WO2018038315A1 - 부호화 유닛들의 병합을 사용하는 비디오 부호화 방법 및 장치, 그리고 비디오 복호화 방법 및 장치 - Google Patents

부호화 유닛들의 병합을 사용하는 비디오 부호화 방법 및 장치, 그리고 비디오 복호화 방법 및 장치 Download PDF

Info

Publication number
WO2018038315A1
WO2018038315A1 PCT/KR2016/010877 KR2016010877W WO2018038315A1 WO 2018038315 A1 WO2018038315 A1 WO 2018038315A1 KR 2016010877 W KR2016010877 W KR 2016010877W WO 2018038315 A1 WO2018038315 A1 WO 2018038315A1
Authority
WO
WIPO (PCT)
Prior art keywords
merge candidate
motion information
unit
decoding
video
Prior art date
Application number
PCT/KR2016/010877
Other languages
English (en)
French (fr)
Inventor
심동규
안용조
박시내
Original Assignee
광운대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 광운대학교 산학협력단 filed Critical 광운대학교 산학협력단
Publication of WO2018038315A1 publication Critical patent/WO2018038315A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/103Selection of coding mode or of prediction mode
    • H04N19/105Selection of the reference unit for prediction within a chosen coding or prediction mode, e.g. adaptive choice of position and number of pixels used for prediction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/103Selection of coding mode or of prediction mode
    • H04N19/107Selection of coding mode or of prediction mode between spatial and temporal predictive coding, e.g. picture refresh
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/124Quantisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/136Incoming video signal characteristics or properties
    • H04N19/137Motion inside a coding unit, e.g. average field, frame or block difference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/17Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
    • H04N19/176Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a block, e.g. a macroblock
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/44Decoders specially adapted therefor, e.g. video decoders which are asymmetric with respect to the encoder
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/503Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
    • H04N19/51Motion estimation or motion compensation

Definitions

  • the present invention relates to an image processing technique, and more particularly, to a method and an apparatus for encoding and decoding the presence or absence of quantization coefficients when merging coding units in a video compression technique.
  • MPEG and VCEG which jointly standardized the H.264 / AVC video compression standard, formed JCT-VC (Joint Collaborative Team on Video Coding) to standardize on the latest international video compression standard, HEVC, in January 2013. Completed.
  • HEVC extends the concept of macroblock (MB) used in MPEG-4, H.264 / AVC, etc., which is the existing video compression standard, into a quad-tree block structure.
  • CU a prediction unit (PU), which is a unit for prediction
  • TU transform unit
  • MPEG and VCEG have jointly formed JVET to develop the next generation video coding standard and improve the coding performance.
  • the quadtree plus binary tree (quad) is extended from the quad tree block structure of HEVC.
  • -tree plus binary-tree (QTBT) block structure is being studied.
  • An object of the present invention is to provide a method and apparatus for encoding and decoding quantization coefficients in a video encoding and decoding method and apparatus using a block structure of various divisions.
  • a video encoding apparatus and method, and a decoding apparatus and method include a MERGE candidate generator for generating a MERGE candidate, and a MERGE candidate for determining a MERGE candidate using the generated MERGE candidate.
  • a decision unit a motion information generation unit for generating motion information of the current coding unit using the determined MERGE candidate, a motion recovery performing unit for performing motion recovery using the generated motion information, and obtaining a differential signal from a bitstream And a differential signal obtaining unit and a restoring unit for restoring it.
  • a MERGE candidate generator for generating a MERGE candidate using spatially and temporally adjacent motion information with a current decoding unit, and MERGE using a MERGE candidate index obtained from a bitstream among the generated MERGE candidates.
  • a MERGE candidate determiner for determining a candidate, a motion information generator for processing motion information of the determined MERGE candidate in a current coding unit, and generating motion information, a motion reconstruction unit for performing motion reconstruction using the generated motion information; And obtaining a difference signal from the bitstream without determining whether there is a difference signal for all blocks within the current coding unit.
  • An object of the present invention is to provide a method and apparatus for encoding and decoding presence or absence of coded quantization coefficients when performing merge between adjacent blocks in a video compression technique using various partition type block structures.
  • the coding unit when the coding unit is not the skip mode and is determined to be the merge mode, since the information about the presence or absence of the difference signal is not transmitted, the amount of bits required to encode information about the presence or absence of the difference signal is reduced. By doing so, the performance of the encoding can be improved.
  • FIG. 1 is a block diagram illustrating a configuration of a video encoding apparatus according to an embodiment of the present invention.
  • FIG. 2 is a block diagram illustrating a configuration of a video decoding apparatus according to an embodiment of the present invention.
  • FIG. 3 is a conceptual diagram illustrating an example of a block structure using various partitioning forms and a coding unit divided into quad trees and binary trees according to an embodiment of the present invention.
  • FIG. 4 illustrates a decoding flowchart of a coding unit according to an embodiment of the present invention.
  • FIG. 5 illustrates a decoding flowchart of a merge mode used in an existing video coding standard according to an embodiment of the present invention.
  • FIG. 6 is a flowchart illustrating a decoding mode of a merge mode in a video decoding method and apparatus that does not transmit the presence of a difference signal according to an embodiment of the present invention.
  • ⁇ to '' or ⁇ of '' does not mean a step for.
  • first and second may be used to describe various components, but the components should not be limited by the terms. The terms are used only for the purpose of distinguishing one component from another.
  • each component shown in the embodiments of the present invention are shown independently to represent different characteristic functions, and do not mean that each component is composed of separate hardware or one software unit. That is, each component is described by listing each component for convenience of description, and at least two of the components may be combined to form one component, or one component may be divided into a plurality of components to perform a function. The integrated and separated embodiments of each of these components are also included within the scope of the present invention without departing from the spirit of the invention.
  • the 'coding unit' refers to a unit including a block made of pixels and encoding information thereof, in a video encoding and decoding step, and includes a 'coding unit' and a 'coding unit'
  • the term “CU” may be used in parallel with the term “CU”, and may be generically included including both video encoding and decoding units.
  • FIG. 6 is a flowchart illustrating a decoding mode of a merge mode in a video decoding method and apparatus that does not transmit the presence of a difference signal according to an embodiment of the present invention.
  • the decoding order of the merge mode is a merge candidate generator 610, a merge candidate determiner 620, a motion information generator ( 630, a motion recovery execution unit 640, and a differential signal recovery unit 650.
  • the decoding order of the merge mode may include a motion vector, a reference direction, and a reference picture based on spatial and temporally adjacent blocks and pixel-by-pixel position information of the current coding unit.
  • the method may further include determining one merge candidate among the generated merge candidates, generating motion information using the determined merge candidate, and performing motion reconstruction based on the generated motion information.
  • the encoding order of the merge mode is a difference signal in the merge mode without parsing information on whether there is a difference signal after performing the motion restoration.
  • differential signal reconstruction including determining the presence of the differential signal from the bitstream, inverse-quantization, and inverse-conversion.
  • ⁇ to '' or ⁇ of '' does not mean a step for.
  • first and second may be used to describe various components, but the components should not be limited by the terms. The terms are used only for the purpose of distinguishing one component from another.
  • each component shown in the embodiments of the present invention are shown independently to represent different characteristic functions, and do not mean that each component is composed of separate hardware or one software unit. That is, each component is described by listing each component for convenience of description, and at least two of the components may be combined to form one component, or one component may be divided into a plurality of components to perform a function. The integrated and separated embodiments of each of these components are also included within the scope of the present invention without departing from the spirit of the invention.
  • the 'coding unit' refers to a unit including a block made of pixels and encoding information thereof, in a video encoding and decoding step, and includes a 'coding unit' and a 'coding unit'
  • the term “CU” may be used in parallel with the term “CU”, and may be generically included including both video encoding and decoding units.
  • FIG. 1 is a block diagram illustrating a configuration of a video encoding method and apparatus according to an embodiment of the present invention.
  • the video encoding method and apparatus may include an inter prediction unit 120, an intra prediction unit 125, a subtraction unit 130, a transform unit 140, a quantization unit 150, and an entropy encoding unit 160. ), An inverse transform unit 145, an inverse quantization unit 155, an adder 135, an in-loop filter unit 180, and a reconstructed picture buffer 190.
  • the inter prediction unit 120 generates a prediction signal by performing motion prediction using the reconstructed image stored in the input image 110 and the reconstructed picture buffer 190.
  • the intra prediction unit 125 generates a prediction signal by performing spatial prediction using pixel values of pre-restored neighboring blocks adjacent to the current block to be encoded.
  • the subtractor 130 generates a residual signal using the prediction signal generated by the input image and the inter-prediction unit 120 or the intra prediction unit 125.
  • the transformer 140 and the quantizer 150 generate quantized coefficients by performing transform and quantization on the residual signal generated by the subtractor 130.
  • the entropy encoder 160 outputs a bitstream by performing entropy encoding on encoding information such as syntax elements and quantized coefficients defined in the video encoder.
  • the inverse transformer 145 and the inverse quantizer 155 receive the quantization coefficients, perform inverse quantization and inverse transformation in order, and generate a reconstructed residual signal.
  • the adder 135 generates a reconstruction signal by using the prediction signal generated by the inter prediction unit 120 or the intra prediction unit 125 and the reconstructed residual signal.
  • the reconstruction signal is transmitted to the in-loop filter unit 180.
  • the reconstructed picture to which the filtering is applied is stored in the reconstructed picture buffer 190 and may be used as a reference picture in the inter prediction unit 120.
  • FIG. 2 is a block diagram showing the configuration of a video decoding apparatus and method according to an embodiment of the present invention.
  • the video decoding apparatus and method may include an entropy decoder 210, an inverse quantizer 220, an inverse transformer 230, an intra prediction unit 240, an inter prediction unit 250, and an adder ( 260, an in-loop filter unit 270, and a reconstructed picture buffer 280.
  • the entropy decoder 210 decodes the input bitstream 200 and outputs decoding information such as syntax elements and quantized coefficients.
  • the inverse quantization unit 220 and the inverse transform unit 230 receive the quantization coefficients, perform inverse quantization and inverse transformation in order, and output a residual signal.
  • the intra prediction unit 240 generates a prediction signal by performing spatial prediction using pixel values of the pre-decoded neighboring block adjacent to the current block to be decoded.
  • the inter prediction unit 250 generates a prediction signal by performing motion compensation using the motion vector extracted from the bitstream and the reconstructed image stored in the reconstructed picture buffer 280.
  • the prediction signals output from the intra prediction unit 240 and the intra prediction unit 250 are combined with the residual signal through the adder 260, and thus the reconstruction signal generated in units of blocks includes a reconstructed image. .
  • the reconstructed image is transmitted to the in-loop filter unit 270.
  • the reconstructed picture to which the filtering is applied is stored in the reconstructed picture buffer 280 and may be used as a reference picture in the inter prediction unit 250.
  • FIG. 3 is a conceptual diagram illustrating an example of a block structure using various partitioning forms and a coding unit divided into quad trees and binary trees according to an embodiment of the present invention.
  • a block structure using various partition types includes a block structure in which a quadtree block partition structure, a binary block partition structure, and a quadtree block partition structure and a binary block partition structure are merged.
  • the non-divided square block 310, quadtree partition blocks 320, 321, 322, and 323, horizontal binary partition blocks 330 and 331, and vertical binary partition blocks 340 and 341 are described.
  • the block division may be applied one or more times for one block.
  • FIG. 4 illustrates a decoding flowchart of a coding unit according to an embodiment of the present invention.
  • the decoding order of the coding unit is whether the SKIP decoding unit 410, the SKIP determination unit 420, the SKIP mode decoding unit 430, or the MERGE performs decoding on information for determining whether the first SKIP is present. And a decoder 440, a MERGE determining unit 450, a MERGE mode decoder 460, and an inter prediction mode decoder 470.
  • a method of decoding a SKIP from a bitstream with respect to a coding unit performing current decoding may include performing SKIP mode decoding when the current coding unit is SKIP. On the other hand, if the current coding unit is not SKIP, it is determined whether to merge (MERGE) from the bitstream to determine whether to merge with the neighboring block of the current coding unit. If the current coding unit is merged with the neighboring block, the decoding is performed in the MERGE mode. Performing the inter prediction mode decoding.
  • MERGE merge
  • FIG. 5 illustrates a decoding flowchart of a merge mode used in an existing video coding standard according to an embodiment of the present invention.
  • the decoding order of the merge mode used in the existing video coding standard may include a merge candidate generator 510, a merge candidate determiner 520, a motion information generator 530, a motion reconstruction performer 540, And a differential signal existence determining unit 550 and a differential signal restoring unit 560.
  • the decoding order of the merge mode used in the existing video coding standard may include motion information including a motion vector, a reference direction, and a reference picture index based on spatial and temporally adjacent blocks and pixel-by-pixel position information of the current coding unit. Generating a merge candidate. The method may further include determining one merge candidate among the generated merge candidates, generating motion information using the determined merge candidate, and performing motion reconstruction based on the generated motion information.
  • the decoding order of the merge mode used in the existing video encoding standard may be determined by using information transmitted through a bitstream on whether there is a difference signal, and the difference signal presence information may be determined by a difference signal. Meaning includes differential signal reconstruction, including differential signal acquisition, inverse-quantization, and inverse transformation, from the bitstream. On the other hand, if the difference signal presence information means that there is no difference signal includes the restoration of the current coding unit by using the reconstructed motion reconstruction block without reconstruction of the differential signal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)

Abstract

본 발명은 부호화 유닛들의 병합을 사용하는 비디오 부호화 방법 및 장치, 그리고 비디오 복호화 방법 및 장치에 관한 것이다. 본 발명은 MERGE 후보를 생성하는 단계; 상기 생성된 MERGE 후보를 이용하여 MERGE 후보를 결정하는 단계; 상기 결정된 MERGE 후보를 이용하여 현재 부호화 유닛의 움직임 정보를 생성하는 단계; 상기 생성된 움직임 정보를 이용하여 움직임 복원을 수행하는 단계; 및 차분신호를 비트스트림으로부터 획득하는 단계를 포함한다.

Description

부호화 유닛들의 병합을 사용하는 비디오 부호화 방법 및 장치, 그리고 비디오 복호화 방법 및 장치
본 발명은 영상 처리기술에 관한 것으로써, 보다 상세하게는 비디오압축 기술에서 부호화 유닛들의 병합을 사용하는 경우 양자화 계수의 유무를 부호화 및 복호화하는 방법 및 장치에 관한 것이다.
최근 고해상도, 고화질 비디오에 대한 요구가 증가함에 따라 차세대 비디오 서비스를 위한 고효율 비디오 압축 기술에 대한 필요성이 대두되었다. 이러한 필요성에 기반하여 H.264/AVC 비디오 압축 표준을 공동으로 표준화 했던 MPEG과 VCEG은 JCT-VC (Joint Collaborative Team on Video Coding)을 결성하여 2013년 1월 최신 국제 비디오 압축 표준인 HEVC에 대한 표준화를 완료하였다.
HEVC에서는 기존의 비디오 압축 표준인 MPEG-4, H.264/AVC 등에서 사용하는 매크로블록 (macroblock, MB)의 개념을 쿼드 트리 형태의 블록 구조로 확장하여 부호화를 위한 단위인 코딩 유닛 (coding unit, CU), 예측을 위한 단위인 예측 유닛 (prediction unit, PU) 와 변환을 위한 변환 유닛 (transform unit, TU)으로 역할별 세분화된 블록 단위를 사용한다. HEVC 표준화 이후, MPEG과 VCEG은 공동으로 차세대 비디오 부호화 표준 개발을 위하여 JVET을 결성하여 부호화 성능 향상을 위한 연구를 진행하고 있으며, HEVC의 쿼드 트리 형태의 블록 구조에서 확장된 쿼드트리 플러스 바이너리트리 (quad-tree plus binary-tree, QTBT)의 블록 구조에 대한 연구가 진행되고 있다.
본 발명은 다양한 분할 형태의 블록 구조를 사용하는 비디오 부호화 및 복호화 방법 및 장치에서 부호화 유닛이 병합된 경우 양자화 계수의 유무를 부호화 및 복호화하는 방법 및 장치를 제공하는 것을 그 목적으로 한다.
다만, 본 실시예가 이루고자 하는 기술적 과제는 상기된 바와 같은 기술적 과제들로 한정되지 않으며, 또 다른 기술적 과제들이 존재할 수 있다.
상기 과제를 해결하기 위하여 본 발명의 실시예에 따른 비디오 부호화 장치 및 방법, 그리고 복호화 장치 및 방법은 MERGE 후보를 생성하는 MERGE 후보 생성부, 상기 생성된 MERGE 후보를 이용하여 MERGE 후보를 결정하는 MERGE 후보 결정부, 상기 결정된 MERGE 후보를 이용하여 현재 부호화 유닛의 움직임 정보를 생성하는 움직임 정보 생성부, 상기 생성된 움직임 정보를 이용하여 움직임 복원을 수행하는 움직임 복원 수행부, 및 차분신호를 비트스트림으로부터 획득하고 이를 복원하는 차분신호 획득부 및 복원부를 포함한다.
상기 과제를 해결하기 위하여 현재 복호화하는 부호화 유닛과 공간적, 시간적으로 인접한 움직임 정보들을 이용하여 MERGE 후보를 생성하는 MERGE 후보 생성부, 상기 생성된 MERGE 후보 중 비트스트림에서 획득한 MERGE 후보 인덱스를 이용하여 MERGE 후보를 결정하는 MERGE 후보 결정부, 상기 결정된 MERGE 후보의 움직임 정보를 현재 부호화 유닛에서 가공하여 움직임 정보를 생성하는 움직임 정보 생성부, 상기 생성된 움직임 정보를 이용하여 움직임 복원을 수행하는 움직임 복원부, 및 상기 현재 부호화 유닛 내부의 모든 블록에 대한 차분신호 존재 여부 판별 없이 차분 신호를 비트스트림으로부터 획득하는 단계를 포함한다.
본 발명은 다양한 분할 형태의 블록 구조를 사용하는 비디오 압축 기술에서 인접한 블록 간의 병합을 수행하는 경우 부호화된 양자화 계수의 유무를 부호화 및 복호화하는 방법 및 장치를 제공하는 것을 그 목적으로 한다.
본 발명의 일 실시 예에 따르면, 부호화 유닛이 스킵 모드가 아니며 병합 모드로 결정되는 경우 차분신호의 존재 유무에 대한 정보를 전송하지 않으므로 차분신호의 존재 유무에 대한 정보를 부호화하는데 필요한 비트량을 감소시킴으로써 부호화의 성능을 향상시킬 수 있다.
도 1은 본 발명의 일 실시예에 따른 비디오 부호화 장치의 구성을 나타내는 블록도를 도시한다.
도 2는 본 발명의 일 실시예에 따른 비디오 복호화 장치의 구성을 나타내는 블록도를 도시한다.
도 3은 본 발명의 일 실시예에 따른 다양한 분할 형태를 사용하는 블록 구조와 쿼드 트리 및 바이너리 트리로 분할된 부호화 유닛의 일 예를 나타내는 개념도를 도시한다.
도 4는 본 발명의 일 실시예에 따른 부호화 유닛의 복호화 순서도를 도시한다.
도 5는 본 발명의 일 실시예에 따른 기존 비디오 부호화 표준에서 사용하는 병합모드의 복호화 순서도를 도시한다.
도 6은 본 발명의 일 실시예에 따른 차분신호 존재 유무를 전송하지 않는 비디오 복호화 방법 및 장치에서의 병합모드의 복호화 순서도를 도시한다.
하기는 본 명세서에 첨부된 도면을 참조하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예를 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.
본 명세서 전체에서, 어떤 부분이 다른 부분과 '연결'되어 있다고 할 때, 이는 직접적으로 연결되어 있는 경우뿐 아니라, 그 중간에 다른 소자를 사이에 두고 전기적으로 연결되어 있는 경우도 포함한다.
또한, 본 명세서 전체에서 어떤 부분이 어떤 구성요소를 '포함'한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다.
본 명세서 전체에서 사용되는 정도의 용어 ~(하는) 단계 또는 ~의 단계는 ~를 위한 단계를 의미하지 않는다.
또한, 제 1, 제 2 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다.
덧붙여, 본 발명의 실시예에 나타나는 구성부들은 서로 다른 특징적인 기능들을 나타내기 위해 독립적으로 도시되는 것으로, 각 구성부들이 분리된 하드웨어나 하나의 소프트웨어 구성단위로 이루어짐을 의미하지 않는다. 즉, 각 구성부는 설명의 편의상 각각의 구성부로 나열하여 기술되고, 각 구성부 중 적어도 두 개의 구성부가 합쳐져 하나의 구성부로 이루어지거나, 하나의 구성부가 복수 개의 구성부로 나뉘어져 기능을 수행할 수 있다.이러한 각 구성부의 통합된 실시예 및 분리된 실시예도 본 발명의 본질에서 벗어나지 않는 한 본 발명의 권리 범위에 포함된다.
이하 본 명세서에 기재된 본 발명의 다양한 실시예들에서 '부호화 단위'는 비디오 부호화 및 복호화 단계에서 화소로 이루어진 블록과 이에 대한 부호화 정보를 포함하는 단위를 지칭하며, '부호화 유닛', 'Coding Unit', 'CU' 등의 용어와 병행하여 사용될 수 있으며, 비디오 부호화 및 복호화 단위를 모두 포함하여 포괄적으로 지칭할 수 있다.
이하 본 발명의 일 실시예에 따라 제안하는 부호화 유닛들의 병합을 사용하는 부호화 방법 및 장치, 그리고 비디오 복호화 방법 및 장치에 대하여 도 6을 참조하여 구체적으로 설명하기로 한다.
도 6은 본 발명의 일 실시예에 따른 차분신호 존재 유무를 전송하지 않는 비디오 복호화 방법 및 장치에서의 병합모드의 복호화 순서도를 도시한다.
일 실시예에 따른 차분신호 존재 유무를 전송하지 않는 비디오 복호화 방법 및 장치에서의 병합모드의 복호화 순서는 병합 (MERGE) 후보 생성부 (610), 병합 후보 결정부 (620), 움직임 정보 생성부 (630), 움직임 복원 수행부 (640), 차분신호 복원부 (650)을 포함한다.
일 실시예에 따른 차분신호 존재 유무를 전송하지 않는 비디오 복호화 방법 및 장치에서 병합모드의 복호화 순서는 현재 부호화 유닛의 공간적, 시간적으로 인접한 블록 및 화소 단위 위치 정보에 기반한 움직임 벡터, 참조 방향, 참조 픽쳐 인덱스를 포함하는 움직임 정보들을 이용하여 병합 후보를 생성하는 것을 포함한다. 또한, 상기 생성된 병합 후보 중 하나의 병합 후보를 결정하고, 상기 결정된 병합 후보를 이용하여 움직임 정보를 생성하고, 상기 생성된 움직임 정보를 기반으로 움직임 복원을 수행하는 것을 포함한다.
일 실시예에 따른 차분신호 존재 유무를 전송하지 않는 비디오 복호화 방법 및 장치에서 병합모드의 부호화 순서는 상기 움직임 복원 수행 이후, 차분신호가 존재 여부에 대한 정보의 파싱 없이 병합모드의 경우에는 차분신호가 존재한다고 판단하고 차분신호를 비트스트림으로부터 획득, 역-양자화, 역-변환을 포함하는 차분신호 복원을 포함한다.
하기는 본 명세서에 첨부된 도면을 참조하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예를 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.
본 명세서 전체에서, 어떤 부분이 다른 부분과 '연결'되어 있다고 할 때, 이는 직접적으로 연결되어 있는 경우뿐 아니라, 그 중간에 다른 소자를 사이에 두고 전기적으로 연결되어 있는 경우도 포함한다.
또한, 본 명세서 전체에서 어떤 부분이 어떤 구성요소를 '포함'한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다.
본 명세서 전체에서 사용되는 정도의 용어 ~(하는) 단계 또는 ~의 단계는 ~를 위한 단계를 의미하지 않는다.
또한, 제 1, 제 2 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다.
덧붙여, 본 발명의 실시예에 나타나는 구성부들은 서로 다른 특징적인 기능들을 나타내기 위해 독립적으로 도시되는 것으로, 각 구성부들이 분리된 하드웨어나 하나의 소프트웨어 구성단위로 이루어짐을 의미하지 않는다. 즉, 각 구성부는 설명의 편의상 각각의 구성부로 나열하여 기술되고, 각 구성부 중 적어도 두 개의 구성부가 합쳐져 하나의 구성부로 이루어지거나, 하나의 구성부가 복수 개의 구성부로 나뉘어져 기능을 수행할 수 있다.이러한 각 구성부의 통합된 실시예 및 분리된 실시예도 본 발명의 본질에서 벗어나지 않는 한 본 발명의 권리 범위에 포함된다.
이하 본 명세서에 기재된 본 발명의 다양한 실시예들에서 '부호화 단위'는 비디오 부호화 및 복호화 단계에서 화소로 이루어진 블록과 이에 대한 부호화 정보를 포함하는 단위를 지칭하며, '부호화 유닛', 'Coding Unit', 'CU' 등의 용어와 병행하여 사용될 수 있으며, 비디오 부호화 및 복호화 단위를 모두 포함하여 포괄적으로 지칭할 수 있다.
이하 본 발명의 일 실시예에 따라 제안하는 부호화 유닛들의 병합을 사용하는 부호화 방법 및 장치, 그리고 비디오 복호화 방법 및 장치에 대하여 도 6을 참조하여 구체적으로 설명하기로 한다.
도 1은 본 발명의 일 실시예에 따른 비디오 부호화 방법 및 장치의 구성을 나타내는 블록도를 도시한다.
일 실시예에 따른 비디오 부호화 방법 및 장치는 화면 간 예측부(120), 화면 내 예측부(125), 감산부(130), 변환부(140), 양자화부(150), 엔트로피 부호화부(160), 역변환부(145), 역양자화부(155), 가산부(135), 인루프 필터부(180), 복원 픽쳐 버퍼(190)를 포함할 수 있다.
화면 간 예측부(120)는 입력 영상(110)과 복원 픽쳐 버퍼(190)에 저장되어 있는 복원 영상을 이용하여 움직임 예측을 수행하여 예측 신호를 생성한다.
화면 내 예측부(125)는 부호화되는 현재 블록과 인접하는 기-복원된 주변 블록의 화소 값을 이용하여 공간적 예측을 수행하여 예측 신호를 생성한다.
감산부(130)는 입력 영상과 화면 간 예측부(120) 혹은 화면 내 예측부(125)를 통해 생성된 예측 신호를 이용하여 잔차 신호(residual signal)를 생성한다.
변환부(140) 및 양자화부(150)는 감산부(130)을 통해 생성된 잔차 신호에 대하여 변환 및 양자화를 수행하여 양자화된 계수(quantized coefficient)를 생성한다.
엔트로피 부호화부(160)는 비디오 부호화기에 정의된 신택스 요소(syntax elements) 및 양자화된 계수 등과 같은 부호화 정보에 대하여 엔트로피 부호화를 수행하여 비트스트림을 출력한다.
역변환부(145) 및 역양자화부(155)는 양자화 계수를 수신하여 역양자화 및 역변환을 차례대로 수행하고, 복원된 잔차 신호를 생성한다.
가산부(135)는 화면 간 예측부(120) 혹은 화면 내 예측부(125)를 통해 생성된 예측 신호와 복원된 잔차 신호를 이용하여 복원 신호를 생성한다.
복원 신호는 인루프 필터부(180)로 전달된다. 필터링이 적용된 복원 픽쳐는 복원 픽쳐 버퍼(190)에 저장되며, 화면 간 예측부(120)에서 참조 픽쳐로 사용될 수 있다.
도 2는 본 발명의 일 실시예에 따른 비디오 복호화 장치 및 방법의 구성을 나타내는 블록도를 도시한다.
일 실시예에 따른 비디오 복호화 장치 및 방법은 엔트로피 복호화부(210), 역양자화부(220), 역변환부(230), 화면 내 예측부(240), 화면 간 예측부(250), 가산부(260), 인루프 필터부(270), 복원 픽쳐 버퍼(280)를 포함할 수 있다.
엔트로피 복호화부(210)는 입력된 비트스트림(200)을 복호화하여 신택스 요소(syntax elements) 및 양자화된 계수 등과 같은 복호화 정보를 출력한다.
역양자화부(220) 및 역변환부 (230)는 양자화 계수를 수신하여 역양자화 및 역변환을 차례대로 수행하고, 잔차 신호(residual signal)를 출력한다.
화면 내 예측부(240)는 복호화되는 현재 블록과 인접하는 기-복호화된 주변 블록의 화소 값을 이용하여 공간적 예측을 수행하여 예측 신호를 생성한다.
화면 간 예측부(250)는 비트스트림으로부터 추출된 움직임 벡터와 복원 픽쳐 버퍼(280)에 저장되어 있는 복원 영상을 이용하여 움직임 보상을 수행하여 예측 신호를 생성한다.
화면 내 예측부(240)와 화면 내 예측부(250)로부터 출력된 예측 신호는 가산부(260)를 통해 잔차 신호와 합해지고, 그에 따라 블록 단위로 생성된 복원 신호는 복원된 영상을 포함한다.
복원된 영상은 인루프 필터부(270)로 전달된다. 필터링이 적용된 복원 픽쳐는 복원 픽쳐 버퍼(280)에 저장되며, 화면 간 예측부(250)에서 참조 픽쳐로 사용될 수 있다.
도 3은 본 발명의 일 실시예에 따른 다양한 분할 형태를 사용하는 블록 구조와 쿼드 트리 및 바이너리 트리로 분할된 부호화 유닛의 일 예를 나타내는 개념도를 도시한다.
일 실시예에 따른 다양한 분할 형태를 사용하는 블록 구조로 쿼드트리 블록 분할 구조와 바이너리 블록 분할 구조, 쿼드트리 블록 분할 구조와 바이너리 블록 분할 구조를 병합한 형태의 블록 구조를 포함한다.
일 실시예에 따른 블록 분할 구조에서는 분할되지 않은 정방형 블록 (310), 쿼드트리 분할 블록 (320, 321, 322, 323), 수평 바이너리 분할 블록 (330, 331), 수직 바이너리 분할 블록 (340, 341)을 사용하여 하나의 블록을 하나 혹은 그 이상의 블록으로 분할 하는 것을 포함한다. 또한, 하나의 블록에 대하여 상기 블록 분할은 한번 혹은 그 이상 적용될 수 있다.
도 4는 본 발명의 일 실시예에 따른 부호화 유닛의 복호화 순서도를 도시한다.
일 실시예에 따른 부호화 유닛의 복호화 순서는 최초 SKIP 여부를 판단하는 정보에 대한 복호화를 수행하는 SKIP 여부 복호화부 (410), SKIP 여부 판단부 (420), SKIP 모드 복호화부 (430), MERGE 여부 복호화부 (440), MERGE 여부 판단부 (450), MERGE 모드 복호화부 (460), 화면 간 예측 모드 복호화부 (470)을 포함한다.
일 실시예에 따라 현재 복호화를 수행하는 부호화 유닛에 대하여 비트스트림으로부터 SKIP 여부를 복호화하여 현재 부호화 유닛이 SKIP인 경우, SKIP 모드 복호화를 수행하는 과정을 포함한다. 반면, 현재 부호화 유닛이 SKIP이 아닌 경우, 비트스트림으로부터 병합 (MERGE) 여부를 복호화하여 현재 부호화 유닛의 주변 블록과의 병합 여부를 판단하여 현재 부호화 유닛이 주변 블록과 병합된 경우에는 MERGE 모드로 복호화를 수행하고, 그렇지 않은 경우 화면 간 예측 모드 복호화를 수행하는 것을 포함한다.
도 5는 본 발명의 일 실시예에 따른 기존 비디오 부호화 표준에서 사용하는 병합모드의 복호화 순서도를 도시한다.
일 실시예에 따른 기존 비디오 부호화 표준에서 사용하는 병합모드의 복호화 순서는 병합 후보 생성부 (510), 병합 후보 결정부 (520), 움직임 정보 생성부 (530), 움직임 복원 수행부 (540), 차분신호 존재 판단부 (550), 차분신호 복원부 (560)을 포함한다.
일 실시예에 따른 기존 비디오 부호화 표준에서 사용하는 병합모드의 복호화 순서는 현재 부호화 유닛의 공간적, 시간적으로 인접한 블록 및 화소 단위 위치 정보에 기반한 움직임 벡터, 참조 방향, 참조 픽쳐 인덱스를 포함하는 움직임 정보들을 이용하여 병합 후보를 생성하는 것을 포함한다. 또한, 상기 생성된 병합 후보 중 하나의 병합 후보를 결정하고, 상기 결정된 병합 후보를 이용하여 움직임 정보를 생성하고, 상기 생성된 움직임 정보를 기반으로 움직임 복원을 수행하는 것을 포함한다.
일 실시예에 따른 기존 비디오 부호화 표준에서 사용하는 병합모드의 복호화 순서는 차분신호 존재 여부에 대하여 비트스트림을 통해 전송된 정보를 이용하여 판단하고, 상기 차분신호 존재 여부 정보가 차분신호가 존재함을 의미하는 경우 차분신호를 비트스트림으로부터 획득, 역-양자화, 역-변환을 포함하는 차분신호 복원을 포함한다. 반면, 상기 차분신호 존재 여부 정보가 차분신호가 존재하지 않음을 의미하는 경우 차분신호의 복원 없이 상기 복원된 움직임 복원 블록을 이용하여 현재 부호화 유닛의 복원을 포함한다.
비디오 부/복호화 관련산업으로 방송장비 제조, 단말제조 등 제조업체나 원천기술 관련 산업에서 이용가능
해당 없음.

Claims (4)

  1. 비디오 부호화 및 복호화 방법에 있어서,
    MERGE 후보를 생성하는 단계;
    상기 생성된 MERGE 후보를 이용하여 MERGE 후보를 결정하는 단계;
    상기 결정된 MERGE 후보를 이용하여 현재 부호화 유닛의 움직임 정보를 생성하는 단계;
    상기 생성된 움직임 정보를 이용하여 움직임 복원을 수행하는 단계; 및
    차분신호를 비트스트림으로부터 획득하는 단계를 포함하는 것을 특징으로하는 비디오 부호화 방법 및 복호화 방법.
  2. 제 1항에 있어서,
    현재 복호화하는 부호화 유닛과 공간적, 시간적으로 인접한 움직임 정보들을 이용하여 MERGE 후보를 생성하는 단계;
    상기 생성된 MERGE 후보 중 비트스트림에서 획득한 MERGE 후보 인덱스를 이용하여 MERGE 후보를 결정하는 단계;
    상기 결정된 MERGE 후보의 움직임 정보를 현재 부호화 유닛에서 가공하여 움직임 정보를 생성하는 단계;
    상기 생성된 움직임 정보를 이용하여 움직임 복원을 수행하는 단계; 및
    상기 현재 부호화 유닛 내부의 모든 블록에 대한 차분신호 존재 여부 판별 없이 차분신호를 비트스트림으로부터 획득하는 단계를 포함하는 것을 특징으로하는 비디오 부호화 방법 및 복호화 방법.
  3. 비디오 부호화 및 복호화 장치에 있어서,
    상기 생성된 MERGE 후보를 이용하여 MERGE 후보를 결정하는 단계;
    상기 결정된 MERGE 후보를 이용하여 현재 부호화 유닛의 움직임 정보를 생성하는 단계;
    상기 생성된 움직임 정보를 이용하여 움직임 복원을 수행하는 단계; 및
    차분신호를 비트스트림으로부터 획득하는 단계를 포함하는 것을 특징으로하는 비디오 부호화 장치 및 복호화 장치.
  4. 제 2항에 있어서,
    현재 복호화하는 부호화 유닛과 공간적, 시간적으로 인접한 움직임 정보들을 이용하여 MERGE 후보를 생성하는 단계;
    상기 생성된 MERGE 후보 중 비트스트림에서 획득한 MERGE 후보 인덱스를 이용하여 MERGE 후보를 결정하는 단계;
    상기 결정된 MERGE 후보의 움직임 정보를 현재 부호화 유닛에서 가공하여 움직임 정보를 생성하는 단계;
    상기 생성된 움직임 정보를 이용하여 움직임 복원을 수행하는 단계; 및
    상기 현재 부호화 유닛 내부의 모든 블록에 대한 차분신호 존재 여부 판별 없이 차분신호를 비트스트림으로부터 획득하는 단계를 포함하는 것을 특징으로하는 비디오 부호화 장치 및 복호화 장치.
PCT/KR2016/010877 2016-08-22 2016-09-29 부호화 유닛들의 병합을 사용하는 비디오 부호화 방법 및 장치, 그리고 비디오 복호화 방법 및 장치 WO2018038315A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160105952A KR20180021941A (ko) 2016-08-22 2016-08-22 부호화 유닛들의 병합을 사용하는 비디오 부호화 방법 및 장치, 그리고 비디오 복호화 방법 및 장치
KR10-2016-0105952 2016-08-22

Publications (1)

Publication Number Publication Date
WO2018038315A1 true WO2018038315A1 (ko) 2018-03-01

Family

ID=61245094

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/010877 WO2018038315A1 (ko) 2016-08-22 2016-09-29 부호화 유닛들의 병합을 사용하는 비디오 부호화 방법 및 장치, 그리고 비디오 복호화 방법 및 장치

Country Status (2)

Country Link
KR (1) KR20180021941A (ko)
WO (1) WO2018038315A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130050406A (ko) * 2011-11-07 2013-05-16 오수미 머지 모드에서의 움직임 정보 생성 방법
KR20140005102A (ko) * 2012-07-02 2014-01-14 삼성전자주식회사 비디오 부호화 또는 비디오 복호화를 위한 움직임 벡터 예측 방법 및 장치
KR20140044403A (ko) * 2010-11-23 2014-04-14 엘지전자 주식회사 영상 부호화 및 복호화 방법과 이를 이용한 장치
KR20140105038A (ko) * 2012-01-20 2014-09-01 주식회사 아이벡스피티홀딩스 머지 모드 움직임 정보 복호화 장치
WO2015137783A1 (ko) * 2014-03-14 2015-09-17 삼성전자 주식회사 인터 레이어 비디오의 복호화 및 부호화를 위한 머지 후보 리스트 구성 방법 및 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140044403A (ko) * 2010-11-23 2014-04-14 엘지전자 주식회사 영상 부호화 및 복호화 방법과 이를 이용한 장치
KR20130050406A (ko) * 2011-11-07 2013-05-16 오수미 머지 모드에서의 움직임 정보 생성 방법
KR20140105038A (ko) * 2012-01-20 2014-09-01 주식회사 아이벡스피티홀딩스 머지 모드 움직임 정보 복호화 장치
KR20140005102A (ko) * 2012-07-02 2014-01-14 삼성전자주식회사 비디오 부호화 또는 비디오 복호화를 위한 움직임 벡터 예측 방법 및 장치
WO2015137783A1 (ko) * 2014-03-14 2015-09-17 삼성전자 주식회사 인터 레이어 비디오의 복호화 및 부호화를 위한 머지 후보 리스트 구성 방법 및 장치

Also Published As

Publication number Publication date
KR20180021941A (ko) 2018-03-06

Similar Documents

Publication Publication Date Title
WO2012057528A2 (ko) 적응적 화면내 예측 부호화 및 복호화 방법
WO2013070006A1 (ko) 스킵모드를 이용한 동영상 부호화 및 복호화 방법 및 장치
WO2011133002A2 (ko) 영상 부호화 장치 및 방법
WO2010095915A2 (ko) 비디오 부호화에서의 분할 블록 부호화 방법, 비디오 복호화에서의 분할 블록 복호화 방법 및 이를 구현하는 기록매체
WO2013069932A1 (ko) 영상의 부호화 방법 및 장치, 및 복호화 방법 및 장치
WO2013002549A2 (ko) 영상 부호화/복호화 방법 및 장치
WO2011145836A2 (ko) 인트라 블록 및 인터 블록이 혼합된 코딩블록을 이용하는 영상 부호화/복호화 장치 및 그 방법
WO2011087271A2 (ko) 비디오 신호의 처리 방법 및 장치
WO2010087620A2 (ko) 보간 필터를 적응적으로 사용하여 영상을 부호화 및 복호화하는 방법 및 장치
WO2011096662A2 (ko) 율-왜곡 최적화를 위한 영상 부호화/복호화 방법 및 이를 수행하는 장치
WO2018079873A1 (ko) 임의의 블록 분할을 사용하는 비디오 코딩 방법 및 장치
WO2013157820A1 (ko) 고속 에지 검출을 이용하는 비디오 부호화 방법 및 장치, 그 비디오 복호화 방법 및 장치
WO2013002550A2 (ko) 고속 코딩 단위(Coding Unit) 모드 결정을 통한 부호화/복호화 방법 및 장치
WO2011010857A2 (en) Method and apparatus for coding and decoding color channels in layered video coding and decoding
WO2018074626A1 (ko) 적응적 보간 필터를 사용하는 비디오 코딩 방법 및 장치
WO2018070555A1 (ko) 다양한 블록 분할 구조를 결합하여 사용하는 비디오 코딩 방법 및 장치
WO2019132567A1 (ko) 서브-블록 단위 화면 내 예측을 사용하는 비디오 코딩 방법 및 장치
WO2018070556A1 (ko) 정방형 또는 직방형 블록의 화면 내 예측모드 정보 추출 방법 및 장치
WO2018070568A1 (ko) 복호화기 기반의 화면 내 예측 모드 추출 기술을 사용하는 비디오 코딩 방법 및 장치
WO2012081917A2 (ko) 움직임정보 병합을 이용한 부호움직임정보생성/움직임정보복원 방법 및 장치와 그를 이용한 영상 부호화/복호화 방법 및 장치
WO2019135628A1 (ko) 영상을 부호화 또는 복호화하는 방법 및 장치
WO2014073877A1 (ko) 다시점 비디오 신호의 처리 방법 및 이에 대한 장치
WO2018169267A1 (ko) 영상 부호화 또는 복호화하기 위한 장치 및 방법
WO2021137445A1 (ko) 비디오 신호 처리를 위한 변환 커널 결정 방법 및 이를 위한 장치
WO2013002620A2 (ko) 스킵 모드를 이용한 모션 정보 부호화 방법 및 장치, 그 복호화 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16914294

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16914294

Country of ref document: EP

Kind code of ref document: A1