WO2018038286A1 - Thermoelectric module - Google Patents

Thermoelectric module Download PDF

Info

Publication number
WO2018038286A1
WO2018038286A1 PCT/KR2016/009363 KR2016009363W WO2018038286A1 WO 2018038286 A1 WO2018038286 A1 WO 2018038286A1 KR 2016009363 W KR2016009363 W KR 2016009363W WO 2018038286 A1 WO2018038286 A1 WO 2018038286A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermoelectric element
type thermoelectric
thermoelectric
substrate
thermoelectric module
Prior art date
Application number
PCT/KR2016/009363
Other languages
French (fr)
Korean (ko)
Inventor
김종배
연병훈
최종일
황병진
손경현
박선욱
박재성
양승호
박주현
Original Assignee
희성금속 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 희성금속 주식회사 filed Critical 희성금속 주식회사
Publication of WO2018038286A1 publication Critical patent/WO2018038286A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/17Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the structure or configuration of the cell or thermocouple forming the device
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/01Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using semiconducting elements having PN junctions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/02Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using thermoelectric elements, e.g. thermocouples
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/13Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the heat-exchanging means at the junction
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/852Thermoelectric active materials comprising inorganic compositions comprising tellurium, selenium or sulfur
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/853Thermoelectric active materials comprising inorganic compositions comprising arsenic, antimony or bismuth
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/856Thermoelectric active materials comprising organic compositions

Definitions

  • the present invention relates to a thermoelectric module, and more particularly to a thermoelectric module in which a heat dissipation pad is applied to an endothermic portion.
  • thermoelectric phenomenon refers to the reversible direct energy conversion between heat and electricity, thermoelectric phenomenon is caused by the movement of electrons and holes in the material, which is applied from the outside It is divided into Peltier effect applied to cooling field by using temperature difference between both ends formed by electric current and Seebeck effect applied to power generation field by using electromotive force generated from temperature difference between both ends of material.
  • thermoelectric elements and thermoelectric modules have been actively conducted to solve problems such as soaring costs of energy-related resources and severe environmental pollution.
  • thermoelectric module is composed of a thermoelectric element, an electrode, and a substrate.
  • N-type semiconductors and P-type semiconductors are used as thermoelectric elements.
  • a thermoelectric module may be configured by arranging a plurality of pairs of N-type and P-type semiconductors in a plane and connecting them in series using metal electrodes.
  • thermoelectric module In order to maximize performance while maintaining the temperature difference across the thermoelectric module, the heat of the other side of the thermoelectric module must be rapidly released to the outside or the thermal resistance of the entire thermoelectric module must be reduced.
  • thermoelectric module since the ceramic substrate widely used as a substrate is relatively low in thermal conductivity, there is a limit in reducing the thermal resistance of the thermoelectric module.
  • thermoelectric module there is a problem in that pyro destruction occurs in the device, in which thermal expansion coefficients of materials constituting the thermoelectric device are different from each other, and thus, the lifetime of the thermoelectric device is reduced.
  • voids exist between the alumina layer used as the insulating layer and the Cu layer used as the electrode, resulting in a decrease in heat transfer efficiency, which causes a problem in that the output of the thermoelectric module is lowered.
  • An object of the present invention is to provide a thermoelectric module with improved reliability while improving heat transfer performance.
  • the present invention is a P-type thermoelectric element; N-type thermoelectric element; And an upper substrate and a lower substrate coupled to the P-type thermoelectric element and the N-type thermoelectric element such that the P-type thermoelectric element and the N-type thermoelectric element are electrically in series, wherein one of the upper substrate and the lower substrate is a heat dissipation pad. It provides a thermoelectric module (thermal pad).
  • the upper substrate is a cold side substrate and a heat radiation pad.
  • the heat radiation pad is preferably formed of a silicone polymer or an acrylic polymer.
  • the thermal conductivity of the heat radiation pad is preferably in the range of 0.5 to 5.0 W / mk.
  • thermoelectric device preferably includes a thermoelectric semiconductor substrate formed of at least one selected from the group consisting of bismuth-tellurium (Bi-Te) -based, Skuttrudite-based, and silicide-based compounds.
  • a thermoelectric semiconductor substrate formed of at least one selected from the group consisting of bismuth-tellurium (Bi-Te) -based, Skuttrudite-based, and silicide-based compounds.
  • the present invention includes a heat dissipation pad instead of a ceramic substrate, thereby providing a thermoelectric module having improved life and mechanical properties.
  • the present invention increases the contact specific surface area by applying a heat dissipation pad to the heat absorbing portion of the thermoelectric module, thereby suppressing fatigue breakdown in the thermoelectric element and flexibly responding to thermal expansion and contraction. Can improve.
  • thermoelectric module 1 is a perspective view showing a thermoelectric module according to an example of the present invention.
  • thermoelectric power module is a photograph of a Bi-Te-based thermoelectric power module to which a heat dissipation pad is applied.
  • thermoelectric module 100: thermoelectric module
  • thermoelectric module a heat-resistant pad based on a silicone polymer or an acrylic polymer having excellent adhesion to the heat absorbing portion of the thermoelectric module is suppressed from fatigue destruction of the thermoelectric module, elastic response to thermal expansion and contraction, and heat transfer performance are improved.
  • thermoelectric module includes a P-type thermoelectric element, an N-type thermoelectric element, and an upper substrate coupled to the P-type thermoelectric element and the N-type element such that the P-type thermoelectric element and the N-type thermoelectric element are electrically connected in series. It includes a lower substrate, characterized in that any one of the upper substrate and the lower substrate is a heat radiation pad.
  • thermoelectric module 100 is a diagram illustrating a thermoelectric module 100 according to an example of the present invention.
  • thermoelectric module 100 may include a P-type thermoelectric element 10a, an N-type thermoelectric element 10b, an upper electrode 21, a lower electrode 22, and an upper substrate 31. ) And a lower substrate 32.
  • thermoelectric module 100 there are a plurality of P-type thermoelectric elements 10a and N-type thermoelectric elements 10b, which are alternately arranged in one direction to form a matrix shape.
  • each of the thermoelectric elements 10a and 10b includes a thermoelectric semiconductor substrate.
  • the thermoelectric semiconductor substrate may be formed of a material that generates electricity when a temperature difference is generated at both ends when electricity is applied, or when a temperature difference occurs at both ends thereof.
  • it may be formed of at least one selected from the group consisting of bismuth (Bi), tellurium (Te), selenium (Se), antimony (Sb), Cu (copper), and I (iodine), but is not limited thereto. .
  • thermoelectric substrate may be formed of at least one selected from the group consisting of bismuth-tellurium (Bi-Te) -based, Skuttrudite-based, and silicide-based compounds.
  • Bi-Te bismuth-tellurium
  • the thermoelectric semiconductor substrate may be a P-type thermoelectric semiconductor substrate or an N-type thermoelectric semiconductor substrate, and may be formed according to a method of manufacturing a thermoelectric material known in the art.
  • the thermoelectric semiconductor substrate may be manufactured by sequentially performing pressure sintering after performing melt spinning, gas atomization, or the like.
  • thermoelectric element including the aforementioned P-type thermoelectric element and N-type thermoelectric element is not particularly limited, and may be, for example, a rectangular parallelepiped shape.
  • each of the thermoelectric elements 10a and 10b is disposed in contact with the upper electrode 21 and the lower electrode 22.
  • the upper electrode 21 and the lower electrode 22 electrically connect the upper and lower surfaces of the P-type thermoelectric element and the N-type thermoelectric element adjacent in one direction, respectively.
  • the upper and lower electrodes 21 and 22 may be formed of a material such as aluminum, nickel, gold, copper, silver, and the like, but is not limited thereto.
  • the upper substrate 31 is disposed on an outer surface of the upper electrode 21, and the lower substrate 32 is disposed on an outer surface of the lower electrode 22 to form upper and lower surfaces.
  • the upper substrate 31 and the lower substrate 32 described above are formed of an electrically insulating material to cause an exothermic or endothermic reaction when power is applied to the thermoelectric module 100.
  • the upper substrate 31 has a heat radiating pad applied to a cold side substrate.
  • the heat dissipation pad may be formed of a silicone polymer or an acrylic polymer, and may have a thermal conductivity in a range of 0.5 to 5.0 W / mk to maximize heat transfer efficiency. It can also serve as an insulator.
  • the lower substrate 32 may be a metal substrate such as Ni, such as a heat radiating (hot side) substrate.
  • the positions of the endothermic and the heat generation may be changed according to the direction of the current, and at this time, heat may be generated in the upper substrate 31 and endothermic may be generated in the lower substrate 32.
  • thermoelectric module 100 may further include a solder layer (not shown) between the thermoelectric elements 10a and 10b and the electrodes 21 and 22, or an insulating film formed between the thermoelectric elements. It may further include (not shown).
  • Te and Sb raw materials were prepared.
  • P-type thermoelectric materials were weighed to have a target composition of Bi 0.44 Te 3 Se 1.56 .
  • Bi, Te and Se raw materials were Bi 2 Te 2 . 7 were each weighed so as to have the composition of the target Se 0 .3, in consideration of the evaporation of Te was added a Te of 1wt% more.
  • each material was charged in a quartz tube (Quartz Ampoule), the quartz tube was sealed in a vacuum state at a vacuum degree of about 10 -2 Torr, and the vacuum-sealed quartz tube was charged in a Knocking Furnace, and then, at about 1033K at 10
  • a master alloy ingot was prepared by stirring and dissolving at a rate of ash / min for 2 hours and then air cooling.
  • the master alloy ingot was then sprayed using melt spinning equipment at a copper wheel rotation speed of about 1000 rpm and an injection pressure of about 0.5 MPa to produce a metal ribbon. Thereafter, the formed metal ribbon was pressed and sintered at about 40 MPa at about 480 ° C.
  • thermoelectric module was manufactured in the same manner as in Example 1, except that both the heat dissipating portion and the heat absorbing portion formed a Ni plating film on the surface of the sintered body prepared in Example 1.
  • Table 1 compares the physical properties of the conventional heat radiation pad of the heat radiation pad according to the present invention.

Abstract

The present invention relates to a thermoelectric module, and provides a thermoelectric module in which a heat dissipation pad is applied to a heat absorbing portion so as to suppress a fatigue fracture in a thermoelectric element, elastically respond to thermal expansion and contraction, and improve heat transfer performance, thereby enhancing output efficiency. To achieve the purposes, the thermoelectric module comprises: a p-type thermoelectric element; an n-type thermoelectric element; and an upper substrate and lower substrate connected to the p-type thermoelectric element and the n-type thermoelectric element so that the p-type thermoelectric element and the n-type thermoelectric element are electrically in series, wherein one of the upper substrate and the lower substrate is a heat dissipation pad.

Description

열전 모듈Thermoelectric module
본 발명은 열전 모듈에 관한 것으로, 보다 구체적으로 흡열부에 방열 패드를 적용한 열전 모듈에 관한 것이다.The present invention relates to a thermoelectric module, and more particularly to a thermoelectric module in which a heat dissipation pad is applied to an endothermic portion.
열전 현상은 열과 전기 사이의 열전 현상은 열과 전기 사이의 가역적인 직접적인 에너지 변환을 의미하며, 재료 내부의 전자(electron)와 정공(홀, hole)의 이동에 의해 발생하는 현상으로, 외부로부터 인가된 전류에 의해 형성된 양단의 온도차를 이용하여 냉각분야에 응용하는 펠티어 효과(Peltier effect)와 재료 양단의 온도차로부터 발생하는 기전력을 이용하여 발전분야에 응용하는 제벡효과(seebeck effect)로 구분된다.Thermoelectric phenomenon refers to the reversible direct energy conversion between heat and electricity, thermoelectric phenomenon is caused by the movement of electrons and holes in the material, which is applied from the outside It is divided into Peltier effect applied to cooling field by using temperature difference between both ends formed by electric current and Seebeck effect applied to power generation field by using electromotive force generated from temperature difference between both ends of material.
최근 에너지 관련 자원의 원가가 급등하고 환경오염이 심해지는 등의 문제를 해결하기 위하여 열전 소자(thermoelectric element) 및 열전 모듈(thermoelectric module)에 대한 연구가 활발히 진행되고 있다.Recently, researches on thermoelectric elements and thermoelectric modules have been actively conducted to solve problems such as soaring costs of energy-related resources and severe environmental pollution.
일반적으로 열전 모듈은 열전 소자, 전극, 기판(substrate)으로 구성된다. 열전 소자로 N형 반도체와 P형 반도체가 사용된다. 복수의 쌍을 이루는 N형과 P형 반도체를 평면에 배열하고 이를 다시 금속 전극을 이용해 직렬로 연결하여 열전 모듈을 구성할 수 있다.In general, a thermoelectric module is composed of a thermoelectric element, an electrode, and a substrate. N-type semiconductors and P-type semiconductors are used as thermoelectric elements. A thermoelectric module may be configured by arranging a plurality of pairs of N-type and P-type semiconductors in a plane and connecting them in series using metal electrodes.
이러한 열전 모듈 양단의 온도차를 유지한 상태에서 성능을 극대화하기 위해서는 열전 모듈의 다른 한 면의 열을 빠른 속도로 외부로 방출하거나, 열전 모듈 전체의 열저항을 감소시켜야 한다.In order to maximize performance while maintaining the temperature difference across the thermoelectric module, the heat of the other side of the thermoelectric module must be rapidly released to the outside or the thermal resistance of the entire thermoelectric module must be reduced.
그러나, 종래에 기판으로 널리 사용되고 있는 세라믹 기판은 열전도도가 비교적 낮기 때문에, 열전 모듈의 열저항이 감소되는 데 한계가 있다.However, since the ceramic substrate widely used as a substrate is relatively low in thermal conductivity, there is a limit in reducing the thermal resistance of the thermoelectric module.
또한, 열전 소자를 이루는 재료들의 열팽창계수가 서로 달라 발생하는 소자내의 피로(pyro) 파괴가 일어나고 이로 인하여 열전 소자의 수명이 저하되는 문제가 있었다. 아울러, 절연층으로 사용되는 알루미나층과 전극으로 사용되는 Cu층 사이에 공극이 존재하여 열전달 효율이 떨어지고 이로 인하여 열전 모듈의 출력이 저하되는 등의 문제가 대두되고 있다.In addition, there is a problem in that pyro destruction occurs in the device, in which thermal expansion coefficients of materials constituting the thermoelectric device are different from each other, and thus, the lifetime of the thermoelectric device is reduced. In addition, voids exist between the alumina layer used as the insulating layer and the Cu layer used as the electrode, resulting in a decrease in heat transfer efficiency, which causes a problem in that the output of the thermoelectric module is lowered.
본 발명은 열 전달 성능을 개선하는 동시에, 신뢰성이 향상된 열전 모듈을 제공하는 것을 목적으로 한다.An object of the present invention is to provide a thermoelectric module with improved reliability while improving heat transfer performance.
상기 목적을 달성하기 위해서, 본 발명은 P형 열전 소자; N형 열전 소자; 및 상기 P형 열전 소자와 N형 열전 소자가 전기적으로 직렬이 되도록 P형 열전 소자와 N형 열전 소자에 결합되는 상부 기판 및 하부 기판을 포함하며, 상기 상부 기판 및 하부 기판 중 어느 하나는 방열 패드(thermal pad)인 열전 모듈을 제공한다.In order to achieve the above object, the present invention is a P-type thermoelectric element; N-type thermoelectric element; And an upper substrate and a lower substrate coupled to the P-type thermoelectric element and the N-type thermoelectric element such that the P-type thermoelectric element and the N-type thermoelectric element are electrically in series, wherein one of the upper substrate and the lower substrate is a heat dissipation pad. It provides a thermoelectric module (thermal pad).
본 발명의 일례에 따르면, 상기 상부 기판은 흡열부(cold side) 기판이며 방열 패드이다.According to one example of the invention, the upper substrate is a cold side substrate and a heat radiation pad.
여기서, 상기 방열 패드는 실리콘 고분자 또는 아크릴 고분자로 형성되는 것이 바람직하다.Here, the heat radiation pad is preferably formed of a silicone polymer or an acrylic polymer.
또, 상기 방열 패드의 열전도도는 0.5 내지 5.0 W/mk 범위인 것이 바람직하다.In addition, the thermal conductivity of the heat radiation pad is preferably in the range of 0.5 to 5.0 W / mk.
또한, 상기 열전 소자는 비스무트-텔루륨(Bi-Te)계, 스쿠테르다이트(Skuttrudite)계, 규화물(Silicide)계 화합물로 이루어진 군에서 선택된 적어도 하나로 형성된 열전반도체 기재를 포함하는 것이 바람직하다.In addition, the thermoelectric device preferably includes a thermoelectric semiconductor substrate formed of at least one selected from the group consisting of bismuth-tellurium (Bi-Te) -based, Skuttrudite-based, and silicide-based compounds.
본 발명은 세라믹 기판 대신 방열 패드를 포함함함으로써, 수명 및 기계적 성질이 향상된 열전 모듈을 제공한다.The present invention includes a heat dissipation pad instead of a ceramic substrate, thereby providing a thermoelectric module having improved life and mechanical properties.
본 발명은 열전 모듈의 흡열부에 방열 패드를 적용하여 접촉 비표면적을 늘려줌으로써, 열전 소자내의 피로 파괴를 억제하고 열 팽창과 수축에 탄력적으로 대응할 수 있으며, 열전 성능이 우수하여 열전 모듈의 발전 출력을 향상시킬 수 있다.The present invention increases the contact specific surface area by applying a heat dissipation pad to the heat absorbing portion of the thermoelectric module, thereby suppressing fatigue breakdown in the thermoelectric element and flexibly responding to thermal expansion and contraction. Can improve.
도 1은 본 발명의 일례에 따른 열전 모듈을 나타낸 사시도이다.1 is a perspective view showing a thermoelectric module according to an example of the present invention.
도 2는 방열 패드를 적용한 Bi-Te계 열전 발전 모듈의 사진이다.2 is a photograph of a Bi-Te-based thermoelectric power module to which a heat dissipation pad is applied.
* 부호의 설명* Explanation of the sign
10a: P형 열전 소자10a: P-type thermoelectric element
10b: N형 열전 소자10b: N-type thermoelectric element
21: 상부 전극21: upper electrode
22: 하부 전극22: lower electrode
31: 상부 기판31: upper substrate
32: 하부 기판32: lower substrate
100: 열전 모듈100: thermoelectric module
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 기술 등은 첨부되는 도면들과 함께 후술되어 있는 실시예를 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있다. 본 실시예는 본 발명의 개시가 완전하도록 함과 더불어, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공될 수 있다. 명세서 전문에 걸쳐 동일 참조 부호는 동일 구성 요소를 지칭한다.Advantages and features of the present invention, techniques for achieving them, and the like will become apparent with reference to the embodiments described below in conjunction with the accompanying drawings. However, the present invention is not limited to the embodiments disclosed below, but may be implemented in various forms. This embodiment may be provided to make the disclosure of the present invention complete, and to fully inform the scope of the invention to those skilled in the art. Like reference numerals refer to like elements throughout the specification.
본 명세서에서 사용된 용어들은 실시예를 설명하기 위한 것이며 본 발명을 제한하고자 하는 것은 아니다. 본 명세서에서, 단수형은 문구에서 특별히 언급하지 않는 한 복수형도 포함한다. 명세서에서 사용되는 '포함한다(comprise)' 및/또는 '포함하는(comprising)'은 언급된 구성요소, 단계, 동작 및/또는 소자는 하나 이상의 다른 구성요소, 단계, 동작 및/또는 소자의 존재 또는 추가를 배제하지 않는다.The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. In this specification, the singular also includes the plural unless specifically stated otherwise in the phrase. As used herein, 'comprise' and / or 'comprising' refers to a component, step, operation and / or element that is mentioned in the presence of one or more other components, steps, operations and / or elements. Or does not exclude additions.
이하 본 발명을 설명한다.Hereinafter, the present invention will be described.
본 발명자들은 열전 모듈의 흡열부에 접착력이 우수한 실리콘 고분자 또는 아크릴 고분자 기반의 방열 패드를 적용할 경우, 열전 모듈의 피로 파괴가 억제되고 열팽창과 수축에 탄력적으로 대응하며 열전달 성능이 향상된다는 것을 알았다.The present inventors found that when a heat-resistant pad based on a silicone polymer or an acrylic polymer having excellent adhesion to the heat absorbing portion of the thermoelectric module is suppressed from fatigue destruction of the thermoelectric module, elastic response to thermal expansion and contraction, and heat transfer performance are improved.
이에, 본 발명에 따른 열전 모듈은 P형 열전 소자, N형 열전 소자, 및 상기 P형 열전 소자와 N형 열전 소자가 전기적으로 직렬이 되도록 P형 열전 소자와 N형 소자에 결합되는 상부 기판 및 하부 기판을 포함하며, 상기 상부 기판 및 하부 기판 중 어느 하나가 방열 패드인 것을 특징으로 한다.Accordingly, the thermoelectric module according to the present invention includes a P-type thermoelectric element, an N-type thermoelectric element, and an upper substrate coupled to the P-type thermoelectric element and the N-type element such that the P-type thermoelectric element and the N-type thermoelectric element are electrically connected in series. It includes a lower substrate, characterized in that any one of the upper substrate and the lower substrate is a heat radiation pad.
도 1은 본 발명의 일례에 따른 열전 모듈(100)을 예시한 도면이다.1 is a diagram illustrating a thermoelectric module 100 according to an example of the present invention.
도 1을 참조하면, 본 발명의 일례에 따른 열전 모듈(100)은 P형 열전 소자(10a), N형 열전 소자(10b), 상부 전극(21), 하부 전극(22), 상부 기판(31) 및 하부 기판(32)을 포함한다.Referring to FIG. 1, the thermoelectric module 100 according to an exemplary embodiment of the present invention may include a P-type thermoelectric element 10a, an N-type thermoelectric element 10b, an upper electrode 21, a lower electrode 22, and an upper substrate 31. ) And a lower substrate 32.
상기 열전 모듈(100)에서, 상기 P형 열전 소자(10a) 및 N형 열전 소자(10b)는 복수 개이며, 이들은 일방향으로 번갈아가며 배치되어 매트릭스 형상을 형성한다. 이때, 각각의 열전 소자(10a, 10b)는 열전반도체 기재를 포함한다.In the thermoelectric module 100, there are a plurality of P-type thermoelectric elements 10a and N-type thermoelectric elements 10b, which are alternately arranged in one direction to form a matrix shape. In this case, each of the thermoelectric elements 10a and 10b includes a thermoelectric semiconductor substrate.
상기 열전반도체 기재는 전기가 인가되면 양단에 온도차가 발생하거나, 또는 그 양단에 온도차가 발생하면 전기가 발생하는 재료로 형성될 수 있다. 예를 들어, 비스무트(Bi), 텔루륨(Te), 셀레늄(Se), 안티몬(Sb), Cu(구리), I(요오드)로 이루어진 군에서 선택된 적어도 하나로 형성될 수 있는데, 이에 한정되지 않는다.The thermoelectric semiconductor substrate may be formed of a material that generates electricity when a temperature difference is generated at both ends when electricity is applied, or when a temperature difference occurs at both ends thereof. For example, it may be formed of at least one selected from the group consisting of bismuth (Bi), tellurium (Te), selenium (Se), antimony (Sb), Cu (copper), and I (iodine), but is not limited thereto. .
바람직하게는, 상기 열전반도체 기재는 비스무트-텔루륨(Bi-Te)계, 스쿠테르다이트(Skuttrudite)계, 규화물(Silicide)계 화합물로 이루어진 군에서 선택된 적어도 하나로 형성될 수 있다.Preferably, the thermoelectric substrate may be formed of at least one selected from the group consisting of bismuth-tellurium (Bi-Te) -based, Skuttrudite-based, and silicide-based compounds.
이러한 열전반도체 기재는 P형 열전반도체 기재 또는 N형 열전반도체 기재일 수 있으며, 당 기술분야에서 알려진 열전재료의 제조방법에 따라 형성될 수 있다. 예를 들어, 상기 열전반도체 기재는 용융방사 회전법(melt-spining)이나 기상원자화법(gas atomization) 등을 수행한 후 가압소결법을 순차적으로 진행하여 제조될 수 있다.The thermoelectric semiconductor substrate may be a P-type thermoelectric semiconductor substrate or an N-type thermoelectric semiconductor substrate, and may be formed according to a method of manufacturing a thermoelectric material known in the art. For example, the thermoelectric semiconductor substrate may be manufactured by sequentially performing pressure sintering after performing melt spinning, gas atomization, or the like.
전술한 P형 열전 소자 및 N형 열전 소자를 포함하는 열전 소자의 형상은 특별히 한정되지 않으며, 예컨대 직육면체 형상 등일 수 있다.The shape of the thermoelectric element including the aforementioned P-type thermoelectric element and N-type thermoelectric element is not particularly limited, and may be, for example, a rectangular parallelepiped shape.
도 1을 참조하면, 각 열전 소자(10a, 10b)는 상부 전극(21) 및 하부 전극(22)과 접합하여 배치된다.Referring to FIG. 1, each of the thermoelectric elements 10a and 10b is disposed in contact with the upper electrode 21 and the lower electrode 22.
상기 상부 전극(21) 및 하부 전극(22)은 일방향으로 이웃하는 상기 P형 열전 소자 및 N형 열전 소자의 상면 및 하면을 각각 전기적으로 연결한다. 이러한 상부 및 하부 전극(21, 22)은 각각 알루미늄, 니켈, 금, 구리, 은 등과 같은 물질로 형성될 수 있는데, 이에 한정되지 않는다.The upper electrode 21 and the lower electrode 22 electrically connect the upper and lower surfaces of the P-type thermoelectric element and the N-type thermoelectric element adjacent in one direction, respectively. The upper and lower electrodes 21 and 22 may be formed of a material such as aluminum, nickel, gold, copper, silver, and the like, but is not limited thereto.
상기 상부 기판(31)은 상기 상부 전극(21)의 외측 표면에 배치되고, 상기 하부 기판(32)은 상기 하부 전극(22)의 외측 표면에 배치되어 상/하면 외관이 형성된다.The upper substrate 31 is disposed on an outer surface of the upper electrode 21, and the lower substrate 32 is disposed on an outer surface of the lower electrode 22 to form upper and lower surfaces.
상술한 상부 기판(31) 및 하부 기판(32)은 열전 모듈(100)에 전원이 인가될 때 발열 또는 흡열 반응을 일으키는 것으로 전기 절연 소재로 형성된다.The upper substrate 31 and the lower substrate 32 described above are formed of an electrically insulating material to cause an exothermic or endothermic reaction when power is applied to the thermoelectric module 100.
여기서, 상부 기판(31)에서는 흡열이, 하부 기판(32)에서는 발열이 발생하는 경우를 예로 설명한다.Here, the case where heat absorption in the upper substrate 31 and heat generation in the lower substrate 32 will be described as an example.
상부 기판(31)은 흡열부(cold side) 기판으로 방열 패드가 적용된다. 방열 패드는 실리콘 고분자 또는 아크릴 고분자로 형성될 수 있으며, 0.5 내지 5.0 W/mk 범위의 열 전도도를 가짐으로써 열 전달 효율을 극대화시킬 수 있다. 또한 절연체 역할을 할 수 있다.The upper substrate 31 has a heat radiating pad applied to a cold side substrate. The heat dissipation pad may be formed of a silicone polymer or an acrylic polymer, and may have a thermal conductivity in a range of 0.5 to 5.0 W / mk to maximize heat transfer efficiency. It can also serve as an insulator.
한편, 하부 기판(32)은 방열부(hot side) 기판으로 Ni 등의 금속 기판 등이 사용될 수 있다.On the other hand, the lower substrate 32 may be a metal substrate such as Ni, such as a heat radiating (hot side) substrate.
다른 일례로서, 전류의 방향에 따라 흡열과 발열의 위치는 변경될 수 있으며, 이때 상부 기판(31)에는 발열, 하부 기판(32)에는 흡열이 발생될 수도 있다.As another example, the positions of the endothermic and the heat generation may be changed according to the direction of the current, and at this time, heat may be generated in the upper substrate 31 and endothermic may be generated in the lower substrate 32.
선택적으로, 상기 열전 모듈(100)은 상기 열전 소자(10a, 10b)와 전극(21, 22)사이에 솔더층(미도시됨)을 더 포함할 수 있고, 또는 상기 열전 소자 사이에 형성된 절연필름(미도시됨)을 더 포함할 수 있다.Optionally, the thermoelectric module 100 may further include a solder layer (not shown) between the thermoelectric elements 10a and 10b and the electrodes 21 and 22, or an insulating film formed between the thermoelectric elements. It may further include (not shown).
이하, 본 발명을 실시예를 통해 구체적으로 설명하나, 하기 실시예 및 실험예는 본 발명의 한 형태를 예시한 것에 불과할 뿐이며, 본 발명의 범위가 하기 실시예 및 실험예에 의해 제한되는 것은 아니다.Hereinafter, the present invention will be described in detail by way of Examples, but the following Examples and Experimental Examples are merely illustrative of one embodiment of the present invention, and the scope of the present invention is not limited to the following Examples and Experimental Examples. .
실시예 1Example 1
5N 이상의 Bi, Te 및 Sb 원재료를 준비하였다. P형 열전재료의 경우 Bi0.44Te3Se1.56 의 목표 조성을 갖도록 각각 칭량하였고, N형 열전재료의 경우, Bi, Te 및 Se 원재료가 Bi2Te2 . 7Se0 .3의 목표 조성을 갖도록 각각 칭량하였으며, Te의 휘발을 고려하여 1wt%의 Te를 더 추가하였다. 이후, 각 재료를 석영관(Quartz Ampoule)에 장입한 후, 약 10-2 Torr의 진공도에서 석영관을 진공 상태로 밀봉하고, 진공 밀봉된 석영관을 Knocking Furnace에 장입한 후, 약 1033K에서 10회/min의 속도로 2시간 동안 교반 및 용해시킨 다음, 공냉시켜 모합금 잉곳을 제조하였다. 이후, 모합금 잉곳을, 용융 방사 장비를 이용하여 약 1000 rpm의 구리 휠 회전속도 및 약 0.5 MPa의 분사 압력으로 분사시켜, 금속 리본을 제조하였다. 이후, 형성된 금속 리본을, 방전 플라즈마 소결(spark plasma sintering, SPS)을 이용하여 약 480℃에서 약 3분 동안 약 40 MPa로 가압 소결하여 소결체를 제조하였다. 이때, 제조된 소결체의 직경은 Φ30이었다. 이렇게 제조한 소결체의 표면에 대하여, 방열부(Hot Side)에는 Ni 막(두께: 15 ㎛)을 증착하였으며, 흡열부(Cold Side)에는 열전도도 1.5 W/mK 수준의 방열 패드(소재: 실리콘 고분자, 두께: 0.6 ㎜)를 적용하였다.More than 5N Bi, Te and Sb raw materials were prepared. P-type thermoelectric materials were weighed to have a target composition of Bi 0.44 Te 3 Se 1.56 . In the case of N-type thermoelectric materials, Bi, Te and Se raw materials were Bi 2 Te 2 . 7 were each weighed so as to have the composition of the target Se 0 .3, in consideration of the evaporation of Te was added a Te of 1wt% more. Subsequently, each material was charged in a quartz tube (Quartz Ampoule), the quartz tube was sealed in a vacuum state at a vacuum degree of about 10 -2 Torr, and the vacuum-sealed quartz tube was charged in a Knocking Furnace, and then, at about 1033K at 10 A master alloy ingot was prepared by stirring and dissolving at a rate of ash / min for 2 hours and then air cooling. The master alloy ingot was then sprayed using melt spinning equipment at a copper wheel rotation speed of about 1000 rpm and an injection pressure of about 0.5 MPa to produce a metal ribbon. Thereafter, the formed metal ribbon was pressed and sintered at about 40 MPa at about 480 ° C. for about 3 minutes using spark plasma sintering (SPS) to prepare a sintered body. At this time, the diameter of the manufactured sintered compact was Φ30. On the surface of the sintered body thus prepared, a Ni film (thickness: 15 μm) was deposited on the heat side, and a heat radiation pad having a thermal conductivity of 1.5 W / mK on the heat side (material: silicon polymer). , Thickness: 0.6 mm) was applied.
비교예 1Comparative Example 1
실시예 1에서 제조된 소결체의 표면에 대하여 방열부, 흡열부 모두 Ni 도금막을 형성하는 것을 제외하고는, 실시예 1과 동일하게 열전 모듈을 제조하였다.A thermoelectric module was manufactured in the same manner as in Example 1, except that both the heat dissipating portion and the heat absorbing portion formed a Ni plating film on the surface of the sintered body prepared in Example 1.
하기 표 1은 본 발명에 따른 방열 패드의 종래 방열 패드의 물성을 비교한 것이다.Table 1 compares the physical properties of the conventional heat radiation pad of the heat radiation pad according to the present invention.
특성characteristic 실험 방법Experiment method 희성금속(TP80)Heesung Metal (TP80) 타사(TC 2006)Third party (TC 2006)
컬러color VisualVisual whitewhite Light purpleLight purple
두께, 공칭 (mm)Thickness, nominal (mm) ASTM D374ASTM D374 1.51.5 1.51.5
밀도density ASTM D792ASTM D792 1.991.99 1.871.87
열 전도도 (W/mK)Thermal Conductivity (W / mK) ASTM D5470ASTM D5470 1.91.9 1.731.73
경도 (Shore 00)Hardness (Shore 00) ASTM D2240ASTM D2240 6464 6565
절연 강도 (volts/mil)Insulation strength (volts / mil) ASTM D149ASTM D149 560560 >250> 250
체적 저항률 (ohmㆍcm)Volume resistivity (ohmcm) ASTM D257ASTM D257 6.68 x 1013 6.68 x 10 13 1.02 x 1011 1.02 x 10 11
인장 강도 (MPa)Tensile strength (MPa) ASTM D638ASTM D638 0.30.3 측정 실패Measurement failure
박리 시험 (g)Peel Test (g) ASTM D1876ASTM D1876 9.39.3 1.71.7
작동 온도 (℃)Working temperature (℃) -- -55 to 200-55 to 200 -55 to 200-55 to 200
UL Listing recognitionUL Listing recognition UL94UL94 V-OV-O V-OV-O

Claims (5)

  1. P형 열전 소자;P-type thermoelectric element;
    N형 열전 소자; 및N-type thermoelectric element; And
    상기 P형 열전 소자와 N형 열전 소자가 전기적으로 직렬이 되도록 P형 열전 소자와 N형 열전 소자에 결합되는 상부 기판 및 하부 기판An upper substrate and a lower substrate coupled to the P-type thermoelectric element and the N-type thermoelectric element such that the P-type thermoelectric element and the N-type thermoelectric element are electrically connected in series.
    을 포함하며, 상기 상부 기판 및 하부 기판 중 어느 하나는 방열 패드(thermal pad)인 열전 모듈.The thermoelectric module of claim 1, wherein any one of the upper substrate and the lower substrate is a thermal pad.
  2. 제1항에 있어서,The method of claim 1,
    상기 상부 기판은 흡열부(cold side) 기판이며 방열 패드인 열전 모듈.The upper substrate is a cold side substrate and a heat dissipation pad.
  3. 제1항에 있어서,The method of claim 1,
    상기 방열 패드는 실리콘 고분자 또는 아크릴 고분자로 형성된 열전 모듈.The heat dissipation pad is a thermoelectric module formed of a silicon polymer or an acrylic polymer.
  4. 제1항에 있어서,The method of claim 1,
    상기 방열 패드는 0.5 내지 5.0 W/mK 범위의 열 전도도를 갖는 열전 모듈.The heat dissipation pad is a thermoelectric module having a thermal conductivity in the range of 0.5 to 5.0 W / mK.
  5. 제1항에 있어서,The method of claim 1,
    상기 열전 소자는 비스무트-텔루륨(Bi-Te)계, 스쿠테르다이트(Skuttrudite)계, 규화물(Silicide)계 화합물로 이루어진 군에서 선택된 적어도 하나로 형성된 열전반도체 기재를 포함하는 열전 모듈.The thermoelectric device includes a thermoelectric semiconductor substrate formed of at least one selected from the group consisting of bismuth-tellurium (Bi-Te) -based, Skuttrudite-based, and silicide-based compounds.
PCT/KR2016/009363 2016-08-24 2016-08-24 Thermoelectric module WO2018038286A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160107419A KR20180022249A (en) 2016-08-24 2016-08-24 Thermoelectric module
KR10-2016-0107419 2016-08-24

Publications (1)

Publication Number Publication Date
WO2018038286A1 true WO2018038286A1 (en) 2018-03-01

Family

ID=61246103

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/009363 WO2018038286A1 (en) 2016-08-24 2016-08-24 Thermoelectric module

Country Status (2)

Country Link
KR (1) KR20180022249A (en)
WO (1) WO2018038286A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070026586A (en) * 2004-06-17 2007-03-08 아르재 가부시키가이샤 Thermoelectric conversion module
KR20090107491A (en) * 2006-12-20 2009-10-13 소와 케이디이 가부시키가이샤 Thermo-electric converting materials, process for producing the same, and thermo-electric converting element
KR20130009443A (en) * 2011-07-15 2013-01-23 삼성전기주식회사 Thermoelectric module
KR20160024199A (en) * 2014-08-25 2016-03-04 삼성전기주식회사 Thermoelectric module and method of manufacturing the same
US20160111621A1 (en) * 2014-10-15 2016-04-21 Lg Innotek Co., Ltd. Heat Conversion Device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070026586A (en) * 2004-06-17 2007-03-08 아르재 가부시키가이샤 Thermoelectric conversion module
KR20090107491A (en) * 2006-12-20 2009-10-13 소와 케이디이 가부시키가이샤 Thermo-electric converting materials, process for producing the same, and thermo-electric converting element
KR20130009443A (en) * 2011-07-15 2013-01-23 삼성전기주식회사 Thermoelectric module
KR20160024199A (en) * 2014-08-25 2016-03-04 삼성전기주식회사 Thermoelectric module and method of manufacturing the same
US20160111621A1 (en) * 2014-10-15 2016-04-21 Lg Innotek Co., Ltd. Heat Conversion Device

Also Published As

Publication number Publication date
KR20180022249A (en) 2018-03-06

Similar Documents

Publication Publication Date Title
JP5664326B2 (en) Thermoelectric conversion module
JP5600732B2 (en) Thermoelectric material coated with protective layer
WO2015026159A1 (en) Thermoelectric module, and heat conversion apparatus comprising same
WO2005124882A1 (en) Thermoelectric conversion module
WO2012026678A2 (en) Thermoelectric module comprising thermoelectric element doped with nanoparticles and manufacturing method of the same
US20140166070A1 (en) Thermal receiver for high power solar concentrators and method of assembly
WO2020159177A1 (en) Thermoelectric device
WO2015026151A1 (en) Thermoelectric element, thermoelectric module comprising same, and heat conversion apparatus
WO2021145621A1 (en) Power generation apparatus
WO2018038286A1 (en) Thermoelectric module
WO2020040479A1 (en) Thermoelectric module
WO2016159591A1 (en) Thermoelectric element, thermoelectric module and heat conversion apparatus comprising same
WO2015163729A1 (en) Heat conversion device
WO2020246749A1 (en) Thermoelectric device
WO2021101267A1 (en) Thermoelectric device
KR102304603B1 (en) Thermoelectric module
JP2016225346A (en) Thermoelectric conversion module and exhaust pipe for vehicle
WO2021201494A1 (en) Thermoelectric element
WO2021029590A1 (en) Thermoelectric device
WO2020130507A1 (en) Thermoelectric module
JP2017183709A (en) Thermoelectric conversion module
KR20180029409A (en) Thermoelectric element
US20190252593A1 (en) Thermoelectric conversion device and manufacturing method thereof
WO2021141302A1 (en) Thermoelectric device
KR20190142591A (en) Thermoelectric device module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16914265

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16914265

Country of ref document: EP

Kind code of ref document: A1