WO2018040173A1 - 一种快速充电识别方法及终端设备 - Google Patents

一种快速充电识别方法及终端设备 Download PDF

Info

Publication number
WO2018040173A1
WO2018040173A1 PCT/CN2016/100672 CN2016100672W WO2018040173A1 WO 2018040173 A1 WO2018040173 A1 WO 2018040173A1 CN 2016100672 W CN2016100672 W CN 2016100672W WO 2018040173 A1 WO2018040173 A1 WO 2018040173A1
Authority
WO
WIPO (PCT)
Prior art keywords
charging
terminal device
fast
port
fast charging
Prior art date
Application number
PCT/CN2016/100672
Other languages
English (en)
French (fr)
Inventor
李涛
Original Assignee
宇龙计算机通信科技(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宇龙计算机通信科技(深圳)有限公司 filed Critical 宇龙计算机通信科技(深圳)有限公司
Publication of WO2018040173A1 publication Critical patent/WO2018040173A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/0036Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits using connection detecting circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R31/00Coupling parts supported only by co-operation with counterpart
    • H01R31/06Intermediate parts for linking two coupling parts, e.g. adapter
    • H02J7/0091

Definitions

  • the present invention relates to the field of mobile communications technologies, and in particular, to a fast charging identification method and a terminal device.
  • the batteries in the intelligent terminal mainly use lithium-ion batteries.
  • fast charging specifications such as Qualcomm Quick Charge 2.0, OPPO VOOC, MTK Pump Express Plus, TI MaxCharge, Apple 20V, USB 3.1PD, etc.
  • Different fast charging controls the current and voltage differently, so that the fast charging mobile power source needs to adapt to different standards to provide different current and voltage to the battery. Therefore, in the process of using different fast charging specifications for the terminal device, it is necessary to select a fast charging charging device that matches it, which brings certain limitations to the terminal device using the fast charging technology.
  • the embodiment of the invention provides a fast charging identification method and a terminal device, which can be compatible with a plurality of fast charging protocols, and reduces the limitation of the terminal device using the fast charging technology.
  • a first aspect of the embodiments of the present invention discloses a fast charging identification method, which is applied to a terminal device supporting at least two fast charging protocols, and the method includes:
  • the terminal device When the terminal device detects that an external charging device is inserted on the charging interface of the terminal device, controlling the non-fast charging access point at the D+ and D- ports of the charging interface of the terminal device and the external charging The device is connected, and it is determined whether the type of the external charging device belongs to a dedicated charging port DCP mode;
  • the type of the external charging device belongs to the dedicated charging port DCP mode, controlling a fast charging access point at the D+, D- port to be connected to the external charging device;
  • the terminal device performs a fast charging protocol handshake with the external charging device according to a preset fast charging protocol handshake sequence. If the handshake is successful, the fast charging protocol with the current handshake is successfully used as the target fast charging protocol, and the external charging is controlled. The device enters the high voltage charging port HVDCP charging mode and charges according to the target fast charging protocol.
  • the non-fast charging access point at the differential data pin D+, D- port of the terminal device charging interface is connected to the external charging device, and includes:
  • the controlling the fast charging access point at the D+, D- port to connect with the external charging device comprises:
  • the switch is controlled to be connected to a fast charging access point at the D+, D- port.
  • the non-fast charging access point at the differential data pin D+, D- port of the terminal device charging interface is connected to the external charging device, and includes:
  • the controlling the fast charging access point at the D+, D- port to connect with the external charging device comprises:
  • the non-rapid charging access point at the D+, D-port is set to a high impedance state, and the fast charging access point at the D+, D-port is controlled to be set to a non-high impedance state.
  • the method further includes:
  • the method further includes:
  • the method further includes:
  • the inserted external charging device is a conventional charging device that does not support the fast charging protocol, and the dedicated charging port DCP mode is activated.
  • the second aspect of the embodiment of the present invention discloses a terminal device that supports at least two fast charging protocols, where the terminal device includes:
  • control unit configured to control a non-fast charging access point at the differential data pin D+, D- port of the charging interface of the terminal device when the external charging device is inserted on the charging interface of the terminal device is detected External charging device connection;
  • a determining unit configured to determine whether the type of the external charging device belongs to a dedicated charging port DCP mode
  • the control unit is further configured to control a fast charging access point at the D+, D- port to be connected to the external charging device when the type of the external charging device belongs to the dedicated charging port DCP mode;
  • a fast charging protocol handshake unit configured to perform a fast charging protocol handshake with the external charging device according to a preset fast charging protocol handshake sequence
  • the target fast charging protocol determining unit is configured to: when the handshake is successful, use the fast charging protocol that the current handshake succeeds as the target fast charging protocol;
  • the fast charge mode entry unit is configured to control the external charging device to enter a high voltage charging port HVDCP charging mode, and perform charging according to the target fast charging protocol.
  • control unit is specifically configured to control a differential data pin D+, a switch at the D- port of the terminal device charging interface, and a non-fast charging at the D+ and D- ports.
  • the control unit is further configured to control the switch to connect with the fast charging access point at the D+ and D- ports.
  • control unit is specifically configured to set a fast charging access point at a differential data pin D+ and a D-port of the terminal device charging interface to a high-resistance state, and control the The non-fast charging access point at the D+, D- port is set to a non-high resistance state;
  • the control unit is further configured to set the non-fast charging access point at the D+ and D- ports to a high impedance state, and control the fast charging access point at the D+ and D- ports to be set to non- High resistance state.
  • the terminal device further includes:
  • a monitoring unit configured to monitor a temperature of the battery in the terminal device
  • a monitoring processing unit configured to: when the temperature of the battery in the terminal device exceeds a first threshold and is less than a second threshold, control the external charging device to decrease an output voltage value of the external charging device; and the battery in the terminal device When the temperature exceeds the second threshold, the external charging device is controlled to exit the HVDCP charging mode.
  • the terminal device further includes:
  • a first starting unit configured to start a standard downlink port SDP charging mode when the type of the external charging device does not belong to the dedicated charging port DCP mode;
  • the second activation unit is configured to determine that the inserted external charging device is a conventional charging device that does not support the fast charging protocol when all handshaking fails, and activate the dedicated charging port DCP mode.
  • the embodiment of the present invention has the following advantages: firstly, by controlling the non-fast charging access point at the D+ and D- ports of the differential data pin of the charging interface of the terminal device, the external charging device is connected to determine the external charging. Whether the type of the device belongs to the dedicated charging port DCP mode; if it belongs to the dedicated charging port DCP mode, the fast charging access point at the D+ and D- ports is controlled to be connected with the external charging device; further according to the preset fast charging protocol handshake sequence Perform a fast charging protocol handshake with an external charging device, match a fast charging protocol that matches the external charging device, and control the external charging device to enter the high voltage charging port HVDCP charging mode for fast charging.
  • the judgment of the charging type of the external charging device that charges the terminal device is performed separately from the handshake of the fast charging protocol, and is compatible with various fast charging protocols, thereby reducing the limitation of the terminal device using the fast charging technology.
  • FIG. 1 is a schematic flow chart of a fast charging identification method according to an embodiment of the present invention.
  • FIG. 2 is a schematic flow chart of another fast charging identification method disclosed in an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a switch connection at a charging port of a terminal device according to an embodiment of the present invention
  • FIG. 4 is a schematic flow chart of another fast charging identification method disclosed in an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of a terminal device according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic structural diagram of another terminal device according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic structural diagram of another terminal device according to an embodiment of the present invention.
  • the embodiment of the invention provides a fast charging identification method, which can be compatible with multiple fast charging protocols, and reduces the limitation of the terminal device using the fast charging technology.
  • the terminal device may include various types of terminal devices, such as a mobile phone, a tablet computer, a personal digital assistant (PDA), and a mobile Internet device (MID).
  • the terminal device supports at least two fast charging protocols.
  • FIG. 1 is a schematic flowchart diagram of a fast charging identification method according to an embodiment of the present invention.
  • the method shown in FIG. 1 is applied to a terminal device supporting at least two fast charging protocols.
  • the fast charging identification method shown in FIG. 1 may include the following steps:
  • the terminal device detects that an external charging device is inserted on the charging interface of the terminal device, the non-fast charging access point at the D+ and D- ports of the differential data pin of the controlling terminal device charging interface is connected with the external charging device, and the external device is judged. Whether the type of charging device belongs to the dedicated charging port DCP mode;
  • the terminal device charging interface adopts a universal serial bus (USB) interface (female port), and includes four ports of VBUS, D+, D-, and GND, wherein the VBUS and GND ports respectively represent The positive and negative poles of the voltage are used to supply power to the terminal device from an external charging device.
  • the D+ and D- ports represent differential data pins.
  • the type of the external charging device needs to be first identified, and the charger type can be identified according to the states of the D+ and D- ports, if D+ If the D-D port is in the short-circuit state, it can be determined that the charging mode of the terminal device belongs to the Dedicated Charging Ports (DCP) charging mode (ie, the power adapter or the mobile power charging mode); if D+, D- If the port is not in the short-circuit state, it can be determined that the charging mode of the terminal device belongs to a standard downlink port (SDP) charging mode (ie, a host charging mode).
  • DCP Dedicated Charging Ports
  • SDP standard downlink port
  • the terminal device can support multiple fast charging protocols, such as a Qualcomm QC version fast charging technology, a MediaTek Pump Express fast charging technology, and a TI Maxcharge technology. Since the type identification of the external charging device is identified according to the state of the D+ and D-ports, and some fast charging protocol handshakes (such as the QC fast charging protocol) are also identified according to the state of the D+ and D-ports, in order to avoid charging There is interference between the device type identification and the fast charging protocol handshake. Two access points are set at the D+ and D- ports of the terminal device, one non-fast charging access point, one fast charging access point, and the non-fast charging access point. Identify the type of external charging device that is used for fast charging protocol identification.
  • fast charging protocol handshakes such as the QC fast charging protocol
  • step 101 when it is determined in step 101 that the type of the external charging device belongs to the DCP mode, it is necessary to determine whether the external charging device supports the fast charging technology, and control the fast charging access point and the external at the D+ and D- ports.
  • the charging device is connected for a fast charging protocol handshake.
  • the terminal device performs a fast charging protocol handshake with the external charging device according to the preset fast charging protocol handshake sequence. If the handshake is successful, the fast charging protocol with the current handshake success is used as the target fast charging protocol, and the external charging device is controlled to enter the high voltage. Charging port HVDCP charging mode, charging according to the above target fast charging protocol.
  • the handshake sequence of the fast charging protocol supported by the terminal device is preset in the terminal device, and the preset fast charging protocol handshake sequence may be sorted according to the frequency used by the user, which is not limited by the embodiment of the present invention. .
  • the handshake when the handshake is performed with the external charging device according to the preset fast charging protocol handshake sequence, once the handshake is successful, the fast charging protocol with the current handshake is successfully used as the target fast charging protocol, and the handshake operation is stopped, and the external charging is controlled.
  • the device enters the high voltage charging port HVDCP charging mode and charges according to the above target fast charging protocol.
  • the handshake process is as follows: When an external charging device is connected to the terminal device through the data line, the external charging device defaults to D+ and D- short-circuit through the MOS tube, and the terminal device detects external charging.
  • the device type is DCP.
  • the output voltage is 5v, and the terminal device is normally charged.
  • the High Voltage Dedicated Charger Port (HVDCP) process in the terminal device will start and start loading 0.325V on D+. When this voltage is maintained for 1.5s.
  • HVDCP High Voltage Dedicated Charger Port
  • the external charging device will disconnect the short circuit of D+ and D-, the voltage on D- will decrease, and after the terminal device detects the voltage drop on D-, the terminal device obtains the preset charging voltage of the terminal device through the HVDCP process.
  • Value such as 9V, sets the voltage on D+ to 3.3V, and the voltage on D- is 0.6V.
  • the external charging device controls the output voltage of 9v according to the voltage value on D+ and D-. If the QC handshake fails, the value is The PE/PE+ handshake of MediaTek Pump Express communicates with the external charging device via the USB port of VBUS and applies for the corresponding output voltage.
  • the external charging device supports MediaTek Pump Express fast charging technology and passes the HVDCP process according to the terminal device. Obtain the voltage value of the terminal device battery and increase the output voltage of the external charging device.
  • Qualcomm QC communicates by configuring D+ and D-voltage.
  • MediaTek Pump Express communicates through the current pulse on VBUS. If the handshake fails, the TI Maxcharge protocol handshake is performed. Until the fast charging protocol that matches the external charging device is matched. If all of the fast charging protocol handshaking fails, it is determined that the inserted external charging device is a conventional charging device that does not support the fast charging protocol, and the DCP charging mode is activated.
  • the non-rapid charging access point at the D+, D- port is connected by default.
  • FIG. 2 is an implementation of the present invention.
  • the method shown in FIG. 2 may include the following steps:
  • the switch at the differential data pin D+ and D- ports of the charging interface of the terminal device and the non-fast charging access point at the D+ and D- ports are controlled. connection;
  • a switch is disposed at two differential data pins D+ and D- ports of the terminal device charging interface.
  • the switch can be connected to a non-fast charging access point, and the switch can be a double-pole double The throw switch or two single pole double throw switches, and the switch is connected to the processor in the terminal device, and the connection condition of the switch is controlled by the processor, and the connection diagram shown in FIG. 3 can be adopted.
  • two access points are set at the D+ and D- ports of the terminal device, for example, 1/1' indicates a non-fast charging access point, and 2/2' indicates a fast charging connection.
  • the A and B terminals are fixed ends of the switch, and the D+ and D- terminals of the external device are respectively connected to A and B.
  • control switch is connected to the fast charging access point at the D+ and D- ports;
  • step 202 if it is determined in step 202 that the type of the external charging device is the DCP mode, then it is necessary to determine whether the external charging device supports fast charging, and the control switch is connected to the fast charging access point at the D+ and D- ports. .
  • the terminal device performs a fast charging protocol handshake with the external charging device according to the preset fast charging protocol handshake sequence. If the handshake is successful, the fast charging protocol with the current handshake success is used as the target fast charging protocol, and the external charging device is controlled to enter the high voltage. Charging port HVDCP charging mode, charging according to the above target fast charging protocol;
  • the inserted external charging device is a conventional charging device that does not support the fast charging protocol, and the DCP charging mode is started.
  • the purpose of protecting the battery in the terminal device may be implemented by using the steps 207 to 209, wherein the first threshold and the second threshold may be set according to a temperature range that can be carried by the battery in the terminal device, thereby achieving reasonable The purpose of protecting the battery.
  • FIG. 4 is a schematic flowchart diagram of another fast charging identification method according to an embodiment of the present invention.
  • the method shown in FIG. 4 is applied to a terminal device supporting at least two fast charging protocols, and specifically describes how to implement an external charging device connected to a non-fast charging access point and a fast charging access point.
  • the method shown in FIG. 4 may include the following steps:
  • the terminal device detects that an external charging device is inserted on the charging interface of the terminal device, set the fast charging access point at the D+ and D- ports of the charging data interface of the terminal device to a high-resistance state, and control D+, The non-fast charging access point at the D-port is set to a non-high resistance state;
  • a high resistance resistor can be set at a non-fast charging access point and a fast charging access point of D+, D-, and a three-state gate circuit can also be set, wherein the output of the three-state gate circuit is divided There are two states, high and low, and a third state, high impedance.
  • the high resistance state is equivalent to the isolation state.
  • the tri-state gate has an EN control enable to control the on/off of the gate.
  • the tri-state gate in the high-impedance state is isolated from the bus so that the bus can be occupied by other circuits at the same time. Therefore, when the fast charging access point at the D+ and D- ports needs to be set to a high impedance state, the high resistance resistance at the fast charging access point can be controlled to be connected, or the fast charging access point can be controlled.
  • the output of the gate circuit is in a high-impedance state, while the high-resistance resistance at the non-fast charging access point at the D+ and D- ports is off, or the three-gate circuit at the non-fast charging access point
  • the output is not in a high-resistance state, and the manner in which the high-resistance state is controlled in a specific manner is not limited in the embodiment of the present invention.
  • the non-fast charging access point at the D+ and D- ports to a high impedance state, and control the fast charging access at the D+ and D- ports.
  • the point is set to a non-high impedance state
  • step 402 if it is determined in step 402 that the type of the external charging device is the DCP mode, then it is necessary to determine whether the external charging device supports the fast charging technology, and the fast charging access point at the D+ and D- ports is set to Non-high resistance state.
  • the terminal device performs a fast charging protocol handshake with the external charging device according to the preset fast charging protocol handshake sequence. If the handshake is successful, the fast charging protocol with the current handshake success is used as the target fast charging protocol, and the external charging device is controlled to enter the high voltage. Charging port HVDCP charging mode, charging according to the above target fast charging protocol;
  • the inserted external charging device is a conventional charging device that does not support the fast charging protocol, and the DCP charging mode is started.
  • the purpose of protecting the battery in the terminal device may be implemented by using the steps 407 to 409, wherein the first threshold and the second threshold may be set according to a temperature range that can be carried by the battery in the terminal device, thereby achieving reasonable The purpose of protecting the battery.
  • FIG. 5 is a schematic structural diagram of a terminal device according to an embodiment of the present invention.
  • the terminal device supports at least two types of fast charging protocols.
  • the terminal device may include:
  • the control unit 501 is configured to, when detecting that the external charging device is inserted on the charging interface of the terminal device, connect the non-rapid charging access point at the D+ and D- ports of the charging interface of the terminal device to the external charging device;
  • the determining unit 502 is configured to determine whether the type of the external charging device belongs to the dedicated charging port DCP mode;
  • the control unit 501 is further configured to control the fast charging access point at the D+ and D- ports to be connected to the external charging device when the type of the external charging device belongs to the dedicated charging port DCP mode;
  • the fast charging protocol handshake unit 503 is configured to perform a fast charging protocol handshake with the external charging device according to a preset fast charging protocol handshake sequence;
  • the target fast charging protocol determining unit 504 is configured to: when the handshake is successful, use the fast charging protocol that the current handshake succeeds as the target fast charging protocol;
  • the fast charge mode entry unit 505 is configured to control the external charging device to enter the high voltage charging port HVDCP charging mode and perform charging according to the target fast charging protocol.
  • control unit 501 controls the differential data pin D+ of the terminal device charging interface, the non-fast charging access point at the D-port, and the manner in which the fast charging access point is connected to the external charging device.
  • the embodiment of the invention lists two possible implementations:
  • the control unit 501 is specifically configured to control a differential data pin D+, a switch at the D-port of the terminal device charging interface, and a non-fast charging access point connection at the D+ and D- ports;
  • the control unit 501 is specifically configured to control the connection of the switch to the fast charging access point at the D+ and D- ports.
  • a switch is provided at two differential data pins D+ and D- ports of the terminal device charging interface.
  • the switch can be connected to a non-rapid charging access point, and the switch can be a double-pole double-throw switch. Or two single-pole double-throw switches, and the switch is connected to a processor in the terminal device, and the processor controls the connection of the switches.
  • the control unit 501 is specifically configured to set the fast charging access point at the differential data pins D+ and D- ports of the terminal device charging interface to a high-impedance state, and control non-fast charging access at the D+ and D- ports.
  • the point is set to a non-high impedance state;
  • the control unit 501 is further configured to set the non-fast charging access point at the D+ and D- ports to a high impedance state, and control the fast charging access point at the D+ and D- ports to be set to a non-high resistance. status.
  • a high resistance resistor can be set at the D+, D- non-rapid charging access point and the fast charging access point, and a three-state gate circuit can also be set, wherein the output of the three-state gate circuit is high and low.
  • a third state that is, a high resistance state.
  • the high resistance state is equivalent to the isolation state.
  • the tri-state gate has an EN control enable to control the on/off of the gate.
  • the tri-state gate in the high-impedance state is isolated from the bus so that the bus can be occupied by other circuits at the same time.
  • FIG. 6 is a schematic structural diagram of another terminal device according to an embodiment of the present invention.
  • the terminal device shown in FIG. 6 is optimized by the terminal device shown in FIG. 5.
  • the terminal device shown in FIG. 6 further includes:
  • the monitoring unit 506 is configured to monitor the temperature of the battery in the terminal device
  • the monitoring processing unit 507 is configured to control the external charging device to reduce the output voltage value of the external charging device when the temperature of the battery in the terminal device exceeds the first threshold and is less than the second threshold; the temperature of the battery exceeds the second in the terminal device At the threshold, the external charging device is controlled to exit the HVDCP charging mode.
  • the purpose of protecting the battery can be achieved by the monitoring unit 506 and the monitoring processing unit 507.
  • the terminal device shown in FIG. 6 may further include:
  • the first starting unit 508 is configured to start the standard downlink port SDP charging mode when the type of the external charging device does not belong to the dedicated charging port DCP mode;
  • the second activation unit 509 is configured to determine that the inserted external charging device is a conventional charging device that does not support the fast charging protocol when all handshaking fails, and activate the dedicated charging port DCP mode.
  • FIG. 7 is a schematic diagram of a physical structure of a terminal device according to an embodiment of the present invention.
  • the terminal device may include at least one processor 701, such as a CPU, at least one network interface 702, a user interface 703, a memory 704, at least one communication bus 705, and a charging interface 706.
  • the communication bus 705 is arranged to implement connection communication between these components, and the user interface 703 may include a display, a keyboard, and the like.
  • the memory 704 may be a high speed RAM memory or a non-volatile memory such as at least one disk memory.
  • the network interface 702 can be a Bluetooth interface or a WiFi interface.
  • the memory 704 can optionally also be at least one storage device located remotely from the aforementioned processor 701.
  • a memory 704 as a computer storage medium may include an operating system, a network communication module, a user interface module, and a program for fast charging implementation.
  • the terminal device supports at least two fast charging protocols, wherein the processor 701 can be used to call a program of the fast charging identification method stored in the memory 704, and perform the following operations:
  • the terminal device detects that an external charging device is inserted on the charging interface of the terminal device, the non-fast charging access point at the D+ and D- ports of the control terminal device charging interface is connected with the external charging device, and the external charging device is determined. Whether the type belongs to the dedicated charging port DCP mode;
  • the fast charging access point at the D+ and D- ports is controlled to be connected to the external charging device;
  • the terminal device performs a fast charging protocol handshake with the external charging device according to the preset fast charging protocol handshake sequence. If the handshake is successful, the fast charging protocol with the current handshake success is used as the target fast charging protocol, and the external charging device is controlled to enter the high voltage charging port. HVDCP charging mode, charging according to the target fast charging protocol.
  • the processor 701 can be used to call a program of the fast charge identification method stored in the memory 704, and control the non-fast charging access point and the external charging device at the differential data pin D+, D- port of the terminal device charging interface. Connections, including:
  • Controlling the fast charging access point at the D+, D- port to connect with an external charging device including:
  • a control switch is coupled to the fast charging access point at the D+, D- port.
  • the processor 701 may be configured to invoke a program of the fast charge identification method stored in the memory 704 to control the non-fast charging access point and the external portion of the differential data pin D+, D- port of the terminal device charging interface.
  • Charging device connections including:
  • Controlling the fast charging access point at the D+, D- port to connect with an external charging device including:
  • the processor 701 can be used to call a program of the fast charge identification method stored in the memory 704, and after the external charging device is controlled to enter the high voltage charging port HVDCP charging mode, and then charged according to the target fast charging protocol, The following operations:
  • the processor 701 can be used to invoke a program of the fast charge identification method stored in the memory 704. After determining whether the type of the external charging device belongs to the dedicated charging port DCP mode, the processor 701 is further configured to perform the following operations:
  • the standard downlink port SDP charging mode is activated
  • the terminal device After the terminal device performs a fast charging protocol handshake with the external charging device according to the preset fast charging protocol handshake sequence, the terminal device also performs the following operations:
  • the inserted external charging device is a conventional charging device that does not support the fast charging protocol, and the dedicated charging port DCP mode is activated.
  • terminal device shown in FIG. 7 only indicates components required for performing the fast charging identification method disclosed in the embodiment of the present invention, and other components that can be provided by the terminal device are not marked in the embodiment of the present invention. Because this does not affect the implementation of the embodiments of the present invention.
  • each unit included is only divided according to functional logic, but is not limited to the above division, as long as the corresponding function can be implemented;
  • the specific names of the functional units are also only for convenience of distinguishing from each other, and are not intended to limit the scope of protection of the present invention.
  • the storage medium may be a flash memory disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk or an optical disk, and the like, which can store program code.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

一种快速充电识别方法及终端设备,应用于移动通信技术领域。该方法应用于支持至少两种快速充电协议的终端设备,包括:控制终端设备充电接口D+、D-端口处的非快速充电接入点与外部充电设备连接,判断外部充电设备的类型是否属于DCP模式(101);若是,则控制D+、D-处的快速充电接入点与外部充电设备连接(102);终端设备根据预设的快速充电协议握手顺序与外部充电设备进行快速充电协议握手,若握手成功,则将当前握手成功的快速充电协议作为目标快速充电协议,并控制外部充电设备进入HVDCP充电模式,按照目标快速充电协议进行充电(103)。该方法可以兼容多种快速充电协议,降低了终端设备使用快速充电技术的局限性。

Description

一种快速充电识别方法及终端设备
本申请要求于2016年8月30日提交中国专利局,申请号为201610781657.5、发明名称为“一种快速充电识别方法及终端设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及移动通信技术领域,尤其涉及一种快速充电识别方法及终端设备。
背景技术
随着智能手机等终端设备的硬件升级和屏幕尺寸的增大,对电池续航能力的要求也越来越强,目前市场上的大多数智能手机自身配置的电池容量普遍在3000mAh以上,传统的5V、1A的充电器给智能手机充满电至少需要3个小时以上,5V、2A的充电器给手机充满一次电也至少需要2小时,随着智能手机本身耗电量的增加,普通用户经常是隔天需要充一次电,高端用户更是需要每天充电,为节省充电时间,快速充电技术应运而生,所谓快速充电技术是用于牵引蓄电池需要在较短时间内恢复完全充电状态的一种充电方法。目前行业内有两种快速充电方式实现对电池的快速充电:一种是通过增大充电电流实现快速充电,如OPPO的闪充技术;一种是通过抬高电压实现快速充电,如高通的Quick Charge 2.0快速充电技术。
目前,智能终端中的电池主要是采用锂离子电池,对于锂电池的快速充电通信标准,有高通Quick Charge 2.0、OPPO VOOC、MTK Pump Express Plus、TI MaxCharge、Apple 20V、USB 3.1PD等快速充电规范,不同的快速充电对电流、电压的控制不尽相同,使得快速充电移动电源需要去适应不同的标准以满足给电池提供不同的电流、电压。因此,在使用过程中针对终端设备的不同快速充电规范,需要选用与之匹配的快速充电充电设备,给终端设备使用快速充电技术带来了一定的局限性。
发明内容
本发明实施例提供了一种快速充电识别方法及终端设备,可以兼容多种快速充电协议,降低了终端设备使用快速充电技术的局限性。
本发明实施例第一方面公开了一种快速充电识别方法,应用于支持至少两种快速充电协议的终端设备,所述方法包括:
所述终端设备检测到所述终端设备充电接口上有外部充电设备插入时,控制所述终端设备充电接口的差分数据引脚D+、D-端口处的非快速充电接入点与所述外部充电设备连接,并判断所述外部充电设备的类型是否属于专用充电端口DCP模式;
若所述外部充电设备的类型属于所述专用充电端口DCP模式,则控制所述D+、D-端口处的快速充电接入点与所述外部充电设备连接;
所述终端设备根据预设的快速充电协议握手顺序与所述外部充电设备进行快速充电协议握手,若握手成功,则将当前握手成功的快速充电协议作为目标快速充电协议,并控制所述外部充电设备进入高电压充电端口HVDCP充电模式,按照所述目标快速充电协议进行充电。
作为一种可选的实施方式,所述控制所述终端设备充电接口的差分数据引脚D+、D-端口处的非快速充电接入点与所述外部充电设备连接,包括:
控制所述终端设备充电接口的差分数据引脚D+、D-端口处的开关与所述D+、D-端口处的非快速充电接入点连接;以及
所述控制所述D+、D-端口处的快速充电接入点与所述外部充电设备连接,包括:
控制所述开关与所述D+、D-端口处的快速充电接入点连接。
作为一种可选的实施方式,所述控制所述终端设备充电接口的差分数据引脚D+、D-端口处的非快速充电接入点与所述外部充电设备连接,包括:
将所述终端设备充电接口的差分数据引脚D+、D-端口处的快速充电接入点设置为高阻状态,并控制所述D+、D-端口处的非快速充电接入点设置为非高阻状态;以及
所述控制所述D+、D-端口处的快速充电接入点与所述外部充电设备连接,包括:
将所述D+、D-端口处的非快速充电接入点设置为高阻状态,并控制所述D+、D-端口处的快速充电接入点设置为非高阻状态。
作为一种可选的实施方式,所述控制所述外部充电设备进入高电压充电端口HVDCP充电模式,按照所述目标快速充电协议进行充电之后,所述方法还包括:
监测所述终端设备中电池的温度;
若所述终端设备中电池的温度超过第一阈值而小于第二阈值,则控制所述外部充电设备降低所述外部充电设备的输出电压值;
若所述终端设备中电池的温度超过所述第二阈值,则控制所述外部充电设备退出所述HVDCP充电模式。
作为一种可选的实施方式,所述判断所述外部充电设备的类型是否属于专用充电端口DCP模式之后,所述方法还包括:
若所述外部充电设备的类型不是属于所述专用充电端口DCP模式,则启动标准下行端口SDP充电模式;
所述终端设备根据预设的快速充电协议握手顺序与所述外部充电设备进行快速充电协议握手之后,所述方法还包括:
若全部握手均失败,则判定插入的所述外部充电设备是不支持快速充电协议的常规充电设备,并启动所述专用充电端口DCP模式。
本发明实施例第二方面公开了一种终端设备,支持至少两种快速充电协议,所述终端设备包括:
控制单元,设置为在检测到所述终端设备充电接口上有外部充电设备插入时,控制所述终端设备充电接口的差分数据引脚D+、D-端口处的非快速充电接入点与所述外部充电设备连接;
判断单元,设置为判断所述外部充电设备的类型是否属于专用充电端口DCP模式;
所述控制单元,还设置为在所述外部充电设备的类型属于所述专用充电端口DCP模式时,控制所述D+、D-端口处的快速充电接入点与所述外部充电设备连接;
快充协议握手单元,设置为根据预设的快速充电协议握手顺序与所述外部充电设备进行快速充电协议握手;
目标快充协议确定单元,设置为在握手成功时,将当前握手成功的快速充电协议作为目标快速充电协议;
快充模式进入单元,设置为控制所述外部充电设备进入高电压充电端口HVDCP充电模式,按照所述目标快速充电协议进行充电。
作为一种可选的实施方式,所述控制单元,具体设置为控制所述终端设备充电接口的差分数据引脚D+、D-端口处的开关与所述D+、D-端口处的非快速充电接入点连接;以及
所述控制单元,具体还设置为控制所述开关与所述D+、D-端口处的快速充电接入点连接。
作为一种可选的实施方式,所述控制单元,具体设置为将所述终端设备充电接口的差分数据引脚D+、D-端口处的快速充电接入点设置为高阻状态,并控制所述D+、D-端口处的非快速充电接入点设置为非高阻状态;以及
所述控制单元,具体还设置为将所述D+、D-端口处的非快速充电接入点设置为高阻状态,并控制所述D+、D-端口处的快速充电接入点设置为非高阻状态。
作为一种可选的实施方式,所述终端设备还包括:
监测单元,设置为监测所述终端设备中电池的温度;
监测处理单元,设置为在所述终端设备中电池的温度超过第一阈值而小于第二阈值时,控制所述外部充电设备降低所述外部充电设备的输出电压值;在所述终端设备中电池的温度超过所述第二阈值时,控制所述外部充电设备退出所述HVDCP充电模式。
作为一种可选的实施方式,所述终端设备还包括:
第一启动单元,设置为在所述外部充电设备的类型不是属于所述专用充电端口DCP模式时,启动标准下行端口SDP充电模式;
第二启动单元,设置为在全部握手均失败时,判定插入的所述外部充电设备是不支持快速充电协议的常规充电设备,并启动所述专用充电端口DCP模式。
从以上技术方案可以看出,本发明实施例具有以下优点:首先通过控制终端设备充电接口的差分数据引脚D+、D-端口处的非快速充电接入点与外部充电设备连接,判断外部充电设备的类型是否属于专用充电端口DCP模式;若属于专用充电端口DCP模式,则控制D+、D-端口处的快速充电接入点与外部充电设备连接;进一步地根据预设的快速充电协议握手顺序与外部充电设备进行快速充电协议握手,匹配出与外部充电设备吻合的快速充电协议,并控制外部充电设备进入高电压充电端口HVDCP充电模式进行快速充电。将为终端设备进行充电的外部充电设备的充电类型的判断与对快充协议的握手分开进行,可以兼容多种快速充电协议,降低了终端设备使用快速充电技术的局限性。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简要介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例公开的一种快速充电识别方法的流程示意图;
图2是本发明实施例公开的另一种快速充电识别方法的流程示意图;
图3是本发明实施例公开的一种终端设备充电端口处的开关连接示意图;
图4是本发明实施例公开的另一种快速充电识别方法的流程示意图;
图5是本发明实施例公开的一种终端设备的结构示意图;
图6是本发明实施例公开的另一种终端设备的结构示意图;
图7是本发明实施例公开的另一种终端设备的结构示意图。
具体实施方式
为了使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明作进一步地详细描述,显然,所描述的实施例仅仅是本发明一部份实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
本发明的说明书和权利要求书及上述附图中的术语“第一”和“第二”是用于区别不同对象,而非用于描述特定顺序。此外,术语“包括”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤或单元。
本发明实施例提供了一种快速充电识别方法,可以兼容多种快速充电协议,降低了终端设备使用快速充电技术的局限性。
本发明实施例中,终端设备可以包括手机、平板电脑、个人数字助理(Personal Digital Assistant, PDA)以及移动互联网设备(Mobile Internet Device,MID)等各类终端设备,本发明实施例后续不作重复。其中,终端设备支持至少两种快速充电协议。
请参阅图1,图1是本发明实施例公开的一种快速充电识别方法的流程示意图。其中,图1所示的方法应用于支持至少两种快速充电协议的终端设备,图1所示的快速充电识别方法可以包括以下步骤:
101、终端设备检测到终端设备充电接口上有外部充电设备插入时,控制终端设备充电接口的差分数据引脚D+、D-端口处的非快速充电接入点与外部充电设备连接,并判断外部充电设备的类型是否属于专用充电端口DCP模式;
本发明实施例中,终端设备充电接口采用通用串行总线(Universal Serial Bus,USB)接口(母口),包含VBUS、D+、D-、GND四个端口,其中VBUS与GND两个端口分别表示电压的正极和负极,是用来由外部充电设备向终端设备供电的电源线,D+、D-两个端口表示差分数据引脚。
本发明实施例中,在终端设备的充电接口中有外部充电设备插入时,首先需要对外部充电设备的类型进行识别,可以根据D+、D-两个端口的状态来识别充电器类型,若D+、D-两个端口处于短接状态,则可以判定该终端设备的充电方式属于专用充电端口(Dedicated Charging Ports,DCP)充电方式(即电源适配器或者移动电源充电方式);若D+、D-两个端口不是处于短接状态,则可以判定该终端设备的充电方式属于标准下行端口(StandardDownstream Ports,SDP)充电方式(即主机充电方式)。
本发明实施例中,终端设备可以支持多种快速充电协议,例如高通QC版快速充电技术、联发科Pump Express快速充电技术以及TI Maxcharge技术等。由于进行外部充电设备的类型识别是根据D+、D-端口的状态进行识别,而有些快速充电协议握手(例如QC快速充电协议)时也是根据D+、D-端口的状态进行识别,因此为了避免充电器类型识别与快速充电协议握手存在干扰,在终端设备D+、D-端口处设置两个接入点,一个非快速充电接入点,一个快速充电接入点,非快速充电接入点用于识别外部充电设备的类型,快速充电接入点用于进行快速充电协议识别。
102、若上述外部充电设备的类型属于专用充电端口DCP模式,则控制D+、D-端口处的快速充电接入点与外部充电设备连接;
本发明实施例中,通过步骤101判断出外部充电设备的类型属于DCP模式时,接下来需要判断该外部充电设备是否支持快速充电技术,控制D+、D-端口处的快速充电接入点与外部充电设备连接,以进行快速充电协议握手。
103、终端设备根据预设的快速充电协议握手顺序与外部充电设备进行快速充电协议握手,若握手成功,则将当前握手成功的快速充电协议作为目标快速充电协议,并控制外部充电设备进入高电压充电端口HVDCP充电模式,按照上述目标快速充电协议进行充电。
本发明实施例中,在终端设备中预先设置有终端设备支持的快速充电协议的握手顺序,该预设的快速充电协议握手顺序可以根据用户使用的频次进行排序,本发明实施例不作唯一性限定。
本发明实施例中,按照预设的快速充电协议握手顺序与外部充电设备进行握手时,一旦握手成功,则将当前握手成功的快速充电协议作为目标快速充电协议,并停止握手操作,控制外部充电设备进入高电压充电端口HVDCP充电模式,按照上述目标快速充电协议进行充电。
例如,若首先进行高通QC握手,握手过程如下:当将外部的充电设备通过数据线连到终端设备上时,外部充电设备默认通过 MOS管让D+、D-短接,终端设备探测到外部充电设备类型为DCP,此时输出电压为5v,终端设备正常充电。若终端设备支持高通QC版快速充电协议,则终端设备中的高电压充电端口(High Voltage Dedicated Charger Port,HVDCP)进程将会启动,开始在D+上加载0.325V的电压,当这个电压维持1.5s后,外部充电设备将断开D+和D-的短接,D-上的电压将会下降,终端设备检测到D-上的电压下降后,终端设备通过HVDCP进程获取终端设备预设的充电电压值,比如9V,则设置D+上的电压为3.3V,D-上的电压为0.6V,则外部充电设备根据D+、D-上的电压值控制其输出9v电压,若QC握手失败,则进行联发科Pump Express的PE/PE+握手,通过USB端口的VBUS向外部充电设备通讯并申请相应的输出电压,若通信成功,则表示外部充电设备支持联发科Pump Express快速充电技术,并根据终端设备通过HVDCP进程获取到的终端设备电池的电压值,提高外部充电设备的输出电压。与高通QC快速充电技术不同的是:高通QC是通过配置D+、D-电压的方式来通讯,联发科Pump Express是通过VBUS上的电流脉冲来通讯,若握手失败,则再进行TI Maxcharge协议握手,直到匹配出与外部充电设备吻合的快速充电协议。若全部快速充电协议握手均失败,则判定插入的外部充电设备是不支持快速充电协议的常规充电设备,并启动DCP充电模式。
可选地,若外部充电设备与终端设备断开连接,则默认与D+、D-端口处的非快速充电接入点连接。
在图1所描述的方法中,可以兼容多种快速充电协议,降低了终端设备使用快速充电技术的局限性。
可选地,实现外部充电设备与非快速充电接入点以及快速充电接入点连接的方式有多种,本发明实施例提供了两种实现方式,请参阅图2,图2是本发明实施例公开的另一种快速充电识别方法的流程示意图。其中,图2所示的方法应用于支持至少两种快速充电协议的终端设备,具体说明了一种可选的如何实现外部充电设备与非快速充电接入点以及快速充电接入点连接的方式,图2所示的方法可以包括以下步骤:
201、终端设备检测到终端设备充电接口上有外部充电设备插入时,控制终端设备充电接口的差分数据引脚D+、D-端口处的开关与D+、D-端口处的非快速充电接入点连接;
本发明实施例中,在终端设备充电接口的两个差分数据引脚D+、D-端口处设置有开关,默认状态下开关可以与非快速充电接入点连接,该开关可以是一个双刀双掷开关或者是两个单刀双掷开关,并且该开关与终端设备中的处理器连接,由该处理器控制开关的连通情况,可以采用图3所示的连接示意图。在图3所示的开关连接示意图中,终端设备的D+、D-端口处设置有两个接入点,例如,1/1’表示非快速充电接入点、2/2’表示快速充电接入点,A端与B端是开关的固定端,外部设备的D+、D-端分别与A、B连接。
202、判断上述外部充电设备的类型是否属于专用充电端口DCP模式;
203、若上述外部充电设备的类型不是属于专用充电端口DCP充电方式,则启动SDP充电模式;
204、若上述外部充电设备的类型属于专用充电端口DCP模式,则控制开关与D+、D-端口处的快速充电接入点连接;
本发明实施例中,若通过步骤202判断出外部充电设备的类型是DCP模式,则接下来需要判断外部充电设备是否支持快速充电,控制开关与D+、D-端口处的快速充电接入点连接。
205、终端设备根据预设的快速充电协议握手顺序与外部充电设备进行快速充电协议握手,若握手成功,则将当前握手成功的快速充电协议作为目标快速充电协议,并控制外部充电设备进入高电压充电端口HVDCP充电模式,按照上述目标快速充电协议进行充电;
206、若全部握手均失败,则判定插入的外部充电设备是不支持快速充电协议的常规充电设备,并启动DCP充电模式;
若遍历终端设备支持的快速充电协议之后,均握手失败,则判断插入的外部充电设备是不支持快速充电协议的常规充电设备,则启动DCP充电模式。
207、监测终端设备中电池的温度;
208、若终端设备中电池的温度超过第一阈值而小于第二阈值,则控制上述外部充电设备降低输出电压值;
209、若终端设备中电池的温度超过第二阈值,则控制上述外部充电设备退出上述HVDCP充电模式;
本发明实施例中,通过步骤207~步骤209可以实现保护终端设备中电池的目的,其中,第一阈值与第二阈值可以根据终端设备中电池可承载的温度范围进行设定,从而达到合理地保护电池的目的。
进一步地,请参阅图4,图4是本发明实施例公开的另一种快速充电识别方法的流程示意图。其中,图4所示的方法应用于支持至少两种快速充电协议的终端设备,具体说明了另一种可选的如何实现外部充电设备与非快速充电接入点以及快速充电接入点连接的方式,图4所示的方法可以包括以下步骤:
401、终端设备检测到终端设备充电接口上有外部充电设备插入时,将终端设备充电接口的差分数据引脚D+、D-端口处的快速充电接入点设置为高阻状态,并控制D+、D-端口处的非快速充电接入点设置为非高阻状态;
作为一种可选的实施方式,可以在D+、D-的非快速充电接入点与快速充电接入点处设置高阻电阻,还可以设置三态门电路,其中三态门电路的输出除有高、低电平两种状态外,还有第三种状态,即高阻状态。高阻态相当于隔断状态。当三态门处于高阻态时,无论该门的输入如何变化,都不会对其输出有贡献。如果高阻态再输入下一级电路的话,对下级电路无任何影响,和没接一样,如果用万用表测的话有可能是高电平也有可能是低电平,随它后面接的电路确定。三态门都有一个EN控制使能端,来控制门电路的通断。处在高阻态的三态门是与总线隔离开的,这样总线可以同时被其他电路占用。因此,在需要将D+、D-端口处的快速充电接入点设置为高阻状态时,可以控制快速充电接入点处的高阻电阻处于连接状态,或者控制快速充电接入点处的三太门电路的输出处于高阻状态,同时将D+、D-端口处的非快速充电接入点处的高阻电阻处于断开状态,或者将非快速充电接入点处的三太门电路的输出不是处于高阻状态,具体采用何种方式控制高阻状态本发明实施例不作唯一性限定。
402、判断上述外部充电设备的类型是否属于专用充电端口DCP模式;
403、若上述外部充电设备的类型不是属于专用充电端口DCP充电方式,则启动SDP充电模式;
404、若上述外部充电设备的类型属于专用充电端口DCP模式,则将D+、D-端口处的非快速充电接入点设置为高阻状态,并控制D+、D-端口处的快速充电接入点设置为非高阻状态;
本发明实施例中,若通过步骤402判断出外部充电设备的类型是DCP模式,则接下来需要判断外部充电设备是否支持快速充电技术,控制D+、D-端口处的快速充电接入点设置为非高阻状态。
405、终端设备根据预设的快速充电协议握手顺序与外部充电设备进行快速充电协议握手,若握手成功,则将当前握手成功的快速充电协议作为目标快速充电协议,并控制外部充电设备进入高电压充电端口HVDCP充电模式,按照上述目标快速充电协议进行充电;
406、若全部握手均失败,则判定插入的外部充电设备是不支持快速充电协议的常规充电设备,并启动DCP充电模式;
若遍历终端设备支持的快速充电协议之后,均握手失败,则判断插入的外部充电设备是不支持快速充电协议的常规充电设备,则启动DCP充电模式。
407、监测终端设备中电池的温度;
408、若终端设备中电池的温度超过第一阈值而小于第二阈值,则控制上述外部充电设备降低输出电压值;
409、若终端设备中电池的温度超过第二阈值,则控制上述外部充电设备退出上述HVDCP充电模式;
本发明实施例中,通过步骤407~步骤409可以实现保护终端设备中电池的目的,其中,第一阈值与第二阈值可以根据终端设备中电池可承载的温度范围进行设定,从而达到合理地保护电池的目的。
请参阅图5,图5是本发明实施例公开的一种终端设备的结构示意图,其中,终端设备支持至少两种快速充电协议,如图5所示,该终端设备可以包括:
控制单元501,设置为在检测到终端设备充电接口上有外部充电设备插入时,控制终端设备充电接口的差分数据引脚D+、D-端口处的非快速充电接入点与外部充电设备连接;
判断单元502,设置为判断上述外部充电设备的类型是否属于专用充电端口DCP模式;
所述控制单元501,还设置为在上述外部充电设备的类型属于专用充电端口DCP模式时,控制D+、D-端口处的快速充电接入点与外部充电设备连接;
快充协议握手单元503,设置为根据预设的快速充电协议握手顺序与外部充电设备进行快速充电协议握手;
目标快充协议确定单元504,设置为在握手成功时,将当前握手成功的快速充电协议作为目标快速充电协议;
快充模式进入单元505,设置为控制外部充电设备进入高电压充电端口HVDCP充电模式,按照目标快速充电协议进行充电。
可选地,上述控制单元501控制终端设备充电接口的差分数据引脚D+、D-端口处的非快速充电接入点以及快速充电接入点与外部充电设备连接的方式可以有多种,本发明实施例列举出两种可能的实现方式:
上述控制单元501,具体设置为控制终端设备充电接口的差分数据引脚D+、D-端口处的开关与D+、D-端口处的非快速充电接入点连接;以及
上述控制单元501,具体还设置为控制上述开关与D+、D-端口处的快速充电接入点连接。
可选地,在终端设备充电接口的两个差分数据引脚D+、D-端口处设置有开关,默认状态下开关可以与非快速充电接入点连接,该开关可以是一个双刀双掷开关或者是两个单刀双掷开关,并且该开关与终端设备中的处理器连接,由该处理器控制开关的连通情况。
作为另一种可选的实施方式,
上述控制单元501,具体设置为将终端设备充电接口的差分数据引脚D+、D-端口处的快速充电接入点设置为高阻状态,并控制D+、D-端口处的非快速充电接入点设置为非高阻状态;以及
上述控制单元501,具体还设置为将上述D+、D-端口处的非快速充电接入点设置为高阻状态,并控制上述D+、D-端口处的快速充电接入点设置为非高阻状态。
可选地,可以在D+、D-的非快速充电接入点与快速充电接入点处设置高阻电阻,还可以设置三态门电路,其中三态门电路的输出除有高、低电平两种状态外,还有第三种状态,即高阻状态。高阻态相当于隔断状态。当三态门处于高阻态时,无论该门的输入如何变化,都不会对其输出有贡献。如果高阻态再输入下一级电路的话,对下级电路无任何影响,和没接一样,如果用万用表测的话有可能是高电平也有可能是低电平,随它后面接的电路确定。三态门都有一个EN控制使能端,来控制门电路的通断。处在高阻态的三态门是与总线隔离开的,这样总线可以同时被其他电路占用。具体采用何种方式控制高阻状态本发明实施例不作唯一性限定。
请一并参阅图6,图6是本发明实施例公开的另一种终端设备的结构示意图。其中,图6所示的终端设备是由图5所示的终端设备进行优化得到的,与图5所示的终端设备相比,图6所示的终端设备还包括:
监测单元506,设置为监测终端设备中电池的温度;
监测处理单元507,设置为在终端设备中电池的温度超过第一阈值而小于第二阈值时,控制外部充电设备降低外部充电设备的输出电压值;在终端设备中电池的温度超过所述第二阈值时,控制外部充电设备退出所述HVDCP充电模式。
其中,通过监测单元506以及监测处理单元507可以实现保护电池的目的。
可选地,图6所示的终端设备还可以包括:
第一启动单元508,设置为在外部充电设备的类型不是属于专用充电端口DCP模式时,启动标准下行端口SDP充电模式;
第二启动单元509,设置为在全部握手均失败时,判定插入的外部充电设备是不支持快速充电协议的常规充电设备,并启动专用充电端口DCP模式。
进一步地,请参阅图7,图7是本发明实施例提供的一种终端设备的物理结构示意图。如图7所示,该终端设备可以包括:至少一个处理器701,例如CPU,至少一个网络接口702,用户接口703,存储器704,至少一个通信总线705,充电接口706。其中,通信总线705设置为实现这些组件之间的连接通信,用户接口703可以包括显示屏(Display)、键盘(Keyboard)等。存储器704可以是高速RAM存储器,也可以是非不稳定的存储器(non-volatile memory),例如至少一个磁盘存储器。网络接口702可以是蓝牙接口,也可以是WiFi接口。存储器704可选的还可以是至少一个位于远离前述处理器701的存储装置。如图7所示,作为一种计算机存储介质的存储器704中可以包括操作系统、网络通信模块、用户接口模块以及快速充电实现方法的程序。
在图7所示的终端设备中,该终端设备支持至少两种快速充电协议,其中,处理器701可以用于调用存储器704中存储的快速充电识别方法的程序,并执行以下操作:
终端设备检测到终端设备充电接口上有外部充电设备插入时,控制终端设备充电接口的差分数据引脚D+、D-端口处的非快速充电接入点与外部充电设备连接,并判断外部充电设备的类型是否属于专用充电端口DCP模式;
若外部充电设备的类型属于专用充电端口DCP模式,则控制D+、D-端口处的快速充电接入点与外部充电设备连接;
终端设备根据预设的快速充电协议握手顺序与外部充电设备进行快速充电协议握手,若握手成功,则将当前握手成功的快速充电协议作为目标快速充电协议,并控制外部充电设备进入高电压充电端口HVDCP充电模式,按照目标快速充电协议进行充电。
可选地,处理器701可以用于调用存储器704中存储的快速充电识别方法的程序,控制终端设备充电接口的差分数据引脚D+、D-端口处的非快速充电接入点与外部充电设备连接,包括:
控制终端设备充电接口的差分数据引脚D+、D-端口处的开关与D+、D-端口处的非快速充电接入点连接;以及
控制所述D+、D-端口处的快速充电接入点与外部充电设备连接,包括:
控制开关与所述D+、D-端口处的快速充电接入点连接。
可选地,处理器701可以用于调用存储器704中存储的快速充电识别方法的程序,控制所述终端设备充电接口的差分数据引脚D+、D-端口处的非快速充电接入点与外部充电设备连接,包括:
将终端设备充电接口的差分数据引脚D+、D-端口处的快速充电接入点设置为高阻状态,并控制D+、D-端口处的非快速充电接入点设置为非高阻状态;以及
控制所述D+、D-端口处的快速充电接入点与外部充电设备连接,包括:
将D+、D-端口处的非快速充电接入点设置为高阻状态,并控制D+、D-端口处的快速充电接入点设置为非高阻状态。
可选地,处理器701可以用于调用存储器704中存储的快速充电识别方法的程序,在控制外部充电设备进入高电压充电端口HVDCP充电模式,按照目标快速充电协议进行充电之后,还用以执行以下操作:
监测终端设备中电池的温度;
若终端设备中电池的温度超过第一阈值而小于第二阈值,则控制外部充电设备降低外部充电设备的输出电压值;
若终端设备中电池的温度超过所述第二阈值,则控制外部充电设备退出所述HVDCP充电模式。
可选地,处理器701可以用于调用存储器704中存储的快速充电识别方法的程序,在判断外部充电设备的类型是否属于专用充电端口DCP模式之后,还用以执行以下操作:
若外部充电设备的类型不是属于专用充电端口DCP模式,则启动标准下行端口SDP充电模式;
在终端设备根据预设的快速充电协议握手顺序与外部充电设备进行快速充电协议握手之后,还用以执行以下操作:
若全部握手均失败,则判定插入的外部充电设备是不支持快速充电协议的常规充电设备,并启动专用充电端口DCP模式。
需要说明的是,图7所示的终端设备仅仅标示了终端设备中用于执行本发明实施例公开的快速充电识别方法所需的组件,对于终端设备能够具备的其他组件本发明实施例不作标示,因为这不影响本发明实施例的实现。
值得注意的是,上述快速充电识别方法及终端设备的实施例中,所包括的各个单元只是按照功能逻辑进行划分的,但并不局限于上述的划分,只要能够实现相应的功能即可;另外,各功能单元的具体名称也只是为了便于相互区分,并不用于限制本发明的保护范围。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
另外,本领域普通技术人员可以理解实现上述各方法实施例中的全部或部分步骤是可以通过程序来指令相关的硬件完成,相应的程序可以存储于一种计算机可读存储介质中,上述提到的存储介质可以是闪存盘、只读存储器(Read-Only Memory ,ROM)、随机存取器(Random Access Memory,RAM)、磁盘或光盘等各种可以存储程序代码的介质。
以上仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明实施例揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求的保护范围为准。

Claims (10)

  1. 一种快速充电识别方法,其特征在于,应用于支持至少两种快速充电协议的终端设备,所述方法包括:
    所述终端设备检测到所述终端设备充电接口上有外部充电设备插入时,控制所述终端设备充电接口的差分数据引脚D+、D-端口处的非快速充电接入点与所述外部充电设备连接,并判断所述外部充电设备的类型是否属于专用充电端口DCP模式;
    若所述外部充电设备的类型属于所述专用充电端口DCP模式,则控制所述D+、D-端口处的快速充电接入点与所述外部充电设备连接;
    所述终端设备根据预设的快速充电协议握手顺序与所述外部充电设备进行快速充电协议握手,若握手成功,则将当前握手成功的快速充电协议作为目标快速充电协议,并控制所述外部充电设备进入高电压充电端口HVDCP充电模式,按照所述目标快速充电协议进行充电。
  2. 根据权利要求1所述方法,其特征在于,所述控制所述终端设备充电接口的差分数据引脚D+、D-端口处的非快速充电接入点与所述外部充电设备连接,包括:
    控制所述终端设备充电接口的差分数据引脚D+、D-端口处的开关与所述D+、D-端口处的非快速充电接入点连接;以及,
    所述控制所述D+、D-端口处的快速充电接入点与所述外部充电设备连接,包括:
    控制所述开关与所述D+、D-端口处的快速充电接入点连接。
  3. 根据权利要求1所述方法,其特征在于,所述控制所述终端设备充电接口的差分数据引脚D+、D-端口处的非快速充电接入点与所述外部充电设备连接,包括:
    将所述终端设备充电接口的差分数据引脚D+、D-端口处的快速充电接入点设置为高阻状态,并控制所述D+、D-端口处的非快速充电接入点设置为非高阻状态;以及
    所述控制所述D+、D-端口处的快速充电接入点与所述外部充电设备连接,包括:
    将所述D+、D-端口处的非快速充电接入点设置为高阻状态,并控制所述D+、D-端口处的快速充电接入点设置为非高阻状态。
  4. 根据权利要求1所述方法,其特征在于,所述控制所述外部充电设备进入高电压充电端口HVDCP充电模式,按照所述目标快速充电协议进行充电之后,所述方法还包括:
    监测所述终端设备中电池的温度;
    若所述终端设备中电池的温度超过第一阈值而小于第二阈值,则控制所述外部充电设备降低所述外部充电设备的输出电压值;
    若所述终端设备中电池的温度超过所述第二阈值,则控制所述外部充电设备退出所述HVDCP充电模式。
  5. 根据权利要求1至4任意一项所述方法,其特征在于,所述判断所述外部充电设备的类型是否属于专用充电端口DCP模式之后,所述方法还包括:
    若所述外部充电设备的类型不是属于所述专用充电端口DCP模式,则启动标准下行端口SDP充电模式;
    所述终端设备根据预设的快速充电协议握手顺序与所述外部充电设备进行快速充电协议握手之后,所述方法还包括:
    若全部握手均失败,则判定插入的所述外部充电设备是不支持快速充电协议的常规充电设备,并启动所述专用充电端口DCP模式。
  6. 一种终端设备,其特征在于,支持至少两种快速充电协议,所述终端设备包括:
    控制单元,设置为在检测到所述终端设备充电接口上有外部充电设备插入时,控制所述终端设备充电接口的差分数据引脚D+、D-端口处的非快速充电接入点与所述外部充电设备连接;
    判断单元,设置为判断所述外部充电设备的类型是否属于专用充电端口DCP模式;
    所述控制单元,还设置为在所述外部充电设备的类型属于所述专用充电端口DCP模式时,控制所述D+、D-端口处的快速充电接入点与所述外部充电设备连接;
    快充协议握手单元,设置为根据预设的快速充电协议握手顺序与所述外部充电设备进行快速充电协议握手;
    目标快充协议确定单元,设置为在握手成功时,将当前握手成功的快速充电协议作为目标快速充电协议;
    快充模式进入单元,设置为控制所述外部充电设备进入高电压充电端口HVDCP充电模式,按照所述目标快速充电协议进行充电。
  7. 根据权利要求6所述终端设备,其特征在于,
    所述控制单元,具体设置为控制所述终端设备充电接口的差分数据引脚D+、D-端口处的开关与所述D+、D-端口处的非快速充电接入点连接;以及
    所述控制单元,具体还设置为控制所述开关与所述D+、D-端口处的快速充电接入点连接。
  8. 根据权利要求6所述终端设备,其特征在于,
    所述控制单元,具体设置为将所述终端设备充电接口的差分数据引脚D+、D-端口处的快速充电接入点设置为高阻状态,并控制所述D+、D-端口处的非快速充电接入点设置为非高阻状态;以及
    所述控制单元,具体还将所述D+、D-端口处的非快速充电接入点设置为高阻状态,并控制所述D+、D-端口处的快速充电接入点设置为非高阻状态。
  9. 根据权利要求6所述终端设备,其特征在于,所述终端设备还包括:
    监测单元,设置为监测所述终端设备中电池的温度;
    监测处理单元,设置为在所述终端设备中电池的温度超过第一阈值而小于第二阈值时,控制所述外部充电设备降低所述外部充电设备的输出电压值;在所述终端设备中电池的温度超过所述第二阈值时,控制所述外部充电设备退出所述HVDCP充电模式。
  10. 根据权利要求6至9任意一项所述终端设备,其特征在于,所述终端设备还包括:
    第一启动单元,设置为在所述外部充电设备的类型不是属于所述专用充电端口DCP模式时,启动标准下行端口SDP充电模式;
    第二启动单元,设置为在全部握手均失败时,判定插入的所述外部充电设备是不支持快速充电协议的常规充电设备,并启动所述专用充电端口DCP模式。
PCT/CN2016/100672 2016-08-30 2016-09-28 一种快速充电识别方法及终端设备 WO2018040173A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610781657.5 2016-08-30
CN201610781657.5A CN106356918B (zh) 2016-08-30 2016-08-30 一种快速充电识别方法及终端设备

Publications (1)

Publication Number Publication Date
WO2018040173A1 true WO2018040173A1 (zh) 2018-03-08

Family

ID=57857338

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/100672 WO2018040173A1 (zh) 2016-08-30 2016-09-28 一种快速充电识别方法及终端设备

Country Status (2)

Country Link
CN (1) CN106356918B (zh)
WO (1) WO2018040173A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117154865A (zh) * 2023-02-22 2023-12-01 荣耀终端有限公司 充电方法和充电装置

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106911157B (zh) * 2017-02-28 2023-12-12 深圳罗马仕科技有限公司 快充线、快充系统及快充方法
KR101986147B1 (ko) * 2017-09-05 2019-06-07 주식회사 유니크 차량용 급속 충전기
CN107681727B (zh) * 2017-10-24 2020-11-13 北京小米移动软件有限公司 电子设备的控制方法及装置
CN110556884B (zh) * 2018-06-01 2021-07-20 Oppo广东移动通信有限公司 充电管理方法、装置、介质及应用所述方法的电子设备
CN108874716B (zh) * 2018-06-20 2021-11-23 南京沁恒微电子股份有限公司 一种用于便携设备的充电通信连接装置及其方法
CN109327055A (zh) * 2018-08-22 2019-02-12 北京小米移动软件有限公司 充电处理方法、终端设备和存储介质
CN109217419B (zh) * 2018-09-21 2021-08-03 深圳市奥必赢科技有限公司 快速充电系统及方法
CN112640246A (zh) * 2018-12-28 2021-04-09 深圳市柔宇科技股份有限公司 快充协议转换电路、装置及方法
CN112769170A (zh) * 2019-10-21 2021-05-07 上海中兴软件有限责任公司 一种车载终端快速充电系统、方法和装置
CN112260366B (zh) * 2020-11-06 2023-11-24 维沃移动通信有限公司 充电方法、充电装置和充电器
CN117955206A (zh) * 2021-12-08 2024-04-30 华为技术有限公司 协议信息测试方法、测试仪、存储介质及程序产品
CN114726064B (zh) * 2022-06-08 2022-09-27 珠海智融科技股份有限公司 一种快速充电器功率控制方法及系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105226754A (zh) * 2015-10-16 2016-01-06 深圳宝砾微电子有限公司 电池充放电控制电路及其控制方法
CN205039588U (zh) * 2015-10-16 2016-02-17 深圳宝砾微电子有限公司 电池充放电控制电路
CN205283217U (zh) * 2016-01-14 2016-06-01 深圳市龙威盛电子科技有限公司 快速充电器
CN105656140A (zh) * 2016-02-29 2016-06-08 宇龙计算机通信科技(深圳)有限公司 终端充电控制方法及控制装置、终端
CN105811554A (zh) * 2015-12-30 2016-07-27 北京新兆民科技有限公司 一种电池桥接充电设备和方法
CN105870991A (zh) * 2016-01-30 2016-08-17 乐视致新电子科技(天津)有限公司 一种支持多电池快速充电的设备、装置及方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102684270B (zh) * 2012-05-31 2014-12-10 华为技术有限公司 一种识别usb充电器类型的方法及usb设备
US8745301B2 (en) * 2012-10-29 2014-06-03 Qualcomm Incorporated High voltage dedicated charging port
CN104796011A (zh) * 2014-01-21 2015-07-22 中兴通讯股份有限公司 一种充电方法、交流电适配器、充电管理装置及终端
WO2016074159A1 (zh) * 2014-11-11 2016-05-19 广东欧珀移动通信有限公司 通信方法、电源适配器和终端
CN105762863B (zh) * 2015-04-17 2018-06-26 维沃移动通信有限公司 一种充电方法和充电装置
CN105870988A (zh) * 2015-12-31 2016-08-17 乐视移动智能信息技术(北京)有限公司 充电器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105226754A (zh) * 2015-10-16 2016-01-06 深圳宝砾微电子有限公司 电池充放电控制电路及其控制方法
CN205039588U (zh) * 2015-10-16 2016-02-17 深圳宝砾微电子有限公司 电池充放电控制电路
CN105811554A (zh) * 2015-12-30 2016-07-27 北京新兆民科技有限公司 一种电池桥接充电设备和方法
CN205283217U (zh) * 2016-01-14 2016-06-01 深圳市龙威盛电子科技有限公司 快速充电器
CN105870991A (zh) * 2016-01-30 2016-08-17 乐视致新电子科技(天津)有限公司 一种支持多电池快速充电的设备、装置及方法
CN105656140A (zh) * 2016-02-29 2016-06-08 宇龙计算机通信科技(深圳)有限公司 终端充电控制方法及控制装置、终端

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117154865A (zh) * 2023-02-22 2023-12-01 荣耀终端有限公司 充电方法和充电装置

Also Published As

Publication number Publication date
CN106356918B (zh) 2019-10-11
CN106356918A (zh) 2017-01-25

Similar Documents

Publication Publication Date Title
WO2018040173A1 (zh) 一种快速充电识别方法及终端设备
WO2016036128A1 (en) Electronic device, method of controlling charging by electronic device, and method of supplying power by power supply device
WO2017150784A1 (en) Electronic apparatus and method for controlling charge
WO2014148843A1 (en) Wireless power transmitting unit, wireless power receiving unit, and control methods
WO2018040170A1 (zh) 一种充电方法及装置
WO2015068997A1 (en) Method for rapid charging and electronic device thereof
WO2017061689A1 (en) Electronic apparatus, charge controlling method, and computer-readable recording medium
WO2021042566A1 (zh) 用于手持设备的快速充电系统及方法、手持设备
WO2018129977A1 (zh) 一种充电控制方法、装置、存储介质和计算机设备
WO2019017595A1 (ko) 무선 배터리 관리 시스템 및 이를 포함하는 배터리팩
WO2018236054A1 (ko) 전자 장치 및 그의 충전 제어 방법
EP3732758A1 (en) Method and electronic device for controlling voltage output to external electronic device according to size of voltage detected at signal terminal connected to external electronic device
CN102223439B (zh) 一种具有usb接口的电子设备及其usb通信启动方法
WO2021020900A1 (en) Electronic device for preventing damage of usb device and operating method thereof
WO2019146917A1 (en) Electronic device including battery and method of controlling charging thereof
WO2020242209A1 (en) Electronic device having voltage divider adaptively changing voltage division ratio
US11641124B2 (en) Electronic device and charging method thereof
WO2019066521A1 (en) ELECTRONIC DEVICE AND METHOD FOR CONTROLLING ELECTRONIC DEVICE
WO2022131443A1 (ko) 무선 전력 전송을 위한 전자 장치
EP3011658A1 (en) Charging device and operating method thereof
WO2021162286A1 (en) Electronic device and method for recognizing audio output device connected to usb type-c connector
EP4283822A1 (en) Electronic device
WO2018157412A1 (zh) 快充线、快充系统及快充方法
WO2021042565A1 (zh) 用于手持设备的快速充电系统及方法、手持设备
WO2021095895A1 (ko) 전자 장치 및 전자 장치의 충전 제어 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16914736

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16914736

Country of ref document: EP

Kind code of ref document: A1