WO2018040306A1 - 一种监控视频中检测频繁过人的方法 - Google Patents
一种监控视频中检测频繁过人的方法 Download PDFInfo
- Publication number
- WO2018040306A1 WO2018040306A1 PCT/CN2016/106672 CN2016106672W WO2018040306A1 WO 2018040306 A1 WO2018040306 A1 WO 2018040306A1 CN 2016106672 W CN2016106672 W CN 2016106672W WO 2018040306 A1 WO2018040306 A1 WO 2018040306A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- face image
- passer
- extraordinary
- detecting frequent
- video
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 30
- 238000012544 monitoring process Methods 0.000 title claims abstract 5
- 238000013500 data storage Methods 0.000 claims abstract description 11
- 241000287107 Passer Species 0.000 claims description 8
- 238000012545 processing Methods 0.000 abstract description 3
- 238000001514 detection method Methods 0.000 description 4
- 238000000605 extraction Methods 0.000 description 3
- 238000013528 artificial neural network Methods 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 230000001815 facial effect Effects 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 238000012805 post-processing Methods 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 1
- 238000005065 mining Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000007781 pre-processing Methods 0.000 description 1
- 230000003449 preventive effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V40/00—Recognition of biometric, human-related or animal-related patterns in image or video data
- G06V40/10—Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
- G06V40/16—Human faces, e.g. facial parts, sketches or expressions
- G06V40/172—Classification, e.g. identification
- G06V40/173—Classification, e.g. identification face re-identification, e.g. recognising unknown faces across different face tracks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/21—Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
- G06F18/214—Generating training patterns; Bootstrap methods, e.g. bagging or boosting
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V40/00—Recognition of biometric, human-related or animal-related patterns in image or video data
- G06V40/10—Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
- G06V40/16—Human faces, e.g. facial parts, sketches or expressions
- G06V40/161—Detection; Localisation; Normalisation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N7/00—Television systems
- H04N7/18—Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast
Definitions
- the present invention relates to the field of video security, and in particular to a method for detecting frequent people in a surveillance video.
- the object of the present invention is to provide a method for detecting frequent passing people in surveillance video in order to overcome the drawbacks of the prior art described above.
- a method for detecting frequent people in a surveillance video comprising the steps of:
- S1 loading the video code stream collected by the surveillance camera, acquiring the face image of the passerby, and generating an extraordinary record
- S3 retrieve in the data storage module according to the portrait feature descriptor, and derive the number of times each passer passes the surveillance camera area within a set time period.
- the passerby face image is specifically acquired by using an AdaBoost classifier.
- the step S3 specifically includes the following steps:
- S31 Perform similarity matching on the extraordinary records stored in the data storage module, and classify the extraordinary records with similar portrait features
- the attribute features preset in the step S32 include: a mask, a sunglasses, an age, and a gender.
- step S33 after the number of times that each passer passes the surveillance camera area within the set time period, the face image of the passerby whose number of occurrences in the unit time is greater than the set number of times is output.
- the present invention has the following advantages:
- Figure 1 is a schematic flow chart of the main steps of the present invention.
- a method for detecting frequent people in a surveillance video comprising the steps of:
- S1 loading the video code stream collected by the surveillance camera, acquiring the face image of the passerby, and generating an extraordinary record, which is obtained by using the AdaBoost classifier after the passerby face image;
- S3 Retrieving in the data storage module according to the portrait feature descriptor, and deriving the number of times each passer passes the surveillance camera area within a set time period, specifically including the steps:
- S31 Perform similarity matching on the extraordinary records stored in the data storage module, and classify the extraordinary records with similar portrait features
- S32 Filter the classified record after the classification according to the preset attribute feature, and the preset attribute features include: a mask, a sunglasses, an age, a gender, and the like;
- S33 Deriving the number of times each passer passes the surveillance camera area within a set time period, and outputting a face image of the passerby appearing in the unit time more than the set number of times.
- the input is a video stream
- the output is a frequent recording
- the software includes the following 5 processes (modules)
- portrait detection and tracking module The face is detected in the input video stream, the face detection uses the general AdaBoost classifier, and the face tracking uses the optical flow method.
- the module borrows the concept of "main frame” and "secondary frame” in the video stream, and reduces the computational complexity to more than 80% compared to the full calculation of each frame.
- the combination of detection and tracking is optimized.
- the obtained mutual local regions are used to perform algorithm estimation to accelerate the function.
- Humanity feature extraction module For each person on the video, get the face size, face facial features, face posture information, judge whether it is suitable for face comparison; here adopt dynamic way to ensure each There are at least N feature extractions.
- a variety of feature operators such as LBP, SIFT, and neural network are selected to maximize the expression of facial features.
- Portrait storage module Provides multi-machine consistency portrait storage, saves each camera, time, location in the video, portrait features, face screenshots, etc., can access data through the interface, but also directly
- the retrieval module provides data support.
- portrait retrieval module Based on the two similarity models obtained by offline training, each person is matched in the history record to obtain a one-to-many similar list. In order to increase the retrieval speed, the preprocessing of the clustering algorithm based on kmeans is adopted here, so that the single retrieval speed can be kept within 1 s even in the order of 10 million.
- Frequent post-processing module In order to improve the hit rate, follow the general practice of the search engine, strategically do two or more extended retrieval; at the same time, in order to reduce the false positive rate, extract the attribute information of the face, such as age. , gender, posture, whether wearing sunglasses, etc., filter the type of higher false positives.
- Portrait feature extraction module This module first performs key point positioning on the human face (a total of 35 feature points), and then uses high-density mining with different feature operators (LBP, SIFT, neural network) at key points. Extract the features of more than 100,000 dimensions, and then perform dimension reduction processing to about 100 dimensions to obtain small volume eigenvectors.
- LBP high-density mining
- SIFT feature operators
- Portrait retrieval module Calculate the similarity between two features using L2 similarity. For accelerated calculation, the portrait feature is pre-indexed, and the index is the class center obtained by using kmeans method. To ensure the recall rate, the randomization method is used. Get multiple class centers. After this treatment, the retrieval acceleration ratio can be more than 30 times.
- Frequent post-processing module The module contains 2 sub-modules. The first is to make an extended query list of the preliminary similar personnel. This process may also bring certain false positives while improving the hit rate. Strong restrictions, such as similar scores must be greater than a high threshold for extended search; second, filtering of frequently occurring types of false positives, common types such as the elderly, children, the same hairstyle, wearing a mask, The filtering method is to classify the attributes to determine whether they belong to these types, and then use a higher score threshold to cut off false positives.
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Multimedia (AREA)
- Physics & Mathematics (AREA)
- Human Computer Interaction (AREA)
- Oral & Maxillofacial Surgery (AREA)
- General Health & Medical Sciences (AREA)
- Health & Medical Sciences (AREA)
- Data Mining & Analysis (AREA)
- Bioinformatics & Computational Biology (AREA)
- General Engineering & Computer Science (AREA)
- Evolutionary Computation (AREA)
- Evolutionary Biology (AREA)
- Signal Processing (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Artificial Intelligence (AREA)
- Life Sciences & Earth Sciences (AREA)
- Image Analysis (AREA)
- Closed-Circuit Television Systems (AREA)
- Television Signal Processing For Recording (AREA)
- Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
Abstract
Description
Claims (6)
- 一种监控视频中检测频繁过人的方法,其特征在于,包括步骤:S1:载入监控摄像头采集的视频码流,获取经过路人的人脸图像,并生成过人记录;S2:根据人脸图像提取其人像特征,并将人像特征和过人记录存储至数据存储模块;S3:根据人像特征描述符在数据存储模块中检索,并导出每一路人在设定时间段内经过该监控摄像头区域的次数。
- 根据权利要求1所述的一种监控视频中检测频繁过人的方法,其特征在于,所述步骤S1中,经过路人人脸图像具体采用AdaBoost分类器获取。
- 根据权利要求1所述的一种监控视频中检测频繁过人的方法,其特征在于,所述步骤S2中根据人脸图像提取其人像特征的过程中,共提取35个特征点。
- 根据权利要求1所述的一种监控视频中检测频繁过人的方法,其特征在于,所述步骤S3具体包括步骤:S31:将数据存储模块中存储的过人记录进行相似度匹配,将人像特征相似的过人记录归类;S32:根据预设的属性特征对归类后的过人记录进行过滤;S33:导出每一路人在设定时间段内经过该监控摄像头区域的次数。
- 根据权利要求4所述的一种监控视频中检测频繁过人的方法,其特征在于,所述步骤S32中预设的属性特征包括:口罩、墨镜、年龄、性别。
- 根据权利要求4所述的一种监控视频中检测频繁过人的方法,其特征在于,所述步骤S33中,导出每一路人在设定时间段内经过该监控摄像头区域的次数后,还输出在单位时间内出现次数大于设定次数的路人的人脸图像。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SG11201806418TA SG11201806418TA (en) | 2016-08-31 | 2016-11-21 | Method for detecting frequent passer-passing in monitoring video |
PH12018501518A PH12018501518A1 (en) | 2016-08-31 | 2018-07-13 | Method for detecting frequent passer-passing in monitoring video |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610793181.7A CN106355154B (zh) | 2016-08-31 | 2016-08-31 | 一种监控视频中检测频繁过人的方法 |
CN201610793181.7 | 2016-08-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018040306A1 true WO2018040306A1 (zh) | 2018-03-08 |
Family
ID=57858174
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2016/106672 WO2018040306A1 (zh) | 2016-08-31 | 2016-11-21 | 一种监控视频中检测频繁过人的方法 |
Country Status (4)
Country | Link |
---|---|
CN (1) | CN106355154B (zh) |
PH (1) | PH12018501518A1 (zh) |
SG (1) | SG11201806418TA (zh) |
WO (1) | WO2018040306A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111552681A (zh) * | 2020-04-30 | 2020-08-18 | 山东众志电子有限公司 | 一种动态的基于大数据技术的场所出入次数异常计算方法 |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018165863A1 (zh) * | 2017-03-14 | 2018-09-20 | 华平智慧信息技术(深圳)有限公司 | 安防监控中数据分类的方法及装置 |
CN106897460A (zh) * | 2017-03-14 | 2017-06-27 | 华平智慧信息技术(深圳)有限公司 | 安防监控中数据分类的方法及装置 |
CN110019963B (zh) * | 2017-12-11 | 2021-08-10 | 罗普特科技集团股份有限公司 | 嫌疑人关系人员的搜索方法 |
CN110134812A (zh) * | 2018-02-09 | 2019-08-16 | 杭州海康威视数字技术股份有限公司 | 一种人脸搜索方法及其装置 |
CN109492604A (zh) * | 2018-11-23 | 2019-03-19 | 北京嘉华科盈信息系统有限公司 | 人脸模型特征统计分析系统 |
CN111143594A (zh) * | 2019-12-26 | 2020-05-12 | 北京橘拍科技有限公司 | 人像搜索方法、服务器、存储介质、视频处理方法及系统 |
CN111401315B (zh) * | 2020-04-10 | 2023-08-22 | 浙江大华技术股份有限公司 | 基于视频的人脸识别方法、识别装置及存储装置 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101618542A (zh) * | 2009-07-24 | 2010-01-06 | 塔米智能科技(北京)有限公司 | 一种智能机器人迎宾系统和方法 |
CN101847218A (zh) * | 2009-03-25 | 2010-09-29 | 微星科技股份有限公司 | 人流计数系统及其方法 |
CN102176746A (zh) * | 2009-09-17 | 2011-09-07 | 广东中大讯通信息有限公司 | 一种用于局部小区域安全进入的智能监控系统及实现方法 |
CN103971103A (zh) * | 2014-05-23 | 2014-08-06 | 西安电子科技大学宁波信息技术研究院 | 一种人数统计系统 |
KR20150071920A (ko) * | 2013-12-19 | 2015-06-29 | 한국전자통신연구원 | 얼굴 식별을 이용한 사람 수 카운팅 장치 및 방법 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104376679A (zh) * | 2014-11-24 | 2015-02-25 | 苏州立瓷电子技术有限公司 | 一种智能家居预警方法 |
CN105160319B (zh) * | 2015-08-31 | 2018-10-16 | 电子科技大学 | 一种在监控视频下实现行人再识别的方法 |
CN105357496B (zh) * | 2015-12-09 | 2018-07-27 | 武汉大学 | 一种多源大数据融合的视频监控行人身份识别方法 |
-
2016
- 2016-08-31 CN CN201610793181.7A patent/CN106355154B/zh active Active
- 2016-11-21 SG SG11201806418TA patent/SG11201806418TA/en unknown
- 2016-11-21 WO PCT/CN2016/106672 patent/WO2018040306A1/zh active Application Filing
-
2018
- 2018-07-13 PH PH12018501518A patent/PH12018501518A1/en unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101847218A (zh) * | 2009-03-25 | 2010-09-29 | 微星科技股份有限公司 | 人流计数系统及其方法 |
CN101618542A (zh) * | 2009-07-24 | 2010-01-06 | 塔米智能科技(北京)有限公司 | 一种智能机器人迎宾系统和方法 |
CN102176746A (zh) * | 2009-09-17 | 2011-09-07 | 广东中大讯通信息有限公司 | 一种用于局部小区域安全进入的智能监控系统及实现方法 |
KR20150071920A (ko) * | 2013-12-19 | 2015-06-29 | 한국전자통신연구원 | 얼굴 식별을 이용한 사람 수 카운팅 장치 및 방법 |
CN103971103A (zh) * | 2014-05-23 | 2014-08-06 | 西安电子科技大学宁波信息技术研究院 | 一种人数统计系统 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111552681A (zh) * | 2020-04-30 | 2020-08-18 | 山东众志电子有限公司 | 一种动态的基于大数据技术的场所出入次数异常计算方法 |
Also Published As
Publication number | Publication date |
---|---|
SG11201806418TA (en) | 2018-08-30 |
CN106355154A (zh) | 2017-01-25 |
PH12018501518A1 (en) | 2019-03-18 |
CN106355154B (zh) | 2020-09-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018040306A1 (zh) | 一种监控视频中检测频繁过人的方法 | |
CN110458101B (zh) | 基于视频与设备结合的服刑人员体征监测方法及设备 | |
CN107230267B (zh) | 基于人脸识别算法的幼儿园智能签到方法 | |
CN103049459A (zh) | 一种基于特征识别的快速录像检索方法 | |
Arigbabu et al. | Integration of multiple soft biometrics for human identification | |
TWI704505B (zh) | 人臉辨識系統、建立人臉辨識之資料之方法及其人臉辨識之方法 | |
Haji et al. | Real time face recognition system (RTFRS) | |
CN111353338A (zh) | 一种基于营业厅视频监控的能效改进方法 | |
Xia et al. | Face occlusion detection using deep convolutional neural networks | |
CN112989950A (zh) | 一种面向多模态特征语义关联特征的暴力视频识别系统 | |
Mercaldo et al. | A proposal to ensure social distancing with deep learning-based object detection | |
CN108596057B (zh) | 一种基于人脸识别的信息安全管理系统 | |
Arbab‐Zavar et al. | On forensic use of biometrics | |
WO2023093241A1 (zh) | 行人重识别方法及装置、存储介质 | |
Singh et al. | Student Surveillance System using Face Recognition | |
Sitepu et al. | FaceNet with RetinaFace to Identify Masked Face | |
Nguyen et al. | Towards recognizing facial expressions at deeper level: Discriminating genuine and fake smiles from a sequence of images | |
Bharathi et al. | An automatic real-time face mask detection using CNN | |
Abed et al. | Face retrieval in videos using face quality assessment and convolution neural networks | |
Agarwal et al. | A Framework for Dress Code Monitoring System using Transfer Learning from Pre-Trained YOLOv4 Model | |
Nandhis et al. | Realtime face mask detection using machine learning | |
Meshkinfamfard et al. | Tackling rare false-positives in face recognition: a case study | |
Archana et al. | Tracking based event detection of singles broadcast tennis video | |
Yohannan et al. | Optimal camera positions for human identification | |
Mustapha et al. | A Survey On Video Face Recognition Using Deep Learning |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 12018501518 Country of ref document: PH |
|
WWE | Wipo information: entry into national phase |
Ref document number: 11201806418T Country of ref document: SG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16914868 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16914868 Country of ref document: EP Kind code of ref document: A1 |