follows: 1) after the imaging illumination module carried on the distal end of the imaging tool enters the surgical incision and reaches a predetermined position, the main control computer receives the closing posture instruction of the imaging tool body, and The generated new state signal is sent to the embedded computer through the local area network, and the embedded computer switches the state corresponding to the imaging tool driving module and the imaging tool to the closed posture state of the imaging tool body; the surgical tool receives the surgical tool driving module by using the embedded computer.
  • the motion completion signal After the motion completion signal sent by the control module, the motion completion signal is sent to the embedded computer through the local area network; the embedded computer switches the state corresponding to the surgical tool drive module and the surgical tool to the straight state of the surgical tool body; 2) embedded The computer passes the state switching signal
  • the local area network returns to the main control computer, and the main control computer transmits the closed state of the imaging tool body or the linear state information of the surgical tool to the display of the main control end for display.
  • the imaging tool driving module and the imaging tool are switched from the closed posture state to the imaging tool feeding deployment state and the surgical tool driving module, the surgical tool is switched from the surgical tool installation state to the surgical tool extending the multi-lumen tube state, and
  • the process of switching from the straight state of the surgical tool to the unfolding state of the surgical tool is similar.
  • the process is as follows: 1) The main control computer receives the instruction, sends the generated new state signal to the embedded computer through the local area network, and the embedded computer drives the imaging tool to drive the mode.
  • the state corresponding to the group and the imaging tool is switched to the imaging tool feed deployment state or the state corresponding to the surgical tool drive module and the surgical tool is switched to the surgical tool extending the multi-lumen tube state or the surgical tool deployment state; 2) the embedded computer will The state switching signal is returned to the main control computer through the local area network, and the main control computer feeds the imaging tool into the deployment state information or the surgical tool extends the multi-lumen tube state information or the surgical tool deployment state information to the display of the main control terminal for display; 3) the main After the control computer receives the state switching signal, the target is generated The attitude signal, the main control computer sends the target pose signal to the embedded computer for imaging or the embedded computer for the surgical tool through the local area network, and the imaging computer uses the embedded computer or the surgical tool to receive the target pose signal and then the imaging tool.
  • the driving module and the imaging tool or the surgical tool driving module and the surgical tool perform closed-loop control; wherein the target pose signal includes the posture information of the imaging illumination module after the imaging tool is fed or the surgical tool extends out of the multi-lumen tube
  • the pose information of the actuator or the positional information of the surgical actuator after the lateral extension of the portion of the multi-lumen tube.
  • the process of the imaging tool driving module and the imaging tool switching from the imaging tool feeding deployment state to maintaining the current posture state and the surgical tool driving module and the surgical tool are switched from the surgical tool deployment state to the protection state.
  • the process of holding the current pose state is similar, and the specific process is as follows: 1) The embedded computer for imaging uses the embedded computer to receive the completion signal sent by the control module in the imaging tool drive module or the surgical tool drive module through the communication bus.
  • the completion signal is sent to the embedded computer through the local area network; 2) the embedded computer switches the state corresponding to the imaging tool driving module and the imaging tool or the surgical tool driving module and the surgical tool to maintain the current posture state; The embedded computer returns the state switching signal to the main control computer through the local area network, and the main control computer transmits the current posture state information to the display of the main control terminal for display.
  • the process of switching the imaging tool driving module and the imaging tool from maintaining the current posture state to the teleoperation motion state is similar to the process of the surgical tool driving module and the surgical tool switching from maintaining the current posture state to the teleoperation motion state, Take the remote control operation device, the pedal and the imaging tool or the surgical tool to establish a remote operation mapping relationship as an example: 1) Establish a teleoperation mapping relationship between the remote operation device, the pedal and the imaging tool or the surgical tool, that is, control the imaging tool by remotely operating the device and the pedal.
  • the main control computer reads the pedal depression status information, starts receiving the target pose signal sent by the remote operation device, and passes the embedded computer or surgical tool for imaging through the embedded computer
  • the actual pose signal sent by the local area network; the actual pose signal is the motor rotation sensor of the imaging tool driving module or the surgical tool driving module.
  • the control module sends the imaging embedded computer or the surgical tool to the embedded computer through the control module and is used for imaging.
  • Embedded computer or surgical tool The computer solves the signal after the forward kinematics algorithm; 3) when the difference between the target pose signal and the actual pose signal is less than the preset error threshold, the host computer will generate a new status signal and send it to the embedded computer via the local area network.
  • the embedded computer respectively switches the state corresponding to the imaging tool driving module and the imaging tool or the surgical tool driving module and the surgical tool to the teleoperation movement state; 4) the embedded computer returns the state switching signal to the main control computer through the local area network, The main control computer transmits the teleoperation movement state information to the display of the main control terminal for display; 5) in the teleoperation movement state, the main control computer transmits the target pose signal sent by the remote operation operation device to the imaging embedded computer through the local area network or The embedded tool of the surgical tool is used for the closed-loop control of the imaging tool driving module and the imaging tool by the embedded computer.
  • the surgical tool uses the embedded computer to perform closed-loop control on the surgical tool driving module and the surgical tool, and finally realizes the remote operation device pair.
  • Teleoperation of imaging tools or surgical tools 6) In the teleoperation movement state of the surgical tool, the trigger device on the remote operation device can be triggered at the same time, the main control computer reads the state change signal of the trigger device, and sends the trigger device state change signal to the surgical tool through the local area network.
  • the computer and the surgical tool use an embedded computer to control the motor through a control module in the surgical tool drive module to control the mechanical state of the mechanical surgical actuator.
  • the surgical tool drive module and the surgical tool are switched from the teleoperation movement state of the surgical tool to the surgery
  • the electric cutting/coagulation state of the tool under remote operation, the state switching action is to trigger the triggering device on the remote control device
  • the process is as follows: 1) the main control computer reads the state change signal triggering the trigger device on the remote control device, and The state change signal of the trigger device is sent to the embedded computer through the local area network, and the embedded computer switches the state corresponding to the surgical tool drive module and the surgical tool to the electric cutting/coagulation state under the remote operation of the surgical tool, and then the embedded computer passes the electromagnetic
  • the relay controls the on/off and mode switching of the energy generator to realize the energy input and mode switching of the energy surgical actuator; 2) the embedded computer returns the state switching signal to the main control computer through the local area network, and the main control computer will use the surgical tool
  • the electric cut/coagulation status information under teleoperation is transmitted to the display of the main control terminal for display.
  • the surgical tool exiting method is to switch the surgical tool driving module and the surgical tool from the current posture state of the surgical tool to the surgical tool returning state, The straight state of the surgical tool, the return of the surgical tool to the multi-lumen tube state, the state in which the surgical tool is externally mounted, and the state in which the surgical tool is to be installed outside, complete the exit of the surgical tool.
  • the imaging tool exiting method is to sequentially switch the imaging tool driving module and the imaging tool from the imaging tool to maintain the current posture state to the imaging tool retracting and folding state.
  • the present invention has the following advantages due to the above technical solution: 1.
  • the present invention provides a complete system for performing preoperative preparation, intraoperative operation, and postoperative withdrawal for a single hole laparoscopic surgical robot system. 2.
  • the imaging tool and the plurality of surgical tools that enter the surgical incision through the same multi-lumen tube can be laterally deployed, thereby ensuring normal operation of the single-hole laparoscopic surgery.
  • Figure 1 is a schematic overall flow diagram of the present invention.
  • the present invention provides an imaging tool and a surgical tool deployment implementation and exit method for a surgical robot, which includes the following steps:
  • Step 1 Set a control system including a control end, a controlled end, and an execution end, and a multi-lumen tube is disposed between the controlled end and the execution end; the imaging tool and the surgical tool are deployed and exited by the control system.
  • the main control terminal includes a remote operation device, a pedal, a main control computer and a display, wherein the remote operation device is provided with a first trigger device and a second trigger device; the controlled terminal includes an embedded computer, an imaging embedded computer, and a
  • the first to third surgical tools are embedded computer, imaging tool drive module, first to third surgical tool drive module, electromagnetic relay and energy generator, driven by the imaging tool drive module and the first to third surgical tools
  • the module is provided with a reading chip, a zero point switch and a motor angle sensor; the execution end comprises an imaging tool, first to third surgical tools, first to third surgical actuators, and arranged on the imaging tool and the surgical tool Information tag; a sterile barrier is provided between the multi-lumen tube and the base, the imaging tool and the imaging tool drive module, the surgical tool, and the surgical tool drive module.
  • Step 2 The imaging tool deployment method includes the following steps:
  • the sterile barrier is coupled to the imaging tool drive module, the surgical tool drive module, and the base, and the sterile membrane of the sterile barrier covers the unsterilized system components to ensure a sterile environment on the patient side;
  • the sterilized multi-lumen tube is also fastened to the base through a sterile barrier, and the base is actuated by human or automated motion, carrying an imaging tool drive module, a surgical tool drive module, and a multi-lumen tube for common motion.
  • the main control computer receives the zero return instruction of the imaging tool drive module, and sends the generated new status signal (ie, the return status signal) to the embedded computer via the local area network, and the embedded computer switches the state of the imaging tool drive module to Return to zero status.
  • the generated new status signal ie, the return status signal
  • the embedded computer feeds the state switching signal to the main control computer through the local area network, and the main control computer transmits the zero return information of the imaging tool driving module to the display for display;
  • the embedded computer sends a state switching signal to the imaging embedded computer through the local area network, and the imaging embedded computer sends a control signal to the control module in the imaging tool driving module through the communication bus, so that the imaging tool driving module performs the zero return operation. .
  • the zero return operation refers to the return of the motor to the zero position in the imaging tool drive module.
  • the zero position is determined by the fact that the output shaft of the motor is fastened to the coupling, and the coupling is provided with a special marking that allows the coupling to be in a predetermined position during every 360° rotation.
  • the zero switch is triggered, and the triggered zero switch sends a signal to the control module in the imaging tool drive module, and the control module records the position at which the coupling is rotated to zero.
  • the special logo includes a logo made of a highly reflective material.
  • the embedded computer monitors the control signal sent by the imaging embedded computer to the imaging tool driving module through the communication bus, and the state feedback signal sent by the control module in the imaging tool driving module to the imaging embedded computer.
  • the control module in the imaging tool driver module sends a state switching signal to the imaging embedded computer through the communication bus; the imaging embedded computer transmits a new state signal (ie, the signal to be installed outside the imaging tool) to the embedded computer through the local area network.
  • the embedded computer switches the state corresponding to the imaging tool drive module to the external standby state 405.
  • the embedded computer returns the state switching signal to the main control computer through the local area network, and the main control computer transmits the state information to be installed outside the imaging tool to the display for display.
  • the imaging tool Connects the imaging tool to the imaging tool drive module via a sterile barrier.
  • the coupling in the imaging tool drive module is coupled with the coupling in the imaging tool, and can transmit motion, such as rotational motion or linear motion;
  • the distal end of the imaging tool extends into and through the lumen of the multi-lumen tube through which the imaging tool passes, and the imaging illumination module carried at the end of the imaging tool conforms to the end of the multi-lumen tube.
  • the reading chip in the imaging tool driving module is directly or indirectly connected with the information label on the imaging tool, and reads information about the installed imaging tool stored in the chip reading information label (such as size, number of uses, and type of tool) Wait). If the reading chip fails to read the relevant information in the information label, the imaging tool is not installed; if the imaging tool is installed, proceed to the next step.
  • the reading chip uploads related information to the imaging embedded computer through the communication bus, and the imaging embedded computer can adopt corresponding control parameters and strategies according to the relevant information:
  • the main control computer After the imaging embedded computer uploads the relevant information to the main control computer through the local area network, the main control computer receives the instruction to complete the external installation of the imaging tool, and controls to open the remote image area, so that the remote image area starts to display the imaging carried by the imaging tool.
  • the image returned by the illumination module sends a new status signal (ie, the signal of the external installation of the imaging tool) to the embedded computer through the local area network, and the embedded computer switches the state corresponding to the imaging tool drive module and the imaging tool to the external image forming tool. Installation completed state 407.
  • the embedded computer returns the state switching signal to the main control computer through the local area network, and the main control computer transmits the state information of the external installation of the imaging tool to the display for display.
  • the main control computer receives the imaging tool and the multi-lumen tube enters the surgical incision instruction, and sends the generated new state signal (ie, enters the surgical incision signal) to the embedded computer through the local area network, and the embedded computer drives the imaging tool driving module and the imaging tool The corresponding state is switched to the imaging tool and the multi-lumen tube into the surgical incision state 409.
  • the embedded computer returns the state switching signal to the main control computer through the local area network, and the main control computer transmits the imaging tool and the multi-lumen tube into the surgical incision state information to be displayed to the display.
  • the pedestal carries the imaging tool driving module, the imaging tool, the surgical tool driving module and the multi-lumen tube as a whole by human or automated motion, so that the distal end of the multi-lumen tube and the distal end of the multi-lumen tube are attached.
  • the imaging illumination module on the face enters the body through a surgical incision on the patient.
  • the main control computer After the imaging illumination module carried on the distal end of the imaging tool enters the surgical incision and reaches a predetermined position, the main control computer receives the closing posture instruction of the imaging tool body, and passes the generated new state signal (ie, the closed posture signal of the imaging tool body) The local area network is sent to the embedded computer, and the embedded computer switches the state corresponding to the imaging tool drive module and the imaging tool to the closed posture state 411 of the imaging tool body.
  • the embedded computer returns the state switching signal to the main control computer through the local area network, and the main control computer transmits the closed posture information of the imaging tool to the display for display.
  • the main control computer receives the imaging tool feed expansion command, and sends the generated new state signal (ie, the imaging tool feed expansion signal) to the embedded computer through the local area network, and the embedded computer corresponds the imaging tool drive module and the imaging tool.
  • the state is switched to the imaging tool feed deployment state 413.
  • the embedded computer returns the state switching signal to the main control computer through the local area network, and the main control computer transmits the imaging tool feed expansion state information to the display for display.
  • the main control computer After receiving the state switching signal, the main control computer generates a target pose signal, which includes the target pose information of the imaging illumination module after the imaging tool feeds, and the main control computer passes the target pose signal through the local area network. Sended to the embedded computer for imaging, the imaging embedded computer receives the target pose signal and performs closed-loop control on the imaging tool drive module and the imaging tool.
  • the imaging embedded computer receives the motion completion signal sent by the control module in the imaging tool driver module through the communication bus, and sends the motion completion signal to the embedded computer through the local area network.
  • the embedded computer switches the state corresponding to the imaging tool drive module and the imaging tool to the imaging tool to maintain the current pose state 415.
  • the embedded computer returns the state switching signal to the host computer via the local area network, and the host computer transmits the imaging tool to the display for display in the current pose.
  • Stepping on the pedal the main control computer reads the pedal depression state information, starts receiving the target pose signal sent by the remote operation device and the actual pose signal sent by the imaging embedded computer through the local area network; the actual pose signal is imaging
  • the signal of the motor rotation angle sensor in the tool driving module is sent to the imaging embedded computer through the control module, and is solved by the imaging computer using the forward kinematic algorithm;
  • the host computer When the target pose signal matches the pose information contained in the actual pose signal (ie, the difference between the target pose signal and the actual pose signal is less than a preset error threshold), the host computer will generate a new status signal (That is, the imaging tool teleoperation motion signal) is sent to the embedded computer through the local area network, and the embedded computer switches the state corresponding to the imaging tool driving module and the imaging tool to the imaging tool teleoperation motion state 417.
  • the embedded computer returns the state switching signal to the host computer via the local area network, and the master computer transmits the imaging tool teleoperation motion state information to the display for display.
  • the imaging tool maintains the current pose state 415
  • the target pose signal received by the host computer and the pose information contained in the actual pose signal are excessively different
  • the imaging is performed.
  • the tool maintains the current pose state 415 switching to the imaging tool teleoperation motion state 417 without completing the imaging tool teleoperation motion state 417. This can effectively avoid the sharp change of the posture of the imaging tool driving module and the imaging tool in the early stage of the teleoperation movement, and ensure the smoothness of its movement.
  • the main control computer transmits the target pose signal sent by the remote operation device to the imaging embedded computer through the local area network, and the imaging embedded computer is paired
  • the tool drive module and the imaging tool perform closed-loop control, and finally realize remote operation of the imaging tool by the remote operation device, and adjust the posture of the imaging illumination module in real time.
  • Step 3 The surgical tool deployment method is as follows. Since the first surgical tool to the third surgical tool deployment method are the same, in the present embodiment, the first surgical tool is taken as an example to further introduce the surgical tool deployment method of the present invention. for:
  • the main control computer receives the zero return command of the first surgical tool drive module, and the new status signal generated by the main control computer (ie, the zero return signal of the first surgical tool drive module) is sent to the embedded computer through the local area network, the embedded computer The state corresponding to the first surgical tool drive module is switched to the zero state of the surgical tool drive module.
  • the embedded computer returns the state switching signal to the main control computer through the local area network, and the main control computer transmits the return status information of the surgical tool drive module to the display for display.
  • the embedded computer sends the state switching signal to the first surgical tool through the local area network with the embedded computer, and the first surgical tool sends a control signal to the control module in the first surgical tool driving module through the communication bus by the embedded computer, so that the embedded computer transmits
  • the first surgical tool driving module performs a zero return operation
  • the zero return operation is the same as step 201.3) in the imaging tool deployment method, which refers to the motor returning to the zero position in the surgical tool drive module.
  • the zero position is determined by the fact that the output shaft of the motor is fastened to the coupling, and the coupling has a special marking that allows the coupling to be triggered at a predetermined position during every 360° rotation.
  • the zero point switch, the triggered zero point switch sends a signal to the control module in the surgical tool drive module, and the control module records the position at which the coupling is rotated to zero.
  • the special logo includes a logo made of a highly reflective material.
  • the embedded computer monitors the control signal sent by the embedded computer to the first surgical tool driving module by the embedded computer through the communication bus, and the control module in the first surgical tool driving module is embedded into the first surgical tool A status feedback signal sent by the computer.
  • the control module in the first surgical tool drive module transmits a state switching signal to the first surgical tool through the communication bus via the communication bus, and the first surgical tool uses the embedded computer to transmit a new state signal (ie, The signal to be installed outside the surgical tool is sent to the embedded computer via the local area network.
  • the embedded computer switches the corresponding state of the first surgical tool drive module to the external state to be installed 421 of the surgical tool.
  • the embedded computer returns the state switching signal to the host computer through the local area network, and the host computer transmits the state information to be installed outside the surgical tool to the display for display.
  • the energy surgical actuator is coupled to the energy generator to receive an energy input from the energy generator.
  • the distal end of the first surgical tool extends into the lumen of the multi-lumen tube for the surgical tool to pass through, and maintains the surgical actuator inside the multi-lumen tube;
  • the reading chip in the first surgical tool driving module is directly or indirectly connected with the information label on the first surgical tool, and reads information related to the first surgical tool stored in the information tag of the reading information (such as size) , number of uses, type of tools, etc.). If the reading chip fails to read the relevant information in the information label, the first surgical tool is not installed; if the first surgical tool is installed, the next step is entered.
  • the reading chip uploads relevant information to the first surgical tool embedded computer through the communication bus, and the first surgical tool uses the embedded computer to take corresponding control parameters and strategies according to the relevant information:
  • the main control computer When the first surgical tool uses an embedded computer to upload relevant information to the main control computer through the local area network, the main control computer reads the surgical tool external installation instruction, and generates a new state signal (ie, the surgical tool external installation signal) through the local area network. Sended to the embedded computer, the embedded computer switches the state corresponding to the first surgical tool drive module and the first surgical tool to the surgical tool externally mounted state 423.
  • the embedded computer returns the state switching signal to the main control computer through the local area network, and the main control computer transmits the state information of the external installation of the surgical tool to the display for display.
  • the main control computer receives the surgical tool to extend the multi-lumen tube command, and sends the generated new state signal (ie, the surgical tool extends the multi-lumen tube signal) to the embedded computer through the local area network, and the embedded computer drives the first surgical tool to drive the mold.
  • the state corresponding to the group and the first surgical tool is switched to the state in which the surgical tool extends out of the multi-lumen tube 425.
  • the embedded computer returns the state switching signal to the main control computer through the local area network, and the main control computer transmits the state information of the surgical tool out of the multi-lumen tube to the display for display.
  • the main control computer After receiving the new status signal, the main control computer generates a target pose signal, where the target pose signal includes posture information of the first surgical actuator after the first surgical tool extends out of the multi-lumen tube, and the target computer sets the target position
  • the posture signal is sent to the first surgical tool embedded computer through the local area network, and the first surgical tool performs closed-loop control on the first surgical tool driving module and the first surgical tool after receiving the target posture signal by the embedded computer.
  • the multi-lumen tube automatically triggers after reaching the specified posture, the specified posture is a distance from the end of the multi-lumen tube (ie, a predetermined distance), and the first surgical tool extends out of the axis of the multi-lumen tube portion The direction is parallel to the axis of the multi-lumen tube; the automatic triggering means that the control module in the driving module of the first surgical tool detects that the motor output shaft has been rotated to a specified rotation angle by the motor rotation angle sensor, that is, the surgical actuator reaches the specified posture:
  • the first surgical tool receives the motion completion signal sent by the control module in the first surgical tool driver module by the embedded computer, and sends the motion completion signal to the embedded computer through the local area network; the embedded computer drives the first surgical tool The state corresponding to the module and the first surgical tool is switched to the surgical instrument body 427.
  • the embedded computer returns the state switching signal to the host computer via the local area network, and the host computer transmits the state information of the surgical tool body to the display for display.
  • the main control computer receives the surgical tool deployment instruction, and sends the generated new status signal (ie, the surgical tool deployment signal) to the embedded computer via the local area network, and the embedded computer corresponds the first surgical tool drive module to the first surgical tool.
  • the state is switched to the surgical tool deployment state 429.
  • the embedded computer returns the state switching signal to the host computer via the local area network, and the host computer transmits the state information of the surgical tool to the display for display.
  • the host computer After receiving the new status signal, the host computer generates a target pose signal including a portion of the lateral surgical instrument that extends from the multi-lumen tube of the first surgical tool (for mechanical surgical actuators or energy) Positional information of the surgical actuator), the host computer transmits the target pose signal to the first surgical tool embedded computer via the local area network, and the first surgical tool receives the target pose signal by the embedded computer
  • the first surgical tool drive module and the first surgical tool are then closed-loop controlled.
  • the state switching action is performed when the first surgical tool is deployed and the first surgical actuator is moved to Automatically trigger after the specified pose
  • the automatic trigger means that the control module in the first surgical tool drive module detects that the motor output shaft has been rotated to the specified rotation angle by the motor rotation angle sensor, that is, the first surgical actuator has moved to the specified posture.
  • the motion completion signal is sent to the embedded computer through the local area network, and the embedded computer drives the first surgical tool
  • the state of the module corresponding to the first surgical tool is switched to the surgical tool maintaining the current pose state 431.
  • the embedded computer returns the state switching signal to the host computer via the local area network, and the master computer transmits the current posture state information of the surgical tool to the display for display.
  • the first surgical tool drive module and the first surgical tool are switched from the surgical tool to maintain the current posture state 431 to the surgical tool teleoperation motion state 435;
  • Stepping on the pedal the main control computer reads the pedal depression status information, starts receiving the target pose signal sent by the remote operation device, and the actual pose signal sent by the embedded computer through the local area network by the first surgical tool, the actual pose signal
  • the motor rotation angle sensor is sent to the first surgical tool by the embedded computer through the control module, and the signal is solved by the first surgical tool by the embedded computer through the forward kinematics algorithm;
  • the host computer When the target pose signal matches the pose information contained in the actual pose signal (ie, the difference between the target pose signal and the actual pose signal is less than a preset error threshold), the host computer will generate a state switching signal.
  • the embedded computer transmits to the embedded computer via the local area network, and the embedded computer switches the state corresponding to the first surgical tool drive module and the first surgical tool to the surgical tool teleoperation motion state 435.
  • the embedded computer returns the state switching signal to the main control computer through the local area network, and the main control computer transmits the teletool operation state information of the surgical tool to the display for display.
  • the main control computer transmits the target pose signal sent by the remote operation device to the first surgical tool embedded computer through the local area network, and the first surgical tool uses the embedded computer to perform the first operation
  • the tool driving module and the first surgical tool perform closed-loop control, and finally realize remote operation of the first surgical tool by the remote operation device, and adjust the posture of the surgical actuator in real time.
  • the second trigger device on the remote control device can be triggered at the same time, the master computer reads the state change signal of the second trigger device, and passes the second trigger device state change signal through the local area network.
  • the first surgical tool controls the motor through the control module in the first surgical tool driving module by the embedded computer, thereby controlling the mechanical state of the mechanical surgical actuator, such as the surgical forceps
  • the second triggering device can employ a roller.
  • the main control computer reads the state change signal triggering the first trigger device on the remote control device, and sends the state change signal of the first trigger device to the embedded computer through the local area network, and the embedded computer drives the first surgical tool drive module
  • the state corresponding to the first surgical tool is switched to the electric cutting/coagulation state 433 under the remote operation of the first surgical tool, so that the embedded computer can control the on/off and mode switching of the energy generator through the electromagnetic relay to realize the energy-based surgical execution.
  • the energy input is switched on and the mode is switched, such as electric cutting and electrocoagulation.
  • the embedded computer returns the state switching signal to the main control computer through the local area network, and the main control computer transmits the electric cut/coagulation state information under the remote operation of the surgical tool to the display for display.
  • the relevant motion control in the teleoperation movement state 435 of the surgical tool can be simultaneously performed, that is, the posture of the surgical actuator. Adjustment and adjustment of the mechanical state of the surgical actuator. If the first surgical tool carries a non-energy surgical actuator, triggering the first trigger device on the remote control device is invalid.
  • Step 4 After the teleoperation movement state of the surgical tool and the electric cutting/coagulation state under the remote operation of the surgical tool are ended, the surgical tool exiting method is as follows, since the first surgical tool to the third surgical tool exiting the same method, in this embodiment
  • the first surgical tool is taken as an example to further introduce the surgical tool exiting method of the present invention, and the steps are as follows:
  • the condensed state 433 switches to a surgical tool teleoperating motion state 435 that releases the first triggering device on the remote steering device.
  • the main control computer reads the state change signal triggering the first trigger device on the remote control device, and sends the first trigger device state change signal to the embedded computer, and the embedded computer drives the first surgical tool drive module and the first The corresponding state of the surgical tool is switched to the first surgical tool teleoperation motion state 435, and the embedded computer controls the energy generator to be turned off by the electromagnetic relay to stop outputting energy to the energy surgical actuator.
  • the embedded computer returns the state switching signal to the main control computer through the local area network, and the main control computer transmits the teletool operation state information of the surgical tool to the display for display.
  • the main control computer reads the input change signal of the pedal, and sends the generated new status signal (ie, the surgical tool maintains the current pose signal) to the embedded computer via the local area network, and the embedded computer drives the first surgical tool.
  • the state of the module corresponding to the first surgical tool is switched to the surgical tool maintaining the current pose state 431.
  • the embedded computer returns the state switching signal to the host computer via the local area network, and the master computer transmits the current posture state information of the surgical tool to the display for display.
  • the host computer stops transmitting the target pose signal output by the remote control device.
  • the embedded computer sends the state switching signal to the first surgical tool embedded computer through the local area network, and the first surgical tool uses the embedded computer to control the motor output shaft to maintain the current angle through the control module in the first surgical tool driving module, ie, A surgical tool uses an embedded computer to control the first surgical tool in a closed position in the current position.
  • the main control computer reads the input change signal of the pedal, and sends the generated new status signal (ie, the surgical tool maintains the current pose signal) to the embedded computer via the local area network, and the embedded computer drives the first surgical tool.
  • the state corresponding to the module and the first surgical tool is switched to maintain the current posture state 431 of the surgical tool; at the same time, the energy generator is controlled to be disconnected by the electromagnetic relay, thereby stopping the energy generator to output energy to the energy surgical actuator.
  • the host computer stops transmitting the target pose signal output by the remote control device.
  • the embedded computer transmits the state switching signal to the first surgical tool embedded computer through the local area network, and the first surgical tool uses the embedded computer to control the first surgical tool to maintain the current posture.
  • the main control computer receives the surgical tool return command, and sends the generated new state signal (ie, the surgical tool return signal) to the embedded computer through the local area network, and the embedded computer drives the first surgical tool drive module and the first surgical tool The corresponding state is switched to the surgical tool return state 429.
  • the generated new state signal ie, the surgical tool return signal
  • the embedded computer returns the state switching signal to the main control computer through the local area network, and the main control computer transmits the back state information of the surgical tool to the display for display.
  • the main control computer After receiving the state switching signal, the main control computer generates a target pose signal, where the target pose signal includes posture information of the surgical actuator after the first surgical tool extends out of the multi-lumen tube, and the host computer will The target pose signal is sent to the first surgical tool embedded computer through the local area network, and the first surgical tool performs closed-loop control on the first surgical tool drive module and the first surgical tool after receiving the target pose signal by the embedded computer.
  • the automatic trigger means that the control module in the first surgical tool drive module detects that the motor output shaft has been rotated to the specified rotation angle by the motor rotation angle sensor, that is, the surgical actuator (for mechanical surgical actuator or Energy-operated surgical actuators) to a specific pose:
  • the motion completion signal is sent to the embedded computer through the local area network.
  • the embedded computer switches the state corresponding to the first surgical tool drive module and the first surgical tool to the surgical instrument body in a straight state 427.
  • the embedded computer returns the state switching signal to the host computer via the local area network, and the master computer transmits the straight state information of the surgical tool to the display for display.
  • the main control computer receives the surgical tool to return the multi-lumen tube command, and sends the generated new status signal (ie, the surgical tool is returned to the multi-lumen tube signal) to the embedded computer via the local area network, and the embedded computer drives the first surgical tool drive module.
  • the state corresponding to the first surgical tool is switched to return the surgical tool to the multi-lumen tube state 425.
  • the embedded computer returns the state switching signal to the host computer via the local area network, and the host computer transmits the surgical tool back to the multi-lumen tube state information for transmission to the display for display.
  • the main control computer After receiving the state switching signal, the main control computer generates a target pose signal, which includes the posture information of the first surgical tool and the surgical actuator that the first surgical actuator is returned to the multi-lumen tube, and the main control computer will The target pose signal is sent to the first surgical tool embedded computer through the local area network, and the first surgical tool performs closed-loop control on the first surgical tool drive module and the first surgical tool after receiving the target pose signal by the embedded computer.
  • the multi-cavity tube automatically triggers after the specified posture.
  • the automatic trigger means that the control module in the first surgical tool drive module detects that the motor output shaft has been rotated to the specified rotation angle by the motor rotation angle sensor, that is, the surgical actuator moves to the specified posture.
  • the motion completion signal is sent to the embedded computer through the local area network.
  • the embedded computer switches the state corresponding to the first surgical tool drive module and the first surgical tool to the surgical tool externally mounted state 423.
  • the embedded computer returns the state switching signal to the main control computer through the local area network, and the main control computer transmits the state information of the external installation of the surgical tool to the display for display.
  • the first surgical tool receives the information tag reading failure signal sent by the reading chip in the first surgical tool driving module by using the embedded computer, and sends the information tag reading failure signal to the embedded computer through the local area network, and is embedded
  • the computer switches the state corresponding to the first surgical tool drive module and the first surgical tool to the external state to be installed 421 of the surgical tool.
  • the embedded computer returns the state switching signal to the main control computer through the local area network, and the main control computer transmits the state information to be installed outside the surgical tool to the display for display.
  • Step 5 After the imaging tool teleoperation motion state 417 ends, the imaging tool exit method includes the following steps:
  • remote control devices pedals, and imaging tools are used to establish teleoperation mapping relationships:
  • the main control computer reads the release status signal of the pedal, and sends the new status signal (ie, the imaging tool maintains the current pose signal) to the embedded computer through the local area network, and the embedded computer drives the imaging tool drive module and The state corresponding to the imaging tool is switched to the imaging tool maintaining the current pose state 415.
  • the embedded computer returns the new status signal to the host computer via the local area network, and the host computer transmits the current position state information of the imaging tool to the display for display.
  • the main control computer stops transmitting the target pose signal received from the remote operation device, and the embedded computer transmits the new status signal to the imaging embedded computer through the local area network, and the imaging embedded computer controls the closed loop of the imaging tool at the current position. posture.
  • the main control computer receives the imaging tool to retract the folding instruction, and sends the generated new state signal (ie, the imaging tool back-retracting and collecting signal) to the embedded computer through the local area network, and the embedded computer corresponds the imaging tool driving module and the imaging tool.
  • the state is switched to the imaging tool back to the collapsed state 413.
  • the embedded computer returns the state switching signal to the main control computer through the local area network, and the main control computer transmits the imaging tool back-off and collapsed state information to the display for display.
  • the main control computer After receiving the state switching signal, the main control computer generates a target pose signal, and the target pose signal includes a portion of the imaging tool extending from the multi-lumen tube to be retracted and folded until the imaging illumination module is attached to the end surface of the multi-lumen tube The position and orientation information of the imaging lighting module; the main control computer sends the target pose signal to the imaging embedded computer through the local area network, and the imaging embedded computer receives the target pose signal and then performs closed-loop control on the imaging tool driving module and the imaging tool. .
  • the state switching action is performed in the imaging tool to retract and the imaging lighting module is moved to the multi-lumen tube
  • the end face is automatically triggered after the specified pose; the automatic trigger means that the control module in the imaging tool drive module detects that the motor output shaft has been rotated to a preset rotation angle by the motor rotation angle sensor, that is, the imaging illumination module moves to Specify the pose.
  • the imaging computer receives the motion sent by the control module in the imaging tool driver module After the signal is generated, the motion completion signal is sent to the embedded computer through the local area network, and the embedded computer switches the state corresponding to the imaging tool drive module and the imaging tool to the closed posture state 411 of the imaging tool body.
  • the embedded computer returns the state switching signal to the main control computer through the local area network, and the main control computer transmits the closed posture state information of the imaging tool to the display for display.
  • the main control computer receives the imaging tool and the multi-lumen tube exits the surgical incision instruction, and sends the generated new state signal (ie, exits the surgical incision signal) to the embedded computer through the local area network, and the embedded computer drives the imaging tool driving module and the imaging tool.
  • the corresponding state is switched to the imaging tool and the multi-lumen tube exits the surgical incision state 409.
  • the embedded computer returns the state switching signal to the main control computer through the local area network, and the main control computer transmits the imaging tool and the multi-lumen tube exiting the surgical incision state information to the display for display.
  • the pedestal can carry the imaging tool driving module, the imaging tool, the surgical tool driving module and the multi-lumen tube as a whole by manual or automated movement, so that the end of the multi-lumen tube and the end surface of the multi-lumen tube are attached.
  • the upper imaging illumination module exits the patient's body cavity through a surgical incision on the patient.
  • the main control computer receives the instruction to complete the external installation of the imaging tool, and the new state signal (ie, the imaging tool body) will be generated.
  • the installation completion signal is sent to the embedded computer through the local area network, and the embedded computer switches the state corresponding to the imaging tool drive module and the imaging tool to the external installation state 407 of the imaging tool.
  • the embedded computer returns the state switching signal to the main control computer through the local area network, and the main control computer transmits the state information of the external installation of the imaging tool to the display for display.
  • the imaging tool is detached from the imaging tool drive module, the reading chip in the imaging tool driving module is disconnected from the information tag in the imaging tool, and no information can be read; the imaging lighting module is disconnected from the display Connected, the image is no longer displayed in the far-end image area on the host computer; at this point, the imaging tool is completely separated from the controlled end of the surgical robot.
  • the imaging computer receives an information tag reading failure signal sent by the reading chip in the imaging tool driving module, and sends the information tag reading failure signal to the embedded computer through the local area network.
  • the embedded computer switches the state corresponding to the imaging tool drive module and the imaging tool to the external state to be mounted 405 of the imaging tool.
  • the embedded computer returns the state switching signal to the main control computer through the local area network, and the main control computer transmits the state information to be installed outside the imaging tool to the display for display.
  • the surgical tool in the imaging tool externally mounted state 407 to the imaging tool retracted and collapsed state 413, the surgical tool should be in the initial state 401, the surgical tool drive module is returned to the state 419, and the surgical tool is external to the surgical tool.
  • the first surgical tool embedded computer and the corresponding first surgical tool driving module and the first surgical tool are taken as an example, and the closed loop is used. Control is further introduced. Closed-loop control means that the first surgical tool receives the target pose signal input by the embedded computer, and outputs the motor position control signal after running the inverse kinematics algorithm.
  • the inverse kinematics algorithm can be adjusted according to the mechanical configuration information of the first surgical tool (including the tool type and mechanical structure information of the first surgical tool) read from the reading chip by the embedded computer through the communication bus of the first surgical tool.
  • the motor position control signal includes the desired rotation angle information of the motor output shaft relative to the zero position, that is, the desired position information, and the first surgical tool sends the motor position control signal to the first surgical tool drive mode through the communication bus by the embedded computer.
  • the control module compares the received motor position control signal with the current output shaft rotation angle (ie, the actual position) of the motor, and then drives the motor to realize closed-loop motion control.
  • the actual position is measured by the motor angle sensor connected to the motor and read by the control module.
  • the embedded computer monitors the motor position control signal sent by the embedded computer of the first surgical tool through the communication bus, and the motor running by the control module in the first surgical tool drive module to the first surgical tool through the communication bus Status signal.

Abstract

一种手术机器人的成像工具与手术工具展开实施、退出方法,包括步骤:设置包括主控端、受控端、执行端的控制系统;将成像工具驱动模组和成像工具、手术工具驱动模组和手术工具从初始状态(401)依次切换为回零状态(403、419)、体外待安装状态(405、421)、体外安装完毕状态(407、423)、成像工具及多腔管进入手术切口状态(409)/手术工具伸出多腔管状态(425)、体内闭合姿态状态(411)/直态状态(427)、成像工具进给展开状态(413)/手术工具展开状态(429)、保持当前位姿状态(415、431)、成像工具遥操作运动状态(417)和手术工具遥操作下的电切/电凝状态(433),完成成像工具和手术工具展开实施;当手术工具遥操作运动状态(435)和成像工具遥操作运动状态(417)结束后退出手术工具,然后退出成像工具。手术机器人的成像工具与手术工具展开实施、退出方法能有效保证单孔腔镜手术的正常施展。

Description

手术机器人的成像工具与手术工具展开实施、退出方法
相关申请的交叉引用
本专利申请要求于2016年8月31日提交的下述三件中国专利申请的优先权,申请号为201610796025.6、发明名称为“手术机器人的成像工具与手术工具展开实施、退出方法”的中国专利申请,申请号为201610798191.X、发明名称为“一种手术机器人的成像工具展开实施、退出方法”的中国专利申请,申请号为201610797600.4、发明名称为“一种手术机器人的手术工具展开实施、退出方法”的中国专利申请,上述申请的全文以引用的方式并入本文中。
技术领域
本发明涉及一种医疗器械使用方法,特别是关于一种手术机器人的成像工具与手术工具展开实施、退出方法。
背景技术
现代医疗领域中,手动多孔腹腔镜微创手术已被广泛应用于临床。此类微创手术成功降低了病人的术后疼痛、并发症概率、康复时间并改善了术后疤痕。近几年,为方便医生操作以及实现更好的术后产出,机器人辅助的多孔腹腔镜微创手术得到广泛的应用,其中由美国Intuitive Surgical公司(美国直觉外科公司)推出的达芬奇手术机器人系统,可辅助医生完成多孔腹腔镜微创手术,取得了商业上的巨大成功。
为了进一步减小手术创伤面积与康复时间,研究者提出了单孔腹腔镜微创手术。相较于多孔腹腔镜微创手术需要多个体表切口,单孔腹腔镜微创手术中所有手术工具均由一个体表切口(通常是肚脐)进入腹腔,进一步减小了对患者的创伤。然而,此类单孔腹腔镜微创手术无论对手术器械的设计还是手术时医生的操作均提出了更高的要求。基于传统刚性手术工具的手动单孔腹腔镜手术由于存在复杂的手眼协同操作需求,加之手术工具的灵活度有限、工作范围较小等困难,手动单孔腹腔镜手术尚未广泛应用于临床。
通过合理规划设计单孔腹腔镜手术机器人系统,可有效解决手动单孔腹腔镜手术中存在的问题,现存单孔腹腔镜手术机器人系统技术方案与手术施展方法尚未发展成熟。
发明内容
针对上述问题,本发明的目的是提供一种手术机器人的成像工具与手术工具展开实施、退出方法,该方法能有效保证单孔腔镜手术的正常施展。
为实现上述目的,本发明采取以下技术方案:一种手术机器人的成像工具与手术工具展开实施、退出方法,其特征在于,该方法包括以下步骤:步骤一:设置一包括主控端、受控端、执行端的控制系统;主控端包括遥控操作设备和主控计算机;受控端包括嵌入式计算机、成像用嵌入式计算机、手术工具用嵌入式计算机、成像工具驱动模组和手术工具驱动模组;执行端包括成像工具、手术工具和手术执行器;步骤二:成像工具展开实施,进入成像工具遥操作运动状态;步骤三:手术工具展开实施,进入手术工具遥操作运动状态;步骤四:当手术工具遥操作运动状态与成像工具遥操作运动状态结束后,手术工具退出,然后成像工具退出。
优选地,所述步骤二、步骤三中,成像工具展开实施方法与手术工具展开实施方法相似,成像工具展开实施方法或手术工具展开实施方法是将成像工具驱动模组和成像工具或将手术工具驱动模组和手术工具从初始状态依次切换为成像工具驱动模组或手术工具驱动模组回零状态、成像工具或手术工具体外待安装状态、成像工具或手术工具体外安装完毕状态、成像工具及多腔管进入手术切口状态或手术工具伸出多腔管状态、成像工具体内闭合姿态状态或手术工具体内直态状态、成像工具进给展开状态或手术工具展开状态、成像工具或手术工具保持当前位姿状态以及成像工具或手术工具遥操作运动状态,完成展开实施;其中,手术工具展开实施方法还包括手术工具遥操作下的电切/电凝状态。
优选地,成像工具驱动模组与手术工具驱动模组从初始状态切换为回零状态过程相似,其过程如下:1)主控计算机接收成像工具驱动模组或手术工具驱动模组回零指令,并将产生的新状态信号经局域网发送至嵌入式计算机,嵌入式计算机将成像工具驱动模组或手术工具驱动模组的状态切换为回零状态;2)嵌入式计算机将状态切换信号通过局域网反馈至主控计算机,由主控计算机将回零状态信息传输至主控端的显示器进行显示;3)嵌入式计算机通过局域网向成像用嵌入式计算机或手术工具用嵌入式计算机发送状态切换信号,成像用嵌入式计算机或手术工具用嵌入式计算机通过通信总线向成像工具驱动模组或手术工具驱动模组中的控制模块发送控制信号,使成像工具驱动模组或手术工具驱动模组执行回零操作;4)嵌入式计算机通过通信总线监听成像用嵌入式计算机或手术工具用嵌入式计算机向成像工具驱动模组或手术工具驱动模组发送的控制信号,以及成像工具驱动模组或 手术工具驱动模组中的控制模块向成像用嵌入式计算机或手术工具用嵌入式计算机发送的状态切换信号。
优选地,成像工具驱动模组和手术工具驱动模组从回零状态切换为体外待安装状态的过程相似,其中,成像工具驱动模组的状态切换动作是由成像工具驱动模组完成回零操作后自动触发,手术工具驱动模组的状态切换动作是由手术工具驱动模组完成回零操作后自动触发;此时,成像工具驱动模组、手术工具驱动模组中的电机的输出轴全部转至零点位置:1)成像工具驱动模组或手术工具驱动模组中的控制模块通过通信总线向成像用嵌入式计算机或手术工具用嵌入式计算机发送状态切换信号;成像用嵌入式计算机或手术工具用嵌入式计算机通过局域网向嵌入式计算机发送新状态信号;2)嵌入式计算机将成像工具驱动模组或手术工具驱动模组对应的状态切换为体外待安装状态;3)嵌入式计算机将状态切换信号通过局域网返回给主控计算机,主控计算机将体外待安装状态信息传输至主控端的显示器进行显示。
优选地,成像工具驱动模组和成像工具与手术工具驱动模组和手术工具从体外待安装状态切换为体外安装完毕状态过程相似,其过程如下:1)将成像工具与成像工具驱动模组或手术工具与手术工具驱动模组都经过无菌屏障连接,将多腔管与基座经过无菌屏障连接;成像工具驱动模组或手术工具驱动模组中的联轴器分别与成像工具或手术工具中的联轴器连接在一起传递运动;2)成像工具或手术工具远端伸入并穿过多腔管中的腔道,成像工具末端所携带的成像照明模组与多腔管末端贴合,并保持手术工具末端所携带的手术执行器在多腔管内部;3)成像工具驱动模组或手术工具驱动模组中的读取芯片与成像工具或手术工具上的信息标签连接,读取芯片读取信息标签中保存的相关信息;若读取芯片未能成功读取信息标签中相关信息,则成像工具或手术工具未安装完毕;若安装完毕,则进入下一步;其中,相关信息包括尺寸、使用次数以及工具种类信息;4)读取芯片通过通信总线将相关信息上传至成像用嵌入式计算机或手术工具用嵌入式计算机,成像用嵌入式计算机或手术工具用嵌入式计算机根据相关信息采取对应的控制参数和策略。
优选地,成像工具驱动模组、成像工具从体外安装完毕状态切换为成像工具及多腔管进入手术切口状态的过程如下:1)主控计算机接收成像工具及多腔管进入手术切口指令,将产生的新状态信号通过局域网发送给嵌入式计算机,嵌入式计算机将成像工具驱动模组和成像工具对应的状态切换为成像工具及多腔管进入手术切口状态;2)嵌入式计算机将状态切换信号通过局域网返回给主控计算机,主控 计算机将成像工具及多腔管进入手术切口状态信息传输至主控端的显示器进行显示。
优选地,成像工具驱动模组、成像工具从成像工具及多腔管进入手术切口状态切换为成像工具体内闭合姿态状态的过程与手术工具驱动模组、手术工具从手术工具伸出多腔管状态切换为手术工具体内直态状态过程相似,其过程为:1)在成像工具远端所携带的成像照明模组进入手术切口并到达预定位置后,主控计算机接收成像工具体内闭合姿态指令,将产生的新状态信号通过局域网发送给嵌入式计算机,嵌入式计算机将成像工具驱动模组和成像工具对应的状态切换为成像工具体内闭合姿态状态;手术工具用嵌入式计算机接收手术工具驱动模组中控制模块发送的运动完成信号后,将该运动完成信号通过局域网发送至嵌入式计算机;嵌入式计算机将手术工具驱动模组和手术工具对应的状态切换为手术工具体内直态状态;2)嵌入式计算机将状态切换信号通过局域网返回给主控计算机,主控计算机将成像工具体内闭合姿态状态或手术工具体内直态状态信息传输至主控端的显示器进行显示。
优选地,成像工具驱动模组、成像工具从体内闭合姿态状态切换为成像工具进给展开状态与手术工具驱动模组、手术工具从手术工具安装完毕状态切换为手术工具伸出多腔管状态和从手术工具体内直态状态切换为手术工具展开状态过程相似,其过程为:1)主控计算机接收指令,将产生的新状态信号通过局域网发送给嵌入式计算机,嵌入式计算机将成像工具驱动模组和成像工具对应的状态切换为成像工具进给展开状态或将手术工具驱动模组和手术工具对应的状态切换为手术工具伸出多腔管状态或手术工具展开状态;2)嵌入式计算机将状态切换信号通过局域网返回给主控计算机,主控计算机将成像工具进给展开状态信息或手术工具伸出多腔管状态信息或手术工具展开状态信息传输至主控端的显示器进行显示;3)主控计算机接收状态切换信号后,产生目标位姿信号,主控计算机将该目标位姿信号通过局域网发送给成像用嵌入式计算机或手术工具用嵌入式计算机,成像用嵌入式计算机或手术工具用嵌入式计算机接收目标位姿信号后对成像工具驱动模组及成像工具或手术工具驱动模组及手术工具进行闭环控制;其中,目标位姿信号包括成像工具进给展开后成像照明模组的位姿信息或手术工具伸出多腔管后手术执行器的位姿信息或手术工具伸出多腔管的部分侧向展开后手术执行器的位姿信息。
优选地,成像工具驱动模组和成像工具从成像工具进给展开状态切换为保持当前位姿状态的过程与手术工具驱动模组和手术工具从手术工具展开状态切换为保 持当前位姿状态的过程相似,其具体过程如下:1)成像用嵌入式计算机或手术工具用嵌入式计算机通过通信总线接收成像工具驱动模组或手术工具驱动模组中控制模块发送的完成信号后,并将该完成信号通过局域网发送至嵌入式计算机;2)嵌入式计算机将成像工具驱动模组和成像工具或手术工具驱动模组和手术工具对应的状态切换为保持当前位姿状态;3)嵌入式计算机将状态切换信号通过局域网返回给主控计算机,主控计算机将保持当前位姿状态信息传输至主控端的显示器进行显示。
优选地,成像工具驱动模组和成像工具从保持当前位姿状态切换为遥操作运动状态的过程与手术工具驱动模组和手术工具从保持当前位姿状态切换为遥操作运动状态的过程相似,以遥控操作设备、踏板与成像工具或手术工具建立遥控操作映射关系为例:1)建立遥控操作设备、踏板与成像工具或手术工具的遥操作映射关系,即通过遥控操作设备和踏板控制成像工具或手术工具的运动及状态;2)踩踏踏板,主控计算机读取踏板的踩下状态信息,开始接收遥控操作设备发送的目标位姿信号和成像用嵌入式计算机或手术工具用嵌入式计算机通过局域网发送的实际位姿信号;该实际位姿信号为成像工具驱动模组或手术工具驱动模组中电机转角传感器通过控制模块向成像用嵌入式计算机或手术工具用嵌入式计算机发送并经成像用嵌入式计算机或手术工具用嵌入式计算机通过正运动学算法解算后的信号;3)当目标位姿信号与实际位姿信号的差异小于预设误差阈值时,主控计算机将产生新状态信号,并通过局域网发送给嵌入式计算机,嵌入式计算机分别将成像工具驱动模组和成像工具或手术工具驱动模组和手术工具对应的状态切换为遥操作运动状态;4)嵌入式计算机将状态切换信号通过局域网返回给主控计算机,主控计算机将遥操作运动状态信息传输至主控端的显示器进行显示;5)在遥操作运动状态下,主控计算机将遥控操作设备发送的目标位姿信号通过局域网发送给成像用嵌入式计算机或手术工具用嵌入式计算机,成像用嵌入式计算机对成像工具驱动模组、成像工具进行闭环控制,手术工具用嵌入式计算机对手术工具驱动模组、手术工具进行闭环控制,最终实现遥控操作设备对成像工具或手术工具的遥操作;6)在手术工具遥操作运动状态中,能同时触发遥控操作设备上的触发装置,主控计算机读取触发装置的状态变化信号,并将触发装置状态变化信号通过局域网发送给手术工具用嵌入式计算机,手术工具用嵌入式计算机通过手术工具驱动模组中的控制模块控制电机,进而控制机械式手术执行器的机械状态。
优选地,手术工具驱动模组和手术工具从手术工具遥操作运动状态切换为手术 工具遥操作下的电切/电凝状态,该状态切换动作为触发远程操控设备上触发装置,其过程如下:1)主控计算机读取触发远程操控设备上触发装置的状态变化信号,并将触发装置的状态变化信号通过局域网发送给嵌入式计算机,嵌入式计算机将手术工具驱动模组和手术工具对应的状态切换为手术工具遥操作下的电切/电凝状态,进而嵌入式计算机通过电磁继电器控制能量发生器的通断和模式切换,实现能量式手术执行器能量输入的接通与模式切换;2)嵌入式计算机将状态切换信号通过局域网返回给主控计算机,主控计算机将手术工具遥操作下的电切/电凝状态信息传输至主控端的显示器进行显示。
优选地,所述步骤四中,当手术工具遥操作运动状态结束以后,手术工具退出方法是将手术工具驱动模组和手术工具从手术工具保持当前位姿状态依次切换为手术工具回直状态、手术工具体内直态状态、手术工具退回多腔管状态、手术工具体外安装完毕状态和手术工具体外待安装状态,完成手术工具的退出。
优选地,所述步骤四中,当成像工具遥操作运动状态结束以后,成像工具退出方法是将成像工具驱动模组和成像工具从成像工具保持当前位姿状态依次切换为成像工具回退收拢状态、成像工具体内闭合姿态状态、成像工具及多腔管退出手术切口状态、成像工具体外安装完毕状态和成像工具体外待安装状态,完成成像工具的退出。
本发明由于采取以上技术方案,其具有以下优点:1、本发明针对单孔腔镜手术机器人系统,提出了一套完整的术前准备、术中操作、术后撤出的系统施展方法。2.本发明所提出的系统施展方法中,经同一多腔管进入手术切口的成像工具、多个手术工具均能够侧向展开,保证了单孔腔镜手术的正常施展。
附图说明
图1是本发明的整体流程示意图。
具体实施方式
下面结合附图和实施例对本发明进行详细的描述。
如图1所示,本发明提供一种手术机器人的成像工具与手术工具展开实施、退出方法,其包括以下步骤:
步骤一:设置一包括主控端、受控端、执行端的控制系统,位于受控端与执行端之间设置有多腔管;由控制系统实现对成像工具和手术工具展开和退出。
其中,主控端包括遥控操作设备、踏板、主控计算机和显示器,其中遥控操作设备内设置有第一触发装置和第二触发装置;受控端包括嵌入式计算机、成像用嵌入式计算机、第一至第三手术工具用嵌入式计算机、成像工具驱动模组、第一至第三手术工具驱动模组、电磁继电器和能量发生器,在成像工具驱动模组和第一至第三手术工具驱动模组内都设置有读取芯片、零点开关和电机转角传感器;执行端包括成像工具、第一至第三手术工具、第一至第三手术执行器以及设置在成像工具上及手术工具上的信息标签;在多腔管和基座、成像工具和成像工具驱动模组、手术工具和手术工具驱动模组间设置有无菌屏障。
步骤二:成像工具展开实施方法包括以下步骤:
201)将成像工具驱动模组从初始状态401切换为回零状态403:
在初始状态401下,无菌屏障与成像工具驱动模组、手术工具驱动模组、基座连接,无菌屏障的无菌膜将未消毒的系统组件覆盖,保证病患侧的无菌环境;已消毒的多腔管也通过无菌屏障与基座紧固连接,基座由人力或自动化运动致动,携带成像工具驱动模组、手术工具驱动模组、多腔管共同运动。
201.1)主控计算机接收成像工具驱动模组回零指令,并将产生的新状态信号(即回零状态信号)经局域网发送至嵌入式计算机,嵌入式计算机将成像工具驱动模组的状态切换为回零状态。
201.2)嵌入式计算机将状态切换信号通过局域网反馈至主控计算机,由主控计算机将成像工具驱动模组回零信息传输至显示器进行显示;
201.3)嵌入式计算机通过局域网向成像用嵌入式计算机发送状态切换信号,成像用嵌入式计算机通过通信总线向成像工具驱动模组中的控制模块发送控制信号,使成像工具驱动模组执行回零操作。
回零操作是指成像工具驱动模组中电机回复至零点位置。该零点位置由如下方式确定:电机的输出轴紧固连接联轴器,联轴器上设置有特殊标识,该特殊标识可使联轴器在每360°的旋转过程中均在预先设定位置触发零点开关,被触发的零点开关发出信号到成像工具驱动模组中的控制模块,该控制模块记录此时联轴器所处旋转角度为零点位置。其中,特殊标识包括由高反射材料制成的标识。
201.4)嵌入式计算机通过通信总线监听成像用嵌入式计算机向成像工具驱动模组发送的控制信号,以及成像工具驱动模组中的控制模块向成像用嵌入式计算机发送的状态反馈信号。
202)将成像工具驱动模组从回零状态403切换为成像工具体外待安装状态405, 该状态切换动作是由成像工具待安装状态在回零操作后自动触发,此时,成像工具驱动模组中的电机的输出轴全部转至零点位置:
202.1)成像工具驱动模组中的控制模块通过通信总线向成像用嵌入式计算机发送状态切换信号;成像用嵌入式计算机通过局域网向嵌入式计算机发送新状态信号(即成像工具体外待安装信号)。
202.2)嵌入式计算机将成像工具驱动模组对应的状态切换为体外待安装状态405。
202.3)嵌入式计算机将状态切换信号通过局域网返回给主控计算机,主控计算机将成像工具体外待安装状态信息传输至显示器进行显示。
203)将成像工具驱动模组和成像工具的体外待安装状态405切换为成像工具体外安装完毕状态407:
203.1)将成像工具与成像工具驱动模组经过无菌屏障连接。此时,成像工具驱动模组中的联轴器与成像工具中的联轴器连接在一起,并可传递运动,如旋转运动或直线运动;
203.2)成像工具远端伸入并穿过多腔管中供成像工具通过的腔道,成像工具末端所携带的成像照明模组与多腔管末端贴合。
203.3)成像工具驱动模组中的读取芯片与成像工具上的信息标签直接或间接连接,读取芯片读取信息标签中保存的所安装的成像工具相关信息(如尺寸、使用次数以及工具种类等)。若读取芯片未能成功读取信息标签中相关信息,说明成像工具未安装完毕;若成像工具安装完毕,则进入下一步。
203.4)读取芯片通过通信总线将相关信息上传至成像用嵌入式计算机,成像用嵌入式计算机可根据相关信息采取对应的控制参数和策略:
当成像用嵌入式计算机将相关信息通过局域网上传至主控计算机后,主控计算机接收成像工具体外安装完毕指令,并控制开启远端图像区,使远端图像区开始显示成像工具所携带的成像照明模组返回的图像,将产生的新状态信号(即成像工具体外安装完毕信号)通过局域网发送给嵌入式计算机,嵌入式计算机将成像工具驱动模组和成像工具对应的状态切换为成像工具体外安装完毕状态407。
203.5)嵌入式计算机将状态切换信号通过局域网返回给主控计算机,主控计算机将成像工具体外安装完毕状态信息传输至显示器进行显示。
204)将成像工具驱动模组和成像工具从体外安装完毕状态407切换为成像工具及多腔管进入手术切口状态409:
204.1)主控计算机接收成像工具及多腔管进入手术切口指令,将产生的新状态信号(即进入手术切口信号)通过局域网发送给嵌入式计算机,嵌入式计算机将成像工具驱动模组和成像工具对应的状态切换为成像工具及多腔管进入手术切口状态409。
204.2)嵌入式计算机将状态切换信号通过局域网返回给主控计算机,主控计算机将成像工具及多腔管进入手术切口状态信息传输至显示器进行显示。
上述步骤完成后,基座通过人力或自动化运动携带成像工具驱动模组、成像工具、手术工具驱动模组及多腔管整体运动,使得多腔管的远端及贴合于多腔管远端面上的成像照明模组通过病人身上的手术切口进入体内。
205)将成像工具驱动模组和成像工具从成像工具及多腔管进入手术切口状态409切换为成像工具体内闭合姿态状态411:
205.1)在成像工具远端所携带的成像照明模组进入手术切口并到达预定位置后,主控计算机接收成像工具体内闭合姿态指令,将产生的新状态信号(即成像工具体内闭合姿态信号)通过局域网发送给嵌入式计算机,嵌入式计算机将成像工具驱动模组和成像工具对应的状态切换为成像工具体内闭合姿态状态411。
205.2)嵌入式计算机将状态切换信号通过局域网返回给主控计算机,主控计算机将成像工具体内闭合姿态信息传输至显示器进行显示。
206)将成像工具驱动模组和成像工具从成像工具体内闭合姿态状态411切换为成像工具进给展开状态413:
206.1)主控计算机接收成像工具进给展开指令,将产生的新状态信号(即成像工具进给展开信号)通过局域网发送给嵌入式计算机,嵌入式计算机将成像工具驱动模组和成像工具对应的状态切换为成像工具进给展开状态413。
206.2)嵌入式计算机将状态切换信号通过局域网返回给主控计算机,主控计算机将成像工具进给展开状态信息传输至显示器进行显示。
206.3)主控计算机接收状态切换信号后,产生目标位姿信号,该目标位姿信号包括成像工具进给展开后成像照明模组的目标位姿信息,主控计算机将该目标位姿信号通过局域网发送给成像用嵌入式计算机,成像用嵌入式计算机接收目标位姿信号后对成像工具驱动模组及成像工具进行闭环控制。
207)将成像工具驱动模组和成像工具从成像工具进给展开状态413切换为成像工具保持当前位姿状态415,在成像工具进给展开且成像照明模组运动至预定位姿后自动触发保持当前位姿状态;其中,自动触发是指成像工具驱动模组中的控制 模块通过电机转角传感器测得电机输出轴已转至指定旋转角度,即成像照明模组运动至预定位姿;其具体过程如下:
207.1)成像用嵌入式计算机通过通信总线接收成像工具驱动模组中控制模块发送的运动完成信号后,并将该运动完成信号通过局域网发送至嵌入式计算机。
207.2)嵌入式计算机将成像工具驱动模组和成像工具对应的状态切换为成像工具保持当前位姿状态415。
207.3)嵌入式计算机将状态切换信号通过局域网返回给主控计算机,主控计算机将成像工具保持当前位姿传输至显示器进行显示。
208)将成像工具驱动模组和成像工具从成像工具保持当前位姿状态415切换为成像工具遥操作运动状态417:
以遥控操作设备、踏板与成像工具建立遥操作映射关系为例:
208.1)建立遥控操作设备、踏板与成像工具的遥操作映射关系,即通过遥控操作设备和踏板控制成像工具的运动及状态。
208.2)踩踏踏板,主控计算机读取踏板的踩下状态信息,开始接收遥控操作设备发送的目标位姿信号和成像用嵌入式计算机通过局域网发送的实际位姿信号;该实际位姿信号为成像工具驱动模组中电机转角传感器通过控制模块向成像用嵌入式计算机发送、并经成像用嵌入式计算机通过正运动学算法解算后的信号;
208.3)当目标位姿信号与实际位姿信号中包含的位姿信息相符时(即目标位姿信号与实际位姿信号的差异小于一个预设误差阈值),主控计算机将产生新状态信号(即成像工具遥操作运动信号),并通过局域网发送给嵌入式计算机,嵌入式计算机将成像工具驱动模组和成像工具对应的状态切换为成像工具遥操作运动状态417。
208.4)嵌入式计算机将状态切换信号通过局域网返回给主控计算机,主控计算机将成像工具遥操作运动状态信息传输至显示器进行显示。
上述各步骤中,需要注意的是,在成像工具保持当前位姿状态415下,当主控计算机接收到的目标位姿信号和实际位姿信号中包含的位姿信息差异过大时,从成像工具保持当前位姿状态415切换至成像工具遥操作运动状态417的动作未完成,则不会进入成像工具遥操作运动状态417。这样可以有效避免成像工具驱动模组和成像工具在遥操作运动初期出现位姿的急剧变化,保证其运动的平稳性。
208.5)在成像工具遥操作运动状态417下,主控计算机将遥控操作设备发送的目标位姿信号通过局域网发送给成像用嵌入式计算机,成像用嵌入式计算机对成 像工具驱动模组、成像工具进行闭环控制,最终实现遥控操作设备对成像工具的遥控操作,并实时调整成像照明模组的位姿。
步骤三:手术工具展开实施方法如下,由于第一手术工具至第三手术工具展开方法相同,在本实施例中,以第一手术工具为例对本发明的手术工具展开方法作进一步介绍,其步骤为:
301)将第一手术工具驱动模组从初始状态401切换为手术工具驱动模组回零状态419:
301.1)主控计算机接收第一手术工具驱动模组回零指令,主控计算机产生的新状态信号(即第一手术工具驱动模组回零信号)并通过局域网发送给嵌入式计算机,嵌入式计算机将第一手术工具驱动模组对应的状态切换为手术工具驱动模组回零状态。
301.2)嵌入式计算机将状态切换信号通过局域网返回给主控计算机,主控计算机将手术工具驱动模组回零状态信息传输至显示器进行显示。
301.3)嵌入式计算机通过局域网向第一手术工具用嵌入式计算机发送该状态切换信号,第一手术工具用嵌入式计算机通过通信总线向第一手术工具驱动模组中的控制模块发送控制信号,使该第一手术工具驱动模组执行回零操作;
回零操作与成像工具展开方法中的步骤201.3)相同,该回零操作是指手术工具驱动模组中电机回复至零点位置。该零点位置由如下方式确定:电机的输出轴紧固连接联轴器,联轴器上有特殊标识,该特殊标识可使联轴器在每360°的旋转过程中均于预先设定位置触发零点开关,被触发的零点开关发出信号到手术工具驱动模组中的控制模块,控制模块记录此时联轴器所处旋转角度为零点位置。其中,特殊标识包括由高反射材料制成的标识。
301.4)嵌入式计算机通过通信总线监听第一手术工具用嵌入式计算机向第一手术工具驱动模组发送的控制信号,及第一手术工具驱动模组中的控制模块向第一手术工具用嵌入式计算机发送的状态反馈信号。
302)将第一手术工具驱动模组从手术工具驱动模组回零状态419切换至手术工具体外待安装状态421,该状态切换动作是由第一手术工具用嵌入式计算机识别第一手术工具驱动模组完成回零操作后自动触发,此时,第一手术工具驱动模组中的电机的输出轴全部转至零点位置:
302.1)第一手术工具驱动模组中的控制模块通过通信总线向第一手术工具用嵌入式计算机发送状态切换信号,第一手术工具用嵌入式计算机将新状态信号(即 手术工具体外待安装信号)通过局域网发送至嵌入式计算机。
302.2)嵌入式计算机将第一手术工具驱动模组的对应状态切换为手术工具体外待安装状态421。
302.3)嵌入式计算机将状态切换信号通过局域网返回给主控计算机,主控计算机将手术工具体外待安装状态信息传输至显示器进行显示。
303)将第一手术工具驱动模组和第一手术工具从手术工具体外待安装状态421切换为手术工具体外安装完毕状态423:
303.1)将第一手术工具与第一手术工具驱动模组经过无菌屏障连接,此时,第一手术工具驱动模组中的联轴器与第一手术工具中的联轴器连接在一起,并可传递运动,如旋转运动或直线运动;
若第一手术工具携带能量式手术执行器,则能量式手术执行器与能量发生器连接以接收来自能量发生器的能量输入。
303.2)第一手术工具远端伸入多腔管中供手术工具通过的腔道,并保持手术执行器在多腔管内部;
303.3)第一手术工具驱动模组中的读取芯片与第一手术工具上的信息标签直接或间接的连接在一起,读取芯片读取信息标签中保存的第一手术工具相关信息(如尺寸、使用次数、工具种类等)。若读取芯片未能成功读取信息标签中相关信息,说明第一手术工具未安装完毕;若第一手术工具安装完毕,则进入下一步。
303.4)读取芯片通过通信总线将相关信息上传至第一手术工具用嵌入式计算机,第一手术工具用嵌入式计算机可根据相关信息采取对应的控制参数和策略:
当第一手术工具用嵌入式计算机将相关信息通过局域网上传至主控计算机后,主控计算机读取手术工具体外安装完毕指令,将产生的新状态信号(即手术工具体外安装完毕信号)通过局域网发送给嵌入式计算机,嵌入式计算机将第一手术工具驱动模组和第一手术工具对应的状态切换为手术工具体外安装完毕状态423。
303.5)嵌入式计算机将状态切换信号通过局域网返回给主控计算机,主控计算机将手术工具体外安装完毕状态信息传输至显示器进行显示。
304)将第一手术工具驱动模组和第一手术工具从手术工具体外安装完毕状态423切换为手术工具伸出多腔管状态425:
304.1)主控计算机接收手术工具伸出多腔管指令,将产生的新状态信号(即手术工具伸出多腔管信号)通过局域网发送给嵌入式计算机,嵌入式计算机将第一手术工具驱动模组和第一手术工具对应的状态切换为手术工具伸出多腔管状态 425。
304.2)嵌入式计算机将状态切换信号通过局域网返回给主控计算机,主控计算机将手术工具伸出多腔管状态信息传输至显示器进行显示。
304.3)主控计算机接收新状态信号后,产生目标位姿信号,该目标位姿信号包括第一手术工具伸出多腔管后第一手术执行器的位姿信息,主控计算机将该目标位姿信号通过局域网发送给第一手术工具用嵌入式计算机,第一手术工具用嵌入式计算机接收目标位姿信号后对第一手术工具驱动模组及第一手术工具进行闭环控制。
305)将第一手术工具驱动模组和第一手术工具从手术工具伸出多腔管状态425切换为手术工具体内直态427;该状态切换动作在第一手术工具所携带手术执行器伸出多腔管并到达指定位姿后自动触发,该指定位姿为手术执行器伸出多腔管末端一定距离(即预先设定的距离),且第一手术工具伸出多腔管部分的轴线方向与多腔管的轴线平行;自动触发是指第一手术工具驱动模组中的控制模块通过电机转角传感器测得电机输出轴已转至指定旋转角度,即手术执行器到达指定位姿:
305.1)第一手术工具用嵌入式计算机接收第一手术工具驱动模组中控制模块发送的运动完成信号后,将该运动完成信号通过局域网发送至嵌入式计算机;嵌入式计算机将第一手术工具驱动模组和第一手术工具对应的状态切换为手术工具体内直态427。
305.2)嵌入式计算机将状态切换信号通过局域网返回给主控计算机,主控计算机将手术工具体内直态状态信息传输至显示器进行显示。
306)将第一手术工具驱动模组和第一手术工具从手术工具体内直态状态427切换为手术工具展开状态429:
306.1)主控计算机接收手术工具展开指令,将产生的新状态信号(即手术工具展开信号)通过局域网发送给嵌入式计算机,嵌入式计算机将第一手术工具驱动模组和第一手术工具对应的状态切换为手术工具展开状态429。
306.2)嵌入式计算机将状态切换信号通过局域网返回给主控计算机,主控计算机将手术工具展开状态信息传输至显示器进行显示。
306.3)主控计算机接收新状态信号后,产生目标位姿信号,该目标位姿信号包括第一手术工具伸出多腔管的部分侧向展开后手术执行器(为机械式手术执行器或能量式手术执行器)的位姿信息,主控计算机将该目标位姿信号通过局域网发送给第一手术工具用嵌入式计算机,第一手术工具用嵌入式计算机接收目标位姿信号 后对第一手术工具驱动模组及第一手术工具进行闭环控制。
307)将第一手术工具驱动模组和第一手术工具从手术工具展开状态429切换为手术工具保持当前位姿状态431,该状态切换动作在第一手术工具展开且第一手术执行器运动至指定位姿后自动触发,自动触发是指第一手术工具驱动模组中的控制模块通过电机转角传感器测得电机输出轴已转至指定旋转角度,即第一手术执行器已运动至指定位姿;其具体过程如下:
307.1)第一手术工具用嵌入式计算机接收第一手术工具驱动模组中控制模块发送的运动完成信号后,将该运动完成信号通过局域网发送至嵌入式计算机,嵌入式计算机将第一手术工具驱动模组和第一手术工具对应的状态切换为手术工具保持当前位姿状态431。
307.2)嵌入式计算机将状态切换信号通过局域网返回给主控计算机,主控计算机将手术工具保持当前位姿状态信息传输至显示器进行显示。
308)将第一手术工具驱动模组和第一手术工具从手术工具保持当前位姿状态431切换为手术工具遥操作运动状态435;
以遥控操作设备、踏板与第一手术工具建立遥操作映射关系为例:
308.1)建立遥控操作设备、踏板与第一手术工具的遥操作映射关系,即通过遥控操作设备和踏板控制第一手术工具的运动及状态。
308.2)踩踏踏板,主控计算机读取踏板的踩下状态信息,开始接收遥控操作设备发送的目标位姿信号和第一手术工具用嵌入式计算机通过局域网发送的实际位姿信号,实际位姿信号为第一手术工具驱动模组中电机转角传感器通过控制模块向第一手术工具用嵌入式计算机发送、并经第一手术工具用嵌入式计算机通过正运动学算法解算后的信号;
308.3)当目标位姿信号与实际位姿信号中包含的位姿信息相符时(即目标位姿信号与实际位姿信号的差异小于一个预设的误差阈值),主控计算机将产生状态切换信号通过局域网发送给嵌入式计算机,嵌入式计算机将第一手术工具驱动模组和第一手术工具对应的状态切换为手术工具遥操作运动状态435。
308.4)嵌入式计算机将状态切换信号通过局域网返回给主控计算机,主控计算机将手术工具遥操作运动状态信息传输至显示器进行显示。
上述各步骤中,需要注意的是,在手术工具保持当前位姿状态431下,当主控计算机接收到的目标位姿信号和实际位姿信号中包含的位姿信息差异过大时,从手术工具保持当前位姿状态431切换至手术工具遥操作运动状态435的动作未完成, 则不会进入手术工具遥操作运动状态435。这样可以有效避免第一手术工具驱动模组和第一手术工具在遥操作运动初期出现位姿的急剧变化,保证其运动的平稳性。
308.5)在手术工具遥操作运动状态435下,主控计算机将遥控操作设备发送的目标位姿信号通过局域网发送给第一手术工具用嵌入式计算机,第一手术工具用嵌入式计算机对第一手术工具驱动模组、第一手术工具进行闭环控制,最终实现遥控操作设备对第一手术工具的遥控操作,并实时调整手术执行器的位姿。
308.6)在手术工具遥操作运动状态435中,可以同时触发远程操控设备上的第二触发装置,主控计算机读取第二触发装置的状态变化信号,并将第二触发装置状态变化信号通过局域网发送给第一手术工具用嵌入式计算机,第一手术工具用嵌入式计算机通过第一手术工具驱动模组中的控制模块控制电机,进而控制机械式手术执行器的机械状态,如手术钳的张合;优选地,第二触发装置可采用滚轮。
309)将第一手术工具驱动模组和第一手术工具从手术工具遥操作运动状态435切换为手术工具遥操作下的电切/电凝状态433,该状态切换动作为触发远程操控设备上第一触发装置:
309.1)主控计算机读取触发远程操控设备上第一触发装置的状态变化信号,并将第一触发装置的状态变化信号通过局域网发送给嵌入式计算机,嵌入式计算机将第一手术工具驱动模组和第一手术工具对应的状态切换为第一手术工具遥操作下的电切/电凝状态433,进而嵌入式计算机可通过电磁继电器控制能量发生器的通断和模式切换,实现能量式手术执行器能量输入的接通与模式切换,如电切、电凝等。
309.2)嵌入式计算机将状态切换信号通过局域网返回给主控计算机,主控计算机将手术工具遥操作下的电切/电凝状态信息传输至显示器进行显示。
上述各步骤中,需要注意的是,在手术工具遥操作下的电切/电凝状态433中,可同时执行手术工具遥操作运动状态435中的相关运动控制,即对手术执行器位姿的调节和对手术执行器的机械状态调节。若第一手术工具携带的是非能量式手术执行器,则触发远程操控设备上第一触发装置无效。
步骤四:当手术工具遥操作运动状态和手术工具遥操作下的电切/电凝状态结束以后,手术工具退出方法如下,由于第一手术工具至第三手术工具退出方法相同,在本实施例中,以第一手术工具为例对本发明的手术工具退出方法作进一步介绍,其步骤为:
401)将第一手术工具驱动模组和第一手术工具从手术工具遥操作下的电切/电 凝状态433切换为手术工具遥操作运动状态435,该状态切换动作是松开远程操控设备上第一触发装置。
401.1)主控计算机读取触发远程操控设备上第一触发装置的状态变化信号,并将第一触发装置状态变化信号发送给嵌入式计算机,嵌入式计算机将第一手术工具驱动模组和第一手术工具对应的状态切换为第一手术工具遥操作运动状态435,进而嵌入式计算机通过电磁继电器控制能量发生器断开,停止向能量式手术执行器输出能量。
401.3)嵌入式计算机将状态切换信号通过局域网返回给主控计算机,主控计算机将手术工具遥操作运动状态信息传输至显示器进行显示。
402)将第一手术工具驱动模组和第一手术工具从手术工具遥操作运动状态435切换为手术工具保持当前位姿状态431:
402.1)松开踏板,主控计算机读取踏板的输入变化信号,将产生的新状态信号(即手术工具保持当前位姿信号)通过局域网发送给嵌入式计算机,嵌入式计算机将第一手术工具驱动模组和第一手术工具对应的状态切换为手术工具保持当前位姿状态431。
402.2)嵌入式计算机将状态切换信号通过局域网返回给主控计算机,主控计算机将手术工具保持当前位姿状态信息传输至显示器进行显示。
402.3)主控计算机停止发送远程操控设备所输出的目标位姿信号。嵌入式计算机将状态切换信号通过局域网发送给第一手术工具用嵌入式计算机,第一手术工具用嵌入式计算机通过第一手术工具驱动模组中的控制模块控制电机输出轴保持当前角度,即第一手术工具用嵌入式计算机将第一手术工具闭环控制在当前位姿。
403)将第一手术工具驱动模组和第一手术工具从手术工具遥操作下的电切/电凝状态433切换为手术工具保持当前位姿状态431:
403.1)松开踏板,主控计算机读取踏板的输入变化信号,将产生的新状态信号(即手术工具保持当前位姿信号)通过局域网发送给嵌入式计算机,嵌入式计算机将第一手术工具驱动模组和第一手术工具对应的状态切换为手术工具保持当前位姿状态431;同时,通过电磁继电器控制能量发生器断开,进而停止能量发生器向能量式手术执行器输出能量。
403.2)主控计算机停止发送远程操控设备所输出的目标位姿信号。嵌入式计算机将状态切换信号通过局域网传送给第一手术工具用嵌入式计算机,第一手术工具用嵌入式计算机闭环控制第一手术工具保持当前位姿。
404)将第一手术工具驱动模组和第一手术工具从手术工具保持当前位姿状态431切换为手术工具回直状态429:
404.1)主控计算机接收手术工具回直指令,将产生的新状态信号(即手术工具回直信号)通过局域网发送给嵌入式计算机,嵌入式计算机将第一手术工具驱动模组和第一手术工具对应的状态切换为手术工具回直状态429。
404.2)嵌入式计算机将状态切换信号通过局域网返回给主控计算机,主控计算机将手术工具体内回直状态信息传输至显示器进行显示。
404.3)主控计算机接收状态切换信号后,产生目标位姿信号,该目标位姿信号包括第一手术工具伸出多腔管的部分回直后手术执行器的位姿信息,主控计算机将该目标位姿信号通过局域网发送给第一手术工具用嵌入式计算机,第一手术工具用嵌入式计算机接收目标位姿信号后对第一手术工具驱动模组及第一手术工具进行闭环控制。
405)将第一手术工具驱动模组和第一手术工具从手术工具回直状态429切换为手术工具体内直态状态427;该状态切换动作在第一手术工具回直完成、手术执行器运动至指定位姿后自动触发,自动触发是指第一手术工具驱动模组中的控制模块通过电机转角传感器测得电机输出轴已转至指定旋转角度,即手术执行器(为机械式手术执行器或能量式手术执行器)运动至特定位姿:
405.1)第一手术工具用嵌入式计算机接收第一手术工具驱动模组中控制模块发送的运动完成信号后,将该运动完成信号通过局域网发送至嵌入式计算机。嵌入式计算机将第一手术工具驱动模组和第一手术工具对应的状态切换为手术工具体内直态状态427。
405.2)嵌入式计算机将状态切换信号通过局域网返回给主控计算机,主控计算机将手术工具体内直态信息传输至显示器进行显示。
406)将第一手术工具驱动模组和第一手术工具从手术工具体内直态状态427切换为手术工具退回多腔管状态425:
406.1)主控计算机接收手术工具退回多腔管指令,并将产生的新状态信号(即手术工具退回多腔管信号)通过局域网发送给嵌入式计算机,嵌入式计算机将第一手术工具驱动模组和第一手术工具对应的状态切换为手术工具退回多腔管状态425。
406.2)嵌入式计算机将状态切换信号通过局域网返回给主控计算机,主控计算机将手术工具退回多腔管状态信息传输至显示器进行显示。
406.3)主控计算机接收状态切换信号后,产生目标位姿信号,该目标位姿信号包括第一手术工具及第一手术执行器退回多腔管内的手术执行器的位姿信息,主控计算机将该目标位姿信号通过局域网发送给第一手术工具用嵌入式计算机,第一手术工具用嵌入式计算机接收目标位姿信号后对第一手术工具驱动模组及第一手术工具进行闭环控制。
407)将第一手术工具驱动模组和第一手术工具从手术工具退回多腔管状态425切换为手术工具体外安装完毕状态423;该状态切换动作在第一手术工具及第一手术执行器退回多腔管内至指定位姿后自动触发,自动触发指第一手术工具驱动模组中的控制模块通过电机转角传感器测得电机输出轴已转至指定旋转角度,即手术执行器运动至指定位姿:
407.1)第一手术工具用嵌入式计算机接收第一手术工具驱动模组中控制模块发送的运动完成信号后,将该运动完成信号通过局域网发送至嵌入式计算机。嵌入式计算机将第一手术工具驱动模组和第一手术工具对应的状态切换为手术工具体外安装完毕状态423。
407.2)嵌入式计算机将状态切换信号通过局域网返回给主控计算机,主控计算机将手术工具体外安装完毕状态信息传输至显示器进行显示。
408)将第一手术工具驱动模组和第一手术工具从手术工具体外安装完毕状态423切换为手术工具体外待安装状态421:
408.1)将手术工具从第一手术工具驱动模组上卸下,第一手术工具驱动模组中的读取芯片与第一手术工具中信息标签断开连接,且无法读取任何信息;能量式手术执行器与能量发生器断开连接;至此,第一手术工具完全与手术机器人中受控端分离。
408.2)第一手术工具用嵌入式计算机接收第一手术工具驱动模组中读取芯片发送的信息标签读取失败信号后,将此信息标签读取失败信号通过局域网发送给嵌入式计算机,嵌入式计算机将第一手术工具驱动模组和第一手术工具对应的状态切换为手术工具体外待安装状态421。
408.3)嵌入式计算机将状态切换信号通过局域网返回给主控计算机,主控计算机将手术工具体外待安装状态信息传输至显示器进行显示。上述各步骤完成后,需要注意的是,在手术工具伸出/退回多腔管状态425至手术工具遥操作运动状态435区间内,成像工具应处于成像工具保持当前位姿状态415、成像工具遥操作运动状态417中的某一状态。
步骤五:当成像工具遥操作运动状态417结束以后,成像工具退出方法包括以下步骤:
501)将成像工具驱动模组和成像工具从成像工具遥操作运动状态417切换为成像工具保持当前位姿状态415:
仍以遥控操作设备、踏板与成像工具建立遥操作映射关系为例:
501.1)松开踏板,主控计算机读取踏板的松开状态信号,将新状态信号(即成像工具保持当前位姿信号)通过局域网发送给嵌入式计算机,嵌入式计算机将成像工具驱动模组和成像工具对应的状态切换为成像工具保持当前位姿状态415。
501.2)嵌入式计算机将新状态信号通过局域网返回给主控计算机,主控计算机将成像工具保持当前位姿状态信息传输至显示器进行显示。
501.3)主控计算机停止向外发送从遥控操作设备接收的目标位姿信号,嵌入式计算机将新状态信号通过局域网传送给成像用嵌入式计算机,成像用嵌入式计算机将成像工具闭环控制在当前位姿。
502)将成像工具驱动模组和成像工具从成像工具保持当前位姿状态415切换为成像工具回退收拢状态413:
502.1)主控计算机接收成像工具回退收拢指令,将产生的新状态信号(即成像工具回退收拢信号)通过局域网发送给嵌入式计算机,嵌入式计算机将成像工具驱动模组和成像工具对应的状态切换为成像工具回退收拢状态413。
502.2)嵌入式计算机将状态切换信号通过局域网返回给主控计算机,主控计算机将成像工具回退收拢状态信息传输至显示器进行显示。
502.3)主控计算机接收状态切换信号后,产生目标位姿信号,该目标位姿信号包括成像工具伸出多腔管的部分回退收拢直至成像照明模组与多腔管末端面贴合后的成像照明模组的位姿信息;主控计算机将目标位姿信号通过局域网发送给成像用嵌入式计算机,成像用嵌入式计算机接收目标位姿信号后对成像工具驱动模组及成像工具进行闭环控制。
503)将成像工具驱动模组和成像工具从成像工具回退收拢状态413切换为成像工具体内闭合姿态状态411,该状态切换动作在成像工具回退收拢且成像照明模组运动至与多腔管末端面贴合的指定位姿后自动触发;自动触发是指成像工具驱动模组中的控制模块通过电机转角传感器测得电机输出轴已转至预先设定旋转角度,即成像照明模组运动至指定位姿。
503.1)成像用嵌入式计算机接收成像工具驱动模组中控制模块发送的运动完 成信号后,将该运动完成信号通过局域网发送至嵌入式计算机,嵌入式计算机将成像工具驱动模组和成像工具对应的状态切换为成像工具体内闭合姿态状态411。
503.2)嵌入式计算机将状态切换信号通过局域网返回给主控计算机,主控计算机将成像工具体内闭合姿态状态信息传输至显示器进行显示。
504)将成像工具驱动模组和成像工具从成像工具体内闭合姿态状态411切换为成像工具及多腔管退出手术切口状态409:
504.1)主控计算机接收成像工具及多腔管退出手术切口指令,将产生的新状态信号(即退出手术切口信号)通过局域网发送给嵌入式计算机,嵌入式计算机将成像工具驱动模组和成像工具对应的状态切换为成像工具及多腔管退出手术切口状态409。
504.2)嵌入式计算机将状态切换信号通过局域网返回给主控计算机,主控计算机将成像工具及多腔管退出手术切口状态信息传输至显示器进行显示。
上述步骤完成后,基座可通过人力或自动化运动携带成像工具驱动模组、成像工具、手术工具驱动模组及多腔管整体运动,使多腔管的末端及贴合于多腔管末端面上的成像照明模组通过病人身上的手术切口退出病人体腔。
505)将成像工具驱动模组和成像工具从成像工具及多腔管退出手术切口状态409切换为成像工具体外安装完毕状态407:
505.1)在成像工具远端所携带的成像照明模组及多腔管退出手术切口并到达指定位姿后,主控计算机接收成像工具体外安装完毕指令,将产生的新状态信号(即成像工具体外安装完毕信号)通过局域网发送给嵌入式计算机,嵌入式计算机将成像工具驱动模组和成像工具对应的状态切换为成像工具体外安装完毕状态407。
505.2)嵌入式计算机将状态切换信号通过局域网返回给主控计算机,主控计算机将成像工具体外安装完毕状态信息传输至显示器进行显示。
506)将成像工具驱动模组和成像工具从成像工具体外安装完毕状态407切换为成像工具体外待安装状态405:
506.1)将成像工具从成像工具驱动模组上卸下,成像工具驱动模组中的读取芯片与成像工具中信息标签断开连接,且无法读取任何信息;成像照明模组与显示器断开连接,主控计算机上远端图像区不再显示图像;至此,成像工具完全与手术机器人受控端分离。
506.2)成像用嵌入式计算机接收成像工具驱动模组中读取芯片发送的信息标签读取失败信号后,将此信息标签读取失败信号通过局域网发送给嵌入式计算机, 嵌入式计算机将成像工具驱动模组和成像工具对应的状态切换为成像工具体外待安装状态405。
506.3)嵌入式计算机将状态切换信号通过局域网返回给主控计算机,主控计算机将成像工具体外待安装状态信息传输至显示器进行显示。
上述各步骤中,需要注意的是,在成像工具体外安装完毕状态407~成像工具回退收拢状态413区间内,手术工具应处于初始状态401、手术工具驱动模组回零状态419、手术工具体外待安装状态421、手术工具体外安装完毕状态423中的某一状态。
在上述成像工具展开实施/退出方法及手术工具展开/退出方法步骤中,以第一手术工具用嵌入式计算机及其所对应的第一手术工具驱动模组、第一手术工具为例,对闭环控制作进一步介绍。闭环控制是指第一手术工具用嵌入式计算机接收目标位姿信号输入,运行逆运动学算法后输出电机位控信号。逆运动学算法可根据第一手术工具用嵌入式计算机通过通信总线从读取芯片中读取的第一手术工具的机械构型信息(包括第一手术工具的工具类型及机械结构信息等)调整算法;电机位控信号包含电机输出轴相对于零点位置的期望旋转角度信息,即期望位置信息,第一手术工具用嵌入式计算机将该电机位控信号通过通信总线发送至第一手术工具驱动模组中的控制模块,控制模块将收到的电机位控信号与电机当前输出轴旋转角度(即实际位置)对比后,进而驱动电机,实现闭环运动控制。其中,实际位置是由与电机连接的电机转角传感器测量并被控制模块读取。嵌入式计算机通过通信总线监听第一手术工具用嵌入式计算机发出的电机位控信号、以及第一手术工具驱动模组中控制模块通过通信总线向第一手术工具用嵌入式计算机所发出的电机运行状态信号。
上述各实施例仅用于说明本发明,各部件的结构、尺寸、设置位置及形状都是可以有所变化的,在本发明技术方案的基础上,凡根据本发明原理对个别部件进行的改进和等同变换,均不应排除在本发明的保护范围之外。

Claims (24)

  1. 一种手术机器人的成像工具展开实施、退出方法,其特征在于,该方法包括以下步骤:
    步骤一:设置一包括主控端、受控端、执行端的控制系统;主控端包括遥控操作设备和主控计算机;受控端包括嵌入式计算机、成像用嵌入式计算机和成像工具驱动模组;执行端包括成像工具;
    步骤二:成像工具展开实施,进入成像工具遥操作运动状态;
    步骤三:当成像工具遥操作运动状态结束后,成像工具退出。
  2. 如权利要求1所述的一种手术机器人的成像工具展开实施、退出方法,其特征在于:所述步骤二中,成像工具展开实施方法是将成像工具驱动模组和成像工具从初始状态依次切换为成像工具驱动模组回零状态、成像工具体外待安装状态、成像工具体外安装完毕状态、成像工具及多腔管进入手术切口状态、成像工具体内闭合姿态状态、成像工具进给展开状态、成像工具保持当前位姿状态以及成像工具遥操作运动状态,完成展开实施。
  3. 如权利要求2所述的一种手术机器人的成像工具展开实施、退出方法,其特征在于:成像工具驱动模组从初始状态切换为回零状态过程如下:
    1)主控计算机接收成像工具驱动模组回零指令,并将产生的新状态信号经局域网发送至嵌入式计算机,嵌入式计算机将成像工具驱动模组的状态切换为回零状态;
    2)嵌入式计算机将状态切换信号通过局域网反馈至主控计算机,由主控计算机将回零状态信息传输至主控端的显示器进行显示;
    3)嵌入式计算机通过局域网向成像用嵌入式计算机发送状态切换信号,成像用嵌入式计算机通过通信总线向成像工具驱动模组中的控制模块发送控制信号,使成像工具驱动模组执行回零操作;
    4)嵌入式计算机通过通信总线监听成像用嵌入式计算机向成像工具驱动模组发送的控制信号,以及成像工具驱动模组中的控制模块向成像用嵌入式计算机发送的状态切换信号。
  4. 如权利要求2所述的一种手术机器人的成像工具展开实施、退出方法,其特征在于:成像工具驱动模组从回零状态切换为体外待安装状态的过程中,成像工具驱动模组的状态切换动作是由成像工具驱动模组完成回零操作后自动触发,此 时,成像工具驱动模组中的电机的输出轴全部转至零点位置:
    1)成像工具驱动模组中的控制模块通过通信总线向成像用嵌入式计算机发送状态切换信号;成像用嵌入式计算机通过局域网向嵌入式计算机发送新状态信号;
    2)嵌入式计算机将成像工具驱动模组对应的状态切换为体外待安装状态;
    3)嵌入式计算机将状态切换信号通过局域网返回给主控计算机,主控计算机将体外待安装状态信息传输至主控端的显示器进行显示。
  5. 如权利要求2所述的一种手术机器人的成像工具展开实施、退出方法,其特征在于:成像工具驱动模组和成像工具从体外待安装状态切换为体外安装完毕状态过程如下:
    1)将成像工具与成像工具驱动模组经过无菌屏障连接,将多腔管与基座经过无菌屏障连接;成像工具驱动模组中的联轴器与成像工具中的联轴器连接在一起传递运动;
    2)成像工具远端伸入并穿过多腔管中的腔道,成像工具末端所携带的成像照明模组与多腔管末端贴合;
    3)成像工具驱动模组中的读取芯片与成像工具上的信息标签连接,读取芯片读取信息标签中保存的相关信息;若读取芯片未能成功读取信息标签中相关信息,则成像工具未安装完毕;若安装完毕,则进入下一步;其中,相关信息包括尺寸、使用次数以及工具种类信息;
    4)读取芯片通过通信总线将相关信息上传至成像用嵌入式计算机,成像用嵌入式计算机根据相关信息采取对应的控制参数和策略。
  6. 如权利要求2所述的一种手术机器人的成像工具展开实施、退出方法,其特征在于:成像工具驱动模组、成像工具从体外安装完毕状态切换为成像工具及多腔管进入手术切口状态的过程如下:
    1)主控计算机接收成像工具及多腔管进入手术切口指令,将产生的新状态信号通过局域网发送给嵌入式计算机,嵌入式计算机将成像工具驱动模组和成像工具对应的状态切换为成像工具及多腔管进入手术切口状态;
    2)嵌入式计算机将状态切换信号通过局域网返回给主控计算机,主控计算机将成像工具及多腔管进入手术切口状态信息传输至主控端的显示器进行显示。
  7. 如权利要求2所述的一种手术机器人的成像工具展开实施、退出方法,其特征在于:成像工具驱动模组、成像工具从成像工具及多腔管进入手术切口状态切换为成像工具体内闭合姿态状态的过程为:
    1)在成像工具远端所携带的成像照明模组进入手术切口并到达预定位置后,主控计算机接收成像工具体内闭合姿态指令,将产生的新状态信号通过局域网发送给嵌入式计算机,嵌入式计算机将成像工具驱动模组和成像工具对应的状态切换为成像工具体内闭合姿态状态;
    2)嵌入式计算机将状态切换信号通过局域网返回给主控计算机,主控计算机将成像工具体内闭合姿态状态信息传输至主控端的显示器进行显示。
  8. 如权利要求2所述的一种手术机器人的成像工具展开实施、退出方法,其特征在于:成像工具驱动模组、成像工具从体内闭合姿态状态切换为成像工具进给展开状态过程为:
    1)主控计算机接收指令,将产生的新状态信号通过局域网发送给嵌入式计算机,嵌入式计算机将成像工具驱动模组和成像工具对应的状态切换为成像工具进给展开状态;
    2)嵌入式计算机将状态切换信号通过局域网返回给主控计算机,主控计算机将成像工具进给展开状态信息传输至主控端的显示器进行显示;
    3)主控计算机接收状态切换信号后,产生目标位姿信号,主控计算机将该目标位姿信号通过局域网发送给成像用嵌入式计算机,成像用嵌入式计算机接收目标位姿信号后对成像工具驱动模组及成像工具进行闭环控制;其中,目标位姿信号包括成像工具进给展开后成像照明模组的位姿信息。
  9. 如权利要求2所述的一种手术机器人的成像工具展开实施、退出方法,其特征在于:成像工具驱动模组和成像工具从成像工具进给展开状态切换为保持当前位姿状态的过程如下:
    1)成像用嵌入式计算机通过通信总线接收成像工具驱动模组中控制模块发送的完成信号后,并将该完成信号通过局域网发送至嵌入式计算机;
    2)嵌入式计算机将成像工具驱动模组和成像工具对应的状态切换为保持当前位姿状态;
    3)嵌入式计算机将状态切换信号通过局域网返回给主控计算机,主控计算机将保持当前位姿状态信息传输至主控端的显示器进行显示。
  10. 如权利要求2所述的一种手术机器人的成像工具展开实施、退出方法,其特征在于:成像工具驱动模组和成像工具从保持当前位姿状态切换为遥操作运动状态的过程,以遥控操作设备、踏板与成像工具建立遥控操作映射关系为例:
    1)建立遥控操作设备、踏板与成像工具的遥操作映射关系,即通过遥控操作 设备和踏板控制成像工具的运动及状态;
    2)踩踏踏板,主控计算机读取踏板的踩下状态信息,开始接收遥控操作设备发送的目标位姿信号和成像用嵌入式计算机通过局域网发送的实际位姿信号;该实际位姿信号为成像工具驱动模组中电机转角传感器通过控制模块向成像用嵌入式计算机发送并经成像用嵌入式计算机通过正运动学算法解算后的信号;
    3)当目标位姿信号与实际位姿信号的差异小于预设误差阈值时,主控计算机将产生新状态信号,并通过局域网发送给嵌入式计算机,嵌入式计算机分别将成像工具驱动模组和成像工具对应的状态切换为遥操作运动状态;
    4)嵌入式计算机将状态切换信号通过局域网返回给主控计算机,主控计算机将遥操作运动状态信息传输至主控端的显示器进行显示;
    5)在遥操作运动状态下,主控计算机将遥控操作设备发送的目标位姿信号通过局域网发送给成像用嵌入式计算机,成像用嵌入式计算机对成像工具驱动模组、成像工具进行闭环控制,最终实现遥控操作设备对成像工具的遥操作。
  11. 如权利要求1所述的一种手术机器人的成像工具展开实施、退出方法,其特征在于:所述步骤三中,当成像工具遥操作运动状态结束以后,成像工具退出方法是将成像工具驱动模组和成像工具从成像工具保持当前位姿状态依次切换为成像工具回退收拢状态、成像工具体内闭合姿态状态、成像工具及多腔管退出手术切口状态、成像工具体外安装完毕状态和成像工具体外待安装状态,完成成像工具的退出。
  12. 一种手术机器人的手术工具展开实施、退出方法,其特征在于,该方法包括以下步骤:
    步骤一:设置一包括主控端、受控端、执行端的控制系统;主控端包括遥控操作设备和主控计算机;受控端包括嵌入式计算机、手术工具用嵌入式计算机和手术工具驱动模组;执行端包括手术工具和手术执行器;
    步骤二:手术工具展开实施,进入手术工具遥操作运动状态;
    步骤三:当手术工具遥操作运动状态结束后,手术工具退出。
  13. 如权利要求12所述的一种手术机器人的手术工具展开实施、退出方法,其特征在于:所述步骤二中,手术工具展开实施方法是将手术工具驱动模组和手术工具从初始状态依次切换为手术工具驱动模组回零状态、手术工具体外待安装状态、手术工具体外安装完毕状态、手术工具伸出多腔管状态、手术工具体内直态状态、手术工具展开状态、手术工具保持当前位姿状态以及手术工具遥操作运动状态, 完成展开实施;其中,手术工具展开实施方法还包括手术工具遥操作下的电切/电凝状态。
  14. 如权利要求13所述的一种手术机器人的手术工具展开实施、退出方法,其特征在于:手术工具驱动模组从初始状态切换为回零状态过程如下:
    1)主控计算机接收手术工具驱动模组回零指令,并将产生的新状态信号经局域网发送至嵌入式计算机,嵌入式计算机将手术工具驱动模组的状态切换为回零状态;
    2)嵌入式计算机将状态切换信号通过局域网反馈至主控计算机,由主控计算机将回零状态信息传输至主控端的显示器进行显示;
    3)嵌入式计算机通过局域网向手术工具用嵌入式计算机发送状态切换信号,手术工具用嵌入式计算机通过通信总线向手术工具驱动模组中的控制模块发送控制信号,使手术工具驱动模组执行回零操作;
    4)嵌入式计算机通过通信总线监听手术工具用嵌入式计算机向手术工具驱动模组发送的控制信号,以及手术工具驱动模组中的控制模块向手术工具用嵌入式计算机发送的状态切换信号。
  15. 如权利要求13所述的一种手术机器人的手术工具展开实施、退出方法,其特征在于:手术工具驱动模组从回零状态切换为体外待安装状态的过程中,手术工具驱动模组的状态切换动作是由手术工具驱动模组完成回零操作后自动触发;此时,手术工具驱动模组中的电机的输出轴全部转至零点位置:
    1)手术工具驱动模组中的控制模块通过通信总线向手术工具用嵌入式计算机发送状态切换信号;手术工具用嵌入式计算机通过局域网向嵌入式计算机发送新状态信号;
    2)嵌入式计算机将手术工具驱动模组对应的状态切换为体外待安装状态;
    3)嵌入式计算机将状态切换信号通过局域网返回给主控计算机,主控计算机将体外待安装状态信息传输至主控端的显示器进行显示。
  16. 如权利要求13所述的一种手术机器人的手术工具展开实施、退出方法,其特征在于:手术工具驱动模组和手术工具从体外待安装状态切换为体外安装完毕状态过程如下:
    1)将手术工具与手术工具驱动模组都经过无菌屏障连接,将多腔管与基座经过无菌屏障连接;手术工具驱动模组中的联轴器与手术工具中的联轴器连接在一起传递运动;
    2)手术工具远端伸入并穿过多腔管中的腔道,并保持手术工具末端所携带的手术执行器在多腔管内部;
    3)手术工具驱动模组中的读取芯片与手术工具上的信息标签连接,读取芯片读取信息标签中保存的相关信息;若读取芯片未能成功读取信息标签中相关信息,则手术工具未安装完毕;若安装完毕,则进入下一步;其中,相关信息包括尺寸、使用次数以及工具种类信息;
    4)读取芯片通过通信总线将相关信息上传至手术工具用嵌入式计算机,手术工具用嵌入式计算机根据相关信息采取对应的控制参数和策略。
  17. 如权利要求13所述的一种手术机器人的手术工具展开实施、退出方法,其特征在于:手术工具驱动模组、手术工具从手术工具伸出多腔管状态切换为手术工具体内直态状态过程为:
    1)手术工具用嵌入式计算机接收手术工具驱动模组中控制模块发送的运动完成信号后,将该运动完成信号通过局域网发送至嵌入式计算机;嵌入式计算机将手术工具驱动模组和手术工具对应的状态切换为手术工具体内直态状态;
    2)嵌入式计算机将状态切换信号通过局域网返回给主控计算机,主控计算机将手术工具体内直态状态信息传输至主控端的显示器进行显示。
  18. 如权利要求13所述的一种手术机器人的手术工具展开实施、退出方法,其特征在于:手术工具驱动模组、手术工具从手术工具体外安装完毕状态切换为手术工具伸出多腔管状态与手术工具从体内直态状态切换为手术工具展开状态过程相似,其过程为:
    1)主控计算机接收指令,将产生的新状态信号通过局域网发送给嵌入式计算机,嵌入式计算机将手术工具驱动模组和手术工具对应的状态切换为手术工具伸出多腔管状态或手术工具展开状态;
    2)嵌入式计算机将状态切换信号通过局域网返回给主控计算机,主控计算机将手术工具伸出多腔管状态信息或手术工具展开状态信息传输至主控端的显示器进行显示;
    3)主控计算机接收状态切换信号后,产生目标位姿信号,主控计算机将该目标位姿信号通过局域网发送给手术工具用嵌入式计算机,手术工具用嵌入式计算机接收目标位姿信号后对手术工具驱动模组及手术工具进行闭环控制;其中,目标位姿信号包括手术工具伸出多腔管后手术执行器的位姿信息或手术工具伸出多腔管的部分侧向展开后手术执行器的位姿信息。
  19. 如权利要求13所述的一种手术机器人的手术工具展开实施、退出方法,其特征在于:手术工具驱动模组和手术工具从手术工具展开状态切换为保持当前位姿状态的过程如下:
    1)手术工具用嵌入式计算机通过通信总线接收手术工具驱动模组中控制模块发送的完成信号后,并将该完成信号通过局域网发送至嵌入式计算机;
    2)嵌入式计算机将手术工具驱动模组和手术工具对应的状态切换为保持当前位姿状态;
    3)嵌入式计算机将状态切换信号通过局域网返回给主控计算机,主控计算机将保持当前位姿状态信息传输至主控端的显示器进行显示。
  20. 如权利要求13所述的一种手术机器人的手术工具展开实施、退出方法,其特征在于:手术工具驱动模组和手术工具从保持当前位姿状态切换为遥操作运动状态的过程,以遥控操作设备、踏板与手术工具建立遥控操作映射关系为例:
    1)建立遥控操作设备、踏板与手术工具的遥操作映射关系,即通过遥控操作设备和踏板控制手术工具的运动及状态;
    2)踩踏踏板,主控计算机读取踏板的踩下状态信息,开始接收遥控操作设备发送的目标位姿信号和手术工具用嵌入式计算机通过局域网发送的实际位姿信号;该实际位姿信号为手术工具驱动模组中电机转角传感器通过控制模块向手术工具用嵌入式计算机发送并经手术工具用嵌入式计算机通过正运动学算法解算后的信号;
    3)当目标位姿信号与实际位姿信号的差异小于预设误差阈值时,主控计算机将产生新状态信号,并通过局域网发送给嵌入式计算机,嵌入式计算机分别将手术工具驱动模组和手术工具对应的状态切换为遥操作运动状态;
    4)嵌入式计算机将状态切换信号通过局域网返回给主控计算机,主控计算机将遥操作运动状态信息传输至主控端的显示器进行显示;
    5)在遥操作运动状态下,主控计算机将遥控操作设备发送的目标位姿信号通过局域网发送给手术工具用嵌入式计算机,手术工具用嵌入式计算机对手术工具驱动模组、手术工具进行闭环控制,最终实现遥控操作设备对手术工具的遥操作;
    6)在手术工具遥操作运动状态中,能同时触发遥控操作设备上的触发装置,主控计算机读取触发装置的状态变化信号,并将触发装置状态变化信号通过局域网发送给手术工具用嵌入式计算机,手术工具用嵌入式计算机通过手术工具驱动模组中的控制模块控制电机,进而控制机械式手术执行器的机械状态。
  21. 如权利要求13所述的一种手术机器人的手术工具展开实施、退出方法,其特征在于:手术工具驱动模组和手术工具从手术工具遥操作运动状态切换为手术工具遥操作下的电切/电凝状态,该状态切换动作为触发远程操控设备上触发装置,其过程如下:
    1)主控计算机读取触发远程操控设备上触发装置的状态变化信号,并将触发装置的状态变化信号通过局域网发送给嵌入式计算机,嵌入式计算机将手术工具驱动模组和手术工具对应的状态切换为手术工具遥操作下的电切/电凝状态,进而嵌入式计算机通过电磁继电器控制能量发生器的通断和模式切换,实现能量式手术执行器能量输入的接通与模式切换;
    2)嵌入式计算机将状态切换信号通过局域网返回给主控计算机,主控计算机将手术工具遥操作下的电切/电凝状态信息传输至主控端的显示器进行显示。
  22. 如权利要求12所述的一种手术机器人的手术工具展开实施、退出方法,其特征在于:所述步骤三中,当手术工具遥操作运动状态结束以后,手术工具退出方法是将手术工具驱动模组和手术工具从手术工具保持当前位姿状态依次切换为手术工具回直状态、手术工具体内直态状态、手术工具退回多腔管状态、手术工具体外安装完毕状态和手术工具体外待安装状态,完成手术工具的退出。
  23. 一种手术机器人的成像工具与手术工具展开实施、退出方法,其特征在于,该方法包括以下步骤:
    步骤一:设置一包括主控端、受控端、执行端的控制系统;主控端包括遥控操作设备和主控计算机;受控端包括嵌入式计算机、成像用嵌入式计算机、手术工具用嵌入式计算机、成像工具驱动模组和手术工具驱动模组;执行端包括成像工具、手术工具和手术执行器;
    步骤二:成像工具展开实施,进入成像工具遥操作运动状态;
    步骤三:手术工具展开实施,进入手术工具遥操作运动状态;
    步骤四:当手术工具遥操作运动状态与成像工具遥操作运动状态结束后,手术工具退出,然后成像工具退出。
  24. 如权利要求23所述的一种手术机器人的成像工具与手术工具展开实施、退出方法,其特征在于,
    所述步骤二中,采用如权利要求2-10任一所述的一种手术机器人的成像工具展开实施、退出方法中步骤二的方式对成像工具展开实施,进入成像工具遥 操作运动状态;
    所述步骤三中,采用如权利要求13-21任一所述的一种手术机器人的手术工具展开实施、退出方法中步骤二的方式对手术工具展开实施,进入手术工具遥操作运动状态;
    所述步骤四中,当手术工具遥操作运动状态与成像工具遥操作运动状态结束后,采用如权利要求22所述的一种手术机器人的手术工具展开实施、退出方法中步骤三的方式将手术工具退出,然后采用如权利要求11所述的一种手术机器人的成像工具展开实施、退出方法中步骤三的方式将成像工具退出。
PCT/CN2017/099847 2016-08-31 2017-08-31 手术机器人的成像工具与手术工具展开实施、退出方法 WO2018041197A1 (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN201610798191.X 2016-08-31
CN201610797600.4 2016-08-31
CN201610796025.6 2016-08-31
CN201610798191.XA CN106236273B (zh) 2016-08-31 2016-08-31 一种手术机器人的成像工具展开控制系统
CN201610797600.4A CN106236271B (zh) 2016-08-31 2016-08-31 一种手术机器人的手术工具展开控制系统
CN201610796025.6A CN106236268B (zh) 2016-08-31 2016-08-31 手术机器人的成像工具与手术工具展开实施、退出方法

Publications (1)

Publication Number Publication Date
WO2018041197A1 true WO2018041197A1 (zh) 2018-03-08

Family

ID=61300061

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/099847 WO2018041197A1 (zh) 2016-08-31 2017-08-31 手术机器人的成像工具与手术工具展开实施、退出方法

Country Status (1)

Country Link
WO (1) WO2018041197A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140275760A1 (en) * 2013-03-13 2014-09-18 Samsung Electronics Co., Ltd. Augmented reality image display system and surgical robot system comprising the same
CN203943721U (zh) * 2014-05-29 2014-11-19 清华大学 一种体内组织直接修复与成形的医疗系统
CN105616007A (zh) * 2010-05-14 2016-06-01 直观外科手术操作公司 具有联动式控制模式的医疗机器人系统
CN106236271A (zh) * 2016-08-31 2016-12-21 北京术锐技术有限公司 一种手术机器人的手术工具展开实施、退出方法
CN106236268A (zh) * 2016-08-31 2016-12-21 北京术锐技术有限公司 手术机器人的成像工具与手术工具展开实施、退出方法
CN106236273A (zh) * 2016-08-31 2016-12-21 北京术锐技术有限公司 一种手术机器人的成像工具展开实施、退出方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105616007A (zh) * 2010-05-14 2016-06-01 直观外科手术操作公司 具有联动式控制模式的医疗机器人系统
US20140275760A1 (en) * 2013-03-13 2014-09-18 Samsung Electronics Co., Ltd. Augmented reality image display system and surgical robot system comprising the same
CN203943721U (zh) * 2014-05-29 2014-11-19 清华大学 一种体内组织直接修复与成形的医疗系统
CN106236271A (zh) * 2016-08-31 2016-12-21 北京术锐技术有限公司 一种手术机器人的手术工具展开实施、退出方法
CN106236268A (zh) * 2016-08-31 2016-12-21 北京术锐技术有限公司 手术机器人的成像工具与手术工具展开实施、退出方法
CN106236273A (zh) * 2016-08-31 2016-12-21 北京术锐技术有限公司 一种手术机器人的成像工具展开实施、退出方法

Similar Documents

Publication Publication Date Title
US10251716B2 (en) Robotic surgical system with selective motion control decoupling
EP3508163B1 (en) Surgical robot integrated control system based on embedded computer
US9956044B2 (en) Controller assisted reconfiguration of an articulated instrument during movement into and out of an entry guide
KR102455184B1 (ko) 수술 시스템 기구 장착
US8498691B2 (en) Robotic catheter system and methods
US20130204271A1 (en) Systems and Methods for Controlling a Robotic Surgical System
KR20140096342A (ko) 복수의 관절형 기구들을 탠덤식으로 엔트리 가이드를 향해 후퇴시키기 위한 방법 및 시스템
WO2016137612A1 (en) Robotically controlling remote center of motion with software and guide tube
CN109662779A (zh) 一种经尿道电切镜手术机器人系统
US11534232B2 (en) Electrosurgical instrument with otomy feature for a teleoperated medical system
US11832911B2 (en) Surgical platform supported by multiple arms
WO2019162761A1 (en) Wireless robotic surgical instrument communication
CN103249369B (zh) 用于与手术系统一起使用的组件
CN109431604A (zh) 一种用于单孔微创术式的柔性手术机器人及其使用方法
JP7463615B2 (ja) 副ロボットコントローラに制御を移行するための外科用ロボットシステム及び方法
CN106236271B (zh) 一种手术机器人的手术工具展开控制系统
CN106236268B (zh) 手术机器人的成像工具与手术工具展开实施、退出方法
WO2018041197A1 (zh) 手术机器人的成像工具与手术工具展开实施、退出方法
CN117100408A (zh) 手术器械及手术机器人
CN106236273B (zh) 一种手术机器人的成像工具展开控制系统
CN113164217A (zh) 可穿戴的手术用机械臂
US11944340B2 (en) Suction and irrigation valve and method of priming same in a robotic surgical system
KR101241809B1 (ko) 수술용 로봇
CN116869668B (zh) 手术机器人系统
US20230084874A1 (en) Robotic surgical instruments

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17845499

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 15.07.2019)

122 Ep: pct application non-entry in european phase

Ref document number: 17845499

Country of ref document: EP

Kind code of ref document: A1