WO2018040732A1 - 一种wcdma系统双天线测量方法和装置、存储介质 - Google Patents

一种wcdma系统双天线测量方法和装置、存储介质 Download PDF

Info

Publication number
WO2018040732A1
WO2018040732A1 PCT/CN2017/091833 CN2017091833W WO2018040732A1 WO 2018040732 A1 WO2018040732 A1 WO 2018040732A1 CN 2017091833 W CN2017091833 W CN 2017091833W WO 2018040732 A1 WO2018040732 A1 WO 2018040732A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
measurement
rnc
module
parameter
Prior art date
Application number
PCT/CN2017/091833
Other languages
English (en)
French (fr)
Inventor
刘森
Original Assignee
深圳市中兴微电子技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市中兴微电子技术有限公司 filed Critical 深圳市中兴微电子技术有限公司
Publication of WO2018040732A1 publication Critical patent/WO2018040732A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/08Reselecting an access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/30Reselection being triggered by specific parameters by measured or perceived connection quality data
    • H04W36/302Reselection being triggered by specific parameters by measured or perceived connection quality data due to low signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports

Definitions

  • the present invention relates to the field of wideband code division multiple access system measurement technology, and in particular to a wideband code division multiple access (WCDMA) dual antenna measurement method and apparatus, and a storage medium.
  • WCDMA wideband code division multiple access
  • the entire handover process of a WCDMA system is generally divided into three phases: measurement, decision, and execution.
  • the mobile station performs downlink signal quality, and the signal quality of the cell to which the mobile station (hereinafter referred to as the terminal UE) belongs and the neighboring cell. Therefore, UE measurement plays an important role in the WCDMA system.
  • the location information of the intra-frequency handover area, the inter-frequency handover area, and the inter-system handover area of the cell in the WCDMA system is obtained, the location information of the mobile station accessing the cell is determined, and then the location information and the handover area of the mobile station are compared. The location information, and finally turn on or off the intra-frequency measurement, inter-frequency measurement and inter-system measurement according to the comparison result.
  • the above solution can turn off all measurements related to handover when the UE is not in the handover area, shorten the on-time measurement of the intra-frequency measurement, the inter-frequency measurement, and the inter-system measurement, and reduce the load of the system and the UE.
  • fluctuations in measured values may occur, resulting in inaccurate measurement values, resulting in a decrease in measurement capability and performance of the UE.
  • an embodiment of the present invention is to provide a WCDMA system dual antenna measurement method and apparatus, and a storage medium, which improve UE measurement performance, so that the UE resides in a cell with better signal strength.
  • an embodiment of the present invention provides a dual antenna measurement method for a WCDMA system, which is applied to a terminal UE having two main antennas, the method comprising:
  • the terminal UE receives the measurement control message sent by the radio network controller RNC, and measures the measurement parameter indicated in the measurement control message by using the primary and secondary antennas;
  • the UE reports the parameter measurement result to the RNC, and obtains a cell handover decision result obtained by the RNC based on at least the parameter measurement result;
  • the UE selects a camping cell according to a cell handover decision result of the RNC.
  • the terminal UE receives the measurement control message sent by the radio network controller RNC, and uses the primary and secondary antennas to measure the measurement parameters indicated in the measurement control message, including:
  • the protocol stack of the UE receives the measurement control message sent by the RNC, and sends a measurement request message to measure the scheduling layer;
  • the scheduling layer performs resource application according to the measurement request message, acquires cell configuration information, and sends the cell configuration information to the device layer, where the cell configuration information includes a resource application start time, a cell timing, and a cell interference. code;
  • the device layer performs configuration on the driver layer according to the cell configuration information, performs measurement, and calculates measurement parameter values of the two primary and secondary antennas of the UE to be sent to the scheduling layer.
  • the scheduling layer performs resource application according to the measurement request message, acquires cell configuration information, and sends the cell configuration information to the device layer, including:
  • the scheduling layer parses the measurement request message sent by the protocol stack, and sets the frequency point and the current cell information. Deposited in the measurement database;
  • the MEAS applies for the corresponding resource in the resource table according to the number of cells searched by the cell search CSR, and sends the cell configuration information to the device layer.
  • the acquiring the frequency point and the current cell information from the measurement database, starting the cell search CSR, and acquiring the cell number, the cell timing, and the cell scrambling code information including:
  • the cell search is a CSR blind search.
  • the device layer performs the configuration of the corresponding hardware in the driving layer according to the cell configuration information, and performs measurement, and calculates the measurement parameter values of the two main antennas of the UE and sends the measurement parameter values to the scheduling layer, including:
  • the device layer performs hardware module configuration and data reading on the CPICH RSCP and Ec/Io in the driver layer according to the cell configuration information, and performs measurement;
  • the device layer calculates the RSSI, RSCP, and Ec/Io parameter measurement values of the primary antenna and the secondary antenna of the UE, and selects a parameter measurement value corresponding to a larger Ec/Io of the primary and secondary antennas to report to the scheduling layer.
  • the UE reports the parameter measurement result to the RNC, and obtains a cell handover decision result that is obtained by the RNC based on at least the parameter measurement result, and includes:
  • the scheduling layer reports the received measurement result of the primary and secondary antenna parameters of the UE to the RNC through filtering and obtaining the final measurement result;
  • the UE acquires a cell handover decision result made by the RNC according to the final measurement result.
  • the embodiment of the present invention further provides a dual antenna measurement method for a WCDMA system, which is applied to a radio network controller RNC, and the method includes:
  • the RNC sends a measurement control message to the terminal UE, and notifies the UE to perform parameter measurement by using the primary and secondary antennas corresponding to the UE;
  • the RNC receives the parameter measurement result reported by the UE, compares the parameter measurement result with a preset threshold, and makes a cell handover decision result.
  • the RNC receives the parameter measurement result reported by the UE, compares the parameter measurement result with a preset threshold, and performs a cell handover decision result, including:
  • the RNC makes a cell handover decision result, and determines that the UE performs cell handover;
  • the RNC makes a cell handover decision result, and determines that the UE does not perform cell handover in the original camping cell.
  • the embodiment of the present invention further provides a dual antenna measuring device for a WCDMA system, which is applied to a terminal UE having two main antennas, and the device includes: a receiving module, a measuring module, a sending module, an acquiring module, and a selection. Module; among them,
  • the receiving module is configured to receive a measurement control message sent by the radio network controller RNC;
  • the measuring module is configured to measure, by using the primary and secondary antennas, the measurement parameters indicated in the measurement control message;
  • the sending module is configured to report the parameter measurement result to the RNC;
  • the acquiring module is configured to acquire a cell handover decision result obtained by the RNC based on at least a parameter measurement result;
  • the selecting module is configured to select a small resident according to a cell handover decision result of the RNC Area.
  • the receiving module is configured to receive, by using a protocol stack of the UE, a measurement control message sent by the RNC;
  • the sending module is configured to send a measurement request message to measure the scheduling layer
  • the acquiring module is configured to use the scheduling layer to perform resource application according to the measurement request message, and acquire cell configuration information;
  • the sending module is further configured to send the cell configuration information to the device layer, where the cell configuration information includes a resource application start time, a cell timing, and a cell scrambling code; and is further configured to use the device layer Performing the configuration of the corresponding hardware at the driving layer according to the cell configuration information, performing measurement, and calculating measurement parameter values of the two primary and secondary antennas of the UE are sent to the scheduling layer.
  • the cell configuration information includes a resource application start time, a cell timing, and a cell scrambling code
  • the device further includes: a saving module; wherein
  • the saving module is configured to use the measurement layer to send the measurement request message sent by the protocol stack to store the frequency point and the current cell information in the measurement database;
  • the acquiring module is configured to acquire a frequency point and current cell information from the measurement database, start a cell search CSR, and obtain a cell number, a cell timing, and a cell scrambling code information;
  • the sending module is configured to apply, according to the number of cells searched by the cell search CSR, the MEAS to apply for a corresponding resource in the resource table, and send the cell configuration information to the device layer.
  • the device further includes: a first determining module; wherein
  • the first determining module is configured to: when the frequency point and the cell information meet the measurement condition of the non-blind frequency point or the non-detection set, determine that the cell search is a cell search CSR of the designated cell; and, when the frequency When the point and cell information satisfy the measurement condition of the blind frequency point or the detection set, it is determined that the cell search is a CSR blind search.
  • the device further includes: a configuration module and a calculation module; wherein
  • the configuration module is configured to perform, by using the device layer, the hardware module configuration and data reading related to the CPICH RSCP and the Ec/Io in the driver layer according to the cell configuration information, and perform measurement;
  • the calculating module is configured to calculate, by using the device layer, RSSI, RSCP, Ec/Io parameter measurement values of the primary antenna and the secondary antenna of the UE;
  • the sending module is configured to select a parameter measurement value corresponding to a larger Ec/Io of the two primary and secondary antennas to report to the scheduling layer.
  • the acquiring module is configured to use the scheduling layer to report the received measurement result of the two primary and secondary antenna parameters of the UE to the RNC through filtering;
  • the first determining module is configured to determine, according to the RSSI, RSCP, and Ec/Io measurement values of the primary and secondary antennas, the selection of the primary and secondary antennas during uplink and downlink transmission;
  • the acquiring module is further configured to acquire a cell handover decision result that is performed by the RNC according to the final measurement result.
  • the embodiment of the present invention further provides a dual antenna measuring device for a WCDMA system, which is applied to a radio network controller RNC, where the device includes: a notification module and a decision module;
  • the notification module is configured to send a measurement control message to the terminal UE, and notify the UE to perform parameter measurement;
  • the determining module is configured to receive a parameter measurement result reported by the UE, compare the parameter measurement result with a preset threshold, and make a cell handover decision result.
  • the device further includes: a second determining module; wherein
  • the second determining module is configured to: when the parameter measurement result received by the RNC reaches a preset threshold, perform a cell handover determination result, and determine that the UE performs cell handover;
  • the cell handover decision result is determined, and determining that the UE does not perform cell handover in the original camping cell.
  • an embodiment of the present invention further provides a WCDMA system dual antenna measuring apparatus, which is applied to a terminal UE having two main and auxiliary antennas, including: a processor and a computer program for storing a computer program capable of running on the processor. And a memory, wherein the processor is configured to perform a step of applying a terminal UE corresponding method with two main antennas when the computer program is executed.
  • the embodiment of the present invention further provides a first computer readable storage medium, where the first computer program is stored, where the first computer program is implemented by the processor to be applied to two antennas having a primary and secondary antenna.
  • the terminal UE corresponds to the steps of the method.
  • the embodiment of the present invention further provides a WCDMA system dual antenna measuring apparatus, which is applied to a radio network controller RNC, and includes: a processor and a memory for storing a computer program capable of running on the processor, where When the processor is configured to run the computer program, the steps of applying to the radio network controller RNC corresponding method are performed.
  • the embodiment of the present invention further provides a second computer readable storage medium, where the second computer program is stored, where the second computer program is implemented by the processor to be applied to the radio network controller RNC. The steps of the method.
  • the method and device for measuring the dual antenna of the WCDMA system and the storage medium are provided by the embodiment of the present invention.
  • the UE uses two antennas to receive signals, and each antenna independently fading.
  • the UE calculates the signal quality of each antenna, and reports the larger value to the RNC protocol.
  • the RNC protocol stack evaluates whether a cell reselection handover is to occur according to the measured value, so that the UE can camp on a cell with better signal, so that the service reception is optimal.
  • FIG. 1 is a schematic diagram 1 of a measurement process according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram 2 of a measurement process according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a dual antenna measurement method for a WCDMA system according to Embodiment 1 of the present invention.
  • FIG. 4 is a schematic flowchart 1 of a dual antenna measurement method for a WCDMA system according to Embodiment 2 of the present invention.
  • FIG. 5 is a second schematic flowchart of a dual antenna measurement method for a WCDMA system according to Embodiment 2 of the present invention.
  • FIG. 6 is a schematic flowchart 3 of a dual antenna measurement method for a WCDMA system according to Embodiment 2 of the present invention.
  • FIG. 7 is a schematic flowchart 4 of a dual antenna measurement method for a WCDMA system according to Embodiment 2 of the present invention.
  • FIG. 8 is a schematic flowchart 5 of a dual antenna measurement method for a WCDMA system according to Embodiment 2 of the present invention.
  • FIG. 9 is a schematic flowchart 6 of a dual antenna measurement method for a WCDMA system according to Embodiment 2 of the present invention.
  • FIG. 10 is a schematic flowchart 1 of a dual antenna measurement method for a WCDMA system according to Embodiment 3 of the present invention.
  • FIG. 11 is a second schematic flowchart of a dual antenna measurement method for a WCDMA system according to Embodiment 3 of the present invention.
  • FIG. 12 is a schematic structural diagram 1 of a dual antenna measurement system for a WCDMA system according to Embodiment 4 of the present invention.
  • FIG. 13 is a second schematic flowchart of a dual antenna measurement method for a WCDMA system according to Embodiment 4 of the present invention.
  • FIG. 14 is a schematic flowchart of a dual antenna measurement method for a WCDMA system according to Embodiment 5 of the present invention.
  • the basic idea of the embodiment of the present invention is to adopt a dual antenna measurement method in which the UE has two main antennas, and each antenna is fading by itself.
  • the measured values of the two antennas fluctuate greatly at the same time, and the measurement result is inaccurate. The chances of waiting for the situation are small. Therefore, the measured value of the UE takes the measurement value of the higher signal-to-noise ratio of the two antennas.
  • the measurement capability and performance of the UE can be improved, so that the UE resides in a cell with better signal strength, and on the other hand, it can be based on two main and auxiliary nodes.
  • the measured value of the antenna determines the selection of the primary and secondary antennas during uplink transmission, thereby improving the transmission performance of the UE.
  • the measurement is performed by searching and monitoring the signal strength, signal-to-noise ratio and other parameters of the base station and all surrounding cells, and reporting the measurement result to the network side under the preset conditions, so that the network side can judge, evaluate, and perform re-selection. Switch, reconfigure and other related operations.
  • the UE uses two antennas to measure, so that accurate results such as the received signal code power (RSCP) are fed back to the network side, so that the UE can reside in the signal. A cell of better quality.
  • RSCP received signal code power
  • the UE measurement result is sent to the relevant Radio Resource Control (RRC) layer, and then enters the Radio Network Controller (RNC) decision phase, also referred to as the evaluation phase, and the RNC reports the UE and the base station Node B.
  • RRC Radio Resource Control
  • RNC Radio Network Controller
  • the measurement result is compared with a previously defined threshold to determine whether to perform cell handover.
  • the first measurement type is based on the Common Pilot Channel (CPICH) measurement performed by the measurement process. It is mainly used for cell reselection and the same-frequency adjacent-area measurement in the handover scenario.
  • the measurement type is divided into CPICH RSCP measurement, CPICH.
  • Ec/Io measurement Universal Terrestrial Radio Access (UTRA) Received Signal Strength Indication (RSSI) measurement, SFN-CFN OTD measurement, SFN-SFN OTD measurement, and detection of cell measurement.
  • Ec/Io is the signal-to-noise ratio
  • SFN-CFN OTD is the SFN-CFN observation time difference
  • SFN is the cell system frame number of the Node B
  • CFN is the frame symbol related to the downlink and uplink dedicated physical channel DPCH.
  • This measurement is used for the purpose of switching timing to identify the time difference between the active set cell and the neighboring cell.
  • the SFN-SFN OTD is the SFN-SFN observation time difference, and this measurement is used to identify the
  • the second measurement type is a measurement maintained by the RX/TX/PC link, which represents the UE transmit power, including UE transmit-receive (RX-TX) timing difference, transmit power measurement.
  • the MEAS process is periodically reported to the device layer database based on the measurement request configured by the protocol stack. Protocol stack. Referring to Figure 1, there is shown a measurement process for RX/TX/PC link maintenance.
  • the first embodiment of the present invention mainly adopts the first measurement type, that is, the measurement based on the CPICH measurement type maintained by the measurement process. Referring to Figure 2, a measurement process using the first type of measurement is shown.
  • the method may include:
  • the radio network controller RNC sends a measurement control message to the terminal UE, and notifies the terminal UE to perform related parameter measurement.
  • the network side reads the system information block (SIB) or the MC interface message, and the RNC notifies the protocol stack of the same frequency inter-frequency cell related measurement message.
  • SIB system information block
  • the intra-frequency measurement refers to the intra-frequency measurement of the same-frequency cell
  • the inter-frequency measurement refers to the inter-frequency measurement of the inter-frequency cell.
  • the terminal UE starts to perform measurement after receiving the measurement control message sent by the RNC.
  • the UE first performs the measurement of the scheduling layer when performing the dual antenna measurement, and the UE receives and parses the same-frequency measurement request, the UE internal measurement request, the measurement release request, and the like, and the internal activation measurement request ( Cell search measurement, path loss update CPICH RSCP measurement).
  • the same frequency measurement as the serving cell frequency point is the same frequency measurement
  • the frequency difference between the serving cell and the frequency of the serving cell is the inter-frequency measurement, and is measured internally by the UE in the serving cell frequency point.
  • the measurement release request is used to release the same-frequency measurement and the UE internal measurement.
  • the measurement database information is updated.
  • each frame requests resources from the resource table, and the same resource time measurement single cell can handle the number of cells is a multiple of the dual antenna.
  • the cell has an aging time. After the cell ages, the cell needs to apply for a new resource. Therefore, the number of cells that are aging according to the query is used to apply for the corresponding resource length. After the resource is successfully applied, the corresponding resource start time point is obtained. And the cell information is sent to the device layer.
  • the cell information here is cell timing and cell scrambling code information.
  • the CSR process is a cell selection process.
  • the CSR process acquires cell timing and cell scrambling code according to the internal clock of the UE and the internal clock of the Node B. This process selects a cell that needs to be measured.
  • the scheduling layer completes the scheduling of the internal activation measurement and provides an interface function to query the measurement result.
  • the internal activation measurement is mainly for the RSCP measurement and is an update process for the CPICH RSCP value.
  • the scheduling layer also performs measurement scheduling processing for the same-frequency CPICH RSCP, CPICH Ec/Io, OTD, RSSI, and detection cells in different states. After receiving the measurement result reported by the device layer, the measurement result reported by the device layer is processed and filtered, and the filtering is averaged for the last four measurement results.
  • the configuration parameters of the CPICH RSCP and the Ec/Io measurement and the cell pre-synchronization related hardware are generated according to the configuration of the scheduling layer, and configured.
  • the SPSR hardware working in parallel only supports the whole configuration of the primary antenna or the secondary antenna, so it should be configured according to requirements;
  • the multi-antenna cell multipath information is read. If the CPICH RSCP and the Ec/Io measurement are performed, the measurement results of the dual antenna are respectively calculated according to the algorithm scheme, and the corresponding RSCP result of the Ec/Io large in the two antennas is selected. The format of the protocol stack is reported to the scheduling layer. If the cell is pre-synchronized, the cells of each antenna are subjected to post-lobe suppression, path detection, synchronization protection, etc., and the multipath information of the main antenna after processing is provided. Give Rake and report the most strong path position information of the main antenna of the L1S pre-synchronization cell. Multipath refers to the propagation of radio signals from a transmitting antenna to a receiving antenna through multiple paths.
  • the relevant hardware parameter configuration of the above device layer is completed at the calling driver layer.
  • the driver layer is called by the device layer to complete the configuration and data reading of the CPICH RSCP and Ec/Io measurement related hardware modules.
  • the terminal UE reports the measurement result to the RNC.
  • the terminal UE reports the measurement result obtained by the terminal to the RNC, and the measurement result is used to determine whether the terminal UE needs to perform cell handover.
  • the RNC performs a cell handover decision according to the measurement result of the UE.
  • the measurement result received by the RNC is a filtered value of a larger value of the measured values in the primary and secondary antennas of the UE.
  • the RNC compares the preset threshold with the received measurement result. If the measurement result reaches the threshold, the UE makes a cell handover decision. If the measurement result does not reach the threshold, the UE does not make the UE. The decision to stay in the original camped cell is performed.
  • the terminal UE performs cell handover according to a cell handover decision result of the RNC.
  • the UE after obtaining the cell handover decision result of the RNC, the UE performs cell handover according to the cell handover decision result or keeps the original camped cell unchanged.
  • a method for measuring a dual antenna of a WCDMA system is applied to a terminal UE having two antennas.
  • the method may include:
  • the terminal UE receives the measurement control message sent by the radio network controller RNC, and measures the measurement parameter indicated in the measurement control message.
  • step S201 includes steps S2011 to S2013:
  • the protocol stack of the UE receives the measurement control message sent by the RNC, and sends a measurement request message to measure the scheduling layer.
  • the radio network controller RNC sends a measurement control message “Measurement Control” to the terminal UE, and notifies the UE to perform measurement of related parameters.
  • the parameters that the UE needs to measure include the RSSI, RSCP, and Ec/Io values.
  • the entire measurement process of the UE is divided into a measurement scheduling layer, a measurement device layer, and a measurement driving layer.
  • the scheduling layer performs resource application according to the measurement request message, acquires cell configuration information, and sends the cell configuration information to the device layer.
  • the cell configuration information includes a resource application start time, a cell timing, and a cell scrambling code.
  • step S2012 includes steps S20121 to S20123:
  • the scheduling layer parses the measurement request message sent by the protocol stack, and stores the frequency point and the current cell information in the measurement database.
  • the measurement request message includes an inter-frequency measurement request, a UE internal measurement request, a measurement release request, and the like, and an internal activation measurement request (cell search measurement, path loss update CPICH RSCP measurement).
  • the frequency point and the current cell information are stored in the measurement database, and the information of the measurement database is updated.
  • S20122 Obtain a frequency point and current cell information from the measurement database, start a cell search CSR, and obtain a cell number, a cell timing, and a cell scrambling code information.
  • step S20122 includes steps S201221 to S201222:
  • the cell to be searched is clear, so the cell search is the cell search CSR of the designated cell.
  • the blind frequency point is a known frequency point, but the cell below the frequency point is unknown, so the cell search in the blind frequency point is a CSR blind search.
  • the cell in the detection set is not the neighboring cell of the current serving cell, so a CSR blind search is also required.
  • the MEAS searches for a corresponding resource in the resource table according to the number of cells searched by the cell search CSR, and sends the cell configuration information to the device layer.
  • each frame of the MEAS applies for resources in the resource table. Since the UE has two primary and secondary antennas, the same resource time is only measured. The number of cells that can be measured by a single antenna is dual antenna measurement. Multiples.
  • the length of the application is based on the number of cells aging according to the query. The length of the application follows the principle of 5 time slots of a cell. The starting time of the resource needs to follow the last hardware working time point and must be 2slot at the current time. After the application is successful, the resource starting point is converted into a corresponding hardware working moment, and the corresponding resource starting time point and the cell information are sent to the device layer.
  • the device layer completes configuration of the corresponding hardware in the driver layer according to the cell configuration information, and calculates a measurement parameter value of the two primary and secondary antennas of the UE and sends the measurement parameter value to the scheduling layer.
  • step S2013 includes steps S20131 and S20132:
  • the device layer completes hardware module configuration and data reading related to CPICH RSCP and Ec/Io at the driver layer according to the cell configuration information.
  • the device layer generates configuration parameters of the CPICH RSCP and Ec/Io measurement and the cell pre-synchronization related hardware according to the configuration of the scheduling layer, and configures, and the SPSR (Saved Program Register) in parallel works only supports the entire configuration of the main antenna or the auxiliary. Antenna, so configure it as needed.
  • SPSR Saved Program Register
  • the device layer calculates the RSSI, RSCP, and Ec/Io parameter measurement values of the primary and secondary antennas of the UE, and selects the parameter measurement value corresponding to the larger Ec/Io of the primary and secondary antennas to report to the scheduling layer.
  • the device layer reads the primary and secondary dual antenna cell multipath information reported by the hardware RAM.
  • the RSSI/RSCP/Ec/Io values of the primary and secondary antennas are respectively calculated, and the measurement results of the dual antennas are respectively calculated according to the algorithm scheme, and the corresponding correspondence of Ec/Io in the two antennas is selected.
  • the RSCP result is converted into the format of the protocol stack and reported to the scheduling layer.
  • each cell of each antenna needs to perform post-processing such as side-lobe suppression, path detection, and synchronization protection, and the multipath information of the processed main antenna is provided to Rake (multipath receiver). Reports the strongest position information of the main antenna of the physical layer L1S pre-synchronization cell.
  • the UE reports the parameter measurement result to the RNC, and obtains a cell handover decision result of the RNC.
  • step S202 includes steps S2021 to S2023:
  • the scheduling layer reports the received measurement result of the two primary and secondary antennas of the UE to the RNC.
  • the parameter measurement value corresponding to the larger Ec/Io of the two primary and secondary antennas received by the scheduling layer and the measurement value of the parameter by the scheduling layer, that is, the corresponding Ec/Io corresponding to the two antennas of the primary and secondary antennas.
  • the value is filtered, and the final measurement result is reported to the RNC, and the RNC uses the final measurement result to perform a cell handover decision.
  • the UE determines, according to the RSSI, RSCP, and Ec/Io measurement values of the primary and secondary antennas, the selection of the primary and secondary antennas when uplink and downlink transmission are performed.
  • the RSSI, RSCP, and Ec/Io measurement values of the primary antenna and the secondary antenna need to be saved, and the UE selects an antenna with better transmission and reception effect to perform uplink and downlink according to the measured value. Signal transmission.
  • the UE acquires a cell handover decision result that is performed by the RNC according to the final measurement result.
  • the UE performs cell handover according to the cell handover decision result. Specifically, if the measurement result has reached the threshold, the corresponding event or the broadcast channel (BCH, Broadcast Channel) of the neighboring cell is triggered to trigger the reselection and handover procedure.
  • BCH Broadcast Channel
  • the UE selects a camping cell according to a cell handover decision result of the RNC.
  • the UE switches to a cell with better signal strength, and selects the cell as a camping cell. If the cell handover decision result of the RNC is that the UE does not perform cell handover, the UE stays in the original camped cell and does not perform cell handover.
  • the embodiment of the present invention provides a dual antenna measurement method for a WCDMA system.
  • the UE uses two antennas to receive signals, and each antenna independently fading.
  • the UE calculates the signal quality of each antenna, and reports a larger value to the RNC protocol stack.
  • the protocol stack evaluates whether a cell reselection handover is to be performed according to the measured value, and the purpose is to allow the UE to camp on a cell with better signal, so that the service reception reaches the maximum. excellent.
  • a method for measuring a dual antenna of a WCDMA system is applied to a radio network controller RNC, and the method may include:
  • the RNC sends a measurement control message to the terminal UE, and notifies the UE to perform parameter measurement.
  • the RNC informs the UE to perform parameter measurement by sending a "Measurement Control" message.
  • the parameters that the UE needs to measure include RSSI, RSCP, and Ec/Io.
  • the RNC receives the parameter measurement result reported by the UE, compares the parameter measurement result with a preset threshold, and performs a cell handover decision result.
  • step S302 includes steps S3021 and S3022:
  • steps S3021 and S3022 are specific processes for the RNC to make a cell handover decision, and the cell handover decision of the RNC determines the selection of the UE camped cell.
  • the embodiment of the present invention provides a dual antenna measurement method for a WCDMA system.
  • the UE uses two antennas to receive signals, and each antenna independently fading.
  • the UE calculates the signal quality of each antenna, and reports a larger value to the RNC protocol stack.
  • the protocol stack evaluates whether a cell reselection handover is to occur according to the measured value, and the purpose is to allow the UE to camp on a cell with better signal, so that the service reception is optimal.
  • a dual-antenna measurement device 12 for a WCDMA system is applied to a terminal UE having two main antennas, and the device includes: a receiving module 1201, a measurement module 1202, and a sending Module 1203, acquisition module 1204 and selection module 1205; among them,
  • the receiving module 1201 is configured to receive a measurement control message sent by the radio network controller RNC;
  • the measuring module 1202 is configured to measure, by using the primary and secondary antennas, the measurement parameters indicated in the measurement control message;
  • the sending module 1203 is configured to report the parameter measurement result to the RNC;
  • the obtaining module 1204 is configured to acquire a cell handover decision result of the RNC.
  • the selecting module 1205 is configured to select a camping cell according to a cell handover decision result of the RNC.
  • the receiving module 1201 is configured to receive, by using a protocol stack of the UE, a measurement control message sent by the RNC.
  • the sending module 1203 is configured to send a measurement request message to measure the scheduling layer
  • the obtaining module 1204 is configured to use the scheduling layer to perform resource application according to the measurement request message, and acquire cell configuration information.
  • the sending module 1203 is further configured to send the cell configuration information to the device layer, where the cell configuration information includes a resource application start time, a cell timing, and a cell scrambling code;
  • the apparatus further includes: a saving module 1206; wherein
  • the saving module 1206 is configured to use the measurement request message sent by the protocol layer to resolve the protocol request, and store the frequency point and the current cell information in the measurement database;
  • the acquiring module 1204 is configured to acquire a frequency point and current cell information from the measurement database, start a cell search CSR, and acquire a cell number, a cell timing, and a cell scrambling code information;
  • the sending module 1203 is configured to detect, according to the number of cells searched by the cell search CSR, The MEAS requests the corresponding resource in the resource table, and sends the cell configuration information to the device layer.
  • the apparatus further includes: a first determining module 1207; wherein
  • the first determining module 1207 is configured to: when the frequency point and the cell information meet the measurement condition of the non-blind frequency point or the non-detection set, determine that the cell search is a cell search CSR of the designated cell;
  • the cell search is a CSR blind search when the frequency point and the cell information satisfy a measurement condition of a blind frequency point or a detection set.
  • the apparatus further includes: a configuration module 1208 and a calculation module 1209; wherein
  • the configuration module 1208 is configured to perform, by using the device layer, the hardware module configuration and data reading related to the CPICH RSCP and the Ec/Io in the driver layer according to the cell configuration information, and perform measurement;
  • the calculating module 1209 is configured to calculate, by using the device layer, RSSI, RSCP, and Ec/Io parameter measurement values of the primary antenna and the secondary antenna of the UE;
  • the sending module 1203 is configured to select a parameter measurement value corresponding to a larger Ec/Io of the two primary and secondary antennas to report to the scheduling layer.
  • the acquiring module 1204 is configured to use the scheduling layer to report the received measurement result of the two primary and secondary antenna parameters of the UE to the RNC through filtering;
  • the first determining module 1207 is configured to determine, according to the RSSI, RSCP, and Ec/Io measurement values of the primary and secondary antennas, the selection of the primary and secondary antennas during uplink and downlink transmission;
  • the obtaining module 1204 is further configured to obtain a cell handover decision result that is performed by the RNC according to the final measurement result.
  • the receiving module 1201, the measuring module 1202, the sending module 1203, the obtaining module 1204, the selecting module 1205, the saving module 1206, the first determining module 1207, the configuring module 1208, and the calculating module 1209 may all be located in a WCDMA system.
  • a WCDMA system dual antenna measuring apparatus is further provided, which is applied to a terminal UE having two main and auxiliary antennas, including: a processor and a memory for storing a computer program capable of running on the processor, wherein, when the processor is used to run the computer program, the steps of the method described in Embodiment 2 are performed.
  • the processor may be an integrated circuit chip with signal processing capabilities.
  • each step of the above method may be completed by an integrated logic circuit of hardware in a processor or an instruction in a form of software.
  • the above described processor may be a general purpose processor, a DSP, or other programmable logic device, discrete gate or transistor logic device, discrete hardware component, or the like.
  • the processor may implement or perform the methods, steps, and logic blocks disclosed in the embodiments of the present invention.
  • a general purpose processor can be a microprocessor or any conventional processor or the like.
  • the steps of the method disclosed in the embodiment of the present invention may be directly implemented as a hardware decoding processor, or may be performed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a storage medium, the storage medium is located in the memory, the processor reads the information in the memory, and completes the steps of the foregoing method of the second embodiment in combination with the hardware thereof.
  • the embodiment of the present invention provides a dual-antenna measurement device for a WCDMA system.
  • the UE uses two antennas to receive signals, and each antenna independently fading.
  • the UE calculates the signal quality of each antenna, and reports a larger value to the RNC protocol stack.
  • the protocol stack evaluates whether a cell reselection handover is to occur according to the measured value, and the purpose is to allow the UE to camp on a cell with better signal, so that the service reception is optimal.
  • the embodiment further provides a first computer readable storage medium having stored thereon a first computer program, wherein the first computer program is executed by the processor when the method of the second embodiment is performed Step.
  • a dual antenna measuring device 14 for a WCDMA system is applied to a radio network controller RNC, where the device includes: a notification module 1401 and a decision module 1402.
  • the notification module 1401 is configured to send a measurement control message to the terminal UE, and notify the UE to perform parameter measurement by using the primary and secondary antennas corresponding to the UE;
  • the determining module 1402 is configured to receive a parameter measurement result reported by the UE, compare the parameter measurement result with a preset threshold, and make a cell handover decision result.
  • the device further includes: a second determining module 1403; wherein
  • the second determining module 1403 is configured to: when the parameter measurement result received by the RNC reaches a preset threshold, perform a cell handover decision result, and determine that the UE performs cell handover;
  • the cell handover decision result is determined, and determining that the UE does not perform cell handover in the original camping cell.
  • the notification module 1401, the decision module 1402, and the second determining module 1403 can all be implemented by a CPU, an MPU, a DSP, an FPGA, or the like located in the dual antenna measuring device 14 of the WCDMA system.
  • the embodiment further provides a WCDMA system dual antenna measuring device, which is applied to a radio network controller RNC, comprising: a processor and a memory for storing a computer program capable of running on the processor, wherein The processor performs the steps of the method of the third embodiment when the computer program is executed.
  • the processor may be an integrated circuit chip with signal processing capabilities.
  • each step of the above method may be completed by an integrated logic circuit of hardware in a processor or an instruction in a form of software.
  • the above processor may be a general purpose processor, a DSP, or other programmable logic device, discrete gate or transistor logic device, Discrete hardware components, etc.
  • the processor may implement or perform the methods, steps, and logic blocks disclosed in the embodiments of the present invention.
  • a general purpose processor can be a microprocessor or any conventional processor or the like.
  • the steps of the method disclosed in the embodiment of the present invention may be directly implemented as a hardware decoding processor, or may be performed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a storage medium, the storage medium is located in the memory, the processor reads the information in the memory, and completes the steps of the foregoing method of the third embodiment in combination with the hardware thereof.
  • the embodiment of the present invention provides a dual-antenna measurement device for a WCDMA system.
  • the UE uses two antennas to receive signals, and each antenna independently fading.
  • the UE calculates the signal quality of each antenna, and reports a larger value to the RNC protocol stack.
  • the protocol stack evaluates whether a cell reselection handover is to occur according to the measured value, and the purpose is to allow the UE to camp on a cell with better signal, so that the service reception is optimal.
  • the embodiment further provides a second computer readable storage medium having stored thereon a second computer program, wherein the second computer program is executed by the processor to implement the steps of the method of the third embodiment.
  • the computer readable storage medium described above may be a magnetic random access memory (FRAM), a ROM, a programmable read only memory (PROM), or a programmable read-only memory (PROM). Erasable Programmable Read-Only Memory (EPROM), Electrically Erasable Programmable Read-Only Memory (EEPROM), Flash Memory, Magnetic Surface Memory A memory such as an optical disk or a CD-ROM (Compact Disc Read-Only Memory); or a device including one or any combination of the above memories.
  • FRAM magnetic random access memory
  • ROM read only memory
  • PROM programmable read-only memory
  • PROM programmable read-only memory
  • EPROM Erasable Programmable Read-Only Memory
  • EEPROM Electrically Erasable Programmable Read-Only Memory
  • Flash Memory Magnetic Surface Memory
  • a memory such as an optical disk or a CD-ROM (Compact Disc Read-Only Memory); or a device including one or any combination of the above memories.
  • embodiments of the present invention can be provided as a method, system, or computer program product. Accordingly, the present invention can take the form of a hardware embodiment, a software embodiment, or a combination of software and hardware. Moreover, the invention can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage and optical storage, etc.) including computer usable program code.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.
  • the UE uses two antennas to receive signals, and each antenna independently fading.
  • the UE calculates the signal quality of each antenna, and reports a larger value to the RNC protocol stack.
  • the RNC protocol stack evaluates whether it is to be generated according to the measured value.
  • the cell reselects the handover so that the UE can camp on the cell with better signal, so that the service reception is optimal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例公开了一种WCDMA系统双天线测量方法,应用于具有主辅两根天线的终端UE,所述方法包括:终端UE接收无线网络控制器RNC下发的测量控制消息,并利用主辅两根天线对所述测量控制消息中所指示的测量参数进行测量;所述UE将参数测量结果上报至所述RNC,获取所述RNC至少基于参数测量结果而得到的小区切换判决结果;所述UE根据所述RNC的小区切换判决结果选择驻留小区。本发明实施例同时还公开了一种WCDMA系统双天线测量装置和存储介质。

Description

一种WCDMA系统双天线测量方法和装置、存储介质
相关申请的交叉引用
本申请基于申请号为201610801044.3、申请日为2016年09月01日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本发明涉及宽带码分多址系统测量技术领域,尤其涉及一种宽带码分多址(WCDMA,Wideband Code Division Multiple Access)系统双天线测量方法和装置、存储介质。
背景技术
WCDMA系统的整个切换过程一般分为测量、判决和执行三个阶段。在测量阶段移动台要进行下行链路的信号质量,以及移动台(以下称为终端UE)所属小区及邻近小区的信号质量等测量,因此在WCDMA系统中,UE测量起着十分重要的作用。
现有技术中,获取WCDMA系统中小区的频内切换区、频间切换区和系统间切换区的位置信息,确定接入小区的移动台的位置信息,然后比较移动台的位置信息和切换区的位置信息,最后根据比较结果开启或者关闭频内测量、频间测量和系统间测量。上述方案可以在UE不处于切换区时,关闭与切换相关的所有测量,缩短频内测量、频间测量和系统间测量的开启时间,降低系统和UE的负荷。然而,在室外存在干扰强深衰落等复杂环境时,会引起测量值的波动,造成测量值不准确,导致UE测量能力和性能的下降。
发明内容
为解决上述技术问题,本发明实施例期望提供一种WCDMA系统双天线测量方法和装置、存储介质,提高UE测量性能,使UE驻留在信号强度较好的小区。
本发明实施例的技术方案是这样实现的:
第一方面,本发明实施例提供了一种WCDMA系统双天线测量方法,应用于具有主辅两根天线的终端UE,所述方法包括:
终端UE接收无线网络控制器RNC下发的测量控制消息,并利用主辅两根天线对所述测量控制消息中所指示的测量参数进行测量;
所述UE将参数测量结果上报至所述RNC,获取所述RNC至少基于参数测量结果而得到的小区切换判决结果;
所述UE根据所述RNC的小区切换判决结果选择驻留小区。
上述方案中,所述终端UE接收无线网络控制器RNC下发的测量控制消息,并利用主辅两根天线对所述测量控制消息中所指示的测量参数进行测量,包括:
所述UE的协议栈接收所述RNC下发的测量控制消息,发送测量请求消息对调度层进行测量;
所述调度层根据所述测量请求消息进行资源申请,获取小区配置信息,并将所述小区配置信息发送至设备层;其中,所述小区配置信息包括资源申请起始时间、小区定时和小区扰码;
所述设备层根据所述小区配置信息在驱动层完成相应硬件的配置,进行测量,并计算所述UE主辅两根天线的测量参数值发送至调度层。
上述方案中,所述调度层根据所述测量请求消息进行资源申请,获取小区配置信息,并将所述小区配置信息发送至设备层,包括:
所述调度层解析协议栈下发的测量请求消息,将频点和当前小区信息 存入测量数据库中;
从所述测量数据库中获取频点和当前小区信息,开始小区搜索CSR,获取小区数量、小区定时和小区扰码信息;
根据小区搜索CSR搜索到的小区数量,测量MEAS在资源表中申请对应的资源,把所述小区配置信息发送至设备层。
上述方案中,所述从所述测量数据库中获取频点和当前小区信息,开始小区搜索CSR,获取小区数量、小区定时和小区扰码信息,包括:
当所述频点和小区信息满足非盲频点或非检测集的测量条件时,确定所述小区搜索为指定小区的小区搜索CSR;
当所述频点和小区信息满足盲频点或检测集的测量条件时,确定所述小区搜索为CSR盲搜。
上述方案中,所述设备层根据所述小区配置信息在驱动层完成相应硬件的配置,进行测量,并计算出所述UE主辅两根天线的测量参数值发送至调度层,包括:
所述设备层根据所述小区配置信息在驱动层完成对CPICH RSCP和Ec/Io相关的硬件模块配置和数据读取,进行测量;
所述设备层计算所述UE的主天线和辅天线的RSSI、RSCP、Ec/Io参数测量值,选择所述主辅两根天线中较大Ec/Io对应的参数测量值上报至调度层。
上述方案中,所述UE将参数测量结果上报至所述RNC,获取所述RNC至少基于参数测量结果而得到的小区切换判决结果,包括:
所述调度层将接收到的所述UE的主辅两根天线参数测量值经过滤波获取最终测量结果上报给RNC;
所述UE根据所述主辅两根天线各自的RSSI、RSCP、Ec/Io测量值,确定上下行发送时所述主辅两根天线的选择;
所述UE获取所述RNC根据所述最终测量结果做出的小区切换判决结果。
第二方面,本发明实施例还提供了一种WCDMA系统双天线测量方法,应用于无线网络控制器RNC,所述方法包括:
所述RNC下发测量控制消息至终端UE,通知所述UE利用所述UE对应的主辅两根天线进行参数测量;
所述RNC接收所述UE上报的参数测量结果,将所述参数测量结果与预设的门限值进行对比,做出小区切换判决结果。
上述方案中,所述RNC接收所述UE上报的参数测量结果,将所述参数测量结果与预设的门限值进行对比,做出小区切换判决结果,包括:
当所述RNC所接收到的所述参数测量结果达到预设的门限值时,所述RNC做出小区切换判决结果,确定所述UE进行小区切换;
当所述RNC所接收到的所述参数测量结果未达到预设的门限值时,所述RNC做出小区切换判决结果,确定所述UE在原驻留小区不进行小区切换。
第三方面,本发明实施例还提供了一种WCDMA系统双天线测量装置,应用于具有主辅两根天线的终端UE,所述装置包括:接收模块、测量模块、发送模块、获取模块和选择模块;其中,
所述接收模块,配置为接收无线网络控制器RNC下发的测量控制消息;
所述测量模块,配置为利用主辅两根天线对所述测量控制消息中所指示的测量参数进行测量;
所述发送模块,配置为将参数测量结果上报至所述RNC;
所述获取模块,配置为获取所述RNC至少基于参数测量结果而得到的小区切换判决结果;
所述选择模块,配置为根据所述RNC的小区切换判决结果选择驻留小 区。
上述方案中,所述接收模块,配置为利用所述UE的协议栈接收所述RNC下发的测量控制消息;
所述发送模块,配置为发送测量请求消息对调度层进行测量;
所述获取模块,配置为利用所述调度层根据所述测量请求消息进行资源申请,获取小区配置信息;
所述发送模块,还配置为将所述小区配置信息发送至设备层;其中,所述小区配置信息包括资源申请起始时间、小区定时和小区扰码;以及,还配置为利用所述设备层根据所述小区配置信息在驱动层完成相应硬件的配置,进行测量,并计算所述UE主辅两根天线的测量参数值发送至调度层。
上述方案中,所述装置还包括:保存模块;其中,
所述保存模块,配置为利用所述调度层解析协议栈下发的测量请求消息,将频点和当前小区信息存入测量数据库中;
所述获取模块,配置为从所述测量数据库中获取频点和当前小区信息,开始小区搜索CSR,获取小区数量、小区定时和小区扰码信息;
所述发送模块,配置为根据小区搜索CSR搜索到的小区数量,测量MEAS在资源表中申请对应的资源,把所述小区配置信息发送至设备层。
上述方案中,所述装置还包括:第一确定模块;其中,
所述第一确定模块,配置为当所述频点和小区信息满足非盲频点或非检测集的测量条件时,确定所述小区搜索为指定小区的小区搜索CSR;以及,当所述频点和小区信息满足盲频点或检测集的测量条件时,确定所述小区搜索为CSR盲搜。
上述方案中,所述装置还包括:配置模块和计算模块;其中,
所述配置模块,配置为利用所述设备层根据所述小区配置信息在驱动层完成对CPICH RSCP和Ec/Io相关的硬件模块配置和数据读取,进行测量;
所述计算模块,配置为利用所述设备层计算所述UE的主天线和辅天线的RSSI、RSCP、Ec/Io参数测量值;
所述发送模块,配置为选择所述主辅两根天线中较大Ec/Io对应的参数测量值上报至调度层。
上述方案中,所述获取模块,配置为利用所述调度层将接收到的所述UE主辅两根天线参数测量值经过滤波获取最终测量结果上报给RNC;
所述第一确定模块,配置为根据所述主辅两根天线各自的RSSI、RSCP、Ec/Io测量值,确定上下行发送时所述主辅两根天线的选择;
所述获取模块,还配置为获取所述RNC根据所述最终测量结果做出的小区切换判决结果。
第四方面,本发明实施例还提供了一种WCDMA系统双天线测量装置,应用于无线网络控制器RNC,所述装置包括:通知模块和判决模块;其中,
所述通知模块,配置为下发测量控制消息至终端UE,通知所述UE进行参数测量;
所述判决模块,配置为接收所述UE上报的参数测量结果,将所述参数测量结果与预设的门限值进行对比,做出小区切换判决结果。
上述方案中,所述装置还包括:第二确定模块;其中,
所述第二确定模块,配置为当所述RNC所接收到的所述参数测量结果达到预设的门限值时,做出小区切换判决结果,确定所述UE进行小区切换;
以及,当所述RNC所接收到的所述参数测量结果未达到预设的门限值时,做出小区切换判决结果,确定所述UE在原驻留小区不进行小区切换。
第五方面,本发明实施例还提供了一种WCDMA系统双天线测量装置,应用于具有主辅两根天线的终端UE,包括:处理器和用于存储能够在处理器上运行的计算机程序的存储器,其中,所述处理器用于运行所述计算机程序时,执行应用于具有主辅两根天线的终端UE对应方法的步骤。
第六方面,本发明实施例还提供了第一种计算机可读存储介质,其上存储有第一计算机程序,其中,该第一计算机程序被处理器执行时实现应用于具有主辅两根天线的终端UE对应方法的步骤。
第七方面,本发明实施例还提供了一种WCDMA系统双天线测量装置,应用于无线网络控制器RNC,包括:处理器和用于存储能够在处理器上运行的计算机程序的存储器,其中,所述处理器用于运行所述计算机程序时,执行应用于无线网络控制器RNC对应方法的步骤。
第八方面,本发明实施例还提供了第二种计算机可读存储介质,其上存储有第二计算机程序,其中,该第二计算机程序被处理器执行时实现应用于无线网络控制器RNC对应方法的步骤。
本发明实施例提供的WCDMA系统双天线测量方法和装置、存储介质,UE使用两根天线去接收信号,每根天线独立衰落,UE计算每根天线的信号质量,取较大值上报给RNC协议栈,RNC协议栈根据测量值来评估是否要发生小区重选切换,以便于UE能够驻留于信号较好的小区,从而使业务接收达到最优。
附图说明
图1为本发明实施例提供的测量过程示意图一;
图2为本发明实施例提供的测量过程示意图二;
图3为本发明实施例一提供的WCDMA系统双天线测量方法示意图;
图4为本发明实施例二提供的WCDMA系统双天线测量方法流程示意图一;
图5为本发明实施例二提供的WCDMA系统双天线测量方法流程示意图二;
图6为本发明实施例二提供的WCDMA系统双天线测量方法流程示意图三;
图7为本发明实施例二提供的WCDMA系统双天线测量方法流程示意图四;
图8为本发明实施例二提供的WCDMA系统双天线测量方法流程示意图五;
图9为本发明实施例二提供的WCDMA系统双天线测量方法流程示意图六;
图10为本发明实施例三提供的WCDMA系统双天线测量方法流程示意图一;
图11为本发明实施例三提供的WCDMA系统双天线测量方法流程示意图二;
图12为本发明实施例四提供的WCDMA系统双天线测量系统结构示意图一;
图13为本发明实施例四提供的WCDMA系统双天线测量方法流程示意图二;
图14为本发明实施例五提供的WCDMA系统双天线测量方法流程示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。
本发明实施例的基本思想是:采取UE具有主辅两根天线的双天线测量方法,每根天线独自衰落,在实际测量过程中,两根天线同时出现测量值波动很大,测量结果不准确等情况几率很小。因此,UE的测量值取两根天线较高信噪比的测量值,一方面能够提高UE测量能力和性能,使UE驻留在信号强度比较好的小区,另一方面能够根据主辅两根天线的测量值来决定上行发送时主辅两根天线的选择,从而提高UE的发送性能。
具体地,测量通过搜索和监控本小区和周围所有小区基站信号强度,信噪比等参数,在预设的条件下将测量结果汇报给网侧,以便网侧进行判断,评估和执行重选,切换,重配等相关操作。由于室外环境比较复杂,为了提高抗干扰抵消能力,UE采用双天线进行测量,以便将小区接收信号码功率(RSCP,Received Signal Code Power)等准确结果反馈给网侧,使UE能够驻留在信号质量比较好的小区。这里UE测量结果被送到相关的无线资源控制(RRC,Radio Resource Control)层,随后进入无线网络控制器(RNC,Radio Network Controller)判决阶段,也称评估阶段,RNC将UE与基站Node B上报的测量结果与预先的定义的阈值比较,以决定是否进行小区切换。
还需要说明的是,在物理层L1的测量过程中,系统主要采取两种测量类型:
第一种测量类型为,基于测量过程维护的公共导频信道(CPICH,Common Pilot Channel)测量,主要针对小区重选、切换场景下同异频邻区测量,测量类型分为CPICH RSCP测量,CPICH Ec/Io测量,通用地面无线接入(UTRA,Universal Terrestrial Radio Access)载波接收的信号强度指示(RSSI,Received Signal Strength Indication)测量,SFN-CFN OTD测量,SFN-SFN OTD测量和检测小区测量。其中,Ec/Io为信噪比,SFN-CFN OTD为SFN-CFN观测时间差,SFN是Node B的小区系统帧号;CFN是下行和上行专用物理信道DPCH相关的帧记号。这项测量用于切换定时的目的,用来识别激活集小区和邻区的时间差。SFN-SFN OTD为SFN-SFN观测时间差,这项测量用于识别两个小区之间的时间差。
第二种测量类型为,由RX/TX/PC链路维护的测量,该链路表示UE发射功率,包括UE发送-接收(RX-TX)定时差,发射功率测量。测量MEAS过程根据协议栈配置的测量请求,从设备层数据库获取结果周期性上报给 协议栈。参见图1,其示出了RX/TX/PC链路维护的测量过程。
还需要说明的是,本发明实施例主要采用第一种测量类型,即基于测量过程维护的CPICH测量类型进行测量。参见图2,其示出了采用第一种测量类型进行的测量过程。
实施例一
参见图3,其示出了本发明实施例提供的一种WCDMA系统双天线测量方法,所述方法可以包括:
S101、无线网络控制器RNC下发测量控制消息至终端UE,通知终端UE进行相关的参数测量。
具体地,网侧读取系统信息块(SIB,System Information Blocks)或者MC接口消息,由RNC通知协议栈同频异频小区相关测量消息。这里同频测量是指同频小区频内测量,异频测量是指异频小区频间测量。
S102、终端UE接收到RNC发送的测量控制消息后开始进行测量。
需要说明的是,UE在进行双天线测量时首先进行调度层的测量,UE接收并解析协议栈下发的同异频测量请求、UE内部测量请求、测量释放请求等,以及内部激活测量请求(小区搜索测量、路损更新CPICH RSCP测量)。这里,与服务小区频点相同的为同频测量,与服务小区频点不同的为异频测量,在服务小区频点内为UE内部测量。测量释放请求用于对同异频测量和UE内部测量进行释放。
参见图2,在接收并解析协议栈下发的测量请求后,更新测量数据库信息。在测量过程中,每帧向资源表申请资源,相同的资源时间测量单天线所能处理的小区数是双天线的倍数。小区有一个老化的时间,小区老化后需要对该小区申请新的资源,因此,测量根据查询老化的小区数去申请对应的资源长度,申请成功之后资源成功后,将对应的资源起始时间点和小区信息发送给设备层。这里的小区信息为小区定时和小区扰码信息。
图2中,CSR过程是一个小区选择的过程,CSR过程根据UE的内部时钟和Node B的内部时钟获取小区定时及小区扰码,这一过程选定了需要进行测量的小区。
调度层完成内部激活测量的调度,并提供接口函数查询测量结果,其中,内部激活测量主要是针对RSCP测量,是对CPICH RSCP值的更新过程。同时调度层还完成不同状态下进行同异频CPICH RSCP、CPICH Ec/Io、OTD、RSSI以及检测小区的测量调度处理。在接收到设备层上报的测量结果后,处理设备层上报的测量结果,并进行滤波,这里的滤波为最后四次的测量结果取平均值。
在设备层中进行测量时,根据调度层的配置生成CPICH RSCP以及Ec/Io测量、小区预同步相关硬件的配置参数,并配置。其中并行工作的SPSR硬件只支持整套配置主天线或辅天线,所以要按照需求配置;
响应测量相关中断后,读取双天线小区多径信息,若是CPICH RSCP以及Ec/Io测量,则根据算法方案分别计算双天线的测量结果,选取两天线中Ec/Io大的对应的RSCP结果转化为协议栈的格式,上报给调度层;若是小区预同步,则需各自对每根天线的小区进行旁瓣抑制、径检测、同步保护等后处理,将处理之后的主天线的多径信息提供给Rake,同时上报L1S预同步小区的主天线最强径位置信息。多径是指无线电信号从发射天线经过多个路径抵达接收天线的传播现象。
上述设备层的相关硬件参数配置是在调用驱动层完成的。驱动层由设备层调用,完成对CPICH RSCP以及Ec/Io测量相关硬件模块的配置和数据读取。
S103、终端UE向RNC上报测量结果。
可以理解地,终端UE得到测量结果后向RNC上报其所获得的测量结果,该测量结果用于判断终端UE是否需要进行小区切换。
S104、RNC根据UE的测量结果进行小区切换判决。
需要说明的是,RNC所接收到的测量结果为UE的主辅两根天线中测量值的较大值再经过滤波后的值。RNC根据预设的门限值与所接收到的测量结果进行对比,若测量结果达到门限值,则做出UE进行小区切换的判决;若测量结果未达到门限值,则做出UE不进行小区切换停留在原驻留小区的判决。
S105、终端UE根据RNC的小区切换判决结果进行小区切换。
可以理解地,UE在获得RNC的小区切换判决结果后,根据小区切换判决结果进行小区切换或者是保持原驻留小区不变。
实施例二
参见图4,其示出了本发明实施例提供的一种WCDMA系统双天线测量方法,应用于具有主辅两根天线的终端UE,所述方法可以包括:
S201、终端UE接收无线网络控制器RNC下发的测量控制消息,对测量控制消息中所指示的测量参数进行测量。
参见图5,具体的,步骤S201包括步骤S2011至S2013:
S2011、UE的协议栈接收RNC下发的测量控制消息,下发测量请求消息对调度层进行测量。
需要说明的是,无线网络控制器RNC下发测量控制消息“Measurement Control”给终端UE,通知UE进行相关参数的测量。UE需要进行测量的参数包括RSSI、RSCP、Ec/Io值。UE的整个测量流程处理分为测量调度层、测量设备层和测量驱动层。
S2012、调度层根据测量请求消息进行资源申请,获取小区配置信息,并将小区配置信息发送至设备层;其中,小区配置信息包括资源申请起始时间、小区定时和小区扰码。
参见图6,具体的,步骤S2012包括步骤S20121至S20123:
S20121、调度层解析协议栈下发的测量请求消息,将频点和当前小区信息存入测量数据库中。
需要说明的是,测量请求消息包括同异频测量请求、UE内部测量请求、测量释放请求等,以及内部激活测量请求(小区搜索测量、路损更新CPICH RSCP测量)。将频点和当前小区信息存入测量数据库中,更新测量数据库的信息。
S20122、从测量数据库中获取频点和当前小区信息,开始小区搜索CSR,获取小区数量、小区定时和小区扰码信息。
参见图7,具体的,步骤S20122包括步骤S201221至S201222:
S201221、当频点和小区信息满足非盲频点或非检测集的测量条件时,确定小区搜索为指定小区的小区搜索CSR。
需要说明的是,对非盲频点或非检测集的测量,被搜索的小区是明确的,因此小区搜索为指定小区的小区搜索CSR。
S201222、当频点和小区信息满足盲频点或检测集的测量条件时,确定小区搜索为CSR盲搜。
需要说明的是,盲频点为已知频点,但是频点下面的小区是未知的,因此盲频点时小区搜索为CSR盲搜。检测集中的小区不是当前服务小区的邻区,因此也需要进行CSR盲搜。
S20123、根据小区搜索CSR搜索到的小区数量,测量MEAS在资源表中申请对应的资源,把小区配置信息发送至设备层。
需要说明的是,根据需要处理的小区测量MEAS每一帧在资源表中申请资源,由于UE有主辅两根天线,因此相同的资源时间仅测量单天线所能测量的小区数量是双天线测量的倍数。测量根据查询老化的小区数去申请对应的资源长度,申请的长度遵循一个小区5个时隙的原则,资源的起始时间点需要遵循上一次硬件工作时刻点结束并且要在当前时刻点2slot之 后,申请资源成功后将资源起始点转化为对应的硬件工作时刻点,将对应的资源起始时间点和小区信息发送给设备层。
S2013、设备层根据小区配置信息在驱动层完成相应硬件的配置,计算UE主辅两根天线的测量参数值发送至调度层。
需要说明的是,驱动层是由设备层调用,设备层根据小区配置信息在驱动层完成相应的驱动层配置。参见图8,具体的,步骤S2013包括步骤S20131和S20132:
S20131、设备层根据小区配置信息在驱动层完成对CPICH RSCP和Ec/Io相关的硬件模块配置和数据读取。
设备层根据调度层的配置生成CPICH RSCP以及Ec/Io测量、小区预同步相关硬件的配置参数,并配置,并行工作的程序状态保存寄存器(SPSR,Saved Program Register)只支持整套配置主天线或辅天线,所以要按照需求配置。
S20132、设备层计算UE主天线和辅天线的RSSI、RSCP、Ec/Io参数测量值,选择主辅两根天线中较大Ec/Io对应的参数测量值上报至调度层。
可以理解地,响应测量的硬件中断,设备层读取硬件RAM上报的主辅双天线小区多径信息。在CPICH RSCP以及Ec/Io测量过程中,分别算出主辅两根天线的RSSI/RSCP/Ec/Io值,则根据算法方案分别计算双天线的测量结果,选取两天线中Ec/Io大的对应的RSCP结果转化为协议栈的格式,上报给调度层。在小区预同步过程中,需各自对每根天线的小区进行旁瓣抑制、径检测、同步保护等后处理,将处理之后的主天线的多径信息提供给Rake(多径接收机),同时上报物理层L1S预同步小区的主天线最强径位置信息。
S202、UE将参数测量结果上报至RNC,获取RNC的小区切换判决结果。
参见图9,具体的,步骤S202包括步骤S2021至S2023:
S2021、调度层将接收到的UE主辅两根天线测量值经过滤波获取最终测量结果上报给RNC。
可以理解地,调度层接收到的为主辅两根天线中较大Ec/Io对应的参数测量值,调度层对该参数测量值,即主辅两根天线中较大Ec/Io对应的测量值进行滤波,将最终测量结果上报给RNC,RNC利用该最终测量结果进行小区切换判决。
S2022、UE根据主辅两根天线各自的RSSI、RSCP、Ec/Io测量值,确定上下行发送时主辅两根天线的选择。
需要说明的是,在主天线和辅天线的测量过程中,需要保存主天线和辅天线各自的RSSI、RSCP、Ec/Io测量值,根据该测量值UE选择收发效果更好的天线执行上下行信号的发送。
S2023、UE获取RNC根据最终测量结果做出的小区切换判决结果。
可以理解地,RNC做出小区切换判决结果后,UE将会根据该小区切换判决结果进行小区切换。具体地,如果测量结果已经达到门限值就触发对应的事件或读邻区的广播信道(BCH,Broadcast Channel)来触发重选和切换流程。
S203、UE根据RNC的小区切换判决结果选择驻留小区。
具体地,若RNC的小区切换判决结果为UE进行小区切换,则UE切换到信号强度更好的小区,选择该小区为驻留小区。若RNC的小区切换判决结果为UE不进行小区切换,则UE停留在原驻留小区,不进行小区切换。
本发明实施例提供了一种WCDMA系统双天线测量方法,UE使用两根天线去接收信号,每根天线独立衰落,UE计算每根天线的信号质量,取较大值上报给RNC协议栈,RNC协议栈根据测量值来评估是否要发生小区重选切换,目的是让UE驻留在信号比较好的小区,从而使业务接收达到最 优。
实施例三
参见图10,其示出了本发明实施例提供的一种WCDMA系统双天线测量方法,应用于无线网络控制器RNC,所述方法可以包括:
S301、RNC下发测量控制消息至终端UE,通知UE进行参数测量。
可以理解地,RNC通过发送“Measurement Control”消息通知UE进行参数测量。UE需要测量的参数包括RSSI、RSCP以及Ec/Io。
S302、RNC接收UE上报的参数测量结果,将参数测量结果与预设的门限值进行对比,做出小区切换判决结果。
参见图11,具体的,步骤S302包括步骤S3021和S3022:
S3021、当RNC所接收到的参数测量结果达到预设的门限值时,RNC做出小区切换判决结果,确定UE进行小区切换。
S3022、当RNC所接收到的参数测量结果未达到预设的门限值时,RNC做出小区切换判决结果,确定UE在原驻留小区不进行小区切换。
可以理解地,上述步骤S3021和S3022为RNC做出小区切换判决的具体过程,由RNC的小区切换判决决定UE驻留小区的选择。
本发明实施例提供了一种WCDMA系统双天线测量方法,UE使用两根天线去接收信号,每根天线独立衰落,UE计算每根天线的信号质量,取较大值上报给RNC协议栈,RNC协议栈根据测量值来评估是否要发生小区重选切换,目的是让UE驻留在信号比较好的小区,从而使业务接收达到最优。
实施例四
参见图12,其示出了本发明实施例提供的一种WCDMA系统双天线测量装置12,应用于具有主辅两根天线的终端UE,所述装置包括:接收模块1201、测量模块1202、发送模块1203、获取模块1204和选择模块1205; 其中,
所述接收模块1201,配置为接收无线网络控制器RNC下发的测量控制消息;
所述测量模块1202,配置为利用主辅两根天线对所述测量控制消息中所指示的测量参数进行测量;
所述发送模块1203,配置为将参数测量结果上报至所述RNC;
所述获取模块1204,配置为获取所述RNC的小区切换判决结果;
所述选择模块1205,配置为根据所述RNC的小区切换判决结果选择驻留小区。
进一步地,所述接收模块1201,配置为利用所述UE的协议栈接收所述RNC下发的测量控制消息;
所述发送模块1203,配置为发送测量请求消息对调度层进行测量;
所述获取模块1204,配置为利用所述调度层根据所述测量请求消息进行资源申请,获取小区配置信息;
所述发送模块1203,还配置为将所述小区配置信息发送至设备层;其中,所述小区配置信息包括资源申请起始时间、小区定时和小区扰码;
以及,利用所述设备层根据所述小区配置信息在驱动层完成相应硬件的配置,进行测量,并计算所述UE主辅两根天线的测量参数值发送至调度层。
进一步地,参见图13,所述装置还包括:保存模块1206;其中,
所述保存模块1206,配置为利用所述调度层解析协议栈下发的测量请求消息,将频点和当前小区信息存入测量数据库中;
所述获取模块1204,配置为从所述测量数据库中获取频点和当前小区信息,开始小区搜索CSR,获取小区数量、小区定时和小区扰码信息;
所述发送模块1203,配置为根据小区搜索CSR搜索到的小区数量,测 量MEAS在资源表中申请对应的资源,把所述小区配置信息发送至设备层。
进一步地,参见图13,所述装置还包括:第一确定模块1207;其中,
所述第一确定模块1207,配置为当所述频点和小区信息满足非盲频点或非检测集的测量条件时,确定所述小区搜索为指定小区的小区搜索CSR;
以及,当所述频点和小区信息满足盲频点或检测集的测量条件时,确定所述小区搜索为CSR盲搜。
进一步地,参见图13,所述装置还包括:配置模块1208和计算模块1209;其中,
所述配置模块1208,配置为利用所述设备层根据所述小区配置信息在驱动层完成对CPICH RSCP和Ec/Io相关的硬件模块配置和数据读取,进行测量;
所述计算模块1209,配置为利用所述设备层计算所述UE主天线和辅天线的RSSI、RSCP、Ec/Io参数测量值;
所述发送模块1203,配置为选择所述主辅两根天线中较大Ec/Io对应的参数测量值上报至调度层。
进一步地,所述获取模块1204,配置为利用所述调度层将接收到的所述UE主辅两根天线参数测量值经过滤波获取最终测量结果上报给RNC;
所述第一确定模块1207,配置为根据所述主辅两根天线各自的RSSI、RSCP、Ec/Io测量值,确定上下行发送时所述主辅两根天线的选择;
所述获取模块1204,还配置为获取所述RNC根据所述最终测量结果做出的小区切换判决结果。
在实际应用中,所述接收模块1201、测量模块1202、发送模块1203、获取模块1204、选择模块1205、保存模块1206、第一确定模块1207、配置模块1208和计算模块1209均可由位于WCDMA系统双天线测量装置12中的中央处理器(Central Processing Unit,CPU)、微处理器(Micro Processor  Unit,MPU)、数字信号处理器(Digital Signal Processor,DSP)、或现场可编程门阵列(Field Programmable Gate Array,FPGA)等实现。
本实施例,还提供了一种所述WCDMA系统双天线测量装置,应用于具有主辅两根天线的终端UE,包括:处理器和用于存储能够在处理器上运行的计算机程序的存储器,其中,所述处理器用于运行所述计算机程序时,执行实施例二所述方法的步骤。这里,所述处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、DSP,或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。处理器可以实现或者执行本发明实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本发明实施例所公开的方法的步骤,可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于存储介质中,该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成前述实施例二方法的步骤。
具体的,本发明实施例提供的WCDMA系统双天线测量装置的说明可以参考实施例二的WCDMA系统双天线测量方法的说明,本发明实施例在此不再赘述。
本发明实施例提供了一种WCDMA系统双天线测量装置,UE使用两根天线去接收信号,每根天线独立衰落,UE计算每根天线的信号质量,取较大值上报给RNC协议栈,RNC协议栈根据测量值来评估是否要发生小区重选切换,目的是让UE驻留在信号比较好的小区,从而使业务接收达到最优。
本实施例还提供了第一种计算机可读存储介质,其上存储有第一计算机程序,其中,该第一计算机程序被处理器执行时实施例二所述方法的步 骤。
实施例五
参见图14,其示出了本发明实施例提供的一种WCDMA系统双天线测量装置14,应用于无线网络控制器RNC,所述装置包括:通知模块1401和判决模块1402;其中,
所述通知模块1401,配置为下发测量控制消息至终端UE,通知所述UE利用所述UE对应的主辅两根天线进行参数测量;
所述判决模块1402,配置为接收所述UE上报的参数测量结果,将所述参数测量结果与预设的门限值进行对比,做出小区切换判决结果。
进一步地,所述装置还包括:第二确定模块1403;其中,
所述第二确定模块1403,配置为当所述RNC所接收到的所述参数测量结果达到预设的门限值时,做出小区切换判决结果,确定所述UE进行小区切换;
以及,当所述RNC所接收到的所述参数测量结果未达到预设的门限值时,做出小区切换判决结果,确定所述UE在原驻留小区不进行小区切换。
在实际应用中,所述通知模块1401、判决模块1402和第二确定模块1403均可由位于WCDMA系统双天线测量装置14中的CPU、MPU、DSP、或FPGA等实现。
本实施例,还提供了一种所述WCDMA系统双天线测量装置,应用于无线网络控制器RNC,包括:处理器和用于存储能够在处理器上运行的计算机程序的存储器,其中,所述处理器用于运行所述计算机程序时,执行实施例三所述方法的步骤。这里,所述处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、DSP,或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、 分立硬件组件等。处理器可以实现或者执行本发明实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本发明实施例所公开的方法的步骤,可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于存储介质中,该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成前述实施例三方法的步骤。
具体的,本发明实施例提供的WCDMA系统双天线测量装置的说明可以参考实施例三的WCDMA系统双天线测量方法的说明,本发明实施例在此不再赘述。
本发明实施例提供了一种WCDMA系统双天线测量装置,UE使用两根天线去接收信号,每根天线独立衰落,UE计算每根天线的信号质量,取较大值上报给RNC协议栈,RNC协议栈根据测量值来评估是否要发生小区重选切换,目的是让UE驻留在信号比较好的小区,从而使业务接收达到最优。
本实施例还提供了第二种计算机可读存储介质,其上存储有第二计算机程序,其中,该第二计算机程序被处理器执行时实现实施例三所述方法的步骤。
这里,值得注意的是,以上所述的计算机可读存储介质可以是磁性随机存取存储器(FRAM,ferromagnetic random access memory)、ROM、可编程只读存储器(PROM,Programmable Read-Only Memory)、可擦除可编程只读存储器(EPROM,Erasable Programmable Read-Only Memory)、电可擦除可编程只读存储器(EEPROM,Electrically Erasable Programmable Read-Only Memory)、快闪存储器(Flash Memory)、磁表面存储器、光盘、或只读光盘(CD-ROM,Compact Disc Read-Only Memory)等存储器;也可以是包括上述存储器之一或任意组合的各种设备。
本领域内的技术人员应明白,本发明的实施例可提供为方法、系统、或计算机程序产品。因此,本发明可采用硬件实施例、软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器和光学存储器等)上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
以上所述,仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。
工业实用性
本发明实施例通过UE使用两根天线去接收信号,每根天线独立衰落,UE计算每根天线的信号质量,取较大值上报给RNC协议栈,RNC协议栈根据测量值来评估是否要发生小区重选切换,以便于UE能够驻留于信号较好的小区,从而使业务接收达到最优。

Claims (20)

  1. 一种WCDMA系统双天线测量方法,应用于具有主辅两根天线的终端UE,所述方法包括:
    终端UE接收无线网络控制器RNC下发的测量控制消息,并利用主辅两根天线对所述测量控制消息中所指示的测量参数进行测量;
    所述UE将参数测量结果上报至所述RNC,获取所述RNC至少基于参数测量结果而得到的小区切换判决结果;
    所述UE根据所述RNC的小区切换判决结果选择驻留小区。
  2. 根据权利要求1所述的方法,其中,所述终端UE接收无线网络控制器RNC下发的测量控制消息,并利用主辅两根天线对所述测量控制消息中所指示的测量参数进行测量,包括:
    所述UE的协议栈接收所述RNC下发的测量控制消息,发送测量请求消息对调度层进行测量;
    所述调度层根据所述测量请求消息进行资源申请,获取小区配置信息,并将所述小区配置信息发送至设备层;其中,所述小区配置信息包括资源申请起始时间、小区定时和小区扰码;
    所述设备层根据所述小区配置信息在驱动层完成相应硬件的配置,进行测量,并计算所述UE的主辅两根天线的测量参数值发送至调度层。
  3. 根据权利要求2所述的方法,其中,所述调度层根据所述测量请求消息进行资源申请,获取小区配置信息,并将所述小区配置信息发送至设备层,包括:
    所述调度层解析协议栈下发的测量请求消息,将频点和当前小区信息存入测量数据库中;
    从所述测量数据库中获取频点和当前小区信息,开始小区搜索CSR,获取小区数量、小区定时和小区扰码信息;
    根据小区搜索CSR搜索到的小区数量,测量MEAS在资源表中申请对应的资源,把所述小区配置信息发送至设备层。
  4. 根据权利要求3所述的方法,其中,所述从所述测量数据库中获取频点和当前小区信息,开始小区搜索CSR,获取小区数量、小区定时和小区扰码信息,包括:
    当所述频点和小区信息满足非盲频点或非检测集的测量条件时,确定所述小区搜索为指定小区的小区搜索CSR;
    当所述频点和小区信息满足盲频点或检测集的测量条件时,确定所述小区搜索为CSR盲搜。
  5. 根据权利要求2所述的方法,其中,所述设备层根据所述小区配置信息在驱动层完成相应硬件的配置,进行测量,并计算出所述UE的主辅两根天线的测量参数值发送至调度层,包括:
    所述设备层根据所述小区配置信息在驱动层完成对CPICH RSCP和Ec/Io相关的硬件模块配置和数据读取,进行测量;
    所述设备层计算所述UE的主天线和辅天线的RSSI、RSCP、Ec/Io参数测量值,选择所述主辅两根天线中较大Ec/Io对应的参数测量值上报至调度层。
  6. 根据权利要求1所述的方法,其中,所述UE将参数测量结果上报至所述RNC,获取所述RNC至少基于参数测量结果而得到的小区切换判决结果,包括:
    所述调度层将接收到的所述UE的主辅两根天线参数测量值经过滤波获取最终测量结果上报给RNC;
    所述UE根据所述主辅两根天线各自的RSSI、RSCP、Ec/Io测量值,确定上下行发送时所述主辅两根天线的选择;
    所述UE获取所述RNC根据所述最终测量结果做出的小区切换判决结 果。
  7. 一种WCDMA系统双天线测量方法,应用于无线网络控制器RNC,所述方法包括:
    所述RNC下发测量控制消息至终端UE,通知所述UE利用所述UE对应的主辅两根天线进行参数测量;
    所述RNC接收所述UE上报的参数测量结果,将所述参数测量结果与预设的门限值进行对比,做出小区切换判决结果。
  8. 根据权利要求7所述的方法,其中,所述RNC接收所述UE上报的参数测量结果,将所述参数测量结果与预设的门限值进行对比,做出小区切换判决结果,包括:
    当所述RNC所接收到的所述参数测量结果达到预设的门限值时,所述RNC做出小区切换判决结果,确定所述UE进行小区切换;
    当所述RNC所接收到的所述参数测量结果未达到预设的门限值时,所述RNC做出小区切换判决结果,确定所述UE在原驻留小区不进行小区切换。
  9. 一种WCDMA系统双天线测量装置,应用于具有主辅两根天线的终端UE,所述装置包括:接收模块、测量模块、发送模块、获取模块和选择模块;其中,
    所述接收模块,配置为接收无线网络控制器RNC下发的测量控制消息;
    所述测量模块,配置为利用主辅两根天线对所述测量控制消息中所指示的测量参数进行测量;
    所述发送模块,配置为将参数测量结果上报至所述RNC;
    所述获取模块,配置为获取所述RNC至少基于参数测量结果而得到的小区切换判决结果;
    所述选择模块,配置为根据所述RNC的小区切换判决结果选择驻留小 区。
  10. 根据权利要求9所述的装置,其中,
    所述接收模块,配置为利用所述UE的协议栈接收所述RNC下发的测量控制消息;
    所述发送模块,配置为发送测量请求消息对调度层进行测量;
    所述获取模块,配置为利用所述调度层根据所述测量请求消息进行资源申请,获取小区配置信息;
    所述发送模块,还配置为将所述小区配置信息发送至设备层;其中,所述小区配置信息包括资源申请起始时间、小区定时和小区扰码;以及,还配置为利用所述设备层根据所述小区配置信息在驱动层完成相应硬件的配置,进行测量,并计算所述UE主辅两根天线的测量参数值发送至调度层。
  11. 根据权利要求10所述的装置,其中,所述装置还包括:保存模块;其中,
    所述保存模块,配置为利用所述调度层解析协议栈下发的测量请求消息,将频点和当前小区信息存入测量数据库中;
    所述获取模块,配置为从所述测量数据库中获取频点和当前小区信息,开始小区搜索CSR,获取小区数量、小区定时和小区扰码信息;
    所述发送模块,配置为根据小区搜索CSR搜索到的小区数量,测量MEAS在资源表中申请对应的资源,把所述小区配置信息发送至设备层。
  12. 根据权利要求11所述的装置,其中,所述装置还包括:第一确定模块;其中,
    所述第一确定模块,配置为当所述频点和小区信息满足非盲频点或非检测集的测量条件时,确定所述小区搜索为指定小区的小区搜索CSR;以及,当所述频点和小区信息满足盲频点或检测集的测量条件时,确定所述小区搜索为CSR盲搜。
  13. 根据权利要求10所述的装置,其中,所述装置还包括:配置模块和计算模块;其中,
    所述配置模块,配置为利用所述设备层根据所述小区配置信息在驱动层完成对CPICH RSCP和Ec/Io相关的硬件模块配置和数据读取,进行测量;
    所述计算模块,配置为利用所述设备层计算所述UE的主天线和辅天线的RSSI、RSCP、Ec/Io参数测量值;
    所述发送模块,配置为选择所述主辅两根天线中较大Ec/Io对应的参数测量值上报至调度层。
  14. 根据权利要求9所述的装置,其中,
    所述获取模块,配置为利用所述调度层将接收到的所述UE主辅两根天线参数测量值经过滤波获取最终测量结果上报给RNC;
    所述第一确定模块,配置为根据所述主辅两根天线各自的RSSI、RSCP、Ec/Io测量值,确定上下行发送时所述主辅两根天线的选择;
    所述获取模块,还配置为获取所述RNC根据所述最终测量结果做出的小区切换判决结果。
  15. 一种WCDMA系统双天线测量装置,应用于无线网络控制器RNC,所述装置包括:通知模块和判决模块;其中,
    所述通知模块,配置为下发测量控制消息至终端UE,通知所述UE利用所述UE对应的主辅两根天线进行参数测量;
    所述判决模块,配置为接收所述UE上报的参数测量结果,将所述参数测量结果与预设的门限值进行对比,做出小区切换判决结果。
  16. 根据权利要求15所述的装置,其中,所述装置还包括:第二确定模块;其中,
    所述第二确定模块,配置为当所述RNC所接收到的所述参数测量结果达到预设的门限值时,做出小区切换判决结果,确定所述UE进行小区切换;
    以及,当所述RNC所接收到的所述参数测量结果未达到预设的门限值时,做出小区切换判决结果,确定所述UE在原驻留小区不进行小区切换。
  17. 一种WCDMA系统双天线测量装置,应用于具有主辅两根天线的终端UE,包括:处理器和用于存储能够在处理器上运行的计算机程序的存储器,其中,所述处理器用于运行所述计算机程序时,执行权利要求1至6所述方法的步骤。
  18. 第一种计算机可读存储介质,其上存储有第一计算机程序,其中,该第一计算机程序被处理器执行时实现权利要求1至6所述方法的步骤。
  19. 一种WCDMA系统双天线测量装置,应用于无线网络控制器RNC,包括:处理器和用于存储能够在处理器上运行的计算机程序的存储器,
    其中,所述处理器用于运行所述计算机程序时,执行权利要求7和8所述方法的步骤。
  20. 第二种计算机可读存储介质,其上存储有第二计算机程序,其中,该第二计算机程序被处理器执行时实现权利要求7和8所述方法的步骤。
PCT/CN2017/091833 2016-09-01 2017-07-05 一种wcdma系统双天线测量方法和装置、存储介质 WO2018040732A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610801044.3A CN107801224B (zh) 2016-09-01 2016-09-01 一种wcdma系统双天线测量方法和装置
CN201610801044.3 2016-09-01

Publications (1)

Publication Number Publication Date
WO2018040732A1 true WO2018040732A1 (zh) 2018-03-08

Family

ID=61300165

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/091833 WO2018040732A1 (zh) 2016-09-01 2017-07-05 一种wcdma系统双天线测量方法和装置、存储介质

Country Status (2)

Country Link
CN (1) CN107801224B (zh)
WO (1) WO2018040732A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113239348A (zh) * 2021-04-21 2021-08-10 北京邮电大学 多核冗余系统

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111479281B (zh) * 2020-04-10 2022-08-19 展讯通信(上海)有限公司 小区测量方法及装置、存储介质、终端

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101394644A (zh) * 2007-09-20 2009-03-25 华为技术有限公司 无线资源管理方法及装置
WO2011088636A1 (zh) * 2010-01-22 2011-07-28 中兴通讯股份有限公司 多天线终端的切换接入方法及系统
CN102711199A (zh) * 2012-04-16 2012-10-03 上海交通大学 一种gsm-r网络中双天线越区切换系统及其方法
CN102905333A (zh) * 2011-07-29 2013-01-30 上海贝尔股份有限公司 用于长期演进型移动通信系统的切换方法及相应的eNB节点

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101394644A (zh) * 2007-09-20 2009-03-25 华为技术有限公司 无线资源管理方法及装置
WO2011088636A1 (zh) * 2010-01-22 2011-07-28 中兴通讯股份有限公司 多天线终端的切换接入方法及系统
CN102905333A (zh) * 2011-07-29 2013-01-30 上海贝尔股份有限公司 用于长期演进型移动通信系统的切换方法及相应的eNB节点
CN102711199A (zh) * 2012-04-16 2012-10-03 上海交通大学 一种gsm-r网络中双天线越区切换系统及其方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113239348A (zh) * 2021-04-21 2021-08-10 北京邮电大学 多核冗余系统

Also Published As

Publication number Publication date
CN107801224A (zh) 2018-03-13
CN107801224B (zh) 2020-02-14

Similar Documents

Publication Publication Date Title
CN107635273B (zh) 小小区发现方法、用户设备及存储器
EP2705697B1 (en) Methods and nodes supporting cell change
US9596042B2 (en) Methods of performing inter-frequency measurements in the IDLE state
US8655368B2 (en) Method and arrangement for supporting multiple settings of mobility triggers in a telecommunications system
KR101550512B1 (ko) 이웃 셀 측정 보고를 제한하는 방법 및 장치
US10051557B2 (en) Method, system and device for helping multi-mode terminal discover communications opportunities
CA2677341C (en) Network-controlled e-utran neighbour cell measurements
EP2673978B1 (en) Priority measurement rules for channel measurement occasions
US10306555B2 (en) Method and apparatus for measuring inter-frequency neighboring cell and user equipment thereof
TWI472247B (zh) 網路節點控制
WO2020034608A1 (en) Method for ue power saving
RU2666781C2 (ru) Способы адаптации частоты измерений с учетом несущей частоты
RU2747052C1 (ru) Управление измерениями сигнала в беспроводных устройствах с формированием луча
US20210219164A1 (en) Measurement reporting entry processing method and device
US20170359632A1 (en) Method of Inter-Frequency or Inter-Radio Access Technology Measurement
US9479950B2 (en) Method and apparatus for inter-frequency measurements in a communication network
JP5723423B2 (ja) 無線基地局装置、及び送信電力決定方法
WO2018040732A1 (zh) 一种wcdma系统双天线测量方法和装置、存储介质
EP3527004B1 (en) Cell change in a wireless communication system
CN110381546B (zh) 一种小区重选的方法、终端及网络设备
RU2777725C2 (ru) Способ обработки опорного сигнала, сетевое устройство и терминальное устройство
CN113660704B (zh) 小区重选方法、装置及用户设备
CN116419337A (zh) 一种小区选择和重选方法及装置、终端设备和网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17845035

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17845035

Country of ref document: EP

Kind code of ref document: A1