WO2018038461A1 - Extended release microsphere to which release inhibitor comprising oil, in which c18:1, c18:1(oh) or c18:2 long-chain fatty acid is contained, is applied and preparation method therefor - Google Patents

Extended release microsphere to which release inhibitor comprising oil, in which c18:1, c18:1(oh) or c18:2 long-chain fatty acid is contained, is applied and preparation method therefor Download PDF

Info

Publication number
WO2018038461A1
WO2018038461A1 PCT/KR2017/008981 KR2017008981W WO2018038461A1 WO 2018038461 A1 WO2018038461 A1 WO 2018038461A1 KR 2017008981 W KR2017008981 W KR 2017008981W WO 2018038461 A1 WO2018038461 A1 WO 2018038461A1
Authority
WO
WIPO (PCT)
Prior art keywords
release
oil
microspheres
sustained
biocompatible polymer
Prior art date
Application number
PCT/KR2017/008981
Other languages
French (fr)
Korean (ko)
Inventor
임덕수
김병기
김대현
유지석
박영준
Original Assignee
영진약품 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 영진약품 주식회사 filed Critical 영진약품 주식회사
Publication of WO2018038461A1 publication Critical patent/WO2018038461A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/04Peptides having up to 20 amino acids in a fully defined sequence; Derivatives thereof
    • A61K38/08Peptides having 5 to 11 amino acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/1605Excipients; Inactive ingredients
    • A61K9/1617Organic compounds, e.g. phospholipids, fats
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/04Peptides having up to 20 amino acids in a fully defined sequence; Derivatives thereof
    • A61K38/08Peptides having 5 to 11 amino acids
    • A61K38/09Luteinising hormone-releasing hormone [LHRH], i.e. Gonadotropin-releasing hormone [GnRH]; Related peptides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/08Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing oxygen, e.g. ethers, acetals, ketones, quinones, aldehydes, peroxides
    • A61K47/14Esters of carboxylic acids, e.g. fatty acid monoglycerides, medium-chain triglycerides, parabens or PEG fatty acid esters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/1605Excipients; Inactive ingredients
    • A61K9/1629Organic macromolecular compounds
    • A61K9/1641Organic macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyethylene glycol, poloxamers
    • A61K9/1647Polyesters, e.g. poly(lactide-co-glycolide)

Definitions

  • release inhibitors including oils containing C18: l, C18: l (0H) or C18: 2 long chain fatty acids, and methods for preparing the same
  • the present invention relates to a sustained-release microsphere and a method for preparing the same that can continuously control the release of the drug by encapsulating a water-soluble drug in a carrier made of a biodegradable polymer, more specifically ' physiological activity encapsulated in a conventional biocompatible polymer Unlike sustained-release preparations that contain substances, oils containing long-chain fatty acids, specifically C18: 1, C18: 1 (0H) or C18: 2 long-chain fatty acids, are included in biocompatible polymers containing release inhibitors.
  • the present invention relates to a microsphere and a method for manufacturing the same.
  • sustained-release injection formulations are considered to be very useful for reducing the frequency of drug use and improving patient comfort and virtues while maintaining the drug concentration for a long time.
  • This sustained release injectable formulation refers to an injectable formulation formulated so that the drug can be sustained and uniformly released in the body upon subcutaneous or intramuscular injection while maintaining biological activity.
  • a method of preparing slow-release injection preparations is known as coacervation, melt extrusion, spray drying, and solvent evaporation.
  • coacervation melt extrusion
  • spray drying and solvent evaporation.
  • dual emulsion evaporation W / 0 / W; water / oil / water
  • single emulsion evaporation (0 / W; oil / water
  • Emulsion dog evaporation is most commonly used.
  • the release of drug encapsulated in the microspheres is characterized by two stages: initial over release and subsequent sustained release.
  • Initial over-release may cause side effects due to unintended over-release of drug when applied in actual clinic, which is a problem that must be solved during formulation development.
  • Such a manufacturing method may result in initial over-release of encapsulated drug.
  • the active ingredient drug is dissolved in an organic solvent or water, there is a problem in that the physical properties of the drug are changed while the microspheres are formed, and the stability is lowered.
  • Korean Patent Registration No. 10-0442931 discloses a sustained release in the form of a microcapsule by dissolving a polymer carrier material in a suitable organic solvent in which a pharmaceutical compound is not dissolved, and then adding an aqueous medium containing an excess of protective colloid and a phase inducing agent. Methods of preparing the formulations are disclosed. However, such a manufacturing method has a disadvantage that the procedure can be difficult and the yield of the product can be raised because the yield is extremely low.
  • Korean Patent Registration No. 10-0409413 discloses a method of preparing an emulsion dog by an underwater drying method and then heating and drying the biodegradable polymer above the glass transition temperature (Tg) to significantly suppress the initial release and minimize the organic solvent.
  • this manufacturing method has a glass transition temperature of at least 47 ° C or more, there is a serious disadvantage that the bioactive material may be denatured by heat.
  • Korean Patent Registration No. 10-0293882 discloses novel salts consisting of cations derived from peptides containing basic groups and anions derived from carboxy-terminated polyesters, methods of preparing these salts, and of these salts in the preparation of sustained-release preparation compositions. A method of use is described.
  • this method freezes and drops the drug and polymer in vacuum. After drying to obtain a transparent film, it is dispersed again in dichloromethane, re-dried, compressed and molded, and then administered with a relatively large diameter (for example, 16 or 18 gauge) needle, causing fear to the patient. there is a problem.
  • peptides such as leuprorel in acetate can be obtained using a multiple emulsion dog method.
  • a method for preparing polylactic acid-polyglycolic acid copolymer microspheres containing a) -based drug is disclosed.
  • U.S. Patent No. 4,652,441 introduces water-soluble polymers such as gelatin, albumin, pectin, and agar together with drugs to increase the viscosity of the aqueous phase.
  • the preparation of the primary emulsion solution should be heated to a high temperature of 80 o C in order to distribute the drug uniformly in the solution, the primary emulsion solution When redistributing
  • the above manufacturing method has a limitation in that it can be used only for the preparation of drugs having stability against heat.
  • the inventors of the present invention described the temperature, concentration and agitation rate in the manufacturing process described above in the conventional single emulsification method (W / 0 emuls ion) or double emulsification method (W / O / W emulsion). Accordingly, the microparticles showed porosity, which was intended to solve the disadvantage of increasing initial initial burst and lowering the drug encapsulation rate.
  • the present invention uses a conventional solvent evaporation method, a solvent extraction method, or an emulsification method using a release inhibitor of oils containing a long chain fatty acid of C18: 1, C18: 1 (0H) or C18: 2 (
  • a method for preparing a long-term sustained-release microsphere which is more stable by eliminating pores on the surface of the microsphere, reducing the surface area, and delaying the penetration of external moisture is proposed. It is an object of the present invention to provide a water-soluble drug-containing sustained-release microsphere having a drug release profile capable of maintaining an effective blood concentration for a long time, and a method of preparing the same.
  • the present invention includes a bioactive material, a biocompatible polymer and a release inhibitor,
  • the biocompatible polymer in which the bioactive material is encapsulated is further encapsulated by a release inhibitor, and the release inhibitor is an oil containing a C18: l, C18: l (0H) or C18: 2 long chain fatty acid.
  • the release inhibitor is an oil containing a C18: l, C18: l (0H) or C18: 2 long chain fatty acid.
  • the present invention provides a sustained release microsphere according to the present invention provides a method for preparing a long-term sustained release formulation containing a biologically active substance, in particular, peptides and salts thereof. It is possible to release the bioactive substance continuously and uniformly for more than a month.
  • La is a microsphere of Experimental Examples 1-1, 1-2, 1-3 prepared according to the present invention and the microspheres (Comparative Example 1-1) and Medium chain triglyceride (MCT) without release inhibitor 10 % Microspheres up to 28 days used . It is a graph which shows the result of the in vitro long-term dissolution test of (comparative example 3-3).
  • Lc is a graph showing the results of long-term dissolution experiments up to 84 days of the microspheres prepared according to Examples 10-1, 10-2, and 10-3.
  • 2a and 2b are microspheres prepared according to the present invention (Examples 1-1 to 12-5) and Comparative Examples 1-1, 1-2, 1-3, 2-1, 2-2 and 2-3 It is a graph which shows the test result of goserelin encapsulation rate of the.
  • Figure 3a is a photograph showing the experimental results confirming the porous surface properties of the microspheres according to the application of Castor oi l as the release inhibitor. Specifically, (A) does not use castor oil, but only 10% ethanol (Comparative Example 1-1), microsphere, (B) uses 103 ⁇ 4) MCT and 10% ethane (Comparative Example 3 —3) Microspheres, and (C) shows the surface properties of the microspheres using (Example 3-3) 10% of Castor Oil and 10% of ethane.
  • 3B is a photograph showing test results confirming the microspheres' magnification according to whether ethane is applied as a cosolvent.
  • Bioactive substances which can be applied to the present invention include bioactive peptides and proteins, and the like.
  • the bioactive peptides and proteins are composed of two or more amino acids and have a molecular weight of about 200 to 100, 000, and these peptides and protein drugs Examples include human growth hormone, growth hormone releasing hormone, growth hormone releasing peptide, interferon, colony stimulating factor, interleukin, macrophage activating factor, macrophage peptide, B cell factor, T cell factor, protein A, allergy inhibitor, cell necrosis sugar.
  • the physiologically active substance is not particularly limited, and is preferably selected from a luteinizing hormone-release hormone (LHRH) analogue or a peptide drug or salts thereof.
  • LHRH luteinizing hormone-release hormone
  • the agonist (agoni st) in the LHRH homologue includes goserelin, leuprolide, tryptotellin, buserelin, nafarrelin, and the like.
  • Available peptide drugs include octreotide and the like.
  • LHRH homologues act on the pituitary gland to inhibit the secretion of luteini zing hormone when administered to the body (in the case of an agonist, it promotes secretion initially, but when released continuously) Inhibits the secretion of testosterone, estrogen, which is a sex hormone, and is a peptide substance that has a therapeutic effect in prostate cancer, breast cancer, endometriosis, etc.
  • peptide salts include, but are not limited to, acid addition salts of peptides, specifically, gocethelin acetate.
  • biocompatible polymer refers to materials that are also known as biodegradable polymers, and conventional polymers used in the manufacture of microcapsules may be used as pharmaceuticals.
  • Caprolactone Polycaprolactone
  • Polyaminoacids Polyhydroxybutyrate
  • Polyoxyethylene glycolate Polyanhydrides
  • Polylactide Polylactide Polyglycol ides
  • copolymers thereof Poly (lactide-co-glycolide) and the like.
  • poly (lactide-co-glycolide) Poly Lactic-co-Glycolic Acid, PLGA
  • Biocompatible polymers (PLGA) that can be used in the present invention may use those having a weight average molecular weight of 60,000 or less. For example, about molecular weight
  • biocompatible polymers include RG502H, RG503H, RG504H, RG752H, and R202H from Boehringer Ingelheim.
  • the biocompatible polymer may include 70 to 99 wt%, more preferably 80 to 98 wt%, and most preferably 85 to 97 wt% based on the total weight of the final microspheres prepared.
  • the biocompatible polymer if the biocompatible polymer is included in less than 70% by weight, there may be a problem in that the distribution of the bioactive substance is relatively increased, thereby preventing the overdose from maintaining the drug for a desired period of time.
  • the amount to be administered to the patient may be so high that it may be difficult or impossible to administer.
  • the biocompatible polymer is primarily encapsulated with the bioactive material, and is further encapsulated by the following release inhibitors.
  • the release inhibitor is included for the encapsulation of the bioactive material and effective release control, and forms a lipid matrix surrounding the exterior of the biopolymer containing the bioactive material, and preferably has a long chain of 16 or more carbon atoms.
  • oils containing the above long-chain fatty acids include linoleic acid (C18: 2) 64%; palmitic acid (C16: 0) 14 %; Oleic acid (C18: 1) 10%; linolenic acid (1 inolenic acid) (C18: 3) 7%; stearic acid (C18: 0) «soybean lecithin or linoleic acid (C18: 2) 39.3%; oleic acid (C18: 1) 33.1%; Palmitic acid (C16: 0) 19.1%; stearic acid (C18: 0) 1.9%; arachidic acid (C20: 0) 0.6%; myristic acid Cottonseed oil having 0.3% or the like (C14: 0), or ricinoleic acid (C18: 1 (OH)) (87%); oleic acid (C18: 1) 7%; linoleic acid (OH)) (87%); oleic acid (C18: 1) 7%;
  • linoleic acid (C18: 2) 40.4%; Oleic acid (C18: l) 45.4%; palmitic acid (C16: 0) 9.1%; stearic acid (C18: 0) 4.3%, etc.
  • Sesame oil or linoleic acid acid) (C18: 2) 50-57%; linolenic acid (C18: 3) 5-10%; oleic acid (C18: 1) 17-26%; palmitic acid ) (C16: 0) 9-13%; soybean oil or arachidic acid (C20: 0) 2.4%; palmitic acid (palmitic acid) with stearic acid (C18: 0) 3-6%, etc.
  • the release inhibitor may be included in an amount of 0.1 to 2C 0 parts by weight, more preferably 0.1 to 10.0 parts by weight, most preferably 0.1 to 5.0 parts by weight based on 100 parts by weight of the biocompatible polymer.
  • Sustained release microspheres according to the invention preferably comprise 1.0 to 30 weight 3 ⁇ 4, more preferably 2.0 to 20% by weight, most preferably 3.0 to 10% by weight of the bioactive material based on the total microspheres.
  • the bioactive substance when the bioactive substance is included in less than 1.0% by weight, the amount of microspheres to be administered to the patient may be too high, which may render the administration impossible or may cause a problem. There may be a problem that is difficult to suppress.
  • the sustained-release microsphere according to the present invention has a form in which a bioactive material is encapsulated by a biocompatible polymer, and the encapsulated biocompatible polymer is further enclosed by a release inhibitor to form a lipid matrix, the conventional microsphere Compared to the present invention, it shows an excellent rate of bioactive substance encapsulation and solves problems such as side effects caused by the initial over-release of the bioactive substance.
  • the present invention is an organic solvent in which a water-soluble bioactive substance is suspended or dispersed in an organic solvent in which a biodegradable polymer and a release inhibitor are dissolved, or an organic solvent in which a biodegradable polymer is dissolved.
  • a solvent is prepared to form a suspension or emulsion, and then a release inhibitor is mixed and then added to an aqueous medium to prepare a microsphere, and a method for preparing a sustained release microsphere by removing the organic solvent is provided.
  • the manufacturing method according to the present invention will be described in detail.
  • the present invention i) dissolving the biocompatible polymer in an organic solvent
  • a suspension is prepared by suspending or dispersing a bioactive substance, or adding a dissolution aid to the bioactive substance and dissolving the bioactive substance to which the dissolution aid is added in an organic solvent in which the biocompatible polymer prepared in step i) is dissolved. Preparing a non-aqueous solution
  • step iv) injecting the solution or emulsion formed in step iii) into an aqueous medium to form a microsphere, and then adjusting the particle size;
  • step of the present invention is a step of dissolving a biocompatible polymer in an organic solvent to the previous step for the preparation of the oil dispersed phase (oi l di spers ion phase) '.
  • the organic solvent that can be used to dissolve the biocompatible polymer in step i) is not particularly limited as long as it can dissolve the biocompatible polymer.
  • step ii) of the present invention may be prepared by suspending and dispersing the bioactive material itself in an organic solvent in which the biocompatible polymer prepared in step i) is dissolved, or preparing a biocompatible polymer prepared in step i). With the dissolved organic solvent, a dissolution aid is added to the physiologically active substance and dissolved therein, followed by mixing them with each other to prepare a non-aqueous solution.
  • dissolution aid of step ii) used in the case of suspending and dispersing the bioactive material in the organic solvent prepared in step i) is not particularly limited as long as it can dissolve the bioactive material.
  • Dissolution aids that can be used to dissolve the bioactive material in the present invention are preferably dimethylsulfoxide (DMS0) or
  • NMP N-methyl-2-pyridinone
  • the dissolution aid may be used in a weight of 200 to 1,000% relative to the weight of the bioactive material.
  • a surface active agent may be optionally added to assist in the formation of the desired physical properties or emulsion of the suspension.
  • Surfactants may be used without particular limitation so long as they are conventionally used in the art.
  • Surfactants include, for example, silicone oil, polysorbate (Tween), sorbitan ester (Span), poloxamer, polyethyleneglycol and tocope.
  • One or more surfactants selected from the group consisting of (tocopherol) and the like can be used.
  • the step iii) of the present invention is a step of mixing the release agent and the material prepared in steps i) and ⁇ ) to prepare an oil dispersed phase, for example in the form of a transparent emulsion, wherein the release inhibitor used in the step is water-soluble Micro-fabricated and poorly water-soluble or water-insoluble ingredients that have a function of delaying or inhibiting the release of phosphorus bioactive substances or delaying or releasing excessive release of initial bioactive substances or delaying the release of bioactive substances for a desired period of time.
  • spice means a component used for the purpose of increasing the drug inclusion.
  • the aqueous medium may be preferably water for injection, and optionally, a low viscosity polymer may be mixed and used to suppress the diffusion of the emulsion.
  • the low viscosity polymers used here include, for example, polyvinylpyridone (5.5-8.5 mPas of 10% w / v aqueous solutions at 20 ° C), polyvinyl alcohol (4.0—7.0 mPas of 4% w / v aqueous solut ion at 20 0 C) may be used, but is not limited thereto.
  • an optional cosolvent may be further used.
  • cosolvents examples include alcohols in which a hydrogen atom of a hydrocarbon is substituted with a hydroxyl group (hydroxy, _0H), or acetic acid and an organic acid, or acetone.
  • carbolic acid most preferably methanol, ethanol, propanol, butanol, pentane, nucleic acid, narrow coal, octane, nonanol, or decanol monovalent alcohol. More preferably ethanol can be mentioned but is not limited thereto.
  • co-solvents such as monohydric alcohol, acetone, acetic acid, etc. are used, the microspheres produced can be reduced.
  • the release inhibitor to cosolvent ratio is 1: 1: 1: 10.000, or preferably 1: 10-1: 1, 000, most preferably 1: 20-1: 400.
  • the particle size control can be used without limitation the known particle size control method of microspheres, it is preferable to control using a high pressure homogenizer.
  • a high pressure homogenizer As the method for removing the organic solvent in the step V) of the present invention, any method commonly used in the art may be used.
  • the organic solvent may be, for example, agitated, heated, or purged with nitrogen (N 2 purge), but is not limited thereto.
  • a release inhibitor is mixed with a suspension solution or an emulsion solution, and then added to an aqueous medium to release a water inhibitor which is water insoluble or poorly water soluble in forming a microsphere, and is soluble while being distributed inside or outside the microsphere.
  • the bioactive material reduces the initial dissolution rate by reducing contact with external aqueous media.
  • the preparation method of the present invention may further comprise the step of freezing the microspheres obtained after removing the organic solvent in the step V). It may also further comprise the step of centrifugation and / or dialysis (Di alysi s) and / or filtration step before the freezing step.
  • the microspheres prepared through the above process increase the encapsulation rate of the bioactive substance as a drug, and there is no excessive initial burst of the drug regardless of the molecular weight and lactide content of the biocompatible polymer used. Gives zero-order emission characteristics.
  • microcapsules of the present invention prepared as described above have a different blood concentration pattern of the drug when administered to an animal, but can be formulated as a long-term sustained release formulation of one month or more because the drug concentration is maintained at 3 ng / ml or more until 28 days.
  • the 0 / W liquid was adjusted in a high pressure homogenizer (Buffalo) to adjust the size of the microspheres to 3 ⁇ 0.5 ⁇ and repeatedly passed through 10 times to prepare a homogeneous 0 / W liquid.
  • This 0 / W liquid was volatilized the organic solvent for 12 hours at 400 rpm in the stirrer. After centrifugation (10,000g, 20 minutes) to obtain a microsphere, washed twice with distilled water and freeze-dried for 72 hours.
  • PLGA PLGA 502H 1 PLGA 503H 2 PLGA 504H 3J
  • MCT medium chain triglyceide
  • Example 4 Preparation of Microspheres by Mixing Oil Dispersion Phase (ODP) of Biocompatible Polymer (RG502H) and Release Inhibitor (Corn Oil, Corn Oil)
  • ODP Oil Dispersion Phase
  • RG502H Biocompatible Polymer
  • Release Inhibitor Corn Oil, Corn Oil
  • goserelin acetate (USP grade) was dissolved in 0.2 ml of DMS0, and 500 m g of biocompatible polymer was dissolved in 1 ml of methylene chloride as a release inhibitor.
  • Corn oil was dissolved according to the contents shown in Table 7 to prepare a clear emulsion. (ODP, Oil Dispersion phase). The following manufacturing process was performed similarly to the comparative example.
  • Example 5 Preparation of microspheres by mixing oil dispersion phase (ODP) between biocompatible polymer (RG502H) and release inhibitor (Saf flower oil, sunflower oil)
  • PLGA% by weight Preparation of microspheres by mixing oil dispersion phase (ODP) of biocompatible polymer (RG502H) and release inhibitor (Sesame oil, sesame oil)
  • ODP oil dispersion phase
  • RG502H biocompatible polymer
  • release inhibitor Sesame oil, sesame oil
  • Example 12 Preparation of Microspheres by DMSO in Non-Aqueous Liquid Phase (ODP) 50 mg of high-cetellin acetate (USP grade) was dissolved in DMS0 according to Table 15, and 500 mg of biocompatible polymer was dissolved in 1 ml of methylene chloride. Dissolved according to the contents shown in Table 15 to prepare a transparent emulsion dog (0DP ⁇ Di Differentiation phase). The following manufacturing process was performed similarly to the comparative example.
  • ODP Non-Aqueous Liquid Phase
  • Example 13 Preparation of Microspheres by Enclosure of Biologically Active Substance 50 mg of the bioactive substance was dissolved in DMS0 according to Table 16, and 500 mg of the biocompatible polymer was dissolved in 1 ml of methylene chloride, and then the release inhibitor was added to the contents shown in Table 15. Were dissolved to prepare a clear emulsion dog (0DP, Oil Dispersion phase). The following manufacturing process was performed similarly to the comparative example.
  • the released drugs were centrifuged at 20, 000 g for 10 minutes after taking 1 ml of the released solution, and then 100 ul of the supernatant was measured by HPLC quantitative analysis as in Experiment 1, and the remaining solution was redispersed in the test tube. He was layered. The measurement results are shown in FIG. 1 (A), and the first-day drug release rate of the microspheres (Comparative Example 1-1) in which no release inhibitor was used was 70% at first. Initial bursts were observed, and the initial overdose was released at 50% for the first-day drug release of microspheres (Comparative Example 3-3) using 10% Medium chain triglyceride (MCT). .
  • MCT Medium chain triglyceride
  • the encapsulation amount of the prepared microspheres is shown in FIGS. 2 (A) and (B), and according to this, as the concentration of the release inhibitor increased from 0.1 to 203 ⁇ 4>, the encapsulation of the drug was increased, and the drug of the formulation in which the release inhibitor was introduced
  • the loading amount was 50-100%.
  • the microspheres containing more than 5% of release inhibitors showed a 70% encapsulation rate.
  • the amount of drug encapsulation in Comparative Examples 1 to 2 formulation without release inhibitor and Comparative Example 3 formulation in which medium chain triglyceride was introduced is shown within.
  • castor oil among the release inhibitors showed the highest encapsulation rate of about 103 ⁇ 4> higher than other release inhibitors. Efficiency was shown.
  • FIG. 2 (C) results of the preparation of the microspheres by the cosolvent (CP) in the aqueous phase (CP) and the microspheres by the DMS0 in the non-aqueous phase (0DP) are shown in FIG. 2 (C).
  • the ratio of 1 to 200 was not affected by more than 70% of the encapsulation with the increase of the cosolvent in the aqueous solution, but when the co-solvent was increased to more than 1, 000, the encapsulation was less than 70%.
  • microspheres approximately 50 mg were fixed on an aluminum stub and vacuum degree O. After coating with platinum at ltorr and high voltage (10kV) for 15 minutes, it was mounted on the SEM body and the morphology of the microspheres was observed using an image analysis program. The measurement results are shown in FIG. 3, which indicates that the microspheres without release inhibitors and the microspheres with medium chain triglyceride (MCT) were found to have a large amount of porosity while the release inhibitors (Castor It can be seen that the porosity of the prepared microspheres is reduced and introduced into the surface of the microspheres.
  • MCT medium chain triglyceride
  • microspheres were reduced by ethane used as a cosolvent in the microspheres into which the release inhibitor was introduced.

Abstract

The present invention relates to a long-term extended release microsphere containing a bioactive material, and a preparation method therefor, and provides: a long-term extended release microsphere, which comprises a bioactive material, a biocompatible polymer, and as a release inhibitor, an oil containing C18:1, C18:1 (OH) and C18:2 long-chain fatty acids, and resolves problems such as side effects, caused by initial over-release, by having remarkable release characteristics of increased incorporation rate of the bioactive material and minimization of initial over-release since the release inhibitor encompasses the bioactive material-incorporated biocompatible polymer one more time; and a preparation method therefor.

Description

【명세서】  【Specification】
[발명의 명칭】  [Name of invention]
C18:l, C18:l(0H) 또는 C18:2의 장쇄 지방산이 포함된 오일류를 포함한 방출억제제를 적용한 서방출성 마이크로스피어 및 이의 제조방법  Sustained release microspheres using release inhibitors including oils containing C18: l, C18: l (0H) or C18: 2 long chain fatty acids, and methods for preparing the same
【기술분야】 Technical Field
본 발명은 생분해성 고분자로 이루어진 담체에 수용성 약물을 봉입하여 지속적으로 약물의 방출을 조절할 수 있는 서방출성 마이크로스피어 및 이의 제조방법에 관한 것으로, 더욱 상세하게는 종래 생체적합성 고분자에 봉입된 '생리활성물질을 포함하는 서방성 제제와는 달리, 장쇄 지방산, 구체적으로는 C18:l, C18:1(0H) 또는 C18:2의 장쇄 지방산을 포함하는 오일류를 방출억제제로 포함하여 생체적합성 고분자에 봉입된 생라활성물질을 도포하여 지질매트릭스를 형성하는 것을 특징으로 하여, 약물의 급격한 초기 과다방출 및 지연방출 없이 일정한 방출속도 및 유효한 혈중 농도를 지속적으로 유지할 수 있어 친수성 약물의 장기 서방성 제제로서 유용하게 사용될 수 있는 마이크로스피어 및 그 제조방법에 관한 것이다. The present invention relates to a sustained-release microsphere and a method for preparing the same that can continuously control the release of the drug by encapsulating a water-soluble drug in a carrier made of a biodegradable polymer, more specifically ' physiological activity encapsulated in a conventional biocompatible polymer Unlike sustained-release preparations that contain substances, oils containing long-chain fatty acids, specifically C18: 1, C18: 1 (0H) or C18: 2 long-chain fatty acids, are included in biocompatible polymers containing release inhibitors. It is characterized by applying the bioactive substance to form a lipid matrix, and can be used as a long-term sustained release preparation of hydrophilic drugs because it can continuously maintain a constant release rate and effective blood concentration without rapid initial overrelease and delayed release of the drug. The present invention relates to a microsphere and a method for manufacturing the same.
【배경기술】 Background Art
만성질환 치료용 약물의 경우 투여빈도를 감소시키기 위해 장기 방출제형으로 함으로써 단 한번의 투여만으로도 장시간 동안 유효한 치료약물농도를 유지할 수 있고 환자의 약물 치료 순웅도를 향상시킬 수 있다. 이에 따라 약물의 복용 빈도수를 줄여 환자의 편의 및 순웅도를 개선하면서 약물의 농도를 장기간 지속적으로 유지하기 위해서는 서방출성 주사 제형이 매우 유용하다고 여겨진다.  In the case of drugs for treating chronic diseases, long-term release formulations can be used to reduce the frequency of administration, and thus the effective drug concentration can be maintained for a long time with only one administration, and the patient's drug treatment can be improved. Accordingly, sustained-release injection formulations are considered to be very useful for reducing the frequency of drug use and improving patient comfort and virtues while maintaining the drug concentration for a long time.
이 서방출성 주사 제형이란 피하 또는 근육주사 시 체내에서 약물이 생물학적 활성을 유지하면서 지속적이고 균일하게 방출될 수 있도록 제제화된 주사 제형을 말한다. 종래에 이와 같은 서방출성 주사제제들의 일반적인 제조방법은 코아세르베이션법, 용융사출 (melt extrusion), 분무건조법 및 용매증발법 등이 알려져 있다. 이러한 방법 중 이중에멀견증발법 (W/0/W; water /oil/water)과 단일에멀젼증발법 (0/W; oil/water)으로 분류되는 에멀견증발법이 가장 많이 사용되고 있다. This sustained release injectable formulation refers to an injectable formulation formulated so that the drug can be sustained and uniformly released in the body upon subcutaneous or intramuscular injection while maintaining biological activity. Conventionally, such a method of preparing slow-release injection preparations is known as coacervation, melt extrusion, spray drying, and solvent evaporation. Among these methods, dual emulsion evaporation (W / 0 / W; water / oil / water) and single emulsion evaporation (0 / W; oil / water) are classified. Emulsion dog evaporation is most commonly used.
그러나, 이와 같은 에멀젼증발법을 이용한 마이크로스피어에서 수용성 약물을 사용하는 경우에는 마이크로스피어의 제조과정 중 외부 연속상으로 약물이 확산되어 나오므로 약물의 봉입효율이 매우 나빠진다. 나아가, 이러한 다중에멀젼법에 따라 제조된 마이크로스피어에 관하여, 마이크로스피어에 봉입된 약물의 방출은 초기의 과다 방출 ( ini t i al burst )와 이후의 지속 방출의 두 단계로 구별되는 특징을 갖는데, 이러한 초기 과다 방출은 실제 임상에서 적용하는 경우, 의도치 않은 약물의 과량 방출로 인한 부작용을 유발할 수 있어 제형 개발시 필수적으로 해결하여야 하는 문제점인데, 상기와 같은 제조방법은 봉입된 약물의 초기 과다방출를이 높다는 단점과 함께 활성성분인 약물을 유기용매 또는 물에 용해시킬 경우 마이크로스피어를 형성하면서 약물의 물성변화, 안정성이 떨어지는 문제점이 있다.  However, in the case of using the water-soluble drug in the microspheres using the emulsion evaporation method, since the drug is diffused into the external continuous phase during the manufacturing process of the microspheres, the encapsulation efficiency of the drug is very poor. Furthermore, with respect to microspheres prepared according to this multiemulsion method, the release of drug encapsulated in the microspheres is characterized by two stages: initial over release and subsequent sustained release. Initial over-release may cause side effects due to unintended over-release of drug when applied in actual clinic, which is a problem that must be solved during formulation development. Such a manufacturing method may result in initial over-release of encapsulated drug. Along with the disadvantage that the active ingredient drug is dissolved in an organic solvent or water, there is a problem in that the physical properties of the drug are changed while the microspheres are formed, and the stability is lowered.
이와 관련하여 한국특허등록 제 10-0442931호에는 약제 화합물이 용해되지 않는 적당한 유기용매 중에 중합체 담체 물질을 용해한 후, 과량의 보호콜로이드를 함유하는 수성 매질과 상 유도제를 첨가하여 마이크로캡슬 형태의 서방성 제제를 제조하는 방법이 공개되어 있다. 그러나 이러한 제조방법은 그 절차가 까다로을 뿐만 아니라 수율이 극히 낮기 때문에 제품의 단가를 상승시킬 수 있다는 단점을 갖는다.  In this regard, Korean Patent Registration No. 10-0442931 discloses a sustained release in the form of a microcapsule by dissolving a polymer carrier material in a suitable organic solvent in which a pharmaceutical compound is not dissolved, and then adding an aqueous medium containing an excess of protective colloid and a phase inducing agent. Methods of preparing the formulations are disclosed. However, such a manufacturing method has a disadvantage that the procedure can be difficult and the yield of the product can be raised because the yield is extremely low.
- 나아가, 한국특허등록 제 10-0409413호에서는 수중건조법으로 에멀견을 제조한 후 생분해성 고분자의 유리전이온도 (Tg) 이상으로 가열 건조하여 초기방출을 상당히 억제하고 유기용매를 최소화하는 방법을 개시하고 있으나, 이러한 제조방법은 유리전이온도가 최소한 47°C 이상이어야 하며, 생리활성물질이 열에 의해 변성될 수 있다는 심각한 단점이 있다. 또한, 한국특허등록 제 10-0293882호에는 염기성기를 함유하는 펩티드로부터 유도된 양이온과 카르복시 말단 폴리에스테르로부터 유도된 음이온으로 이루어지는 신규 염 및 이들 염의 제조방법과 서방성 제제 조성물의 제조에 있어서의 이들 염의 용도에 관한 방법이 서술되어 있다. 그러나 이 방법은 약물과 고분자 중합체를 동결 소적하고 진공하에서 건조하여 투명한 필름을 얻은 후, 다시 디클로로메탄에 분산하여 재건조하고, 이를 압축, 성형하는 과정을 거쳐 직경이 비교적 큰 (예로, 16 또는 18 게이지) 주사바늘로 투여하기 때문에 환자에게 공포심을 유발하는 문제가 있다. -Furthermore, Korean Patent Registration No. 10-0409413 discloses a method of preparing an emulsion dog by an underwater drying method and then heating and drying the biodegradable polymer above the glass transition temperature (Tg) to significantly suppress the initial release and minimize the organic solvent. However, this manufacturing method has a glass transition temperature of at least 47 ° C or more, there is a serious disadvantage that the bioactive material may be denatured by heat. In addition, Korean Patent Registration No. 10-0293882 discloses novel salts consisting of cations derived from peptides containing basic groups and anions derived from carboxy-terminated polyesters, methods of preparing these salts, and of these salts in the preparation of sustained-release preparation compositions. A method of use is described. However, this method freezes and drops the drug and polymer in vacuum. After drying to obtain a transparent film, it is dispersed again in dichloromethane, re-dried, compressed and molded, and then administered with a relatively large diameter (for example, 16 or 18 gauge) needle, causing fear to the patient. there is a problem.
미국특허 게 6,419,961호, 제 5,585,460호 및 제 4,652,441호에서는, 다중 에멀견 방법을 이용하여 류프로레린 아세테이트 ( leuprorel in acetate) 등의 펩타이드 (pept i de)계 약물을 함유하는 폴리락트산-폴리글리콜산 공중합체 마이크로스피어를 제조하는 방법이 개시되어 있다. 특히 미국특허 게 4,652,441호의 경우 내부수상에 젤라틴 (gelat in) , 알부민 (albumin) , 펙틴 (pect in) , 아가 (agar ) 등의 수용성 고분자들을 약물과 함께 도입함으로써 내부 수상의 점도가 높아지고, 결과적으로 젤라틴과 폴리락트산-폴리글리콜산 공중합체의 이중 봉입 (double encapsulat ion)이 유도되어 장기 서방형 주사제를 제조할 수 있었다. 그러나, 내부수상의 점도를 상승시키기 위해 젤라틴을 사용하는 경우, 1차 에멀견 용액의 제조 시 약물이 용액 내에서 균일하게 분포하도록 하기 위해 80oC의 고온으로 가열하여야 하며, 상기 1차 에멀젼 용액을 외부 연속상에 재분산시킬 때In U.S. Pat.Nos. 6,419,961, 5,585,460 and 4,652,441, peptides such as leuprorel in acetate can be obtained using a multiple emulsion dog method. A method for preparing polylactic acid-polyglycolic acid copolymer microspheres containing a) -based drug is disclosed. In particular, U.S. Patent No. 4,652,441 introduces water-soluble polymers such as gelatin, albumin, pectin, and agar together with drugs to increase the viscosity of the aqueous phase. As a result, a double encapsulat ion of gelatin and polylactic acid-polyglycolic acid copolymer was induced to prepare a long-term sustained release injection. However, in the case of using gelatin to increase the viscosity of the inner aqueous phase, the preparation of the primary emulsion solution should be heated to a high temperature of 80 o C in order to distribute the drug uniformly in the solution, the primary emulsion solution When redistributing
20°C 내지 30oC까지 넁각시켜야 하기 때문에 마이크로스피어의 제조공정이 복잡하다는 문제점이 있었다. 또한 상기의 제조방법은 열에 대하여 안정성을 가지고 있는 약물의 제조에만 이용할 수 있다는 한계점을 가지고 있았다. 또한, Qingguo Xu등의 문헌 (Control led re lease of amoxi ci l l in from hydroxyapat i t eᅳ coated po ly ( 1 act i c-co-glycol i c acid)mi crospheres , Journal of Control led Release 127 (2008); 146-153)에 의하면 생분해성 마이크로스피어 외부를 하이드록시아파타이트로 코팅하여 초기 방출을 억제하며 장기간의 생리활성물질 방출이 가능한 방법이 공개되어 있으나, 장시간이 요구되는 번거로운 코팅 제조방법으로 생산화하기가 힘든 단점이 있다. Since the need to nyaenggak to 20 ° C to about 30 o C there is a problem in the production process of the microsphere that complex. In addition, the above manufacturing method has a limitation in that it can be used only for the preparation of drugs having stability against heat. In addition, Qingguo Xu et al., Control led re lease of amoxi ci ll in from hydroxyapatiteite coated po ly (1 act i c-co-glycol ic acid) mi crospheres, Journal of Control led Release 127 (2008); 146 -153) discloses a method of coating the outside of biodegradable microspheres with hydroxyapatite to suppress initial release and to release bioactive substances for a long time, but it is difficult to produce them with a cumbersome coating method that requires a long time. There are disadvantages.
【발명의 상세한 설명】 [Detailed Description of the Invention]
[기술적 과제]  [Technical Challenges]
이에 본 발명자들은 기존 단일 유화법 (W/0 emul s ion)또는 이중유화법 (W/O/W emul sion)에서 상기 명시한 제조 과정상 온도 및 농도, 교반 속도에 따라 미립자가 다공성을 나타내고 이는 초기 약물 과다 방출 (Initial burst)을 높이며 약물의 봉입률을 저하시키는 단점들을 해결하고자 하였다. 따라서 본 발명은 C18 : 1, C18 : 1 (0H) 또는 C18 : 2의 장쇄지방산 (long chain fatty acid)이 포함된 오일류의 방출억제제를 사용하여 종래의 용매증발법 내지는 용매추출법, 또는 유화법 (emulsion)에서 발생하는 문제점인 초기 과다방출 문제가 억제된 마이크로스피어를 제조하기 위하여, 마이크로스피어 표면에 생기는 다공을 없애고 표면적을 줄이며 외부 수분의 침투를 지연시켜 보다 안정한 장기 서방출성 마이크로스피어의 제조방법을 제공하여 장기간 동안 유효한 혈증농도를 유지할 수 있는 약물 방출 프로파일을 가지는 수용성 약물 함유 서방성 마이크로스피어 및 그 제조방법을 제공하는 것을 그 기술적 과제로 한다. Therefore, the inventors of the present invention described the temperature, concentration and agitation rate in the manufacturing process described above in the conventional single emulsification method (W / 0 emuls ion) or double emulsification method (W / O / W emulsion). Accordingly, the microparticles showed porosity, which was intended to solve the disadvantage of increasing initial initial burst and lowering the drug encapsulation rate. Therefore, the present invention uses a conventional solvent evaporation method, a solvent extraction method, or an emulsification method using a release inhibitor of oils containing a long chain fatty acid of C18: 1, C18: 1 (0H) or C18: 2 ( In order to manufacture microspheres in which the initial over-emission problem, which is a problem in emulsion), is suppressed, a method for preparing a long-term sustained-release microsphere which is more stable by eliminating pores on the surface of the microsphere, reducing the surface area, and delaying the penetration of external moisture is proposed. It is an object of the present invention to provide a water-soluble drug-containing sustained-release microsphere having a drug release profile capable of maintaining an effective blood concentration for a long time, and a method of preparing the same.
【기술적 해결방법】 Technical Solution
상기 목적을 달성하기 위한, 하나의 양태로서, 본 발명은 생리활성물질, 생체적합성 고분자 및 방출억제제를 포함하되,  In one aspect, to achieve the above object, the present invention includes a bioactive material, a biocompatible polymer and a release inhibitor,
상기 생리활성물질이 봉입된 생체적합성 고분자가 방출억제제에 의해 추가로 봉입되고, 상기 방출억제제는 C18:l, C18:l(0H) 또는 C18:2의 장쇄 지방산을 포함하는 오일류인 것을 특징으로 하는 서방출성 마이크로스피어에 관한 것이다.  The biocompatible polymer in which the bioactive material is encapsulated is further encapsulated by a release inhibitor, and the release inhibitor is an oil containing a C18: l, C18: l (0H) or C18: 2 long chain fatty acid. A slow release microsphere.
【유리한 효과】 Advantageous Effects
본 발명은 본 발명에 따른 서방출성 마이크로스피어는 생리활성물질 특히, 펩타이드와 그 염을 함유하는 장기 서방출성 제제의 제조방법을 제공하며, 특히 초기 과다방출 억제 특성이 우수하여 투여 시 인체 내에서 1개월 이상 생리활성물질을 지속적이고 균일하게 방출할 수 있다.  The present invention provides a sustained release microsphere according to the present invention provides a method for preparing a long-term sustained release formulation containing a biologically active substance, in particular, peptides and salts thereof. It is possible to release the bioactive substance continuously and uniformly for more than a month.
[도면의 간단한 설명] [Brief Description of Drawings]
도 la는 본 발명에 따라 제조된 실험예 1-1, 1-2, 1-3의 마이크로스피어와 방출억제제가 사용되지 않은 마이크로스피어 (비교예 1-1) 및 Medium chain triglyceride(MCT)가 10%사용된 28일까지의 마이크로스피어. (비교예 3-3)의 인비트로 (in vitro) 장기 용출실험 결과를 나타내는 그래프이다. La is a microsphere of Experimental Examples 1-1, 1-2, 1-3 prepared according to the present invention and the microspheres (Comparative Example 1-1) and Medium chain triglyceride (MCT) without release inhibitor 10 % Microspheres up to 28 days used . It is a graph which shows the result of the in vitro long-term dissolution test of (comparative example 3-3).
도 lb는 실시예 1-3, 2-3, 3-3, 4-3, 5-3, 6-3, 7-3, 8-3및 9-3에 따라 쎄조된 마이크로스피어의 28일까지의 장기 용출실험 결과를 나타내는 그래프이다. Lb according to Examples 1-3, 2-3, 3-3, 4-3, 5-3, 6-3, 7-3, 8-3 and 9-3 This is a graph showing the long-term dissolution test results of the microspheres up to 28 days.
도 lc는 실시예 10-1 , 10-2 및 10-3에 따라 제조된 마이크로스피어의 84일까지의 장기 용출실험 결과를 나타내는 그래프이다.  Lc is a graph showing the results of long-term dissolution experiments up to 84 days of the microspheres prepared according to Examples 10-1, 10-2, and 10-3.
도 2a 및 2b는 본 발명에 따라 제조된 마이크로스피어 (실시예 1-1 내지 12-5) 및 비교예 1-1, 1-2, 1-3 , 2-1 , 2-2 및 2-3의 고세렐린 봉입률 측정 실험결과를 나타내는 그래프이다.  2a and 2b are microspheres prepared according to the present invention (Examples 1-1 to 12-5) and Comparative Examples 1-1, 1-2, 1-3, 2-1, 2-2 and 2-3 It is a graph which shows the test result of goserelin encapsulation rate of the.
도 3a는 방출억제제로서 Castor oi l의 적용여부에 따른 마이크로스피어의 다공성 표면 성상을 확인한 실험결과를 나타낸 사진이다. 구체적으로, (A)는 Castor oi l을 사용하지 않고 10%의 에탄올만 사용한 (비교예 1-1) 마이크로스피어, (B)는 10¾)의 MCT와 10%의 에탄을을 사용한 (비교예 3—3) 마이크로스피어이고, (C)는 10%의 Castor oi l과 10%의 에탄을을 사용한 (실시예 3-3) 마이크로스피어의 표면 성상을 나타낸다.  Figure 3a is a photograph showing the experimental results confirming the porous surface properties of the microspheres according to the application of Castor oi l as the release inhibitor. Specifically, (A) does not use castor oil, but only 10% ethanol (Comparative Example 1-1), microsphere, (B) uses 10¾) MCT and 10% ethane (Comparative Example 3 —3) Microspheres, and (C) shows the surface properties of the microspheres using (Example 3-3) 10% of Castor Oil and 10% of ethane.
도 3b는 공용매로서 에탄을의 적용 여부에 따른 마이크로스피어의 웅집성을 확인한 시험 결과를 나타내는 사진이다.  3B is a photograph showing test results confirming the microspheres' magnification according to whether ethane is applied as a cosolvent.
구체적으로 (C)는 10%의 Castor oi l과 1OT의 에탄올을 사용한 (실시예 3-3)마이크로스피어의 웅집성을 나타내고, (D)는 10% Castor oi l과 증류수를 사용한 (실시예 11-1) 마이크로스피어의 응집성을 나타내는 사진이다. 【발명의 실시를 위한 최선의 형태】  Specifically (C) shows the microsphere coarseness using 10% Castor oi l and 1OT of ethanol (Example 3-3), (D) using 10% Castor oi l and distilled water (Example 11 -1) It is a photograph showing the cohesion of microspheres. [Best form for implementation of the invention]
이하 본 발명을 더욱 상세하게 설명한다. 본 발명에 적용할 수 있는 생리활성물질로는 생리활성 펩타이드 및 단백질 등을 포함하며, 생리활성 펩타이드와 단백질들은 2개 이상의 아미노산들로 분자량이 약 200내지 100 , 000으로 구성되며 이들 펩타이드 및 단백질 약물들의 예는 인간 성장 호르몬, 성장 호르몬 방출 호르몬, 성장 호르몬 방출 펩타이드, 인터페론, 콜로니 자극 인자, 인터루킨, 마크로파지 활성 인자, 마크로파지 펩타이드, B세포 인자, T세포 인자, 단백질 A, 알러지 억제 인자,세포 괴사 당단백질, 면역독소, 림포독소, 종양 괴사 인자, 종양 억제 인자, 전이 성장 인자, 알파 -1 안티트립신, 알부민과 그 단편 폴리펩타이드, 아포리포단백질 -E, 에리트로포이에틴, 인자 VI I , 인자 VI I I, 인자 IX, 플라즈미노젠 활성인자, 유로키나제, 스트렙토키나제, 단백질 C, C-반응성 단백질, 레닌 억제재,콜라지나제 억제재,수퍼옥사이드 디스뮤타제, 혈소판 유래 성장 인자, 표피 성장 인자, 오스테오제닉 성장 인자, 골 형성 촉진 단백질, 칼시토닌, 인술린, 아트리오펩틴, 카틸리지 유도 인자, 결합 조직 활성인자, 여포 자극 호르몬, 황체 형성 호르몬, 황체 형성 호르몬 방출 호르몬, 신경 성장 인자, 파라타이로이드 호르몬, 릴랙신, 씨크레틴, 소마토메딘, 인슐린ᅳ유사 성장 인자, 아드레노코티코트로픽 호르몬, 글루카곤, 콜레시스토키닌, 췌장 폴리펩타이드, 가스트린 방출 펩타이드, 코티코트로핀 방출 인자, 타이로이드 자극 호르몬, 각종 바이러스, 박테리아, 독소등에 대한 단일클론성 또는 폴리클론성 항체, 각종 바이러스 유래백신 항원 등을 포함한다. 본 발명에서 생리활성물질은 특별히 한정되는 것은 아니며, LHRH( luteini zing hormone-release hormone)동족체 (analogue)또는 펩타이드 약물이나 이들의 염 중에서 선택되는 것이 바람직하다. 예를 들어, LHRH 동족체 중 작용제 (agoni st )에는 고세렐린, 루프로라이드, 트립토텔린, 부세렐린, 나파렐린 등이 있고, 길항제 (antagoni st )에는 세트로렐릭스, 알지타이드 그리고, 그 외 이용가능한 펩타이드 약물에는 옥트레오타이드 등을 들 수 있다. 이들 LHRH 동족체 중 작용제는 체내에 투여되었을 때 뇌하수체 (pi tui tary gland)에 작용하여 황체형성 호르몬 ( luteini zing hormone)의 분비를 억제 (작용제의 경우에는 초기에는 분비를 촉진하나, 지속적으로 방출될 경우에는 억제됨)하여 성호르몬인 테스토스테론, 에스트로겐의 분비를 억제함으로써 호르몬 반응성으로 진행되는 전립선암, 유방암, 자궁내막증 등에서 치료효과를 나타내는 펩타이드 물질이다. 또한 상기 펩타이드 염의 예로, 이에 제한되는 것은 아니나, 펩타이드의 산부가염, 구체적으로는 고세텔린 아세테이트가 바람직하다. 본 발명에서, 용어 "생체적합성 고분자 "는 생분해성 고분자로도 알려져 있는 물질들을 의미하며, 약제학적으로 마이크로캡술의 제조시 사용되는 통상의 고분자들이 이용될 수도 있으며., 바람직하게는 본 발명에서는 폴리카프로락톤 (Polycaprolactone) , 폴리아미노산 (Polyaminoacids) , 폴리하이드록시부티레이트 (Polyhydroxybutyrate) , 폴리옥시에틸렌글라이콜레이트 (Polyoxyethylene glycolate) , 폴리언하이드레이드 (Polyanhydr ides ) , 폴리락타이드 (Polyl act ides), 폴리글라이콜라이드 (Polyglycol ides) , 이들의 공중합체인 폴리 (락티드 -코-글리코리드) 등을 들 수 있다. 바람직하게는 폴리 (락티드 -코-글리코리드) (Poly Lactic-co-Glycolic Acid, PLGA) 이다. 본 발명에 사용될 수 있는 생체적합성 고분자 (PLGA)는 중량 평균 분자량이 60,000 이하인 것을 사용할 수도 있다. 예를 들어, 분자량 약Hereinafter, the present invention will be described in more detail. Bioactive substances which can be applied to the present invention include bioactive peptides and proteins, and the like. The bioactive peptides and proteins are composed of two or more amino acids and have a molecular weight of about 200 to 100, 000, and these peptides and protein drugs Examples include human growth hormone, growth hormone releasing hormone, growth hormone releasing peptide, interferon, colony stimulating factor, interleukin, macrophage activating factor, macrophage peptide, B cell factor, T cell factor, protein A, allergy inhibitor, cell necrosis sugar. Proteins, immunotoxins, lymphotoxins, tumor necrosis factor, tumor suppressor, metastatic growth factor, alpha-1 antitrypsin, albumin and fragment fragments thereof, apolipoprotein-E, erythropoietin, factor VI I, factor VI II , Factor IX , Plasminogen activator , Eurokinase, Streptokinase , Protein Vaginal C, C-reactive protein, renin inhibitor, collagenase inhibitor, superoxide dismutase, Platelet-derived growth factor, epidermal growth factor, osteogenic growth factor, osteogenic protein, calcitonin, insulin, atriopeptin, cartilage inducer, connective tissue activator, follicle stimulating hormone, luteinizing hormone, luteinizing Hormone-releasing hormone, nerve growth factor, parathyroid hormone, relaxin, secretin, somatomedin, insulin-like growth factor, adrenocorticotropic hormone, glucagon, cholecystokinin, pancreatic polypeptide, gastrin releasing peptide, corticotropin Release factors, thyroid stimulating hormones, monoclonal or polyclonal antibodies against various viruses, bacteria, toxins, various virus derived vaccine antigens, and the like. In the present invention, the physiologically active substance is not particularly limited, and is preferably selected from a luteinizing hormone-release hormone (LHRH) analogue or a peptide drug or salts thereof. For example, the agonist (agoni st) in the LHRH homologue includes goserelin, leuprolide, tryptotellin, buserelin, nafarrelin, and the like. Available peptide drugs include octreotide and the like. The agonists of these LHRH homologues act on the pituitary gland to inhibit the secretion of luteini zing hormone when administered to the body (in the case of an agonist, it promotes secretion initially, but when released continuously) Inhibits the secretion of testosterone, estrogen, which is a sex hormone, and is a peptide substance that has a therapeutic effect in prostate cancer, breast cancer, endometriosis, etc. In addition, examples of the peptide salts include, but are not limited to, acid addition salts of peptides, specifically, gocethelin acetate. In the present invention, the term "biocompatible polymer" refers to materials that are also known as biodegradable polymers, and conventional polymers used in the manufacture of microcapsules may be used as pharmaceuticals. Caprolactone (Polycaprolactone), Polyaminoacids, Polyhydroxybutyrate, Polyoxyethylene glycolate, Polyanhydrides, Polylactide, Polylactide Polyglycol ides, copolymers thereof Poly (lactide-co-glycolide) and the like. Preferably poly (lactide-co-glycolide) (Poly Lactic-co-Glycolic Acid, PLGA). Biocompatible polymers (PLGA) that can be used in the present invention may use those having a weight average molecular weight of 60,000 or less. For example, about molecular weight
13, 000인 폴리 (락티드-코-글리코리드) (50:50), 분자량 약 33 ,000인 폴리 (락티드 -코-글리코리드) (50:50), 분자량 52, 000인 폴리 (락티드 -코-글리코리드) (50:50), 분자량 οΐ 20 ,000인 폴리 (락티드 -코-글리코리드) (75:25), 분자량 οΐ 16 '000인 폴리 (락티드 )(100:0) 등을 사용하는 것이 가능하다 이와 같은 생체적합성 고분자는 베링거 잉겔하임사의 RG502H, RG503H, RG504H, RG752H, R202H등을 들 수 있다. 본 발명에서 생체적합성 고분자는 제조되는 최종 마이크로스피어 전체 중량에 대하여 70 내지 99중량 ¾>, 보다 바람직하게는 80 내지 98중량 %, 가장 바람직하게는 85 내지 97 중량%가 포함될 수 있다. 본 발명에서 생체적합성 고분자가 70 중량 % 미만으로 포함되면 생리활성물질 분포가 상대적으로 증가하여 초기 과다 방출 내지 원하는 기간 동안 약효를 유지시키지 못하는 문제가 있을 수 있고, 99 중량 ¾>를 초과하여 포함되면 환자에게 투여해야 할 양이 너무 많아져 투여가 힘들거나 투여 자체가 불가능해질 수 있다. 13, 000 poly (lactide-co-glycolide) (50:50), poly (lactide-co-glycolide) (50:50) with a molecular weight of about 33,000, poly (lock) Tited-co-glycolide) (50:50), poly (lactide-co-glycolide) with molecular weight οΐ 20,000 (75:25), poly (lactide) with molecular weight οΐ 16'000 (100: 0 And the like. Examples of such biocompatible polymers include RG502H, RG503H, RG504H, RG752H, and R202H from Boehringer Ingelheim. In the present invention, the biocompatible polymer may include 70 to 99 wt%, more preferably 80 to 98 wt%, and most preferably 85 to 97 wt% based on the total weight of the final microspheres prepared. In the present invention, if the biocompatible polymer is included in less than 70% by weight, there may be a problem in that the distribution of the bioactive substance is relatively increased, thereby preventing the overdose from maintaining the drug for a desired period of time. The amount to be administered to the patient may be so high that it may be difficult or impossible to administer.
본 발명에 따른 마이크로스피어에서, 상기 생체적합성 고분자는 상기 생리활성물질을 1차적으로 봉입하며, 추후 이하의 방출억제제에 의해 추가로 봉입되게 된다. 본 발명에서 방출억제제는 생리활성물질의 봉입를 및 효과적인 방출제어를 위해 포함되어, 상기 생리활성물질을 봉입한 생체고분자의 외부를 둘러싼 지질매트릭스를 형성하게 되는 것으로, 바람직하게는 탄소수가 16개 이상인 장쇄 지방산, 구체적으로 C18 : 1, C18 : K0H) 또는 C18 : 2지방산을 포함하는 것올 특징으로 한다. 상기와 같은 장쇄 지방산, 즉, C18 : 1 또는 C8 : 2 지방산을 포함하는 오일류의 예로는, 리놀레산 (linoleic acid) (C18 : 2) 64%; 팔미트산 (palmitic acid) (C16 : 0) 14%; 올레산 (oleic acid) (C18 : 1) 10%; 리놀렌산 ( 1 inolenic acid) (C18 : 3) 7%;스테아르산 (stearic acid) (C18: 0) «등으로 구성된 대두 레시틴, 또는 리놀레산 (linoleic acid) (C18 : 2) 39.3%; 올레산 (oleic acid) (C18 : 1) 33.1%;팔미트산 (palmitic acid) (C16: 0) 19.1%;스테아르산 (stearic acid) (C18 : 0) 1.9%; 아라키딘산 (arachidic acid) (C20 : 0) 0.6%; 미리스트산 (myristic acid) (C14 : 0) 0.3% 등을 갖는 면실유, 또는 리시놀레산 (ricinoleic acid) (C18: 1 (OH)) (87%);올레산 (oleic acid) (C18: 1) 7%; 리놀레산 (linoleic acid) (C18 : 2) 3%; 팔미트산 (palmitic acid) (C16:0) 2%;스테아르산 (stearic acid) (C18: 0) 1%등을 갖는 피마자유 또는 리놀레산 (linoleic acid) (C18: 2) 58.9%;을레산 (oleic acid) (C18: 1)25.8%; 팔미트산 (palmitic acid) (C16:0) 11.0%; 스테아르산 (stearic acid) (C18 : 0) 1.7%; 리놀렌산 (linolenic acid) (C18 : 3) 1.1% 등을 갖는 옥수수유 또는 리놀레산 (linoleic acid) (C18 : 2) '66 %; 리놀렌산 (linolenic acid) (C18 : 3) 0.5%; 올레산 (oleic acid) (C18 : 1) 26%; 팔미트산 (palmitic acid) (C16 : 0) 4%; 스테아르산 (stearic acid) (C18 : 0) 2%등을 갖는 해바라기유 또는 팔미트산 (palmitic acid) (C16:0) 7.5-20.0%; 팔미를레산 (palmitoleic acid) (C16:l), 0.3-5.0%; 스테아르산 (stearic acid) (C18:0), 0.5-5.0%; 올레산 (oleic acid) (C18:l), 55.0-83.0%; 리놀레산 (linoleic acid) (C18:2), 3.5-21.0%등을 갖는 올리브유 또는 리놀레산 (linoleic acid) (C18:2) 40.4%; 올레산 (oleic acid) (C18:l) 45.4%; 팔미트산 (palmit ic acid) (C16:0) 9.1%; 스테아르산 (stearic acid) (C18 : 0) 4.3% 등을 갖는 참기름 또는 리놀레산 (linoleic acid) (C18:2) 50-57%; 레놀렌산 ( linolenic acid) (C18 : 3) 5-10%; 올레산 (oleic acid) (C18 : 1) 17-26%; 팔미트산 (palmit ic acid) (C16 :0) 9-13%; 스테아르산 (stearic acid) (C18:0) 3-6% 등을 갖는 대두유 또는 아라크딘산 (arachidic acid) (C20 : 0) 2.4%; 팔미트산 (palmit ic acid) (C16 : 0) 8.3%; 스테아르산 (stearic acid) (C18:0) 3.1%; 리놀레산 ( 1 inoleic acid) (C18 : 2) 26.0%; 을레산 (oleic acid) (C18 : 1) 56.0% 등을 갖는 땅콩유를 들 수 있으며, 특별히 한정되는 것은 아니나, 그 증 가장 많은 리시놀레산 (ricinoleic acid) (C18: 1 (OH)) (87%);을레산 (oleic acid) (C18:l). (7%)을 갖는 피마자유가 바람직하다. 본 발명에서 방출억제제는 바람직하게는상기 생체적합성 고분자 100 중량부에 대하여 0.1 내지 2C 0 중량부, 더 바람직하게는 0.1 내지 10.0 중량부, 가장 바람직하게는 0.1 내지 5.0 중량부의 양으로 포함될 수 있다. 포함되는 방출억제제의 양이 에 중량부 미만이면 방출억제제의 계면활성 효과가 미비해져 약물 봉입률에 문제가 있을 수 있고, 20.0 중량부를 초과하면 과량의 성분으로 인하여 약물의 방출이 지연되거나, 마이크로스피어 형성에 방해를 받을 수 있다. 본 발명에 따른 서방출성 마이크로스피어는 바람직하게는 생리활성물질을 마이크로스피어 전체 중량에 대하여 1.0내지 30중량 ¾,보다 바람직하게는 2.0 내지 20 증량 %, 가장 바람직하게는 3.0 내지 10 중량 % 포함한다. 본 발명에서 생리활성물질이 1.0 중량 % 미만으로 포함되면 환자에게 투여하게 될 마이크로스피어 양이 너무 많아져 투여가 불가능하게 되거나 투여시 문제가 있을 수 있고, 30 중량 %를 초과하여 포함되면 초기 과다 방출 억제가 어렵다는 문제가 있을 수 있다. 본 발명에 따른 서방출성 마이크로스피어는 생리활성물질이 생체적합성 고분자에 의해 봉입되고, 이러한 봉입된 생체적합성 고분자가 방출억제제에 의해 추가로 봉입되어 지질매트릭스를 형성하는 형태를 가짐으로 인해, 종래 마이크로스피어들에 비해 탁월한 생리활성물질의 봉입률을 나타내고, 생리활성물질의 초기 과다 방출로 인해 야기되는 부작용 등의 문제점을 해결하였다. In the microsphere according to the present invention, the biocompatible polymer is primarily encapsulated with the bioactive material, and is further encapsulated by the following release inhibitors. In the present invention, the release inhibitor is included for the encapsulation of the bioactive material and effective release control, and forms a lipid matrix surrounding the exterior of the biopolymer containing the bioactive material, and preferably has a long chain of 16 or more carbon atoms. Fatty acids, specifically C18: 1, C18: K0H) or C18: difatty acid. Examples of the oils containing the above long-chain fatty acids, ie, C18: 1 or C8: 2 fatty acids, include linoleic acid (C18: 2) 64%; palmitic acid (C16: 0) 14 %; Oleic acid (C18: 1) 10%; linolenic acid (1 inolenic acid) (C18: 3) 7%; stearic acid (C18: 0) «soybean lecithin or linoleic acid (C18: 2) 39.3%; oleic acid (C18: 1) 33.1%; Palmitic acid (C16: 0) 19.1%; stearic acid (C18: 0) 1.9%; arachidic acid (C20: 0) 0.6%; myristic acid Cottonseed oil having 0.3% or the like (C14: 0), or ricinoleic acid (C18: 1 (OH)) (87%); oleic acid (C18: 1) 7%; linoleic acid (C18: 2) 3%; palmitic acid (C16: 0) 2%; castor oil or linoleic acid (C18: 0) with 1% of stearic acid (C18: 0) : 2) 58.9%; oleic acid (C18: 1) 25.8%; Palmitic acid (C16: 0) 11.0%; stearic acid (C18: 0) 1.7%; corn oil or linoleic with 1.1% linolenic acid (C18: 3) acid) (C18: 2) ' 66%; Linolenic acid (C18: 3) 0.5%; oleic acid (C18: 1) 26%; palmitic acid (C16: 0) 4%; stearic acid (C18: 0) Sunflower oil or palmitic acid (C16: 0) 7.5-20.0% having 2% etc .; palmitoleic acid (C16: l), 0.3-5.0%; stearic acid ) (C18: 0), 0.5-5.0%; oleic acid (C18: l), 55.0-83.0%; olive oil or linoleic acid with linoleic acid (C18: 2), 3.5-21.0%, etc. linoleic acid) (C18: 2) 40.4%; Oleic acid (C18: l) 45.4%; palmitic acid (C16: 0) 9.1%; stearic acid (C18: 0) 4.3%, etc. Sesame oil or linoleic acid acid) (C18: 2) 50-57%; linolenic acid (C18: 3) 5-10%; oleic acid (C18: 1) 17-26%; palmitic acid ) (C16: 0) 9-13%; soybean oil or arachidic acid (C20: 0) 2.4%; palmitic acid (palmitic acid) with stearic acid (C18: 0) 3-6%, etc. ic acid) (C16: 0) 8.3%; stearic acid (C18: 0) 3.1%; linoleic acid (1 inoleic acid) (C18: 2) 26.0%; oleic acid (C18: 1) Peanut oil having 56.0% and the like, and is not particularly limited, but the most lyric acid (C18: 1 (OH)) (87%); oleic acid (C18) : l). Castor oil having (7%) is preferred. In the present invention, the release inhibitor may be included in an amount of 0.1 to 2C 0 parts by weight, more preferably 0.1 to 10.0 parts by weight, most preferably 0.1 to 5.0 parts by weight based on 100 parts by weight of the biocompatible polymer. If the amount of release inhibitor included is less than the weight part of the release inhibitor, the surfactant effect of the release inhibitor is insufficient, there may be a problem in the drug encapsulation rate, if exceeding 20.0 parts by weight, the release of the drug is delayed or the microspheres due to excess components May interfere with formation. Sustained release microspheres according to the invention preferably comprise 1.0 to 30 weight ¾, more preferably 2.0 to 20% by weight, most preferably 3.0 to 10% by weight of the bioactive material based on the total microspheres. In the present invention, when the bioactive substance is included in less than 1.0% by weight, the amount of microspheres to be administered to the patient may be too high, which may render the administration impossible or may cause a problem. There may be a problem that is difficult to suppress. Since the sustained-release microsphere according to the present invention has a form in which a bioactive material is encapsulated by a biocompatible polymer, and the encapsulated biocompatible polymer is further enclosed by a release inhibitor to form a lipid matrix, the conventional microsphere Compared to the present invention, it shows an excellent rate of bioactive substance encapsulation and solves problems such as side effects caused by the initial over-release of the bioactive substance.
,  ,
나아가, 또 다른 하나의 양태로서, 본 발명은 수용성 생리활성물질을 생분해성 고분자와 방출억제제를 용해시킨 유기용매에 현탁, 분산시키거나 생리활성물질을 용해시킨 수성용매와 생분해성 고분자를 용해시킨 유기용매를 흔합하여 현탁액 또는 에멀젼을 형성시키고 나서, 방출억제제를 흔합한 후 이를 수성 매질에 투입하여 마이크로스피어를 제조하고, 유기용매를 제거함으로써 서방출성 마이크로스피어를 제조하는 방법을 제공한다. 이하 본 발명에 따른 제조 방법을 구체적으로 설명한다.  Furthermore, as another aspect, the present invention is an organic solvent in which a water-soluble bioactive substance is suspended or dispersed in an organic solvent in which a biodegradable polymer and a release inhibitor are dissolved, or an organic solvent in which a biodegradable polymer is dissolved. A solvent is prepared to form a suspension or emulsion, and then a release inhibitor is mixed and then added to an aqueous medium to prepare a microsphere, and a method for preparing a sustained release microsphere by removing the organic solvent is provided. Hereinafter, the manufacturing method according to the present invention will be described in detail.
본 발명은 , i ) 생체적합성 고분자를 유기용매에 용해시키는 단계;  The present invention, i) dissolving the biocompatible polymer in an organic solvent;
i i )상기 i )단계에서 제조된 생체적합성 고분자가 용해된 유기용매에 생리활성물질을 현탁 또는 분산시켜 현탁액을 제조하거나, 생리활성물질에 용해보조제를 첨가하고 상기 i ) 단계에서 제조된 생체적합성 고분자가 용해된 유기용매에 상기 용해보조제를 첨가한 생리활성물질을 용해시켜 비수성 용액을 제조하는 단계 ii) in the organic solvent in which the biocompatible polymer prepared in step i) is dissolved A suspension is prepared by suspending or dispersing a bioactive substance, or adding a dissolution aid to the bioactive substance and dissolving the bioactive substance to which the dissolution aid is added in an organic solvent in which the biocompatible polymer prepared in step i) is dissolved. Preparing a non-aqueous solution
iii ) 상기 i i ) 단계에서 제조된 현탁액 또는 비수성 용액에 방출억제제를 흔합하는 단계;  iii) mixing the release inhibitor in the suspension or non-aqueous solution prepared in step i i);
iv ) 상기 iii ) 단계에서 형성된 용액 또는 에멀젼을 수성 매질에 투입하여 마이크로스피어를 형성시키고, 이후 입도를 조절하는 단계; 및  iv) injecting the solution or emulsion formed in step iii) into an aqueous medium to form a microsphere, and then adjusting the particle size; And
V ) 유기용매를 제거하는 단계를 포함하는 서방출성 마이크로스피어의 제조방법을 제공한다. 본 발명에 따른 제조방법에 있어, 생리활성물질, 생체적합성 고분자 및 방출억제제에 관하여는 상기 서방출성 마이크로스피어에 관한 사항이 동일하게 적용된다. 본 발명의 상기 i ) 단계는 오일 분산상 (oi l di spers ion phase)을 제조하기 '위한 전 단계로 생체적합성 고분자를 유기용매에 용해시키는 단계이다. 또한, 상기 i ) 단계에서 생체적합성 고분자를 용해하는데 사용될 수 있는 유기용매는 생체적합성 고분자를 용해할 수 있는 한 특별히 제한되는 것은 아니다. 예를 들면 메틸렌클로라이드, 클로로포름, 아세토니트릴, 디메틸설폭시드, 디메틸포름아마이드 및 에틸아세테이트로 이루어진 군에서 선택되는 하나 이상의 용매 등이 사용될 수 있다. 나아가, 본 발명의 상기 i i ) 단계는 i ) 단계에서 제조된 생체적합성 고분자가 용해된 유기용매에 생리활성물질 자체를 현탁, 분산시켜 현탁 용액을 제조하거나, 또는 i ) 단계에서 제조된 생체적합성 고분자가 용해된 유기용매와 함께, 생리활성물질에 용해보조제를 첨가하여 이에 용해시킨 후 이들을 서로 흔합시켜 비수성 용액을 제조하는 단계이다. 또한, i) 단계에서 제조된 유기용매에 생리활성물질을 현탁, 분산시키는 경우에 사용되는 ii) 단계의 용해보조제는 생리활성물질올 용해할 수 있는 한 특별한 제한은 없다. 본 발명에서 생리활성물질을 용해하는데 사용될 수 있는 용해보조제는 바람직하게는 디메틸설폭사이드 (DMS0) 또는V) provides a method for producing a slow release microsphere comprising the step of removing the organic solvent. In the production method according to the present invention, the same information regarding the sustained-release microspheres is applied to the bioactive material, the biocompatible polymer and the release inhibitor. Wherein i) step of the present invention is a step of dissolving a biocompatible polymer in an organic solvent to the previous step for the preparation of the oil dispersed phase (oi l di spers ion phase) '. In addition, the organic solvent that can be used to dissolve the biocompatible polymer in step i) is not particularly limited as long as it can dissolve the biocompatible polymer. For example, one or more solvents selected from the group consisting of methylene chloride, chloroform, acetonitrile, dimethyl sulfoxide, dimethylformamide and ethyl acetate may be used. Furthermore, step ii) of the present invention may be prepared by suspending and dispersing the bioactive material itself in an organic solvent in which the biocompatible polymer prepared in step i) is dissolved, or preparing a biocompatible polymer prepared in step i). With the dissolved organic solvent, a dissolution aid is added to the physiologically active substance and dissolved therein, followed by mixing them with each other to prepare a non-aqueous solution. In addition, the dissolution aid of step ii) used in the case of suspending and dispersing the bioactive material in the organic solvent prepared in step i) is not particularly limited as long as it can dissolve the bioactive material. Dissolution aids that can be used to dissolve the bioactive material in the present invention are preferably dimethylsulfoxide (DMS0) or
N-메틸 -2-피를리디논 (NMP) 이다. 상기 용해보조제는 상기 생리활성물질의 중량 대비 200 내지 1,000%의 중량으로 사용될 수 있다. 본 발명의 상기 ii) 단계에서는 현탁액의 바람직한 물성이나 에멀견 형성을 돕기 위하여 선택적으로 계면활성게가 첨가될 수 있다. 계면활성제는 당 분야에서 관용적으로 사용되고 있는 것인 이상 특별한 제한 없이 사용될 수 있다. 계면활성제는 예를 들면, 실리콘오일 (silicone oil), 폴리소르베이트 (polysorbate, 상품명 Tween), 소르비탄 에스테르 (sorbitan ester, 상품명 Span), 폴록사머 (poloxamer), 폴리에틸렌글리콜 (polyethyleneglycol) 및 토코페를 (tocopherol )로 이루어진 군으로부터 선택되는 하나 이상의 계면활성제 등이 사용될 수 있다. N-methyl-2-pyridinone (NMP). The dissolution aid may be used in a weight of 200 to 1,000% relative to the weight of the bioactive material. In step ii) of the present invention, a surface active agent may be optionally added to assist in the formation of the desired physical properties or emulsion of the suspension. Surfactants may be used without particular limitation so long as they are conventionally used in the art. Surfactants include, for example, silicone oil, polysorbate (Tween), sorbitan ester (Span), poloxamer, polyethyleneglycol and tocope. One or more surfactants selected from the group consisting of (tocopherol) and the like can be used.
본 발명의 상기 iii) 단계는 i) 단계 및 Π) 단계에서 제조된 물질과 방출억제제를 흔합하여, 예를 들어 투명한 에멀젼 형태과 같은 오일 분산상을 제조하는 단계로서, 상기 단계에서 사용되는 방출억제제는 수용성인 생리활성물질의 방출을 지연 내지는 억제할 수 있는 기능을 가진 수난용성 내지는 수불용성 성분으로 초기 생리활성물질의 과다 방출을 지연 내지는 억제하거나 목적하는 기간 동안 생리활성물질의 방출을 지연시키고 제조되는 마이크로스피어의 약물 봉입를을 증가시키는 것을 목적으로 사용하는 성분을 의미한다. 본 발명에서 상기 iv) 단계에서 수성 매질은 바람직하게는 주사용수가사용될 수 있으며, 선택적으로 에멀젼의 확산을 억제하기 위하여 저점도 고분자를 흔합하여 사용할 수도 있다. 이때 사용되는 저점도 고분자로는, 예를 들면 폴리비닐피를리돈 (5.5-8.5 mPas of 10% w/v aqueous solutions at 20 °C), 폴리비닐알코올 (4.0—7.0 mPas of 4% w/v aqueous solut ion at 20 0C)등이 사용될 수 있으나 이에 제한되는 것은 아니다. 나아가, 상기 iv) 단계의 수성 매질과 함께, 선택적으로 공용매를 더 사용할 수도 있고, 이러한 공용매의 예로는 탄화수소의 수소원자가 수산화기 (hydroxy, _0H)로 치환된 알코을,또는 초산 및 유기산, 또는 아세톤 또는 석탄산 (carbol i c acid)등을 들 수 있으며, 가장 바람직하게는 메탄올, 에탄올,프로판올,부탄올, 펜탄을, 핵산올, 협탄을,옥탄을,노난올, 데칸올의 1가 알코을 들을 수 있으며, 더욱 바람직하게는 에탄올을 들을 수 있으나, 이에 제한되는 것은 아니다. 1가 알코올, 아세톤, 초산등의 공용매를 사용하는 경우에 제조된 마이크로스피어의 웅집이 감소될 수 있다. 그러나 공용매를 과량 사용시 약물의 봉입률이 저하될 수 있으며, 소량 사용시에는 마이크로스피어의 웅집효과에 의하여 약물의 용출이 제한될 수 있다. 따라서 이때, 방출억제제제 대 공용매 비율은 1 : 1~1 : 10.000, 또는 바람직하게는 1 : 10-1 : 1 , 000, 가장 바람직하게는 1 : 20~1 : 400이다. The step iii) of the present invention is a step of mixing the release agent and the material prepared in steps i) and Π) to prepare an oil dispersed phase, for example in the form of a transparent emulsion, wherein the release inhibitor used in the step is water-soluble Micro-fabricated and poorly water-soluble or water-insoluble ingredients that have a function of delaying or inhibiting the release of phosphorus bioactive substances or delaying or releasing excessive release of initial bioactive substances or delaying the release of bioactive substances for a desired period of time. By spice means a component used for the purpose of increasing the drug inclusion. In the present invention, in the step iv), the aqueous medium may be preferably water for injection, and optionally, a low viscosity polymer may be mixed and used to suppress the diffusion of the emulsion. The low viscosity polymers used here include, for example, polyvinylpyridone (5.5-8.5 mPas of 10% w / v aqueous solutions at 20 ° C), polyvinyl alcohol (4.0—7.0 mPas of 4% w / v aqueous solut ion at 20 0 C) may be used, but is not limited thereto. Furthermore, in addition to the aqueous medium of step iv), an optional cosolvent may be further used. Examples of such cosolvents include alcohols in which a hydrogen atom of a hydrocarbon is substituted with a hydroxyl group (hydroxy, _0H), or acetic acid and an organic acid, or acetone. Or carbolic acid, most preferably methanol, ethanol, propanol, butanol, pentane, nucleic acid, narrow coal, octane, nonanol, or decanol monovalent alcohol. More preferably ethanol can be mentioned but is not limited thereto. When co-solvents such as monohydric alcohol, acetone, acetic acid, etc. are used, the microspheres produced can be reduced. However, when the co-solvent is used in excess, the encapsulation rate of the drug may be lowered, and in small amounts, the dissolution of the drug may be limited by the microsphere coarse effect. Therefore, at this time, the release inhibitor to cosolvent ratio is 1: 1: 1: 10.000, or preferably 1: 10-1: 1, 000, most preferably 1: 20-1: 400.
또한, iv) 단계에서, 입도 조절은 공지의 마이크로스피어의 입도 조절 방법을 제한 없이 사용할 수 있으나, 고압균질기를 사용하여 조절하는 것이 바람직하다. 본 발명의 상기 V) 단계에서 유기용매를 제거하는 방법은 당 분야에서 통상적으로 사용되고 있는 임의의 방법이 사용될 수 있다. 유기용매를 제거하는 방법은 예를 들면 교반, 가열, 질소퍼지 (N2 purge)등이 사용될 수 있으나 이에 제한되는 것은 아니다.  In addition, in step iv), the particle size control can be used without limitation the known particle size control method of microspheres, it is preferable to control using a high pressure homogenizer. As the method for removing the organic solvent in the step V) of the present invention, any method commonly used in the art may be used. The organic solvent may be, for example, agitated, heated, or purged with nitrogen (N 2 purge), but is not limited thereto.
본 발명의 제조방법에, 있어, 현탁용액 또는 에멀젼 용액에 방출억제제를 흔합한 다음 이를 수성 매질에 투입하여 마이크로스피어 형성시 수불용성 또는 수난용성인 방출억제제가 마이크로스피어 내, 외부에 분포하면서 수용성인 생리활성물질이 외부 수성매질과의 접촉을 줄임으로써 초기 용출률을 줄이게 된다. 바람직한 양태에서, 본 발명의 제조방법에서는 상기 V) 단계에서 유기용매를 제거한 후 수득된 마이크로스피어를 동결하는 단계가 더 포함될 수 있다. 또한 상기 동결 단계 전, 원심분리를 하는 단계 및 /또는 투석 (Di alysi s)하는 단계 및 /또는 여과 단계를 더 포함할 수 있다. 즉, 상기 과정을 거쳐 제조되는 마이크로스피어는 약물인 생리활성물질의 봉입률을 증가시키고, 사용되는 생체적합성 고분자의 분자량 및 락타이드의 함유비와 상관없이 약물의 과도한 초기 방출 (initial burst)이 없는 0차 방출특성을 부여한다. In the preparation method of the present invention , a release inhibitor is mixed with a suspension solution or an emulsion solution, and then added to an aqueous medium to release a water inhibitor which is water insoluble or poorly water soluble in forming a microsphere, and is soluble while being distributed inside or outside the microsphere. The bioactive material reduces the initial dissolution rate by reducing contact with external aqueous media. In a preferred embodiment, the preparation method of the present invention may further comprise the step of freezing the microspheres obtained after removing the organic solvent in the step V). It may also further comprise the step of centrifugation and / or dialysis (Di alysi s) and / or filtration step before the freezing step. That is, the microspheres prepared through the above process increase the encapsulation rate of the bioactive substance as a drug, and there is no excessive initial burst of the drug regardless of the molecular weight and lactide content of the biocompatible polymer used. Gives zero-order emission characteristics.
상기와 같이 제조되는 본 발명의 마이크로 캡슐은 동물에 투여되었을 때 약물의 혈중 농도 패턴은 다르지만, 28일까지 3ng/ml 이상의 약물농도를 유지하므로 1개월 이상의 장기 서방출성 제제로서 제형화가 가능하다.  The microcapsules of the present invention prepared as described above have a different blood concentration pattern of the drug when administered to an animal, but can be formulated as a long-term sustained release formulation of one month or more because the drug concentration is maintained at 3 ng / ml or more until 28 days.
【발명의 실시를 위한 형태】 [Form for implementation of invention]
이하,본 발명을 실시예에 의해 상세히 설명한다. 다만 이들 실시예는 본 발명의 내용을 이해하기 위해 제시되는 것일 뿐 본 발명의 권리범위가 이들 실시예에 한정되는 것으로 해석되어서는 아니 된다.  Hereinafter, the present invention will be described in detail by way of examples. However, these examples are only presented to understand the content of the present invention, and the scope of the present invention should not be construed as being limited to these embodiments.
<비교예 >일반적인 수중유화법 (0/W)에 의한마이크로스피어의 제조 고세텔린 아세테이트 (USP급) 50mg을 표 1 및 표 2에 제시된 함량에 따라 DMSO 0.2ml에 용해시키고 생체적합성고분자 500mg을 메틸렌클로라이드 lml에 용해시켜 투명한 에멀견을 제조하였다 (DP, Dispersion phase). 이 용액을 25°C에서 L4R믹서 (Silverson)로 격렬히 교반 (10,000 rpm)되는 0.5% 폴리비닐알코올 (Mw=30, 000~70,000, 시그마) 수용액 90ml 와 에탄올 (99.5%) 10ml 흔합액에 시린지 펌프 (lml/min)를 이용하여 서서히 적가하였다. 1분 후 이 0/W 액을 고압균질기 (Buffalo)에서 압력을 조절하여 마이크로스피어의 사이즈가 3±0.5μΐΏ 가 되도록 조절하여 10회 반복적으로 통과시켜 균질한 0/W액을 조제하였다. 이 0/W액을 교반기에서 400rpm속도로 12시간 동안 유기용매를 휘발시켰다. 이후 마이크로스피어를 수득하기 위하여 원심분리 (10,000g, 20분)하여, 증류수로 2회 세척한 후 72시간 동안 동결 건조하였다. <Comparative Example> Preparation of microspheres by general oil emulsification (0 / W) 50 mg of gocethelin acetate (USP grade) was dissolved in 0.2 ml of DMSO according to the contents shown in Tables 1 and 2, and 500 mg of biocompatible polymer was added to methylene. Dissolve in 1 ml of chloride to give a clear emulsion dog (DP, Dispersion phase). This solution was added to 90 ml of 0.5% polyvinyl alcohol (Mw = 30, 000 ~ 70,000, Sigma) aqueous solution and 10ml mixture of ethanol (99.5%), which was vigorously stirred (10,000 rpm) with L4R mixer (Silverson) at 25 ° C. It was slowly added dropwise using a syringe pump (lml / min). After 1 minute, the 0 / W liquid was adjusted in a high pressure homogenizer (Buffalo) to adjust the size of the microspheres to 3 ± 0.5 μΐΏ and repeatedly passed through 10 times to prepare a homogeneous 0 / W liquid. This 0 / W liquid was volatilized the organic solvent for 12 hours at 400 rpm in the stirrer. After centrifugation (10,000g, 20 minutes) to obtain a microsphere, washed twice with distilled water and freeze-dried for 72 hours.
<비교예 1> 고유점도가 다른 생체적합성 고분자를 이용한 고세텔린 함유마이크로스피어의 제조 <Comparative Example 1> Preparation of high cetelin-containing microspheres using biocompatible polymers having different intrinsic viscosity
【표 1】
Figure imgf000015_0001
DMSO 0.2ml 0.2ml 0.2ml
Table 1
Figure imgf000015_0001
DMSO 0.2ml 0.2ml 0.2ml
MC 1ml 1ml 1ml  MC 1ml 1ml 1ml
PLGA PLGA 502H1) PLGA 503H2 PLGA 504H3J PLGA PLGA 502H 1) PLGA 503H 2 PLGA 504H 3J
500mg 500mg 500mg  500mg 500mg 500mg
0.5% PVA solution 90ml 90ml 90ml  0.5% PVA solution 90ml 90ml 90ml
EtOH (99.5%) 10ml 10ml 10ml  EtOH (99.5%) 10ml 10ml 10ml
1)락타아드:글리콜리드 =50 :50, 베링거잉겔하임사, i .v.=0.20dl/g, Resoraer ™  1) Lactad: glycolide = 50:50, Boehringer Ingelheim, i.v. = 0.20dl / g, Resoraer ™
2) 락타이드:글리콜리드 =50:50, 베링거잉겔하임사, i.v.=0.39dl/g, Resomer ™  2) Lactide: glycolide = 50: 50, Boehringer Ingelheim, i.v. = 0.39dl / g, Resomer ™
3) 락타이드:글리콜리드 =50:50, 베링거잉겔하임사, i.v.=0.52dl/g, Resomer TM 비교예 2> 락타이드 /글리콜라이드의 조성이 다른 생체적합성 고분자를 이용한제제설계  3) Lactide: glycolide = 50:50, Boehringer Ingelheim, i.v. = 0.52dl / g, Resomer TM Comparative Example 2> Formulation design using biocompatible polymers with different compositions of lactide / glycolide
【표 2】  Table 2
Figure imgf000016_0001
Figure imgf000016_0001
1) 락타이드:글리콜리드 =50 :50, 베링거잉겔하임사, i.v.=0.20dl/g, Resomer ™  1) Lactide: glycolide = 50: 50, Boehringer Ingelheim, i.v. = 0.20dl / g, Resomer ™
2) 락타이드:글리콜리드 =75 :25, 베링거잉겔하임사, i .v.=0.20dl/g, Resomer ™  2) Lactide: glycolide = 75:25, Boehringer Ingelheim, i.v. = 0.20dl / g, Resomer ™
3) 락타이드:글리콜리드 =100:0, 베링거잉겔하임사, i.v.=0.20dl/g, Resomer ™ 비교예 3> 생체적합성 고분자 (RG502H) 와 방출억제제 (Medium chain triglyceide, MCT)의 오일분산상 (ODP, Oil Dispersion phase) 흔합에 의한 마이크로스피어의 제조 3) Lactide: glycolide = 100: 0, Boehringer Ingelheim, iv = 0.20dl / g, Resomer ™ Comparative Example 3> Biocompatible Polymer (RG502H) and Release Inhibitor (Medium chain) Preparation of Microspheres by Mixing Oil Dispersion Phase (ODP) of triglyceide (MCT)
고세텔린 아세테이트 (USP급) 50mg을 표 14에 따라 DMS0에 용해시키고 생체적합성고분자 500mg을 메틸렌클로라이드 1ml에 용해시킨 후 방출억제제로 C6:0~C12:0으로 조성된 Medium chain triglyceide (MCT)를 표 3에 제시된 함량에 따라 용해시켜 투명한 에멀젼을 쎄조하였다 (ODP, Oil Dispersion phase). 이하의 제조과정은 비교예와 동일하게 실시하였다.  After dissolving 50 mg of high-cetellin acetate (USP grade) in DMS0 and dissolving 500 mg of biocompatible polymer in 1 ml of methylene chloride, medium chain triglyceide (MCT) composed of C6: 0 ~ C12: 0 as release inhibitor is listed. Dissolved according to the content shown in 3 to clarify the clear emulsion (ODP, Oil Dispersion phase). The following manufacturing process was performed similarly to the comparative example.
【표 3] [Table 3]
Figure imgf000017_0001
Figure imgf000017_0001
* PLGA 중량 대비 ¾> 실시예 1> 생체적합성 고분자 (RG502H) 와 방출억제제 (Lecithin, 레시틴)의 오일분산상 (ODP, Oil Dispersion phase) 흔합에 의한 마이크로스피어의 제조  * Example 1> Preparation of Microspheres by Mixing Oil Dispersion Phase (ODP) between Biocompatible Polymer (RG502H) and Release Inhibitor (Lecithin, Lecithin)
고세텔린 아세테이트 (USP급) 50mg을 DMSO 0.2ml 에 용해시키고 생체적합성고분자 500mg을 메틸렌클로라이드 1ml에 용해시킨 후 방출억제제로써, 레씨틴을 표 4에 제시된 함량에 따라 용해시켜 투명한 에멀젼을 제조하였다 (ODP, Oil Dispersion phase). 이하의 제조과정은 비교예와 동일하게 실시하였다.  50 mg of high-cetellin acetate (USP grade) was dissolved in 0.2 ml of DMSO, and 500 mg of biocompatible polymer was dissolved in 1 ml of methylene chloride, and then as a release inhibitor, lecithin was dissolved according to the contents shown in Table 4 to prepare a transparent emulsion (ODP). , Oil Dispersion phase). The following manufacturing process was performed similarly to the comparative example.
【표 4】 Table 4
Figure imgf000017_0002
Figure imgf000017_0002
Figure imgf000018_0001
실시예 2>생체적합성 고분자 (RG502H)와 방출억제제 (Cottonseed oi l 면실유)의 오일분산상 (0DP, Oi l Dispersion phase) 흔합에 의한 마이크로스피어의 제조
Figure imgf000018_0001
Example 2 Preparation of Microspheres by Mixing Oil Dispersion Phase (0DP, Oil Dispersion Phase) of Biocompatible Polymer (RG502H) and Release Inhibitor (Cottonseed Oil Cottonseed Oil)
고세텔린 아세테이트 (USP급) 50mg을 DMS0 0.2ml에 용해시키고 생체적합성고분자 500mg을 메틸렌클로라이드 1ml에 용해시킨 후 방출억제제로서, 면실유를 표 5에 제시된 함량에 따라 용해시켜 투명한 에멀견을 제조하였다 (0DP, Oi l Di spersion phase) . 이하의 제조과정은 비교예와 동일하게 실시하였다.  50 mg of high cetelin acetate (USP grade) was dissolved in 0.2 ml of DMS0, and 500 mg of biocompatible polymer was dissolved in 1 ml of methylene chloride, and as a release inhibitor, cottonseed oil was dissolved according to the contents shown in Table 5 to prepare a transparent emulsion (0DP). , Oi l Di spersion phase). The following manufacturing process was performed similarly to the comparative example.
【표 5】 Table 5
Figure imgf000018_0002
Figure imgf000018_0002
* PLGA 중량 대비 % 실시예 3> 생체적합성 고분자 (RG502H) 와 방출억제제 (Castor oi l , 피마자유)의 오일분산상 (0DP, Oi l Dispersion phase) 흔합에 의한 마이크로스피어의 제조 * % By weight of PLGA Example 3> Preparation of microspheres by mixing the oil-dispersed phase (0DP, Oi l Dispersion phase) between the biocompatible polymer (RG502H) and the release inhibitor (Castor oi l, castor oil)
고세텔린 아세테이트 (USP급) 50mg을 DMS0 0.2ml 에 용해시키고 생체적합성고분자 500mg을 메틸렌클로라이드 1ml에 용해시킨 후 방출억제제로서, 피마자유를 표 6에 제시된 함량에 따라 용해시켜 투명한 에멀견을 제조하였다 (ODP, Oil Dispersion phase) . 이하의 제조과정은 비교예와 동일하게 실시하였다. 50 mg of high-cetelin acetate (USP grade) was dissolved in 0.2 ml of DMS0, and 500 mg of biocompatible polymer was dissolved in 1 ml of methylene chloride. As a release inhibitor, castor oil was dissolved according to the contents shown in Table 6 to prepare a transparent emulsion dog (ODP, Oil Dispersion phase). The following manufacturing process was performed similarly to the comparative example.
【표 6] [Table 6]
Figure imgf000019_0001
Figure imgf000019_0001
PLGA중량 대비 °k 실시예 4> 생체적합성 고분자 (RG502H) 와 방출억제제 (Corn oil, 옥수수유)의 오일분산상 (ODP, Oil Dispersion phase) 흔합에 의한 마이크로스피어의 제조  Example 4> Preparation of Microspheres by Mixing Oil Dispersion Phase (ODP) of Biocompatible Polymer (RG502H) and Release Inhibitor (Corn Oil, Corn Oil)
고세렐린 아세테이트 (USP급) 50mg을 DMS0 0.2ml 에 용해시키고 생체적합성고분자 500mg을 메틸렌클로라이드 1ml에 용해시 ¾ 후 방출억제제로서, 옥수수유를 표 7에 제시된 함량에 따라 용해시켜 투명한 에멀젼을 제조하였다 (ODP, Oil Dispersion phase) . 이하의 제조과정은 비교예와 동일하게 실시하였다. 50 mg of goserelin acetate (USP grade) was dissolved in 0.2 ml of DMS0, and 500 m g of biocompatible polymer was dissolved in 1 ml of methylene chloride as a release inhibitor. Corn oil was dissolved according to the contents shown in Table 7 to prepare a clear emulsion. (ODP, Oil Dispersion phase). The following manufacturing process was performed similarly to the comparative example.
【표 7] [Table 7]
Figure imgf000019_0002
EtOH (99.5%) 10ml 10ml 10ml 10ml
Figure imgf000019_0002
EtOH (99.5%) 10ml 10ml 10ml 10ml
PLGA 중량 대비 °k 실시예 5>생체적합성 고분자 (RG502H)와방출억제제 (Saf flower oil, 해바라기유)의 오일분산상 (ODP, Oil Dispersion phase) 흔합에 의한 마이크로스피어의 제조 Example 5> Preparation of microspheres by mixing oil dispersion phase (ODP) between biocompatible polymer (RG502H) and release inhibitor (Saf flower oil, sunflower oil)
고세텔린 아세테이트 (USP급) 50mg을 DMS0 0.2ml 에 용해시키고 생체적합성고분자 500mg을 메틸렌클로라이드 1ml에 용해시킨 후 방출억제제로서, 해바라기유를 표 8에 제시된 함량에 따라 용해시켜 투명한 에멀견을 제조하였다 (ODP, Oil Dispersion phase). 이하의 제조과정은 비교예와 동일하게 실시하였다.  50 mg of high cetelin acetate (USP grade) was dissolved in 0.2 ml of DMS0, and 500 mg of the biocompatible polymer was dissolved in 1 ml of methylene chloride, and then as a release inhibitor, sunflower oil was dissolved according to the contents shown in Table 8 to prepare a transparent emulsion. ODP, Oil Dispersion phase. The following manufacturing process was performed similarly to the comparative example.
【표 8] [Table 8]
Figure imgf000020_0001
Figure imgf000020_0001
PLGA 중량 대비 % 실시예 6> 생체적합성 고분자 (RG502H) 와 방출억제제 (Olive oil, 올리브유)의 오일분산상 (ODP, Oil Dispersion phase) 흔합에 의한 마이크로스피어의 제조  % By weight of PLGA Example 6> Preparation of microspheres by mixing oil dispersion phase (ODP) of biocompatible polymer (RG502H) and release inhibitor (Olive oil, olive oil)
고세렐린 아세테이트 (USP급) 50mg을 DMS0 0.2ml 에 용해시키고 생체적합성고분자 500mg을 메틸렌클로라이드 1ml에 용해시킨 후 방출억제제로서, 올리브유를 표 9에 제시된 함량에 따라 용해시켜 투명한 에멀젼을 제조하였다 (ODP, Oil Dispersion phase) . 이하의 제조과정은 비교예와 동일하게 실시하였다. 【표 9】 50 mg of goserelin acetate (USP grade) was dissolved in 0.2 ml of DMS0, and 500 mg of biocompatible polymer was dissolved in 1 ml of methylene chloride, and then, as a release inhibitor, olive oil was dissolved according to the contents shown in Table 9 to prepare a transparent emulsion (ODP, Oil Dispersion phase). The following manufacturing process was performed similarly to the comparative example. Table 9
Figure imgf000021_0001
Figure imgf000021_0001
PLGA 중량 대비 % 실시예 > 생체적합성 고분자 (RG502H) 와 방출억제제 (Sesame oil, 참기름)의 오일분산상 (ODP, Oil Dispersion phase) 흔합에 의한 마이크로스피어의 제조  PLGA% by weight Example> Preparation of microspheres by mixing oil dispersion phase (ODP) of biocompatible polymer (RG502H) and release inhibitor (Sesame oil, sesame oil)
고세텔린 아세테이트 (USP급) 50mg을 DMSO 0.2ml 에 용해시키고 생체적합성고분자 500mg을 메틸렌클로라이드 1ml에 용해시킨 후 방출억제제로서, 참기름을 표 10에 제시된 함량에 따라 용해시켜 투명한 에멀견을 제조하였다 (ODP, Oil Dispersion phase) . 이하의 제조과정은 비교예와 동일하게 실시하였다.  50 mg of high cetelin acetate (USP grade) was dissolved in 0.2 ml of DMSO, and 500 mg of biocompatible polymer was dissolved in 1 ml of methylene chloride, and then sesame oil was dissolved according to the contents shown in Table 10 to prepare a clear emulsion (ODP). , Oil Dispersion phase). The following manufacturing process was performed similarly to the comparative example.
【표 10】 Table 10
Figure imgf000021_0002
Figure imgf000021_0002
* PLGA중량 대비 % 실시예 8> 생체적합성 고분자 (RG502H) 와 방출억제제 (Soybean oil 대두유)의 오일분산상 (ODP, Oi l Dispersion phase) 흔합에 의한 마이크로스피어의 제조 * % By weight of PLGA Example 8> Biocompatible polymer (RG502H) and release inhibitor (Soybean oil) Preparation of Microspheres by Mixing Oil Dispersion Phase (ODP) of Soybean Oil)
고세텔린 아세테이트 (USP급) 50mg을 DMSO 0.2ml 에 용해시키고 생체적합성고분자 500mg을 메틸렌클로라이드 1ml에 용해시킨 후 방출억제제로서, 대두유를 표 11에 제시된 함량에 따라 용해시켜 투명한 에멀견을 제조하였다 (ODP , Oi l Di spersion phase) . 이하의 제조과정은 비교예와 동일하게 실시하였다.  50 mg of high-cetellin acetate (USP grade) was dissolved in 0.2 ml of DMSO, and 500 mg of biocompatible polymer was dissolved in 1 ml of methylene chloride, and then, as a release inhibitor, soybean oil was dissolved according to the contents shown in Table 11 to prepare a transparent emulsion (ODP). , Oi l Di spersion phase). The following manufacturing process was performed similarly to the comparative example.
【표 11] Table 11
Figure imgf000022_0001
Figure imgf000022_0001
* PLGA중량대비 % 실시예 9> 생체적합성 고분자 (RG502H) 와 방출억제제 (Peanut oi l , 땅콩유)의 오일분산상 (ODP, Oi l Dispersion phase) 흔합에 의한 마이크로스피어의 제조 * % Of PLGA Example 9> Preparation of Microspheres by Mixing Oil Dispersion Phase (ODP) of Biocompatible Polymer (RG502H) and Release Inhibitor (Peanut Oil, Peanut Oil)
고세렐린 아세테이트 (USP급) 50mg을 DMSO 0.2ml 에 용해시키고 생체적합성고분자 500mg을 메틸렌클로라이드 1ml에 용해시킨 후 방출억제제로서, 땅콩유를 표 12에 제시된 함량에 따라 용해시켜 투명한 에멀젼을 제조하였다 (ODP , Oi l Di spers ion phase) . 이하의 제조과정은 비교예와 동일하게 실시하였다.  50 mg of goserelin acetate (USP grade) was dissolved in 0.2 ml of DMSO, and 500 mg of biocompatible polymer was dissolved in 1 ml of methylene chloride, and then as a release inhibitor, peanut oil was dissolved according to the contents shown in Table 12 to prepare a transparent emulsion (ODP). , Oi l Di spers ion phase). The following manufacturing process was performed similarly to the comparative example.
【표 12】 Table 12
Figure imgf000022_0002
Figure imgf000022_0002
Figure imgf000023_0001
Figure imgf000023_0001
<실시예 10>최소 3개월 지속적인 방출을 위한초산류프로렐린 함유 생분해성 마이크로스피어의 제조 Example 10 Preparation of Biodegradable Microspheres Containing Acetate Prolinelin for at least 3 Months Sustained Release
고세렐린 아세테이트 (USP급) 50mg을 DMSO 0.2ml 에 용해시키고 표 50 mg of goserelin acetate (USP grade) was dissolved in 0.2 ml of DMSO
13에 제시된 생체적합성고분자 500mg을 메틸렌클로라이드 1ml에 용해시킨 후 방출억제제를 제시된 함량에 따라 용해시켜 투명한 에멀젼을 제조하였다 (0DP, Oil Dispersion phase). 이하의 제조과정은 비교예와 동일하게 실시하였다. 500 mg of the biocompatible polymer shown in 13 was dissolved in 1 ml of methylene chloride, and then a release inhibitor was dissolved according to the indicated content to prepare a transparent emulsion (0DP, Oil Dispersion phase). The following manufacturing process was performed similarly to the comparative example.
【표 13】 Table 13
Figure imgf000023_0002
Figure imgf000023_0002
* PLGA 중량 대비 % * % Of PLGA weight
1) 락타이드:글리콜리드 =50 :50, 베링거잉겔하임사, 丽. =50,000 Resomer ™  1) Lactide: glycolide = 50: 50, Boehringer Ingelheim, 丽. = 50,000 Resomer ™
2) 락타이드:글리콜리드 =75 :25; 베링거잉겔하임사, MW.=20,000 Resomer ™  2) lactide: glycolide = 75: 25; Boehringer Ingelheim, MW. = 20,000 Resomer ™
3) 락타이드:글리콜리드 =100:0, 베링거잉겔하임사, MW. =220 ,000 esomer 1M 3) Lactide: glycolide = 100: 0, Boehringer Ingelheim, MW. = 220, 000 esomer 1M
<실시예 11> 수용액상 (CP)의 공용매 (에탄을)에 의한 마이크로스피어의 제조 Example 11 Preparation of Microspheres Using Cosolvent (ethane) in Aqueous Solution (CP)
고세렐린 아세테이트 (USP급) 50mg을 DMSO 0.2ml 에 용해시키고 생체적합성고분자 500mg을 메틸렌클로라이드 1ml에 용해시킨 후 방출억제제를 표 14에 제시된 함량에 따라 용해시켜 투명한 에멀견을 제조하였다 (ODP, Oi l Di spersion phase) . 이 용액을 25°C에서 L4R 믹서 (Si lverson)로 격렬히 교반 (10 , 000 rpm) 되는 0.5% 폴리비닐알코올 (Mw=30 , 000-70, 000, 시그마) 수용액과 에탄올 (99.5%) 흔합액을 표 14에 제시된 함량에 따라 수성용매를 조성한 후 시린지 펌프 ( lml/min)를 이용하여 서서히 적가하였다. 이하의 제조과정은 비교예와 동일하게 실시하였다.  50 mg of goserelin acetate (USP grade) was dissolved in 0.2 ml of DMSO, 500 mg of biocompatible polymer was dissolved in 1 ml of methylene chloride, and then release inhibitor was dissolved according to the contents shown in Table 14 to prepare a transparent emulsion dog (ODP, Oi l). Di spersion phase. This solution is a mixture of 0.5% polyvinyl alcohol (Mw = 30, 000-70, 000, Sigma) and ethanol (99.5%) mixture vigorously stirred (10, 000 rpm) with an L4R mixer (Si lverson) at 25 ° C. To prepare an aqueous solvent according to the content shown in Table 14 and then slowly added dropwise using a syringe pump (lml / min). The following manufacturing process was performed similarly to the comparative example.
【표 14] Table 14
Figure imgf000024_0001
Figure imgf000024_0001
PLGA 중량 대비 %  % Of PLGA weight
<실시예 12>비수용액상 (ODP)의 DMSO에 의한마이크로스피어의 제조 고세텔린 아세테이트 (USP급) 50mg을 표 15에 따라 DMS0에 용해시키고 생체적합성고분자 500mg을 메틸렌클로라이드 1ml에 용해시킨 후 방출억제제를 표 15에 제시된 함량에 따라 용해시켜 투명한 에멀견을 제조하였다 (0DPᅳ Oi l Di spersion phase) . 이하의 제조과정은 비교예와 동일하게 실시하였다. Example 12 Preparation of Microspheres by DMSO in Non-Aqueous Liquid Phase (ODP) 50 mg of high-cetellin acetate (USP grade) was dissolved in DMS0 according to Table 15, and 500 mg of biocompatible polymer was dissolved in 1 ml of methylene chloride. Dissolved according to the contents shown in Table 15 to prepare a transparent emulsion dog (0DP ᅳ Di Differentiation phase). The following manufacturing process was performed similarly to the comparative example.
【표 15] Table 15
Figure imgf000025_0001
Figure imgf000025_0001
#API 중량 대비 ¾ # ¾ of API weight
<실시예 13> 생리활성물질의 봉입에 의한마이크로스피어의 제조 생리활성물질 50mg을 표 16에 따라 DMS0에 용해시키고 생체적합성고분자 500mg을 메틸렌클로라이드 1ml에 용해시킨 후 방출억제제를 표 15에 제시된 함량에 따라 용해시켜 투명한 에멀견을 제조하였다 (0DP, Oil Dispersion phase). 이하의 제조과정은 비교예와 동일하게 실시하였다. Example 13 Preparation of Microspheres by Enclosure of Biologically Active Substance 50 mg of the bioactive substance was dissolved in DMS0 according to Table 16, and 500 mg of the biocompatible polymer was dissolved in 1 ml of methylene chloride, and then the release inhibitor was added to the contents shown in Table 15. Were dissolved to prepare a clear emulsion dog (0DP, Oil Dispersion phase). The following manufacturing process was performed similarly to the comparative example.
【표 16] Table 16
Figure imgf000025_0002
* PLGA 중량 대비 ¾> 실험예 l> 약물의 시험관내 ( in vitro) 방출 실험
Figure imgf000025_0002
* PLGA by weight ¾> Experimental Example l> In vitro release of drug
고세텔린 아세테이트 (USP급) 50mg을 DMSO 0.2ml 에 용해시키고 생체적합성고분자 500mg을 메틸렌클로라이드 1ml에 용해시킨 후 방출억제제를 표 17에 제시된 함량에 따라 용해시켜 투명한 에멀견을 제조하였다 (ODP , Oi l Di spers ion phase) . 이하의 제조과정은 비교예와 동일하게 실시하였다.  50 mg of high cetelin acetate (USP grade) was dissolved in 0.2 ml of DMSO, 500 mg of biocompatible polymer was dissolved in 1 ml of methylene chloride, and then release inhibitor was dissolved according to the contents shown in Table 17 to prepare a transparent emulsion dog (ODP, Oi l). Di spers ion phase). The following manufacturing process was performed similarly to the comparative example.
【표 17] Table 17
Figure imgf000026_0001
Figure imgf000026_0001
* PLGA 중량 대비 % * % Of PLGA weight
제조된 고분자 마이크로스피어로부터 친수성 약물이 지속적으로 방출제어 되는지 확인하기 위하여, 다음의 시험관내 ( in vi tro) 조건으로 약물방출 실험을 진행하였다. 즉, 비교예 1-1과 실험예 1 그리고 실시예예 1~9에서 방출억제제가 10% 적용되어 제조된 고분자 마이크로스피어 그리고 3개월 제형인 실시예 10에서 제조된 고분자 마이크로스피어 50 mg을 정확하게 평량하여 방출병에 넣은 후, pH 7.4인 인산염 완층용액 50 ml을 넣어 밀봉시킨 후 37°C에서 분당 120회 속도의 진탕항온수조 (shaking water bath)에 두고 28일 이상 약물이 지속적으로 방출되도록 하였다. 방출된 약물들은 방출액을 1 ml씩 취하여 20 , 000g에서 10분간 원심분리 한 후 그 상등액 100 ul를 그 약물의 농도를 실험예 1과 같이 HPLC 정량법으로 측정하였고, 남은액은 재분산 하여 시험관 내에 보층하여 주었다. 측정결과를 도 1 (A) 에 제시하였으며, 방출억제제가 사용되지 않은 마이크로스피어 (비교예 1-1)의 1일차 약물 방출률은 70%로 초기 과다 방출 (initial burst)이 나타났으며, Medium chain triglyceride (MCT) 가 10% 사용된 마이크로스피어 (비교예 3-3)의 1일차 약물 방출를도 50%로 마찬가지로 초기 과다 방출이 나타난 것을 확인 할 수 있다. 그러나 실험예 1에서 방출억제제 (Castor oil)가 0.1% 도입된 마이크로스피어의 1일차 약물 방출률은 약 20%이며, 방출억제제가 100% 도입된 마이크로스피어의 1일차 약물 방출률은 약 10% 내외였다. 그러나 방출억제제가 20.1% 도입된 마이크로스피어의 28일차 약물 방출률은 약 85%로 28일 내에 약물 방출이 완전히 이루어지지 않았음을 알 수 있다. 또한 도 1(B)에 제시된, 실시예 1-9에 의하면, 장쇄 지방산 (long-chain fatty acid)로 구성된 오일을 방출억제제로 사용하였을 때, 초기 용출률이 상당히 작으면서 1개월 이상 0차 방출 특성을 나타내고 있음을 알 수 있다. 그리고 도 1 (C)는 실시예 10에서 제시된 최소 3개월에 방출률을 나타낼 수 있음을 제시하였다. . 실험예 2>약물의 봉입율측정 실험 In order to confirm that the hydrophilic drug is continuously controlled from the prepared polymer microspheres, drug release experiments were conducted under the following in vitro conditions. That is, the polymer microspheres prepared by applying the release inhibitor 10% in Comparative Example 1-1, Experimental Example 1 and Examples 1-9 and 50 mg of the polymer microspheres prepared in Example 10, which is a 3-month formulation, After being placed in a discharge bottle, 50 ml of a phosphate complete solution of pH 7.4 was sealed and placed in a shaking water bath at 120 ° C. at 37 ° C. to continuously release the drug for 28 days or more. The released drugs were centrifuged at 20, 000 g for 10 minutes after taking 1 ml of the released solution, and then 100 ul of the supernatant was measured by HPLC quantitative analysis as in Experiment 1, and the remaining solution was redispersed in the test tube. He was layered. The measurement results are shown in FIG. 1 (A), and the first-day drug release rate of the microspheres (Comparative Example 1-1) in which no release inhibitor was used was 70% at first. Initial bursts were observed, and the initial overdose was released at 50% for the first-day drug release of microspheres (Comparative Example 3-3) using 10% Medium chain triglyceride (MCT). . However, in Experimental Example 1, the microspheres containing 0.1% of the release oil (Castor oil) was about 20%, and the daily drug release rate of the microspheres containing 100% of the release inhibitor was about 10%. However, the 28-day drug release rate of the microsphere with 20.1% release inhibitor was about 85%, indicating that the drug was not completely released within 28 days. In addition, according to Example 1-9, shown in Figure 1 (B), when the oil composed of long-chain fatty acid (long-chain fatty acid) is used as the release inhibitor, the initial dissolution rate is significantly smaller than zero months or more release characteristics It can be seen that it represents. And FIG. 1C shows that the release rate can be at least 3 months as shown in Example 10. . Experimental Example 2 Experiment of Enclosure Rate Measurement of Drugs
제조된 고분자 마이크로스피어 20 mg을 정확하게 평량하여 뚜껑이 달린 시험관에 넣고, 3 ml의 메틸렌클로라이드에 층분히 용해시킨 후 5 ml의 증류수를 가하고 60분간 격렬히 교반하였다. 이후 이 용액을 3,000g으로 5분간 원심분리 하여주고, 일정량의 상층액을 취하여 고속액체크로마토그래피 (HPLC)를 이용하여 약물의 농도를 측정하여 마이크로스피어 내에 봉입되어있는 약물의 봉입율을 계산하였다. 이때 사용된 컬럼은 Waters C-18 (4.6x150醒)이며, 주입량은 이고 검출파장은 220nm이었다. 이동상으로는 0.1% TFA가 함유된 물 (a)과 아세토니트릴 (b)을 75% :25% 비율로 사용하였다.  20 mg of the prepared polymer microspheres were precisely weighed and placed in a test tube with a lid. After dissolving in 3 ml of methylene chloride, 5 ml of distilled water was added and stirred vigorously for 60 minutes. Thereafter, the solution was centrifuged at 3,000 g for 5 minutes, and a certain amount of supernatant was taken to measure the concentration of the drug using high performance liquid chromatography (HPLC) to calculate the encapsulation rate of the drug encapsulated in the microspheres. The column used was Waters C-18 (4.6x150 (), injection volume was and detection wavelength was 220nm. As the mobile phase, water (a) and acetonitrile (b) containing 0.1% TFA were used in a 75%: 25% ratio.
제조된 마이크로스피어의 봉입량을 도 2 (A)와 (B) 에 제시하였으며, 이에 의하면 방출억제제의 농도가 0.1~20¾>까지 증가할수록 약물의 봉입를이 증가하였으며, 방출억제제가 도입된 제형의 약물 봉입량이 50-100%를 나타내었다. 또한 방출억제제가 5% 이상 적용된 마이크로스피어의 봉입률은 70%를 나타내었다. 그러나 방출억제제제가 도입되지 않은 비교예 1~2 제형 그리고 medium chain triglyceride가 도입된 비교예 3 제형의 약물 봉입량은 이내로 나타내었다. 또한 방출억제제 중 피마자유의 경우, 다른 방출억제제 보다 약 10¾> 높은 봉입률을 나타내어 가장 우수한 약물 봉입 효율을 나타내었다. The encapsulation amount of the prepared microspheres is shown in FIGS. 2 (A) and (B), and according to this, as the concentration of the release inhibitor increased from 0.1 to 20¾>, the encapsulation of the drug was increased, and the drug of the formulation in which the release inhibitor was introduced The loading amount was 50-100%. In addition, the microspheres containing more than 5% of release inhibitors showed a 70% encapsulation rate. However, the amount of drug encapsulation in Comparative Examples 1 to 2 formulation without release inhibitor and Comparative Example 3 formulation in which medium chain triglyceride was introduced is shown within. In addition, castor oil among the release inhibitors showed the highest encapsulation rate of about 10¾> higher than other release inhibitors. Efficiency was shown.
또한 수용액상 (CP)의 공용매 (에탄을)에 의한 마이크로스피어와 비수용액상 (0DP)의 DMS0에 의한 마이크로스피어의 제조에 따른 봉입를 결과는 도 2 (C)에 제시하였으며, 방출억제제와 공용매의 비율이 1 : 200까지는 수용액상의 공용매 증가에 따른 봉입를은 70% 이상의 봉입률로 영향을 나타내지 않았으나, 1 : 1 , 000이상으로 공용매가 증가시 봉입률이 70% 미만으로 나타내었다. 또한, DMS0에 의한 마이크로스피어의 제조에 따른 봉입률 결과 비수용액상의 DMS0가 API 중량 대비 2% 미만인 경우 주성분이 완전히 용해되지 않았으며, 봉입률이 50% 미만으로 나타났으며, API 중량 대비 10% 초과한 경우 또한 봉입률이 50%미만으로 나타내었다. 그리고 다양한 생리활성물질을 봉입한 마이크로스피어의 제조에 따른 봉입률 결과 방출억제제가 도입되지 않은 경우에는 봉입률이 50%미만으로 나타났으며, 방출억제제가 도입된 경우에는 다양한 약물에서도 봉입률이 7 이상인 우수한 봉입률을 나타내었다. 실험예 3>마이크로스피어의 입자 형태측정  In addition, the results of the preparation of the microspheres by the cosolvent (CP) in the aqueous phase (CP) and the microspheres by the DMS0 in the non-aqueous phase (0DP) are shown in FIG. 2 (C). The ratio of 1 to 200 was not affected by more than 70% of the encapsulation with the increase of the cosolvent in the aqueous solution, but when the co-solvent was increased to more than 1, 000, the encapsulation was less than 70%. In addition, as a result of the encapsulation rate according to the preparation of the microspheres by DMS0, when the DMS0 of the non-aqueous liquid phase was less than 2% of the API weight, the main component was not completely dissolved, and the encapsulation rate was less than 50%. If exceeded, the encapsulation rate is also shown to be less than 50%. As a result of the encapsulation rate according to the preparation of microspheres containing various bioactive substances, the encapsulation rate was less than 50% when no release inhibitor was introduced. The excellent sealing rate which was the above was shown. Experimental Example 3 Particle Morphology Measurement of Microspheres
미립자의 외관을 관찰하기 위하여 마이크로스피어 약 50mg을 알루미늄 스터브에 고정시키고 진공도 O . ltorr 및 고전압 ( 10kV)하에서 15분간 백금으로 코팅한 후, SEM 본체에 장착하고 이미지 분석프로그램을 사용하여 마이크로스피어의 모폴로지를 관찰하였다. 측정결과를 도 3에 제시하였으며, 이에 의하면 이에 의하면 방출억제제가 사용되지 않은 마이크로스피어와 medi um chain t r i glycer i de (MCT) 가 사용된 마이크로스피어의 표면에는 많은 다공성이 괸찰된 반면 방출억제제 (Castor o i l )가 적용되어 제조된 마이크로스피어의 다공성이 감소되어 마이크로스피어 표면에 도입되어 있음을 확인할 수 있다.  To observe the appearance of the microparticles, approximately 50 mg of microspheres were fixed on an aluminum stub and vacuum degree O. After coating with platinum at ltorr and high voltage (10kV) for 15 minutes, it was mounted on the SEM body and the morphology of the microspheres was observed using an image analysis program. The measurement results are shown in FIG. 3, which indicates that the microspheres without release inhibitors and the microspheres with medium chain triglyceride (MCT) were found to have a large amount of porosity while the release inhibitors (Castor It can be seen that the porosity of the prepared microspheres is reduced and introduced into the surface of the microspheres.
또한 방출억제제가 도입된 마이크로스피어에서 공용매로 사용한 에탄을에 의해 마이크로스피어의 웅집이 감소되었음을 알 수 있다.  In addition, it can be seen that the microspheres were reduced by ethane used as a cosolvent in the microspheres into which the release inhibitor was introduced.

Claims

【청구의 범위】 [Range of request]
【청구항 1】  [Claim 1]
생리활성물질, 생체적합성 고분자 및 방출억제제를 포함하되, Bioactive substances, biocompatible polymers and release inhibitors,
상기 생리활성물질이 봉입된 생체적합성 고분자가 방출억제제에 의해 추가로 봉입되고, 상기 방출억제제는 C18 : l , C18 : l(0H) 또는 C18 : 2의 장쇄 지방산을 포함하는 오일류인 것을 특징으로 하는 서방출성 마이크로스피어. The biocompatible polymer in which the bioactive material is encapsulated is further encapsulated by a release inhibitor, and the release inhibitor is an oil including a C18: l, C18: l (0H) or C18: 2 long chain fatty acid. Sustained release microspheres.
【청구항 2】 [Claim 2]
거 U항에 있어서, 상기 생리활성물질은 옥트레오티드, 란레오티드, 고세렐린, 루프를리드, 트립토렐린, 히스토렐린 및 데스모프레신로 이루어지는 군으로부터 선택되는 1종 또는 이들의 염인 것을 특징으로 하는, 서방출성 마이크로스피어 . The method according to claim U, wherein the bioactive substance is one or a salt thereof selected from the group consisting of octreotide, lanreotide, goserelin, lupulide, tryptorelin, historelin and desmopressin Characterized by slow release microspheres.
[청구항 3】 [Claim 3]
제 1항에 있어서, 상기 생리활성물질은 마이크로스피어 전체 중량에 대하여 1.0 내지 30 중량 %로 포함되는 것인, 서방출성 마이크로스피어. According to claim 1, The bioactive material is 1.0 to 30% by weight based on the total microspheres, sustained-release microspheres.
【청구항 4】 - 제 2항에 있어서, 상기 생리활성 펩타이드는 고세렐린인, 서방출성 마이크로스피어. [Claim 4]-The sustained-release microsphere of claim 2, wherein the bioactive peptide is goserelin.
【청구항 5】 [Claim 5]
제 1항에 있어서, 상기 생체적합성 고분자는 폴리락타이드, 폴리락티드-코 -글리코리드 또는 폴리 (락티드 -코-글리코리드)글루코즈인 것을 특징으로 하는, 서방출성 마이크로스피어. The sustained-release microsphere of claim 1, wherein the biocompatible polymer is polylactide, polylactide-co-glycolide or poly (lactide-co-glycolide) glucose.
【청구항 6】 [Claim 6]
제 1항에 있어서, 상기 생체적합성 고분자는 마아크로스피어 전체 중량에 대하여 70 내지 99 중량 ¾>로 포함되는 것인, 서방출성 마이크로스피어. The sustained-release microsphere of claim 1, wherein the biocompatible polymer is included in an amount of 70 to 99 wt ¾> based on the total weight of the macrosphere.
【청구항 7】 [Claim 7]
거 U항에 있어서, In U,
상기 방출억제제는 상기 생체적합성 고분자 100 중량부에 대해, 0.1 내지 20 중량부로 포함되는 것인, 서방출성 마이크로스피어 The release inhibitor is based on 100 parts by weight of the biocompatible polymer, 0.1 to 20 Sustained-release microspheres, which are included in parts by weight
【청구항 8】 [Claim 8]
제 7항에 있어서, 상기 C18:l, C18 : K0H) 또는 C18:2 지방산을 포함하는 오일류는 레시틴, 면실유, 피마자유, 옥수수유, 해바라기유,올리브유, 참기름, 대두유 및 땅콩유로 이루어진 군으로부터 선택되는 하나 이상인 것인, 서방출성 마이크로스피어 8. The oil according to claim 7, wherein the C18: l, C18: K0H) or C18: 2 fatty acid is selected from the group consisting of lecithin, cottonseed oil, castor oil, corn oil, sunflower oil, olive oil, sesame oil, soybean oil and peanut oil. Being one or more, slow-release microspheres
【청구항 9】 [Claim 9]
게 8항에 있어서, 상기 C18:l, C18 : K0H) 또는 C18:2 지방산을 포함하는 오일류는 피마자유인, 서방출성 마이크로스피어. The sustained-release microsphere of claim 8, wherein the oils containing C18: l, C18: K0H) or C18: 2 fatty acids are castor oil.
【청구항 10】 [Claim 10]
제 1항에 있어서, 지질 매트릭스 형태인 것인, 서방출성 마이크로스피어. The sustained release microsphere of claim 1, which is in the form of a lipid matrix.
【청구항 11】 [Claim 11]
i) 생체적합성 고분자를 유기용매에 용해시키는 단계; i) dissolving the biocompatible polymer in an organic solvent;
ii ) 상기 0 단계에서 제조된 생체적합성 고분자가 용해된 유기용매에 생리활성물질을 현탁 또는 분산시켜 현탁액을 제조하거나, 생리활성물질에 용해보조제를 첨가하고 상기 i) 단계에서 제조된 생체적합성 고분자가 용해된 유기용매에 상기 용해보조제를 첨가한 생리활성물질을 용해시켜 비수성 용액을 제조하는 단계 ii) preparing a suspension by suspending or dispersing a bioactive material in an organic solvent in which the biocompatible polymer prepared in step 0 is dissolved, or adding a dissolution aid to the bioactive material and adding the biocompatible polymer prepared in step i). Preparing a non-aqueous solution by dissolving a physiologically active substance added with the dissolution aid in a dissolved organic solvent.
iii) 상기 Π) 단계에서 제조된 현탁액 또는 비수성 용액에 방출억제제를 흔합하는 단계 ; iii) mixing the release inhibitor in the suspension or non-aqueous solution prepared in step Π);
iv ) 상기 iii) 단계에서 형성된 용액 또는 에멀견을 수성 매질에 투입하여 마이크로스피어를 형성시키고, 이후 입도를 조절하는 단계; 및 iv) injecting the solution or emulsion formed in step iii) into an aqueous medium to form a microsphere, and then adjusting the particle size; And
V ) 유기용매를 제거하는 단계를 포함하는 서방출성 마이크로스피어의 제조방법ᅳ V) A method for producing a slow release microsphere comprising the step of removing the organic solvent
【청구항 12】 [Claim 12]
제 11항에 있어서, 상기 i) 단계에서 사용되는 유기용매는 메틸렌클로라이드, 클로로포름, 아세토니트릴, 디메틸설폭시드, 디메틸포름아마이드 및 에틸아세테이트로 이루어진 군에서 선택되는 하나 이상의 용매인 것인, 서방출성 마이크로스피어의 제조 방법 . The method of claim 11, wherein the organic solvent used in step i) is methylene chloride, A chloroform, acetonitrile, dimethyl sulfoxide, dimethylformamide and ethyl acetate, at least one solvent selected from the group consisting of, a method for producing a sustained-release microsphere.
【청구항 13】 [Claim 13]
제 11항에 있어서, 상기 ii) 단계에서 사용되는 용해보조제는 디메틸설폭사이드 (DMS0) 또는 N-메틸ᅳ 2-피를리디논 (匪 P)인 것인, 서방출성 마이크로스피어의 제조 방법 . The method of claim 11, wherein the dissolution aid used in step ii) is dimethylsulfoxide (DMS0) or N-methyl ᅳ 2-pyridinone (XP).
【청구항 14】 [Claim 14]
제 11항에 있어서, 상기 ii) 단계에서 사용되는 용해보조제는 상기 생리활성물질의 중량 대비 200 내지 1,000%의 중량을 갖는 것인, 서방출성 마이크로스피어의 제조 방법. The method of claim 11, wherein the dissolution aid used in step ii) has a weight of 200 to 1,000% by weight of the bioactive material.
【청구항 15】 [Claim 15]
제 11항에 있어서, 상기 iv) 단계의 수성 매질은 공용매를 더 포함하는 것인, 서방출성 마이크로스피어의 제조방법 . The method of claim 11, wherein the aqueous medium of step iv) further comprises a cosolvent.
【청구항 16] [Claim 16]
제 11항에 있어서, 상기 ii) 단계에서 계면활성제를 추가로 투입하는 것인, 서방출성 마이크로스피어의 제조방법 . According to claim 11, In the step ii) further adding a surfactant, a method for producing a sustained-release microspheres.
【청구항 17】 [Claim 17]
제 16항에 있어서, 상기 계면활성제는 실리콘오일 (silicone oil), 폴리소르베이트 (polysorbate, 상품명 Tween), 소르비탄 에스테르 (sorbitan ester, 상품명 Span), 폴록사머 (poloxamer), 폴리에틸렌글리콜 (polyethyleneglycol) 및 토코페를 (tocopherol )로 이루어진 군으로부터 선택되는 하나 이상의 계면활성제인, 서방출성 마이크로스피어의 제조방법 . The method according to claim 16, wherein the surfactant is silicone oil, polysorbate (Tween), sorbitan ester (Span), poloxamer, polyethyleneglycol and A process for producing sustained-release microspheres, wherein the tocopherol is at least one surfactant selected from the group consisting of:
【청구항 18】 [Claim 18]
제 15항에 있어서, 상기 공용매는 알코을, 초산, 유기산, 아세톤 및 석탄산 (carbolic acid)으로 이루어진 군으로부터 선택되는 하나 이상인 것인 서방출성 마이크로스피어의 제조방법. The method of claim 15, wherein the cosolvent is at least one selected from the group consisting of alcohol, acetic acid, organic acid, acetone, and carbolic acid.
【청구항 19】 [Claim 19]
제 18항에 있어서, 상기 공용매는 메탄올, 에탄올, 프로판올, 부탄올, 펜탄을, 핵산올, 헵탄올, 옥탄올, 노난올 및 데칸올로 이루어지는 군으로부터 선택되는 하나 이상의 1가 알코올인 것인, 서방출성 마이크로스피어의 제조방법. The method of claim 18, wherein the co-solvent is one or more monohydric alcohols selected from the group consisting of methanol, ethanol, propanol, butanol, pentane, nucleic acid, heptanol, octanol, nonanol and decanol Method for producing the emerging microspheres.
【청구항 20】 [Claim 20]
제 11항에 있어서, V) 단계 이후에 제조된 서방출성 마이크로스피어를 동결건조시키는 단계를 더 포함하는 것인, 서방출성 마이크로스피어의 제조방법. The method of claim 11, further comprising lyophilizing the slow-release microspheres prepared after step V).
【청구항 21】 [Claim 21]
제 11항에 있어서, 상기 동결건조시키는 단계 전에 원심 분리, 투석 및 여과로 이루어진 군에서부터 선택되는 어느 하나의 단계를 더 포함하는 것인, 서방출성 마이크로스피어의 제조방법. The method of claim 11, further comprising any one selected from the group consisting of centrifugation, dialysis, and filtration before the lyophilization step.
PCT/KR2017/008981 2016-08-25 2017-08-17 Extended release microsphere to which release inhibitor comprising oil, in which c18:1, c18:1(oh) or c18:2 long-chain fatty acid is contained, is applied and preparation method therefor WO2018038461A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160108473A KR101961848B1 (en) 2016-08-25 2016-08-25 Sustained release-microsphere comprising oils containing C18:1, C18:1(OH) or C18:2 long chain fatty acid and method for preparing the same
KR10-2016-0108473 2016-08-25

Publications (1)

Publication Number Publication Date
WO2018038461A1 true WO2018038461A1 (en) 2018-03-01

Family

ID=61246147

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/008981 WO2018038461A1 (en) 2016-08-25 2017-08-17 Extended release microsphere to which release inhibitor comprising oil, in which c18:1, c18:1(oh) or c18:2 long-chain fatty acid is contained, is applied and preparation method therefor

Country Status (2)

Country Link
KR (1) KR101961848B1 (en)
WO (1) WO2018038461A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109106688A (en) * 2018-08-22 2019-01-01 丽珠医药集团股份有限公司 A kind of preparation method of octreotide acetate microballoon
CN114126592A (en) * 2019-07-12 2022-03-01 G2G生物公司 Long-acting preparation containing rivastigmine and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100816065B1 (en) * 2006-11-27 2008-03-24 동국제약 주식회사 Preparation method of sustained-release microcapsules having good initial burst inhibiting property and the microcapsules thereby
KR20100026384A (en) * 2008-08-29 2010-03-10 동국제약 주식회사 Method for manufacturing delayed-release microspheres by solvent intra-exchange evaporation
KR20100094227A (en) * 2009-02-18 2010-08-26 동국제약 주식회사 Method for manufacturing delayed-release microspheres
KR20160012311A (en) * 2014-07-23 2016-02-03 동국제약 주식회사 Delayed-release microspheres and a method for manufacturing the same
KR20160027421A (en) * 2014-08-29 2016-03-10 동국제약 주식회사 Delayed-release microspheres containing risperidone and a method for manufacturing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100816065B1 (en) * 2006-11-27 2008-03-24 동국제약 주식회사 Preparation method of sustained-release microcapsules having good initial burst inhibiting property and the microcapsules thereby
KR20100026384A (en) * 2008-08-29 2010-03-10 동국제약 주식회사 Method for manufacturing delayed-release microspheres by solvent intra-exchange evaporation
KR20100094227A (en) * 2009-02-18 2010-08-26 동국제약 주식회사 Method for manufacturing delayed-release microspheres
KR20160012311A (en) * 2014-07-23 2016-02-03 동국제약 주식회사 Delayed-release microspheres and a method for manufacturing the same
KR20160027421A (en) * 2014-08-29 2016-03-10 동국제약 주식회사 Delayed-release microspheres containing risperidone and a method for manufacturing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109106688A (en) * 2018-08-22 2019-01-01 丽珠医药集团股份有限公司 A kind of preparation method of octreotide acetate microballoon
CN109106688B (en) * 2018-08-22 2021-08-17 丽珠医药集团股份有限公司 Preparation method of octreotide acetate microspheres
CN114126592A (en) * 2019-07-12 2022-03-01 G2G生物公司 Long-acting preparation containing rivastigmine and preparation method thereof

Also Published As

Publication number Publication date
KR101961848B1 (en) 2019-03-25
KR20180023337A (en) 2018-03-07

Similar Documents

Publication Publication Date Title
Shi et al. Current advances in sustained-release systems for parenteral drug delivery
Giri et al. Prospects of pharmaceuticals and biopharmaceuticals loaded microparticles prepared by double emulsion technique for controlled delivery
US5288502A (en) Preparation and uses of multi-phase microspheres
NL195056C (en) Process for the preparation of preparations containing salts of peptides with carboxy terminated polyesters.
Siepmann et al. Microparticles used as drug delivery systems
KR101113044B1 (en) Method for manufacturing delayed-release microspheres by solvent intra-exchange evaporation
KR20040018407A (en) A bioactive agent delivering system comprised of microparticules within a biodegradable to improve release profiles
CA2765695C (en) Method of making sustained release microparticles
KR20120130043A (en) Method for preparing microparticles with reduced initial drug release and microparticles prepare thereby
WO2013083041A1 (en) Microspheres for controlled- or sustained-release delivery of therapeutics
CA2435415A1 (en) Microparticles of biodegradable polymer encapsulating a biologically active substance
US6616949B2 (en) Process for producing microparticles
CN107335048B (en) Sustained-release microsphere carrying gonadotropin releasing hormone compound and preparation method thereof
KR101307729B1 (en) Injectable composition comprising microparticles with reduced initial drug release and method for preparing thereof
KR20100094227A (en) Method for manufacturing delayed-release microspheres
JP5851518B2 (en) MICROPARTICLES CONTAINING BIOACTIVE PEPTIDE, PROCESS FOR PRODUCING THE SAME, AND PHARMACEUTICAL COMPOSITION CONTAINING THE SAME
WO2018038461A1 (en) Extended release microsphere to which release inhibitor comprising oil, in which c18:1, c18:1(oh) or c18:2 long-chain fatty acid is contained, is applied and preparation method therefor
KR20170031520A (en) Porous microspheres with spontaneous pore-closing functionality and method for preparing the same
US20120121510A1 (en) Localized therapy following breast cancer surgery
US20040052855A1 (en) Microparticles of biodegradable polymer encapsulating a biologically active substance and sustained release pharmaceutical formulations containing same
Rasiel et al. Phospholipid coated poly (lactic acid) microspheres for the delivery of LHRH analogues
KR100566573B1 (en) Preparation method of sustained release microspheres containing LHRH analogue
KR101039237B1 (en) New method for manufacturing sustained-release microspheres having improved release rate
US20040219175A1 (en) Thermogelling emulsions for sustained release of bioactive substances
Shenoy et al. Poly (DL-lactide-co-glycolide) microporous microsphere-based depot formulation of a peptide-like antineoplastic agent

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17843881

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17843881

Country of ref document: EP

Kind code of ref document: A1