WO2018040572A1 - Antenna control method, apparatus and computer storage medium - Google Patents

Antenna control method, apparatus and computer storage medium Download PDF

Info

Publication number
WO2018040572A1
WO2018040572A1 PCT/CN2017/080454 CN2017080454W WO2018040572A1 WO 2018040572 A1 WO2018040572 A1 WO 2018040572A1 CN 2017080454 W CN2017080454 W CN 2017080454W WO 2018040572 A1 WO2018040572 A1 WO 2018040572A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
target
communication signal
antennas
signal strength
Prior art date
Application number
PCT/CN2017/080454
Other languages
French (fr)
Chinese (zh)
Inventor
王旭辉
任冠佼
Original Assignee
纳恩博(北京)科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 纳恩博(北京)科技有限公司 filed Critical 纳恩博(北京)科技有限公司
Publication of WO2018040572A1 publication Critical patent/WO2018040572A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/02Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical movement of antenna or antenna system as a whole
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/02Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical movement of antenna or antenna system as a whole
    • H01Q3/08Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical movement of antenna or antenna system as a whole for varying two co-ordinates of the orientation

Definitions

  • the present invention relates to the field of electronic technologies, and in particular, to an antenna control method and apparatus, and a computer storage medium.
  • An antenna is arranged on the beacon tag, and the anchor node anchor is provided with two antennas, and the tag and the anchor perform UWB (Ultra Wideband) communication through the above three antennas.
  • UWB Ultra Wideband
  • the tag end is carried by the user, and the posture is variability.
  • the change of the tag attitude will change the polarization direction of the tag-end antenna, and the communication quality between the tag end and the anchor end will decrease.
  • the prior art has a technical problem of how to improve the communication quality when the tag pose changes.
  • the present application provides an antenna control method, apparatus, and computer storage medium for improving communication quality between a beacon end device and an anchor node device when the posture changes.
  • the present application provides an antenna control method, which is applied to a beacon end device, where the beacon end device includes at least two first antennas having different polarization directions, and the method includes:
  • control target first antenna is in a receiving and receiving state, including:
  • determining the target first antenna from the at least two first antennas according to the strength of the communication signal including:
  • the communication signal strength between the first antenna and the second antenna is represented by the following signal strength:
  • the received strength of the signal sent by the first antenna to the second antenna or the received strength of the signal sent by the second antenna to the first antenna; when the second antenna is sent to the first antenna
  • the beacon end device is required to obtain the receiving strength of the signal sent by the second antenna to the first antenna from the anchor node end device.
  • obtaining the communication signal strength between each of the first antennas and the second antenna of the anchor node device including:
  • a communication signal strength between each of the first antennas and the second antenna is obtained by sequentially communicating with the second antenna by each of the first antennas.
  • the method is the target first antenna, the method also includes:
  • determining a current polarization direction of each of the first antennas according to the detection result, and determining, according to a polarization direction of the second antenna, a polarization direction of the target first antenna and the Whether the polarization directions of the second antenna match including:
  • the method is the target first antenna, the method also includes:
  • the first antenna of the control target is switched to the transmitting and receiving state, and the first antenna other than the first antenna of the control target is in a non-transceive state, including:
  • the target first antenna is switched to the transmitting and receiving state, and the first antenna other than the target first antenna is not received or received. status.
  • the present application provides an antenna control apparatus, which is disposed on a beacon end device, where the beacon end device includes at least two first antennas having different polarization directions, and the apparatus includes:
  • Obtaining a module configured to obtain a communication signal strength between each of the first antenna and the second antenna of the anchor node device;
  • a determining module configured to determine a target first antenna from the at least two first antennas according to the communication signal strength; wherein a communication signal between the target first antenna and a second antenna of the anchor node device The intensity satisfies the preset first condition;
  • a control module configured to control the target first antenna to be in a transceiving state, and further communicate with the anchor node device by using the target first antenna.
  • control module is configured to determine whether the target first antenna is currently in a transmitting and receiving state, and if yes, maintaining a transmitting and receiving state of the target first antenna; if not, controlling the target first antenna Switching to the transmitting and receiving state, and controlling the first antenna other than the target first antenna to be in a non-transceiving state.
  • the determining module is configured to select, from the communication signal strength between each of the first antennas and the second antenna, a first antenna corresponding to a maximum communication signal strength as the target first antenna;
  • the communication signal strength between the first antenna and the second antenna is represented by the following signal strength:
  • the received strength of the signal sent by the first antenna to the second antenna or the received strength of the signal sent by the second antenna to the first antenna; when the second antenna is sent to the first antenna
  • the beacon end device is required to obtain the receiving strength of the signal sent by the second antenna to the first antenna from the anchor node end device.
  • the obtaining module is configured to obtain a communication signal strength between each of the first antennas and the second antenna by sequentially communicating with the second antenna by each of the first antennas.
  • the device further includes:
  • a detecting module configured to: after selecting a first antenna corresponding to a maximum communication signal strength from a communication signal strength between each of the first antennas and the second antenna as the target first antenna, The current posture of the beacon device is detected, and the detection result is obtained;
  • a first determining module configured to determine a current polarization direction of each of the first antennas according to the detection result, and determine a polarization direction of the target first antenna according to a polarization direction of the second antenna Whether the polarization direction of the second antenna matches; if yes, notifying the control module to perform a process of subsequently controlling the target first antenna to be in a transceiving state; if not, notifying the obtaining module to regain each first The strength of the communication signal between the antenna and the second antenna of the anchor node device, and notifying the determining module to redetermine the target first antenna.
  • the first determining module is configured to determine a current polarization direction of each first antenna according to the detection result and a setting direction of each first antenna in the beacon end device; Predetermining the polarization direction of the second antenna, and determining whether the first antenna having the smallest angle between the current polarization direction and the polarization direction of the second antenna is the target first antenna.
  • the device further includes:
  • a second determining module configured to: after selecting a first antenna corresponding to a maximum communication signal strength from a communication signal strength between each of the first antennas and the second antenna, is the target first antenna, Determining whether the communication signal strength between the target first antenna and the second antenna reaches a threshold, and if so, notifying the control module to perform a process of subsequently controlling the target first antenna to be in a transceiving state; if not, An alarm prompt is generated, and the acquisition module is notified to regain the communication signal strength between each of the first antennas and the second antenna of the anchor node device, and the determination module is notified to re-determine the target first antenna.
  • control module is configured to control the target first antenna to switch to the receiving and receiving state, and control the target after determining a complete positioning operation between the beacon end device and the anchor node device.
  • the first antenna other than the first antenna is in a non-transceive state.
  • the present application also provides a computer storage medium comprising a set of instructions that, when executed, cause at least one processor to perform operations comprising:
  • the beacon end device includes at least two first antennas having different polarization directions, and according to the communication signal strength between each of the first antennas and the second antenna of the anchor node device, from at least two first A target first antenna that satisfies a preset first condition is determined in the antenna, and then the target first antenna is controlled to be in a transceiving state, and then communicated with the anchor node device through the target first antenna. Therefore, on the one hand, the present invention sets antennas with different polarization directions on the beacon end device, and on the other hand, the communication signal strength of each of the first antenna and the second antenna is selected to meet the requirements of the beacon end device.
  • the target first antenna of a condition communicates.
  • the beacon end device in the present application can still communicate with the anchor node device through an antenna that communicates well with the anchor node device when the posture changes. It can be seen that the invention improves the communication quality between the beacon end device and the anchor node end device when the posture changes.
  • FIG. 2 is a schematic diagram of a beacon end device and an anchor node end device in the present application
  • FIG. 3 is a schematic diagram of another beacon end device and an anchor node end device in the present application.
  • FIG. 4 is a schematic diagram of a possible data packet transmission and reception in the present application.
  • FIG. 5 is a schematic diagram of an antenna control apparatus in the present application.
  • the present application provides an antenna control method, apparatus, and computer storage medium for improving communication quality between a beacon end device and an anchor node device when the posture changes.
  • the beacon end device includes at least two first antennas having different polarization directions, and according to the communication signal strength between each of the first antennas and the second antenna of the anchor node device, from at least two first A target first antenna that satisfies a preset first condition is determined in the antenna, and then the target first antenna is controlled to be in a transceiving state, and then communicated with the anchor node device through the target first antenna. Therefore, on the one hand, the present invention sets antennas with different polarization directions on the beacon end device, and on the other hand, the communication signal strength of each of the first antenna and the second antenna is selected to meet the requirements of the beacon end device.
  • the target first antenna of a condition communicates.
  • the beacon end device in the present application can still communicate with the anchor node device through an antenna that communicates well with the anchor node device when the posture changes. It can be seen that the invention improves the communication quality between the beacon end device and the anchor node end device when the posture changes.
  • a first aspect of the present invention provides an antenna control method.
  • the present application is in the middle of the present application.
  • Flow chart of the line control method. The method includes:
  • S101 Obtain a communication signal strength between each first antenna and a second antenna of the anchor node device, and determine a target first antenna from the at least two first antennas according to the communication signal strength;
  • S102 Control the target first antenna to be in a transceiving state, and communicate with the anchor node device by using the target first antenna.
  • the beacon end device in the present application may be a device such as a remote controller or a smart watch that can adjust the posture arbitrarily.
  • the anchor node end device is, for example, a balance car, a drone, a robot or a controller, etc., and the portion of the anchor node end device provided with the antenna is usually stationary.
  • the present application does not specifically limit the beacon end device and the anchor node end device.
  • the beacon end device and the anchor node end device in the present application can communicate based on the UWB technology, and the beacon end device of the UWB communication is also referred to as a tag, a tag end, a tag end device or a tag device, etc., and the anchor node end device is abbreviated. It is an anchor, an anchor, an anchor device, or an anchor device.
  • the beacon end device in the present application is provided with at least two first antennas, and each of the first antennas is disposed in a different orientation, and thus the polarization directions of the first antennas are different.
  • the beacon end device is provided with two first antennas whose polarization directions are vertical, ANT_11 and ANT_12.
  • the polarization ranges of the at least two first antennas should cover the surrounding space of the beacon end device as much as possible.
  • the number of the first antennas and the orientation of the first antenna can be selected according to actual needs by those skilled in the art. This application does not impose any specific restrictions.
  • the anchor node device is provided with a second antenna, such as ANT_21 and ANT_22 shown in FIGS. 2 and 3.
  • the number of second antennas is not specifically limited in this application.
  • the communication signal strength of each of the first antenna and the second antenna is obtained, and then the first antenna that satisfies the preset first condition is selected as the target first antenna.
  • the first condition is a condition indicating the best communication quality. Therefore, the target first antenna satisfying the first condition is the first antenna having the best communication quality among the at least two first antennas.
  • the S101 determines the target first antenna from the at least two first antennas according to the strength of the communication signal, and includes:
  • the communication signal strength between the first antenna and the second antenna is represented by the following signal strength:
  • the received strength of the signal sent by the first antenna to the second antenna or the received strength of the signal sent by the second antenna to the first antenna; when the second antenna is sent to the first antenna
  • the beacon end device is required to obtain the receiving strength of the signal sent by the second antenna to the first antenna from the anchor node end device.
  • the following process in order to obtain the communication signal strength between each of the first antenna and the second antenna, the following process may be implemented:
  • a communication signal strength between each of the first antennas and the second antenna is obtained by sequentially communicating with the second antenna by each of the first antennas.
  • the strength of the communication signal between the two antennas can be characterized by parameters such as signal-to-noise ratio, signal strength, and interference signal strength.
  • the first antenna with the largest signal to noise ratio can be regarded as the target first antenna with the strongest communication signal strength; or the first antenna with the smallest interference signal strength can be regarded as the target first antenna with the strongest communication signal strength.
  • a plurality of parameters for evaluating the strength of the communication signal may be used in combination, for example, two first antennas with the smallest interference signal may be selected, and then the one with the largest signal to noise ratio is selected from the two first antennas.
  • the first antenna serves as a target first antenna.
  • each of the first antennas is switched to communicate with the second antenna according to a preset interval.
  • the preset interval is, for example, 5 ms, 1 ms, etc., and the present invention is not specifically limited.
  • the communication signal strength between the first antenna and the second antenna currently in the transmitting and receiving state is obtained.
  • the obtained communication signal strength may be obtained by the beacon end device itself; it may also be obtained by the anchor node end device and then provided to the beacon end device.
  • the communication signal strength between the first antenna and the second antenna is specifically the receiving strength of the signal sent by the first antenna to the second antenna.
  • the beacon end device receives an arbitrary signal sent by the anchor node device through the second antenna, reads the receiving strength when receiving the arbitrary signal, and uses the receiving strength as a communication signal between the first antenna and the second antenna. strength.
  • At least two first antennas are as shown in FIG. 3.
  • the reception strength of ANT_11 to ANT_21 is 3 dB, and the reception strength of ANT_12 to ANT_21 is 100 dB. Therefore, the communication signal strength between ANT_11 and ANT_21 is 3 dB, and the communication signal strength between ANT_12 and ANT_21 is 100 dB.
  • the communication signal strength between the first antenna and the second antenna is specifically the reception strength of the signal sent by the second antenna to the first antenna.
  • the anchor node device receives any signal sent by the beacon end device through the first antenna that is currently in the transmitting and receiving state, reads the receiving strength when receiving the signal, and the antenna identifier carried in the signal, and the receiving strength is received. Recorded as the communication signal strength of the first antenna corresponding to the antenna identifier.
  • the antenna identifier is used to uniquely identify a first antenna on a beacon end device.
  • the recorded antenna identification and The corresponding receiving strength is fed back to the beacon end device, so that the beacon end device obtains the receiving strength of the second antenna to the first antenna.
  • ANT_22 receives a signal from the signalling device.
  • the received reception strength is 3 dB
  • the antenna identification is "Tom_ANT_11”.
  • the antenna identifier “Tom_ANT_11” represents the ANT_11 antenna of the beacon end device Tom.
  • the anchor node device records "Tom_ANT_11-3dB”.
  • ANT_22 receives a signal from the beacon end device again, and reads the received strength to 100 dB, and the antenna identifier is "Tom_ANT_12".
  • the anchor node device records "Tom_ANT_12-100dB”.
  • the anchor node device transmits the recorded "Tom_ANT_11-3dB, Tom_ANT_12-100dB" to the beacon end device.
  • the beacon end device parses the record sent by the anchor node end device, determines that the communication signal strength of the ANT_11 and the second antenna is 3 dB, and the communication signal strength of the ANT_12 and the second antenna is 100 dB.
  • the beacon end device selects the strongest communication signal strength from all communication signal strengths according to the strength of the communication signal obtained by itself or the strength of the communication signal provided by the anchor node device, and corresponds the strongest communication signal strength.
  • the first antenna is determined to be the target first antenna.
  • the beacon end device obtains the communication signal strengths of ANT_11 and ANT_12 and the second antenna, respectively, of 3 dB and 100 dB. Among them, ANT_12 has the strongest communication signal strength, so it is determined that ANT_12 is the target first antenna.
  • the control target first antenna After determining the target first antenna, in S102, the control target first antenna is in a transceiving state, and then communicates with the anchor node device through the target first antenna.
  • S102 specifically includes:
  • the beacon end device can read the state value of the target first antenna, and if the state value indicates the receiving and receiving state, determine that the target first antenna is in the transmitting and receiving state; otherwise, if the state value indicates the non-transceiving state, determine The target first antenna is in a non-transceive state.
  • the antenna does not need to be switched, and the current state of the target first antenna, that is, the transmitting and receiving state, is still maintained. If the target first antenna is in a non-transceive state, the first antenna of the target is sent and received, and the other antennas other than the target first antenna are in a non-transceive state to switch to the target first antenna and the anchor node. Set up communication.
  • the beacon end device's posture is as shown in FIG. 2, and communicates with the anchor node device through ANT_11.
  • the attitude of the beacon end device is as shown in FIG.
  • ANT_12 is the target first antenna. Since ANT_11 is in the transceiving state at this time, ANT_12 is in the non-transceive state.
  • the beacon end device switches ANT_12 from the non-transceive state to the transceiving state, and switches ANT_11 from the transceiving state to the non-transceiving state, so that the beacon device is from T2.
  • communication with the anchor node device is performed through ANT_12.
  • the beacon end device remains at the attitude shown in FIG. 2 at time T2.
  • the communication signal strength of ANT_11 and the second antenna is still the strongest, so the target first antenna is still ANT_11. Since ANT_11 is already in the transmitting and receiving state at this time, there is no need to switch the antenna, and ANT_11 is still in the transmitting and receiving state, and ANT_12 is in the non-transceiving state.
  • antennas having different polarization directions are disposed on the beacon end device, and on the other hand, each of the first antenna and the second antenna is selected regardless of the attitude of the beacon end device.
  • the target first antenna whose communication signal strength satisfies the first condition communicates. Therefore, the beacon end device in the present application can still communicate with the anchor node device through the antenna that communicates well with the anchor node device when the posture changes. It can be seen that the application improves the communication quality between the beacon end device and the anchor node device when the posture changes.
  • the method further includes:
  • the current posture of the beacon end device is detected, and the detection result is obtained.
  • the motion state of the beacon end device is detected by a gravity sensor or a gyroscope, and then the current posture of the beacon end device is calculated according to the detected motion state.
  • the current polarization of each first antenna is determined, and according to the polarization direction of the second antenna, it is determined whether the polarization direction of the target first antenna matches the polarization direction of the second antenna.
  • the portion of the anchor node device that sets the second antenna generally remains relatively stationary, or is relatively stationary, so that the polarization direction of the second antenna is fixed or nearly fixed.
  • the polarization direction of the second antenna is regarded as fixed.
  • determining the current polarization direction of the first antenna and determining whether the polarization direction of the target first antenna matches the polarization direction of the second antenna may be implemented by the following process:
  • the current polarization direction of each antenna is determined according to the detection result and the orientation of each antenna.
  • the first antenna ANT_11 is provided.
  • the orientation is parallel to the fixed plate of the beacon end device, and the orientation of the ANT_12 is perpendicular to the fixed plate.
  • the current posture of the beacon end device is as shown in FIG. 2
  • the orientation orientation of ANT_11 and ANT_12 it can be determined that the polarization direction of ANT_11 is vertical ground upward, and the polarization direction of ANT_12 is parallel to the ground.
  • the current posture of the beacon end device is as shown in FIG. 3
  • the orientation orientation of ANT_11 and ANT_12 it can be determined that the polarization direction of ANT_11 is parallel to the ground, and the polarization direction of ANT_12 is perpendicular to the ground upward.
  • an angle between a current polarization direction of each antenna and a polarization direction of the second antenna is calculated according to the polarization direction of the second antenna obtained in advance.
  • the default polarization direction of the second antenna can be directly set at the beacon end device, for example, perpendicular to the ground.
  • the anchor node device may also send the polarization direction of the second antenna to the beacon end device after establishing a communication connection with the beacon device.
  • an angle may be obtained by subtracting a polarization direction of the second antenna from a current polarization direction of the first antenna, or may be obtained by subtracting a current polarization direction of the first antenna from a polarization direction of the second antenna.
  • the angle is not specifically limited in the present invention.
  • the polarization direction of the target first antenna and the polarization direction of the second antenna are the smallest among all the angles. If the angle between the polarization direction of the target first antenna and the polarization direction of the second antenna is the smallest, it indicates that the target first antenna not only has the strongest communication signal strength among all the first antennas, but also the polarization direction and the pole of the second antenna. The direction is matched, so the target first antenna is determined accurately, and the target first antenna has the best communication quality among all current first antennas. On the contrary, if the angle between the polarization direction of the target first antenna and the polarization direction of the second antenna is not the minimum, it indicates that the target first antenna has the strongest communication signal strength, but the pole of the target first antenna. The direction of the polarization does not match the polarization direction of the second antenna, so the target first antenna may not be the best communication quality among all the first antennas.
  • the target first antenna is exemplified by taking ANT_11 in FIG. 2 and FIG. 3 as an example.
  • the polarization directions of the second antennas ANT_21 and ANT_22 are all perpendicular to the ground, so the polarization direction of any antenna of ANT_21 or ANT_22 is used as the polarization direction of the second antenna.
  • the polarization direction of ANT_21 minus the current polarization direction of ANT_11 obtains an angle of 0 degrees
  • the polarization direction of ANT_21 minus the current polarization direction of ANT_12 obtains an angle of 90 degrees clockwise.
  • the current polarization direction of ANT_11 and the polarization direction of ANT_21 are the smallest angle, so it is judged that ANT_11 has the best communication quality at this time.
  • the polarization direction of ANT_21 minus the current polarization direction of ANT_11 obtains an angle of 90 degrees counterclockwise, and the polarization direction of ANT_21 minus the current polarization direction of ANT_12 obtains an angle of 0 degrees.
  • the current polarization direction of ANT_11 is not the smallest angle with the polarization direction of ANT_21 by 90 degrees, so ANT_11 may not be the first antenna with the best communication quality.
  • S101 is performed again to re-determine the target first antenna until the determined target first antenna polarization direction matches the polarization direction of the second antenna.
  • the target first antenna it is determined whether the polarization direction of the target first antenna matches the polarization direction of the second antenna, and if so, the communication quality between the target first antenna and the second antenna is optimal, and then the target is switched. One antenna communication. Otherwise, the target first antenna is re-determined until it is determined that the target first antenna whose polarization direction matches and the communication signal is strongest.
  • the first antenna that ensures that the target first antenna is the best communication quality is implemented, and the abnormality of the target first antenna polarization direction or the target first antenna is reduced, for example, the target first antenna is reduced. influences.
  • a preset number of times for example, 3 or 4 may be set. Then, if the number of times of the target first antenna is repeatedly determined to reach a preset number of times, the polarization direction of the target first antenna is still If the polarization directions of the second antenna are not matched, an alarm prompt may be output, prompting the user to check the antenna, or determining the first antenna whose polarization direction is matched as the target first antenna.
  • the method further includes:
  • the beacon end device may be blocked, damaged, or faulty, and the communication signal strength is insufficient even if the communication signals of the target first antenna and the second antenna are the strongest. Support for normal communication. Therefore, in the present application, after determining the target first antenna, it is further necessary to further obtain the communication signal strength between the target first antenna and the second antenna. In the present application, the obtained communication signal strength may be obtained by the beacon end device itself; it may also be obtained by the anchor node end device and then provided to the beacon end device.
  • the communication signal strength between the target first antenna and the second antenna is specifically the reception strength of the signal sent by the target first antenna to the second antenna.
  • the communication signal strength between the target first antenna and the second antenna is specifically the reception strength of the signal sent by the second antenna to the target first antenna.
  • the communication signal strength between each of the first antenna and the second antenna has been obtained in detail in the above. In this embodiment, the communication signal strength between the target first antenna and the second antenna is similar, so here is not I will repeat them one by one.
  • the beacon end device determines whether the communication signal strength between the target first antenna and the second antenna reaches a threshold according to the strength of the communication signal obtained by itself or the strength of the communication signal provided by the anchor node device.
  • the threshold in the present application is the minimum strength at which the first antenna and the second antenna can communicate normally. The person skilled in the art to which the present invention pertains is not limited by the actual setting.
  • the target device can normally communicate with the anchor node device through the target first antenna, and thus S102 is performed.
  • the communication signal strength between the target first antenna and the second antenna does not reach the threshold, it indicates that the target first antenna determined in S101 does not support normal communication with the anchor node device, so in the present application, execute again.
  • S101 to re-determine the target first antenna until the determined communication signal strength between the target first antenna and the second antenna reaches a threshold.
  • an alarm message is generated to prompt the user to detect the beacon end device and the first antenna.
  • the communication quality between the target first antenna and the second antenna is not only optimal, but the communication quality is qualified. At this time, communication is performed through the target first antenna. Otherwise, the target first antenna is re-determined until it is determined that the target first antenna is of acceptable communication quality.
  • the beacon end device switching antenna from affecting the positioning of the beacon end device by the anchor node end device
  • the control target first antenna is switched to the transmitting and receiving state, and the first antenna other than the control target first antenna is in a non-transceiving state.
  • FIG. 4 is a schematic diagram of a possible data packet transmission and reception.
  • the anchor node device and the beacon device use TWR (Two-Way Ranging) method for ranging.
  • TWR Tro-Way Ranging
  • each ranging needs to be based on 3 communications.
  • the beacon end device sends the first data packet to the anchor node end device.
  • the beacon end device records the timestamp of sending the first data packet, and the timestamp of sending the first data packet is tt1.
  • the anchor node device receives the first data packet and records the time of receiving the first data packet.
  • the time stamp in which the first packet is received by the present application is ta1.
  • the anchor node device feeds back the second data packet to the beacon end device to notify the beacon end device that the first data packet has been received. While the second data packet is being sent, the timestamp of transmitting the second data packet is recorded, and the time stamp for transmitting the second data packet is ta2.
  • the beacon end device receives the second data packet and records the timestamp of receiving the second data packet.
  • the time stamp of the second data packet is received as tt2.
  • the beacon end device further calculates the time tt3 at which the third data packet is transmitted, and includes the recorded tt1, tt2, and tt3 in the third data packet.
  • the beacon end device clock reaches tt3
  • the third data packet is sent to the anchor node end device to notify the anchor node end device to successfully receive the second data packet.
  • the anchor node device receives the third data packet, and records the timestamp of receiving the third data packet, which is recorded as ta3.
  • T reply2 tt3–tt2.
  • T round1 indicates the time from the transmission of the first data packet to the reception of the feedback
  • T reply1 indicates the time when the anchor node device feeds back the second data packet
  • T round2 indicates the time from the transmission of the second data packet to the reception of the feedback
  • T Reply2 indicates that the beacon end device feeds back the third data packet
  • T prop in Fig. 4 indicates the transit time of the data packet from being transmitted to being received.
  • the angle is detected using a PDOA (Phase Difference of Arrival) method.
  • the conversion to angle is (PD/(2 ⁇ ))*360.
  • the angle may also be detected by using an AOA (Angle of Arrival) or TDOA (Time Difference of Arrival), and the present invention does not specifically limit the present invention.
  • AOA Angle of Arrival
  • TDOA Time Difference of Arrival
  • the phase difference can be further converted into an azimuth, and then the anchor node device locates the beacon end device according to the detected distance.
  • the beacon end device may specifically detect the reception strength of the second data packet received by each of the first antennas. Similarly, if the beacon end device detects the communication signal strength between the target first antenna and the second antenna, the beacon end device may specifically detect the receiving strength of the second data packet received by the target first antenna.
  • the anchor node device may specifically detect that the second antenna receives the first data packet or the third data that is sent by each of the first antennas. The receiving strength of the packet.
  • the first data packet and the third data packet further include an antenna identifier of the first antenna that transmits the data packet.
  • the anchor node end device may specifically detect the first data packet or the first data packet sent by the second antenna receiving target first antenna. The receiving strength of the three packets.
  • the anchor node end device detects the reception strength of each of the first antennas or the target first antennas by detecting the reception strength of the received first data packet, the detected reception strength may further be packetized and sent in the second data packet.
  • the beacon device is provided to enable the beacon device to obtain the communication signal strength.
  • the first data packet, the second data packet, and the third data packet may further include various information and data that the beacon end device interacts with the anchor node, for example, a control command sent by the anchor node to the beacon end, and a beacon.
  • the request command of the terminal, the polarization direction of the second antenna, the posture of the beacon end device, and the like may make selections according to actual conditions, and the present invention is not specifically limited.
  • the second aspect of the present invention further provides an antenna control apparatus, which is disposed on the beacon end device, as shown in FIG. 5, and includes:
  • the second aspect of the present invention further provides an antenna control apparatus, as shown in FIG. 5, including:
  • the obtaining module 101 is configured to obtain a communication signal strength between each of the first antennas and the second antenna of the anchor node device;
  • the determining module 102 is configured to determine, according to the communication signal strength, a target first antenna from the at least two first antennas; wherein, the communication between the target first antenna and the second antenna of the anchor node device The signal strength satisfies a preset first condition;
  • the control module 103 is configured to control the target first antenna to be in a transceiving state, and then communicate with the anchor node device through the target first antenna.
  • control module 103 is configured to determine whether the target first antenna is currently in the transmitting and receiving state, and if yes, maintaining the transmitting and receiving state of the target first antenna; if not, controlling the target first antenna to switch to Transmitting and receiving, and controlling the first antenna other than the target first antenna to be in a non-transceive state.
  • the determining module 102 is configured to select, from the communication signal strength between each of the first antennas and the second antenna, a first antenna corresponding to a maximum communication signal strength as the target first antenna;
  • the communication signal strength between the first antenna and the second antenna is represented by the following signal strength:
  • the received strength of the signal sent by the first antenna to the second antenna, or the second day a receiving strength of a signal sent by the line to the first antenna; when the receiving strength of the signal sent by the second antenna to the first antenna is required, the beacon end device is required to obtain the first part from the anchor node end device The received strength of the signal sent by the second antenna to the first antenna.
  • the obtaining module 101 is configured to sequentially communicate with the second antenna through each of the first antennas to obtain a communication signal strength between each of the first antennas and the second antenna.
  • the device further includes:
  • a detecting module configured to: after selecting a first antenna corresponding to a maximum communication signal strength from a communication signal strength between each of the first antennas and the second antenna as the target first antenna, The current posture of the beacon device is detected, and the detection result is obtained;
  • a first determining module configured to determine a current polarization direction of each of the first antennas according to the detection result, and determine a polarization direction of the target first antenna according to a polarization direction of the second antenna Whether the polarization direction of the second antenna matches; if yes, notifying the control module 103 to perform a process of subsequently controlling the target first antenna to be in a transceiving state; if not, notifying the obtaining module 101 to regain each first The strength of the communication signal between the antenna and the second antenna of the anchor node device, and notifying the determination module 102 to re-determine the target first antenna.
  • the first determining module is configured to determine a current polarization direction of each first antenna according to the detection result and a setting direction of each first antenna in the beacon end device; according to the previously obtained a polarization direction of the second antenna, determining whether the first antenna having the smallest angle between the current polarization direction and the polarization direction of the second antenna is the target first antenna.
  • the device further includes:
  • a second determining module configured to: after selecting a first antenna corresponding to a maximum communication signal strength from a communication signal strength between each of the first antennas and the second antenna, is the target first antenna, Determining whether the communication signal strength between the target first antenna and the second antenna reaches a threshold, and if so, notifying the control module 103 to perform a process of subsequently controlling the target first antenna to be in a transceiving state; if not, Then generate an alarm prompt and notify the acquisition
  • the module 101 regains the communication signal strength between each of the first antennas and the second antenna of the anchor node device and notifies the determination module 102 to re-determine the target first antenna.
  • the control module 103 controls the target first antenna to switch to the transmitting and receiving state, and controls the first antenna other than the target first antenna. It is not in the state of sending and receiving.
  • the present application also provides a computer storage medium comprising a set of instructions that, when executed, cause at least one processor to perform operations including:
  • the computer storage medium can also perform various processing procedures provided in the foregoing methods, and details are not described herein.
  • the beacon end device includes at least two first antennas having different polarization directions, and according to the communication signal strength between each of the first antennas and the second antenna of the anchor node device, from at least two first A target first antenna that satisfies a preset first condition is determined in the antenna, and then the target first antenna is controlled to be in a transceiving state, and then communicated with the anchor node device through the target first antenna. Therefore, on the one hand, the present invention sets antennas with different polarization directions on the beacon end device, and on the other hand, the communication signal strength of each of the first antenna and the second antenna is selected to meet the requirements of the beacon end device.
  • the target first antenna of a condition communicates.
  • the beacon end device in the present application can still communicate with the anchor node device through an antenna that communicates well with the anchor node device when the posture changes. It can be seen that the invention improves the communication quality between the beacon end device and the anchor node end device when the posture changes.
  • embodiments of the present invention can be provided as a method, system, or computer program product. Accordingly, the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment, or a combination of software and hardware. Moreover, the invention can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) including computer usable program code.
  • computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded into a computer or other programmable data processing device Having a series of operational steps performed on a computer or other programmable device to produce computer-implemented processing such that instructions executed on a computer or other programmable device are provided for implementing one or more processes in a flowchart and/or Or block diagram the steps of a function specified in a box or multiple boxes.

Abstract

The present application provides an antenna control method, apparatus and computer storage medium for improving communication quality between a beacon end device and an anchor node end device during orientation changes. The method is applied to beacon end devices. The beacon end device comprises at least two first antennas having different polarization directions. The method comprises: acquiring communication signal strengths between each of the first antennas and a second antenna of the anchor node end device, and determining a target first antenna from the at least two first antennas in accordance with the communication signal strengths, wherein the communication signal strength between the first antenna and the second antenna of the anchor node end device satisfies a predetermined first condition; and controlling the target first antenna to be in a transceiver state, thereby communicating with the anchor node end device through the target first antenna.

Description

一种天线控制方法、装置及计算机存储介质Antenna control method, device and computer storage medium
相关申请的交叉引用Cross-reference to related applications
本申请基于申请号为201610751672.5、申请日为2016年08月29日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。The present application is based on a Chinese patent application filed on Jan. 29, 2016, filed on-
技术领域Technical field
本发明涉及电子技术领域,尤其涉及一种天线控制方法、装置及计算机存储介质。The present invention relates to the field of electronic technologies, and in particular, to an antenna control method and apparatus, and a computer storage medium.
背景技术Background technique
信标tag上设置有一根天线,锚节点anchor设置有两根天线,tag与anchor通过上述三根天线进行UWB(超宽带,Ultra Wideband)通信。但是,tag端由用户携带,姿态可变性强。而tag姿态的变化会使tag端天线的极化方向也随之变化,进而导致tag端与anchor端的通信质量下降。An antenna is arranged on the beacon tag, and the anchor node anchor is provided with two antennas, and the tag and the anchor perform UWB (Ultra Wideband) communication through the above three antennas. However, the tag end is carried by the user, and the posture is variability. The change of the tag attitude will change the polarization direction of the tag-end antenna, and the communication quality between the tag end and the anchor end will decrease.
所以,现有技术存在如何在tag姿态变化时提高通信质量的技术问题。Therefore, the prior art has a technical problem of how to improve the communication quality when the tag pose changes.
发明内容Summary of the invention
本申请提供了一种天线控制方法、装置及计算机存储介质,用于提高姿态变化时信标端设备与锚节点端设备的通信质量。The present application provides an antenna control method, apparatus, and computer storage medium for improving communication quality between a beacon end device and an anchor node device when the posture changes.
第一方面,本申请提供了一种天线控制方法,应用于信标端设备,所述信标端设备包括极化方向不同的至少两根第一天线,所述方法包括:In a first aspect, the present application provides an antenna control method, which is applied to a beacon end device, where the beacon end device includes at least two first antennas having different polarization directions, and the method includes:
获得每根第一天线与锚节点端设备的第二天线之间的通信信号强度,并根据所述通信信号强度从所述至少两根第一天线中确定出目标第一天 线;其中,所述目标第一天线与锚节点端设备的第二天线之间的通信信号强度满足预设的第一条件;Obtaining a communication signal strength between each of the first antennas and the second antenna of the anchor node device, and determining a target first day from the at least two first antennas according to the communication signal strength a line; wherein, the communication signal strength between the target first antenna and the second antenna of the anchor node device meets a preset first condition;
控制所述目标第一天线处于收发状态,进而通过所述目标第一天线与所述锚节点端设备通信。Controlling that the target first antenna is in a transceiving state, and then communicating with the anchor node device through the target first antenna.
可选的,控制目标第一天线处于收发状态包括:Optionally, the control target first antenna is in a receiving and receiving state, including:
判断所述目标第一天线当前是否处于收发状态,如果是,则维持所述目标第一天线的收发状态;如果否,则控制所述目标第一天线切换到收发状态,以及控制所述目标第一天线以外的第一天线处于非收发状态。Determining whether the target first antenna is currently in a transceiving state, and if so, maintaining a transceiving state of the target first antenna; if not, controlling the target first antenna to switch to a transceiving state, and controlling the target The first antenna other than one antenna is in a non-transmission state.
可选的,根据所述通信信号强度从所述至少两根第一天线中确定出目标第一天线,包括:Optionally, determining the target first antenna from the at least two first antennas according to the strength of the communication signal, including:
从所述每根第一天线与所述第二天线之间的通信信号强度中选择最大的通信信号强度所对应的第一天线为所述目标第一天线;Selecting, from the communication signal strength between each of the first antennas and the second antenna, a first antenna corresponding to a maximum communication signal strength as the target first antenna;
其中,所述第一天线与所述第二天线之间的通信信号强度用以下信号强度来表示:The communication signal strength between the first antenna and the second antenna is represented by the following signal strength:
所述第一天线对第二天线发来的信号的接收强度,或者,所述第二天线对第一天线发来的信号的接收强度;当为所述第二天线对第一天线发来的信号的接收强度时,需要所述信标端设备从锚节点端设备处获得所述第二天线对第一天线发来的信号的接收强度。The received strength of the signal sent by the first antenna to the second antenna, or the received strength of the signal sent by the second antenna to the first antenna; when the second antenna is sent to the first antenna When the received strength of the signal is received, the beacon end device is required to obtain the receiving strength of the signal sent by the second antenna to the first antenna from the anchor node end device.
可选的,获得每根第一天线与锚节点端设备的第二天线之间的通信信号强度,包括:Optionally, obtaining the communication signal strength between each of the first antennas and the second antenna of the anchor node device, including:
通过每根所述第一天线依次与所述第二天线通信,来获得所述每根第一天线与所述第二天线之间的通信信号强度。A communication signal strength between each of the first antennas and the second antenna is obtained by sequentially communicating with the second antenna by each of the first antennas.
可选的,在从所述每根第一天线与所述第二天线之间的通信信号强度中选择最大的通信信号强度所对应的第一天线为所述目标第一天线之后,所述方法还包括: Optionally, after the first antenna corresponding to the maximum communication signal strength is selected from the communication signal strengths between the first antenna and the second antenna, the method is the target first antenna, the method Also includes:
对所述信标端设备的当前姿态进行检测,获得检测结果;Detecting a current posture of the beacon end device, and obtaining a detection result;
根据所述检测结果,确定每根所述第一天线的当前极化方向,并根据所述第二天线的极化方向,判断所述目标第一天线的极化方向与所述第二天线的极化方向是否匹配;如果是,则执行后续控制所述目标第一天线处于收发状态的处理;如果否,则重新获得每根第一天线与锚节点端设备的第二天线之间的通信信号强度,并重新确定目标第一天线。Determining, according to the detection result, a current polarization direction of each of the first antennas, and determining, according to a polarization direction of the second antenna, a polarization direction of the target first antenna and the second antenna Whether the polarization direction is matched; if yes, performing a process of subsequently controlling the target first antenna to be in a transceiving state; if not, regaining a communication signal between each of the first antenna and the second antenna of the anchor node device Intensity and re-determination of the target first antenna.
可选的,根据所述检测结果,确定每根所述第一天线的当前极化方向,并根据所述第二天线的极化方向,判断所述目标第一天线的极化方向与所述第二天线的极化方向是否匹配,包括:Optionally, determining a current polarization direction of each of the first antennas according to the detection result, and determining, according to a polarization direction of the second antenna, a polarization direction of the target first antenna and the Whether the polarization directions of the second antenna match, including:
根据所述检测结果以及每根第一天线在所述信标端设备中的设置朝向,确定出每根第一天线的当前极化方向;Determining a current polarization direction of each of the first antennas according to the detection result and a setting orientation of each of the first antennas in the beacon end device;
根据预先获得的所述第二天线的极化方向,判断所述当前极化方向与所述第二天线的极化方向夹角最小的第一天线是否为所述目标第一天线。Determining, according to the polarization direction of the second antenna obtained in advance, whether the first antenna having the smallest angle between the current polarization direction and the polarization direction of the second antenna is the target first antenna.
可选的,在从所述每根第一天线与所述第二天线之间的通信信号强度中选择最大的通信信号强度所对应的第一天线为所述目标第一天线之后,所述方法还包括:Optionally, after the first antenna corresponding to the maximum communication signal strength is selected from the communication signal strengths between the first antenna and the second antenna, the method is the target first antenna, the method Also includes:
判断所述目标第一天线与所述第二天线之间的通信信号强度是否达到阈值,如果达到,则执行后续控制所述目标第一天线处于收发状态的处理;如果未达到,则产生报警提示,重新获得每根第一天线与锚节点端设备的第二天线之间的通信信号强度,并重新确定目标第一天线。Determining whether the communication signal strength between the target first antenna and the second antenna reaches a threshold, and if so, performing a process of subsequently controlling the target first antenna to be in a transceiving state; if not, generating an alarm prompt And regaining the communication signal strength between each of the first antennas and the second antenna of the anchor node device, and re-determining the target first antenna.
可选的,控制目标第一天线切换到收发状态,以及控制目标第一天线以外的第一天线处于非收发状态,包括:Optionally, the first antenna of the control target is switched to the transmitting and receiving state, and the first antenna other than the first antenna of the control target is in a non-transceive state, including:
在确定所述信标端设备与所述锚节点端设备之间完成一次完整的定位操作后,才控制目标第一天线切换到收发状态,以及控制目标第一天线以外的第一天线处于非收发状态。 After determining that a complete positioning operation is performed between the beacon end device and the anchor node device, the target first antenna is switched to the transmitting and receiving state, and the first antenna other than the target first antenna is not received or received. status.
第二方面,本申请提供了一种天线控制的装置,设置于信标端设备,所述信标端设备包括极化方向不同的至少两根第一天线,所述装置包括:In a second aspect, the present application provides an antenna control apparatus, which is disposed on a beacon end device, where the beacon end device includes at least two first antennas having different polarization directions, and the apparatus includes:
获得模块,配置为获得每根第一天线与锚节点端设备的第二天线之间的通信信号强度;Obtaining a module configured to obtain a communication signal strength between each of the first antenna and the second antenna of the anchor node device;
确定模块,配置为根据所述通信信号强度从所述至少两根第一天线中确定出目标第一天线;其中,所述目标第一天线与锚节点端设备的第二天线之间的通信信号强度满足预设的第一条件;a determining module, configured to determine a target first antenna from the at least two first antennas according to the communication signal strength; wherein a communication signal between the target first antenna and a second antenna of the anchor node device The intensity satisfies the preset first condition;
控制模块,配置为控制所述目标第一天线处于收发状态,进而通过所述目标第一天线与所述锚节点端设备通信。And a control module, configured to control the target first antenna to be in a transceiving state, and further communicate with the anchor node device by using the target first antenna.
可选的,所述控制模块,配置为判断所述目标第一天线当前是否处于收发状态,如果是,则维持所述目标第一天线的收发状态;如果否,则控制所述目标第一天线切换到收发状态,以及控制所述目标第一天线以外的第一天线处于非收发状态。Optionally, the control module is configured to determine whether the target first antenna is currently in a transmitting and receiving state, and if yes, maintaining a transmitting and receiving state of the target first antenna; if not, controlling the target first antenna Switching to the transmitting and receiving state, and controlling the first antenna other than the target first antenna to be in a non-transceiving state.
可选的,所述确定模块,配置为从所述每根第一天线与所述第二天线之间的通信信号强度中选择最大的通信信号强度所对应的第一天线为所述目标第一天线;Optionally, the determining module is configured to select, from the communication signal strength between each of the first antennas and the second antenna, a first antenna corresponding to a maximum communication signal strength as the target first antenna;
其中,所述第一天线与所述第二天线之间的通信信号强度用以下信号强度来表示:The communication signal strength between the first antenna and the second antenna is represented by the following signal strength:
所述第一天线对第二天线发来的信号的接收强度,或者,所述第二天线对第一天线发来的信号的接收强度;当为所述第二天线对第一天线发来的信号的接收强度时,需要所述信标端设备从锚节点端设备处获得所述第二天线对第一天线发来的信号的接收强度。The received strength of the signal sent by the first antenna to the second antenna, or the received strength of the signal sent by the second antenna to the first antenna; when the second antenna is sent to the first antenna When the received strength of the signal is received, the beacon end device is required to obtain the receiving strength of the signal sent by the second antenna to the first antenna from the anchor node end device.
可选的,所述获得模块,配置为通过每根所述第一天线依次与所述第二天线通信,来获得所述每根第一天线与所述第二天线之间的通信信号强度。 Optionally, the obtaining module is configured to obtain a communication signal strength between each of the first antennas and the second antenna by sequentially communicating with the second antenna by each of the first antennas.
可选的,所述装置还包括:Optionally, the device further includes:
检测模块,配置为在从所述每根第一天线与所述第二天线之间的通信信号强度中选择最大的通信信号强度所对应的第一天线为所述目标第一天线之后,对所述信标端设备的当前姿态进行检测,获得检测结果;a detecting module, configured to: after selecting a first antenna corresponding to a maximum communication signal strength from a communication signal strength between each of the first antennas and the second antenna as the target first antenna, The current posture of the beacon device is detected, and the detection result is obtained;
第一判断模块,配置为根据所述检测结果,确定每根所述第一天线的当前极化方向,并根据所述第二天线的极化方向,判断所述目标第一天线的极化方向与所述第二天线的极化方向是否匹配;如果是,则通知控制模块执行后续控制所述目标第一天线处于收发状态的处理;如果否,则通知所述获得模块重新获得每根第一天线与锚节点端设备的第二天线之间的通信信号强度,并通知所述确定模块重新确定目标第一天线。a first determining module, configured to determine a current polarization direction of each of the first antennas according to the detection result, and determine a polarization direction of the target first antenna according to a polarization direction of the second antenna Whether the polarization direction of the second antenna matches; if yes, notifying the control module to perform a process of subsequently controlling the target first antenna to be in a transceiving state; if not, notifying the obtaining module to regain each first The strength of the communication signal between the antenna and the second antenna of the anchor node device, and notifying the determining module to redetermine the target first antenna.
可选的,所述第一判断模块,配置为根据所述检测结果以及每根第一天线在所述信标端设备中的设置朝向,确定出每根第一天线的当前极化方向;根据预先获得的所述第二天线的极化方向,判断所述当前极化方向与所述第二天线的极化方向夹角最小的第一天线是否为所述目标第一天线。Optionally, the first determining module is configured to determine a current polarization direction of each first antenna according to the detection result and a setting direction of each first antenna in the beacon end device; Predetermining the polarization direction of the second antenna, and determining whether the first antenna having the smallest angle between the current polarization direction and the polarization direction of the second antenna is the target first antenna.
可选的,所述装置还包括:Optionally, the device further includes:
第二判断模块,配置为在从所述每根第一天线与所述第二天线之间的通信信号强度中选择最大的通信信号强度所对应的第一天线为所述目标第一天线之后,判断所述目标第一天线与所述第二天线之间的通信信号强度是否达到阈值,如果达到,则通知控制模块执行后续控制所述目标第一天线处于收发状态的处理;如果未达到,则产生报警提示,并通知获得模块重新获得每根第一天线与锚节点端设备的第二天线之间的通信信号强度,并通知确定模块重新确定目标第一天线。a second determining module, configured to: after selecting a first antenna corresponding to a maximum communication signal strength from a communication signal strength between each of the first antennas and the second antenna, is the target first antenna, Determining whether the communication signal strength between the target first antenna and the second antenna reaches a threshold, and if so, notifying the control module to perform a process of subsequently controlling the target first antenna to be in a transceiving state; if not, An alarm prompt is generated, and the acquisition module is notified to regain the communication signal strength between each of the first antennas and the second antenna of the anchor node device, and the determination module is notified to re-determine the target first antenna.
可选的,所述控制模块,配置为在确定所述信标端设备与所述锚节点端设备之间完成一次完整的定位操作后,才控制目标第一天线切换到收发状态,以及控制目标第一天线以外的第一天线处于非收发状态. Optionally, the control module is configured to control the target first antenna to switch to the receiving and receiving state, and control the target after determining a complete positioning operation between the beacon end device and the anchor node device. The first antenna other than the first antenna is in a non-transceive state.
第三方面,本申请还提供了一种计算机存储介质,该计算机存储介质包括一组指令,当执行所述指令时,引起至少一个处理器执行包括以下的操作:In a third aspect, the present application also provides a computer storage medium comprising a set of instructions that, when executed, cause at least one processor to perform operations comprising:
获得每根第一天线与锚节点端设备的第二天线之间的通信信号强度,根据所述通信信号强度从所述至少两根第一天线中确定出目标第一天线;其中,所述目标第一天线与锚节点端设备的第二天线之间的通信信号强度满足预设的第一条件;Obtaining a communication signal strength between each of the first antennas and a second antenna of the anchor node device, and determining a target first antenna from the at least two first antennas according to the communication signal strength; wherein the target The communication signal strength between the first antenna and the second antenna of the anchor node device meets a preset first condition;
控制所述目标第一天线处于收发状态,通过所述目标第一天线与所述锚节点端设备通信。Controlling that the target first antenna is in a transceiving state, and communicating with the anchor node device through the target first antenna.
本申请中的上述一个或多个技术方案,至少具有如下一种或多种技术效果:The above one or more technical solutions in the present application have at least one or more of the following technical effects:
在本申请中,信标端设备包括极化方向不同的至少两根第一天线,根据每根第一天线与锚节点端设备的第二天线之间的通信信号强度,从至少两根第一天线中确定出满足预设的第一条件的目标第一天线,然后控制目标第一天线处于收发状态,进而通过目标第一天线与锚节点端设备通信。所以,一方面,本发明在信标端设备设置极化方向不同的天线,另一方面,无论信标端设备姿态如何变化,都选择各根第一天线与第二天线的通信信号强度满足第一条件的目标第一天线进行通信,因此,本申请中的信标端设备在姿态变化时,依然可以通过与锚节点端设备通信良好的天线与锚节点端设备通信。可见,本发明提高了姿态变化时信标端设备与锚节点端设备的通信质量。In the present application, the beacon end device includes at least two first antennas having different polarization directions, and according to the communication signal strength between each of the first antennas and the second antenna of the anchor node device, from at least two first A target first antenna that satisfies a preset first condition is determined in the antenna, and then the target first antenna is controlled to be in a transceiving state, and then communicated with the anchor node device through the target first antenna. Therefore, on the one hand, the present invention sets antennas with different polarization directions on the beacon end device, and on the other hand, the communication signal strength of each of the first antenna and the second antenna is selected to meet the requirements of the beacon end device. The target first antenna of a condition communicates. Therefore, the beacon end device in the present application can still communicate with the anchor node device through an antenna that communicates well with the anchor node device when the posture changes. It can be seen that the invention improves the communication quality between the beacon end device and the anchor node end device when the posture changes.
附图说明DRAWINGS
图1为本申请的天线控制方法流程图;1 is a flowchart of an antenna control method according to the present application;
图2为本申请中一信标端设备与锚节点端设备示意图;2 is a schematic diagram of a beacon end device and an anchor node end device in the present application;
图3为本申请中另一信标端设备与锚节点端设备示意图; 3 is a schematic diagram of another beacon end device and an anchor node end device in the present application;
图4为本申请中一种可能的数据包收发示意图;4 is a schematic diagram of a possible data packet transmission and reception in the present application;
图5为本申请中的天线控制装置示意图。FIG. 5 is a schematic diagram of an antenna control apparatus in the present application.
具体实施方式detailed description
本申请提供了一种天线控制方法、装置及计算机存储介质,用于提高姿态变化时信标端设备与锚节点端设备的通信质量。The present application provides an antenna control method, apparatus, and computer storage medium for improving communication quality between a beacon end device and an anchor node device when the posture changes.
为了解决上述技术问题,本申请提供的思路如下:In order to solve the above technical problems, the ideas provided by the present application are as follows:
在本申请中,信标端设备包括极化方向不同的至少两根第一天线,根据每根第一天线与锚节点端设备的第二天线之间的通信信号强度,从至少两根第一天线中确定出满足预设的第一条件的目标第一天线,然后控制目标第一天线处于收发状态,进而通过目标第一天线与锚节点端设备通信。所以,一方面,本发明在信标端设备设置极化方向不同的天线,另一方面,无论信标端设备姿态如何变化,都选择各根第一天线与第二天线的通信信号强度满足第一条件的目标第一天线进行通信,因此,本申请中的信标端设备在姿态变化时,依然可以通过与锚节点端设备通信良好的天线与锚节点端设备通信。可见,本发明提高了姿态变化时信标端设备与锚节点端设备的通信质量。In the present application, the beacon end device includes at least two first antennas having different polarization directions, and according to the communication signal strength between each of the first antennas and the second antenna of the anchor node device, from at least two first A target first antenna that satisfies a preset first condition is determined in the antenna, and then the target first antenna is controlled to be in a transceiving state, and then communicated with the anchor node device through the target first antenna. Therefore, on the one hand, the present invention sets antennas with different polarization directions on the beacon end device, and on the other hand, the communication signal strength of each of the first antenna and the second antenna is selected to meet the requirements of the beacon end device. The target first antenna of a condition communicates. Therefore, the beacon end device in the present application can still communicate with the anchor node device through an antenna that communicates well with the anchor node device when the posture changes. It can be seen that the invention improves the communication quality between the beacon end device and the anchor node end device when the posture changes.
下面通过附图以及具体实施例对本发明技术方案做详细的说明,应当理解本申请实施例以及实施例中的具体特征是对本申请技术方案的详细的说明,而不是对本申请技术方案的限定,在不冲突的情况下,本申请实施例以及实施例中的技术特征可以相互组合。The technical solutions of the present invention are described in detail below with reference to the accompanying drawings and specific embodiments. It is understood that the specific features of the embodiments and the embodiments of the present application are the detailed description of the technical solutions of the present application, and are not limited to the technical solutions of the present application. In the case of no conflict, the technical features in the embodiments of the present application and the embodiments may be combined with each other.
本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。The term "and/or" in this context is merely an association describing the associated object, indicating that there may be three relationships, for example, A and / or B, which may indicate that A exists separately, and both A and B exist, respectively. B these three situations. In addition, the character "/" in this article generally indicates that the contextual object is an "or" relationship.
本发明第一方面提供了一种天线控制方法,请参考图1,为本申请中天 线控制方法的流程图。该方法包括:A first aspect of the present invention provides an antenna control method. Referring to FIG. 1, the present application is in the middle of the present application. Flow chart of the line control method. The method includes:
S101:获得每根第一天线与锚节点端设备的第二天线之间的通信信号强度,并根据所述通信信号强度从所述至少两根第一天线中确定出目标第一天线;S101: Obtain a communication signal strength between each first antenna and a second antenna of the anchor node device, and determine a target first antenna from the at least two first antennas according to the communication signal strength;
S102:控制所述目标第一天线处于收发状态,通过所述目标第一天线与所述锚节点端设备通信。S102: Control the target first antenna to be in a transceiving state, and communicate with the anchor node device by using the target first antenna.
具体来讲,本申请中的信标端设备可为遥控器、智能手表等用户可以任意调整姿态的设备。锚节点端设备例如为平衡车、无人机、机器人或控制器等,锚节点端设备设有天线的部分通常静止。Specifically, the beacon end device in the present application may be a device such as a remote controller or a smart watch that can adjust the posture arbitrarily. The anchor node end device is, for example, a balance car, a drone, a robot or a controller, etc., and the portion of the anchor node end device provided with the antenna is usually stationary.
本申请对信标端设备和锚节点端设备不做具体限制。本申请中的信标端设备与锚节点端设备之间可以基于UWB技术进行通信,UWB通信的信标端设备也简称为tag、tag端、tag端设备或tag设备等,锚节点端设备简称为anchor、anchor端、anchor端设备或anchor设备等。The present application does not specifically limit the beacon end device and the anchor node end device. The beacon end device and the anchor node end device in the present application can communicate based on the UWB technology, and the beacon end device of the UWB communication is also referred to as a tag, a tag end, a tag end device or a tag device, etc., and the anchor node end device is abbreviated. It is an anchor, an anchor, an anchor device, or an anchor device.
本申请中的信标端设备设置有至少两根第一天线,并且每根第一天线的设置朝向不同,进而每根第一天线的极化方向不同。例如图2和图3所示,信标端设备设置有ANT_11和ANT_12两根极化方向垂直的第一天线。在具体实现过程中,至少两根第一天线的极化范围应尽可能地覆盖信标端设备的周围空间,本申请所属领域的普通技术人员可以根据实际选择第一天线的数量和设置朝向,本申请不做具体限制。The beacon end device in the present application is provided with at least two first antennas, and each of the first antennas is disposed in a different orientation, and thus the polarization directions of the first antennas are different. For example, as shown in FIG. 2 and FIG. 3, the beacon end device is provided with two first antennas whose polarization directions are vertical, ANT_11 and ANT_12. In a specific implementation process, the polarization ranges of the at least two first antennas should cover the surrounding space of the beacon end device as much as possible. The number of the first antennas and the orientation of the first antenna can be selected according to actual needs by those skilled in the art. This application does not impose any specific restrictions.
另外,锚节点端设备设置有第二天线,例如图2和图3所示的ANT_21和ANT_22。对于第二天线的数量本申请也不做具体限制。In addition, the anchor node device is provided with a second antenna, such as ANT_21 and ANT_22 shown in FIGS. 2 and 3. The number of second antennas is not specifically limited in this application.
首先,在S101中,获得每根第一天线与第二天线的通信信号强度,然后,选择满足预设的第一条件的第一天线作为目标第一天线。在本申请中,第一条件为表示通信质量最好的条件。因此,满足第一条件的目标第一天线,就是至少两根第一天线中通信质量最好的第一天线。 First, in S101, the communication signal strength of each of the first antenna and the second antenna is obtained, and then the first antenna that satisfies the preset first condition is selected as the target first antenna. In the present application, the first condition is a condition indicating the best communication quality. Therefore, the target first antenna satisfying the first condition is the first antenna having the best communication quality among the at least two first antennas.
在本申请中,S101中根据通信信号强度从至少两根第一天线中确定出目标第一天线,包括:In the present application, the S101 determines the target first antenna from the at least two first antennas according to the strength of the communication signal, and includes:
从所述每根第一天线与所述第二天线之间的通信信号强度中选择最大的通信信号强度所对应的第一天线为所述目标第一天线;Selecting, from the communication signal strength between each of the first antennas and the second antenna, a first antenna corresponding to a maximum communication signal strength as the target first antenna;
其中,所述第一天线与所述第二天线之间的通信信号强度用以下信号强度来表示:The communication signal strength between the first antenna and the second antenna is represented by the following signal strength:
所述第一天线对第二天线发来的信号的接收强度,或者,所述第二天线对第一天线发来的信号的接收强度;当为所述第二天线对第一天线发来的信号的接收强度时,需要所述信标端设备从锚节点端设备处获得所述第二天线对第一天线发来的信号的接收强度。The received strength of the signal sent by the first antenna to the second antenna, or the received strength of the signal sent by the second antenna to the first antenna; when the second antenna is sent to the first antenna When the received strength of the signal is received, the beacon end device is required to obtain the receiving strength of the signal sent by the second antenna to the first antenna from the anchor node end device.
具体来讲,在具体实现过程中,为了获得每根第一天线与第二天线之间的通信信号强度,可以通过如下过程实现:Specifically, in a specific implementation process, in order to obtain the communication signal strength between each of the first antenna and the second antenna, the following process may be implemented:
通过每根所述第一天线依次与所述第二天线通信,来获得所述每根第一天线与所述第二天线之间的通信信号强度。A communication signal strength between each of the first antennas and the second antenna is obtained by sequentially communicating with the second antenna by each of the first antennas.
还需要指出的是,两个天线之间的通信信号强度,可以采用信噪比、信号强度、干扰信号强度等参数来表征。比如,信噪比最大的第一天线可以认为是通信信号强度最大的目标第一天线;或者,干扰信号强度最小的第一天线,可以认为是通信信号强度最大的目标第一天线。It should also be pointed out that the strength of the communication signal between the two antennas can be characterized by parameters such as signal-to-noise ratio, signal strength, and interference signal strength. For example, the first antenna with the largest signal to noise ratio can be regarded as the target first antenna with the strongest communication signal strength; or the first antenna with the smallest interference signal strength can be regarded as the target first antenna with the strongest communication signal strength.
另外,还可以将多个用于评价通信信号强度的参数结合起来使用,比如,可以选取干扰信号最小的两个第一天线,然后从这两个第一天线中再选取信噪比最大的一个第一天线作为目标第一天线。当然,需要理解的是,本段提供的参数结合方式仅为一种示例,实际处理中可以具备更多的信号强度评价参数,以及不同的结合方式,本申请中不进行穷举。In addition, a plurality of parameters for evaluating the strength of the communication signal may be used in combination, for example, two first antennas with the smallest interference signal may be selected, and then the one with the largest signal to noise ratio is selected from the two first antennas. The first antenna serves as a target first antenna. Of course, it should be understood that the combination of parameters provided in this paragraph is only an example, and more signal strength evaluation parameters and different combinations may be provided in the actual processing, which is not exhaustive in this application.
具体来讲,在S101之前,按照预设间隔,切换每根第一天线与第二天线进行通信。预设间隔例如为5ms、1ms等,本发明不做具体限制。具体为, 在第一时刻,控制其中任意一根第一天线处于收发状态,并控制其他第一天线处于非收发状态;第一时刻之后预设间隔的第二时刻,控制另一根第一天线处于收发状态,并控制包括第一时刻处于收发状态的第一天线和其他第一天线处于非收发状态。以此类推,直到每一根第一天线均单独处于收发状态与第二天线通信为止。Specifically, before S101, each of the first antennas is switched to communicate with the second antenna according to a preset interval. The preset interval is, for example, 5 ms, 1 ms, etc., and the present invention is not specifically limited. Specifically, At the first moment, controlling any one of the first antennas to be in the transmitting and receiving state, and controlling the other first antennas to be in a non-transceive state; and controlling the other first antenna to be in the transmitting and receiving state at the second moment of the preset interval after the first moment And controlling the first antenna and the other first antennas that are in the transmitting and receiving state at the first moment to be in a non-transceive state. And so on, until each of the first antennas is in a transceiving state and communicates with the second antenna.
在每一根第一天线单独处于收发状态的过程中,获得当前处于收发状态的第一天线与第二天线之间的通信信号强度。During each of the first antennas being individually in the transmitting and receiving state, the communication signal strength between the first antenna and the second antenna currently in the transmitting and receiving state is obtained.
在本申请中,获得通信信号强度可以由信标端设备自己获得;也可以由锚节点端设备获得,然后再提供给信标端设备。In the present application, the obtained communication signal strength may be obtained by the beacon end device itself; it may also be obtained by the anchor node end device and then provided to the beacon end device.
具体来讲,如果由信标端设备自己获得,则第一天线与第二天线之间的通信信号强度具体为第一天线对第二天线发来的信号的接收强度。具体来讲,信标端设备接收锚节点端设备通过第二天线发送来的任意信号,读取接收该任意信号时的接收强度,将接收强度作为第一天线和第二天线之间的通信信号强度。Specifically, if the beacon end device itself obtains, the communication signal strength between the first antenna and the second antenna is specifically the receiving strength of the signal sent by the first antenna to the second antenna. Specifically, the beacon end device receives an arbitrary signal sent by the anchor node device through the second antenna, reads the receiving strength when receiving the arbitrary signal, and uses the receiving strength as a communication signal between the first antenna and the second antenna. strength.
例如,至少两根第一天线如图3所示,ANT_11对ANT_21的接收强度为3dB,ANT_12对ANT_21的接收强度为100dB。所以,ANT_11与ANT_21之间的通信信号强度为3dB,ANT_12与ANT_21之间的通信信号强度为100dB。For example, at least two first antennas are as shown in FIG. 3. The reception strength of ANT_11 to ANT_21 is 3 dB, and the reception strength of ANT_12 to ANT_21 is 100 dB. Therefore, the communication signal strength between ANT_11 and ANT_21 is 3 dB, and the communication signal strength between ANT_12 and ANT_21 is 100 dB.
如果由锚节点端设备获得,则第一天线与第二天线之间的通信信号强度具体为第二天线对第一天线发来的信号的接收强度。具体来讲,锚节点端设备接收信标端设备通过当前处于收发状态的第一天线发送来的任意信号,读取接收该信号时的接收强度以及携带在信号中的天线标识,将该接收强度记录为该天线标识对应的第一天线的通信信号强度。其中,天线标识用于唯一标识一个信标端设备上的一根第一天线。If obtained by the anchor node device, the communication signal strength between the first antenna and the second antenna is specifically the reception strength of the signal sent by the second antenna to the first antenna. Specifically, the anchor node device receives any signal sent by the beacon end device through the first antenna that is currently in the transmitting and receiving state, reads the receiving strength when receiving the signal, and the antenna identifier carried in the signal, and the receiving strength is received. Recorded as the communication signal strength of the first antenna corresponding to the antenna identifier. The antenna identifier is used to uniquely identify a first antenna on a beacon end device.
然后,在所有第一天线均与第二天线通信之后,将记录的天线标识和 对应的接收强度反馈给信标端设备,以使信标端设备获得第二天线对第一天线的接收强度。Then, after all the first antennas communicate with the second antenna, the recorded antenna identification and The corresponding receiving strength is fed back to the beacon end device, so that the beacon end device obtains the receiving strength of the second antenna to the first antenna.
例如,至少两根天线如图3所示,ANT_22接收到一个来自信号端设备的信号。读取到接收强度为3dB,天线标识为“Tom_ANT_11”。其中,天线标识“Tom_ANT_11”表示信标端设备Tom的ANT_11天线。锚节点端设备记录下“Tom_ANT_11—3dB”。接着,ANT_22再次接收到一个来自信标端设备的信号,读取到接收强度为100dB,天线标识为“Tom_ANT_12”。锚节点端设备记录下“Tom_ANT_12—100dB”。接着,锚节点端设备将记录的“Tom_ANT_11—3dB,Tom_ANT_12—100dB”发送给信标端设备。信标端设备解析锚节点端设备发送的记录,确定ANT_11与第二天线的通信信号强度为3dB,ANT_12与第二天线的通信信号强度为100dB。For example, at least two antennas are shown in Figure 3. ANT_22 receives a signal from the signalling device. The received reception strength is 3 dB, and the antenna identification is "Tom_ANT_11". The antenna identifier “Tom_ANT_11” represents the ANT_11 antenna of the beacon end device Tom. The anchor node device records "Tom_ANT_11-3dB". Next, ANT_22 receives a signal from the beacon end device again, and reads the received strength to 100 dB, and the antenna identifier is "Tom_ANT_12". The anchor node device records "Tom_ANT_12-100dB". Next, the anchor node device transmits the recorded "Tom_ANT_11-3dB, Tom_ANT_12-100dB" to the beacon end device. The beacon end device parses the record sent by the anchor node end device, determines that the communication signal strength of the ANT_11 and the second antenna is 3 dB, and the communication signal strength of the ANT_12 and the second antenna is 100 dB.
接下来,信标端设备根据自己获得的通信信号强度,或者锚节点端设备提供的通信信号强度,从所有通信信号强度中选择出最强的通信信号强度,并将最强的通信信号强度对应的第一天线确定为目标第一天线。Next, the beacon end device selects the strongest communication signal strength from all communication signal strengths according to the strength of the communication signal obtained by itself or the strength of the communication signal provided by the anchor node device, and corresponds the strongest communication signal strength. The first antenna is determined to be the target first antenna.
沿用上文的例子来说,假设信标端设备获得ANT_11和ANT_12与第二天线的通信信号强度分别为3dB和100dB。其中,ANT_12的通信信号强度最强,所以确定ANT_12为目标第一天线。Using the above example, it is assumed that the beacon end device obtains the communication signal strengths of ANT_11 and ANT_12 and the second antenna, respectively, of 3 dB and 100 dB. Among them, ANT_12 has the strongest communication signal strength, so it is determined that ANT_12 is the target first antenna.
确定出目标第一天线后,在S102中,控制目标第一天线处于收发状态,进而通过目标第一天线与锚节点端设备通信。After determining the target first antenna, in S102, the control target first antenna is in a transceiving state, and then communicates with the anchor node device through the target first antenna.
由于确定出的目标第一天线当前可能已经处于收发状态,也可能当前未处于收发状态,所以,在本申请中,S102具体包括:Since the determined target first antenna may be in the transmitting and receiving state, and may not be currently in the transmitting and receiving state, in the present application, S102 specifically includes:
判断所述目标第一天线当前是否处于收发状态,如果是,则维持所述目标第一天线的收发状态;如果否,则控制所述目标第一天线切换到收发状态,以及控制所述目标第一天线以外的第一天线处于非收发状态。Determining whether the target first antenna is currently in a transceiving state, and if so, maintaining a transceiving state of the target first antenna; if not, controlling the target first antenna to switch to a transceiving state, and controlling the target The first antenna other than one antenna is in a non-transmission state.
具体来讲,确定出目标第一天线后,判断目标第一天线是否处于收发 状态。具体来讲,信标端设备可以读取目标第一天线的状态值,如果状态值指示为收发状态,则判断目标第一天线处于收发状态;反之,如果状态值指示为非收发状态,则判断目标第一天线处于非收发状态。Specifically, after determining the target first antenna, determining whether the target first antenna is in the receiving and receiving status. Specifically, the beacon end device can read the state value of the target first antenna, and if the state value indicates the receiving and receiving state, determine that the target first antenna is in the transmitting and receiving state; otherwise, if the state value indicates the non-transceiving state, determine The target first antenna is in a non-transceive state.
进一步,如果目标第一天线已经处于收发状态了,则不需要切换天线,仍然维持目标第一天线的当前状态,即收发状态即可。而如果目标第一天线处于非收发状态,则启动目标第一天线为收发状态,同时控制目标第一天线以外的其他第一天线处于非收发状态,以切换到通过目标第一天线与锚节点端设通信。Further, if the target first antenna is already in the transmitting and receiving state, the antenna does not need to be switched, and the current state of the target first antenna, that is, the transmitting and receiving state, is still maintained. If the target first antenna is in a non-transceive state, the first antenna of the target is sent and received, and the other antennas other than the target first antenna are in a non-transceive state to switch to the target first antenna and the anchor node. Set up communication.
举例来说,假设在T1时刻,信标端设备的姿态如图2所示,通过ANT_11与锚节点端设备通信。在T1之后的T2时刻,信标端设备的姿态如图3所示。通过检测,确定出T2时刻ANT_12的信号强度强于ANT_11,为两根第一天线中最强,故确定ANT_12为目标第一天线。由于此时ANT_11处于收发状态,ANT_12处于非收发状态,因此,信标端设备将ANT_12从非收发状态切换到收发状态,并将ANT_11从收发状态切换到非收发状态,使得信标端设备从T2时刻开始,通过ANT_12与锚节点端设备通信。For example, assume that at the time T1, the beacon end device's posture is as shown in FIG. 2, and communicates with the anchor node device through ANT_11. At the time T2 after T1, the attitude of the beacon end device is as shown in FIG. Through detection, it is determined that the signal strength of ANT_12 is stronger than ANT_11 at time T2, which is the strongest of the two first antennas, so it is determined that ANT_12 is the target first antenna. Since ANT_11 is in the transceiving state at this time, ANT_12 is in the non-transceive state. Therefore, the beacon end device switches ANT_12 from the non-transceive state to the transceiving state, and switches ANT_11 from the transceiving state to the non-transceiving state, so that the beacon device is from T2. At the beginning, communication with the anchor node device is performed through ANT_12.
再举例来说,假设信标端设备在T2时刻依然维持在图2所示的姿态。通过检测,ANT_11与第二天线的通信信号强度依然最强,所以目标第一天线依然为ANT_11。由于此时ANT_11已经处于收发状态,所以不需要切换天线,仍然保持ANT_11处于收发状态,ANT_12处于非收发状态。As another example, assume that the beacon end device remains at the attitude shown in FIG. 2 at time T2. Through the detection, the communication signal strength of ANT_11 and the second antenna is still the strongest, so the target first antenna is still ANT_11. Since ANT_11 is already in the transmitting and receiving state at this time, there is no need to switch the antenna, and ANT_11 is still in the transmitting and receiving state, and ANT_12 is in the non-transceiving state.
由上述描述可以看出,本申请一方面,在信标端设备设置极化方向不同的天线,另一方面,无论信标端设备姿态如何变化,都选择各根第一天线与第二天线的通信信号强度满足第一条件的目标第一天线进行通信,因此,本申请中的信标端设备在姿态变化时,依然可以通过与锚节点端设备通信良好的天线与锚节点端设备通信。可见,本申请提高了姿态变化时信标端设备与锚节点端设备的通信质量。 As can be seen from the above description, in one aspect of the present application, antennas having different polarization directions are disposed on the beacon end device, and on the other hand, each of the first antenna and the second antenna is selected regardless of the attitude of the beacon end device. The target first antenna whose communication signal strength satisfies the first condition communicates. Therefore, the beacon end device in the present application can still communicate with the anchor node device through the antenna that communicates well with the anchor node device when the posture changes. It can be seen that the application improves the communication quality between the beacon end device and the anchor node device when the posture changes.
作为一种可选的实施方式,在选择最大的通信信号强度所对应的第一天线为目标第一天线之后,还可以进一步包括:As an optional implementation manner, after the first antenna corresponding to the maximum communication signal strength is selected as the target first antenna, the method further includes:
对所述信标端设备的当前姿态进行检测,获得检测结果;Detecting a current posture of the beacon end device, and obtaining a detection result;
根据所述检测结果,确定每根所述第一天线的当前极化方向,并所述第二天线的极化方向,判断所述目标第一天线的极化方向与所述第二天线的极化方向是否匹配;如果是,则执行后续控制所述目标第一天线处于收发状态的处理;如果否,则重新获得每根第一天线与锚节点端设备的第二天线之间的通信信号强度,并重新确定目标第一天线。Determining, according to the detection result, a current polarization direction of each of the first antennas, and a polarization direction of the second antenna, determining a polarization direction of the target first antenna and a pole of the second antenna Whether the matching direction is matched; if yes, performing subsequent processing to control that the target first antenna is in the transmitting and receiving state; if not, regaining the communication signal strength between each of the first antenna and the second antenna of the anchor node device And re-determine the target first antenna.
首先,对信标端设备的当前姿态进行检测,获得检测结果。具体来讲,在本申请中,通过重力传感器或陀螺仪检测出信标端设备的运动状态,然后根据检测出的运动状态计算出信标端设备的当前姿态。First, the current posture of the beacon end device is detected, and the detection result is obtained. Specifically, in the present application, the motion state of the beacon end device is detected by a gravity sensor or a gyroscope, and then the current posture of the beacon end device is calculated according to the detected motion state.
接下来,根据检测结果,确定出每根第一天线的当前极化,并根据第二天线的极化方向,判断目标第一天线的极化方向与第二天线的极化方向是否匹配。Next, according to the detection result, the current polarization of each first antenna is determined, and according to the polarization direction of the second antenna, it is determined whether the polarization direction of the target first antenna matches the polarization direction of the second antenna.
具体来讲,在具体实现过程中,锚节点端设备设置第二天线的部分通常保持相对静止,或者几乎相对静止,因此第二天线的极化方向固定或者几乎固定。为了便于描述,在本申请中,将第二天线的极化方向视为固定。Specifically, in a specific implementation process, the portion of the anchor node device that sets the second antenna generally remains relatively stationary, or is relatively stationary, so that the polarization direction of the second antenna is fixed or nearly fixed. For convenience of description, in the present application, the polarization direction of the second antenna is regarded as fixed.
在本申请中,确定第一天线的当前极化方向以及判断目标第一天线的极化方向是否与第二天线极化方向匹配,具体可通过如下过程实现:In the present application, determining the current polarization direction of the first antenna and determining whether the polarization direction of the target first antenna matches the polarization direction of the second antenna may be implemented by the following process:
根据所述检测结果以及每根第一天线在所述信标端设备中的设置朝向,确定出每根第一天线的当前极化方向;Determining a current polarization direction of each of the first antennas according to the detection result and a setting orientation of each of the first antennas in the beacon end device;
根据预先获得的所述第二天线的极化方向,判断所述当前极化方向与所述第二天线的极化方向夹角最小的第一天线是否为所述目标第一天线。Determining, according to the polarization direction of the second antenna obtained in advance, whether the first antenna having the smallest angle between the current polarization direction and the polarization direction of the second antenna is the target first antenna.
首先,根据检测结果以及每根天线的设置朝向,确定出每根天线的当前极化方向。举例来说,如图2和图3所示,假设第一天线ANT_11的设 置朝向为平行于信标端设备的固定板,ANT_12的设置朝向为垂直于固定板。当信标端设备的当前姿态如图2所示时,根据ANT_11和ANT_12的设置朝向,可以确定出ANT_11的极化方向为垂直地面朝上,ANT_12的极化方向为平行于地面。当信标端设备的当前姿态如图3所示时,根据ANT_11和ANT_12的设置朝向,可以确定出ANT_11的极化方向为平行于地面,ANT_12的极化方向为垂直于地面朝上。First, the current polarization direction of each antenna is determined according to the detection result and the orientation of each antenna. For example, as shown in FIG. 2 and FIG. 3, it is assumed that the first antenna ANT_11 is provided. The orientation is parallel to the fixed plate of the beacon end device, and the orientation of the ANT_12 is perpendicular to the fixed plate. When the current posture of the beacon end device is as shown in FIG. 2, according to the orientation orientation of ANT_11 and ANT_12, it can be determined that the polarization direction of ANT_11 is vertical ground upward, and the polarization direction of ANT_12 is parallel to the ground. When the current posture of the beacon end device is as shown in FIG. 3, according to the orientation orientation of ANT_11 and ANT_12, it can be determined that the polarization direction of ANT_11 is parallel to the ground, and the polarization direction of ANT_12 is perpendicular to the ground upward.
然后,根据预先获得的第二天线的极化方向,计算每根天线的当前极化方向与第二天线的极化方向的夹角。Then, an angle between a current polarization direction of each antenna and a polarization direction of the second antenna is calculated according to the polarization direction of the second antenna obtained in advance.
具体来说,由于第二天线的极化方向固定,因此可以在信标端设备直接设置第二天线的默认极化方向,例如垂直于地面朝上。或者,锚节点端设备也可以在与信标端设备建立通信连接之后,将第二天线的极化方向发送给信标端设备。Specifically, since the polarization direction of the second antenna is fixed, the default polarization direction of the second antenna can be directly set at the beacon end device, for example, perpendicular to the ground. Alternatively, the anchor node device may also send the polarization direction of the second antenna to the beacon end device after establishing a communication connection with the beacon device.
在具体实现过程中,可以通过第一天线的当前极化方向减去第二天线的极化方向获得夹角,也可以通过第二天线的极化方向减去第一天线的当前极化方向获得夹角,本发明不做具体限制。In a specific implementation process, an angle may be obtained by subtracting a polarization direction of the second antenna from a current polarization direction of the first antenna, or may be obtained by subtracting a current polarization direction of the first antenna from a polarization direction of the second antenna. The angle is not specifically limited in the present invention.
接下来,判断目标第一天线的极化方向与第二天线的极化方向是否为所有夹角中最小的。如果目标第一天线的极化方向与第二天线的极化方向夹角最小,则表示目标第一天线不仅通信信号强度为所有第一天线中最强,而且极化方向与第二天线的极化方向匹配,因此目标第一天线确定准确,目标第一天线在当前所有第一天线中通信质量最佳。反之,如果目标第一天线的极化方向与第二天线的极化方向夹角不是最小,则表示目标第一天线尽管通信信号强度为所有第一天线中最强,但是目标第一天线的极化方向与第二天线的极化方向不匹配,因此目标第一天线可能并不是当前所有第一天线中通信质量最佳的。Next, it is judged whether the polarization direction of the target first antenna and the polarization direction of the second antenna are the smallest among all the angles. If the angle between the polarization direction of the target first antenna and the polarization direction of the second antenna is the smallest, it indicates that the target first antenna not only has the strongest communication signal strength among all the first antennas, but also the polarization direction and the pole of the second antenna. The direction is matched, so the target first antenna is determined accurately, and the target first antenna has the best communication quality among all current first antennas. On the contrary, if the angle between the polarization direction of the target first antenna and the polarization direction of the second antenna is not the minimum, it indicates that the target first antenna has the strongest communication signal strength, but the pole of the target first antenna. The direction of the polarization does not match the polarization direction of the second antenna, so the target first antenna may not be the best communication quality among all the first antennas.
以目标第一天线为图2和图3中的ANT_11为例来进行举例说明。首 先,请参考图2,第二天线ANT_21和ANT_22的极化方向均为垂直于地面朝上,因此以ANT_21或ANT_22任一天线的极化方向作为第二天线的极化方向。ANT_21的极化方向减去ANT_11的当前极化方向获得夹角0度,ANT_21的极化方向减去ANT_12的当前极化方向获得夹角顺时针90度。在上述两个夹角中,ANT_11的当前极化方向与ANT_21的极化方向夹角0度为最小的夹角,因此判断ANT_11此时通信质量最佳。The target first antenna is exemplified by taking ANT_11 in FIG. 2 and FIG. 3 as an example. First First, referring to FIG. 2, the polarization directions of the second antennas ANT_21 and ANT_22 are all perpendicular to the ground, so the polarization direction of any antenna of ANT_21 or ANT_22 is used as the polarization direction of the second antenna. The polarization direction of ANT_21 minus the current polarization direction of ANT_11 obtains an angle of 0 degrees, and the polarization direction of ANT_21 minus the current polarization direction of ANT_12 obtains an angle of 90 degrees clockwise. In the above two angles, the current polarization direction of ANT_11 and the polarization direction of ANT_21 are the smallest angle, so it is judged that ANT_11 has the best communication quality at this time.
请再参考图3,ANT_21的极化方向减去ANT_11的当前极化方向获得夹角逆时针90度,ANT_21的极化方向减去ANT_12的当前极化方向获得夹角0度。在上述两个夹角中,ANT_11的当前极化方向与ANT_21的极化方向夹角90度不为最小的夹角,因此ANT_11有可能不是通信质量最佳的第一天线。Referring again to FIG. 3, the polarization direction of ANT_21 minus the current polarization direction of ANT_11 obtains an angle of 90 degrees counterclockwise, and the polarization direction of ANT_21 minus the current polarization direction of ANT_12 obtains an angle of 0 degrees. In the above two angles, the current polarization direction of ANT_11 is not the smallest angle with the polarization direction of ANT_21 by 90 degrees, so ANT_11 may not be the first antenna with the best communication quality.
在本申请中,如果目标第一天线的极化方向与第二天线的极化方向夹角最小,则执行S102。反之,如果目标第一天线的极化方向与第二天线的极化方向夹角不是最小,表示S101中判断出的目标第一天线可能不是通信质量最佳的。所以在本申请中,再次执行S101,以重新确定出目标第一天线,直到确定出的目标第一天线极化方向与第二天线的极化方向匹配为止。In the present application, if the angle between the polarization direction of the target first antenna and the polarization direction of the second antenna is the smallest, then S102 is performed. On the other hand, if the angle between the polarization direction of the target first antenna and the polarization direction of the second antenna is not the smallest, it indicates that the target first antenna determined in S101 may not be the best communication quality. Therefore, in the present application, S101 is performed again to re-determine the target first antenna until the determined target first antenna polarization direction matches the polarization direction of the second antenna.
由上述描述可知,判断目标第一天线的极化方向与第二天线的极化方向是否匹配,如果是,表示目标第一天线与第二天线之间的通信质量最佳,才切换到目标第一天线通信。否则,重新确定目标第一天线,直到确定出极化方向匹配且通信信号最强的目标第一天线。通过上述实施例,实现了确保目标第一天线为当前通信质量最佳的第一天线,减小了例如目标第一天线极化方向异常,或者目标第一天线损坏等因素对目标第一天线的影响。It can be seen from the above description that it is determined whether the polarization direction of the target first antenna matches the polarization direction of the second antenna, and if so, the communication quality between the target first antenna and the second antenna is optimal, and then the target is switched. One antenna communication. Otherwise, the target first antenna is re-determined until it is determined that the target first antenna whose polarization direction matches and the communication signal is strongest. Through the foregoing embodiment, the first antenna that ensures that the target first antenna is the best communication quality is implemented, and the abnormality of the target first antenna polarization direction or the target first antenna is reduced, for example, the target first antenna is reduced. influences.
当然,在具体实现过程中,为了节约设备资源,同时尽快为用户确定出目标第一天线,可以设置预设次数,例如3或4等。那么,如果反复确定目标第一天线的次数达到预设次数后,目标第一天线的极化方向依然与 第二天线的极化方向不匹配,则可以输出报警提示,提示用户对天线进行检查,或者将极化方向匹配的第一天线确定为目标第一天线等。Of course, in the specific implementation process, in order to save equipment resources and determine the target first antenna for the user as soon as possible, a preset number of times, for example, 3 or 4, may be set. Then, if the number of times of the target first antenna is repeatedly determined to reach a preset number of times, the polarization direction of the target first antenna is still If the polarization directions of the second antenna are not matched, an alarm prompt may be output, prompting the user to check the antenna, or determining the first antenna whose polarization direction is matched as the target first antenna.
作为另一种可选的实施方式,在S101之后,还可以进一步包括:As another optional implementation manner, after S101, the method further includes:
判断所述目标第一天线与所述第二天线之间的通信信号强度是否达到阈值,如果达到,则执行后续控制所述目标第一天线处于收发状态的处理;如果未达到,则产生报警提示,重新获得每根第一天线与锚节点端设备的第二天线之间的通信信号强度,并重新确定目标第一天线。Determining whether the communication signal strength between the target first antenna and the second antenna reaches a threshold, and if so, performing a process of subsequently controlling the target first antenna to be in a transceiving state; if not, generating an alarm prompt And regaining the communication signal strength between each of the first antennas and the second antenna of the anchor node device, and re-determining the target first antenna.
具体来讲,在具体实现过程中,信标端设备可能由于被屏蔽、损坏或故障等因素,而导致即使目标第一天线与第二天线的通信信号最强,但通信信号强度的却不足以支持正常通信的情况。因此,在本申请中,在确定出目标第一天线后,还需要进一步获得目标第一天线与第二天线之间的通信信号强度。在本申请中,获得通信信号强度可以由信标端设备自己获得;也可以由锚节点端设备获得,然后再提供给信标端设备。Specifically, in a specific implementation process, the beacon end device may be blocked, damaged, or faulty, and the communication signal strength is insufficient even if the communication signals of the target first antenna and the second antenna are the strongest. Support for normal communication. Therefore, in the present application, after determining the target first antenna, it is further necessary to further obtain the communication signal strength between the target first antenna and the second antenna. In the present application, the obtained communication signal strength may be obtained by the beacon end device itself; it may also be obtained by the anchor node end device and then provided to the beacon end device.
具体来讲,如果由信标端设备自己获得,则目标第一天线与第二天线之间的通信信号强度具体为目标第一天线对第二天线发来的信号的接收强度。如果由锚节点端设备获得,则目标第一天线与第二天线之间的通信信号强度具体为第二天线对目标第一天线发来的信号的接收强度。上文中已经详细介绍了如何获得每根第一天线与第二天线之间的通信信号强度,本实施例中获得目标第一天线与第二天线之间的通信信号强度也是类似,因此这里就不再一一赘述了。Specifically, if obtained by the beacon end device itself, the communication signal strength between the target first antenna and the second antenna is specifically the reception strength of the signal sent by the target first antenna to the second antenna. If obtained by the anchor node device, the communication signal strength between the target first antenna and the second antenna is specifically the reception strength of the signal sent by the second antenna to the target first antenna. The communication signal strength between each of the first antenna and the second antenna has been obtained in detail in the above. In this embodiment, the communication signal strength between the target first antenna and the second antenna is similar, so here is not I will repeat them one by one.
接下来,信标端设备根据自己获得的通信信号强度,或者锚节点端设备提供的通信信号强度,判断目标第一天线与第二天线之间的通信信号强度是否达到阈值。本申请中的阈值为第一天线与第二天线能够正常通信的最低强度,本发明所属领域的普通技术人员根据实际设置,此处不做限制。Next, the beacon end device determines whether the communication signal strength between the target first antenna and the second antenna reaches a threshold according to the strength of the communication signal obtained by itself or the strength of the communication signal provided by the anchor node device. The threshold in the present application is the minimum strength at which the first antenna and the second antenna can communicate normally. The person skilled in the art to which the present invention pertains is not limited by the actual setting.
如果目标第一天线与第二天线之间的通信信号强度达到阈值,表示信 标端设备通过目标第一天线可以与锚节点端设备正常通信,因此执行S102。反之,如果目标第一天线与第二天线之间的通信信号强度未达到阈值,则表示S101中判断出的目标第一天线不支持与锚节点端设备正常通信,所以在本申请中,再次执行S101,以重新确定出目标第一天线,直到确定出的目标第一天线与第二天线之间的通信信号强度达到阈值为止。同时,产生报警信息,以提示用户对信标端设备和第一天线进行检测。If the communication signal strength between the target first antenna and the second antenna reaches a threshold, indicating a letter The target device can normally communicate with the anchor node device through the target first antenna, and thus S102 is performed. On the other hand, if the communication signal strength between the target first antenna and the second antenna does not reach the threshold, it indicates that the target first antenna determined in S101 does not support normal communication with the anchor node device, so in the present application, execute again. S101, to re-determine the target first antenna until the determined communication signal strength between the target first antenna and the second antenna reaches a threshold. At the same time, an alarm message is generated to prompt the user to detect the beacon end device and the first antenna.
由上述描述可知,判断目标第一天线与第二天线之间的通信信号强度是否达到阈值,如果是,表示目标第一天线与第二天线之间的通信质量不仅最佳,而且通信质量合格,此时才通过目标第一天线通信。否则,重新确定目标第一天线,直到确定出通信质量合格的目标第一天线。通过上述实施例,实现了确保目标第一天线当前通信质量足以支持正常通信,避免了在切换到目标第一天线后无法正常通信。It can be seen from the above description that it is determined whether the communication signal strength between the target first antenna and the second antenna reaches a threshold value, and if so, the communication quality between the target first antenna and the second antenna is not only optimal, but the communication quality is qualified. At this time, communication is performed through the target first antenna. Otherwise, the target first antenna is re-determined until it is determined that the target first antenna is of acceptable communication quality. Through the above embodiments, it is ensured that the current communication quality of the target first antenna is sufficient to support normal communication, and the normal communication cannot be avoided after switching to the target first antenna.
进一步,为了避免信标端设备切换天线影响锚节点端设备对信标端设备的定位,在本申请中,在确定信标端设备与锚节点端设备之间完成一次完整的定位操作后,才控制目标第一天线切换到收发状态,以及控制目标第一天线以外的第一天线处于非收发状态。Further, in order to prevent the beacon end device switching antenna from affecting the positioning of the beacon end device by the anchor node end device, in the present application, after determining a complete positioning operation between the beacon end device and the anchor node end device, The control target first antenna is switched to the transmitting and receiving state, and the first antenna other than the control target first antenna is in a non-transceiving state.
下面对锚节点端设备对信标端设备进行定位的方法进行简要介绍,请参考图4,为一种可能的数据包收发示意图。The following is a brief introduction to the method for the anchor node device to locate the beacon device. Please refer to FIG. 4, which is a schematic diagram of a possible data packet transmission and reception.
锚节点端设备与信标端设备采用TWR(双向测距,Two-Way Ranging)的方法进行测距。在本申请中,为了定位信标端设备,每次测距需要基于3次通信。The anchor node device and the beacon device use TWR (Two-Way Ranging) method for ranging. In the present application, in order to locate the beacon end device, each ranging needs to be based on 3 communications.
第一,信标端设备向锚节点端设备发送第一数据包。信标端设备发出第一数据包的同时,记录下发送第一数据包的时间戳,本申请将发送第一数据包的时间戳记为tt1。First, the beacon end device sends the first data packet to the anchor node end device. When the beacon end device sends the first data packet, it records the timestamp of sending the first data packet, and the timestamp of sending the first data packet is tt1.
第二,锚节点端设备接收第一数据包,并记录接收第一数据包的时间 戳,本申请将接收第一数据包的时间戳记为ta1。然后,锚节点端设备向信标端设备反馈第二数据包,以通知信标端设备已接收第一数据包。在发出第二数据包的同时,记录下发送第二数据包的时间戳,本申请将发送第二数据包的时间戳记为ta2。Second, the anchor node device receives the first data packet and records the time of receiving the first data packet. In this case, the time stamp in which the first packet is received by the present application is ta1. Then, the anchor node device feeds back the second data packet to the beacon end device to notify the beacon end device that the first data packet has been received. While the second data packet is being sent, the timestamp of transmitting the second data packet is recorded, and the time stamp for transmitting the second data packet is ta2.
第三,信标端设备接收第二数据包,并记录接收第二数据包的时间戳,本申请中将接收第二数据包的时间戳记为tt2。信标端设备进一步计算出发送第三数据包的时间tt3,并将记录到的tt1、tt2和tt3包含到第三数据包内。在信标端设备时钟到达tt3时,将第三数据包发送给锚节点端设备,以通知锚节点端设备成功接收第二数据包。Third, the beacon end device receives the second data packet and records the timestamp of receiving the second data packet. In this application, the time stamp of the second data packet is received as tt2. The beacon end device further calculates the time tt3 at which the third data packet is transmitted, and includes the recorded tt1, tt2, and tt3 in the third data packet. When the beacon end device clock reaches tt3, the third data packet is sent to the anchor node end device to notify the anchor node end device to successfully receive the second data packet.
第四,锚节点端设备接收第三数据包,并记录接收第三数据包的时间戳,记为ta3。Fourth, the anchor node device receives the third data packet, and records the timestamp of receiving the third data packet, which is recorded as ta3.
接下来,由于信标端设备和锚节点端设备的时钟可能不同步,所以需计算Next, since the clocks of the beacon end device and the anchor node device may not be synchronized, it needs to be calculated.
Tround1=tt2-tt1,T round1 =tt2-tt1,
Treply1=ta2–ta1,T reply1 =ta2–ta1,
Tround2=ta3–ta2,T round2 =ta3–ta2,
Treply2=tt3–tt2。T reply2 =tt3–tt2.
其中,Tround1表示第一数据包从发送到接收到反馈的用时,Treply1表示锚节点端设备反馈第二数据包的用时,Tround2表示第二数据包从发送到接收到反馈的用时,Treply2表示信标端设备反馈第三数据包用时;图4中的Tprop表示数据包从发送到被接收的在途时间。Where T round1 indicates the time from the transmission of the first data packet to the reception of the feedback, T reply1 indicates the time when the anchor node device feeds back the second data packet, and T round2 indicates the time from the transmission of the second data packet to the reception of the feedback, T Reply2 indicates that the beacon end device feeds back the third data packet; T prop in Fig. 4 indicates the transit time of the data packet from being transmitted to being received.
可见,T=(Tround1–Treply1)/2就为第一数据包从信标端设备发送到锚节点端设备的在途时间。因此,信标端设备与锚节点端设备的距离DIS就是DIS=T*V。其中,V为信号传播速度,为已知量。It can be seen that T=(T round1 –T reply1 )/2 is the transit time of the first data packet sent from the beacon end device to the anchor node end device. Therefore, the distance DIS between the beacon end device and the anchor node device is DIS=T*V. Where V is the signal propagation speed and is a known amount.
进一步,采用PDOA(到达相位差,Phase Difference of Arrival)方法检测角度。具体为,获得锚节点端设备ANT_21和ANT_22接收第三数据包(或第一数据包)的相位,本申请中将ANT_21接收第三数据包(或第 一数据包)的相位记为P1(单位弧度),将ANT_22接收第三数据包(或第一数据包)的相位记为P2(单位弧度)。因此,相位差PD=P1-P2。转化为角度就是(PD/(2π))*360。Further, the angle is detected using a PDOA (Phase Difference of Arrival) method. Specifically, the anchor node devices ANT_21 and ANT_22 are obtained to receive the phase of the third data packet (or the first data packet), and in the present application, the ANT_21 receives the third data packet (or The phase of a data packet is denoted as P1 (unit radians), and the phase at which ANT_22 receives the third data packet (or the first data packet) is denoted as P2 (unit radians). Therefore, the phase difference PD = P1 - P2. The conversion to angle is (PD/(2π))*360.
当然,在具体实现过程中,也可以采用AOA(到达角,Angle of Arrival)或TDOA(到达时间差,Time Difference of Arrival)等方法检测角度,本发明不做具体限制。Of course, in the specific implementation process, the angle may also be detected by using an AOA (Angle of Arrival) or TDOA (Time Difference of Arrival), and the present invention does not specifically limit the present invention.
相位差进一步可转化为方位,那么再根据检测出的距离,锚节点端设备就定位出了信标端设备。The phase difference can be further converted into an azimuth, and then the anchor node device locates the beacon end device according to the detected distance.
在本申请中,如果由信标端设备检测第一天线与第二天线之间的通信信号强度,则信标端设备可以具体为检测每根第一天线接收第二数据包的接收强度。类似地,如果由信标端设备检测目标第一天线与第二天线之间的通信信号强度,则信标端设备可以具体为检测目标第一天线接收第二数据包的接收强度。In the present application, if the beacon end device detects the communication signal strength between the first antenna and the second antenna, the beacon end device may specifically detect the reception strength of the second data packet received by each of the first antennas. Similarly, if the beacon end device detects the communication signal strength between the target first antenna and the second antenna, the beacon end device may specifically detect the receiving strength of the second data packet received by the target first antenna.
而如果由锚节点端设备检测第一天线与第二天线之间的通信信号强度,则锚节点端设备可以具体为检测第二天线接收每根第一天线发送的第一数据包或第三数据包的接收强度。当然,为了便于区别发送天线,在第一数据包和第三数据包中还包含有发送数据包的第一天线的天线标识。类似地,如果由锚节点端设备检测目标第一天线与第二天线之间的通信信号强度,则锚节点端设备可以具体为检测第二天线接收目标第一天线发送的第一数据包或第三数据包的接收强度。If the anchor node device detects the strength of the communication signal between the first antenna and the second antenna, the anchor node device may specifically detect that the second antenna receives the first data packet or the third data that is sent by each of the first antennas. The receiving strength of the packet. Of course, in order to facilitate the difference between the transmitting antennas, the first data packet and the third data packet further include an antenna identifier of the first antenna that transmits the data packet. Similarly, if the anchor signal strength between the target first antenna and the second antenna is detected by the anchor node end device, the anchor node end device may specifically detect the first data packet or the first data packet sent by the second antenna receiving target first antenna. The receiving strength of the three packets.
进一步,如果锚节点端设备通过检测接收第一数据包的接收强度来检测每根第一天线或目标第一天线的接收强度,则进一步可以将检测到的接收强度打包在第二数据包中发送给信标端设备,以使信标端设备获得通信信号强度。Further, if the anchor node end device detects the reception strength of each of the first antennas or the target first antennas by detecting the reception strength of the received first data packet, the detected reception strength may further be packetized and sent in the second data packet. The beacon device is provided to enable the beacon device to obtain the communication signal strength.
另外,在具体实现过程中,为了节约设备资源,减少数据包发送频率, 上述第一数据包、第二数据包和第三数据包中还可以包含信标端设备和锚节点端交互的各种信息和数据,例如锚节点端向信标端发送的控制指令、信标端的请求指令、第二天线的极化方向、信标端设备的姿态等。本发明所属领域的普通技术人员可以根据实际进行选择,本发明不做具体限制。In addition, in the specific implementation process, in order to save equipment resources and reduce the frequency of data packet transmission, The first data packet, the second data packet, and the third data packet may further include various information and data that the beacon end device interacts with the anchor node, for example, a control command sent by the anchor node to the beacon end, and a beacon. The request command of the terminal, the polarization direction of the second antenna, the posture of the beacon end device, and the like. A person of ordinary skill in the art to which the present invention pertains may make selections according to actual conditions, and the present invention is not specifically limited.
基于与前述实施例中天线控制方法同样的发明构思,本发明第二方面还提供一种天线控制装置,设置于信标端设备,如图5所示,包括:Based on the same inventive concept as the antenna control method in the foregoing embodiment, the second aspect of the present invention further provides an antenna control apparatus, which is disposed on the beacon end device, as shown in FIG. 5, and includes:
基于与前述实施例中天线控制方法同样的发明构思,本发明第二方面还提供一种天线控制装置,如图5所示,包括:Based on the same inventive concept as the antenna control method in the foregoing embodiment, the second aspect of the present invention further provides an antenna control apparatus, as shown in FIG. 5, including:
获得模块101,配置为获得每根第一天线与锚节点端设备的第二天线之间的通信信号强度;The obtaining module 101 is configured to obtain a communication signal strength between each of the first antennas and the second antenna of the anchor node device;
确定模块102,配置为根据所述通信信号强度从所述至少两根第一天线中确定出目标第一天线;其中,所述目标第一天线与锚节点端设备的第二天线之间的通信信号强度满足预设的第一条件;The determining module 102 is configured to determine, according to the communication signal strength, a target first antenna from the at least two first antennas; wherein, the communication between the target first antenna and the second antenna of the anchor node device The signal strength satisfies a preset first condition;
控制模块103,配置为控制所述目标第一天线处于收发状态,进而通过所述目标第一天线与所述锚节点端设备通信。The control module 103 is configured to control the target first antenna to be in a transceiving state, and then communicate with the anchor node device through the target first antenna.
具体来讲,控制模块103配置为判断所述目标第一天线当前是否处于收发状态,如果是,则维持所述目标第一天线的收发状态;如果否,则控制所述目标第一天线切换到收发状态,以及控制所述目标第一天线以外的第一天线处于非收发状态。Specifically, the control module 103 is configured to determine whether the target first antenna is currently in the transmitting and receiving state, and if yes, maintaining the transmitting and receiving state of the target first antenna; if not, controlling the target first antenna to switch to Transmitting and receiving, and controlling the first antenna other than the target first antenna to be in a non-transceive state.
确定模块102配置为从所述每根第一天线与所述第二天线之间的通信信号强度中选择最大的通信信号强度所对应的第一天线为所述目标第一天线;The determining module 102 is configured to select, from the communication signal strength between each of the first antennas and the second antenna, a first antenna corresponding to a maximum communication signal strength as the target first antenna;
其中,所述第一天线与所述第二天线之间的通信信号强度用以下信号强度来表示:The communication signal strength between the first antenna and the second antenna is represented by the following signal strength:
所述第一天线对第二天线发来的信号的接收强度,或者,所述第二天 线对第一天线发来的信号的接收强度;当为所述第二天线对第一天线发来的信号的接收强度时,需要所述信标端设备从锚节点端设备处获得所述第二天线对第一天线发来的信号的接收强度。The received strength of the signal sent by the first antenna to the second antenna, or the second day a receiving strength of a signal sent by the line to the first antenna; when the receiving strength of the signal sent by the second antenna to the first antenna is required, the beacon end device is required to obtain the first part from the anchor node end device The received strength of the signal sent by the second antenna to the first antenna.
获得模块101配置为通过每根所述第一天线依次与所述第二天线通信,来获得所述每根第一天线与所述第二天线之间的通信信号强度。The obtaining module 101 is configured to sequentially communicate with the second antenna through each of the first antennas to obtain a communication signal strength between each of the first antennas and the second antenna.
进一步,所述装置还包括:Further, the device further includes:
检测模块,配置为在从所述每根第一天线与所述第二天线之间的通信信号强度中选择最大的通信信号强度所对应的第一天线为所述目标第一天线之后,对所述信标端设备的当前姿态进行检测,获得检测结果;a detecting module, configured to: after selecting a first antenna corresponding to a maximum communication signal strength from a communication signal strength between each of the first antennas and the second antenna as the target first antenna, The current posture of the beacon device is detected, and the detection result is obtained;
第一判断模块,配置为根据所述检测结果,确定每根所述第一天线的当前极化方向,并根据所述第二天线的极化方向,判断所述目标第一天线的极化方向与所述第二天线的极化方向是否匹配;如果是,则通知控制模块103执行后续控制所述目标第一天线处于收发状态的处理;如果否,则通知获得模块101重新获得每根第一天线与锚节点端设备的第二天线之间的通信信号强度,并通知确定模块102重新确定目标第一天线。a first determining module, configured to determine a current polarization direction of each of the first antennas according to the detection result, and determine a polarization direction of the target first antenna according to a polarization direction of the second antenna Whether the polarization direction of the second antenna matches; if yes, notifying the control module 103 to perform a process of subsequently controlling the target first antenna to be in a transceiving state; if not, notifying the obtaining module 101 to regain each first The strength of the communication signal between the antenna and the second antenna of the anchor node device, and notifying the determination module 102 to re-determine the target first antenna.
其中,第一判断模块配置为根据所述检测结果以及每根第一天线在所述信标端设备中的设置朝向,确定出每根第一天线的当前极化方向;根据预先获得的所述第二天线的极化方向,判断所述当前极化方向与所述第二天线的极化方向夹角最小的第一天线是否为所述目标第一天线。The first determining module is configured to determine a current polarization direction of each first antenna according to the detection result and a setting direction of each first antenna in the beacon end device; according to the previously obtained a polarization direction of the second antenna, determining whether the first antenna having the smallest angle between the current polarization direction and the polarization direction of the second antenna is the target first antenna.
或者,进一步,所述装置还包括:Or, further, the device further includes:
第二判断模块,配置为在从所述每根第一天线与所述第二天线之间的通信信号强度中选择最大的通信信号强度所对应的第一天线为所述目标第一天线之后,判断所述目标第一天线与所述第二天线之间的通信信号强度是否达到阈值,如果达到,则通知控制模块103执行后续控制所述目标第一天线处于收发状态的处理;如果未达到,则产生报警提示,并通知获得 模块101重新获得每根第一天线与锚节点端设备的第二天线之间的通信信号强度,并通知确定模块102重新确定目标第一天线。a second determining module, configured to: after selecting a first antenna corresponding to a maximum communication signal strength from a communication signal strength between each of the first antennas and the second antenna, is the target first antenna, Determining whether the communication signal strength between the target first antenna and the second antenna reaches a threshold, and if so, notifying the control module 103 to perform a process of subsequently controlling the target first antenna to be in a transceiving state; if not, Then generate an alarm prompt and notify the acquisition The module 101 regains the communication signal strength between each of the first antennas and the second antenna of the anchor node device and notifies the determination module 102 to re-determine the target first antenna.
控制模块103在确定所述信标端设备与所述锚节点端设备之间完成一次完整的定位操作后,才控制目标第一天线切换到收发状态,以及控制目标第一天线以外的第一天线处于非收发状态。After determining that the complete positioning operation is performed between the beacon end device and the anchor node device, the control module 103 controls the target first antenna to switch to the transmitting and receiving state, and controls the first antenna other than the target first antenna. It is not in the state of sending and receiving.
前述图1-图4实施例中的天线控制方法的各种变化方式和具体实例同样适用于本实施例的天线控制装置,通过前述对天线控制方法的详细描述,本领域技术人员可以清楚的知道本实施例中天线控制装置的实施方法,所以为了说明书的简洁,在此不再详述。The various changes and specific examples of the antenna control method in the foregoing embodiments of FIG. 1 to FIG. 4 are also applicable to the antenna control apparatus of the present embodiment. Those skilled in the art can clearly know by the foregoing detailed description of the antenna control method. The implementation method of the antenna control device in this embodiment is not detailed here for the sake of brevity of the description.
另外,本申请还提供了一种计算机存储介质,该计算机存储介质包括一组指令,当执行所述指令时,引起至少一个处理器执行包括以下的操作:In addition, the present application also provides a computer storage medium comprising a set of instructions that, when executed, cause at least one processor to perform operations including:
获得每根第一天线与锚节点端设备的第二天线之间的通信信号强度,根据所述通信信号强度从所述至少两根第一天线中确定出目标第一天线;其中,所述目标第一天线与锚节点端设备的第二天线之间的通信信号强度满足预设的第一条件;Obtaining a communication signal strength between each of the first antennas and a second antenna of the anchor node device, and determining a target first antenna from the at least two first antennas according to the communication signal strength; wherein the target The communication signal strength between the first antenna and the second antenna of the anchor node device meets a preset first condition;
控制所述目标第一天线处于收发状态,通过所述目标第一天线与所述锚节点端设备通信。Controlling that the target first antenna is in a transceiving state, and communicating with the anchor node device through the target first antenna.
所述计算机存储介质还可以执行前述方法中提供的多种处理流程,这里不再进行赘述。The computer storage medium can also perform various processing procedures provided in the foregoing methods, and details are not described herein.
本申请实施例中的上述一个或多个技术方案,至少具有如下一种或多种技术效果:The above one or more technical solutions in the embodiments of the present application have at least one or more of the following technical effects:
在本申请中,信标端设备包括极化方向不同的至少两根第一天线,根据每根第一天线与锚节点端设备的第二天线之间的通信信号强度,从至少两根第一天线中确定出满足预设的第一条件的目标第一天线,然后控制目标第一天线处于收发状态,进而通过目标第一天线与锚节点端设备通信。 所以,一方面,本发明在信标端设备设置极化方向不同的天线,另一方面,无论信标端设备姿态如何变化,都选择各根第一天线与第二天线的通信信号强度满足第一条件的目标第一天线进行通信,因此,本申请中的信标端设备在姿态变化时,依然可以通过与锚节点端设备通信良好的天线与锚节点端设备通信。可见,本发明提高了姿态变化时信标端设备与锚节点端设备的通信质量。In the present application, the beacon end device includes at least two first antennas having different polarization directions, and according to the communication signal strength between each of the first antennas and the second antenna of the anchor node device, from at least two first A target first antenna that satisfies a preset first condition is determined in the antenna, and then the target first antenna is controlled to be in a transceiving state, and then communicated with the anchor node device through the target first antenna. Therefore, on the one hand, the present invention sets antennas with different polarization directions on the beacon end device, and on the other hand, the communication signal strength of each of the first antenna and the second antenna is selected to meet the requirements of the beacon end device. The target first antenna of a condition communicates. Therefore, the beacon end device in the present application can still communicate with the anchor node device through an antenna that communicates well with the anchor node device when the posture changes. It can be seen that the invention improves the communication quality between the beacon end device and the anchor node end device when the posture changes.
本领域内的技术人员应明白,本发明的实施例可提供为方法、系统、或计算机程序产品。因此,本发明可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。Those skilled in the art will appreciate that embodiments of the present invention can be provided as a method, system, or computer program product. Accordingly, the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment, or a combination of software and hardware. Moreover, the invention can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) including computer usable program code.
本发明是参照根据本申请的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。The present invention has been described with reference to flowchart illustrations and/or block diagrams of the method, apparatus (system), and computer program product according to the present application. It will be understood that each flow and/or block of the flowchart illustrations and/or FIG. These computer program instructions can be provided to a processor of a general purpose computer, special purpose computer, embedded processor, or other programmable data processing device to produce a machine for the execution of instructions for execution by a processor of a computer or other programmable data processing device. Means for implementing the functions specified in one or more of the flow or in a block or blocks of the flow chart.
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。The computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device. The apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备 上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。These computer program instructions can also be loaded into a computer or other programmable data processing device Having a series of operational steps performed on a computer or other programmable device to produce computer-implemented processing such that instructions executed on a computer or other programmable device are provided for implementing one or more processes in a flowchart and/or Or block diagram the steps of a function specified in a box or multiple boxes.
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。 It is apparent that those skilled in the art can make various modifications and variations to the invention without departing from the spirit and scope of the invention. Thus, it is intended that the present invention cover the modifications and modifications of the invention

Claims (17)

  1. 一种天线控制的方法,应用于信标端设备,所述信标端设备包括极化方向不同的至少两根第一天线,所述方法包括:An antenna control method is applied to a beacon end device, where the beacon end device includes at least two first antennas having different polarization directions, and the method includes:
    获得每根第一天线与锚节点端设备的第二天线之间的通信信号强度,根据所述通信信号强度从所述至少两根第一天线中确定出目标第一天线;其中,所述目标第一天线与锚节点端设备的第二天线之间的通信信号强度满足预设的第一条件;Obtaining a communication signal strength between each of the first antennas and a second antenna of the anchor node device, and determining a target first antenna from the at least two first antennas according to the communication signal strength; wherein the target The communication signal strength between the first antenna and the second antenna of the anchor node device meets a preset first condition;
    控制所述目标第一天线处于收发状态,通过所述目标第一天线与所述锚节点端设备通信。Controlling that the target first antenna is in a transceiving state, and communicating with the anchor node device through the target first antenna.
  2. 如权利要求1所述的方法,其中,控制目标第一天线处于收发状态包括:The method of claim 1 wherein controlling the target first antenna to be in a transceiving state comprises:
    判断所述目标第一天线当前是否处于收发状态,如果是,则维持所述目标第一天线的收发状态;如果否,则控制所述目标第一天线切换到收发状态,以及控制所述目标第一天线以外的第一天线处于非收发状态。Determining whether the target first antenna is currently in a transceiving state, and if so, maintaining a transceiving state of the target first antenna; if not, controlling the target first antenna to switch to a transceiving state, and controlling the target The first antenna other than one antenna is in a non-transmission state.
  3. 如权利要求2所述的方法,其中,根据所述通信信号强度从所述至少两根第一天线中确定出目标第一天线,包括:The method of claim 2, wherein determining the target first antenna from the at least two first antennas according to the communication signal strength comprises:
    从所述每根第一天线与所述第二天线之间的通信信号强度中选择最大的通信信号强度所对应的第一天线为所述目标第一天线;Selecting, from the communication signal strength between each of the first antennas and the second antenna, a first antenna corresponding to a maximum communication signal strength as the target first antenna;
    其中,所述第一天线与所述第二天线之间的通信信号强度用以下信号强度来表示:The communication signal strength between the first antenna and the second antenna is represented by the following signal strength:
    所述第一天线对第二天线发来的信号的接收强度,或者,所述第二天线对第一天线发来的信号的接收强度;当为所述第二天线对第一天线发来的信号的接收强度时,需要所述信标端设备从锚节点端设备处获得所述第二天线对第一天线发来的信号的接收强度。 The received strength of the signal sent by the first antenna to the second antenna, or the received strength of the signal sent by the second antenna to the first antenna; when the second antenna is sent to the first antenna When the received strength of the signal is received, the beacon end device is required to obtain the receiving strength of the signal sent by the second antenna to the first antenna from the anchor node end device.
  4. 如权利要求3所述的方法,其中,获得每根第一天线与锚节点端设备的第二天线之间的通信信号强度,包括:The method of claim 3, wherein obtaining a communication signal strength between each of the first antennas and the second antenna of the anchor node device comprises:
    通过每根所述第一天线依次与所述第二天线通信,来获得所述每根第一天线与所述第二天线之间的通信信号强度。A communication signal strength between each of the first antennas and the second antenna is obtained by sequentially communicating with the second antenna by each of the first antennas.
  5. 如权利要求3或4所述的方法,其中,在从所述每根第一天线与所述第二天线之间的通信信号强度中选择最大的通信信号强度所对应的第一天线为所述目标第一天线之后,所述方法还包括:The method according to claim 3 or 4, wherein the first antenna corresponding to the maximum communication signal strength selected from the communication signal strengths between the each of the first antenna and the second antenna is the After the target first antenna, the method further includes:
    对所述信标端设备的当前姿态进行检测,获得检测结果;Detecting a current posture of the beacon end device, and obtaining a detection result;
    根据所述检测结果,确定每根所述第一天线的当前极化方向,并根据所述第二天线的极化方向,判断所述目标第一天线的极化方向与所述第二天线的极化方向是否匹配;如果是,则执行后续控制所述目标第一天线处于收发状态的处理;如果否,则重新获得每根第一天线与锚节点端设备的第二天线之间的通信信号强度,并重新确定目标第一天线。Determining, according to the detection result, a current polarization direction of each of the first antennas, and determining, according to a polarization direction of the second antenna, a polarization direction of the target first antenna and the second antenna Whether the polarization direction is matched; if yes, performing a process of subsequently controlling the target first antenna to be in a transceiving state; if not, regaining a communication signal between each of the first antenna and the second antenna of the anchor node device Intensity and re-determination of the target first antenna.
  6. 如权利要求5所述的方法,其中,根据所述检测结果,确定每根所述第一天线的当前极化方向,并根据所述第二天线的极化方向,判断所述目标第一天线的极化方向与所述第二天线的极化方向是否匹配,包括:The method according to claim 5, wherein a current polarization direction of each of the first antennas is determined according to the detection result, and the target first antenna is determined according to a polarization direction of the second antenna Whether the polarization direction matches the polarization direction of the second antenna, including:
    根据所述检测结果以及每根第一天线在所述信标端设备中的设置朝向,确定出每根第一天线的当前极化方向;Determining a current polarization direction of each of the first antennas according to the detection result and a setting orientation of each of the first antennas in the beacon end device;
    根据预先获得的所述第二天线的极化方向,判断所述当前极化方向与所述第二天线的极化方向夹角最小的第一天线是否为所述目标第一天线。Determining, according to the polarization direction of the second antenna obtained in advance, whether the first antenna having the smallest angle between the current polarization direction and the polarization direction of the second antenna is the target first antenna.
  7. 如权利要求3或4所述的方法,其中,在从所述每根第一天线与所述第二天线之间的通信信号强度中选择最大的通信信号强度所对应的第一天线为所述目标第一天线之后,所述方法还包括:The method according to claim 3 or 4, wherein the first antenna corresponding to the maximum communication signal strength selected from the communication signal strengths between the each of the first antenna and the second antenna is the After the target first antenna, the method further includes:
    判断所述目标第一天线与所述第二天线之间的通信信号强度是否达到阈值,如果达到,则执行后续控制所述目标第一天线处于收发状态的处理; 如果未达到,则产生报警提示,重新获得每根第一天线与锚节点端设备的第二天线之间的通信信号强度,并重新确定目标第一天线。Determining whether the strength of the communication signal between the target first antenna and the second antenna reaches a threshold, and if so, performing a process of subsequently controlling the target first antenna to be in a transceiving state; If not, an alarm prompt is generated to regain the communication signal strength between each of the first antennas and the second antenna of the anchor node device, and to re-determine the target first antenna.
  8. 如权利要求2所述的方法,其中,控制目标第一天线切换到收发状态,以及控制目标第一天线以外的第一天线处于非收发状态,包括:The method of claim 2, wherein controlling the target first antenna to switch to the transceiving state and controlling the first antenna other than the target first antenna to be in a non-transceive state comprises:
    在确定所述信标端设备与所述锚节点端设备之间完成一次完整的定位操作后,才控制目标第一天线切换到收发状态,以及控制目标第一天线以外的第一天线处于非收发状态。After determining that a complete positioning operation is performed between the beacon end device and the anchor node device, the target first antenna is switched to the transmitting and receiving state, and the first antenna other than the target first antenna is not received or received. status.
  9. 一种天线控制的装置,设置于信标端设备,所述信标端设备包括极化方向不同的至少两根第一天线,所述装置包括:An antenna control device is disposed on a beacon end device, where the beacon end device includes at least two first antennas having different polarization directions, and the device includes:
    获得模块,配置为获得每根第一天线与锚节点端设备的第二天线之间的通信信号强度;Obtaining a module configured to obtain a communication signal strength between each of the first antenna and the second antenna of the anchor node device;
    确定模块,配置为根据所述通信信号强度从所述至少两根第一天线中确定出目标第一天线;其中,所述目标第一天线与锚节点端设备的第二天线之间的通信信号强度满足预设的第一条件;a determining module, configured to determine a target first antenna from the at least two first antennas according to the communication signal strength; wherein a communication signal between the target first antenna and a second antenna of the anchor node device The intensity satisfies the preset first condition;
    控制模块,配置为控制所述目标第一天线处于收发状态,进而通过所述目标第一天线与所述锚节点端设备通信。And a control module, configured to control the target first antenna to be in a transceiving state, and further communicate with the anchor node device by using the target first antenna.
  10. 如权利要求9所述的装置,其中,所述控制模块,配置为判断所述目标第一天线当前是否处于收发状态,如果是,则维持所述目标第一天线的收发状态;如果否,则控制所述目标第一天线切换到收发状态,以及控制所述目标第一天线以外的第一天线处于非收发状态。The apparatus according to claim 9, wherein the control module is configured to determine whether the target first antenna is currently in a transceiving state, and if so, to maintain a transceiving state of the target first antenna; if not, Controlling that the target first antenna switches to a transceiving state, and controlling the first antenna other than the target first antenna to be in a non-transceiving state.
  11. 如权利要求10所述的装置,其中,所述确定模块,配置为从所述每根第一天线与所述第二天线之间的通信信号强度中选择最大的通信信号强度所对应的第一天线为所述目标第一天线;The apparatus according to claim 10, wherein said determining module is configured to select a first one corresponding to a maximum communication signal strength from among communication signal strengths between said first antenna and said second antenna The antenna is the target first antenna;
    其中,所述第一天线与所述第二天线之间的通信信号强度用以下信号强度来表示: The communication signal strength between the first antenna and the second antenna is represented by the following signal strength:
    所述第一天线对第二天线发来的信号的接收强度,或者,所述第二天线对第一天线发来的信号的接收强度;当为所述第二天线对第一天线发来的信号的接收强度时,需要所述信标端设备从锚节点端设备处获得所述第二天线对第一天线发来的信号的接收强度。The received strength of the signal sent by the first antenna to the second antenna, or the received strength of the signal sent by the second antenna to the first antenna; when the second antenna is sent to the first antenna When the received strength of the signal is received, the beacon end device is required to obtain the receiving strength of the signal sent by the second antenna to the first antenna from the anchor node end device.
  12. 如权利要求11所述的装置,其中,所述获得模块,配置为通过每根所述第一天线依次与所述第二天线通信,来获得所述每根第一天线与所述第二天线之间的通信信号强度。The apparatus of claim 11, wherein the obtaining module is configured to obtain the first antenna and the second antenna by sequentially communicating with the second antenna by each of the first antennas. The strength of the communication signal between.
  13. 如权利要求11或12所述的装置,其中,所述装置还包括:The device of claim 11 or 12, wherein the device further comprises:
    检测模块,配置为在从所述每根第一天线与所述第二天线之间的通信信号强度中选择最大的通信信号强度所对应的第一天线为所述目标第一天线之后,对所述信标端设备的当前姿态进行检测,获得检测结果;a detecting module, configured to: after selecting a first antenna corresponding to a maximum communication signal strength from a communication signal strength between each of the first antennas and the second antenna as the target first antenna, The current posture of the beacon device is detected, and the detection result is obtained;
    第一判断模块,配置为根据所述检测结果,确定每根所述第一天线的当前极化方向,并根据所述第二天线的极化方向,判断所述目标第一天线的极化方向与所述第二天线的极化方向是否匹配;如果是,则通知控制模块执行后续控制所述目标第一天线处于收发状态的处理;如果否,则通知所述获得模块重新获得每根第一天线与锚节点端设备的第二天线之间的通信信号强度,并通知所述确定模块重新确定目标第一天线。a first determining module, configured to determine a current polarization direction of each of the first antennas according to the detection result, and determine a polarization direction of the target first antenna according to a polarization direction of the second antenna Whether the polarization direction of the second antenna matches; if yes, notifying the control module to perform a process of subsequently controlling the target first antenna to be in a transceiving state; if not, notifying the obtaining module to regain each first The strength of the communication signal between the antenna and the second antenna of the anchor node device, and notifying the determining module to redetermine the target first antenna.
  14. 如权利要求13所述的装置,其中,所述第一判断模块,配置为根据所述检测结果以及每根第一天线在所述信标端设备中的设置朝向,确定出每根第一天线的当前极化方向;根据预先获得的所述第二天线的极化方向,判断所述当前极化方向与所述第二天线的极化方向夹角最小的第一天线是否为所述目标第一天线。The apparatus of claim 13, wherein the first determining module is configured to determine each of the first antennas according to the detection result and a setting orientation of each of the first antennas in the beacon end device a current polarization direction; determining, according to the polarization direction of the second antenna obtained in advance, whether the first antenna having the smallest angle between the current polarization direction and the polarization direction of the second antenna is the target An antenna.
  15. 如权利要求11或12所述的装置,其中,所述装置还包括:The device of claim 11 or 12, wherein the device further comprises:
    第二判断模块,配置为在从所述每根第一天线与所述第二天线之间的通信信号强度中选择最大的通信信号强度所对应的第一天线为所述目标第 一天线之后,判断所述目标第一天线与所述第二天线之间的通信信号强度是否达到阈值,如果达到,则通知控制模块执行后续控制所述目标第一天线处于收发状态的处理;如果未达到,则产生报警提示,并通知获得模块重新获得每根第一天线与锚节点端设备的第二天线之间的通信信号强度,并通知确定模块重新确定目标第一天线。a second determining module, configured to select, according to a communication signal strength between each of the first antennas and the second antenna, a first antenna corresponding to a maximum communication signal strength as the target After an antenna, determining whether the communication signal strength between the target first antenna and the second antenna reaches a threshold, and if so, notifying the control module to perform a process of subsequently controlling the target first antenna to be in a transceiving state; If not, an alarm prompt is generated, and the obtaining module is notified to regain the communication signal strength between each of the first antennas and the second antenna of the anchor node device, and the determining module is notified to re-determine the target first antenna.
  16. 如权利要求10所述的装置,其中,The device of claim 10, wherein
    所述控制模块,配置为在确定所述信标端设备与所述锚节点端设备之间完成一次完整的定位操作后,才控制目标第一天线切换到收发状态,以及控制目标第一天线以外的第一天线处于非收发状态.The control module is configured to control the target first antenna to switch to the receiving and receiving state and control the target first antenna after determining a complete positioning operation between the beacon end device and the anchor node device The first antenna is in a non-transceive state.
  17. 一种计算机存储介质,该计算机存储介质包括一组指令,当执行所述指令时,引起至少一个处理器执行包括以下的操作:A computer storage medium comprising a set of instructions that, when executed, cause at least one processor to perform operations comprising:
    获得每根第一天线与锚节点端设备的第二天线之间的通信信号强度,根据所述通信信号强度从所述至少两根第一天线中确定出目标第一天线;其中,所述目标第一天线与锚节点端设备的第二天线之间的通信信号强度满足预设的第一条件;Obtaining a communication signal strength between each of the first antennas and a second antenna of the anchor node device, and determining a target first antenna from the at least two first antennas according to the communication signal strength; wherein the target The communication signal strength between the first antenna and the second antenna of the anchor node device meets a preset first condition;
    控制所述目标第一天线处于收发状态,通过所述目标第一天线与所述锚节点端设备通信。 Controlling that the target first antenna is in a transceiving state, and communicating with the anchor node device through the target first antenna.
PCT/CN2017/080454 2016-08-29 2017-04-13 Antenna control method, apparatus and computer storage medium WO2018040572A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610751672.5 2016-08-29
CN201610751672.5A CN106329119A (en) 2016-08-29 2016-08-29 Antenna control method and device

Publications (1)

Publication Number Publication Date
WO2018040572A1 true WO2018040572A1 (en) 2018-03-08

Family

ID=57788850

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/080454 WO2018040572A1 (en) 2016-08-29 2017-04-13 Antenna control method, apparatus and computer storage medium

Country Status (2)

Country Link
CN (1) CN106329119A (en)
WO (1) WO2018040572A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111313950A (en) * 2018-12-11 2020-06-19 北京小米移动软件有限公司 Antenna control method and device
CN112153661A (en) * 2020-09-25 2020-12-29 广州极飞科技有限公司 Communication method, device, system, removable device and storage medium
CN112954793A (en) * 2021-02-18 2021-06-11 Oppo广东移动通信有限公司 Positioning method, positioning device, terminal and storage medium
CN115097377A (en) * 2022-06-16 2022-09-23 Oppo广东移动通信有限公司 Angle measuring method and related device

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106329119A (en) * 2016-08-29 2017-01-11 纳恩博(北京)科技有限公司 Antenna control method and device
CN110544834B (en) * 2018-05-28 2021-05-07 华硕电脑股份有限公司 Antenna system and restarting method thereof
US11127234B2 (en) * 2018-10-12 2021-09-21 Denso International America, Inc. Passive entry/passive start communication systems with selected antennas having multiple polarized axes
CN112601281B (en) * 2020-12-07 2023-09-08 Oppo广东移动通信有限公司 Positioning method, terminal and computer storage medium
CN113055056A (en) * 2021-03-29 2021-06-29 努比亚技术有限公司 Electronic price tag, control method thereof, terminal and computer readable medium
CN113471700B (en) * 2021-07-01 2023-11-24 Oppo广东移动通信有限公司 Antenna control method and device, storage medium and electronic equipment

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG140475A1 (en) * 2006-08-17 2008-03-28 Sony Corp Positioning methods & systems for uwb devices
CN102684760A (en) * 2011-03-15 2012-09-19 联想(北京)有限公司 Wireless communication method for mobile terminal and mobile terminal
CN104811282A (en) * 2015-04-02 2015-07-29 联想(北京)有限公司 Communication method and electronic equipment
CN105547297A (en) * 2015-12-11 2016-05-04 武汉大学 Indoor positioning method based on UWB positioning system
CN106229679A (en) * 2016-08-29 2016-12-14 纳恩博(北京)科技有限公司 A kind of method of controlling antenna and device
CN106329119A (en) * 2016-08-29 2017-01-11 纳恩博(北京)科技有限公司 Antenna control method and device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4342263B2 (en) * 2003-10-03 2009-10-14 株式会社エヌ・ティ・ティ・ドコモ Mobile communication terminal
JP2010258490A (en) * 2009-04-21 2010-11-11 Buffalo Inc Antenna unit
CN103311647A (en) * 2013-05-15 2013-09-18 东莞宇龙通信科技有限公司 Antenna device and method for improving signal transceiving performance of antenna device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG140475A1 (en) * 2006-08-17 2008-03-28 Sony Corp Positioning methods & systems for uwb devices
CN102684760A (en) * 2011-03-15 2012-09-19 联想(北京)有限公司 Wireless communication method for mobile terminal and mobile terminal
CN104811282A (en) * 2015-04-02 2015-07-29 联想(北京)有限公司 Communication method and electronic equipment
CN105547297A (en) * 2015-12-11 2016-05-04 武汉大学 Indoor positioning method based on UWB positioning system
CN106229679A (en) * 2016-08-29 2016-12-14 纳恩博(北京)科技有限公司 A kind of method of controlling antenna and device
CN106329119A (en) * 2016-08-29 2017-01-11 纳恩博(北京)科技有限公司 Antenna control method and device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111313950A (en) * 2018-12-11 2020-06-19 北京小米移动软件有限公司 Antenna control method and device
CN111313950B (en) * 2018-12-11 2023-06-20 北京小米移动软件有限公司 Antenna control method and device
CN112153661A (en) * 2020-09-25 2020-12-29 广州极飞科技有限公司 Communication method, device, system, removable device and storage medium
CN112153661B (en) * 2020-09-25 2024-04-09 广州极飞科技股份有限公司 Communication method, device, system, mobile equipment and storage medium
CN112954793A (en) * 2021-02-18 2021-06-11 Oppo广东移动通信有限公司 Positioning method, positioning device, terminal and storage medium
CN115097377A (en) * 2022-06-16 2022-09-23 Oppo广东移动通信有限公司 Angle measuring method and related device

Also Published As

Publication number Publication date
CN106329119A (en) 2017-01-11

Similar Documents

Publication Publication Date Title
WO2018040572A1 (en) Antenna control method, apparatus and computer storage medium
WO2018040573A1 (en) Antenna control method, apparatus and computer storage medium
US9137776B2 (en) Automatic mode change in ultrasonic locationing
KR20210053018A (en) Electronic device and method for performing ranging through uwb
WO2019112647A1 (en) Enhanced time difference of arrival in radio frequency wireless communications
US20170160800A1 (en) Device control
JP2010193214A (en) Radio-frequency tag communication device
KR102600894B1 (en) Apparatus and method for positioning using electronic device
US11855686B2 (en) Electronic device for receiving time difference of arrival messages and method for operating the same
JP2019532285A (en) Positioning method, apparatus and computer storage medium
US20150163764A1 (en) Video assisted line-of-sight determination in a locationing system
US8493901B2 (en) Wireless communication system, wireless communication apparatus, and method of control thereof
US20220337986A1 (en) Method of ultra-wideband communication based on account information and electronic device therefor
JP2008022492A (en) Transmission method and transmission apparatus utilizing the same, receiving apparatus, and communication system
CN114430440B (en) Control method of intelligent device, electronic tag, device, terminal and storage medium
US11463958B2 (en) Communication device
EP3224760A1 (en) An rfid based arrangement for reducing wifi handoff latency
KR20210116119A (en) Apparatus and method for performing communication
CN109672465B (en) Method, equipment and system for adjusting antenna gain
WO2016000120A1 (en) Method, device and system for locating user equipment
JP5562124B2 (en) COMMUNICATION DEVICE, COMMUNICATION METHOD, AND PROGRAM
US20220386214A1 (en) Electronic device and method for performing ranging operation
KR102499917B1 (en) Electronic device performing positioning and method for controlling thereof
CN112394319A (en) Wireless ranging, direction finding and positioning method and related equipment
US20210273697A1 (en) Method, electronic device, and storage means for controlling data communication

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17844880

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17844880

Country of ref document: EP

Kind code of ref document: A1