WO2018038407A1 - Dielectric filter - Google Patents

Dielectric filter Download PDF

Info

Publication number
WO2018038407A1
WO2018038407A1 PCT/KR2017/008034 KR2017008034W WO2018038407A1 WO 2018038407 A1 WO2018038407 A1 WO 2018038407A1 KR 2017008034 W KR2017008034 W KR 2017008034W WO 2018038407 A1 WO2018038407 A1 WO 2018038407A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission line
conductor
hole
resonance
electrically connected
Prior art date
Application number
PCT/KR2017/008034
Other languages
French (fr)
Korean (ko)
Inventor
류지만
김덕한
장대훈
Original Assignee
주식회사 파트론
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 파트론 filed Critical 주식회사 파트론
Publication of WO2018038407A1 publication Critical patent/WO2018038407A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/207Hollow waveguide filters
    • H01P1/208Cascaded cavities; Cascaded resonators inside a hollow waveguide structure
    • H01P1/2084Cascaded cavities; Cascaded resonators inside a hollow waveguide structure with dielectric resonators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/201Filters for transverse electromagnetic waves
    • H01P1/205Comb or interdigital filters; Cascaded coaxial cavities
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/201Filters for transverse electromagnetic waves
    • H01P1/205Comb or interdigital filters; Cascaded coaxial cavities
    • H01P1/2056Comb filters or interdigital filters with metallised resonator holes in a dielectric block
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/207Hollow waveguide filters
    • H01P1/208Cascaded cavities; Cascaded resonators inside a hollow waveguide structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/207Hollow waveguide filters
    • H01P1/208Cascaded cavities; Cascaded resonators inside a hollow waveguide structure
    • H01P1/2088Integrated in a substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P7/00Resonators of the waveguide type
    • H01P7/10Dielectric resonators

Definitions

  • the present invention relates to a dielectric filter, and more particularly, to a dielectric filter having a frequency selectivity including a plurality of resonant holes penetrating through the dielectric block.
  • the frequency used is increasing.
  • the higher frequency bands are used, the wider bandwidth can be utilized, and more data can be transmitted at high speed.
  • a frequency band of 1 GHz or less is mainly used.
  • a frequency band of 2 GHz to 3 GHz is used.
  • the fifth generation of mobile communications which will be commercialized in the future, is known to utilize centimeter waves and millimeter waves, which correspond to ultra high frequency bands of 3 GHz to 30 GHz and 30 GHz to 300 GHz.
  • the monoblock dielectric filter forms a plurality of resonance holes in the dielectric block and adjusts electrical characteristics between the resonance holes to implement frequency selectivity.
  • the length of the resonance hole is determined by the frequency band in which the dielectric filter is used. The higher the frequency band used, the shorter the length of the resonant hole, which makes it possible to miniaturize the dielectric filter.
  • the length of the resonance hole becomes very short in the ultra-high frequency band of 3 GHz or more, problems such as PCB mounting of the dielectric filter may occur.
  • FIG. 1 illustrates one type of a dielectric filter of a conventional type.
  • an input / output terminal 12 mounted on a PCB is formed on the side surface of the dielectric block 10.
  • the resonance hole 11 has a length of about several centimeters, and a lateral area sufficient for mounting is secured. Therefore, the input / output terminal 12 can be formed on the side and mounted.
  • the input / output terminal 12 can be formed with a sufficient area. Accordingly, the coupling between the input / output terminal 12 and the resonance hole 11 may occur at a predetermined level or more.
  • the resonance hole is only a few millimeters to several tens of millimeters long, and the area of the side becomes very narrow. It is very difficult to mount such a narrow side against the PCB.
  • the input and output terminals are formed on such narrow sides, sufficient coupling cannot be secured between the resonance holes, and the performance of the filter is degraded.
  • the present invention has been made to solve the above problems, it is to provide a dielectric filter that is easy to be mounted on the PCB while the length of the through-holes operating in the ultra-high frequency band.
  • the present invention provides a dielectric filter designed such that proper coupling occurs between an input / output terminal and a resonance hole.
  • the dielectric filter of the present invention for solving the above problems is a dielectric block comprising an upper surface, a lower surface facing the upper surface and a side surface connecting the upper surface and the lower surface, and penetrates the dielectric block between the upper surface and the lower surface.
  • An input / output electrode formed on the lower surface and separated from the external conductor, formed inside the resonance hole, and formed inside the resonance hole inner conductor and the transmission line hole electrically connected to the external conductor on the lower surface;
  • the dielectric block is formed in a hexahedral shape
  • the side surface is composed of the left side, right side, front and rear
  • the resonance hole and the transmission line hole is arranged in the left and right directions
  • the conductor may be elongated in the left and right direction at a portion in contact with the front and rear surfaces on the upper surface.
  • it may further include a conductor cover electrically connected to the outer conductor formed on the upper surface, the conductor cover spaced apart from the resonance hole conductor pattern and the transmission line hole conductor pattern.
  • the conductor cover may include a cover portion spaced apart from the upper surface and a support portion that is bent and extended at both ends of the cover portion and the lower end is electrically connected to an outer conductor formed on the upper surface.
  • the non-conducting region may extend from the upper surface to the lower surface through the left and right surfaces, and may separate the external conductor and the input / output electrode from the lower surface.
  • the dielectric block may have a height between the upper and lower surfaces is shorter than the width between the front and rear surfaces and the length between the left and right surfaces.
  • the transmission line hole may be formed smaller than the resonance hole.
  • the plurality of resonance holes may be formed in a form arranged in one direction, the two transmission line holes may be formed at both ends of the resonance hole.
  • the transmission line hole conductor pattern may be formed to be biased in the direction of one adjacent resonance hole relative to the transmission line hole electrically connected.
  • the input and output electrode may be formed in contact with the side surface from the lower surface.
  • the dielectric filter according to an embodiment of the present invention operates in an ultra high frequency band and is easily mounted on a PCB even though the length of the through hole is short.
  • the dielectric filter according to an embodiment of the present invention has an advantage in that an appropriate coupling is generated between an input / output terminal and a resonance hole.
  • FIG. 1 illustrates one type of a dielectric filter of a conventional type.
  • FIG. 2 is a perspective view of a dielectric filter in accordance with an embodiment of the present invention.
  • FIG 3 is a bottom perspective view of a dielectric filter in accordance with an embodiment of the present invention.
  • FIG. 4 is a perspective view of a dielectric filter according to another embodiment of the present invention.
  • FIG. 2 is a perspective view of a dielectric filter in accordance with an embodiment of the present invention.
  • 3 is a bottom perspective view of a dielectric filter in accordance with an embodiment of the present invention.
  • the dielectric filter of the present invention includes a dielectric block 100, a resonance hole 110, a transmission line hole 120, an outer conductor 130, an input / output electrode 140, and a resonance hole inner conductor.
  • the dielectric block 100 is formed in a block shape having an upper surface and a lower surface.
  • the top and bottom surfaces of the dielectric block 100 face each other and include a side surface connecting the top and bottom surfaces.
  • the dielectric block 100 may be formed in a substantially hexahedral shape, for example, and may have four sides of a left side, a right side, a front side, and a rear side thereof.
  • the dielectric block 100 is illustrated in a rectangular parallelepiped shape, but is not limited thereto. It may be formed of a ceramic material, alumina material and the like.
  • the dielectric block 100 is preferably formed of a material having a relative dielectric constant of 3.5 or more.
  • the dielectric block 100 is a device having no orientation and may have a different name for each surface according to a viewing direction or a form in which a dielectric filter is installed. Therefore, in the present specification, two surfaces through which the through hole to be described later penetrate through the dielectric block 100 will be referred to as upper and lower surfaces.
  • the upper surface is a surface on which a conductor pattern is formed around the through hole, and the inner conductor of the resonance hole 110 is shorted to the outer conductor 130.
  • the surface connecting the upper surface and the lower surface is referred to as a side, and the left side, the right side, the front side, and the rear side are determined based on the plurality of through holes arranged in the left and right directions.
  • the upper and lower surfaces are referred to as height
  • the left and right surfaces are referred to as the length
  • the front and rear surfaces are referred to as the width.
  • Dielectric block 100 of the present invention is formed shorter than the height and width. As such, when the length of the dielectric block 100 is formed to be short, the height of the side surface is also shortened and the area of the side surface is narrowed.
  • the dielectric block 100 is formed with a plurality of through holes penetrating between the upper surface and the lower surface.
  • the through hole preferably penetrates through the inside of the dielectric in a direction perpendicular to the upper and lower surfaces.
  • the plurality of through holes are arranged in one direction in the dielectric block 100.
  • the plurality of through holes may be arranged in the left and right directions of the dielectric block 100.
  • the through hole may be divided into a resonance hole 110 and a transmission line hole 120.
  • the resonance hole 110 refers to a through hole that functions as a resonator in the dielectric filter
  • the transmission line hole 120 refers to a through hole electrically connected to the input / output electrode 140 of the dielectric filter.
  • the transmission line hole 120 may also function as a resonator between the other resonant holes 110 and the outer conductor 130.
  • one transmission line hole 120 is disposed at each end of the resonance hole 110.
  • a plurality of resonance holes 110 are arranged in one direction between the transmission line holes 120 at both ends.
  • a shunt zero resonant hole may be further formed outside the transmission line hole.
  • the resonance hole 110 functions as a resonator in the dielectric filter.
  • the length of the resonance hole 110 corresponds to the height of the dielectric block 100. As described above, when the height of the dielectric block 100 is short, the length of the resonance hole 110 is correspondingly short.
  • the length of the resonance hole 110 is determined in proportion to the wavelength of the signal that is commonly used, such a short resonance hole 110 may be designed for use in a signal of a high frequency band or an ultra high frequency band.
  • the transmission line holes 120 are typically disposed at each end of each of the resonance holes 110, and are connected to the input / output electrode 140 to be described later.
  • the transmission line hole 120 may be formed as a smaller hole than the resonance hole 110.
  • the outer conductor 130 is formed on a part of the outer surface of the dielectric block 100. Specifically, the outer conductor 130 is formed on each of a part of the top, bottom, and side surfaces of the dielectric block 100. More specifically, the outer conductor 130 may be formed only on the front and rear surfaces of the dielectric block 100. In addition, the outer conductor 130 may be formed long in the left and right direction at a portion of the upper surface of the dielectric block 100 that is in contact with the front and rear surfaces. In addition, the outer conductor 130 may be formed on the lower surface of the dielectric block 100 except for the input / output electrode 140 and the non-conductive region 150 which will be described later. The outer conductor 130 formed on the upper surface, the lower surface and the side surface may be continuously formed.
  • the non-conductor region 150 is a portion of the outer surface of the dielectric block in which the outer conductor 130 is not formed.
  • the non-conductive region 150 may be formed on a part of the top surface, the left and right surfaces and the bottom surface of the dielectric block 100.
  • the non-conductor region 150 separates the outer conductor 130 and the conductor pattern.
  • the non-conductive region 150 separates the plurality of conductor patterns.
  • the non-conductive region 150 separates the external conductor 130 and the input / output electrode 140.
  • the input / output electrode 140 is formed on the bottom surface of the dielectric block 100.
  • the input / output electrode 140 is electrically connected to the transmission line hole inner conductor 121 and the lower surface of the dielectric block 100 which will be described later.
  • the input / output electrode 140 is separated by the outer conductor 130 and the non-conductive region 150 on the bottom surface of the dielectric block 100.
  • the input / output electrode 140 may be formed to contact the side surface at the lower surface thereof.
  • the input / output electrode 140 may be formed at a portion of the lower surface contacting the left and right surfaces.
  • the non-conductive region 150 separating the input / output electrode 140 and the external conductor 130 may be continuously connected at left and right sides.
  • the input / output electrode 140 is a part electrically connected to the terminal of the circuit board when the dielectric filter of the present invention is mounted on the circuit board. Therefore, the surface on which the input / output electrode 140 is formed is in contact with the circuit board, and in the case of the present invention, the bottom surface of the dielectric block 100 is in contact with the circuit board. As described above, when the height of the dielectric block 100 is formed to be short, the side area of the dielectric block 100 is narrowed, making it difficult to mount on the circuit board.
  • the surface that can be utilized as the mounting surface is the upper surface and the lower surface, since the conductive pattern 113, 123 to be described later is formed on the upper surface is preferably the mounting surface.
  • An inner conductor is formed inside the through hole.
  • the inner conductor formed in the resonance hole 110 is referred to as the resonance hole inner conductor 111
  • the inner conductor formed in the transmission line hole 120 is referred to as the transmission line hole inner conductor 121.
  • the resonance hole inner conductor 111 is formed on the entire inner surface of the resonance hole 110.
  • the resonance hole inner conductor 111 may be electrically connected to the resonance hole conductor pattern 113 at a portion in contact with the upper surface.
  • the resonance hole inner conductor 111 may be electrically connected to the outer conductor 130 at a portion in contact with the lower surface.
  • the transmission line hole inner conductor 121 is formed on the entire inner surface of the transmission line hole 120.
  • the transmission line hole inner conductor 121 may be electrically connected to the transmission line hole conductor pattern 123 at a portion in contact with the upper surface.
  • the transmission line hole inner conductor 121 may be electrically connected to the input / output electrode 140 at a portion in contact with the bottom surface.
  • the conductor pattern is an electrode formed around the upper side opening of the through hole.
  • the conductor pattern formed around the upper surface of the resonance hole 110 is referred to as the resonance hole conductor pattern 113
  • the conductor pattern formed around the upper surface of the transmission line hole 120 is referred to as the transmission line hole conductor pattern 123. .
  • the resonance hole conductor pattern 113 is electrically connected to the inner conductor of the resonance hole 110.
  • the resonance hole conductor patterns 113 may be formed separately from each other adjacent resonance hole conductor patterns 113.
  • the resonance hole conductor pattern 113 is preferably separated from the outer conductor 130, in some cases, the resonance hole conductor patterns 113 may be connected to the outer conductor 130. In the accompanying drawings, all of the resonance hole conductor patterns 113 are separated from the outer conductor 130 with the non-conductive region 150 therebetween.
  • the transmission line hole conductor pattern 123 is electrically connected to the inner conductor of the transmission line hole 120.
  • the transmission line hole conductor pattern 123 may be formed separately from the adjacent resonance hole conductor pattern 113.
  • the transmission line hole conductor pattern 123 may be formed to be biased toward one adjacent resonance hole 110 based on the transmission line hole 120 electrically connected thereto. More specifically, the conductor pattern of the transmission line hole 120 formed at the left end is formed to be shifted to the right with respect to the top opening of the transmission line arc, and the conductor pattern of the transmission line hole 120 formed at the right end is formed of the transmission line arc. It may be formed to be shifted to the left side with respect to the upper surface opening.
  • the shape of the transmission line hole conductor pattern 123 has an advantage of minimizing parasitic capacitance with other electric elements that may be disposed adjacent to the dielectric filter.
  • FIG. 4 is a perspective view of a dielectric filter according to another embodiment of the present invention.
  • This embodiment is characterized in that the conductor cover is further coupled to the dielectric filter described above with reference to FIGS. 2 and 3. Therefore, for convenience of description, the present embodiment will be described while focusing on differences from the above-described embodiment.
  • the conductor cover 160 is coupled to an upper surface of the dielectric block 100.
  • the conductor cover 160 is formed of a conductive metal.
  • the conductor cover 160 includes a cover 161 and a support 162.
  • the cover part 161 is spaced apart from the upper surface of the dielectric block 100 to face each other.
  • the cover part 161 is formed to face most of the upper surface of the dielectric block 100.
  • the cover part 161 may be formed to face the conductive patterns formed on the upper surface of the dielectric block 100.
  • the support part 162 is bent at both ends of the cover part 161.
  • the support part 162 may be bent at the front and rear ends of the cover part 161.
  • the lower end of the support 162 may be electrically connected to the outer conductor 130.
  • the lower end of the support portion 162 may be coupled to the outer conductor formed long in the left and right direction at the portion in contact with the front and rear surfaces of the upper surface.
  • the lower end of the support 162 and the outer conductor 130 may be electrically connected by solder (not shown).
  • Conductor cover 160 may suppress unintentional coupling within the dielectric filter or between the dielectric filter and other electrical components external to it.
  • the conductor cover 160 may contribute to improving the RF performance of the dielectric filter, such as to improve the attenuation characteristics of the attenuation region of the dielectric filter.
  • transmission line hole 121 transmission line hole inner conductor

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

A dielectric filter is disclosed. The dielectric filter of the present invention comprises: a dielectric block that comprises an upper surface, a lower surface facing the upper surface, and a side surface connecting the upper surface and the lower surface; one or more resonance holes that penetrate through the dielectric block between the upper surface and the lower surface; one or more transmission line holes that penetrate through the dielectric block between the upper surface and the lower surface and that are located adjacent to the resonance holes; an external conductor that is continuously formed with the upper surface, the lower surface and the side surface; input/output electrodes that are formed on the lower surface and that are separated from the external conductor; an internal resonance hole conductor that is formed inside the resonance hole and that is electrically connected to the external conductor at the lower surface; an internal transmission line hole conductor that is formed inside the transmission line hole and that is electrically connected to the input/output electrode at the lower surface; a resonance hole conductor pattern that is formed on the upper surface and that is electrically connected to the internal resonance hole conductor at the upper surface; and a transmission line hole conductor pattern that is formed on the upper surface and that is electrically connected to the internal transmission line hole conductor at the upper surface, wherein the resonance hole conductor pattern, the transmission line hole conductor pattern and the external conductor are separated from one another by a non-conductor region of an external surface of the dielectric block.

Description

유전체 필터Dielectric filter
본 발명은 유전체 필터에 관한 것으로, 더욱 상세하게는 유전체 블록을 관통하는 복수의 공진홀을 포함하여 주파수 선택성을 가지는 유전체 필터에 관한 것이다.The present invention relates to a dielectric filter, and more particularly, to a dielectric filter having a frequency selectivity including a plurality of resonant holes penetrating through the dielectric block.
이동통신 기술이 발달함에 따라 사용되는 주파수가 높아지고 있다. 높은 주파수 대역을 사용할수록 광대역폭의 활용이 가능해지고, 더욱 많은 데이터를 고속으로 전송하는 것이 가능하다. 종래의 2세대 이동통신에서는 주로 1GHz 이하의 주파수 대역이 사용되었는데, 최근의 3세대 및 4세대 이동통신에서는 2GHz~3GHz의 주파수 대역이 사용되고 있다. 향후 상용화될 5세대 이동통신은 센티미터파 및 밀리미터파를 활용할 것으로 알려져 있으며, 이는 3GHz~30GHz 및 30GHz~300GHz의 초고주파 대역에 해당한다.As mobile communication technology develops, the frequency used is increasing. The higher frequency bands are used, the wider bandwidth can be utilized, and more data can be transmitted at high speed. In the conventional second generation mobile communication, a frequency band of 1 GHz or less is mainly used. In recent generation 3 and 4 generation mobile communication, a frequency band of 2 GHz to 3 GHz is used. The fifth generation of mobile communications, which will be commercialized in the future, is known to utilize centimeter waves and millimeter waves, which correspond to ultra high frequency bands of 3 GHz to 30 GHz and 30 GHz to 300 GHz.
모노블록 형태의 유전체 필터는 유전체 블록에 복수의 공진홀을 형성하고, 공진홀 사이의 전기적 특성을 조절하여 주파수 선택성을 구현한다. 여기서, 공진홀의 길이는 유전체 필터가 사용되는 주파수 대역에 의해 결정된다. 사용되는 주파수 대역이 높아질수록 공진홀의 길이는 짧아지게 되는데, 이에 따라 유전체 필터의 소형화가 가능하다. 그러나 3GHz 이상의 초고주파 대역에 이르러서는 공진홀의 길이가 매우 짧아지기 때문에, 유전체 필터의 PCB 실장 등에 문제가 발생할 수 있다.The monoblock dielectric filter forms a plurality of resonance holes in the dielectric block and adjusts electrical characteristics between the resonance holes to implement frequency selectivity. Here, the length of the resonance hole is determined by the frequency band in which the dielectric filter is used. The higher the frequency band used, the shorter the length of the resonant hole, which makes it possible to miniaturize the dielectric filter. However, since the length of the resonance hole becomes very short in the ultra-high frequency band of 3 GHz or more, problems such as PCB mounting of the dielectric filter may occur.
도 1은 종래에 일반적인 형태의 유전체 필터의 일 형태를 도시한 것이다. 도 1을 참조하면, PCB에 실장되는 입출력 단자(12)가 유전체 블록(10)의 측면에 형성된다. 도 1의 유전체 필터는 공진홀(11)이 수 센티미터 정도의 길이를 가지는 것으로, 실장에 충분한 정도의 측면 면적이 확보된다. 따라서 입출력 단자(12)를 측면에 형성하여 실장하는 것이 가능하다. 또한, 입출력 단자(12)를 충분한 면적으로 형성할 수 있다. 이에 따라서 입출력 단자(12)와 공진홀(11) 사이에서의 일정 정도 이상의 커플링이 발생하게 할 수 있다.1 illustrates one type of a dielectric filter of a conventional type. Referring to FIG. 1, an input / output terminal 12 mounted on a PCB is formed on the side surface of the dielectric block 10. In the dielectric filter of FIG. 1, the resonance hole 11 has a length of about several centimeters, and a lateral area sufficient for mounting is secured. Therefore, the input / output terminal 12 can be formed on the side and mounted. In addition, the input / output terminal 12 can be formed with a sufficient area. Accordingly, the coupling between the input / output terminal 12 and the resonance hole 11 may occur at a predetermined level or more.
그러나 유전체 필터가 초고주파 대역에 동작하도록 설계하면, 공진홀의 길이가 수 밀리미터 내지 수십 밀리미터에 불과하게 되어 측면의 면적이 매우 좁아진다. 이러한 좁은 측면을 PCB에 맞닿게 하여 실장하는 것은 매우 난해하다. 또한, 이러한 좁은 측면에 입출력 단자를 형성하면 공진홀과의 사이에서 충분한 커플링을 확보할 수 없어 필터의 성능이 저하된다.However, if the dielectric filter is designed to operate in the ultra-high frequency band, the resonance hole is only a few millimeters to several tens of millimeters long, and the area of the side becomes very narrow. It is very difficult to mount such a narrow side against the PCB. In addition, when the input and output terminals are formed on such narrow sides, sufficient coupling cannot be secured between the resonance holes, and the performance of the filter is degraded.
따라서 실장성 및 필터의 성능이 확보되는 초고주파 대역의 유전체 필터가 요구되고 있다.Therefore, there is a demand for a dielectric filter of an ultra-high frequency band that ensures mountability and filter performance.
본 발명은 상기와 같은 문제점을 해결하기 위한 안출된 것으로, 초고주파 대역에서 동작하여 관통홀의 길이가 짧으면서도 PCB에 실장하는 것이 용이한 유전체 필터를 제공하는 것이다.The present invention has been made to solve the above problems, it is to provide a dielectric filter that is easy to be mounted on the PCB while the length of the through-holes operating in the ultra-high frequency band.
또한, 본 발명은 입출력 단자와 공진홀 사이에서 적절한 커플링이 발생하도록 설계된 유전체 필터를 제공한다.In addition, the present invention provides a dielectric filter designed such that proper coupling occurs between an input / output terminal and a resonance hole.
상기 과제를 해결하기 위한 본 발명의 유전체 필터는, 상면, 상기 상면과 대향하는 하면 및 상기 상면과 상기 하면을 연결하는 측면을 포함하는 유전체 블록, 상기 상면과 상기 하면 사이에서 상기 유전체 블록을 관통하는 적어도 하나의 공진홀, 상기 상면과 상기 하면 사이에서 상기 유전체 블록을 관통하고, 상기 공진홀과 인접하게 위치하는 적어도 하나의 전송선로홀, 상기 상면, 상기 하면 및 상기 측면에 연속하여 형성된 외부도체, 상기 하면에 형성되고, 상기 외부도체와는 분리되는 입출력전극, 상기 공진홀의 내부에 형성되고, 상기 하면에서 상기 외부도체와 전기적으로 연결되는 공진홀 내부도체, 상기 전송선로홀의 내부에 형성되고, 상기 하면에서 상기 입출력전극과 전기적으로 연결되는 전송선로홀 내부도체, 상기 상면에 형성되고, 상기 상면에서 상기 공진홀 내부도체와 전기적으로 연결되는 공진홀 도체패턴 및 상기 상면에 형성되고, 상기 상면에서 상기 전송선로홀 내부도체와 전기적으로 연결되는 전송선로홀 도체패턴을 포함하고, 상기 공진홀 도체패턴, 상기 전송선로홀 도체패턴 및 상기 외부도체는 상기 유전체 블록 외면의 비도체영역에 의해 서로 분리된다.The dielectric filter of the present invention for solving the above problems is a dielectric block comprising an upper surface, a lower surface facing the upper surface and a side surface connecting the upper surface and the lower surface, and penetrates the dielectric block between the upper surface and the lower surface. At least one resonant hole, at least one transmission line hole passing through the dielectric block between the upper surface and the lower surface and positioned adjacent to the resonant hole, the outer conductor formed continuously on the upper surface, the lower surface, and the side surface; An input / output electrode formed on the lower surface and separated from the external conductor, formed inside the resonance hole, and formed inside the resonance hole inner conductor and the transmission line hole electrically connected to the external conductor on the lower surface; A transmission line hole inner conductor electrically connected to the input / output electrode at a lower surface thereof, and formed on the upper surface thereof; A resonant hole conductor pattern electrically connected to the resonant hole inner conductor at a surface thereof, and a resonant hole conductor pattern formed at the upper surface thereof and electrically connected to the transmission line hole inner conductor at the upper surface thereof, The pattern, the transmission line hole conductor pattern, and the outer conductor are separated from each other by a non-conductive area on the outer surface of the dielectric block.
본 발명의 일 실시예에 있어서, 상기 유전체 블록은 육면체 형태로 형성되고, 상기 측면은 좌면, 우면, 전면 및 후면으로 구성되고, 상기 공진홀 및 상기 전송선로홀은 좌우 방향을 배열되고, 상기 외부도체는 상기 상면에서 상기 전면 및 상기 후면과 맞닿는 부분에서 좌우 방향으로 길게 형성될 수 있다.In one embodiment of the present invention, the dielectric block is formed in a hexahedral shape, the side surface is composed of the left side, right side, front and rear, the resonance hole and the transmission line hole is arranged in the left and right directions, the outer The conductor may be elongated in the left and right direction at a portion in contact with the front and rear surfaces on the upper surface.
본 발명의 일 실시예에 있어서, 상기 상면에 형성된 외부도체와 전기적으로 연결되고, 상기 공진홀 도체패턴 및 상기 전송선로홀 도체패턴과는 이격되어 대향되는 도체커버를 더 포함할 수 있다.In one embodiment of the present invention, it may further include a conductor cover electrically connected to the outer conductor formed on the upper surface, the conductor cover spaced apart from the resonance hole conductor pattern and the transmission line hole conductor pattern.
본 발명의 일 실시예에 있어서, 상기 도체커버는 상기 상면과 이격되어 대향되는 커버부 및 상기 커버부의 양단에서 절곡되어 연장되고 하단이 상기 상면에 형성된 외부도체와 전기적으로 연결되는 지지부를 포함할 수 있다.In one embodiment of the present invention, the conductor cover may include a cover portion spaced apart from the upper surface and a support portion that is bent and extended at both ends of the cover portion and the lower end is electrically connected to an outer conductor formed on the upper surface. have.
본 발명의 일 실시예에 있어서, 상기 비도체영역은 상기 상면에서 상기 좌우면을 통해 상기 하면까지 연장되고, 상기 하면에서 상기 외부도체와 상기 입출력전극을 분리할 수 있다.In one embodiment of the present invention, the non-conducting region may extend from the upper surface to the lower surface through the left and right surfaces, and may separate the external conductor and the input / output electrode from the lower surface.
본 발명의 일 실시예에 있어서, 상기 유전체 블록은 상기 상하면 사이의 높이가 상기 전후면 사이의 폭 및 상기 좌우면 사이의 길이보다 짧을 수 있다.In one embodiment of the present invention, the dielectric block may have a height between the upper and lower surfaces is shorter than the width between the front and rear surfaces and the length between the left and right surfaces.
본 발명의 일 실시예에 있어서, 상기 전송선로홀은 상기 공진홀보다 작게 형성될 수 있다.In one embodiment of the present invention, the transmission line hole may be formed smaller than the resonance hole.
본 발명의 일 실시예에 있어서, 상기 공진홀은 복수 개가 일 방향으로 배열된 형태로 형성되고, 상기 전송선로홀은 두 개가 상기 공진홀의 양단에 형성될 수 있다.In one embodiment of the present invention, the plurality of resonance holes may be formed in a form arranged in one direction, the two transmission line holes may be formed at both ends of the resonance hole.
본 발명의 일 실시예에 있어서, 상기 전송선로홀 도체패턴은 전기적으로 연결된 전송선로홀을 기준으로 인접하는 일 공진홀 방향으로 치우치게 형성될 수 있다.In one embodiment of the present invention, the transmission line hole conductor pattern may be formed to be biased in the direction of one adjacent resonance hole relative to the transmission line hole electrically connected.
본 발명의 일 실시예에 있어서, 상기 입출력전극은 상기 하면에서 상기 측면과 맞닿게 형성될 수 있다.In one embodiment of the present invention, the input and output electrode may be formed in contact with the side surface from the lower surface.
본 발명의 일 실시예에 따른 유전체 필터는 초고주파 대역에서 동작하여 관통홀의 길이가 짧으면서도 PCB에 실장하는 것이 용이하다.The dielectric filter according to an embodiment of the present invention operates in an ultra high frequency band and is easily mounted on a PCB even though the length of the through hole is short.
또한, 본 발명의 일 실시예에 따른 유전체 필터는 입출력 단자와 공진홀 사이에서 적절한 커플링이 발생하도록 설계된다는 장점이 있다.In addition, the dielectric filter according to an embodiment of the present invention has an advantage in that an appropriate coupling is generated between an input / output terminal and a resonance hole.
도 1은 종래에 일반적인 형태의 유전체 필터의 일 형태를 도시한 것이다.1 illustrates one type of a dielectric filter of a conventional type.
도 2는 본 발명의 일 실시예에 따른 유전체 필터의 사시도이다.2 is a perspective view of a dielectric filter in accordance with an embodiment of the present invention.
도 3은 본 발명의 일 실시예에 따른 유전체 필터의 저면사시도이다.3 is a bottom perspective view of a dielectric filter in accordance with an embodiment of the present invention.
도 4는 본 발명의 다른 일 실시예에 따른 유전체 필터의 사시도이다.4 is a perspective view of a dielectric filter according to another embodiment of the present invention.
이하, 첨부된 도면을 참조하여 본 발명의 실시예들을 상세히 설명한다. 본 발명을 설명하는데 있어서, 해당 분야에 이미 공지된 기술 또는 구성에 대한 구체적인 설명을 부가하는 것이 본 발명의 요지를 불분명하게 할 수 있다고 판단되는 경우에는 상세한 설명에서 이를 일부 생략하도록 한다. 또한, 본 명세서에서 사용되는 용어들은 본 발명의 실시예들을 적절히 표현하기 위해 사용된 용어들로서, 이는 해당 분야의 관련된 사람 또는 관례 등에 따라 달라질 수 있다. 따라서, 본 용어들에 대한 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다.Hereinafter, with reference to the accompanying drawings will be described embodiments of the present invention; In describing the present invention, if it is determined that adding specific descriptions of techniques or configurations already known in the art may make the gist of the present invention unclear, some of them will be omitted from the detailed description. In addition, terms used in the present specification are terms used to properly express the embodiments of the present invention, which may vary according to related persons or customs in the art. Therefore, the definitions of the terms should be made based on the contents throughout the specification.
이하, 첨부한 도 2 내지 도 3를 참조하여, 본 발명의 일 실시예에 따른 유전체 필터에 대해 설명한다.Hereinafter, a dielectric filter according to an embodiment of the present invention will be described with reference to FIGS. 2 to 3.
도 2는 본 발명의 일 실시예에 따른 유전체 필터의 사시도이다. 도 3은 본 발명의 일 실시예에 따른 유전체 필터의 저면사시도이다.2 is a perspective view of a dielectric filter in accordance with an embodiment of the present invention. 3 is a bottom perspective view of a dielectric filter in accordance with an embodiment of the present invention.
도 2 및 도 3을 참조하면, 본 발명의 유전체 필터는 유전체 블록(100), 공진홀(110), 전송선로홀(120), 외부도체(130), 입출력전극(140), 공진홀 내부도체(111), 전송선로홀 내부도체(121), 공진홀 도체패턴(113), 전송선로홀 도체패턴(123) 및 비도체영역(150)을 포함한다.2 and 3, the dielectric filter of the present invention includes a dielectric block 100, a resonance hole 110, a transmission line hole 120, an outer conductor 130, an input / output electrode 140, and a resonance hole inner conductor. A reference numeral 111, a transmission line hole inner conductor 121, a resonance hole conductor pattern 113, a transmission line hole conductor pattern 123, and a non-conducting region 150.
이하, 유전체 필터를 구성하는 각 구성요소에 대해서 상세하게 설명하도록 한다.Hereinafter, each component constituting the dielectric filter will be described in detail.
유전체 블록(100)은 상면 및 하면을 가지는 블록 형태로 형성된다. 유전체 블록(100)의 상면 및 하면은 서로 대향되고, 상면과 하면을 연결하는 측면을 포함한다. 유전체 블록(100)은 예를 들어, 실질적으로 육면체 형태로 형성되어, 측면이 좌면, 우면, 전면 및 후면의 4개의 면을 구성될 수 있다. 첨부한 도면에는 유전체 블록(100)이 직육면체인 형태로 도시되어 있지만, 이에 한정되는 것은 아니다. 세라믹 소재, 알루미나 소재 등으로 형성될 수 있다. 유전체 블록(100)은 비유전율이 3.5이상인 재질로 형성되는 것이 바람직하다.The dielectric block 100 is formed in a block shape having an upper surface and a lower surface. The top and bottom surfaces of the dielectric block 100 face each other and include a side surface connecting the top and bottom surfaces. The dielectric block 100 may be formed in a substantially hexahedral shape, for example, and may have four sides of a left side, a right side, a front side, and a rear side thereof. In the accompanying drawings, the dielectric block 100 is illustrated in a rectangular parallelepiped shape, but is not limited thereto. It may be formed of a ceramic material, alumina material and the like. The dielectric block 100 is preferably formed of a material having a relative dielectric constant of 3.5 or more.
유전체 블록(100)은 방향성이 없는 소자로서, 보는 방향이나 유전체 필터가 설치되는 형태에 따라서 각 면을 지칭하는 명칭이 상이할 수 있다. 따라서 본 명세서에서는, 후술할 관통홀이 유전체 블록(100)을 관통하는 두 면을 상면 및 하면으로 지칭하여 설명하도록 한다. 구체적으로, 상면은 관통홀 주변의 도체패턴이 형성된 면이고, 공진홀(110)의 내부도체가 외부도체(130)와 단락된 면이다. 그리고 상면과 하면 사이를 연결하는 면을 측면으로 지칭하고, 복수의 관통홀이 좌우 방향으로 배열된다는 것을 기준으로 하여 좌면, 우면, 전면 및 후면을 정하도록 한다.The dielectric block 100 is a device having no orientation and may have a different name for each surface according to a viewing direction or a form in which a dielectric filter is installed. Therefore, in the present specification, two surfaces through which the through hole to be described later penetrate through the dielectric block 100 will be referred to as upper and lower surfaces. Specifically, the upper surface is a surface on which a conductor pattern is formed around the through hole, and the inner conductor of the resonance hole 110 is shorted to the outer conductor 130. The surface connecting the upper surface and the lower surface is referred to as a side, and the left side, the right side, the front side, and the rear side are determined based on the plurality of through holes arranged in the left and right directions.
유전체 블록(100)에 있어서, 상하면 사이를 높이로 지칭하고, 좌우면 사이를 길이로 지칭하고, 전후면 사이를 폭으로 지칭하도록 한다. 본 발명의 유전체 블록(100)은 높이가 폭 및 길이보다 짧게 형성된다. 이와 같이, 유전체 블록(100)의 길이가 짧게 형성되면, 측면의 높이도 짧아져서 측면의 면적이 좁아지게 된다.In the dielectric block 100, the upper and lower surfaces are referred to as height, the left and right surfaces are referred to as the length, and the front and rear surfaces are referred to as the width. Dielectric block 100 of the present invention is formed shorter than the height and width. As such, when the length of the dielectric block 100 is formed to be short, the height of the side surface is also shortened and the area of the side surface is narrowed.
유전체 블록(100)에는 상면과 하면 사이를 관통하는 복수의 관통홀이 형성된다. 관통홀은 상면과 하면에 직교하는 방향으로 유전체 내부를 관통하는 것이 바람직하다. 복수의 관통홀은 유전체 블록(100)에서 일 방향으로 배열되어 배치된다. 예를 들어, 도 2에 도시된 것과 같이 복수의 관통홀은 유전체 블록(100)의 좌우 방향으로 배열된 형태일 수 있다.The dielectric block 100 is formed with a plurality of through holes penetrating between the upper surface and the lower surface. The through hole preferably penetrates through the inside of the dielectric in a direction perpendicular to the upper and lower surfaces. The plurality of through holes are arranged in one direction in the dielectric block 100. For example, as illustrated in FIG. 2, the plurality of through holes may be arranged in the left and right directions of the dielectric block 100.
관통홀은 공진홀(110)과 전송선로홀(120)로 구분될 수 있다. 공진홀(110)은 유전체 필터에서 공진기로 기능하는 관통홀을 의미하고, 전송선로홀(120)은 유전체 필터의 입출력전극(140)과 전기적으로 연결되는 관통홀을 의미한다. 그러나 전송선로홀(120)이라 할지라도 다른 공진홀(110) 및 외부도체(130) 등과의 사이에서 공진기로서 일부 기능할 수도 있다.The through hole may be divided into a resonance hole 110 and a transmission line hole 120. The resonance hole 110 refers to a through hole that functions as a resonator in the dielectric filter, and the transmission line hole 120 refers to a through hole electrically connected to the input / output electrode 140 of the dielectric filter. However, the transmission line hole 120 may also function as a resonator between the other resonant holes 110 and the outer conductor 130.
통상적으로, 전송선로홀(120)은 공진홀(110)의 양 끝에 각각 하나씩 배치된다. 그리고 공진홀(110)은 양 끝의 전송선로홀(120) 사이에 복수 개가 일 방향으로 배열되어 배치된다. 첨부한 도면에 도시하지는 않았지만, 경우에 따라서 전송선로홀의 외측에 션트 제로용 공진홀이 추가로 형성될 수도 있다.Typically, one transmission line hole 120 is disposed at each end of the resonance hole 110. In addition, a plurality of resonance holes 110 are arranged in one direction between the transmission line holes 120 at both ends. Although not shown in the accompanying drawings, in some cases, a shunt zero resonant hole may be further formed outside the transmission line hole.
공진홀(110)은 유전체 필터에서 공진기로 기능한다. 공진홀(110)의 길이는 유전체 블록(100)의 높이에 대응된다. 상술한 것과 같이, 유전체 블록(100)의 높이가 짧게 형성되면 공진홀(110)의 길이도 이에 대응되어 짧게 형성된다. 공진홀(110)의 길이는 통상적으로 사용되는 신호의 파장에 비례하여 결정되게 되는데, 이와 같이 짧은 공진홀(110)은 고주파 대역 또는 초고주파 대역의 신호에서 사용되는 용도로 설계될 수 있다.The resonance hole 110 functions as a resonator in the dielectric filter. The length of the resonance hole 110 corresponds to the height of the dielectric block 100. As described above, when the height of the dielectric block 100 is short, the length of the resonance hole 110 is correspondingly short. The length of the resonance hole 110 is determined in proportion to the wavelength of the signal that is commonly used, such a short resonance hole 110 may be designed for use in a signal of a high frequency band or an ultra high frequency band.
전송선로홀(120)은 통상적으로 공진홀(110)의 양 끝에 각각 하나씩 배치되고, 후술할 입출력전극(140)과 연결되게 된다. 전송선로홀(120)은 공진홀(110)보다 작은 구멍으로 형성될 수 있다.The transmission line holes 120 are typically disposed at each end of each of the resonance holes 110, and are connected to the input / output electrode 140 to be described later. The transmission line hole 120 may be formed as a smaller hole than the resonance hole 110.
유전체 블록(100)의 외부면 중 일부에는 외부도체(130)가 형성된다. 외부도체(130)는 구체적으로, 유전체 블록(100)의 상면, 하면 및 측면 중 각각 일부에 형성된다. 더욱 구체적으로, 외부도체(130)는 유전체 블록(100)의 측면 중 전후면에만 형성될 수 있다. 그리고 외부도체(130)는 유전체 블록(100)의 상면 중 전후면과 맞닿는 부분에서 좌우 방향으로 길게 형성될 수 있다. 그리고 외부도체(130)는 유전체 블록(100)의 하면 중 후술할 입출력전극(140) 및 비도체영역(150)을 제외한 부분이 형성될 수 있다. 상면, 하면 및 측면에 형성된 외부도체(130)는 연속되어 형성될 수 있다.The outer conductor 130 is formed on a part of the outer surface of the dielectric block 100. Specifically, the outer conductor 130 is formed on each of a part of the top, bottom, and side surfaces of the dielectric block 100. More specifically, the outer conductor 130 may be formed only on the front and rear surfaces of the dielectric block 100. In addition, the outer conductor 130 may be formed long in the left and right direction at a portion of the upper surface of the dielectric block 100 that is in contact with the front and rear surfaces. In addition, the outer conductor 130 may be formed on the lower surface of the dielectric block 100 except for the input / output electrode 140 and the non-conductive region 150 which will be described later. The outer conductor 130 formed on the upper surface, the lower surface and the side surface may be continuously formed.
비도체영역(150)은 유전체블록의 외부면 중 외부도체(130)가 형성되지 않은 부분이다. 구체적으로, 비도체영역(150)은 유전체 블록(100)의 상면 중 일부, 좌우면 및 하면 중 일부에 형성될 수 있다. 비도체영역(150)은 외부도체(130)와 도체패턴을 분리한다. 또한, 비도체영역(150)은 복수의 도체패턴 사이를 분리한다. 또한, 비도체영역(150)은 외부도체(130)와 입출력전극(140)을 분리한다.The non-conductor region 150 is a portion of the outer surface of the dielectric block in which the outer conductor 130 is not formed. In detail, the non-conductive region 150 may be formed on a part of the top surface, the left and right surfaces and the bottom surface of the dielectric block 100. The non-conductor region 150 separates the outer conductor 130 and the conductor pattern. In addition, the non-conductive region 150 separates the plurality of conductor patterns. In addition, the non-conductive region 150 separates the external conductor 130 and the input / output electrode 140.
입출력전극(140)은 유전체 블록(100)의 하면에 형성된다. 입출력전극(140)은 후술할 전송선로홀 내부도체(121)와 유전체 블록(100)의 하면에서 전기적으로 연결된다. 또한, 입출력전극(140)은 유전체 블록(100)의 하면에서 외부도체(130)와 비도체영역(150)에 의해 분리된다. The input / output electrode 140 is formed on the bottom surface of the dielectric block 100. The input / output electrode 140 is electrically connected to the transmission line hole inner conductor 121 and the lower surface of the dielectric block 100 which will be described later. In addition, the input / output electrode 140 is separated by the outer conductor 130 and the non-conductive region 150 on the bottom surface of the dielectric block 100.
입출력전극(140)은 하면에서 측면과 맞닿게 형성될 수 있다. 구체적으로, 입출력전극(140)은 하면에서 좌우면과 맞닿는 부분에 형성될 수 있다. 그리고 입출력전극(140)과 외부도체(130)를 분리시키는 비도체영역(150)은 좌우면에서 연속되어 이어질 수 있다. 이와 같이, 입출력전극(140)이 측면과 맞닿게 형성될 경우, 실장을 위한 솔더를 형성하는 것이 용이하다. 또한, 솔더에 의한 유전체 필터의 공진기와의 기생 커패시턴스를 최소화할 수 있는 장점이 있다.The input / output electrode 140 may be formed to contact the side surface at the lower surface thereof. In detail, the input / output electrode 140 may be formed at a portion of the lower surface contacting the left and right surfaces. In addition, the non-conductive region 150 separating the input / output electrode 140 and the external conductor 130 may be continuously connected at left and right sides. As such, when the input / output electrode 140 is in contact with the side surface, it is easy to form solder for mounting. In addition, there is an advantage that can minimize the parasitic capacitance with the resonator of the dielectric filter by the solder.
입출력전극(140)은 본 발명의 유전체 필터가 회로기판에 실장되는 경우, 회로기판의 단자와 전기적으로 연결되는 부분이다. 따라서 입출력전극(140)이 형성된 면이 회로기판과 맞닿게 되고, 본 발명의 경우에는 유전체 블록(100)의 하면이 회로기판과 맞닿게 된다. 상술한 것과 같이, 유전체 블록(100)의 높이가 짧게 형성되는 경우에는 유전체 블록(100)의 측면 면적이 좁게 되어 회로기판에 실장하는 것이 어렵 된다. 이러한 경우, 실장면으로 활용될 수 있는 면은 상면 및 하면이 되는데, 상면에는 후술할 도체패턴(113, 123)이 형성되므로 하면이 실장면이 되는 것이 바람직하다.The input / output electrode 140 is a part electrically connected to the terminal of the circuit board when the dielectric filter of the present invention is mounted on the circuit board. Therefore, the surface on which the input / output electrode 140 is formed is in contact with the circuit board, and in the case of the present invention, the bottom surface of the dielectric block 100 is in contact with the circuit board. As described above, when the height of the dielectric block 100 is formed to be short, the side area of the dielectric block 100 is narrowed, making it difficult to mount on the circuit board. In this case, the surface that can be utilized as the mounting surface is the upper surface and the lower surface, since the conductive pattern 113, 123 to be described later is formed on the upper surface is preferably the mounting surface.
관통홀의 내부에는 내부도체가 형성된다. 공진홀(110)의 내부에 형성된 내부도체를 공진홀 내부도체(111)로 지칭하고, 전송선로홀(120)의 내부에 형성된 내부 도체를 전송선로홀 내부도체(121)로 지칭하도록 한다.An inner conductor is formed inside the through hole. The inner conductor formed in the resonance hole 110 is referred to as the resonance hole inner conductor 111, and the inner conductor formed in the transmission line hole 120 is referred to as the transmission line hole inner conductor 121.
공진홀 내부도체(111)는 공진홀(110)의 내부면 전체에 형성된다. 공진홀 내부도체(111)는 상면과 맞닿는 부분에서 공진홀 도체패턴(113)과 전기적으로 연결될 수 있다. 또한, 공진홀 내부도체(111)는 하면과 맞닿는 부분에서 외부도체(130)와 전기적으로 연결될 수 있다.The resonance hole inner conductor 111 is formed on the entire inner surface of the resonance hole 110. The resonance hole inner conductor 111 may be electrically connected to the resonance hole conductor pattern 113 at a portion in contact with the upper surface. In addition, the resonance hole inner conductor 111 may be electrically connected to the outer conductor 130 at a portion in contact with the lower surface.
전송선로홀 내부도체(121)는 전송선로홀(120)의 내부면 전체에 형성된다. 전송선로홀 내부도체(121)는 상면과 맞닿는 부분에서 전송선로홀 도체패턴(123)과 전기적으로 연결될 수 있다. 또한, 전송선로홀 내부도체(121)는 하면과 맞닿는 부분에서 입출력전극(140)과 전기적으로 연결될 수 있다.The transmission line hole inner conductor 121 is formed on the entire inner surface of the transmission line hole 120. The transmission line hole inner conductor 121 may be electrically connected to the transmission line hole conductor pattern 123 at a portion in contact with the upper surface. In addition, the transmission line hole inner conductor 121 may be electrically connected to the input / output electrode 140 at a portion in contact with the bottom surface.
도체패턴은 관통홀의 상면측 개구 주변에 형성된 전극이다. 공진홀(110)의 상면 주변에 형성된 도체패턴을 공진홀 도체패턴(113)으로 지칭하고, 전송선로홀(120)의 상면 주변에 형성된 도체패턴을 전송선로홀 도체패턴(123)으로 지칭하도록 한다.The conductor pattern is an electrode formed around the upper side opening of the through hole. The conductor pattern formed around the upper surface of the resonance hole 110 is referred to as the resonance hole conductor pattern 113, and the conductor pattern formed around the upper surface of the transmission line hole 120 is referred to as the transmission line hole conductor pattern 123. .
공진홀 도체패턴(113)은 공진홀(110)의 내부도체와 전기적으로 연결된다. 그리고 공진홀 도체패턴(113)은 인접하는 다른 공진홀 도체패턴(113)와 서로 분리되어 형성되는 것이 바람직하다. 공진홀 도체패턴(113)은 외부도체(130)와도 분리되는 것이 바람직하지만, 경우에 따라서 몇몇의 공진홀 도체패턴(113)은 외부도체(130)와 연결될 수도 있다. 첨부한 도면에서는 공진홀 도체패턴(113)이 모두 비도체영역(150)을 사이에 두고 외부도체(130)와 분리된 것으로 도시하였다.The resonance hole conductor pattern 113 is electrically connected to the inner conductor of the resonance hole 110. In addition, the resonance hole conductor patterns 113 may be formed separately from each other adjacent resonance hole conductor patterns 113. Although the resonance hole conductor pattern 113 is preferably separated from the outer conductor 130, in some cases, the resonance hole conductor patterns 113 may be connected to the outer conductor 130. In the accompanying drawings, all of the resonance hole conductor patterns 113 are separated from the outer conductor 130 with the non-conductive region 150 therebetween.
전송선로홀 도체패턴(123)은 전송선로홀(120)의 내부도체와 전기적으로 연결된다. 그리고 전송선로홀 도체패턴(123)은 인접하는 공진홀 도체패턴(113)와 서로 분리되어 형성되는 것이 바람직하다.The transmission line hole conductor pattern 123 is electrically connected to the inner conductor of the transmission line hole 120. In addition, the transmission line hole conductor pattern 123 may be formed separately from the adjacent resonance hole conductor pattern 113.
전송선로홀 도체패턴(123)은 전기적으로 연결된 전송선로홀(120)을 기준으로 인접하는 일 공진홀(110) 방향으로 치우치게 형성될 수 있다. 더욱 구체적으로, 좌측 끝단에 형성된 전송선로홀(120)의 도체패턴은 전송선로호의 상면 개구를 기준으로 우측으로 치우게 형성되고, 우측 끝단에 형성된 전송선로홀(120)의 도체패턴은 전송선로호의 상면 개구를 기준으로 좌측으로 치우게 형성될 수 있다. 이러한 전송선로홀 도체패턴(123)의 형태는 유전체 필터와 인접하여 배치될 수 있는 다른 전기소자와의 기생 커패시턴스를 최소화할 수 있다는 장점이 있다.The transmission line hole conductor pattern 123 may be formed to be biased toward one adjacent resonance hole 110 based on the transmission line hole 120 electrically connected thereto. More specifically, the conductor pattern of the transmission line hole 120 formed at the left end is formed to be shifted to the right with respect to the top opening of the transmission line arc, and the conductor pattern of the transmission line hole 120 formed at the right end is formed of the transmission line arc. It may be formed to be shifted to the left side with respect to the upper surface opening. The shape of the transmission line hole conductor pattern 123 has an advantage of minimizing parasitic capacitance with other electric elements that may be disposed adjacent to the dielectric filter.
이하, 첨부한 도 4를 참조하여, 본 발명의 다른 일 실시예에 따른 유전체 필터에 대해 설명한다. 도 4는 본 발명의 다른 일 실시예에 따른 유전체 필터의 사시도이다.Hereinafter, a dielectric filter according to another embodiment of the present invention will be described with reference to FIG. 4. 4 is a perspective view of a dielectric filter according to another embodiment of the present invention.
본 실시예는 도 2 및 도 3을 참조하여 상술한 유전체 필터에서 도체커버가 추가로 결합된 것을 특징으로 한다. 따라서 설명의 편의성을 위해서 본 실시예에 대해 설명하면서 상술한 실시예와 다른 점을 중심으로 설명하도록 한다.This embodiment is characterized in that the conductor cover is further coupled to the dielectric filter described above with reference to FIGS. 2 and 3. Therefore, for convenience of description, the present embodiment will be described while focusing on differences from the above-described embodiment.
도 4를 참조하면, 유전체 블록(100)의 상면에 도체커버(160)가 결합된다. 도체커버(160)는 전도성 금속으로 형성된다. 도체커버(160)는 커버부(161) 및 지지부(162)를 포함한다.Referring to FIG. 4, the conductor cover 160 is coupled to an upper surface of the dielectric block 100. The conductor cover 160 is formed of a conductive metal. The conductor cover 160 includes a cover 161 and a support 162.
커버부(161)는 유전체 블록(100)의 상면에 이격되어 대향된다. 커버부(161)는 유전체 블록(100)의 상면의 대부분과 대향하도록 형성된다. 특히, 커버부(161)는 유전체 블록(100) 상면에 형성된 도체패턴들과 대향하도록 형성될 수 있다.The cover part 161 is spaced apart from the upper surface of the dielectric block 100 to face each other. The cover part 161 is formed to face most of the upper surface of the dielectric block 100. In particular, the cover part 161 may be formed to face the conductive patterns formed on the upper surface of the dielectric block 100.
지지부(162)는 커버부(161)의 양단에서 절곡되어 형성된다. 구체적으로, 지지부(162)는 커버부(161)의 전후단측에서 절곡되어 형성될 수 있다. 지지부(162)의 하단은 외부도체(130)와 전기적으로 연결될 수 있다. 구체적으로, 지지부(162)의 하단은 상면 중 전후면과 맞닿는 부분에서 좌우 방향으로 길게 형성된 외부도체에 결합될 수 있다. 지지부(162)의 하단과 외부도체(130)는 솔더(미도시) 등에 의해서 전기적으로 연결될 수 있다.The support part 162 is bent at both ends of the cover part 161. In detail, the support part 162 may be bent at the front and rear ends of the cover part 161. The lower end of the support 162 may be electrically connected to the outer conductor 130. Specifically, the lower end of the support portion 162 may be coupled to the outer conductor formed long in the left and right direction at the portion in contact with the front and rear surfaces of the upper surface. The lower end of the support 162 and the outer conductor 130 may be electrically connected by solder (not shown).
도체커버(160)는 유전체 필터 내부에서 또는 유전체 필터와 외부의 다른 전기적 소자와의 사이에서 의도하지 않은 커플링을 억제할 수 있다. 또한, 도체커버(160)는 유전체 필터의 감쇄영역의 감쇄특성을 향상시키는 등 유전체 필터의 RF 성능 향상에 기여할 수 있다. Conductor cover 160 may suppress unintentional coupling within the dielectric filter or between the dielectric filter and other electrical components external to it. In addition, the conductor cover 160 may contribute to improving the RF performance of the dielectric filter, such as to improve the attenuation characteristics of the attenuation region of the dielectric filter.
이상, 본 발명의 유전체 필터의 실시예들에 대해 설명하였다. 본 발명은 상술한 실시예 및 첨부한 도면에 한정되는 것은 아니며, 본 발명이 속하는 분야에서 통상의 지식을 가진 자의 관점에서 다양한 수정 및 변형이 가능할 것이다. 따라서 본 발명의 범위는 본 명세서의 특허청구범위뿐만 아니라 이 특허청구범위와 균등한 것들에 의해 정해져야 한다.In the above, embodiments of the dielectric filter of the present invention have been described. The present invention is not limited to the above-described embodiment and the accompanying drawings, and various modifications and variations will be possible in view of those skilled in the art to which the present invention pertains. Therefore, the scope of the present invention should be defined not only by the claims of the present specification but also by the equivalents of the claims.
100: 유전체 블록100: dielectric block
110: 공진홀 111: 공진홀 내부도체110: resonance hole 111: resonance hole inner conductor
113: 공진홀 도체패턴113: resonance hole conductor pattern
120: 전송선로홀 121: 전송선로홀 내부도체120: transmission line hole 121: transmission line hole inner conductor
123: 전송선로홀 도체패턴123: transmission line hole conductor pattern
130: 외부도체130: outer conductor
140: 입출력전극140: input and output electrode
150: 비도체영역150: non-conductive area
160: 도체커버 161: 커버부160: conductor cover 161: cover part
162: 지지부162: support

Claims (10)

  1. 상면, 상기 상면과 대향하는 하면 및 상기 상면과 상기 하면을 연결하는 측면을 포함하는 유전체 블록;A dielectric block including an upper surface, a lower surface facing the upper surface, and a side surface connecting the upper surface and the lower surface;
    상기 상면과 상기 하면 사이에서 상기 유전체 블록을 관통하는 적어도 하나의 공진홀;At least one resonance hole penetrating the dielectric block between the upper surface and the lower surface;
    상기 상면과 상기 하면 사이에서 상기 유전체 블록을 관통하고, 상기 공진홀과 인접하게 위치하는 적어도 하나의 전송선로홀;At least one transmission line hole penetrating the dielectric block between the upper surface and the lower surface and positioned adjacent to the resonance hole;
    상기 상면, 상기 하면 및 상기 측면에 연속하여 형성된 외부도체;An outer conductor continuously formed on the upper surface, the lower surface and the side surface;
    상기 하면에 형성되고, 상기 외부도체와는 분리되는 입출력전극;An input / output electrode formed on the lower surface and separated from the external conductor;
    상기 공진홀의 내부에 형성되고, 상기 하면에서 상기 외부도체와 전기적으로 연결되는 공진홀 내부도체;A resonance hole inner conductor formed inside the resonance hole and electrically connected to the outer conductor at the bottom surface;
    상기 전송선로홀의 내부에 형성되고, 상기 하면에서 상기 입출력전극과 전기적으로 연결되는 전송선로홀 내부도체;A transmission line hole inner conductor formed in the transmission line hole and electrically connected to the input / output electrode on the bottom surface;
    상기 상면에 형성되고, 상기 상면에서 상기 공진홀 내부도체와 전기적으로 연결되는 공진홀 도체패턴; 및A resonance hole conductor pattern formed on the upper surface and electrically connected to the resonance hole inner conductor on the upper surface; And
    상기 상면에 형성되고, 상기 상면에서 상기 전송선로홀 내부도체와 전기적으로 연결되는 전송선로홀 도체패턴을 포함하고,A transmission line hole conductor pattern formed on the upper surface and electrically connected to the transmission line hole inner conductor on the upper surface;
    상기 공진홀 도체패턴, 상기 전송선로홀 도체패턴 및 상기 외부도체는 상기 유전체 블록 외면의 비도체영역에 의해 서로 분리되는 유전체 필터.And the resonant hole conductor pattern, the transmission line hole conductor pattern, and the outer conductor are separated from each other by a non-conductive area on an outer surface of the dielectric block.
  2. 제1 항에 있어서,According to claim 1,
    상기 유전체 블록은 육면체 형태로 형성되고, 상기 측면은 좌면, 우면, 전면 및 후면으로 구성되고,The dielectric block is formed in a hexahedral shape, the side surface is composed of the left side, right side, front and rear,
    상기 공진홀 및 상기 전송선로홀은 좌우 방향을 배열되고,The resonance hole and the transmission line hole is arranged in the left and right directions,
    상기 외부도체는 상기 상면에서 상기 전면 및 상기 후면과 맞닿는 부분에서 좌우 방향으로 길게 형성되는 유전체 필터.The outer conductor is a dielectric filter is formed long in the left and right direction at the portion in contact with the front and rear in the upper surface.
  3. 제2 항에 있어서,The method of claim 2,
    상기 상면에 형성된 외부도체와 전기적으로 연결되고, 상기 공진홀 도체패턴 및 상기 전송선로홀 도체패턴과는 이격되어 대향되는 도체커버를 더 포함하는 유전체 필터.And a conductor cover electrically connected to an external conductor formed on the upper surface and spaced apart from and facing the resonance hole conductor pattern and the transmission line hole conductor pattern.
  4. 제3 항에 있어서,The method of claim 3, wherein
    상기 도체커버는 상기 상면과 이격되어 대향되는 커버부 및 상기 커버부의 양단에서 절곡되어 연장되고 하단이 상기 상면에 형성된 외부도체와 전기적으로 연결되는 지지부를 포함하는 유전체 필터.The conductor cover includes a cover portion spaced apart from the upper surface and a support portion bent from both ends of the cover portion and having a lower end electrically connected to an outer conductor formed on the upper surface.
  5. 제2 항에 있어서,The method of claim 2,
    상기 비도체영역은 상기 상면에서 상기 좌우면을 통해 상기 하면까지 연장되고, 상기 하면에서 상기 외부도체와 상기 입출력전극을 분리하는 유전체 필터.And the non-conductive region extends from the upper surface to the lower surface through the left and right surfaces, and separates the external conductor and the input / output electrode from the lower surface.
  6. 제2 항에 있어서,The method of claim 2,
    상기 유전체 블록은 상기 상하면 사이의 높이가 상기 전후면 사이의 폭 및 상기 좌우면 사이의 길이보다 짧은 유전체 필터.And the dielectric block has a height between the upper and lower surfaces shorter than a width between the front and rear surfaces and a length between the left and right surfaces.
  7. 제1 항에 있어서,According to claim 1,
    상기 전송선로홀은 상기 공진홀보다 작게 형성되는 유전체 필터.And the transmission line hole is smaller than the resonance hole.
  8. 제1 항에 있어서,According to claim 1,
    상기 공진홀은 복수 개가 일 방향으로 배열된 형태로 형성되고,The resonance holes are formed in a shape in which a plurality of resonance holes are arranged in one direction,
    상기 전송선로홀은 두 개가 상기 공진홀의 양단에 형성되는 유전체 필터.Two transmission line holes are formed at both ends of the resonance hole.
  9. 제1 항에 있어서,According to claim 1,
    상기 전송선로홀 도체패턴은 전기적으로 연결된 전송선로홀을 기준으로 인접하는 일 공진홀 방향으로 치우치게 형성된 유전체 필터.The transmission line hole conductor pattern is a dielectric filter formed to be biased in the direction of one adjacent resonance hole relative to the transmission line hole electrically connected.
  10. 제1 항에 있어서,According to claim 1,
    상기 입출력전극은 상기 하면에서 상기 측면과 맞닿게 형성되는 유전체 필터.And the input / output electrode is formed to contact the side surface at the bottom surface.
PCT/KR2017/008034 2016-08-25 2017-07-26 Dielectric filter WO2018038407A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0108111 2016-08-25
KR1020160108111A KR101782948B1 (en) 2016-08-25 2016-08-25 Dielectric filter

Publications (1)

Publication Number Publication Date
WO2018038407A1 true WO2018038407A1 (en) 2018-03-01

Family

ID=60035896

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/008034 WO2018038407A1 (en) 2016-08-25 2017-07-26 Dielectric filter

Country Status (2)

Country Link
KR (1) KR101782948B1 (en)
WO (1) WO2018038407A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110459843A (en) * 2019-08-22 2019-11-15 深圳市国人射频通信有限公司 A kind of dielectric waveguide filter

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5905420A (en) * 1994-06-16 1999-05-18 Murata Manufacturing Co., Ltd. Dielectric filter
US6133808A (en) * 1997-02-14 2000-10-17 Murata Manufacturing Co., Ltd. Dielectric filter having input/output electrodes connected to electrodes on a substrate, and dielectric duplexer incorporating the dielectric filter
US20030201849A1 (en) * 2002-04-25 2003-10-30 Takaaki Uchiyama Dielectric filter device having conductive strip removed for improved filter characteristics
US20040066255A1 (en) * 2002-09-25 2004-04-08 Sanyo Electric Co., Ltd., Dielectric filter
US20150372364A1 (en) * 2013-02-26 2015-12-24 Kyocera Corporation Dielectric filter, duplexer, and communication device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002252503A (en) 2000-12-19 2002-09-06 Murata Mfg Co Ltd Dielectric filter, dielectric duplexer and communication device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5905420A (en) * 1994-06-16 1999-05-18 Murata Manufacturing Co., Ltd. Dielectric filter
US6133808A (en) * 1997-02-14 2000-10-17 Murata Manufacturing Co., Ltd. Dielectric filter having input/output electrodes connected to electrodes on a substrate, and dielectric duplexer incorporating the dielectric filter
US20030201849A1 (en) * 2002-04-25 2003-10-30 Takaaki Uchiyama Dielectric filter device having conductive strip removed for improved filter characteristics
US20040066255A1 (en) * 2002-09-25 2004-04-08 Sanyo Electric Co., Ltd., Dielectric filter
US20150372364A1 (en) * 2013-02-26 2015-12-24 Kyocera Corporation Dielectric filter, duplexer, and communication device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110459843A (en) * 2019-08-22 2019-11-15 深圳市国人射频通信有限公司 A kind of dielectric waveguide filter

Also Published As

Publication number Publication date
KR101782948B1 (en) 2017-09-28

Similar Documents

Publication Publication Date Title
KR101089195B1 (en) Input/output coupling structure for dielectric waveguide
WO2017095035A1 (en) Cavity type wireless frequency filter having cross-coupling notch structure
US20100244982A1 (en) Ultra wide-band dual-frequency combiner
KR20030007057A (en) Dielectric waveguide filter and mounting structure thereof
EP3065213B1 (en) Dielectric-filled surface-mounted waveguide devices and methods for coupling microwave energy
US4768004A (en) Electrical circuit interconnect system
WO2018066790A1 (en) Radio frequency filter
KR100312588B1 (en) Dielectric Filter, Dielectric Duplexer, and Communication Apparatus Using The Same
JP2024099638A (en) Board connector
KR20000016459A (en) Integrated filter
KR19990082083A (en) Electrical connector with improved grounding
KR100276012B1 (en) Dielectric filter, transmitting/receiving duplexer, and communication apparatus
US10587025B2 (en) Ceramic filter with window coupling
WO2016072659A2 (en) Duplexer
US6686813B2 (en) Dielectric filter, dielectric duplexer, and communication apparatus
WO2021060633A1 (en) Dielectric filter
WO2018038407A1 (en) Dielectric filter
KR100866978B1 (en) Te mode dielectric duplexer
WO2016089015A1 (en) Filter package
CN112825386A (en) Antenna structure and wireless communication device with same
KR20180080612A (en) Flexible printed circuit board
US11374362B2 (en) Electrical connector
KR100852487B1 (en) Dielectric duplexer
KR100321328B1 (en) An antenna share device
GB2284942A (en) Dielectric resonator and filter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17843827

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17843827

Country of ref document: EP

Kind code of ref document: A1