WO2018038119A1 - Undersea mining base, mining base monitoring device, and chimney avoidance method for seabed deposit - Google Patents

Undersea mining base, mining base monitoring device, and chimney avoidance method for seabed deposit Download PDF

Info

Publication number
WO2018038119A1
WO2018038119A1 PCT/JP2017/029984 JP2017029984W WO2018038119A1 WO 2018038119 A1 WO2018038119 A1 WO 2018038119A1 JP 2017029984 W JP2017029984 W JP 2017029984W WO 2018038119 A1 WO2018038119 A1 WO 2018038119A1
Authority
WO
WIPO (PCT)
Prior art keywords
mining
chimney
base
seabed
platform
Prior art date
Application number
PCT/JP2017/029984
Other languages
French (fr)
Japanese (ja)
Inventor
文雄 湯浅
喜保 渡辺
Original Assignee
古河機械金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古河機械金属株式会社 filed Critical 古河機械金属株式会社
Priority to SG11201901362SA priority Critical patent/SG11201901362SA/en
Priority to US16/327,627 priority patent/US10781656B2/en
Publication of WO2018038119A1 publication Critical patent/WO2018038119A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21CMINING OR QUARRYING
    • E21C50/00Obtaining minerals from underwater, not otherwise provided for
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B1/00Percussion drilling
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B15/00Supports for the drilling machine, e.g. derricks or masts
    • E21B15/02Supports for the drilling machine, e.g. derricks or masts specially adapted for underwater drilling
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/01Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells specially adapted for obtaining from underwater installations
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B7/00Special methods or apparatus for drilling
    • E21B7/12Underwater drilling
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B33/00Sealing or packing boreholes or wells
    • E21B33/02Surface sealing or packing
    • E21B33/03Well heads; Setting-up thereof
    • E21B33/068Well heads; Setting-up thereof having provision for introducing objects or fluids into, or removing objects from, wells
    • E21B33/076Well heads; Setting-up thereof having provision for introducing objects or fluids into, or removing objects from, wells specially adapted for underwater installations
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/34Arrangements for separating materials produced by the well
    • E21B43/35Arrangements for separating materials produced by the well specially adapted for separating solids
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/34Arrangements for separating materials produced by the well
    • E21B43/36Underwater separating arrangements

Definitions

  • the present invention relates to a technique for mining seabed minerals.
  • Patent Document 1 discloses a seabed mineral mining system.
  • the mining system described in the document includes a seabed moving device having a grinding tool capable of grinding the surface of a seabed deposit.
  • the seabed moving device grinds the surface of the seabed deposit by an open grinding tool while moving the seabed by receiving electric power and a control signal from a supply source on the sea surface side.
  • the ground product produced by grinding is classified by classifying means so as not to exceed a predetermined size, and the classified ground product is transported to the sea.
  • Patent Document 1 has a problem that the crawler excavator is complicated to operate according to the undulations of the seabed and is difficult to automate.
  • the seabed deposits have a problem that the sea mountain has a large inclination angle, and the soft ground deposited on the surface of the sea mountain hinders running on the crawler. Accordingly, the present invention has been made paying attention to such problems, and provides an undersea mining base and a mining base monitoring device that can cope with inclination and undulation of a seabed deposit and a chimney avoidance method for a seabed deposit. Is an issue.
  • an underwater mining base is provided with a submarine mineral that is placed in the sea and is erected on the seabed and is mined while forming a bottomed hole in the seabed deposit.
  • An underwater mining base for recovering from within a bottomed hole comprising: a seabed mineral mining device for forming a bottomed hole in a seabed deposit; and a platform equipped with the seabed mineral mining device, wherein the platform has a plurality of supports.
  • Each of the support legs has a leg, and is configured to be capable of a relative slide movement individually in the Z direction via a movement mechanism in the vertical direction.
  • the platform erected on the sea floor is equipped with a seabed mineral mining device and has a plurality of support legs, and each support leg moves in the vertical direction. Since it is configured to be capable of relative sliding movement individually in the Z direction via the mechanism, it is possible to cope with the inclination and undulation of the seabed deposit.
  • an underwater mining base is disposed in the sea and is erected on the seabed, and is mined while forming a bottomed hole in the seafloor deposit.
  • the platform erected on the sea floor is equipped with a seabed mineral mining device and can move in at least one of the X direction and the Y direction. It can cope with the inclination and undulation of the deposit.
  • the platform includes an upper platform, a lower platform, and an intermediate frame disposed between the upper and lower platforms, the intermediate frame and the
  • the upper platform is configured to be capable of relative sliding movement in one direction via a horizontal movement mechanism
  • the intermediate frame and the lower platform are configured to move through the horizontal movement mechanism.
  • Each of the upper and lower platforms has a plurality of support legs, and each support leg has a Z-direction through a vertical movement mechanism. It is preferable that relative sliding movement is possible in each direction. Such a configuration is suitable for dealing with the inclination and undulation of the seabed deposit.
  • the subsea mining base it is preferable to further include chimney detection means for detecting the chimney of the submarine deposit.
  • the chimney of the seabed deposit can be detected, which is more suitable for dealing with the inclination and undulation of the seabed deposit.
  • the mining base monitoring apparatus which concerns on 1 aspect of this invention is equipped in the marine or land base in order to monitor the underwater mining base which concerns on any one aspect of this invention.
  • a mining base monitoring device comprising chimney monitoring means for monitoring the chimney of the seabed deposit.
  • a chimney avoidance method for a seabed deposit includes a working device that is used in a seabed deposit and performs a work necessary for mining while self-propelling the seabed.
  • This is a method for avoiding interference with chimneys, including a chimney detection process for detecting chimneys of seabed deposits based on echoes obtained by underwater detection by transmitting and receiving ultrasonic waves, and chimney position information obtained in the chimney detection process.
  • an interference avoidance step for avoiding interference between the work device and the chimney.
  • chimneys of seabed deposits are detected based on echoes obtained by underwater detection by transmission and reception of ultrasonic waves, and the chimney position information obtained in the chimney detection process is detected. Based on this, interference between the working device and the chimney is avoided, so that it is possible to cope with the inclination and undulation of the seabed deposit.
  • FIG. 2 is a schematic explanatory view of an underwater mining base of the mining system of FIG. 1, in which (a) is a plan view, (b) is a front view of one subsea mining base (however, the seabed deposit is an image of a cross section) In the following, the same applies to the front view)).
  • It is a typical perspective view explaining 1st embodiment of the subsea mining base of FIG.
  • It is a typical front view explaining the submarine mineral mining apparatus with which an underwater mining base is equipped.
  • the vertical cross section containing an axis line is shown in the same figure. It is explanatory drawing (hammer retreat state) of the mining apparatus main body of the seabed mineral mining apparatus of FIG. 4, In the same figure, the longitudinal cross section containing an axis line is shown.
  • the figure (a) is a front view of one submarine mining base
  • (b) is a plane view of one division of a submarine deposit, respectively. Show.
  • the figure (a) is a front view of one submarine mining base
  • (b) is a plane view of one division of a submarine deposit, respectively. Show.
  • FIG. 5 is a schematic plan view ((a) to (c)) of a second embodiment of the subsea mining base according to one aspect of the present invention. It is a typical perspective view explaining 3rd embodiment of the subsea mining base which concerns on 1 aspect of this invention. It is a schematic plan view of the platform of the underwater mining base of the third embodiment. It is a typical front view of the platform of the underwater mining base of 3rd embodiment. It is a schematic plan view of the intermediate
  • FIG. It is R section sectional drawing of FIG. It is S section sectional drawing of FIG. It is P section sectional drawing of FIG. It is Q section sectional drawing of FIG. It is a figure which shows the image of an example of the relative dimension of the undersea mining base of 3rd embodiment, and a seabed deposit (a chimney is included). It is a figure ((a), (b)) explaining one Embodiment of the bottoming method of the underwater mining base in the mining system of this invention. It is a figure ((a)-(d)) explaining one Embodiment of the bottoming method of the underwater mining base in the mining system of this invention. It is a figure explaining the procedure which mine a seabed deposit by the underwater mining base of 3rd embodiment.
  • FIG. 26 is an enlarged view of FIG.
  • FIG. 26 is an enlarged view of FIG.
  • FIG. 26 is an enlarged view of FIG.
  • FIG. 26 is an enlarged view of FIG.
  • FIG. 24 is a diagram ((a) to (c)) for explaining the walking operation of the platform of the underwater mining base in the mining procedure of FIG.
  • FIG. 24 is a diagram ((a) to (f)) for explaining the walking operation of the platform of the underwater mining base in the mining procedure of FIG.
  • FIG. 24 is a diagram ((a) to (c)) for explaining the walking operation of the platform of the underwater mining base in the mining procedure of FIG.
  • FIG. 24 is a diagram ((a) to (c)) for explaining the walking operation of the platform of the underwater mining base in the mining procedure of FIG.
  • the figure (a) is the top view
  • (b) is a front view
  • (c) is a right view.
  • It is a block diagram explaining the base control unit in 3rd embodiment.
  • FIG. 37 It is a flowchart of the mining base monitoring process which the mining base monitoring apparatus shown in FIG. 37 performs. It is a figure ((a), (b)) explaining the chimney avoidance operation
  • the mining system includes a mining mother ship 1 that is disposed on the sea SL as a marine mining base, and a mining station 20 and a pumping unit 4 that are disposed on the seabed SB.
  • a plurality of mining stations 20 is used as an underwater mining base.
  • Each mining station 20 is equipped with a plurality of submarine mineral mining devices 30 (hereinafter also referred to as “mining devices 30”).
  • Each mining device 30 is configured such that a dredging hole that is a bottomed hole can be formed by drilling in the seabed deposit OD.
  • Each mining device 30 is configured to be able to mine seabed minerals in the form of a slurry in a pit.
  • the slurry-like submarine minerals mined by each mining device 30 are transferred to the undersea mining unit 4 via the suction pipe 5, and the mining unit 4 passes through the mining pipe 6.
  • the mining mother ship 1 is configured to be pumped.
  • the mining mother ship 1, the erection and placement mother ship 2, and the transport ship 3 are anchored at the sea SL in the target sea area.
  • the construction placement mother ship 2 is a construction placement mother ship for transporting the pumping unit 4 and the plurality of mining stations 20 and for placing them on the seabed SB.
  • the erection and placement mother ship 2 is equipped with a working machine 11 such as a crane for laying and placing the ore unit 4 and the mining station 20 on the seabed SB.
  • the construction placement mother ship 2 transports the mining station 20 to a predetermined position of the seabed deposit OD, and hangs the mining station 20 with the wire 11w of the work machine 11 and stands on the seabed SB.
  • the erection and placement mother ship 2 arranges the ore unit 4 at an appropriate position on the seabed SB.
  • the mining mother ship 1 is equipped with a generator 12, a storage 13, and a management computer (not shown).
  • the reservoir 13 is placed on the ship in a replaceable manner.
  • the management computer and the generator 12 are connected to the mining station 20 and the mining unit 4 arranged on the seabed SB via the umbilical cable 8, and are necessary for the operation of the mining station 20 and the mining device 30 and the mining unit 4. Electric power and control signals can be supplied.
  • the pumping unit 4 includes a pumping pump 25 and a classifier 27 having a cyclone device.
  • the classifier 27 is connected at its discharge side to the suction side of the pumping pump 25 inside the pumping unit 4.
  • the suction side of the classifier 27 is connected to the mining station 20 via the suction pipe 5.
  • the suction pipe 5 is filled with seawater.
  • One end of the discharge pipe 7 is connected to the classifier 27, and the other end of the discharge pipe 7 is piped to a mineral return place that is not required for classification. Note that flexible pipes are used for the suction pipe 5, the pumping pipe 6, and the discharge pipe 7.
  • the pumping pump 25 is connected to the mining mother ship 1 through the pumping pipe 6.
  • the pumping pipe 6 is a cylindrical pipe line having flexibility for pumping the slurry-like mineral mined at the mining station 20 to the mining mother ship 1.
  • the pumping pipe 6 is filled with seawater.
  • the upper part of the uplift pipe 6 reaches the mining mother ship 1 of the offshore SL and is connected to the reservoir 13 through the bottom of the mining mother ship 1.
  • the reservoir 13 stores the slurry-like mineral pumped from the pumping pipe 6 by the pumping pump 25.
  • the transport ship 3 replaces the reservoir 13 with the mining mother ship 1 and transfers the seabed minerals that have been pumped to the mining mother ship 1 to a necessary place.
  • the mining station 20 has a base frame 21 having a rectangular frame shape serving as a platform.
  • the base frame 21 is supported by a plurality of (four legs in this example) support legs 26 at the four corners of the frame.
  • Each support leg 26 is fixed to the base frame 21 via a jack mechanism 49.
  • the jack mechanism 49 has a motor, a speed reduction mechanism, and a rack and pinion mechanism (not shown).
  • the rack is formed along the axial direction of the support leg 26.
  • the jack mechanism 49 can slide the support leg 26 in the vertical direction (Z direction) and can hold the movement position by driving the rack and pinion mechanism via a speed reduction mechanism with a motor.
  • the jack mechanism 49 may be driven by fluid pressure (for example, hydraulic drive) or electric power (for example, an electromagnetic motor) (hereinafter, other drive motors). The same in).
  • the moving frame 43 has, for example, a truss structure. Both ends of each moving frame 43 are supported by the base frame 21 via the Y-direction moving mechanism 44.
  • the Y-direction moving mechanism 44 includes a motor, a speed reduction mechanism, and a rack and pinion mechanism (not shown).
  • the moving frame 43 is moved along the base frame 21 by driving the rack and pinion mechanism via the speed reduction mechanism with the motor. The slide movement is possible in the Y direction.
  • a guide shell 48 is vertically arranged on each moving frame 43.
  • the guide shell 48 constitutes a feed mechanism in the Z direction of the mining device 30.
  • the guide shell 48 is supported by the moving frame 43 via the X-direction moving mechanism 52.
  • the X-direction moving mechanism 52 includes a motor, a speed reduction mechanism, and a rack and pinion mechanism (not shown), and the guide shell 48 is moved along the moving frame 43 by driving the rack and pinion mechanism via the speed reduction mechanism. It can slide in the X direction.
  • the base frame 21 is provided with a base control unit 45 and a suction chamber 51.
  • the umbilical cable 8 is connected to the base control unit 45.
  • the base control unit 45 controls the operation of the high-pressure water supply pump, the motor that drives the high-pressure water supply pump (not shown), and the operation of the entire mining station 20.
  • a control unit is built in.
  • each mining station 20 receives supply of necessary power and control signals from the mining mother ship 1 via the umbilical cable 8 to the base control unit 45.
  • the base control unit 45 functions as a controller that controls the attitude of the mining station 20 by driving each jack mechanism 49 based on a command from the management computer on the mining mother ship 1 side.
  • each mining station 20 moves the guide shell 48 in the X direction and the Y direction by driving the X direction moving mechanism 52 and the Y direction moving mechanism 44 by the base control unit 45 under the control of the management computer.
  • the high-pressure water supply pump By driving the high-pressure water supply pump, the taken seawater is supplied to the mining device 30 as high-pressure water, and the mining device 30 provided in the guide shell 48 can be driven.
  • the guide shell 48 is equipped with a mining device 30 via a slider 46.
  • a slide moving mechanism 47 that slides the slider 46 in the Z direction along the guide shell 48 is provided above the guide shell 48.
  • the slide moving mechanism 47 has a motor, a speed reduction mechanism, and a rack and pinion mechanism (not shown), and drives the rack and pinion mechanism via the speed reduction mechanism by the motor, thereby moving the slider 46 along the guide shell 48 in the Z direction.
  • the slide can be moved.
  • the mining device 30 has a housing portion 71 attached to the slider 46.
  • the housing portion 71 incorporates a rotation drive mechanism and a swivel (not shown).
  • the upper part of the housing part 71 is connected to the high-pressure water supply pump of the base control unit 45 through the high-pressure water supply pipe 9.
  • one end of a suction pipe 5 for sucking slurry-like mineral mined by driving the mining device 30 is connected to the side surface of the housing portion 71.
  • the other end of the suction pipe 5 is connected to the classifier 27 through the suction chamber 51.
  • the mining device main body 10 includes a cylindrical cylinder 31.
  • a substantially cylindrical cylinder liner 33 is fitted on the inner peripheral surface of the cylinder 31.
  • a water passage hole 32 is formed between the cylinder 31 and the cylinder liner 33 along the axial direction of the cylinder 31.
  • a substantially cylindrical hammer 34 is slidably held.
  • the rear end of the cylinder 31 is connected to the double tube rod 40 of the mining device 30 via a connecting member 35.
  • the double tube rod 40 is composed of a double tube having an outer tube 40a and an inner tube 40b coaxially.
  • a water supply path 40c is formed in a gap between the outer cylinder 40a and the inner cylinder 40b.
  • the upstream side of the water supply path 40 c is connected to the high-pressure water supply pipe 9 through the swivel of the housing part 71.
  • the high-pressure water supply pipe 9 is connected to the discharge side of the high-pressure water supply pump provided in the base control unit 45 of the mining station 20.
  • the downstream side of the water supply path 40 c communicates with the water supply path 35 c inside the connecting member 35.
  • a cylinder bush 36 is inserted between the rear end side of the cylinder 31 and the front end surface of the connecting member 35.
  • a ring 39 for forming a cylinder rear chamber 42 is inserted on the front side of the cylinder bush 36.
  • a cylinder rear chamber 42 is defined between the ring 39 and the rear portion of the hammer 34.
  • the cylinder bush 36 is provided with a communication hole 36c communicating with the water supply passage 35c along the axial direction.
  • a bit 50 that is a crushing tool for striking is attached to the front end of the cylinder 31.
  • a cylinder front chamber 41 is defined between the rear end of the bit 50 and the front portion of the hammer 34.
  • the bit 50 is mounted so as to block the front side surface of the cylinder front chamber 41 and to receive a striking force from the hammer 34 at its rear end so that it can reciprocate for a predetermined stroke in the axial direction.
  • a plurality of control grooves 34 a and 34 c and a communication channel 34 b are formed on the outer peripheral surface of the hammer 34.
  • a first water inlet hole 31 b is formed between the front side of the cylinder bush 36 and the ring 39.
  • the first water inlet hole 31 b allows the communication hole 36 c of the cylinder bush 36 to communicate with the communication hole 33 e at the rear end of the cylinder liner 33.
  • the communication hole 33 e of the cylinder liner 33 communicates with the water passage hole 32.
  • the water passage hole 32 communicates the control grooves 34a and 34c of the hammer 34 at the intended positions with the plurality of communication holes 33a to 33d of the cylinder liner 33 according to the position of the hammer 34 in the axial direction.
  • the hammer reciprocating switching mechanism is configured to supply and discharge high-pressure water to the cylinder front chamber 41 or the cylinder rear chamber 42 so that the hammer 34 moves forward and backward in the cylinder 31.
  • a cylindrical sleeve 38 is provided coaxially with the cylinder 31 in the cylinder 31.
  • a suction hole 38t is formed so as to penetrate along the axial direction.
  • a step portion formed at the rear portion thereof is inserted into the cylinder bush 36 and the ring 39 so that the axial position is maintained.
  • the rear end of the suction hole 38 t of the sleeve 38 communicates with the front end of the suction hole 40 t of the inner tube 40 b of the double tube rod 40 via the suction hole 35 t of the connecting member 35.
  • An intermediate portion of the sleeve 38 is inserted through a communication hole 34d formed through the hammer 34 with a gap therebetween, and a front end portion of the sleeve 38 is formed between the communication hole 50d formed through the bit 50 with a gap therebetween. Inserted.
  • a radial gap inserted into the hammer 34 and the bit 50 serves as a drainage passage 38 a from the cylinder front chamber 41 and the cylinder rear chamber 42.
  • the sleeve 38 is provided with a discharge hole 38g at a position on the tip side of the drainage passage 38a.
  • the discharge hole 38 g is inclined rearward from the outer periphery of the sleeve 38 toward the central suction hole 38 t and toward the double tube rod 40.
  • a flexible check valve 37 is attached to the suction hole 38t of the sleeve 38 at the outlet of the discharge hole 38g to prevent intrusion of earth and sand into the cylinder front chamber 41.
  • the water absorption hole 50k communicating with the suction hole 38t at the center of the sleeve 38 is opened at the front end of the bit 50.
  • the mining device 30 generates a negative pressure in the water suction hole 50k due to the flow velocity of the high-pressure water discharged backward from the discharge hole 38g toward the suction hole 38t, and the seabed mineral sucked from the water suction hole 50k is It is mixed with seawater in the suction hole 38t.
  • the seabed mineral crushed by the drill holes can be sucked into the mining device 30 by the drainage flow and mixed with seawater inside the suction hole 38t to generate a slurry. Further, according to the mining device 30, the generated slurry can be recovered from the suction hole 40 t of the inner cylinder 40 b of the double tube rod 40. Further, the pump 25 for pumping is connected to the upper end of the inner cylinder 40b of the double pipe rod 40 via the suction pipe 5 and sucks the seabed minerals crushed by the drill holes from the water suction holes 50k of the bit 50, The mining mother ship 1 can be pumped.
  • the mining mother ship 1 and the erection and placement mother ship 2 are anchored on the sea SL in the target sea area.
  • the mining station 20 and the ore unit 4 are lowered into the sea, and the equipment of the seabed SB is arranged so that these equipments are arranged as shown in FIG. Install in an appropriate position.
  • necessary piping and wiring such as the suction pipe 5, the pumping pipe 6 and the discharge pipe 7, and the umbilical cable 8 are performed, and each pipe is filled with seawater.
  • the high-pressure water supplied from the high-pressure water supply pump provided in the base frame 21 of the mining station 20 is between the inner tube 40b and the outer tube 40a of the double tube rod 40 of the mining device 30 in FIG.
  • the water enters the water passage 32 through the water supply passage 40c, the water supply passage 35c of the connecting member 35, the first water introduction hole 31b, and the communication hole 33e.
  • the high-pressure water that has entered the water passage 32 is introduced into the hammer reciprocation switching mechanism.
  • the high-pressure water in the hammer forward state passes through the communication hole 33b of the cylinder liner 33, the control groove 34a, the communication holes 33c to 32L, and 33d in this order, and enters the cylinder front chamber 41 at the front end of the hammer 34.
  • the control groove 34 c is blocked by the communication hole 33 a and the outer peripheral surface of the hammer 34.
  • the hammer 34 moves backward (moves upward in FIG. 5).
  • the seawater in the cylinder rear chamber 42 behind the hammer 34 passes through the drainage passage 38a and is discharged from the discharge hole 38g through the check valve 37 toward the suction hole 38t.
  • the water passage hole 33 b formed in the cylinder liner 33 is blocked by the outer peripheral surface of the hammer 34.
  • the water passage hole 33 a communicates with a control groove 34 c formed on the outer peripheral surface of the hammer 34. Therefore, the high-pressure water from the water passage hole 32 of the cylinder 31 flows into the cylinder rear chamber 42 on the rear side of the hammer 34.
  • the hammer 34 Due to the flow of the high-pressure water into the cylinder rear chamber 42, the hammer 34 turns from backward to forward, and strikes the rear end face of the bit 50 at the desired strike position.
  • the hit bit 50 applies an impact force to the hole surface drilled by the tip 50b at the tip, and crushes the seabed mineral.
  • the hammer 34 repeatedly strikes the rear end surface of the bit 50 by the above-described reciprocating movement. Then, along with striking the drill surface with the bit 50, the feed mechanism 47 provided in the guide shell 48 drives the mining device 30, and the rotation mechanism of the housing portion 71 rotates the mining device 30. Is made.
  • this mining device 30 it is possible to continue the mining of the seabed mineral while forming the pit VH by the hole drilled in the seabed deposit OD. And according to this mining apparatus 30, since the own mining apparatus main body 10 exists in the dredging hole VH, the drilling hole can be advanced while the opening side of the dredging hole VH is closed. Therefore, the crushed powder of the seabed mineral is prevented or suppressed from flowing into the sea. Therefore, suspension of seawater is prevented or suppressed (mining part, mining process).
  • the water suction hole 50 k communicating with the suction hole 38 t of the sleeve 38 is opened at the front end of the bit 50, and the suction hole 38 t is directed toward the double tube rod 40. Since it is opened along the inclined discharge hole 38g, a negative pressure is generated in the water suction hole 50k due to the flow velocity of the high-pressure water passing through the suction hole 38t. Thereby, the seabed mineral crushed by the drill hole is sucked from the water suction hole 50k of the bit 50, and the sucked seabed mineral can be mixed with seawater in the suction hole 38t.
  • the crushed submarine minerals generated by the holes are very fine in particle size and uniform in particle size. Therefore, according to the mining device 30, the crushed seabed mineral generated by the drilling holes can be sucked by the action of the drainage flow to be a slurry mixed with seawater inside the suction hole 38 t of the mining device 30 (slurry generation). Part, slurry production step).
  • the suction hole 38 t of the sleeve 38 is directly introduced into the suction pipe 5 via the suction hole 40 t of the inner tube 40 b of the double tube rod 40, and the ore unit 4 is connected to the mining device 30.
  • the slurry-like mineral mined in step 1 can be sucked from the suction pipe 5 together with seawater. Therefore, it is possible to prevent or suppress the slurry-like seabed mineral from flying up into the seawater and scattering (recovery unit, recovery process).
  • the slurry-like mineral sucked through the suction pipe 5 is transferred to the classifier 27.
  • the classifier 27 separates desired minerals from unnecessary minerals by centrifugal force due to the specific gravity difference of the mineral particles. As shown in FIG. 1, the minerals that are made unnecessary in the classification are guided to the seabed return place through the discharge pipe 7 connected to the classifier 27.
  • a mineral having a desired specific gravity is sent to the pumping pump 25 and is pumped to the storage 13 of the mining mother ship 1 through the pumping pipe 6.
  • the mining mother ship 1 when storing in the reservoir 13, the slurry-like mineral is separated from seawater, the seabed mineral is stored inside the reservoir 13, and the separated seawater is discharged into the sea.
  • Each mining station 20 moves the mining device 30 in the XY plane after retreating the mining device 30 after mining up to the maximum drilling depth of each mining device 30, and as shown in FIG. -Drill holes sequentially to scan the entire Y plane.
  • the movement in the XY plane and the drilled holes after the movement may be automatically performed by a computer (the management computer, the base control unit 45, etc.) as in this embodiment, or each mining station 20
  • the situation may be performed manually by the operator while the operator is monitoring from the offshore mining mother ship 1.
  • each mining station 20 has a plurality of support legs 26, and each support Since the legs 26 can be individually slid relative to each other in the Z direction via a jack mechanism 49 that is a moving mechanism in the vertical direction, the legs 26 can cope with the inclination and undulation of the seabed deposit. And when an operator performs manual operation, monitoring with a camera etc., since the scattering of the seabed mineral into seawater is prevented or suppressed, it is suitable when improving the efficiency of a mining operation.
  • the mining station 20 can mine a wide range at the same time using a plurality of units as in the above embodiment, but the mining device 30 equipped in the mining station 20 also has a large diameter from a small diameter one.
  • Various mining devices 30 can be used up to the required one.
  • FIG. 7A after mining at the mining station 20 equipped with the small-diameter mining device 30, the same area is equipped with the large-diameter mining device 30 as shown in FIG. Further mining can be performed at another mining station 20 or the same mining station 20 replaced with the large-diameter mining device 30.
  • Reference numerals 50 and 50B in FIG. 7 (a) and FIG. 8 mean that the entire mining device 30 corresponding to the small-diameter bit 50 or the large-diameter bit 50B is replaced, not only the bit. .
  • the submarine mineral mining system and the pumping method using these facilities, it is possible to cope with the inclination and undulation of the submarine deposit, and further in the form of slurry. Therefore, the seabed mineral is prevented or suppressed from flying up into the seawater and being scattered. Moreover, since the mining system of this embodiment introduce
  • this invention is not limited to the said embodiment, Of course, a various deformation
  • the mining mother ship 1 is described as an example of the offshore mining base.
  • the present invention is not limited to this, and a platform constructed on the sea may be used as long as it functions as an offshore mining base.
  • the present invention is not limited thereto, and the mineral mined on the sea floor is a bottomed hole. If it is transported directly from inside a certain pit VH, it may be pumped or stored or classified near the sea or below the sea surface (for example, a reservoir is provided near the bottom of the ship).
  • the direction of the axis of the bottomed hole according to the present invention is not limited to the vertical direction. That is, the present invention only needs to form a bottomed hole by drilling holes, make the seabed mineral a slurry inside the bottomed hole, and recover the slurry from the inside of the bottomed hole. Therefore, the bottomed hole according to the present invention may be a horizontal hole whose axis is horizontal, or the axis may be oblique.
  • the method and apparatus for forming the pit hole VH are not limited to drilling holes by a striking mechanism, but may be drilling by a rotating mechanism. However, in order to make the mined mineral into a slurry and make the particle diameter very fine to make the particle size uniform, drilling by a striking mechanism is preferable instead of drilling.
  • the pumping unit 4 has the classifier 27, and the classifier 27 classifies the slurry-like mineral in the sea.
  • the present invention is not limited to this, and the present invention relates to the present invention.
  • the mined mineral is in the form of a slurry, and the particle diameter is very fine and the particle size becomes uniform. Therefore, the mining may be carried out without classifying the slurry-like seabed mineral.
  • the mining device 30 has been described as an example having the double tube rod 40 having the outer tube 40a and the inner tube 40b.
  • the mining device may be configured using a single tube rod. That is, as shown in the figure, this mining device 130 has a single-tube rod 57, and the mining device main body 100 is mounted in front of the rod 57.
  • the mining device main body 100 has a cylinder 56 connected to the tip of a rod 57 by a taper screw portion 56a.
  • a check valve 51, a hammer 54, and a bit 50 are housed in the cylinder 56 in order from above, and a cylinder front chamber 52 and a cylinder rear chamber 53 are defined before and after the hammer 54.
  • the high-pressure water that drives the mining device 130 is supplied to the housing portion 71 at the upper end of the rod 57 from the high-pressure water supply pump 9 through the high-pressure water supply pipe 9 as in the above embodiment.
  • the supplied high-pressure water is supplied to the cylinder front chamber 52 or the cylinder front chamber 52 so as to move the hammer 54 back and forth in the cylinder 56 by a hammer reciprocating switching mechanism formed on the inner and outer peripheral surfaces of the cylinder 56 and the hammer 54 as in the above embodiment. It is supplied to and discharged from the cylinder rear chamber 53. Further, the rod 57 is rotated and fed by the feed mechanism 47 installed on the guide shell 48 and the rotation mechanism of the housing portion 71 as in the above embodiment.
  • the mining device 130 is provided on the cylinder 56 so that the foot pad 58 can be pressed toward the drilling hole and slidable along the axial direction so as to surround the periphery of the drilling hole. Yes.
  • a suction pipe 5 for mining slurry as a seabed mineral resource is connected to the upper side surface of the foot pad 58.
  • the high-pressure water passes through the upper check valve 51, and is supplied and discharged to the cylinder front chamber 52 and the cylinder rear chamber 53 by the hammer reciprocating switching mechanism to drive the hammer 54 forward and backward.
  • the high-pressure water after hitting is discharged to the tip of the bit through a suction hole 50a provided in the shaft center of the bit 50.
  • the seabed mineral mined by the drill hole is mixed with seawater in the pit VH to become a slurry (slurry Generating section, slurry generating step).
  • generated in the coffin hole VH is the clearance gap between the outer side of the cylinder 56, and a drill hole inner wall VHn, or the rod 57 outer side extended in the seawater in contact with the drill hole inner wall VHn, and the hole inner wall VHn. And is directly collected from the inside of the foot hole VH through the suction pipe 5 from the inside of the foot pad 58 (recovery unit, recovery process). Therefore, even if it is a structure like this mining apparatus 130, the scattering of the mining mineral in the sea can be prevented or suppressed.
  • the mining station 20 does not move in the horizontal direction as an underwater mining base has been described.
  • the present invention is not limited to this.
  • FIG. It can also be set as the structure which has the mechanism which can move to a direction.
  • HMS horizontal mining system
  • the HMS which is a crawler excavator
  • seabed deposits have a large inclination angle
  • crawlers are hindered on soft ground with surface deposits.
  • the submarine hydrothermal deposit there are many chimneys (chimney-like hot water ejection protrusions) from which hot water erupts in the seamount, and it is difficult to avoid such chimneys. Therefore, the present inventors have invented the first embodiment, which is a vertical mining system (VMS), as a system different from HMS in order to solve such problems of HMS.
  • VMS vertical mining system
  • VMS The merits of VMS can be summarized as at least the following (Effect 1) to (Effect 4).
  • Effect 1 Since the ore is crushed into a very fine powder, SCU (Subsea Crushing Unit) may be omitted.
  • Effect 2 Since the seabed deposits are mined vertically, the ore crushed by mining is sucked out using the flow line as in the case of riser drilling, and there is little scattering to the environment. For this reason, the load on the environment is small, and poor visibility can be prevented when an operator monitors from the sea with a camera.
  • Effect 3 Since the section (predetermined range) at the bottom position can be mined, it can be automatically mined without a problem of visibility according to a predetermined program.
  • Effect 4 While being erected on the seabed, each support leg can be individually slid in the Z direction via a vertical movement mechanism, so that it may be difficult to apply in HMS. Applicable to seabed shape and soft ground.
  • the mining station 20 of the first embodiment needs to be newly installed in the next adjacent section after the first section has been mined. That is, the mining station 20 of the first embodiment requires an installation movement ship (IRV) each time a jack-up platform is installed and moved.
  • IIRV installation movement ship
  • the second and third embodiments to be described below solve this problem, and are VMS that can move by itself in at least one of the X direction and the Y direction, that is, a self-propelled vertical for developing submarine mineral resources. It is a mining system.
  • the mining station 120 includes, as shown in FIG. 10 (a), three mining stations including a first base frame 21A, a second base frame 21B, and a third base frame 21M. It consists of a base frame.
  • the first base frame 21A and the second base frame 21B are each made of a U-shaped frame.
  • the first and second frames 21 ⁇ / b> A and 21 ⁇ / b> B are respectively provided with support legs 26 at two corners having a U-shape via a jack mechanism 49 as in the above embodiment.
  • the U-shaped width of the first base frame 21A is narrower than the U-shaped width of the second base frame 21B.
  • the first base frame 21A and the second base frame 21B are opposed to each other so that the U-shaped opening portions of the frames 21A and 21B can be combined.
  • the horizontal frames of the mutual frames 21A and 21B are engaged with each other on a facing surface via a first rack and pinion mechanism (not shown) and a first slide guide device such as a linear guide. By driving the first rack and pinion mechanism with a motor, it can slide relative to the X direction.
  • the third base frame 21M is formed in an I shape from a vertical frame extending in the Y direction.
  • the third base frame 21M is provided with support legs 26 at both ends of the I-shape via jack mechanisms 49 as in the above embodiment.
  • the third base frame 21M includes a Y-direction moving mechanism and a guide shell 48, and the guide shell 48 can be slid along the moving frame 43 in the Y direction.
  • the guide shell 48 is equipped with a mining device similar to the above embodiment.
  • the third base frame 21M is arranged in a direction perpendicular to the horizontal frame with respect to the first base frame 21A and the second base frame 21B.
  • the third base frame 21M is opposed to the horizontal frames of the first and second frames 21A and 21B via a second slide guide device such as a second rack and pinion mechanism and a linear guide (not shown).
  • the second rack and pinion mechanism is driven by a second motor (not shown) so as to be relatively slidable in the X direction.
  • the jack mechanism 49 of the first base frame 21A is driven to drive the two support legs of the first base frame 21A. 26 is moved upward to be in an unsupported state.
  • the first rack and pinion mechanism is driven by the first motor, thereby causing the first base frame 21A to slide relative to the second base frame 21B in the positive direction of the X direction.
  • the first motor is stopped, the jack mechanism 49 is driven, and the two support legs 26 of the first base frame 21A are moved downward to be in the support state.
  • the jack mechanism 49 of the second base frame 21B is driven, and the two support legs 26 of the second base frame 21B are moved upward to be unsupported. State.
  • the first rack and pinion mechanism is driven by the first motor, thereby causing the second base frame 21B to slide relative to the first base frame 21A in the positive direction of the X direction.
  • the first motor is stopped, the jack mechanism 49 is driven, and the two support legs 26 of the second base frame 21B are moved downward to be in the support state.
  • the jack mechanism 49 of the third base frame 21M is driven, and the two support legs 26 of the third base frame 21M are moved upward to be in an unsupported state.
  • the second rack and pinion mechanism is driven by the second motor, whereby the third base frame 21M is made to be relative to the first and second base frames 21A and 21B in the positive direction of the X direction. Slide. After the slide movement, the second motor is stopped, the jack mechanism 49 is driven, and the two support legs 26 of the third base frame 21M are moved downward to be in the support state. As a result, the entire three base frames 21A, 21B, and 21M are in the state shown in FIG.
  • the entire mining station 120 can be moved in the X direction by moving the three base frames 21A, 21B, and 21M sequentially as described above.
  • the base frames 21A and 21B are overhanging in a cantilever state, but the horizontal posture is maintained because the base frames 21A and 21B are engaged with each other on the opposing surface via the slide guide device.
  • the third base frame 21M has a Y-direction moving mechanism, and the guide shell 48 can be slid along the moving frame 43 in the Y direction. Since the mining device 30 similar to the above embodiment is equipped, the mining device 30 can be driven while appropriately moving in the Y direction at the timing when the third base frame 21M is not moved.
  • the mining device 30 can be moved in the X direction and the Y direction, and the dredging hole that is a bottomed hole is formed by drilling while corresponding to the inclination and undulation of the seabed deposit.
  • the seabed mineral can be mined, and the seabed mineral can be made into a slurry in the pothole, and the slurry can be directly recovered from the inside of the pothole.
  • the third embodiment is a self-propelled vertical mining system for developing submarine mineral resources, in which a mining station can be moved in the X and Y directions, and in particular, a self-propelled submarine drilling machine equipped with a vertical hole drill This is an example of an underwater mining base.
  • FIG. 11 shows a schematic perspective view of the entire mining station of the third embodiment.
  • the mining station 220 includes a mining device 30 and a platform 21 capable of self-propelling in the X direction and the Y direction.
  • the platform 21 is provided between the upper platform 21X and the upper platform 21X having a rectangular frame shape in plan view and the lower platform 21Y having a rectangular frame shape in plan view.
  • the mining station 220 of the third embodiment is the same as that of the first embodiment except for the platform 21 and the moving mechanism in the X direction and the Y direction included in the platform 21. Therefore, in the third embodiment, the platform 21 and its movement mechanism in the X direction and the Y direction will be described below, and description of other mechanisms will be omitted as appropriate.
  • FIGS. 12 and 13 show the bottoming preparation posture of the platform 21 when the mining station 220 is bottomed from the laying arrangement mother ship 2 to the seabed deposit OD.
  • the center (center of gravity) G in the horizontal plane of the upper platform 21X, the intermediate frame 21M, and the lower platform 21Y coincides.
  • reference sign CL indicates the central axis of each support leg 26.
  • the upper platform 21X has a rectangular frame shape in plan view, and is separated in the Y direction from a pair of vertical girder Xb having a rectangular cylindrical shape that is spaced apart in the X direction and provided in parallel with each other. And a pair of horizontal girders Xa having a rectangular cylindrical shape provided in parallel with each other. On each outer side surface of the two horizontal girders Xa, X moving racks Rx are respectively attached symmetrically from the center along the extending direction of the horizontal girder Xa.
  • the lower platform 21Y has a rectangular frame shape in plan view, and a pair of horizontal girders Yb that are formed in parallel with each other and separated in the X direction, and in the Y direction. It has a pair of vertical girder Ya which forms a rectangular cylinder which is spaced apart and provided in parallel. On the outer side surfaces of the two vertical girders Ya, Y moving racks Ry are respectively attached symmetrically from the center along the extending direction of the vertical girders Ya.
  • the intermediate frame 21 ⁇ / b> M has a rectangular frame shape in plan view, and is separated in the Y direction from a pair of vertical girders Mb that are formed in parallel with each other and separated in the X direction. And a pair of horizontal girders Ma having a rectangular cylindrical shape provided in parallel with each other.
  • X drive motors Mx are respectively arranged in the rectangular cylinders of the horizontal girders Ma at the center position in the extending direction of the horizontal girders Ma of the intermediate frame 21M.
  • Y drive motors My are respectively arranged in the rectangular cylinders of the vertical girders Mb at the center position in the extending direction of the vertical girders Mb of the intermediate frame 21M.
  • each of the upper and lower platforms 21X and 21Y includes four support legs 26 and a jack mechanism 49 capable of raising and lowering each support leg 26, like the platform of the first embodiment. It is a jack-up platform.
  • the intermediate frame 21M and the upper and lower platforms 21X and 21Y are supported so as to be slidable via the linear motion guide mechanisms shown in FIGS. 16 and 17, and the rack and pinion mechanisms shown in FIGS. And is configured to be relatively slidable in the X and Y directions orthogonal to each other on a horizontal plane.
  • the platform 21 of the third embodiment has support legs 26 at the four corners of the rectangular frame of the upper platform 21X and at the four corners of the rectangular frame of the lower platform 21Y.
  • Each support leg 26 is provided with a jack mechanism 49, which is a Z-direction slide movement mechanism, as an elevating jacking unit.
  • the jack mechanism 49 of the third embodiment is equipped with two in total, one on each side of each support leg 26, and each support leg 26 has two Z-moving racks Rz as shown in FIG.
  • the support legs 26 are respectively attached at positions facing each other in the circumferential direction along the axial direction.
  • the jack mechanism 49 corresponding to each Z movement rack Rz has a Z drive motor (not shown), a pinion mounted on the output shaft of the Z drive motor, and the Z movement rack Rz meshed with the pinion.
  • a rack and pinion mechanism is configured.
  • the linear guide mechanism of the upper platform 21X has a skid rail Sx attached to the bottom surface of the horizontal girder Xa of the upper platform 21X along the extending direction of the horizontal girder Xa.
  • the skid rail Sx is attached from end to end of the upper platform 21X along the lateral girder Xa of the upper platform 21X.
  • the upper and lower sides of the skid rail Sx are guided by, for example, a bearing plate Bx of about 200 mm ⁇ 200 mm.
  • the bearing plate Bx is attached to the upper surface of the corner portion of the horizontal girder Ma of the intermediate frame 21M.
  • a holding claw Hx is attached at the same position as the arrangement position of the bearing plate Bx so as to cover the skid rail Sx from the left and right.
  • the holding claw Hx supports the skid rail Sx from both sides so as to prevent the upper platform 21X from falling when the upper platform 21X moves in the X direction.
  • an X movement pinion Px is mounted on the drive shaft of the X drive motor Mx, and projects to a position facing the rack surface of the X movement rack Rx.
  • the two X movement pinions Px are respectively meshed with the X movement rack Rx and driven synchronously by the X drive motor Mx, so that the upper platform 21X can slide in the X direction.
  • the linear guide mechanism of the lower platform 21Y has a skid rail Sy attached to the upper surface of the vertical girder Ya of the lower platform 21Y along the extending direction of the vertical girder Ya.
  • the skid rail Sy is attached from end to end of the vertical girder Ya of the lower platform 21Y.
  • the lower platform 21Y has a bearing plate By attached to the lower surface of the corner portion of the vertical girder Mb of the intermediate frame 21M, and guides the skid rail Sy up and down by the bearing plate By.
  • a holding claw Hy is attached at the same position as the bearing plate By so as to cover the skid rail Sy from the left and right, and when the lower platform 21Y moves in the Y direction, the skid is prevented from falling.
  • the rail Sy is supported from both sides.
  • a Y movement pinion Py is mounted on the drive shaft of the Y drive motor My and protrudes to a position facing the rack surface of the Y movement rack Ry.
  • the two Y movement pinions Py are respectively meshed with the Y movement rack Ry and driven synchronously by the Y drive motor My, so that the lower platform 21Y can slide in the Y direction.
  • the mining station 220 of the third embodiment includes a slide movement mechanism that slides the upper and lower platforms 21X and 21Y in the X direction and the Y direction, and a slide movement mechanism that slides each support leg 26 in the Z direction.
  • the predetermined mining area is walked in the X direction and the Y direction, respectively, and the mining device 30 is moved in the X direction and the Y direction to sequentially excavate predetermined sections.
  • the intermediate frame 21M and the upper and lower platforms 21X and 21Y are examples capable of moving in the horizontal direction via a rack and pinion mechanism, but the moving mechanism is not limited to this, Any moving mechanism that can move in the horizontal direction can be used.
  • a moving mechanism that slides by a hydraulic cylinder method can be used.
  • each support leg 26 is shown as an example capable of relative sliding movement in the Z direction via a rack and pinion mechanism, but is not limited to this, and may be a moving mechanism that slides in a hydraulic cylinder system, for example. it can.
  • it is not limited to a hydraulic drive, It is good also as an electric drive type.
  • the total production capacity (Dry SMS) is 2,000,000 t / year (6,600 t / day), and the density is 3 to 5 (t / m 3).
  • the volume of 6600 / 5-6600 / 3 1320-2200 m 3 is assumed, and the size of the predetermined area (section) excavated by one mining station 220 is determined to be about 10 m ⁇ 10 m.
  • the mining device 30 has a configuration capable of excavating to a depth of about 20 m.
  • one mining station 220 excavates one section of a predetermined area having a depth of 20 m on one day. Moreover, in 3rd embodiment, the movement of the platform 21 to an adjacent division can be completed in a short time by making the mining station 220 self-propelled. Therefore, it is also considered to excavate a predetermined area having a depth of 10 m per day into two sections.
  • the size of the excavation section serving as the predetermined area is 10 m ⁇ 10 m. It is necessary to set the size of the inner excavation area to 13 m ⁇ 10 m.
  • the shape dimensions of the upper platform 21X, the lower platform 21Y, and the intermediate frame 21M were set in consideration of towing, hanging, and working.
  • the shape and dimensions of the support leg 26 are as follows. When the total length in the axial direction of the support leg 26 is 30 m, as shown in the cross section of the support leg 26 in FIG. From the load condition, the outer diameter D of the support leg 26 was set to 1000 mm. Further, in FIG. 12, the length Lx in the X direction inside the girder of the upper platform 21X and the width Ly in the Y direction of the upper platform 21X were set to 23 m and 10 m, respectively, based on the load conditions during towing, hanging and working. The width Wg and thickness Dg of the girder itself of the upper platform 21X were 1 m and 2 m, respectively.
  • the length Lx in the X direction inside the girder of the lower platform 21Y and the width Ly in the Y direction were 13 m and 20 m, respectively.
  • the width Wg and the thickness Dg of the girder itself of the lower platform 21Y were 1 m and 2 m, respectively.
  • the intermediate frame 21M has a length Lx in the X direction inside the girder of the intermediate frame 21M and a width Ly in the Y direction of 13 m and 10 m, respectively.
  • the width Wg and the thickness Dg of the girder itself of the intermediate frame 21M are both 1 m.
  • the length of the rack was about 10 m.
  • the length of the rack was about 10 m.
  • FIG. 20 shows an image of the relative size at the seabed deposit OD of the mining station 220 that is placed in the sea and is erected on the seafloor and has the pit VH formed in the seabed deposit OD at the above set dimensions. Show.
  • symbol C in the same figure is the image of the chimney which exists in the seabed deposit OD.
  • the mining station 220 of the third embodiment includes a base control unit 45 for controlling the mining station 220 itself on the upper platform 21X.
  • the base control unit 45 of the third embodiment has an inclination sensor that detects the attitude of the platform 21.
  • the jack mechanism 49 that drives each support leg 26 is equipped with a torque detector (not shown).
  • Each torque detector is a torque meter that can detect the torque of each drive motor that drives the pinion of the rack and pinion mechanism of each corresponding jack mechanism 49.
  • Each torque detector can detect the motor torque at any time of each drive motor and can output the detected torque information to the base control unit 45.
  • the base control unit 45 is a controller (control unit) of the mining station itself including a computer and a program for executing the attitude stabilization control process.
  • the base control unit 45 executes walking control processing of the mining station 220, mining control processing of the mining station 220, attitude control of the mining station 220, and other necessary processing.
  • the base control unit 45 determines the degree of the imbalance of the attitude of the mining station 220 itself based on the output of the tilt sensor, and drives the pinion of the rack and pinion mechanism.
  • Posture stability control is performed to maintain posture stability by adjusting each drive motor.
  • the base control unit 45 is equipped with the tilt arrangement detected by the tilt sensor and the motor torque information obtained by detecting the torque of the motors of the plurality of support legs 26 in the laying arrangement mother ship 2 that is a towing ship at sea. Output to the management computer.
  • the management computer is configured to be able to display tilt information and motor torque information at any time on the display to the operator.
  • the stabilization seating method of the mining station 220 of 3rd embodiment is demonstrated with reference suitably to FIG. 21 and FIG.
  • the mining station 220 first has a bottoming ready posture shown in FIG. State.
  • the operator suspends the mining station 220 from the erection placement mother ship 2 with a rope.
  • the operator lowers the mining station 220 to the desired position of the seabed deposit OD while paying attention to the drooping depth. Then, as shown in FIG. 5B, the operator stops the suspension when the response of the motor torque of at least three of the plurality of support legs 26 is detected. However, the seating position is changed when one of the support legs 26 is seated and the pre-defined inclination angle is exceeded before the other three legs are seated.
  • This suspension operation may be manually operated by the operator via the management computer, or may be automatically controlled by the management computer and the base control unit 45.
  • the base control unit 45 of the mining station 220 executes the posture stability control when acquiring the end information (sitting information) of the suspension operation.
  • the base control unit 45 expands and contracts the bottomed support leg 26 so that the attitude of the mining station 220 is horizontal, as shown in FIG. Based on the motor torque information, the base control unit 45 extends the support legs 26 that are not bottomed, and controls and bottoms the motor legs so that the motor torques of the support legs 26 are substantially balanced.
  • the base control unit 45 determines that the attitude of the mining station 220 is horizontal, the base control unit 45 transmits the end information of the attitude stabilization control to the management computer of the laying arrangement mother ship 2.
  • the operator of the erection placement mother ship 2 monitors the status of the mining station 220 from the display of the management computer, and after confirming the end information of the posture stabilization control, as shown in FIG.
  • the command is input from the management computer.
  • the posture of the mining station 220 may become unstable due to fluctuations in tension of the hanging rope. Therefore, the base control unit 45 continuously executes the posture stabilization control.
  • the base control unit 45 adjusts the leg length of each support leg 26 so that the attitude of the mining station 220 is horizontal based on the attitude detection information of the inclination sensor.
  • the mining station 220 can land in a stable posture on the seabed in the initial bottoming state shown in FIG. Thereafter, the operator releases the engagement of the suspension rope with a suspension rope disengagement device (not shown), and, as shown in FIG. Form VH and start mining.
  • the configuration of the management computer and the base control unit 45 including the stabilization seating control and the stabilization seating method can be similarly applied to the first embodiment and the second embodiment described above.
  • FIG. 23 a procedure for mining a 40 ⁇ 40 m seabed deposit OD by self-running and excavation of the mining station 220 will be described.
  • the self-running operation of the mining station 220 described below is performed based on a predetermined program executed by the base control unit 45 under the monitoring of the management computer, but is not limited to this, and is performed manually by an operator. Also good.
  • the base control unit 45 moves the predetermined area inside the intermediate frame 21M to the position corresponding to the second section B shown in FIG. As shown in FIGS. 25A to 25D, each part is driven and controlled, and the platform 21 is moved as shown in FIG. That is, in the state where the mining of the first section A is completed, as shown in FIG. 26, all the support legs 26 of the upper platform 21X and the lower platform 21Y are bottomed. Therefore, as shown in FIG. 27, the base control unit 45 first leaves the four support legs 26 of the lower platform 21Y while keeping the support legs 26 of the upper platform 21X bottomed.
  • the base control unit 45 moves the lower platform 21Y and the intermediate frame 21M to the full forward direction of X in a state where the lower platform 21Y and the intermediate frame 21M are coupled. .
  • the base control unit 45 extends the four support legs 26 of the lower platform 21Y downward and bottoms them.
  • FIG. 30C a predetermined area inside the upper and lower platforms 21X and 21Y becomes the second section B shown in FIG.
  • the base control unit 45 of the mining station 220 mines a predetermined area inside the intermediate frame 21M.
  • the base control unit 45 keeps the support leg 26 of the lower platform 21Y on the bottom platform, The four support legs 26 of 21X are removed from the bottom, and then, with the lower platform 21Y and the intermediate frame 21M coupled, the upper platform 21X is moved fully in the positive direction of X as shown in FIG. Thereafter, the four support legs 26 of the upper platform 21X are grounded.
  • the base control unit 45 leaves the four support legs 26 of the lower platform 21Y while keeping the support legs 26 of the upper platform 21X bottomed, and connects the lower platform 21Y and the intermediate frame 21M in the state shown in FIG.
  • the lower platform 21Y and the intermediate frame 21M are moved fully in the X direction.
  • the four support legs 26 of the lower platform 21Y are extended downward and are respectively bottomed.
  • the predetermined area inside the upper and lower platforms 21X and 21Y becomes the third section C shown in FIG.
  • the base control unit 45 leaves the support leg 26 of the lower platform 21Y while keeping the support leg 26 of the upper platform 21X bottomed, and then connects the lower platform 21Y and MF in FIG. As shown in e), the lower platform 21Y and the intermediate frame 21M are moved to the full forward direction of X. Thereafter, the support legs 26 of the lower platform 21Y are grounded. As a result, as shown in FIG. 31 (f), a predetermined area inside the upper and lower platforms 21X and 21Y becomes the fourth section D shown in FIG. (Procedure 2-6) In the fourth section D, the base control unit 45 receives a mining start command from the management computer, and mines a predetermined area inside the intermediate frame 21M. (Procedure 2-7) The steps (2-4) to (2-6) are repeated in the same way for walking and excavating X in the positive direction.
  • the base control unit 45 leaves the four support legs 26 of the lower platform 21Y while keeping the support legs 26 of the upper platform 21X bottomed, and removes the upper platform 21X and the intermediate frame 21M.
  • the lower platform 21Y is moved in the positive direction of Y to a position where the plane center of the lower platform 21Y coincides with the plane centers of the upper platform 21X and the intermediate frame 21M.
  • the base control unit 45 bottoms the four support legs 26 of the lower platform 21Y.
  • the predetermined area inside the upper and lower platforms 21X and 21Y becomes the fifth section E shown in FIG.
  • the base control unit 45 mines a predetermined area inside the intermediate frame 21M.
  • the mining station 220 of the third embodiment can be repositioned by making the mining station 220 self-propelled in addition to being able to cope with the inclination and undulation of the seabed deposits. It is possible to greatly reduce the state in which the construction placement mother ship 2 which is a support ship to be used is unnecessary or needs to be used. Therefore, the construction period and cost of the project can be greatly reduced.
  • the erection and placement mother ship 2 is an example of a large ship that carries the mining unit 4 and the plurality of mining stations 20 as shown in FIG. 1, but is not limited thereto.
  • a small erection and placement mother ship 2 can be used.
  • the erection and placement mother ship 2 shown in the figure has a rectangular frame-shaped hull in plan view, and the left and right sides of the hull are floating bodies 2f. In plan view, the center of the hull is a rectangular moon pool 2p, and the crane 11 is straddled on the hull so as to straddle the moon pool 2p.
  • a living room 2h and a storage room 2s are provided, and a winch 11w is equipped at an appropriate place, and the mining station 220 can be suspended from the moon pool 2p and can be lifted.
  • symbol D and U of the same figure (c) have shown the image which can hang
  • the size of the mother ship 2 for erection and arrangement is suitable if the mining station 220 of the third embodiment is erected and arranged to have a total length of 72 m ⁇ total width of about 48 m and the size of the moon pool 2p is about 30 m ⁇ 33 m. It is.
  • the use of such a small laying arrangement mother ship 2 is more preferable in terms of cost reduction because the cost of the support ship itself, the chartering cost when moored at sea, etc. can be reduced.
  • the base control unit 45 includes a chimney detector 91 as shown in FIG.
  • the chimney detection unit 91 is chimney detection means for detecting the chimney of the seabed deposit.
  • the chimney detection unit 91 includes an ultrasonic transmission / reception unit 92 and a detection unit 93 that detects chimney based on echoes obtained by underwater detection using ultrasonic waves.
  • the ultrasonic transmission unit 92 emits ultrasonic waves from the base side toward the seabed deposit, immediately switches to the reception state, and receives the reflected wave from the seabed deposit.
  • the detection unit 94 measures the round trip time from the time when the ultrasonic wave is emitted to the time when the reflected wave is received, converts the round trip time into a distance, measures the distance from the mining station 220 to the chimney, and Detect interface state and presence of chimney.
  • the chimney detection means shown in FIG. 35 is a searchlight type sonar (multi-beam sonar) in which a drive unit 90 is attached to a chimney detection unit 91.
  • the chimney detection unit 91 is provided, for example, at the highest proper position in the center of the platform 21, and the chimney detection unit 91 rotates 360 ° on the horizontal plane by the drive unit 90 while searching at a predetermined viewing angle. Is done. As a result, the entire circumference of the mining station 220 can be detected.
  • the installation location of the chimney detection unit 91 is not limited to “the highest appropriate place in the center of the platform 21”, and can be installed at other positions of the mining station 220 as long as the intended search is possible.
  • a chimney detector 91 may be provided on the surface of the platform 21 facing the deposit.
  • the unevenness of the ore deposit can be detected by measuring the height of the lower part of the platform 21 and the surrounding terrain including the support leg 26 and the guide shell 48 from the surface facing the deposit side of the platform 21.
  • the chimney detection means is not limited to the search light type sonar, and for example, a scanning type sonar may be used. Scanning sonar can detect the entire 360 degree circumference of the mining station 220 at once.
  • the mining station 220 of 3rd embodiment demonstrated the example provided with the chimney detection part 91 using an ultrasonic wave as a chimney detection means, it is not restricted to this, Chimney is detected using light as a chimney detection means. It may be detected.
  • the base control unit 45 may include an image processing unit that detects the chimney of the seabed deposit with a camera or an image sensor.
  • the mining station 220 of the third embodiment is configured such that the base control unit 45 executes avoidance control that avoids the detected chimney.
  • the base control unit 45 uses the torque detectors 52x, 44y, 47z, 71r, 9p, Mx, My, and Mz for the torque of the motor that drives each of the moving mechanisms described above. Monitoring is possible by obtaining from the detection value of (49).
  • the base control unit 45 is configured to be able to execute a program for chimney avoidance processing.
  • reference numeral 52x denotes a torque detector attached to the motor of the X-direction moving mechanism 52
  • reference numeral 44y denotes a torque detector attached to the motor of the Y-direction moving mechanism 44
  • reference numeral 47z denotes A torque detector attached to the motor of the slide moving mechanism 47
  • reference numeral 71r is a torque detector attached to the rotation drive mechanism of the housing part 71
  • reference numeral 9p is a drive part of the high-pressure water supply pump of the high-pressure water supply pipe 9.
  • Reference numerals Mx, My, Mz (49) are attached to the X drive motor Mx, the Y drive motor My, and the motor of the jack mechanism 49, respectively.
  • step S21 when the chimney avoidance process is executed in the base control unit 45, the process proceeds to step S21 as shown in FIG. 36, and in step S21, torque detectors attached to the X drive motor Mx and the Y drive motor My are detected. Check motor torque based on If the torque is in the normal value range (Yes), the process proceeds to the subsequent step S22, and if the torque is an abnormal value, that is, if the monitored torque exceeds a predetermined value (No), the corresponding moving mechanism is in contact with the chimney. Determination is made and the process proceeds to step S26. In step S22, the presence / absence of an avoidance command (for example, manual operation by the operator) from the mining base monitoring device 80 is confirmed. If there is an avoidance command (Yes), the process is returned and control according to the avoidance command is performed. If there is no (No), the process proceeds to the following step S23.
  • step S21 torque detectors attached to the X drive motor Mx and the Y drive motor My are detected.
  • step S21 torque detectors
  • step S23 the echo image information detected by the chimney detection unit 91 is acquired.
  • step S24 the position information of the chimney detected by the chimney detection unit 91 is acquired, and the process proceeds to step S25.
  • step S25 a process of associating the position information of the mining station 220 with the position information of the chimney is performed. In this associating process, the relative distance is calculated by comparing the position information of each part of the mining station 220 itself and the interface information between the position information of the chimneys, and if the relative distance is closer than a predetermined threshold, it is determined as an obstacle. .
  • the height difference from the set height of the platform 21 can be determined from the position information of its own support leg 26 and guide shell 48. Furthermore, the obstacle can be determined from the moving direction of the mining station 220.
  • avoidance control is executed.
  • the avoidance control is a process for avoiding chimneys determined as obstacles among the detected chimneys. For example, when the process proceeds from step S21, the torque returns to a normal value range for any of the drive motors Mx and My that have been determined that the monitored torque has exceeded a predetermined value as an avoidance measure when contacting an obstacle. Until then, the control to drive the corresponding motor in the reverse direction is performed.
  • the walking process of the mining station 220 itself may be controlled by interruption or low-speed driving, and the process may proceed to step S27 to wait for an operator's instruction.
  • step S27 When waiting for an operator's instruction as an avoidance response at the time of non-contact, the process proceeds to step S27, and detection information including the position information of the chimney determined as an obstacle is output to the mining base monitoring device 80.
  • the operator who is monitoring by the mining base monitoring device 80 can appropriately manually operate the mining station 220 in consideration of the image display on the display of the mining base monitoring device 80, the interface information, the information on the relative distance, and the like.
  • the chimney detection unit 91 on the bottom surface of the platform 21 determines the height of the terrain from the bottom information including the position information of the support leg 26 and the guide shell 48 of the mining station 220. It is preferable to detect the unevenness of the ore deposit by measuring and to manually avoid the chimney by referring to the ultrasonic image and the image captured by the camera.
  • the reason for this is that, generally, the error when measuring a seafloor base with a depth of 2 km with sonar from the sea is about 20 m (1% of the water depth), and the assumed size of the mining station 220 is about 20 m.
  • the chimney detection unit 91 mounted on the mining station 220 has sufficient resolution to detect the chimney. For this reason, simply collating images measured simultaneously on the sea and the sea floor is because correction processing may be difficult. Moreover, it is because the collation with the detailed image (map) previously obtained near the seabed and the seabed measurement image may be difficult simply if there is no feature in the topography.
  • the position and direction of the mining station 220 are measured using ultrasonic waves that connect the mining mother ship 1 or the laying mother ship 2 and the mining station 220 as a marine base, a gyro equipped in the mining station 220, and a depth meter. It is preferable to increase the accuracy.
  • the input position is measured by GPS, and the route to be seated on the sea floor is measured by an inertial sensor mounted on the mining station 220. In the movement process of walking on the sea floor from the seabed seating start point, it is preferable to integrate from the mechanical movement amount and movement direction of the seabed base.
  • step S28 it is determined whether or not the detection information is reacquired. That is, if a command for reacquiring detection information is input from an offshore operator, the process returns to step S21; otherwise, the process returns to the main control process.
  • the mining base monitoring device 80 shown in FIG. 37 corresponds to the management computer installed in the mining mother ship 1 or the construction placement mother ship 2 that serves as a maritime base in order to monitor the mining station 220.
  • this embodiment demonstrates the example which equipped the mining base monitoring apparatus 80 in the sea base, it is not limited to this, The operator who equips the land base with the mining base monitoring apparatus 80, and monitors it is not a sea base. It can also be monitored at remote land bases.
  • the mining base monitoring device 80 is a mining station position monitoring means including a control unit 81, a display unit 86, an input unit 87, and an underwater detection device 82, and also chimney monitoring. It is also a means.
  • the control unit 81 includes software necessary for chimney monitoring processing and a computer that is a hardware resource that specifically executes information processing by the software.
  • the control unit 81 is communicably connected to the base control unit 45 via the umbilical cable 8 and can perform necessary data communication with respect to the display unit 86 such as a display and the input unit 87 such as a keyboard via a signal line. Connected.
  • the display unit 86 is configured to be able to display the position information of the mining station 220 and the chimney echo image on the monitoring screen.
  • the underwater detection device 82 includes an ultrasonic transmitter 83 provided in the mining station 220, an ultrasonic receiver 84 and a detection unit 85 provided at three locations on the bottom of the mining mother ship 1 or the laying mother ship 2.
  • the position information of the mining station can be obtained by the same technology as SSBL (Super Short Base Line).
  • step S11 the seafloor map information of the corresponding sea area is read from the seafloor map database stored in advance in the storage device of the computer and the process proceeds to step S12.
  • step S12 the chimney echo image information detected by the chimney detection unit 91 of the base control unit 45 and the position information of the chimney are acquired (corresponding to the chimney information acquisition unit).
  • the position information of the underwater mining base including information such as the attitude of the mining station 220 acquired from the base control unit 45 is acquired.
  • the base control unit 45 includes a three-dimensional gyro sensor, and uses the initial position information when the mining station 220 is suspended from the laying mother ship 2 as a reference to change the relative position of the mining station 220 thereafter. Based on this, position information of the mining station 220 in the sea can be generated at any time.
  • step S15 based on the acquired image information and position information of the chimney and position information of the mining station 220, an association process with the seafloor map information of the corresponding sea area is performed. Thereby, the position information of the mining station 220, the echo image of the chimney and the position information of the chimney are associated with the seabed map information of the corresponding sea area.
  • step S16 an image based on the associated data is superimposed and displayed on the display unit 86 which is a monitoring screen.
  • the operator visually confirms the position of the mining station 220 in the sea and the image thereof, and the position of the chimney and the image thereof with respect to the seafloor map of the corresponding sea area, using the image superimposed on the display unit 86.
  • Monitoring is possible (corresponding to the display composition unit).
  • the control unit 81 moves the seabed map and the chimney echo image superimposed on the display unit 86 in accordance with the movement of the mining station 220.
  • the position information of the chimney and the mining station 220 includes latitude information and longitude information, and includes depth information of the chimney and the mining station 220. As a result, more accurate exploration is possible. Moreover, it is suitable for accurately determining the interface state.
  • a failure determination process is executed.
  • a chimney that is a failure to the mining station 220 is determined from the position information of the associated chimney and the position information of the mining station 220 ( Corresponds to the determination unit).
  • the chimney closest to the mining station 220 is determined to be a chimney that becomes a failure.
  • the display image of the chimney is changed from a normal color (for example, blue) to a warning color (for example, red), or displayed brighter than other chimneys, or blinked. For example, a warning display for calling attention to the operator is performed.
  • a re-exploration request input operation from the input unit 87. If there is a re-exploration request (Yes), the process returns to step S12, otherwise (No) to step S14. The processing is returned and information other than the position information of the mining station 220 is continuously used.
  • the mining station 220 which is a working device, is configured such that the base control unit 45 includes the chimney detection unit 91, and the mining mother ship 1 or the construction placement mother ship 2 is the mining base. Since the monitoring device 80 is provided, a chimney that becomes an obstacle can be avoided with the configuration of the third embodiment.
  • the base control unit 45 executes the avoidance control to avoid the detected chimney
  • the chimney detection unit 91 performs the underwater detection by transmitting and receiving ultrasonic waves, as described above. Since the chimney of the ore deposit is detected (chimney detection process) and avoidance control is performed to avoid the chimney determined as an obstacle based on the detected position information of the chimney, interference with the chimney that is an obstacle can be avoided. (Interference avoidance process).
  • step S26 when there is a chimney determined as an obstacle in the planned mining area, a bypass program that bypasses the corresponding area as a whole is executed and determined as an obstacle. If the chimney is avoided, interference with the chimney as an obstacle can be avoided in advance, as shown in FIG. Further, even when the walking process of the mining station 220 is interrupted and the operator's instruction is waited for, interference with the chimney that becomes an obstacle can be avoided in advance.
  • the base control unit 45 monitors the motor torque of the drive mechanism such as the drive motors Mx and My related to walking, and therefore can be avoided in advance for some reason. Even when there is not, interference with the chimney as an obstacle can be automatically avoided afterwards. In other words, even if mining is performed by automatic control not instructed by the operator, or if the operator accidentally performs a manual operation and the mining station 220 contacts the chimney (obstacle), the chimney It is possible to prevent or suppress excessive collisions.
  • FIG. 40 an image of ex-post evasion is shown.
  • the support leg 26 is attached to the chimney C.
  • the torque detector of the Y drive motor My immediately outputs an abnormal value.
  • the base control unit 45 determines that the moving mechanism corresponding to the Y drive motor My has contacted the chimney (“No” in step S21 in FIG. 36), and the torque of the Y drive motor My is normal by the avoidance control.
  • the corresponding Y drive motor My can be driven in reverse until it returns to the value range (step S26 in FIG. 36). Therefore, even when it contacts the chimney, excessive collision with the chimney can be prevented or suppressed.
  • the operator of the mining mother ship 1 or the laying arrangement mother ship 2 causes the mining base monitoring device 80 to perform chimney monitoring processing.
  • the mining base monitoring device 80 detects the chimney of the seabed deposit based on the echo obtained by the underwater detection by the transmission and reception of the ultrasonic wave of the chimney detection unit 91 (chimney detection process), and the display unit 86 which is a monitoring screen While displaying the seabed map, the echo image of the mining station 220 and the chimney can be displayed in a superimposed manner, including the display of the failure determination.
  • the operator monitors the state of the underwater mining station 220 at any time, and if it is determined that there is a possibility that the chimney interferes with the mining station 220 based on the detected position information of the chimney, Interference with the chimney can be avoided in advance (interference avoidance process).

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Fluid Mechanics (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Drilling And Exploitation, And Mining Machines And Methods (AREA)
  • Earth Drilling (AREA)
  • Artificial Fish Reefs (AREA)

Abstract

Provided is an undersea mining base that is capable of coping with slopes and undulations of a seabed deposit. This undersea mining base (20) is provided with a seabed mineral excavation device (30) that forms a pit in a seabed deposit (OD), and a platform (21) that has the seabed mineral excavation device (30) mounted thereon and that is capable of autonomous travel in at least one among an X direction and a Y direction.

Description

海中採鉱基地および採鉱基地監視装置並びに海底鉱床のチムニー回避方法Undersea mining base, mining base monitoring device, and chimney avoidance method for submarine deposits
 本発明は、海底鉱物を採掘する技術に関する。 The present invention relates to a technique for mining seabed minerals.
 近年、各種産業機器を製造する上で必要不可欠な金属であり存在量が少ない有用金属の価格が高騰している。有用金属は産業上必要不可欠なものであるが、可採量が少ないだけでなく、産出国が限られているため地政学的リスクが存在している。そこで、海底鉱物の中でも、海底下に存在する有用金属含有鉱物が注目されている。
 海底鉱物中には、現在地上で採掘されている鉱物と比較して、高濃度で有用金属が存在していることが各種調査で明らかにされている。そこで、近年、様々な機関で試掘調査が行なわれ、また、海底鉱物の採掘方法や採掘システムも種々提案されている(例えば特許文献1参照)。
In recent years, the price of useful metals, which are indispensable for manufacturing various industrial equipment and have a small abundance, has been rising. Useful metals are indispensable in the industry, but not only are the yields small, but geopolitical risks exist because of the limited production. Therefore, among the seabed minerals, useful metal-containing minerals present under the seabed have attracted attention.
Various surveys have revealed that useful minerals are present in seabed minerals at higher concentrations than minerals currently mined on the ground. Thus, in recent years, trial drilling has been conducted at various institutions, and various methods and systems for mining seabed minerals have been proposed (see, for example, Patent Document 1).
 特許文献1には、海底鉱物の採掘システムが開示されている。同文献記載の採掘システムは、海底鉱床の表面を研削可能な研削ツールを有する海底移動装置を備える。海底移動装置は、海面側の供給源から電力および制御信号を受けて海底を移動しつつ、開放型の研削ツールにより海底鉱床の表面を研削する。研削によって生産された研削物は、分級手段によって所定のサイズを超えないように分級され、分級された研削物が海上まで運搬される。 Patent Document 1 discloses a seabed mineral mining system. The mining system described in the document includes a seabed moving device having a grinding tool capable of grinding the surface of a seabed deposit. The seabed moving device grinds the surface of the seabed deposit by an open grinding tool while moving the seabed by receiving electric power and a control signal from a supply source on the sea surface side. The ground product produced by grinding is classified by classifying means so as not to exceed a predetermined size, and the classified ground product is transported to the sea.
特開2013-528726号公報JP 2013-528726 A
 しかしながら、特許文献1記載の技術では、クローラ型の掘削機は、海底の起伏に応じた操作が煩雑で、自動化が困難であるという問題がある。また、海底鉱床は、海山の傾斜角が大きく、海山の表面に堆積する軟弱な地盤ではクローラでの走行に支障があるという問題がある。
 そこで、本発明は、このような問題点に着目してなされたものであって、海底鉱床の傾斜や起伏に対応できる海中採鉱基地および採鉱基地監視装置並びに海底鉱床のチムニー回避方法を提供することを課題とする。
However, the technique described in Patent Document 1 has a problem that the crawler excavator is complicated to operate according to the undulations of the seabed and is difficult to automate. In addition, the seabed deposits have a problem that the sea mountain has a large inclination angle, and the soft ground deposited on the surface of the sea mountain hinders running on the crawler.
Accordingly, the present invention has been made paying attention to such problems, and provides an undersea mining base and a mining base monitoring device that can cope with inclination and undulation of a seabed deposit and a chimney avoidance method for a seabed deposit. Is an issue.
 上記課題を解決するために、本発明の一態様に係る海中採鉱基地は、海中に配置されて且つ海底に立設されるとともに、海底鉱床に有底穴を形成しつつ採掘された海底鉱物を有底穴内から回収する海中採鉱基地であって、海底鉱床に有底穴を形成する海底鉱物採掘装置と、該海底鉱物採掘装置が装備されるプラットフォームと、を備え、前記プラットフォームは、複数の支持脚を有し、各支持脚は、垂直方向への移動機構を介してZ方向に個別に相対的スライド移動が可能に構成されていることを特徴とする。 In order to solve the above problems, an underwater mining base according to one aspect of the present invention is provided with a submarine mineral that is placed in the sea and is erected on the seabed and is mined while forming a bottomed hole in the seabed deposit. An underwater mining base for recovering from within a bottomed hole, comprising: a seabed mineral mining device for forming a bottomed hole in a seabed deposit; and a platform equipped with the seabed mineral mining device, wherein the platform has a plurality of supports. Each of the support legs has a leg, and is configured to be capable of a relative slide movement individually in the Z direction via a movement mechanism in the vertical direction.
 本発明の一態様に係る海中採鉱基地によれば、海底に立設されるプラットフォームは、海底鉱物採掘装置が装備されるとともに複数の支持脚を有し、各支持脚は、垂直方向への移動機構を介してZ方向に個別に相対的スライド移動が可能に構成されているので、海底鉱床の傾斜や起伏に対応することができる。 According to the subsea mining base according to one aspect of the present invention, the platform erected on the sea floor is equipped with a seabed mineral mining device and has a plurality of support legs, and each support leg moves in the vertical direction. Since it is configured to be capable of relative sliding movement individually in the Z direction via the mechanism, it is possible to cope with the inclination and undulation of the seabed deposit.
 また、上記課題を解決するために、本発明の他の一態様に係る海中採鉱基地は、海中に配置されて且つ海底に立設されるとともに、海底鉱床に有底穴を形成しつつ採掘された海底鉱物を有底穴内から回収する海中採鉱基地であって、海底鉱床に有底穴を形成する海底鉱物採掘装置と、該海底鉱物採掘装置が装備されるとともに水平面で互いに直交するX方向およびY方向の少なくとも一方に自ら移動可能なプラットフォームと、を備えることを特徴とする。 In order to solve the above-described problem, an underwater mining base according to another aspect of the present invention is disposed in the sea and is erected on the seabed, and is mined while forming a bottomed hole in the seafloor deposit. A submarine mining base for recovering submarine minerals from within a bottomed hole, and a submarine mineral mining device for forming a bottomed hole in a submarine deposit, and an X-direction and And a platform that can move by itself in at least one of the Y directions.
 本発明の他の一態様に係る海中採鉱基地によれば、海底に立設されるプラットフォームは、海底鉱物採掘装置が装備されるとともに、X方向およびY方向の少なくとも一方に自ら移動可能なので、海底鉱床の傾斜や起伏に対応することができる。 According to the subsea mining base according to another aspect of the present invention, the platform erected on the sea floor is equipped with a seabed mineral mining device and can move in at least one of the X direction and the Y direction. It can cope with the inclination and undulation of the deposit.
 ここで、本発明の他の一態様に係る海中採鉱基地において、前記プラットフォームは、上部プラットフォーム、下部プラットフォーム、および、これら上下のプラットフォームの間に配置される中間フレームを有し、前記中間フレームと前記上部プラットフォームとは、水平方向への移動機構を介して一の方向に相対的スライド移動が可能に構成されるとともに、前記中間フレームと前記下部プラットフォームとは、水平方向への移動機構を介して前記一の方向と直交する他の方向に相対的スライド移動が可能に構成され、前記上下のプラットフォームそれぞれは、複数の支持脚を有し、各支持脚は、垂直方向への移動機構を介してZ方向に個別に相対的スライド移動が可能に構成されていることは好ましい。このような構成であれば、海底鉱床の傾斜や起伏に対応する上で好適である。 Here, in the subsea mining base according to another aspect of the present invention, the platform includes an upper platform, a lower platform, and an intermediate frame disposed between the upper and lower platforms, the intermediate frame and the The upper platform is configured to be capable of relative sliding movement in one direction via a horizontal movement mechanism, and the intermediate frame and the lower platform are configured to move through the horizontal movement mechanism. Each of the upper and lower platforms has a plurality of support legs, and each support leg has a Z-direction through a vertical movement mechanism. It is preferable that relative sliding movement is possible in each direction. Such a configuration is suitable for dealing with the inclination and undulation of the seabed deposit.
 また、本発明のいずれか一の態様に係る海中採鉱基地において、前記海底鉱床のチムニーを検出するチムニー検出手段を更に備えることは好ましい。このような構成であれば、海底鉱床のチムニーを検出できるので、海底鉱床の傾斜や起伏に対応する上でより好適である。 Also, in the subsea mining base according to any one aspect of the present invention, it is preferable to further include chimney detection means for detecting the chimney of the submarine deposit. With such a configuration, the chimney of the seabed deposit can be detected, which is more suitable for dealing with the inclination and undulation of the seabed deposit.
 さらに、上記課題を解決するために、本発明の一態様に係る採鉱基地監視装置は、本発明のいずれか一の態様に係る海中採鉱基地を監視するために海上または陸上の基地に装備される採鉱基地監視装置であって、前記海底鉱床のチムニーを監視するチムニー監視手段を備えることを特徴とする。
 本発明の一態様に係る採鉱基地監視装置によれば、オペレータが海上または陸上の基地にて海中採鉱基地を監視する際に、海底鉱床のチムニーを海上または陸上の基地にて監視できるので、海底鉱床の傾斜や起伏に対応することができる。
Furthermore, in order to solve the said subject, the mining base monitoring apparatus which concerns on 1 aspect of this invention is equipped in the marine or land base in order to monitor the underwater mining base which concerns on any one aspect of this invention. A mining base monitoring device comprising chimney monitoring means for monitoring the chimney of the seabed deposit.
According to the mining base monitoring apparatus according to one aspect of the present invention, when an operator monitors an underwater mining base at a sea or land base, the chimney of the seabed deposit can be monitored at the sea or land base. It can cope with the inclination and undulation of the deposit.
 さらに、上記課題を解決するために、本発明の一態様に係る海底鉱床のチムニー回避方法は、海底鉱床で用いられて海底を自走しつつ採掘に必要な作業を行う作業装置と海底鉱床のチムニーとの干渉を回避する方法であって、超音波の送受信による水中探知で得たエコーに基づいて海底鉱床のチムニーを検出するチムニー検出工程と、該チムニー検出工程で得たチムニーの位置情報に基づいて前記作業装置とチムニーとの干渉を回避する干渉回避工程と、を含むことを特徴とする。 Furthermore, in order to solve the above-described problem, a chimney avoidance method for a seabed deposit according to one aspect of the present invention includes a working device that is used in a seabed deposit and performs a work necessary for mining while self-propelling the seabed. This is a method for avoiding interference with chimneys, including a chimney detection process for detecting chimneys of seabed deposits based on echoes obtained by underwater detection by transmitting and receiving ultrasonic waves, and chimney position information obtained in the chimney detection process. And an interference avoidance step for avoiding interference between the work device and the chimney.
 本発明の一態様に係る海底鉱床のチムニー回避方法によれば、超音波の送受信による水中探知で得たエコーに基づいて海底鉱床のチムニーを検出し、チムニー検出工程で得たチムニーの位置情報に基づいて作業装置とチムニーとの干渉を回避するので、海底鉱床の傾斜や起伏に対応することができる。 According to the chimney avoidance method for seabed deposits according to one aspect of the present invention, chimneys of seabed deposits are detected based on echoes obtained by underwater detection by transmission and reception of ultrasonic waves, and the chimney position information obtained in the chimney detection process is detected. Based on this, interference between the working device and the chimney is avoided, so that it is possible to cope with the inclination and undulation of the seabed deposit.
 上述のように、本発明によれば、海底鉱床の傾斜や起伏に対応することができる。 As described above, according to the present invention, it is possible to cope with the inclination and undulation of the seabed deposit.
本発明の一態様に係る海底鉱物の採掘システムの全体構成の一実施形態を説明する模式図である。It is a mimetic diagram explaining one embodiment of the whole composition of the mining system of the seabed mineral concerning one mode of the present invention. 図1の採掘システムの海中採鉱基地の模式的説明図であり、同図(a)は平面視、(b)は一の海中採鉱基地の正面視(但し、海底鉱床の部分は断面のイメージ(以下正面視にて同様))をそれぞれ模式的に示している。FIG. 2 is a schematic explanatory view of an underwater mining base of the mining system of FIG. 1, in which (a) is a plan view, (b) is a front view of one subsea mining base (however, the seabed deposit is an image of a cross section) In the following, the same applies to the front view)). 図2の海中採鉱基地の第一実施形態を説明する模式的斜視図である。It is a typical perspective view explaining 1st embodiment of the subsea mining base of FIG. 海中採鉱基地に装備される海底鉱物採掘装置を説明する模式的正面図である。It is a typical front view explaining the submarine mineral mining apparatus with which an underwater mining base is equipped. 図4の海底鉱物採掘装置の採掘装置本体の説明図(ハンマ前進状態)であり、同図では軸線を含む縦断面を示している。It is explanatory drawing (hammer advance state) of the mining apparatus main body of the seabed mineral mining apparatus of FIG. 4, The vertical cross section containing an axis line is shown in the same figure. 図4の海底鉱物採掘装置の採掘装置本体の説明図(ハンマ後退状態)であり、同図では軸線を含む縦断面を示している。It is explanatory drawing (hammer retreat state) of the mining apparatus main body of the seabed mineral mining apparatus of FIG. 4, In the same figure, the longitudinal cross section containing an axis line is shown. 図1の採掘システムによる海底鉱物の採掘方法の説明図であり、同図(a)は一の海中採鉱基地の正面視、(b)は海底鉱床の一の区画の平面視をそれぞれ模式的に示している。It is explanatory drawing of the submarine mineral mining method by the mining system of FIG. 1, The figure (a) is a front view of one submarine mining base, (b) is a plane view of one division of a submarine deposit, respectively. Show. 図1の採掘システムによる海底鉱物の採掘方法の説明図であり、同図(a)は一の海中採鉱基地の正面視、(b)は海底鉱床の一の区画の平面視をそれぞれ模式的に示している。It is explanatory drawing of the submarine mineral mining method by the mining system of FIG. 1, The figure (a) is a front view of one submarine mining base, (b) is a plane view of one division of a submarine deposit, respectively. Show. 本発明の一態様に係る海底鉱物採掘装置の変形例の縦断面図である。It is a longitudinal cross-sectional view of the modification of the seabed mineral mining apparatus which concerns on 1 aspect of this invention. 本発明の一態様に係る海中採鉱基地の第二実施形態の模式的平面図((a)~(c))である。FIG. 5 is a schematic plan view ((a) to (c)) of a second embodiment of the subsea mining base according to one aspect of the present invention. 本発明の一態様に係る海中採鉱基地の第三実施形態を説明する模式的斜視図である。It is a typical perspective view explaining 3rd embodiment of the subsea mining base which concerns on 1 aspect of this invention. 第三実施形態の海中採鉱基地のプラットフォームの模式的平面図である。It is a schematic plan view of the platform of the underwater mining base of the third embodiment. 第三実施形態の海中採鉱基地のプラットフォームの模式的正面図である。It is a typical front view of the platform of the underwater mining base of 3rd embodiment. 第三実施形態の海中採鉱基地の中間フレームの模式的平面図である。It is a schematic plan view of the intermediate | middle frame of the subsea mining base of 3rd embodiment. 第三実施形態の海中採鉱基地の支持脚の横断面図である。It is a cross-sectional view of the support leg of the underwater mining base of the third embodiment. 図12のR部断面図である。It is R section sectional drawing of FIG. 図12のS部断面図である。It is S section sectional drawing of FIG. 図12のP部断面図である。It is P section sectional drawing of FIG. 図12のQ部断面図である。It is Q section sectional drawing of FIG. 第三実施形態の海中採鉱基地と海底鉱床(チムニー含む)との相対寸法の一例のイメージを示す図である。It is a figure which shows the image of an example of the relative dimension of the undersea mining base of 3rd embodiment, and a seabed deposit (a chimney is included). 本発明の採掘システムでの海中採鉱基地の着底方法の一実施形態を説明する図((a)、(b))である。It is a figure ((a), (b)) explaining one Embodiment of the bottoming method of the underwater mining base in the mining system of this invention. 本発明の採掘システムでの海中採鉱基地の着底方法の一実施形態を説明する図((a)~(d))である。It is a figure ((a)-(d)) explaining one Embodiment of the bottoming method of the underwater mining base in the mining system of this invention. 第三実施形態の海中採鉱基地により海底鉱床を採鉱する手順を説明する図である。It is a figure explaining the procedure which mine a seabed deposit by the underwater mining base of 3rd embodiment. 図23の採鉱手順における、海中採鉱基地のプラットフォームの歩行動作(着底準備姿勢から採鉱開始姿勢への移行動作)を説明する図である。It is a figure explaining the walk operation (transition operation from a landing preparation posture to a mining start posture) of the submarine mining base platform in the mining procedure of FIG. 第三実施形態の海中採鉱基地の歩行動作を説明する斜視図((a)~(d))である。It is a perspective view ((a)-(d)) explaining the walking operation of the underwater mining base of the third embodiment. 図25(a)の拡大図である。FIG. 26 is an enlarged view of FIG. 図25(b)の拡大図である。FIG. 26 is an enlarged view of FIG. 図25(c)の拡大図である。FIG. 26 is an enlarged view of FIG. 図25(d)の拡大図である。FIG. 26 is an enlarged view of FIG. 図23の採鉱手順における、海中採鉱基地のプラットフォームの歩行動作を説明する図((a)~(c))である。FIG. 24 is a diagram ((a) to (c)) for explaining the walking operation of the platform of the underwater mining base in the mining procedure of FIG. 図23の採鉱手順における、海中採鉱基地のプラットフォームの歩行動作を説明する図((a)~(f))である。FIG. 24 is a diagram ((a) to (f)) for explaining the walking operation of the platform of the underwater mining base in the mining procedure of FIG. 図23の採鉱手順における、海中採鉱基地のプラットフォームの歩行動作を説明する図((a)~(c))である。FIG. 24 is a diagram ((a) to (c)) for explaining the walking operation of the platform of the underwater mining base in the mining procedure of FIG. 図23の採鉱手順における、海中採鉱基地のプラットフォームの歩行動作を説明する図((a)~(c))である。FIG. 24 is a diagram ((a) to (c)) for explaining the walking operation of the platform of the underwater mining base in the mining procedure of FIG. 本発明の採掘システムで用いる架設配置用母船の一実施形態を説明する図であり同図(a)はその平面図、(b)は正面図、(c)は右側面図である。It is a figure explaining one Embodiment of the mother ship for construction arrangement | positioning used with the mining system of this invention, The figure (a) is the top view, (b) is a front view, (c) is a right view. 第三実施形態での基地制御ユニットを説明するブロック図である。It is a block diagram explaining the base control unit in 3rd embodiment. 図35に示す基地制御ユニットが実行するチムニー回避処理のフローチャートである。It is a flowchart of the chimney avoidance process which the base control unit shown in FIG. 35 performs. 第三実施形態での採鉱基地監視装置を説明するブロック図である。It is a block diagram explaining the mining base monitoring apparatus in 3rd embodiment. 図37に示す採鉱基地監視装置が実行する採鉱基地監視処理のフローチャートである。It is a flowchart of the mining base monitoring process which the mining base monitoring apparatus shown in FIG. 37 performs. 第三実施形態でのチムニー回避動作を説明する図((a)、(b))であり、同図は、図30に示した移動手順の状態に対応している。It is a figure ((a), (b)) explaining the chimney avoidance operation | movement in 3rd embodiment, and the figure respond | corresponds to the state of the movement procedure shown in FIG. 第三実施形態でのチムニー回避動作を説明する図((a)、(b))であり、同図は、図30に示した移動手順の状態に対応している。It is a figure ((a), (b)) explaining the chimney avoidance operation | movement in 3rd embodiment, and the figure respond | corresponds to the state of the movement procedure shown in FIG.
 以下、本発明の一実施形態について、図面を適宜参照しつつ説明する。なお、図面は模式的なものである。そのため、厚みと平面寸法との関係、比率等は現実のものとは異なることに留意すべきであり、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれている。また、以下に示す実施形態は、本発明の技術的思想を具体化するための装置や方法を例示するものであって、本発明の技術的思想は、構成部品の材質、形状、構造、配置等を下記の実施形態に特定するものではない。 Hereinafter, an embodiment of the present invention will be described with reference to the drawings as appropriate. The drawings are schematic. For this reason, it should be noted that the relationship between the thickness and the planar dimension, the ratio, and the like are different from the actual ones, and the dimensional relationship and the ratio are different between the drawings. Further, the following embodiments exemplify apparatuses and methods for embodying the technical idea of the present invention, and the technical idea of the present invention is the material, shape, structure, and arrangement of components. Etc. are not specified in the following embodiments.
 まず、本実施形態の採掘システムの全体構成について説明する。
 この採掘システムは、図1に示すように、海上採鉱基地として海上SLに配置される採鉱母船1と、海底SBに配置される採鉱ステーション20および揚鉱ユニット4とを有する。この採掘システムでは、複数の採鉱ステーション20を海中採鉱基地とする。各採鉱ステーション20には複数の海底鉱物採掘装置30が装備されている(以下、「採掘装置30」とも呼ぶ)。
First, the overall configuration of the mining system of this embodiment will be described.
As shown in FIG. 1, the mining system includes a mining mother ship 1 that is disposed on the sea SL as a marine mining base, and a mining station 20 and a pumping unit 4 that are disposed on the seabed SB. In this mining system, a plurality of mining stations 20 is used as an underwater mining base. Each mining station 20 is equipped with a plurality of submarine mineral mining devices 30 (hereinafter also referred to as “mining devices 30”).
 各採掘装置30は、海底鉱床ODにさく孔により有底穴である竪穴を形成可能に構成されている。また、各採掘装置30は、海底鉱物を竪穴内でスラリー状にして採掘可能に構成されている。そして、この採掘システムは、各採掘装置30で採掘されたスラリー状の海底鉱物を、吸込管5を介して海中の揚鉱ユニット4に移送し、揚鉱ユニット4は、揚鉱管6を介して採鉱母船1に揚鉱するように構成されている。 Each mining device 30 is configured such that a dredging hole that is a bottomed hole can be formed by drilling in the seabed deposit OD. Each mining device 30 is configured to be able to mine seabed minerals in the form of a slurry in a pit. In this mining system, the slurry-like submarine minerals mined by each mining device 30 are transferred to the undersea mining unit 4 via the suction pipe 5, and the mining unit 4 passes through the mining pipe 6. The mining mother ship 1 is configured to be pumped.
 詳しくは、本実施形態の例では、採鉱母船1、架設配置用母船2および運搬船3が目的とする海域の海上SLに停泊される。架設配置用母船2は、揚鉱ユニット4および複数の採鉱ステーション20を運搬するとともに、これらを海底SBに架設配置するための架設配置用の母船である。架設配置用母船2には、揚鉱ユニット4および採鉱ステーション20を、海底SBに架設配置するためのクレーン等の作業機11が装備されている。架設配置用母船2は、海底鉱床ODの所定の位置まで採鉱ステーション20を搬送し、作業機11のワイヤ11wで採鉱ステーション20を垂下して海底SBに立設する。また、同様にして、架設配置用母船2は、海底SBの適切な位置に揚鉱ユニット4を配置する。 Specifically, in the example of the present embodiment, the mining mother ship 1, the erection and placement mother ship 2, and the transport ship 3 are anchored at the sea SL in the target sea area. The construction placement mother ship 2 is a construction placement mother ship for transporting the pumping unit 4 and the plurality of mining stations 20 and for placing them on the seabed SB. The erection and placement mother ship 2 is equipped with a working machine 11 such as a crane for laying and placing the ore unit 4 and the mining station 20 on the seabed SB. The construction placement mother ship 2 transports the mining station 20 to a predetermined position of the seabed deposit OD, and hangs the mining station 20 with the wire 11w of the work machine 11 and stands on the seabed SB. Similarly, the erection and placement mother ship 2 arranges the ore unit 4 at an appropriate position on the seabed SB.
 採鉱母船1には、発電機12および貯蔵器13、並びに不図示の管理コンピュータが搭載されている。貯蔵器13は換装可能に船上に載置されている。管理コンピュータおよび発電機12は、アンビリカルケーブル8を介して海底SBに配置された採鉱ステーション20および揚鉱ユニット4に接続され、採鉱ステーション20および採掘装置30、並びに揚鉱ユニット4の作動に必要な電力や制御信号を供給可能になっている。 The mining mother ship 1 is equipped with a generator 12, a storage 13, and a management computer (not shown). The reservoir 13 is placed on the ship in a replaceable manner. The management computer and the generator 12 are connected to the mining station 20 and the mining unit 4 arranged on the seabed SB via the umbilical cable 8, and are necessary for the operation of the mining station 20 and the mining device 30 and the mining unit 4. Electric power and control signals can be supplied.
 揚鉱ユニット4は、揚鉱用ポンプ25と、サイクロン装置を有する分級器27とを備える。分級器27は、その吐出側が、揚鉱ユニット4の内部で揚鉱用ポンプ25の吸い込み側に接続される。分級器27の吸入側は、吸込管5を介して採鉱ステーション20と接続される。吸込管5内には海水が満たされる。分級器27には、排出管7の一端が接続され、排出管7の他端が、分級で不要とされた鉱物の戻し置き場まで配管される。なお、吸込管5、揚鉱管6および排出管7にはフレキシブル管を用いている。 The pumping unit 4 includes a pumping pump 25 and a classifier 27 having a cyclone device. The classifier 27 is connected at its discharge side to the suction side of the pumping pump 25 inside the pumping unit 4. The suction side of the classifier 27 is connected to the mining station 20 via the suction pipe 5. The suction pipe 5 is filled with seawater. One end of the discharge pipe 7 is connected to the classifier 27, and the other end of the discharge pipe 7 is piped to a mineral return place that is not required for classification. Note that flexible pipes are used for the suction pipe 5, the pumping pipe 6, and the discharge pipe 7.
 揚鉱用ポンプ25は、上記揚鉱管6を介して採鉱母船1と接続される。揚鉱管6は、採鉱ステーション20で採掘したスラリー状の鉱物を採鉱母船1まで揚鉱するためのフレキシブル性を有する円筒状管路である。揚鉱管6内には海水が満たされる。揚鉱管6の上部は、海上SLの採鉱母船1まで到達し、採鉱母船1の船底を介して貯蔵器13に接続される。貯蔵器13は、揚鉱管6から揚鉱用ポンプ25で揚鉱されたスラリー状の鉱物を貯蔵する。運搬船3は、貯蔵器13を採鉱母船1と換装して、採鉱母船1に揚鉱された海底鉱物を必要な場所に移送する。 The pumping pump 25 is connected to the mining mother ship 1 through the pumping pipe 6. The pumping pipe 6 is a cylindrical pipe line having flexibility for pumping the slurry-like mineral mined at the mining station 20 to the mining mother ship 1. The pumping pipe 6 is filled with seawater. The upper part of the uplift pipe 6 reaches the mining mother ship 1 of the offshore SL and is connected to the reservoir 13 through the bottom of the mining mother ship 1. The reservoir 13 stores the slurry-like mineral pumped from the pumping pipe 6 by the pumping pump 25. The transport ship 3 replaces the reservoir 13 with the mining mother ship 1 and transfers the seabed minerals that have been pumped to the mining mother ship 1 to a necessary place.
 次に、上記採鉱ステーション20について詳しく説明する。
 図2に示すように、採鉱ステーション20は、プラットフォームとなる矩形枠体状のベースフレーム21を有する。ベースフレーム21は、枠体の四隅が複数(この例では4脚)の支持脚26で支持されている。各支持脚26は、ジャッキ機構49を介してベースフレーム21に固定されている。
Next, the mining station 20 will be described in detail.
As shown in FIG. 2, the mining station 20 has a base frame 21 having a rectangular frame shape serving as a platform. The base frame 21 is supported by a plurality of (four legs in this example) support legs 26 at the four corners of the frame. Each support leg 26 is fixed to the base frame 21 via a jack mechanism 49.
 ジャッキ機構49は、不図示のモータ、減速機構およびラック・ピニオン機構を有する。ラックは支持脚26の軸方向に沿って形成されている。ジャッキ機構49は、モータで減速機構を介してラック・ピニオン機構を駆動することにより、支持脚26を上下方向(Z方向)にスライド移動可能に且つその移動位置の保持が可能になっている。なお、ジャッキ機構49の駆動用のモータとしては、流体圧による駆動(例えば油圧駆動)であっても、電力による駆動(例えば電磁式モータ)であってもよい(以下、他の駆動用のモータにおいて同様)。 The jack mechanism 49 has a motor, a speed reduction mechanism, and a rack and pinion mechanism (not shown). The rack is formed along the axial direction of the support leg 26. The jack mechanism 49 can slide the support leg 26 in the vertical direction (Z direction) and can hold the movement position by driving the rack and pinion mechanism via a speed reduction mechanism with a motor. The jack mechanism 49 may be driven by fluid pressure (for example, hydraulic drive) or electric power (for example, an electromagnetic motor) (hereinafter, other drive motors). The same in).
 この例では、ベースフレーム21には、図3に示すように、X方向に沿って二つの移動フレーム43が張り渡されている。移動フレーム43は、例えばトラス構造を有する。各移動フレーム43の両端は、Y方向用移動機構44を介してベースフレーム21にそれぞれ支持される。Y方向用移動機構44は、不図示のモータ、減速機構およびラック・ピニオン機構を有し、モータで減速機構を介してラック・ピニオン機構を駆動することにより、移動フレーム43をベースフレーム21沿ってY方向にスライド移動可能になっている。 In this example, as shown in FIG. 3, two moving frames 43 are stretched over the base frame 21 along the X direction. The moving frame 43 has, for example, a truss structure. Both ends of each moving frame 43 are supported by the base frame 21 via the Y-direction moving mechanism 44. The Y-direction moving mechanism 44 includes a motor, a speed reduction mechanism, and a rack and pinion mechanism (not shown). The moving frame 43 is moved along the base frame 21 by driving the rack and pinion mechanism via the speed reduction mechanism with the motor. The slide movement is possible in the Y direction.
 各移動フレーム43には、ガイドシェル48が縦に配置されている。ガイドシェル48は、採掘装置30のZ方向の送り機構を構成している。ガイドシェル48は、X方向用移動機構52を介して移動フレーム43に支持されている。X方向用移動機構52は、不図示のモータ、減速機構およびラック・ピニオン機構を有し、モータで減速機構を介してラック・ピニオン機構を駆動することにより、ガイドシェル48を移動フレーム43沿ってX方向にスライド移動可能になっている。 A guide shell 48 is vertically arranged on each moving frame 43. The guide shell 48 constitutes a feed mechanism in the Z direction of the mining device 30. The guide shell 48 is supported by the moving frame 43 via the X-direction moving mechanism 52. The X-direction moving mechanism 52 includes a motor, a speed reduction mechanism, and a rack and pinion mechanism (not shown), and the guide shell 48 is moved along the moving frame 43 by driving the rack and pinion mechanism via the speed reduction mechanism. It can slide in the X direction.
 さらに、ベースフレーム21には、基地制御ユニット45および吸込チャンバ51が設けられている。基地制御ユニット45には、上記アンビリカルケーブル8が接続されている。基地制御ユニット45には、採鉱ステーション20および採掘装置30を駆動するために、以下不図示の、高圧水供給ポンプと、高圧水供給ポンプを駆動するモータと、採鉱ステーション20全体の作動を制御する制御部とが内蔵されている。 Furthermore, the base frame 21 is provided with a base control unit 45 and a suction chamber 51. The umbilical cable 8 is connected to the base control unit 45. In order to drive the mining station 20 and the mining device 30, the base control unit 45 controls the operation of the high-pressure water supply pump, the motor that drives the high-pressure water supply pump (not shown), and the operation of the entire mining station 20. A control unit is built in.
 これにより、各採鉱ステーション20は、採鉱母船1からアンビリカルケーブル8を介して必要な電力や制御信号の供給を基地制御ユニット45に受ける。基地制御ユニット45は、採鉱母船1側の管理コンピュータの指令に基づいて、各ジャッキ機構49の駆動により、採鉱ステーション20の姿勢を制御するコントローラとして機能する。 Thereby, each mining station 20 receives supply of necessary power and control signals from the mining mother ship 1 via the umbilical cable 8 to the base control unit 45. The base control unit 45 functions as a controller that controls the attitude of the mining station 20 by driving each jack mechanism 49 based on a command from the management computer on the mining mother ship 1 side.
 さらに、各採鉱ステーション20は、管理コンピュータの管理下、基地制御ユニット45によるX方向用移動機構52およびY方向用移動機構44の駆動により、ガイドシェル48をX方向およびY方向に移動するとともに、高圧水供給ポンプの駆動により、取水した海水を高圧水として採掘装置30に供給し、ガイドシェル48に設けられた採掘装置30を駆動可能になっている。 Furthermore, each mining station 20 moves the guide shell 48 in the X direction and the Y direction by driving the X direction moving mechanism 52 and the Y direction moving mechanism 44 by the base control unit 45 under the control of the management computer. By driving the high-pressure water supply pump, the taken seawater is supplied to the mining device 30 as high-pressure water, and the mining device 30 provided in the guide shell 48 can be driven.
 次に、採鉱ステーション20に装備された採掘装置30について詳しく説明する。
 図4に示すように、ガイドシェル48には、スライダ46を介して採掘装置30が装備されている。ガイドシェル48の上部には、ガイドシェル48に沿ってスライダ46をZ方向にスライド移動させるスライド移動機構47が設けられている。スライド移動機構47は、不図示のモータ、減速機構およびラック・ピニオン機構を有し、モータで減速機構を介してラック・ピニオン機構を駆動することにより、ガイドシェル48に沿ってスライダ46をZ方向にスライド移動可能になっている。
Next, the mining apparatus 30 equipped in the mining station 20 will be described in detail.
As shown in FIG. 4, the guide shell 48 is equipped with a mining device 30 via a slider 46. A slide moving mechanism 47 that slides the slider 46 in the Z direction along the guide shell 48 is provided above the guide shell 48. The slide moving mechanism 47 has a motor, a speed reduction mechanism, and a rack and pinion mechanism (not shown), and drives the rack and pinion mechanism via the speed reduction mechanism by the motor, thereby moving the slider 46 along the guide shell 48 in the Z direction. The slide can be moved.
 採掘装置30は、スライダ46に装着されるハウジング部71を有する。ハウジング部71には、不図示の回転駆動機構およびスイベルが内蔵されている。ハウジング部71は、ハウジング部71の上部が、高圧水供給管9を介して上記基地制御ユニット45の高圧水供給ポンプに接続される。また、ハウジング部71の側面には、この採掘装置30の駆動により採掘されたスラリー状の鉱物を吸入するための吸込管5の一端が接続される。吸込管5の他端は、上記吸込チャンバ51を介して分級器27に接続される。 The mining device 30 has a housing portion 71 attached to the slider 46. The housing portion 71 incorporates a rotation drive mechanism and a swivel (not shown). The upper part of the housing part 71 is connected to the high-pressure water supply pump of the base control unit 45 through the high-pressure water supply pipe 9. Further, one end of a suction pipe 5 for sucking slurry-like mineral mined by driving the mining device 30 is connected to the side surface of the housing portion 71. The other end of the suction pipe 5 is connected to the classifier 27 through the suction chamber 51.
 次に、上記採掘装置30の採掘装置本体の構成についてより詳しく説明する。
 図5に採掘装置本体の部分を拡大して示すように、この採掘装置30は、二重管ロッド40よりも前方の部分に採掘装置本体10が装備される。採掘装置本体10は、円筒状のシリンダ31を備える。シリンダ31の内周面には、略円筒状のシリンダライナ33が嵌め込まれている。シリンダ31とシリンダライナ33との間には、シリンダ31の軸方向に沿って通水孔32が形成されている。
Next, the configuration of the mining device main body of the mining device 30 will be described in more detail.
As shown in an enlarged view of the portion of the mining device main body in FIG. 5, the mining device 30 is equipped with the mining device main body 10 in a portion ahead of the double tube rod 40. The mining device main body 10 includes a cylindrical cylinder 31. A substantially cylindrical cylinder liner 33 is fitted on the inner peripheral surface of the cylinder 31. A water passage hole 32 is formed between the cylinder 31 and the cylinder liner 33 along the axial direction of the cylinder 31.
 シリンダライナ33内には、略円筒状のハンマ34が往復摺動可能に保持されている。シリンダ31の後端は、連結部材35を介して、採掘装置30の二重管ロッド40に連結されている。二重管ロッド40は、外筒40aと内筒40bとを同軸に有する二重管から構成されている。外筒40aと内筒40bとの相互の隙間には給水路40cが形成されている。給水路40cの上流側は、上記ハウジング部71のスイベルを介して高圧水供給管9に接続される。高圧水供給管9は、採鉱ステーション20の基地制御ユニット45に設けられた高圧水供給ポンプの吐出側に接続される。給水路40cの下流側は、連結部材35の内部の給水路35cに連通している。 In the cylinder liner 33, a substantially cylindrical hammer 34 is slidably held. The rear end of the cylinder 31 is connected to the double tube rod 40 of the mining device 30 via a connecting member 35. The double tube rod 40 is composed of a double tube having an outer tube 40a and an inner tube 40b coaxially. A water supply path 40c is formed in a gap between the outer cylinder 40a and the inner cylinder 40b. The upstream side of the water supply path 40 c is connected to the high-pressure water supply pipe 9 through the swivel of the housing part 71. The high-pressure water supply pipe 9 is connected to the discharge side of the high-pressure water supply pump provided in the base control unit 45 of the mining station 20. The downstream side of the water supply path 40 c communicates with the water supply path 35 c inside the connecting member 35.
 シリンダ31の後端側には、連結部材35の前端面との間にシリンダブシュ36が挿入されている。シリンダブシュ36の前側には、シリンダ後室42を形成するためのリング39が挿入されている。これにより、リング39とハンマ34の後方部分との間にシリンダ後室42が画成されている。シリンダブシュ36には、給水路35cに連通する連通孔36cが軸方向に沿って設けられている。 A cylinder bush 36 is inserted between the rear end side of the cylinder 31 and the front end surface of the connecting member 35. A ring 39 for forming a cylinder rear chamber 42 is inserted on the front side of the cylinder bush 36. Thus, a cylinder rear chamber 42 is defined between the ring 39 and the rear portion of the hammer 34. The cylinder bush 36 is provided with a communication hole 36c communicating with the water supply passage 35c along the axial direction.
 シリンダ31の前端には、打撃用の破砕工具であるビット50が装着される。ビット50の後端とハンマ34の前方部分との間にシリンダ前室41が画成される。ビット50は、シリンダ前室41の前側面を塞ぐとともに、ハンマ34からの打撃力を自身後端が受けて、軸方向で所定ストロークの往復摺動が可能に装着されている。ハンマ34の外周面には、複数の制御溝34a、34cおよび連通流路34bが形成されている。 A bit 50 that is a crushing tool for striking is attached to the front end of the cylinder 31. A cylinder front chamber 41 is defined between the rear end of the bit 50 and the front portion of the hammer 34. The bit 50 is mounted so as to block the front side surface of the cylinder front chamber 41 and to receive a striking force from the hammer 34 at its rear end so that it can reciprocate for a predetermined stroke in the axial direction. A plurality of control grooves 34 a and 34 c and a communication channel 34 b are formed on the outer peripheral surface of the hammer 34.
 シリンダ31内には、シリンダブシュ36の前側とリング39との間に第一入水孔31bが形成されている。第一入水孔31bは、シリンダブシュ36の連通孔36cとシリンダライナ33の後端部の連通孔33eとを連通させている。シリンダライナ33の連通孔33eは、上記通水孔32に連通している。通水孔32は、ハンマ34の軸方向での位置に応じて、シリンダライナ33の複数の連通孔33a~33dに対し、ハンマ34の制御溝34a、34cを所期の位置で連通させることで、ハンマ34をシリンダ31内で前後進させるようにシリンダ前室41またはシリンダ後室42に高圧水を給排するハンマ往復動切換機構を構成している。 In the cylinder 31, a first water inlet hole 31 b is formed between the front side of the cylinder bush 36 and the ring 39. The first water inlet hole 31 b allows the communication hole 36 c of the cylinder bush 36 to communicate with the communication hole 33 e at the rear end of the cylinder liner 33. The communication hole 33 e of the cylinder liner 33 communicates with the water passage hole 32. The water passage hole 32 communicates the control grooves 34a and 34c of the hammer 34 at the intended positions with the plurality of communication holes 33a to 33d of the cylinder liner 33 according to the position of the hammer 34 in the axial direction. The hammer reciprocating switching mechanism is configured to supply and discharge high-pressure water to the cylinder front chamber 41 or the cylinder rear chamber 42 so that the hammer 34 moves forward and backward in the cylinder 31.
 更に、シリンダ31内には、円筒状のスリーブ38がシリンダ31と同軸に設けられている。スリーブ38は、内部に吸入孔38tが軸方向に沿って貫通形成されている。スリーブ38は、その後部に形成された段部が、シリンダブシュ36とリング39とに挿入されて軸方向の位置が保持されている。スリーブ38の吸入孔38tの後端は、連結部材35の吸入孔35tを介して、二重管ロッド40の内筒40bの吸入孔40t前端に連通している。 Furthermore, a cylindrical sleeve 38 is provided coaxially with the cylinder 31 in the cylinder 31. In the sleeve 38, a suction hole 38t is formed so as to penetrate along the axial direction. In the sleeve 38, a step portion formed at the rear portion thereof is inserted into the cylinder bush 36 and the ring 39 so that the axial position is maintained. The rear end of the suction hole 38 t of the sleeve 38 communicates with the front end of the suction hole 40 t of the inner tube 40 b of the double tube rod 40 via the suction hole 35 t of the connecting member 35.
 スリーブ38の中間部分は、ハンマ34内部に貫通形成された連通孔34dに隙間を隔てて貫挿されるとともに、スリーブ38の前端部分が、ビット50内部に貫通形成された連通孔50dに隙間を隔てて挿入されている。スリーブ38は、ハンマ34およびビット50に挿入されている径方向での間隙部が、シリンダ前室41およびシリンダ後室42からの排水用通路38aになっている。 An intermediate portion of the sleeve 38 is inserted through a communication hole 34d formed through the hammer 34 with a gap therebetween, and a front end portion of the sleeve 38 is formed between the communication hole 50d formed through the bit 50 with a gap therebetween. Inserted. In the sleeve 38, a radial gap inserted into the hammer 34 and the bit 50 serves as a drainage passage 38 a from the cylinder front chamber 41 and the cylinder rear chamber 42.
 スリーブ38には、排水用通路38aの先端側の位置に吐出孔38gが穿孔されている。吐出孔38gは、スリーブ38の外周から中心の吸入孔38tに向けて且つ二重管ロッド40の方向に向けて後方側に傾斜している。スリーブ38の吸入孔38tには、吐出孔38gの出口に、シリンダ前室41への土砂等の侵入を防ぐ為の可撓性のチェックバルブ37が取り付けられている。 The sleeve 38 is provided with a discharge hole 38g at a position on the tip side of the drainage passage 38a. The discharge hole 38 g is inclined rearward from the outer periphery of the sleeve 38 toward the central suction hole 38 t and toward the double tube rod 40. A flexible check valve 37 is attached to the suction hole 38t of the sleeve 38 at the outlet of the discharge hole 38g to prevent intrusion of earth and sand into the cylinder front chamber 41.
 ビット50の前端には、スリーブ38中心の吸入孔38tに連通する吸水孔50kが開口している。これにより、採掘装置30は、吐出孔38gから吸入孔38tに向けて後方側に吐出される高圧水の流速により、吸水孔50kに負圧を生じさせ、吸水孔50kから吸引した海底鉱物が、吸入孔38t内で海水と混合されるようになっている。 The water absorption hole 50k communicating with the suction hole 38t at the center of the sleeve 38 is opened at the front end of the bit 50. As a result, the mining device 30 generates a negative pressure in the water suction hole 50k due to the flow velocity of the high-pressure water discharged backward from the discharge hole 38g toward the suction hole 38t, and the seabed mineral sucked from the water suction hole 50k is It is mixed with seawater in the suction hole 38t.
 したがって、この採掘装置30によれば、さく孔により破砕された海底鉱物を排水流によって採掘装置30の内部に吸引し、吸入孔38tの内部で海水と混合してスラリーを生成することができる。また、この採掘装置30によれば、二重管ロッド40の内筒40bの吸入孔40tから、生成されたスラリーを回収することができる。さらに、揚鉱用ポンプ25は、二重管ロッド40の内筒40bの上端に吸込管5を介して接続され、ビット50の吸水孔50kからさく孔により破砕された海底鉱物を吸引し、海上の採鉱母船1に揚鉱可能である。 Therefore, according to the mining device 30, the seabed mineral crushed by the drill holes can be sucked into the mining device 30 by the drainage flow and mixed with seawater inside the suction hole 38t to generate a slurry. Further, according to the mining device 30, the generated slurry can be recovered from the suction hole 40 t of the inner cylinder 40 b of the double tube rod 40. Further, the pump 25 for pumping is connected to the upper end of the inner cylinder 40b of the double pipe rod 40 via the suction pipe 5 and sucks the seabed minerals crushed by the drill holes from the water suction holes 50k of the bit 50, The mining mother ship 1 can be pumped.
 次に、上述の採掘システムによって、海底鉱床ODから鉱物を揚鉱する手順、並びにこの海底鉱物の採掘システム並びに採掘装置30による海底鉱物の採掘方法の作用・効果について説明する。
 まず、図1に示したように、採鉱母船1、および架設配置用母船2を目的とする海域の海上SLに停泊する。次いで、架設配置用母船2に設置されているクレーン等の作業機11を用い、採鉱ステーション20および揚鉱ユニット4を海中に降ろし、これらの機材が図1に示す配置となるように海底SBの適切な位置に設置する。これらの機材の設置前または設置後に、吸込管5、揚鉱管6および排出管7、並びにアンビリカルケーブル8等の必要な配管および配線を行い、各配管内には海水を満たす。
Next, the procedure for pumping minerals from the seabed deposit OD by the above-described mining system, and the operation and effect of the seabed mineral mining system and the seabed mineral mining method by the mining apparatus 30 will be described.
First, as shown in FIG. 1, the mining mother ship 1 and the erection and placement mother ship 2 are anchored on the sea SL in the target sea area. Next, using the work machine 11 such as a crane installed in the laying arrangement mother ship 2, the mining station 20 and the ore unit 4 are lowered into the sea, and the equipment of the seabed SB is arranged so that these equipments are arranged as shown in FIG. Install in an appropriate position. Prior to or after installation of these equipment, necessary piping and wiring such as the suction pipe 5, the pumping pipe 6 and the discharge pipe 7, and the umbilical cable 8 are performed, and each pipe is filled with seawater.
 機材の設置後、採鉱母船1からアンビリカルケーブル8を介して基地制御ユニット45および揚鉱ユニット4に必要な電力や制御信号を供給し、採鉱ステーション20および採掘装置30並びに揚鉱ユニット4を駆動して海底鉱床ODに有底穴である竪穴VHをさく孔しつつ海底鉱物を粉砕する。なお、本実施形態において、採鉱ステーション20を海底鉱床ODに配置する際は、海底SBの凹凸形状に応じ、ベースフレーム21の姿勢が水平になるように、ベースフレーム21四隅の支持脚26をジャッキ機構49により上下にスライド移動させておく。 After the equipment is installed, necessary power and control signals are supplied from the mining mother ship 1 to the base control unit 45 and the mining unit 4 via the umbilical cable 8, and the mining station 20, the mining device 30 and the mining unit 4 are driven. Then, the seabed mineral is crushed while drilling the hole VH which is a bottomed hole in the seabed deposit OD. In this embodiment, when the mining station 20 is arranged on the seabed deposit OD, the support legs 26 at the four corners of the base frame 21 are jacked so that the posture of the base frame 21 is horizontal according to the uneven shape of the seabed SB. It is slid up and down by the mechanism 49.
 ここで、採鉱ステーション20のベースフレーム21に設けられた高圧水供給ポンプから供給される高圧水は、図5において、採掘装置30の二重管ロッド40の内筒40bと外筒40aの間の給水路40cを通って、連結部材35の給水路35cから第一入水孔31bから連通孔33eを経て通水孔32に入る。 Here, the high-pressure water supplied from the high-pressure water supply pump provided in the base frame 21 of the mining station 20 is between the inner tube 40b and the outer tube 40a of the double tube rod 40 of the mining device 30 in FIG. The water enters the water passage 32 through the water supply passage 40c, the water supply passage 35c of the connecting member 35, the first water introduction hole 31b, and the communication hole 33e.
 通水孔32に入った高圧水は、ハンマ往復動切換機構に導入される。ハンマ往復動切換機構において、ハンマ前進状態での高圧水は、シリンダライナ33の連通孔33b~制御溝34a~連通孔33c~32L~33dの順に通り、ハンマ34前端のシリンダ前室41に入る。このとき、制御溝34cは連通孔33aとハンマ34の外周面で遮断されている。これにより、ハンマ34は後退(図5において上方に移動)する。 The high-pressure water that has entered the water passage 32 is introduced into the hammer reciprocation switching mechanism. In the hammer reciprocation switching mechanism, the high-pressure water in the hammer forward state passes through the communication hole 33b of the cylinder liner 33, the control groove 34a, the communication holes 33c to 32L, and 33d in this order, and enters the cylinder front chamber 41 at the front end of the hammer 34. At this time, the control groove 34 c is blocked by the communication hole 33 a and the outer peripheral surface of the hammer 34. As a result, the hammer 34 moves backward (moves upward in FIG. 5).
 ハンマ34の後退により、ハンマ34後方のシリンダ後室42内の海水は、排水用通路38aを通り、吐出孔38gからチェックバルブ37を経て吸入孔38tに向けて吐出される。
 次いで、ハンマ34が、図6に示すように、後退限に達すると、シリンダライナ33に形成された通水孔33bがハンマ34の外周面で遮断される。一方、通水孔33aは、ハンマ34の外周面に形成されている制御溝34cと連通する。そのため、シリンダ31の通水孔32からの高圧水は、ハンマ34後側のシリンダ後室42に流入する。
 この高圧水のシリンダ後室42への流入により、ハンマ34は後退から前進に転じ、所期の打撃位置でビット50の後端面を打撃する。打撃されたビット50は、先端のチップ50bがさく孔面に衝撃力を加えて海底鉱物を破砕する。
As the hammer 34 moves backward, the seawater in the cylinder rear chamber 42 behind the hammer 34 passes through the drainage passage 38a and is discharged from the discharge hole 38g through the check valve 37 toward the suction hole 38t.
Next, as shown in FIG. 6, when the hammer 34 reaches the retreat limit, the water passage hole 33 b formed in the cylinder liner 33 is blocked by the outer peripheral surface of the hammer 34. On the other hand, the water passage hole 33 a communicates with a control groove 34 c formed on the outer peripheral surface of the hammer 34. Therefore, the high-pressure water from the water passage hole 32 of the cylinder 31 flows into the cylinder rear chamber 42 on the rear side of the hammer 34.
Due to the flow of the high-pressure water into the cylinder rear chamber 42, the hammer 34 turns from backward to forward, and strikes the rear end face of the bit 50 at the desired strike position. The hit bit 50 applies an impact force to the hole surface drilled by the tip 50b at the tip, and crushes the seabed mineral.
 高圧水供給ポンプから採掘装置30に高圧水が供給され続けることにより、ハンマ34は、上述の往復移動によりビット50の後端面への打撃を繰り返す。そして、ビット50でのさく孔面への打撃とともに、ガイドシェル48に設けられた送り機構47による採掘装置30の給進駆動がなされるとともに、ハウジング部71の回転機構による採掘装置30の回転駆動がなされる。 As the high-pressure water continues to be supplied from the high-pressure water supply pump to the mining device 30, the hammer 34 repeatedly strikes the rear end surface of the bit 50 by the above-described reciprocating movement. Then, along with striking the drill surface with the bit 50, the feed mechanism 47 provided in the guide shell 48 drives the mining device 30, and the rotation mechanism of the housing portion 71 rotates the mining device 30. Is made.
 そのため、この採掘装置30によれば、海底鉱床ODにさく孔により竪穴VHを形成しつつ海底鉱物の採掘を継続することができる。そして、この採掘装置30によれば、竪穴VH内に自身の採掘装置本体10が存在しているので、竪穴VHの開口側を塞いだ状態のままさく孔を進めることができる。したがって、海底鉱物の破砕粉が海中に流出することが防止または抑制される。そのため、海水の懸濁が防止または抑制される(採掘部、採掘工程)。 Therefore, according to this mining device 30, it is possible to continue the mining of the seabed mineral while forming the pit VH by the hole drilled in the seabed deposit OD. And according to this mining apparatus 30, since the own mining apparatus main body 10 exists in the dredging hole VH, the drilling hole can be advanced while the opening side of the dredging hole VH is closed. Therefore, the crushed powder of the seabed mineral is prevented or suppressed from flowing into the sea. Therefore, suspension of seawater is prevented or suppressed (mining part, mining process).
 そして、この採掘装置30によれば、ビット50の前端には、スリーブ38の吸入孔38tに連通する吸水孔50kが開口しており、吸入孔38tは、二重管ロッド40の方向に向けて傾斜した吐出孔38gに沿って開放されているので、吸入孔38tを通る高圧水の流速により、吸水孔50kに負圧が生じる。これにより、ビット50の吸水孔50kから、さく孔により破砕した海底鉱物が吸引されるとともに、吸引した海底鉱物を吸入孔38t内で海水と混合することができる。 According to the mining device 30, the water suction hole 50 k communicating with the suction hole 38 t of the sleeve 38 is opened at the front end of the bit 50, and the suction hole 38 t is directed toward the double tube rod 40. Since it is opened along the inclined discharge hole 38g, a negative pressure is generated in the water suction hole 50k due to the flow velocity of the high-pressure water passing through the suction hole 38t. Thereby, the seabed mineral crushed by the drill hole is sucked from the water suction hole 50k of the bit 50, and the sucked seabed mineral can be mixed with seawater in the suction hole 38t.
 ここで、衝撃力によるさく孔であると、さく孔により生じる破砕された海底鉱物は、その粒子径が非常に細かくて粒度が均一になる。そのため、この採掘装置30によれば、さく孔により生じる破砕された海底鉱物を排水流の作用によって吸引し、採掘装置30の吸入孔38t内部で海水と混合したスラリーとすることができる(スラリー生成部、スラリー生成工程)。 Here, when the holes are drilled by impact force, the crushed submarine minerals generated by the holes are very fine in particle size and uniform in particle size. Therefore, according to the mining device 30, the crushed seabed mineral generated by the drilling holes can be sucked by the action of the drainage flow to be a slurry mixed with seawater inside the suction hole 38 t of the mining device 30 (slurry generation). Part, slurry production step).
 さらに、この採掘装置30によれば、スリーブ38の吸入孔38tは、二重管ロッド40の内筒40bの吸入孔40tを経て吸込管5に直接導入され、揚鉱ユニット4は、採掘装置30で採掘されたスラリー状の鉱物を海水と共に吸込管5から吸入できる。よって、スラリー状の海底鉱物が海水中に舞い上がって飛散してしまうことを防止または抑制できる(回収部、回収工程)。 Further, according to the mining device 30, the suction hole 38 t of the sleeve 38 is directly introduced into the suction pipe 5 via the suction hole 40 t of the inner tube 40 b of the double tube rod 40, and the ore unit 4 is connected to the mining device 30. The slurry-like mineral mined in step 1 can be sucked from the suction pipe 5 together with seawater. Therefore, it is possible to prevent or suppress the slurry-like seabed mineral from flying up into the seawater and scattering (recovery unit, recovery process).
 次いで、吸込管5で吸入されたスラリー状の鉱物は分級器27に移送される。分級器27は、鉱物粒子の比重差によって遠心力により所望の鉱物とそうでない不要な鉱物とを分離する。分級で不要とされた鉱物は、図1に示すように、分級器27に接続された排出管7を介して海底の戻し置き場に導かれる。
 一方、分離されたスラリー状の鉱物のうち、所望の比重の鉱物は、揚鉱用ポンプ25に送られ、揚鉱管6を介して採鉱母船1の貯蔵器13に揚鉱される。採鉱母船1では、貯蔵器13に貯蔵するときに、スラリー状の鉱物を海水と分離し、海底鉱物が貯蔵器13内部に貯蔵され、分離された海水は海中に排出される。
Next, the slurry-like mineral sucked through the suction pipe 5 is transferred to the classifier 27. The classifier 27 separates desired minerals from unnecessary minerals by centrifugal force due to the specific gravity difference of the mineral particles. As shown in FIG. 1, the minerals that are made unnecessary in the classification are guided to the seabed return place through the discharge pipe 7 connected to the classifier 27.
On the other hand, among the separated slurry-like minerals, a mineral having a desired specific gravity is sent to the pumping pump 25 and is pumped to the storage 13 of the mining mother ship 1 through the pumping pipe 6. In the mining mother ship 1, when storing in the reservoir 13, the slurry-like mineral is separated from seawater, the seabed mineral is stored inside the reservoir 13, and the separated seawater is discharged into the sea.
 各採鉱ステーション20は、採掘装置30それぞれの最大さく孔深度まで採掘したら採掘装置30を後退した後に、採掘装置30をX-Y平面で移動して、図7(b)に示すように、X-Y平面全体を走査するように順次にさく孔を行う。X-Y平面での移動および移動後のさく孔は、本実施形態のように、コンピュータ(上記管理コンピュータ、および基地制御ユニット45等)により自動的に行ってもよいし、各採鉱ステーション20の状況をオペレータが海上の採鉱母船1から監視しつつ、オペレータの手動操作によって行ってもよい。 Each mining station 20 moves the mining device 30 in the XY plane after retreating the mining device 30 after mining up to the maximum drilling depth of each mining device 30, and as shown in FIG. -Drill holes sequentially to scan the entire Y plane. The movement in the XY plane and the drilled holes after the movement may be automatically performed by a computer (the management computer, the base control unit 45, etc.) as in this embodiment, or each mining station 20 The situation may be performed manually by the operator while the operator is monitoring from the offshore mining mother ship 1.
 特に、この採掘装置30を備える採鉱ステーション20、および、海底鉱物の採掘システム並びにこれらの設備を用いた揚鉱方法によれば、各採鉱ステーション20は、複数の支持脚26を有し、各支持脚26は、垂直方向への移動機構であるジャッキ機構49を介してZ方向に個別に相対的スライド移動が可能なので、海底鉱床の傾斜や起伏に対応することができる。そして、オペレータがカメラ等によって監視しつつ手動操作を行う場合、海水中への海底鉱物の飛散が防止または抑制されているため、採掘作業の効率を向上させる上で好適である。 In particular, according to the mining station 20 provided with the mining device 30, the submarine mineral mining system, and the pumping method using these facilities, each mining station 20 has a plurality of support legs 26, and each support Since the legs 26 can be individually slid relative to each other in the Z direction via a jack mechanism 49 that is a moving mechanism in the vertical direction, the legs 26 can cope with the inclination and undulation of the seabed deposit. And when an operator performs manual operation, monitoring with a camera etc., since the scattering of the seabed mineral into seawater is prevented or suppressed, it is suitable when improving the efficiency of a mining operation.
 ここで、採鉱ステーション20は、上記実施形態のように、複数台を用いて広範囲を同時に採掘することができるが、採鉱ステーション20が装備する採掘装置30についても、細径用のものから大径用のものまで、種々の採掘装置30を用いることができる。
 例えば、図7(a)に示すように、細径用採掘装置30を装備した採鉱ステーション20で採掘後に、同じ領域に対して、図8に示すように、大径用採掘装置30を装備した他の採鉱ステーション20、または大径用採掘装置30に換装した同一の採鉱ステーション20で更に採掘することもできる。なお、図7(a)および図8での、符号50および50Bは、ビットのみを換装するのではなく、細径ビット50ないし大径ビット50Bに対応した採掘装置30全体を換装する意味である。
Here, the mining station 20 can mine a wide range at the same time using a plurality of units as in the above embodiment, but the mining device 30 equipped in the mining station 20 also has a large diameter from a small diameter one. Various mining devices 30 can be used up to the required one.
For example, as shown in FIG. 7A, after mining at the mining station 20 equipped with the small-diameter mining device 30, the same area is equipped with the large-diameter mining device 30 as shown in FIG. Further mining can be performed at another mining station 20 or the same mining station 20 replaced with the large-diameter mining device 30. Reference numerals 50 and 50B in FIG. 7 (a) and FIG. 8 mean that the entire mining device 30 corresponding to the small-diameter bit 50 or the large-diameter bit 50B is replaced, not only the bit. .
 このように、採掘装置30を備える採鉱ステーション20、および、海底鉱物の採掘システム並びにこれらの設備を用いた揚鉱方法によれば、海底鉱床の傾斜や起伏に対応可能であり、さらに、スラリー状の海底鉱物が竪穴VH内にあるので、海底鉱物が海水中に舞い上がって飛散してしまうことが防止または抑制される。また、本実施形態の採掘システムは、採掘装置30で採掘されたスラリー状の海底鉱物を竪穴VH内部から吸込管5に直接導入するので、揚鉱時の海水中への飛散も防止または抑制することができる。 Thus, according to the mining station 20 provided with the mining device 30, the submarine mineral mining system, and the pumping method using these facilities, it is possible to cope with the inclination and undulation of the submarine deposit, and further in the form of slurry. Therefore, the seabed mineral is prevented or suppressed from flying up into the seawater and being scattered. Moreover, since the mining system of this embodiment introduce | transduces the slurry-like seabed mineral mined with the mining apparatus 30 directly into the suction pipe 5 from the inside of the pit VH, it prevents or suppresses scattering to the seawater at the time of pumping. be able to.
 なお、本発明は、上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しなければ種々の変形が可能なことは勿論である。
 例えば、上記実施形態では、海上採鉱基地として採鉱母船1を例に説明したが、これに限定されず、海上揚鉱基地として機能すれば、例えば海上に建設されたプラットフォームなどであってもよい。
In addition, this invention is not limited to the said embodiment, Of course, a various deformation | transformation is possible unless it deviates from the meaning of this invention.
For example, in the above-described embodiment, the mining mother ship 1 is described as an example of the offshore mining base. However, the present invention is not limited to this, and a platform constructed on the sea may be used as long as it functions as an offshore mining base.
 また、例えば上記実施形態では、スラリー状の鉱物を、採鉱母船1内に設けられた貯蔵器13まで運搬する例で説明したが、これに限定されず、海底で採掘した鉱物を有底穴である竪穴VH内部から直接運搬すれば、海上の近傍や海面下(例えば船底近くに貯蔵器を設ける)で揚鉱もしくは貯蔵、または分級を行ってもよい。 Further, for example, in the above-described embodiment, an example in which the slurry-like mineral is transported to the reservoir 13 provided in the mining mother ship 1 is described. However, the present invention is not limited thereto, and the mineral mined on the sea floor is a bottomed hole. If it is transported directly from inside a certain pit VH, it may be pumped or stored or classified near the sea or below the sea surface (for example, a reservoir is provided near the bottom of the ship).
 また、例えば上記実施形態では、有底穴の一例として竪穴VHをさく孔する例で説明したが、本発明に係る有底穴は、その軸線の向きが垂直方向に限定されない。つまり、本発明は、さく孔により有底穴を形成し、その有底穴の内部で海底鉱物をスラリーとし、そのスラリーを有底穴の内部から回収可能であればよい。よって、本発明に係る有底穴は、その軸線を水平とする横穴であってもよいし、また、軸線が斜めであってもよい。 For example, in the above-described embodiment, an example in which the hole VH is drilled as an example of the bottomed hole has been described. However, the direction of the axis of the bottomed hole according to the present invention is not limited to the vertical direction. That is, the present invention only needs to form a bottomed hole by drilling holes, make the seabed mineral a slurry inside the bottomed hole, and recover the slurry from the inside of the bottomed hole. Therefore, the bottomed hole according to the present invention may be a horizontal hole whose axis is horizontal, or the axis may be oblique.
 また、竪穴VHを形成する方法および装置は、打撃機構によるさく孔に限定されず、回転機構によるドリル穿孔であってもよい。但し、採掘した鉱物をスラリー状とし、粒子径を非常に細かくして粒度を均一にする上では、ドリル穿孔ではなく、打撃機構によるさく孔が好ましい。 Further, the method and apparatus for forming the pit hole VH are not limited to drilling holes by a striking mechanism, but may be drilling by a rotating mechanism. However, in order to make the mined mineral into a slurry and make the particle diameter very fine to make the particle size uniform, drilling by a striking mechanism is preferable instead of drilling.
 また、例えば上記実施形態では、揚鉱ユニット4が分級器27を有し、この分級器27により海中でスラリー状の鉱物を分級する例を示したが、これに限定されず、本発明に係る採掘装置によれば、採掘した鉱物がスラリー状であり、粒子径が非常に細かくて粒度が均一になるので、スラリー状の海底鉱物を分級することなしに揚鉱してもよい。 In the above embodiment, for example, the pumping unit 4 has the classifier 27, and the classifier 27 classifies the slurry-like mineral in the sea. However, the present invention is not limited to this, and the present invention relates to the present invention. According to the mining device, the mined mineral is in the form of a slurry, and the particle diameter is very fine and the particle size becomes uniform. Therefore, the mining may be carried out without classifying the slurry-like seabed mineral.
 また、例えば上記実施形態では、採掘装置30は、外筒40aと内筒40bとを有する二重管ロッド40を有する例で説明したが、これに限定されず、例えば図9に示すように、単管ロッドを用いて採掘装置を構成してもよい。
 すなわち、同図に示すように、この採掘装置130は、単管のロッド57を有し、ロッド57の前方に採掘装置本体100が装着されている。採掘装置本体100は、ロッド57の先端にテーパねじ部56aで連結されたシリンダ56を有する。シリンダ56には、上方から順に、チェックバルブ51、ハンマ54およびビット50が内装され、ハンマ54の前後には、シリンダ前室52とシリンダ後室53が画成されている。
Further, for example, in the above-described embodiment, the mining device 30 has been described as an example having the double tube rod 40 having the outer tube 40a and the inner tube 40b. However, the embodiment is not limited thereto, for example, as shown in FIG. The mining device may be configured using a single tube rod.
That is, as shown in the figure, this mining device 130 has a single-tube rod 57, and the mining device main body 100 is mounted in front of the rod 57. The mining device main body 100 has a cylinder 56 connected to the tip of a rod 57 by a taper screw portion 56a. A check valve 51, a hammer 54, and a bit 50 are housed in the cylinder 56 in order from above, and a cylinder front chamber 52 and a cylinder rear chamber 53 are defined before and after the hammer 54.
 この採掘装置130を駆動する高圧水は、上記実施形態同様に、ロッド57上端のハウジング部71に、高圧水供給ポンプから高圧水供給管9を介して供給される。供給された高圧水は、上記実施形態同様に、シリンダ56とハンマ54の内外周面に形成されたハンマ往復動切換え機構により、ハンマ54をシリンダ56内で前後進させるようにシリンダ前室52またはシリンダ後室53に給排される。また、ロッド57は、上記実施形態同様に、ガイドシェル48に据え付けた送り機構47とハウジング部71の回転機構により回転および給進される。 The high-pressure water that drives the mining device 130 is supplied to the housing portion 71 at the upper end of the rod 57 from the high-pressure water supply pump 9 through the high-pressure water supply pipe 9 as in the above embodiment. The supplied high-pressure water is supplied to the cylinder front chamber 52 or the cylinder front chamber 52 so as to move the hammer 54 back and forth in the cylinder 56 by a hammer reciprocating switching mechanism formed on the inner and outer peripheral surfaces of the cylinder 56 and the hammer 54 as in the above embodiment. It is supplied to and discharged from the cylinder rear chamber 53. Further, the rod 57 is rotated and fed by the feed mechanism 47 installed on the guide shell 48 and the rotation mechanism of the housing portion 71 as in the above embodiment.
 ここで、この採掘装置130は、シリンダ56には、さく孔口の周囲を囲繞するように、フートパッド58がさく孔口側に向けて押圧可能且つ軸方向に沿ってスライド移動可能に設けられている。フートパッド58の上部側面には、スラリーを海底鉱物資源として採掘する吸込管5が接続される。 Here, the mining device 130 is provided on the cylinder 56 so that the foot pad 58 can be pressed toward the drilling hole and slidable along the axial direction so as to surround the periphery of the drilling hole. Yes. A suction pipe 5 for mining slurry as a seabed mineral resource is connected to the upper side surface of the foot pad 58.
 この採掘装置130において、高圧水は、上部のチェックバルブ51を通り、ハンマ往復動切換え機構により、シリンダ前室52とシリンダ後室53とに給排されてハンマ54を前後に駆動し、ハンマ54がビット50を打撃した衝撃によって海底鉱床ODに有底穴である竪穴VHをさく孔する(採掘部、採掘工程)。
 打撃後の高圧水は、ビット50の軸心に設けた吸入孔50aを経てビット先端に出るが、さく孔で採掘された海底鉱物は、竪穴VH内で海水と混合されてスラリーとなる(スラリー生成部、スラリー生成工程)。
In the mining device 130, the high-pressure water passes through the upper check valve 51, and is supplied and discharged to the cylinder front chamber 52 and the cylinder rear chamber 53 by the hammer reciprocating switching mechanism to drive the hammer 54 forward and backward. Drills a hole VH, which is a bottomed hole, in the seabed deposit OD by the impact of hitting the bit 50 (mining part, mining process).
The high-pressure water after hitting is discharged to the tip of the bit through a suction hole 50a provided in the shaft center of the bit 50. The seabed mineral mined by the drill hole is mixed with seawater in the pit VH to become a slurry (slurry Generating section, slurry generating step).
 そして、竪穴VH内で生成されたスラリーは、シリンダ56の外側とさく孔内壁VHnとの隙間、ないし、さく孔内壁VHnに接して海水中まで延設されたロッド57外側とさく孔内壁VHnとの隙間を通り、フートパッド58の内側から吸込管5を介して竪穴VH内から直接回収される(回収部、回収工程)。よって、この採掘装置130のような構成であっても、海中での採掘鉱物の飛散を防止または抑制することができる。 And the slurry produced | generated in the coffin hole VH is the clearance gap between the outer side of the cylinder 56, and a drill hole inner wall VHn, or the rod 57 outer side extended in the seawater in contact with the drill hole inner wall VHn, and the hole inner wall VHn. And is directly collected from the inside of the foot hole VH through the suction pipe 5 from the inside of the foot pad 58 (recovery unit, recovery process). Therefore, even if it is a structure like this mining apparatus 130, the scattering of the mining mineral in the sea can be prevented or suppressed.
 また、例えば上記実施形態では、海中採鉱基地として、採鉱ステーション20が自らは水平方向には移動しない例で説明したが、これに限らず、例えば、図10に示すように、採鉱ステーションが自ら水平方向に移動可能な機構を有する構成とすることもできる。 For example, in the above-described embodiment, an example in which the mining station 20 does not move in the horizontal direction as an underwater mining base has been described. However, the present invention is not limited to this. For example, as shown in FIG. It can also be set as the structure which has the mechanism which can move to a direction.
 ここで、海底鉱床の鉱物資源を採掘する掘削機について、これまでに提案されている主なコンセプトは、クローラ式の遠隔操作掘削機を用いて、クローラで走行しつつ掘削機に搭載したドラムカッターで水平方向に海底鉱床を採掘する方式である。これを、以下、水平式採掘システム(HMS)と呼ぶことにする。HMSは、可動性、可搬性に優れ、自由に海底を走行しながら採掘できる。一方、HMSは、以下の(課題1)~(課題5)のような点で解決すべき課題がある。 Here, the main concept that has been proposed for the excavator for mining the mineral resources of the submarine deposit is the drum cutter mounted on the excavator while running on the crawler using a crawler type remote-controlled excavator. In this method, the seabed deposits are mined horizontally. This is hereinafter referred to as a horizontal mining system (HMS). HMS excels in mobility and portability and can be mined while freely traveling on the sea floor. On the other hand, HMS has problems to be solved in the following points (Problem 1) to (Problem 5).
 (課題1)ドラムカッターの採掘反力を採掘平面内で保障するために、大きな摩擦力を必要とする。そのため、掘削機本体の重量を大きくする必要がある。
 (課題2)ドリリング時に粉砕された鉱石が水中に舞い上がり、視界が不良となる。HMSの操作は、海上のオペレータがカメラにより目視で操作する必要があるため、操業率に影響が出る可能性がある。また、環境への負荷も大きい可能性がある。
 (課題3)海底の起伏に応じた操作が必要であり、カメラで目視しながらの掘削となるため、完全自動化が難しい。
 (課題4)鉱山の傾斜角に対応した登坂能力が必要となる。また、傾斜地でなくても、海底の地盤が軟弱な場合には、クローラによる走行に支障が出る可能性がある。
 (課題5)ドラムカッターの形状の工夫にもよるが、採掘した鉱石のサイズが均一でないため、SCU(Subsea Crushing Unit)が必要といわれている。
(Problem 1) A large frictional force is required to ensure the mining reaction force of the drum cutter in the mining plane. Therefore, it is necessary to increase the weight of the excavator body.
(Problem 2) Ore crushed during drilling rises into the water, resulting in poor visibility. The operation of the HMS needs to be visually operated by a marine operator with a camera, which may affect the operation rate. In addition, there is a possibility that the load on the environment is large.
(Problem 3) An operation corresponding to the undulations of the seabed is necessary, and since excavation is performed while visually observing with a camera, complete automation is difficult.
(Problem 4) Climbing ability corresponding to the inclination angle of the mine is required. Even if the ground is not sloping, the crawler may be hindered if the seabed is soft.
(Problem 5) Although depending on the shape of the drum cutter, it is said that SCU (Subsea Crushing Unit) is necessary because the size of the mined ore is not uniform.
 このように、クローラ型の掘削機であるHMSは、海底の起伏に応じた操作が煩雑であり、自動化が困難である。また、海底鉱床は傾斜角が大きく、表面堆積する軟弱な地盤ではクローラでの走行に支障がある。特に、海底熱水鉱床では、熱水が噴出するチムニー(煙突状の熱水噴出突起)が海山に多く存在するところ、このようなチムニーを回避することが難しい。そこで、本発明者らは、HMSのこのような課題を解決すべく、HMSとは異なる方式として、垂直式採掘システム(VMS)である上記第一実施形態を発明した。 Thus, the HMS, which is a crawler excavator, is complicated to operate according to the undulations of the seabed and is difficult to automate. In addition, seabed deposits have a large inclination angle, and crawlers are hindered on soft ground with surface deposits. In particular, in the submarine hydrothermal deposit, there are many chimneys (chimney-like hot water ejection protrusions) from which hot water erupts in the seamount, and it is difficult to avoid such chimneys. Therefore, the present inventors have invented the first embodiment, which is a vertical mining system (VMS), as a system different from HMS in order to solve such problems of HMS.
 VMSのメリットは、少なくとも以下の(効果1)~(効果4)のように纏められる。
 (効果1)鉱石が破砕され非常に細かい粉末状となるため、SCU(Subsea Crushing Unit)を省略できる可能性がある。
 (効果2)海底鉱床を縦に採掘していくため、ライザー掘削と同様に、採掘で破砕された鉱石はフローラインを用いて吸い出すことになり、環境へのまき散らしが少ない。そのため、環境への負荷も小さく、海上からオペレータがカメラで監視する場合に、視界の不良も防ぐことができる。
 (効果3)着底位置での区画(所定範囲)を採鉱可能なので、予め定めたプログラムに従い、視認性の問題無く自動的に採掘できる。
 (効果4)海底に立設されるとともに、各支持脚は、垂直方向への移動機構を介してZ方向に個別に相対的スライド移動が可能なので、HMSでの適用が難しいであろう複雑な海底形状や軟弱地盤に適用できる。
The merits of VMS can be summarized as at least the following (Effect 1) to (Effect 4).
(Effect 1) Since the ore is crushed into a very fine powder, SCU (Subsea Crushing Unit) may be omitted.
(Effect 2) Since the seabed deposits are mined vertically, the ore crushed by mining is sucked out using the flow line as in the case of riser drilling, and there is little scattering to the environment. For this reason, the load on the environment is small, and poor visibility can be prevented when an operator monitors from the sea with a camera.
(Effect 3) Since the section (predetermined range) at the bottom position can be mined, it can be automatically mined without a problem of visibility according to a predetermined program.
(Effect 4) While being erected on the seabed, each support leg can be individually slid in the Z direction via a vertical movement mechanism, so that it may be difficult to apply in HMS. Applicable to seabed shape and soft ground.
 但し、第一実施形態の採鉱ステーション20は、最初の区画の採掘が終了した後は、次の隣接する区画に採鉱ステーション20を改めて設置する必要がある。つまり、第一実施形態の採鉱ステーション20は、ジャッキアップ式のプラットフォームの設置と移動に際し、その都度、設置移動用船舶(IRV)を必要とする。 However, the mining station 20 of the first embodiment needs to be newly installed in the next adjacent section after the first section has been mined. That is, the mining station 20 of the first embodiment requires an installation movement ship (IRV) each time a jack-up platform is installed and moved.
 そのため、IRVによるVMSの吊り上げ、移動、着底の作業に多くの時間とコストがかかる。また、採掘期間中に常時IRVを使用するため、用船費も大きい。これに対し、以下説明する第二および第三実施形態は、この問題を解決するものであり、X方向およびY方向の少なくとも一方に自ら移動可能なVMS、すなわち海底鉱物資源開発用自走式垂直採掘システムである。 Therefore, it takes a lot of time and cost to lift, move and settle the VMS by IRV. In addition, since the IRV is always used during the mining period, the charter cost is high. On the other hand, the second and third embodiments to be described below solve this problem, and are VMS that can move by itself in at least one of the X direction and the Y direction, that is, a self-propelled vertical for developing submarine mineral resources. It is a mining system.
 詳しくは、第二実施形態の採鉱ステーション120は、図10(a)に示すように、第一のベースフレーム21Aと、第二のベースフレーム21Bと、第三のベースフレーム21Mとからなる3つのベースフレームで構成されている。 Specifically, the mining station 120 according to the second embodiment includes, as shown in FIG. 10 (a), three mining stations including a first base frame 21A, a second base frame 21B, and a third base frame 21M. It consists of a base frame.
 第一のベースフレーム21Aと第二のベースフレーム21Bとは、互いにコ字状の枠体からなる。第一および第二のフレーム21A、21Bは、コ字状をなす二つの角部に、上記実施形態同様に、ジャッキ機構49を介して支持脚26がそれぞれ設けられている。第一のベースフレーム21Aのコ字状の幅は、第二のベースフレーム21Bのコ字状の幅よりも狭い。 The first base frame 21A and the second base frame 21B are each made of a U-shaped frame. The first and second frames 21 </ b> A and 21 </ b> B are respectively provided with support legs 26 at two corners having a U-shape via a jack mechanism 49 as in the above embodiment. The U-shaped width of the first base frame 21A is narrower than the U-shaped width of the second base frame 21B.
 第一のベースフレーム21Aと第二のベースフレーム21Bとは、相互のフレーム21A、21Bのコ字状の開口部分が組み合わせ可能に対向配置される。相互のフレーム21A、21Bの横枠は、不図示の第一のラック・ピニオン機構およびリニアガイド等の第一のスライド案内装置を介して対向面で係合しており、不図示の第一のモータで第一のラック・ピニオン機構を駆動することにより、X方向に相対的にスライド移動可能になっている。 The first base frame 21A and the second base frame 21B are opposed to each other so that the U-shaped opening portions of the frames 21A and 21B can be combined. The horizontal frames of the mutual frames 21A and 21B are engaged with each other on a facing surface via a first rack and pinion mechanism (not shown) and a first slide guide device such as a linear guide. By driving the first rack and pinion mechanism with a motor, it can slide relative to the X direction.
 第三のベースフレーム21Mは、Y方向に延びる縦枠からI字状に構成されている。第三のベースフレーム21Mは、I字状の両端に、上記実施形態同様に、ジャッキ機構49を介して支持脚26がそれぞれ設けられている。また、第三のベースフレーム21Mは、Y方向用移動機構およびガイドシェル48を有し、ガイドシェル48を移動フレーム43沿ってY方向にスライド移動可能になっている。なお、ガイドシェル48には、上記実施形態同様の採掘装置が装備される。 The third base frame 21M is formed in an I shape from a vertical frame extending in the Y direction. The third base frame 21M is provided with support legs 26 at both ends of the I-shape via jack mechanisms 49 as in the above embodiment. The third base frame 21M includes a Y-direction moving mechanism and a guide shell 48, and the guide shell 48 can be slid along the moving frame 43 in the Y direction. The guide shell 48 is equipped with a mining device similar to the above embodiment.
 第三のベースフレーム21Mは、第一のベースフレーム21Aと第二のベースフレーム21Bに対して横枠と直交する方向に配置される。第三のベースフレーム21Mは、第一および第二のフレーム21A、21Bの横枠に対し、不図示の第二のラック・ピニオン機構およびリニアガイド等の第二のスライド案内装置を介して対向面で係合しており、不図示の第二のモータで第二のラック・ピニオン機構を駆動することにより、X方向に相対的にスライド移動可能になっている。 The third base frame 21M is arranged in a direction perpendicular to the horizontal frame with respect to the first base frame 21A and the second base frame 21B. The third base frame 21M is opposed to the horizontal frames of the first and second frames 21A and 21B via a second slide guide device such as a second rack and pinion mechanism and a linear guide (not shown). The second rack and pinion mechanism is driven by a second motor (not shown) so as to be relatively slidable in the X direction.
 この採鉱ステーション120において、移動する際は、同図(b)に示すように、まず、第一のベースフレーム21Aのジャッキ機構49を駆動して、第一のベースフレーム21Aの二本の支持脚26を上方に移動させて非支持状態とする。次いで、第一のモータで第一のラック・ピニオン機構を駆動し、これにより、第一のベースフレーム21Aを第二のベースフレーム21Bに対してX方向の正方向に相対的にスライド移動させる。スライド移動後に、第一のモータを停止し、ジャッキ機構49を駆動して、第一のベースフレーム21Aの二本の支持脚26を下方に移動させて支持状態とする。 When moving in the mining station 120, as shown in FIG. 5B, first, the jack mechanism 49 of the first base frame 21A is driven to drive the two support legs of the first base frame 21A. 26 is moved upward to be in an unsupported state. Next, the first rack and pinion mechanism is driven by the first motor, thereby causing the first base frame 21A to slide relative to the second base frame 21B in the positive direction of the X direction. After the slide movement, the first motor is stopped, the jack mechanism 49 is driven, and the two support legs 26 of the first base frame 21A are moved downward to be in the support state.
 次いで、同図(c)に示すように、まず、第二のベースフレーム21Bのジャッキ機構49を駆動して、第二のベースフレーム21Bの二本の支持脚26を上方に移動させて非支持状態とする。次いで、第一のモータで第一のラック・ピニオン機構を駆動し、これにより、第二のベースフレーム21Bを第一のベースフレーム21Aに対してX方向の正方向に相対的にスライド移動させる。スライド移動後に、第一のモータを停止し、ジャッキ機構49を駆動して、第二のベースフレーム21Bの二本の支持脚26を下方に移動させて支持状態とする。 Next, as shown in FIG. 5C, first, the jack mechanism 49 of the second base frame 21B is driven, and the two support legs 26 of the second base frame 21B are moved upward to be unsupported. State. Next, the first rack and pinion mechanism is driven by the first motor, thereby causing the second base frame 21B to slide relative to the first base frame 21A in the positive direction of the X direction. After the slide movement, the first motor is stopped, the jack mechanism 49 is driven, and the two support legs 26 of the second base frame 21B are moved downward to be in the support state.
 次いで、第三のベースフレーム21Mのジャッキ機構49を駆動して、第三のベースフレーム21Mの二本の支持脚26を上方に移動させて非支持状態とする。次いで、第二のモータで第二のラック・ピニオン機構を駆動し、これにより、第三のベースフレーム21Mを、第一および第二のベースフレーム21A、21Bに対してX方向の正方向に相対的にスライド移動させる。スライド移動後に、第二のモータを停止し、ジャッキ機構49を駆動して、第三のベースフレーム21Mの二本の支持脚26を下方に移動させて支持状態とする。これにより、3つのベースフレーム21A、21B、21M全体は、スライド移動量の分だけ全体がX方向の正方向に移動しつつ、同図(a)に示す状態となる。 Next, the jack mechanism 49 of the third base frame 21M is driven, and the two support legs 26 of the third base frame 21M are moved upward to be in an unsupported state. Next, the second rack and pinion mechanism is driven by the second motor, whereby the third base frame 21M is made to be relative to the first and second base frames 21A and 21B in the positive direction of the X direction. Slide. After the slide movement, the second motor is stopped, the jack mechanism 49 is driven, and the two support legs 26 of the third base frame 21M are moved downward to be in the support state. As a result, the entire three base frames 21A, 21B, and 21M are in the state shown in FIG.
 よって、この採鉱ステーション120によれば、上記のようにして、3つのベースフレーム21A、21B、21Mを順次に移動させることにより、採鉱ステーション120全体をX方向に自ら移動させることができる。なお、スライド移動に際し、ベースフレーム21A、21Bが片持ち状態でオーバーハングするが、相互はスライド案内装置を介して対向面で係合しているので、水平姿勢が保持される。 Therefore, according to the mining station 120, the entire mining station 120 can be moved in the X direction by moving the three base frames 21A, 21B, and 21M sequentially as described above. When the slide is moved, the base frames 21A and 21B are overhanging in a cantilever state, but the horizontal posture is maintained because the base frames 21A and 21B are engaged with each other on the opposing surface via the slide guide device.
 そして、第三のベースフレーム21Mには、上記第一実施形態同様に、Y方向用移動機構を有し、ガイドシェル48を移動フレーム43沿ってY方向にスライド移動可能であり、ガイドシェル48には、上記実施形態同様の採掘装置30が装備されるので、第三のベースフレーム21Mを移動させていないタイミングで、Y方向移動を適宜行いつつ、採掘装置30を駆動することができる。 As in the first embodiment, the third base frame 21M has a Y-direction moving mechanism, and the guide shell 48 can be slid along the moving frame 43 in the Y direction. Since the mining device 30 similar to the above embodiment is equipped, the mining device 30 can be driven while appropriately moving in the Y direction at the timing when the third base frame 21M is not moved.
 したがって、このような構成であっても、採掘装置30をX方向およびY方向に移動可能であり、海底鉱床の傾斜や起伏に対応しつつ、さく孔により有底穴である竪穴を形成しつつ海底鉱物を採掘し、その海底鉱物を竪穴内でスラリーにするとともに、そのスラリーを竪穴の内部から直接回収することができる。 Therefore, even in such a configuration, the mining device 30 can be moved in the X direction and the Y direction, and the dredging hole that is a bottomed hole is formed by drilling while corresponding to the inclination and undulation of the seabed deposit. The seabed mineral can be mined, and the seabed mineral can be made into a slurry in the pothole, and the slurry can be directly recovered from the inside of the pothole.
 次に、本発明の第三実施形態について、図11~30を適宜参照しつつ説明する。第三実施形態は、採鉱ステーションをX方向およびY方向に移動可能とした、海底鉱物資源開発用の自走式垂直採掘システムであり、特に、縦孔掘削ドリルを備えた自走式海底掘削機械である海中採鉱基地の例である。 Next, a third embodiment of the present invention will be described with reference to FIGS. The third embodiment is a self-propelled vertical mining system for developing submarine mineral resources, in which a mining station can be moved in the X and Y directions, and in particular, a self-propelled submarine drilling machine equipped with a vertical hole drill This is an example of an underwater mining base.
 図11に、第三実施形態の採鉱ステーション全体の模式的斜視図を示す。同図に示すように、この採鉱ステーション220は、採掘装置30と、X方向およびY方向へ自走可能なプラットフォーム21とを備える。プラットフォーム21は、平面視が矩形枠状をなす上部プラットフォーム(Upper platform)21Xと、平面視が矩形枠状をなす下部プラットフォーム(Lower platform)21Yと、両プラットフォーム21X、21Yの中間に設けられ平面視が矩形枠状をなす中間フレーム(Middle frame)21Mとを有する。 FIG. 11 shows a schematic perspective view of the entire mining station of the third embodiment. As shown in the figure, the mining station 220 includes a mining device 30 and a platform 21 capable of self-propelling in the X direction and the Y direction. The platform 21 is provided between the upper platform 21X and the upper platform 21X having a rectangular frame shape in plan view and the lower platform 21Y having a rectangular frame shape in plan view. Has an intermediate frame (Middle frame) 21M having a rectangular frame shape.
 なお、第三実施形態の採鉱ステーション220は、プラットフォーム21および、これが備えるX方向およびY方向への移動機構以外の構成は、上記第一実施形態同様である。そのため、第三実施形態では、以下、プラットフォーム21とそのX方向およびY方向への移動機構について説明し、他の機構についての説明は適宜省略する。 The mining station 220 of the third embodiment is the same as that of the first embodiment except for the platform 21 and the moving mechanism in the X direction and the Y direction included in the platform 21. Therefore, in the third embodiment, the platform 21 and its movement mechanism in the X direction and the Y direction will be described below, and description of other mechanisms will be omitted as appropriate.
 以下、図12~図19に基づき、第三実施形態の採鉱ステーション220の移動機構を詳しく説明する。なお、図12および図13は、上記架設配置用母船2から海底鉱床ODに採鉱ステーション220が着底させられる時のプラットフォーム21の着底準備姿勢を示すもので、プラットフォーム21は、着底準備姿勢にあっては、上部プラットフォーム21X、中間フレーム21Mおよび下部プラットフォーム21Yの水平面内の中心(重心)Gが一致している。なお、図13において符号CLは、各支持脚26の中心軸線を示している。 Hereinafter, the movement mechanism of the mining station 220 of the third embodiment will be described in detail with reference to FIGS. FIGS. 12 and 13 show the bottoming preparation posture of the platform 21 when the mining station 220 is bottomed from the laying arrangement mother ship 2 to the seabed deposit OD. In this case, the center (center of gravity) G in the horizontal plane of the upper platform 21X, the intermediate frame 21M, and the lower platform 21Y coincides. In FIG. 13, reference sign CL indicates the central axis of each support leg 26.
 上部プラットフォーム21Xは、図12に示すように、平面視が矩形枠状をなし、X方向に離隔して互いに並行に設けられた矩形筒状をなす一対の縦ガーダーXbと、Y方向に離隔して互いに並行に設けられた矩形筒状をなす一対の横ガーダーXaとを有する。2つの横ガーダーXaの各外側面には、横ガーダーXaの延在方向に沿って、X移動用ラックRxが、中央から左右対称にそれぞれ取付けられている。 As shown in FIG. 12, the upper platform 21X has a rectangular frame shape in plan view, and is separated in the Y direction from a pair of vertical girder Xb having a rectangular cylindrical shape that is spaced apart in the X direction and provided in parallel with each other. And a pair of horizontal girders Xa having a rectangular cylindrical shape provided in parallel with each other. On each outer side surface of the two horizontal girders Xa, X moving racks Rx are respectively attached symmetrically from the center along the extending direction of the horizontal girder Xa.
 また、下部プラットフォーム21Yは、同図に示すように、平面視が矩形枠状をなし、X方向に離隔して互いに並行に設けられた矩形筒状をなす一対の横ガーダーYbと、Y方向に離隔して互いに並行に設けられた矩形筒状をなす一対の縦ガーダーYaとを有する。2つの縦ガーダーYaの外側面には、縦ガーダーYaの延在方向に沿って、Y移動用ラックRyが、中央から左右対称にそれぞれ取付けられている。 In addition, as shown in the figure, the lower platform 21Y has a rectangular frame shape in plan view, and a pair of horizontal girders Yb that are formed in parallel with each other and separated in the X direction, and in the Y direction. It has a pair of vertical girder Ya which forms a rectangular cylinder which is spaced apart and provided in parallel. On the outer side surfaces of the two vertical girders Ya, Y moving racks Ry are respectively attached symmetrically from the center along the extending direction of the vertical girders Ya.
 中間フレーム21Mは、図14に示すように、平面視が矩形枠状をなし、X方向に離隔して互いに並行に設けられた矩形筒状をなす一対の縦ガーダーMbと、Y方向に離隔して互いに並行に設けられた矩形筒状をなす一対の横ガーダーMaとを有する。中間フレーム21Mの各横ガーダーMaの延在方向の中央の位置には、横ガーダーMaの矩形筒内に、X駆動モータMxがそれぞれ配置されている。また、中間フレーム21Mの各縦ガーダーMbの延在方向の中央の位置には、縦ガーダーMbの矩形筒内に、Y駆動モータMyがそれぞれ配置されている。 As shown in FIG. 14, the intermediate frame 21 </ b> M has a rectangular frame shape in plan view, and is separated in the Y direction from a pair of vertical girders Mb that are formed in parallel with each other and separated in the X direction. And a pair of horizontal girders Ma having a rectangular cylindrical shape provided in parallel with each other. X drive motors Mx are respectively arranged in the rectangular cylinders of the horizontal girders Ma at the center position in the extending direction of the horizontal girders Ma of the intermediate frame 21M. In addition, Y drive motors My are respectively arranged in the rectangular cylinders of the vertical girders Mb at the center position in the extending direction of the vertical girders Mb of the intermediate frame 21M.
 図11および図12に示すように、上下の各プラットフォーム21X、21Yは、上記第一実施形態のプラットフォーム同様に、それぞれ4本の支持脚26と各支持脚26を昇降可能なジャッキ機構49とを有するジャッキアッププラットフォームである。そして、中間フレーム21Mと上下のプラットフォーム21X、21Yとは、図16および図17に示す直動案内機構を介してスライド移動可能に支持されるとともに、図17および図18に示すラック&ピニオン機構を介して係合され、水平面で互いに直交するX方向およびY方向に相対的スライド移動可能に構成されている。 As shown in FIGS. 11 and 12, each of the upper and lower platforms 21X and 21Y includes four support legs 26 and a jack mechanism 49 capable of raising and lowering each support leg 26, like the platform of the first embodiment. It is a jack-up platform. The intermediate frame 21M and the upper and lower platforms 21X and 21Y are supported so as to be slidable via the linear motion guide mechanisms shown in FIGS. 16 and 17, and the rack and pinion mechanisms shown in FIGS. And is configured to be relatively slidable in the X and Y directions orthogonal to each other on a horizontal plane.
 詳しくは、第三実施形態のプラットフォーム21は、図12に示すように、上部プラットフォーム21Xの矩形状の枠体の四隅それぞれと、下部プラットフォーム21Yの矩形状の枠体の四隅それぞれとに支持脚26を有する。各支持脚26には、Z方向のスライド移動機構であるジャッキ機構49が昇降用のジャッキングユニットとして設けられている。 Specifically, as shown in FIG. 12, the platform 21 of the third embodiment has support legs 26 at the four corners of the rectangular frame of the upper platform 21X and at the four corners of the rectangular frame of the lower platform 21Y. Have Each support leg 26 is provided with a jack mechanism 49, which is a Z-direction slide movement mechanism, as an elevating jacking unit.
 第三実施形態のジャッキ機構49は、各支持脚26の両側に1基ずつ、合計2基が装備され、各支持脚26には、図15に示すように、二条のZ移動用ラックRzが、各支持脚26の軸方向に沿って周方向で対向する位置にそれぞれ取付けられている。 The jack mechanism 49 of the third embodiment is equipped with two in total, one on each side of each support leg 26, and each support leg 26 has two Z-moving racks Rz as shown in FIG. The support legs 26 are respectively attached at positions facing each other in the circumferential direction along the axial direction.
 各Z移動用ラックRzに対応するジャッキ機構49は、不図示のZ駆動モータと、Z駆動モータの出力軸に装着されたピニオンと、ピニオンに噛合された上記Z移動用ラックRzを有してラック&ピニオン機構が構成される。これにより、各支持脚26は、自身が装着された各プラットフォーム21X、21Yに対しZ方向に相対的スライド移動して、複数の支持脚26の協働によって、上下のプラットフォーム21X、21Yの上昇および下降が可能になっている。 The jack mechanism 49 corresponding to each Z movement rack Rz has a Z drive motor (not shown), a pinion mounted on the output shaft of the Z drive motor, and the Z movement rack Rz meshed with the pinion. A rack and pinion mechanism is configured. As a result, the support legs 26 slide relative to the platforms 21X and 21Y on which they are mounted in the Z direction, and the upper and lower platforms 21X and 21Y are raised and lowered by the cooperation of the plurality of support legs 26. The descent is possible.
 上部プラットフォーム21Xの直動案内機構は、図16に示すように、上部プラットフォーム21Xの横ガーダーXa底面に、横ガーダーXaの延在方向に沿って取付けられたスキッディングレールSxを有する。スキッディングレールSxは、上部プラットフォーム21Xの横ガーダーXaに沿って上部プラットフォーム21Xの端から端まで取り付けられている。 As shown in FIG. 16, the linear guide mechanism of the upper platform 21X has a skid rail Sx attached to the bottom surface of the horizontal girder Xa of the upper platform 21X along the extending direction of the horizontal girder Xa. The skid rail Sx is attached from end to end of the upper platform 21X along the lateral girder Xa of the upper platform 21X.
 スキッディングレールSxの上下は、例えば200mm×200mm程のベアリングプレートBxで案内される。ベアリングプレートBxは、中間フレーム21Mの横ガーダーMaの角部上面に取り付けられる。また、スキッディングレールSxを左右から覆うように、ベアリングプレートBxの配置位置と同じ位置に、ホールディングクローHxが取り付けられている。ホールディングクローHxは、上部プラットフォーム21XがX方向に移動する時に、その落下を防ぐようにスキッディングレールSxを両側から支持している。 The upper and lower sides of the skid rail Sx are guided by, for example, a bearing plate Bx of about 200 mm × 200 mm. The bearing plate Bx is attached to the upper surface of the corner portion of the horizontal girder Ma of the intermediate frame 21M. Further, a holding claw Hx is attached at the same position as the arrangement position of the bearing plate Bx so as to cover the skid rail Sx from the left and right. The holding claw Hx supports the skid rail Sx from both sides so as to prevent the upper platform 21X from falling when the upper platform 21X moves in the X direction.
 上記X駆動モータMxの駆動軸には、図18に示すように、X移動用ピニオンPxが装着され、X移動用ラックRxのラック面に対向する位置に張り出している。二つのX移動用ピニオンPxは、それぞれX移動用ラックRxに噛合され、X駆動モータMxにより同期駆動されて、上部プラットフォーム21XをX方向にスライド移動可能に構成されている。 As shown in FIG. 18, an X movement pinion Px is mounted on the drive shaft of the X drive motor Mx, and projects to a position facing the rack surface of the X movement rack Rx. The two X movement pinions Px are respectively meshed with the X movement rack Rx and driven synchronously by the X drive motor Mx, so that the upper platform 21X can slide in the X direction.
 一方、下部プラットフォーム21Yの直動案内機構は、図17に示すように、下部プラットフォーム21Yの縦ガーダーYa上面に、縦ガーダーYaの延在方向に沿って取付けられたスキッディングレールSyを有する。スキッディングレールSyは、下部プラットフォーム21Yの縦ガーダーYaの端から端まで取り付けられている。 On the other hand, as shown in FIG. 17, the linear guide mechanism of the lower platform 21Y has a skid rail Sy attached to the upper surface of the vertical girder Ya of the lower platform 21Y along the extending direction of the vertical girder Ya. The skid rail Sy is attached from end to end of the vertical girder Ya of the lower platform 21Y.
 下部プラットフォーム21Yは、上部プラットフォーム21Xと同様に、中間フレーム21Mの縦ガーダーMbの角部下面に、ベアリングプレートByが取付けられ、ベアリングプレートByによりスキッディングレールSyの上下を案内している。また、ベアリングプレートByの配置位置と同じ位置に、スキッディングレールSyを左右から覆うように、ホールディングクローHyが取り付けられ、下部プラットフォーム21YがY方向に移動する時に、その落下を防ぐようにスキッディングレールSyを両側から支持している。 As with the upper platform 21X, the lower platform 21Y has a bearing plate By attached to the lower surface of the corner portion of the vertical girder Mb of the intermediate frame 21M, and guides the skid rail Sy up and down by the bearing plate By. In addition, a holding claw Hy is attached at the same position as the bearing plate By so as to cover the skid rail Sy from the left and right, and when the lower platform 21Y moves in the Y direction, the skid is prevented from falling. The rail Sy is supported from both sides.
 上記Y駆動モータMyの駆動軸には、図19に示すように、Y移動用ピニオンPyが装着され、Y移動用ラックRyのラック面に対向する位置に張り出している。二つのY移動用ピニオンPyは、それぞれY移動用ラックRyに噛合され、Y駆動モータMyにより同期駆動されて、下部プラットフォーム21YをY方向にスライド移動可能に構成されている。 As shown in FIG. 19, a Y movement pinion Py is mounted on the drive shaft of the Y drive motor My and protrudes to a position facing the rack surface of the Y movement rack Ry. The two Y movement pinions Py are respectively meshed with the Y movement rack Ry and driven synchronously by the Y drive motor My, so that the lower platform 21Y can slide in the Y direction.
 これにより、第三実施形態の採鉱ステーション220は、上下のプラットフォーム21X、21YをX方向およびY方向にスライド移動させるスライド移動機構、並びに各支持脚26をZ方向にスライド移動させるスライド移動機構により、後述する歩行制御処理の手順に従い、予定採掘区域をX方向およびY方向それぞれに歩行するとともに、採掘装置30をX方向およびY方向に移動させて、所定区画を順次に掘削可能になっている。 Thereby, the mining station 220 of the third embodiment includes a slide movement mechanism that slides the upper and lower platforms 21X and 21Y in the X direction and the Y direction, and a slide movement mechanism that slides each support leg 26 in the Z direction. According to the procedure of the walking control process described later, the predetermined mining area is walked in the X direction and the Y direction, respectively, and the mining device 30 is moved in the X direction and the Y direction to sequentially excavate predetermined sections.
 なお、第三実施形態において、中間フレーム21Mと上下のプラットフォーム21X、21Yとは、ラック&ピニオン機構を介して水平方向への移動が可能な例を示すが、移動機構はこれに限定されず、水平方向への移動が可能な移動機構であれば、種々の移動機構を採用可能である。
 例えば、油圧シリンダ方式でスライドさせる移動機構を用いることができる。同様に、各支持脚26は、ラック&ピニオン機構を介してZ方向に相対的スライド移動が可能な例を示すが、これに限定されず、例えば油圧シリンダ方式でスライドさせる移動機構とすることができる。また、油圧駆動に限定されず、電気駆動式としてもよい。
In the third embodiment, the intermediate frame 21M and the upper and lower platforms 21X and 21Y are examples capable of moving in the horizontal direction via a rack and pinion mechanism, but the moving mechanism is not limited to this, Any moving mechanism that can move in the horizontal direction can be used.
For example, a moving mechanism that slides by a hydraulic cylinder method can be used. Similarly, each support leg 26 is shown as an example capable of relative sliding movement in the Z direction via a rack and pinion mechanism, but is not limited to this, and may be a moving mechanism that slides in a hydraulic cylinder system, for example. it can. Moreover, it is not limited to a hydraulic drive, It is good also as an electric drive type.
 ここで、第三実施形態では、採鉱ステーション220の仕様として、全生産能力(Dry SMS)を2,000,000t/年(6,600t/日)とし、密度を3~5(t/m)としたとき、体積として6600/5~6600/3=1320~2200mを想定し、一台の採鉱ステーション220が掘削する所定領域(区画)の大きさを約10m×10mと決定した。また、採掘装置30は、深さが約20mまで掘削可能な構成を有するものとする。 Here, in the third embodiment, as the specifications of the mining station 220, the total production capacity (Dry SMS) is 2,000,000 t / year (6,600 t / day), and the density is 3 to 5 (t / m 3). ), The volume of 6600 / 5-6600 / 3 = 1320-2200 m 3 is assumed, and the size of the predetermined area (section) excavated by one mining station 220 is determined to be about 10 m × 10 m. Further, the mining device 30 has a configuration capable of excavating to a depth of about 20 m.
 そこで、第三実施形態では、上記生産能力に鑑みて、一台の採鉱ステーション220が、1日に、深さ20mの所定領域を1区画掘削することにする。また、第三実施形態では、採鉱ステーション220を自走式とすることにより、隣接する区画へのプラットフォーム21の移動が短時間で済む。そのため、1日に深さ10mの所定領域を2区画掘削することも考慮する。 Therefore, in the third embodiment, in view of the above production capacity, one mining station 220 excavates one section of a predetermined area having a depth of 20 m on one day. Moreover, in 3rd embodiment, the movement of the platform 21 to an adjacent division can be completed in a short time by making the mining station 220 self-propelled. Therefore, it is also considered to excavate a predetermined area having a depth of 10 m per day into two sections.
 具体的には、上記第一実施形態に示した、移動機構52および採掘装置30が占める幅を3mとすると、所定領域となる掘削区画の大きさを10m×10mにするには、プラットフォーム21の内側の掘削用領域の寸法を13m×10mに設定する必要がある。また、荷重条件としては、曳航時、吊下げ時および作業時を考慮し、上部プラットフォーム21X、下部プラットフォーム21Yおよび中間フレーム21Mの形状寸法を設定した。 Specifically, when the width occupied by the moving mechanism 52 and the mining device 30 shown in the first embodiment is 3 m, the size of the excavation section serving as the predetermined area is 10 m × 10 m. It is necessary to set the size of the inner excavation area to 13 m × 10 m. In addition, as load conditions, the shape dimensions of the upper platform 21X, the lower platform 21Y, and the intermediate frame 21M were set in consideration of towing, hanging, and working.
 上記支持脚26の形状および寸法は、支持脚26の軸方向の全長を30mとしたとき、図15に支持脚26の横断面を示すように、主に曳航条件を考慮して、ローリング時の荷重条件から、支持脚26の外径Dを1000mmとした。
 また、図12において、曳航時、吊り下げ時および作業時の荷重条件より、上部プラットフォーム21Xのガーダー内側のX方向の長さLxおよびY方向の幅Lyはそれぞれ23mおよび10mとした。また、上部プラットフォーム21Xのガーダー自体の幅Wgおよび厚さDgはそれぞれ1mおよび2mとした。
The shape and dimensions of the support leg 26 are as follows. When the total length in the axial direction of the support leg 26 is 30 m, as shown in the cross section of the support leg 26 in FIG. From the load condition, the outer diameter D of the support leg 26 was set to 1000 mm.
Further, in FIG. 12, the length Lx in the X direction inside the girder of the upper platform 21X and the width Ly in the Y direction of the upper platform 21X were set to 23 m and 10 m, respectively, based on the load conditions during towing, hanging and working. The width Wg and thickness Dg of the girder itself of the upper platform 21X were 1 m and 2 m, respectively.
 また、同図において、下部プラットフォーム21Yのガーダー内側のX方向の長さLxおよびY方向の幅Lyは、それぞれ13mおよび20mとした。また、下部プラットフォーム21Yのガーダー自体の幅Wgおよび厚さDgは、それぞれ1mおよび2mとした。さらに、中間フレーム21Mは、図14に示すように、中間フレーム21Mのガーダー内側のX方向の長さLxおよびY方向の幅Lyは、それぞれ13mおよび10mとした。 In the same figure, the length Lx in the X direction inside the girder of the lower platform 21Y and the width Ly in the Y direction were 13 m and 20 m, respectively. Further, the width Wg and the thickness Dg of the girder itself of the lower platform 21Y were 1 m and 2 m, respectively. Further, as shown in FIG. 14, the intermediate frame 21M has a length Lx in the X direction inside the girder of the intermediate frame 21M and a width Ly in the Y direction of 13 m and 10 m, respectively.
 また、中間フレーム21Mのガーダー自体の幅Wgおよび厚さDgは、両方ともに1mとした。また、図16に示したラック&ピニオン機構部において、ラックの長さは約10mとした。また、図17に示したラック&ピニオン機構部において、ラックの長さは、約10mとした。 In addition, the width Wg and the thickness Dg of the girder itself of the intermediate frame 21M are both 1 m. In the rack and pinion mechanism shown in FIG. 16, the length of the rack was about 10 m. In the rack and pinion mechanism shown in FIG. 17, the length of the rack was about 10 m.
 図12に示す平面視において、上部プラットフォーム21X、下部プラットフォーム21Yおよび中間フレーム21Mが重なっている状態での中央部の枠体内側の矩形部寸法は、13m×10mである。上記移動機構52および採掘装置30の幅を3mとしたので、掘削可能な所定区画の大きさは10m×10mとなる。以上の設定寸法のとき、海中に配置されて且つ海底に立設されて、海底鉱床ODに竪穴VHを形成している状態の採鉱ステーション220の海底鉱床ODでの相対サイズのイメージを図20に示す。なお、同図において符号Cは、海底鉱床ODに存するチムニーのイメージである。 In the plan view shown in FIG. 12, the size of the rectangular portion inside the central frame in the state where the upper platform 21X, the lower platform 21Y, and the intermediate frame 21M overlap each other is 13 m × 10 m. Since the width of the moving mechanism 52 and the mining device 30 is 3 m, the size of the predetermined section that can be excavated is 10 m × 10 m. FIG. 20 shows an image of the relative size at the seabed deposit OD of the mining station 220 that is placed in the sea and is erected on the seafloor and has the pit VH formed in the seabed deposit OD at the above set dimensions. Show. In addition, the code | symbol C in the same figure is the image of the chimney which exists in the seabed deposit OD.
 さらに、第三実施形態の採鉱ステーション220は、図11に示すように、上部プラットフォーム21Xに、採鉱ステーション220自身を制御するための基地制御ユニット45を備える。第三実施形態の基地制御ユニット45は、プラットフォーム21の姿勢を検出する傾斜センサを有する。 Furthermore, as shown in FIG. 11, the mining station 220 of the third embodiment includes a base control unit 45 for controlling the mining station 220 itself on the upper platform 21X. The base control unit 45 of the third embodiment has an inclination sensor that detects the attitude of the platform 21.
 さらに、第三実施形態では、各支持脚26を駆動するジャッキ機構49には、不図示のトルク検出器が装備されている。各トルク検出器は、対応する各ジャッキ機構49のラック&ピニオン機構のピニオンを駆動する各駆動モータのトルクを検出可能なトルク計である。各トルク検出器は、各駆動モータの随時のモータトルクを検出し、検出したトルク情報を基地制御ユニット45に出力可能になっている。 Furthermore, in the third embodiment, the jack mechanism 49 that drives each support leg 26 is equipped with a torque detector (not shown). Each torque detector is a torque meter that can detect the torque of each drive motor that drives the pinion of the rack and pinion mechanism of each corresponding jack mechanism 49. Each torque detector can detect the motor torque at any time of each drive motor and can output the detected torque information to the base control unit 45.
 基地制御ユニット45は、コンピュータと、姿勢安定制御処理を実行するためのプログラムとを含む採鉱ステーション自身のコントローラ(制御部)である。基地制御ユニット45は、採鉱ステーション220の歩行制御処理、採鉱ステーション220の採鉱制御処理、および、採鉱ステーション220の姿勢制御、並びにその他必要な処理を実行する。
 基地制御ユニット45は、採鉱ステーション220の姿勢制御処理が実行されると、傾斜センサの出力に基づいて、採鉱ステーション220自体の姿勢の不均衡の程度を判定し、ラック&ピニオン機構のピニオンを駆動する各駆動モータの調整により、姿勢安定を維持する姿勢安定制御を行う。
The base control unit 45 is a controller (control unit) of the mining station itself including a computer and a program for executing the attitude stabilization control process. The base control unit 45 executes walking control processing of the mining station 220, mining control processing of the mining station 220, attitude control of the mining station 220, and other necessary processing.
When the attitude control process of the mining station 220 is executed, the base control unit 45 determines the degree of the imbalance of the attitude of the mining station 220 itself based on the output of the tilt sensor, and drives the pinion of the rack and pinion mechanism. Posture stability control is performed to maintain posture stability by adjusting each drive motor.
 また、基地制御ユニット45は、傾斜センサの検出した傾斜情報、および、複数の支持脚26のモータのトルクを検出したモータトルク情報を、海上の曳航船である架設配置用母船2に装備された管理コンピュータに出力する。管理コンピュータは、オペレータに対して、ディスプレイ上に、随時の傾斜情報およびモータトルク情報を表示可能に構成される。 In addition, the base control unit 45 is equipped with the tilt arrangement detected by the tilt sensor and the motor torque information obtained by detecting the torque of the motors of the plurality of support legs 26 in the laying arrangement mother ship 2 that is a towing ship at sea. Output to the management computer. The management computer is configured to be able to display tilt information and motor torque information at any time on the display to the operator.
 次に、第三実施形態の採鉱ステーション220の安定化着座方法について図21および図22を適宜参照して説明する。
 海上の曳航船である架設配置用母船2から採鉱ステーション220を吊り下げロープで吊り下げて海底に着底させる場合、まず、採鉱ステーション220は、平面視が、図12に示す着底準備姿勢の状態とされる。オペレータは、図21(a)に示すように、架設配置用母船2から採鉱ステーション220をロープで吊り降ろす。
Next, the stabilization seating method of the mining station 220 of 3rd embodiment is demonstrated with reference suitably to FIG. 21 and FIG.
In the case where the mining station 220 is suspended from the laying mother ship 2 which is a towing vessel on the sea and suspended on the sea floor by a hanging rope, the mining station 220 first has a bottoming ready posture shown in FIG. State. As shown in FIG. 21A, the operator suspends the mining station 220 from the erection placement mother ship 2 with a rope.
 オペレータは、図22(a)に示すように、垂下した深度に注意しつつ、海底鉱床ODの所期の位置に採鉱ステーション220を下していく。そして、オペレータは、同図(b)に示すように、複数の支持脚26のうち、少なくとも3脚のモータトルクの応答を検出した時点で吊り下げを停止する。但し、支持脚26の1脚が着座してから、他の3脚が着座する前に予め規定した傾斜角を超えた場合には着座位置を変更する。なお、この吊り下げ操作は、オペレータが管理コンピュータを介して基地制御ユニット45を手動操作してもよいし、管理コンピュータと基地制御ユニット45とにより自動制御してもよい。例えば、採鉱ステーション220の基地制御ユニット45は、吊り下げ操作の終了情報(着座情報)を取得したときに、上記姿勢安定制御を実行する。 As shown in FIG. 22A, the operator lowers the mining station 220 to the desired position of the seabed deposit OD while paying attention to the drooping depth. Then, as shown in FIG. 5B, the operator stops the suspension when the response of the motor torque of at least three of the plurality of support legs 26 is detected. However, the seating position is changed when one of the support legs 26 is seated and the pre-defined inclination angle is exceeded before the other three legs are seated. This suspension operation may be manually operated by the operator via the management computer, or may be automatically controlled by the management computer and the base control unit 45. For example, the base control unit 45 of the mining station 220 executes the posture stability control when acquiring the end information (sitting information) of the suspension operation.
 つまり、基地制御ユニット45は、傾斜センサの姿勢検出情報に基づいて、同図(c)に示すように、採鉱ステーション220の姿勢が水平になるように、着底した支持脚26を伸縮させる。基地制御ユニット45は、モータトルク情報に基づいて、着底してない支持脚26を伸長させ、各支持脚26のモータトルクがほぼ均衡するように制御して着底させる。基地制御ユニット45は、採鉱ステーション220の姿勢が水平であると判断したら、姿勢安定制御の終了情報を架設配置用母船2の管理コンピュータに送信する。 That is, the base control unit 45 expands and contracts the bottomed support leg 26 so that the attitude of the mining station 220 is horizontal, as shown in FIG. Based on the motor torque information, the base control unit 45 extends the support legs 26 that are not bottomed, and controls and bottoms the motor legs so that the motor torques of the support legs 26 are substantially balanced. When the base control unit 45 determines that the attitude of the mining station 220 is horizontal, the base control unit 45 transmits the end information of the attitude stabilization control to the management computer of the laying arrangement mother ship 2.
 架設配置用母船2のオペレータは、管理コンピュータのディスプレイから採鉱ステーション220の状態を監視し、姿勢安定制御の終了情報を確認したら、同図(d)に示すように、吊り下げロープの張力を緩める指令を管理コンピュータから入力する。このとき、吊り下げロープの張力変動により、採鉱ステーション220の姿勢が不安定になるおそれがある。そのため、基地制御ユニット45は、姿勢安定制御を継続して実行する。 The operator of the erection placement mother ship 2 monitors the status of the mining station 220 from the display of the management computer, and after confirming the end information of the posture stabilization control, as shown in FIG. The command is input from the management computer. At this time, the posture of the mining station 220 may become unstable due to fluctuations in tension of the hanging rope. Therefore, the base control unit 45 continuously executes the posture stabilization control.
 つまり、基地制御ユニット45は、傾斜センサの姿勢検出情報に基づいて、採鉱ステーション220の姿勢が水平になるように各支持脚26の脚長を調整する。これにより、採鉱ステーション220は、図26(d)に示す初期着底状態で海底に安定した姿勢で着底できる。以降、オペレータは、吊り下げロープの係合解除装置(不図示)により吊り下げロープの係合を解除し、図21(b)に示すように、自立した採鉱ステーション220により、海底鉱床ODに竪穴VHを形成して採鉱を開始する。なお、この安定化着座制御を含む管理コンピュータおよび基地制御ユニット45の構成および安定化着座方法は、上述した第一実施形態および第二実施形態においても同様に適用できる。 That is, the base control unit 45 adjusts the leg length of each support leg 26 so that the attitude of the mining station 220 is horizontal based on the attitude detection information of the inclination sensor. As a result, the mining station 220 can land in a stable posture on the seabed in the initial bottoming state shown in FIG. Thereafter, the operator releases the engagement of the suspension rope with a suspension rope disengagement device (not shown), and, as shown in FIG. Form VH and start mining. Note that the configuration of the management computer and the base control unit 45 including the stabilization seating control and the stabilization seating method can be similarly applied to the first embodiment and the second embodiment described above.
 次に、第三実施形態の採鉱ステーション220の自走方法について図23~図33を適宜参照して説明する。ここでは、一例として、図23に示すように、採鉱ステーション220の自走と掘削とによって、40×40mの海底鉱床ODを採鉱する手順を説明する。なお、以下説明する採鉱ステーション220の自走動作は、上記管理コンピュータの監視下、基地制御ユニット45が実行する所定のプログラムに基づき行われるが、これに限定されず、オペレータのマニュアル操作によって行ってもよい。 Next, a self-propelled method of the mining station 220 of the third embodiment will be described with reference to FIGS. 23 to 33 as appropriate. Here, as an example, as shown in FIG. 23, a procedure for mining a 40 × 40 m seabed deposit OD by self-running and excavation of the mining station 220 will be described. The self-running operation of the mining station 220 described below is performed based on a predetermined program executed by the base control unit 45 under the monitoring of the management computer, but is not limited to this, and is performed manually by an operator. Also good.
(手順1)準備工程
 採鉱ステーション220は、図22(d)に示した初期着底状態では、上下のプラットフォーム21X、21Yの相対位置が、図11および図12に示した着底準備姿勢において、上部プラットフォーム21Xおよび下部プラットフォーム21Yの全ての支持脚26が着底している。
 そのため、基地制御ユニット45は、管理コンピュータから採掘準備命令を受けると、まず、図24に平面図を示すように、同図(a)の着底準備姿勢から、上部プラットフォーム21Xの全ての支持脚26を一旦離底させ、中間フレーム21Mと下部プラットフォーム21Yを結合した状態で上部プラットフォーム21XをXの正方向に一杯に移動させる。その後、基地制御ユニット45は、上部プラットフォーム21Xの全ての支持脚26を着底させて、同図(b)に示すように、採掘の開始状態とする。これにより、上下のプラットフォーム21X、21Yの内側の所定領域が、図23に示す第一の区画Aとなる。
(Procedure 1) Preparation Step In the initial bottoming state shown in FIG. 22 (d), the mining station 220 has the relative positions of the upper and lower platforms 21X and 21Y in the bottoming ready posture shown in FIG. 11 and FIG. All support legs 26 of the upper platform 21X and the lower platform 21Y are grounded.
Therefore, when receiving the mining preparation instruction from the management computer, the base control unit 45 firstly, as shown in the plan view of FIG. 24, from the bottom preparation posture of FIG. 26 is once removed from the bottom, and the upper platform 21X is moved fully in the positive direction of X while the intermediate frame 21M and the lower platform 21Y are coupled. Thereafter, the base control unit 45 bottoms all the support legs 26 of the upper platform 21X and sets the mining start state as shown in FIG. Thereby, the predetermined area | region inside the upper and lower platforms 21X and 21Y becomes the 1st division A shown in FIG.
(手順2)Xの正方向への歩行および掘削
(手順2-1)第一の区画Aにおいて、採鉱ステーション220の基地制御ユニット45は、管理コンピュータから採掘開始命令を受けると、中間フレーム21Mの内側の所定領域(10m×10m)を採掘する。基地制御ユニット45は、一の区画の採鉱時には、採鉱ステーション220の歩行を停止した状態で、中間フレーム21Mの内側の10×10mの所定領域を、図7に示した方法で採掘装置30のX方向およびY方向の移動により順次に掘削して採鉱を行っていく(以下同様)。
(Procedure 2) Walking and excavation in the positive direction of X (Procedure 2-1) In the first section A, the base control unit 45 of the mining station 220 receives the mining start command from the management computer, and then the intermediate frame 21M A predetermined area (10 m × 10 m) inside is mined. At the time of mining in one section, the base control unit 45 stops the walking of the mining station 220, and the predetermined area of 10 × 10 m inside the intermediate frame 21M is X of the mining device 30 by the method shown in FIG. Mining is carried out by excavating sequentially by movement in the direction and the Y direction (the same applies hereinafter).
 (手順2-2)第一の区画Aでの所期の採鉱を終えたら、基地制御ユニット45は、中間フレーム21Mの内側の所定領域を、図23に示す第二の区画Bに対応する位置となるように、図25(a)~(d)に示すように各部を駆動制御して、図30に示すようにプラットフォーム21を移動させる。
 つまり、第一の区画Aの採鉱を終えた状態では、図26に示すように、上部プラットフォーム21Xおよび下部プラットフォーム21Yの全ての支持脚26が着底している。
 そのため、基地制御ユニット45は、まず、図27に示すように、上部プラットフォーム21Xの支持脚26を着底させたまま、下部プラットフォーム21Yの4つの支持脚26を離底させる。
(Procedure 2-2) After completing the intended mining in the first section A, the base control unit 45 moves the predetermined area inside the intermediate frame 21M to the position corresponding to the second section B shown in FIG. As shown in FIGS. 25A to 25D, each part is driven and controlled, and the platform 21 is moved as shown in FIG.
That is, in the state where the mining of the first section A is completed, as shown in FIG. 26, all the support legs 26 of the upper platform 21X and the lower platform 21Y are bottomed.
Therefore, as shown in FIG. 27, the base control unit 45 first leaves the four support legs 26 of the lower platform 21Y while keeping the support legs 26 of the upper platform 21X bottomed.
 次いで、基地制御ユニット45は、図28および図30(b)に示すように、下部プラットフォーム21Yと中間フレーム21Mを結合した状態で、下部プラットフォーム21Yと中間フレーム21MをXの正方向一杯に移動させる。その後、基地制御ユニット45は、図29に示すように、下部プラットフォーム21Yの4つの支持脚26を下方に伸長してそれぞれ着底させる。これにより、図30(c)に示すように、上下のプラットフォーム21X、21Yの内側の所定領域が、図23に示す第二の区画Bとなる。 Next, as shown in FIGS. 28 and 30 (b), the base control unit 45 moves the lower platform 21Y and the intermediate frame 21M to the full forward direction of X in a state where the lower platform 21Y and the intermediate frame 21M are coupled. . After that, as shown in FIG. 29, the base control unit 45 extends the four support legs 26 of the lower platform 21Y downward and bottoms them. As a result, as shown in FIG. 30C, a predetermined area inside the upper and lower platforms 21X and 21Y becomes the second section B shown in FIG.
(手順2-3)第二の区画Bにおいて、採鉱ステーション220の基地制御ユニット45は、管理コンピュータから採掘開始命令を受けると、中間フレーム21Mの内側の所定領域を採掘する。
(手順2-4)第二の区画Bでの所期の採鉱を終えたら(図30(c))、基地制御ユニット45は、下部プラットフォーム21Yの支持脚26を着底させたまま、上部プラットフォーム21Xの4つの支持脚26を離底させ、次いで、下部プラットフォーム21Yと中間フレーム21Mを結合した状態で、図31(a)に示すように、上部プラットフォーム21XをXの正方向一杯に移動させる。その後、上部プラットフォーム21Xの4つの支持脚26を着底させる。
(Procedure 2-3) In the second section B, when receiving the mining start command from the management computer, the base control unit 45 of the mining station 220 mines a predetermined area inside the intermediate frame 21M.
(Procedure 2-4) When the intended mining in the second section B is finished (FIG. 30 (c)), the base control unit 45 keeps the support leg 26 of the lower platform 21Y on the bottom platform, The four support legs 26 of 21X are removed from the bottom, and then, with the lower platform 21Y and the intermediate frame 21M coupled, the upper platform 21X is moved fully in the positive direction of X as shown in FIG. Thereafter, the four support legs 26 of the upper platform 21X are grounded.
 次いで、基地制御ユニット45は、上部プラットフォーム21Xの支持脚26を着底させたまま、下部プラットフォーム21Yの4つの支持脚26を離底させ、下部プラットフォーム21Yと中間フレーム21Mを結合した状態で、図31(b)に示すように、下部プラットフォーム21Yと中間フレーム21MをXの正方向一杯に移動させる。その後、下部プラットフォーム21Yの4つの支持脚26を下方に伸長してそれぞれ着底させる。これにより、図31(c)に示すように、上下のプラットフォーム21X、21Yの内側の所定領域が、図23に示す第三の区画Cとなる。 Next, the base control unit 45 leaves the four support legs 26 of the lower platform 21Y while keeping the support legs 26 of the upper platform 21X bottomed, and connects the lower platform 21Y and the intermediate frame 21M in the state shown in FIG. As shown in FIG. 31 (b), the lower platform 21Y and the intermediate frame 21M are moved fully in the X direction. Thereafter, the four support legs 26 of the lower platform 21Y are extended downward and are respectively bottomed. Thereby, as shown in FIG. 31C, the predetermined area inside the upper and lower platforms 21X and 21Y becomes the third section C shown in FIG.
(手順2-5)以下、同様にして、第三の区画Cでの所期の採鉱を終えたら、基地制御ユニット45は、下部プラットフォーム21Yの支持脚26を着底させたまま、上部プラットフォーム21Xの支持脚26を離底させ、次いで、上部プラットフォーム21Xと中間フレーム21Mを結合した状態で、図31(d)に示すように、上部プラットフォーム21Xと中間フレーム21MをXの正方向一杯に移動させる。 (Procedure 2-5) In the same manner, after completing the intended mining in the third section C, the base control unit 45 keeps the support legs 26 of the lower platform 21Y on the bottom platform 21X. The support legs 26 are removed from the bottom, and then the upper platform 21X and the intermediate frame 21M are moved to the full forward direction of X as shown in FIG. .
 次いで、基地制御ユニット45は、上部プラットフォーム21Xの支持脚26を着底させたまま、下部プラットフォーム21Yの支持脚26を離底させ、次いで、下部プラットフォーム21YとMFを結合した状態で、図31(e)に示すように、下部プラットフォーム21Yと中間フレーム21MをXの正方向一杯に移動させる。その後、下部プラットフォーム21Yの支持脚26を着底させる。これにより、図31(f)に示すように、上下のプラットフォーム21X、21Yの内側の所定領域が、図23に示す第四の区画Dとなる。
(手順2-6)第四の区画Dにおいて、基地制御ユニット45は、管理コンピュータから採掘開始命令を受け、中間フレーム21Mの内側の所定領域を採掘する。
(手順2-7)以下、同様にして、Xの正方向への歩行および掘削では(2-4)~(2-6)の手順を繰り返す。
Next, the base control unit 45 leaves the support leg 26 of the lower platform 21Y while keeping the support leg 26 of the upper platform 21X bottomed, and then connects the lower platform 21Y and MF in FIG. As shown in e), the lower platform 21Y and the intermediate frame 21M are moved to the full forward direction of X. Thereafter, the support legs 26 of the lower platform 21Y are grounded. As a result, as shown in FIG. 31 (f), a predetermined area inside the upper and lower platforms 21X and 21Y becomes the fourth section D shown in FIG.
(Procedure 2-6) In the fourth section D, the base control unit 45 receives a mining start command from the management computer, and mines a predetermined area inside the intermediate frame 21M.
(Procedure 2-7) The steps (2-4) to (2-6) are repeated in the same way for walking and excavating X in the positive direction.
(手順3)Yの正方向への走行および掘削
 次に、前述の(手順1)の(手順2-4)の状態からY方向に移動する手順を説明する。
(手順3-1)図31(f)に示す状態から、Y方向に採鉱ステーション220を移動するときは、基地制御ユニット45は、上部プラットフォーム21Xの支持脚26を着底させたまま、下部プラットフォーム21Yの4つの支持脚26を離底させ、次いで、上部プラットフォーム21Xと中間フレーム21Mを結合した状態で、図32(a)に示すように、下部プラットフォーム21YをYの正方向一杯に移動させる。その後、下部プラットフォーム21Yの4つの支持脚26を着底させる。
(Procedure 3) Y traveling in the positive direction and excavation Next, a procedure for moving in the Y direction from the state of (Procedure 2-4) in (Procedure 1) described above will be described.
(Procedure 3-1) When moving the mining station 220 in the Y direction from the state shown in FIG. 31 (f), the base control unit 45 keeps the support legs 26 of the upper platform 21X on the bottom platform. The four support legs 26 of 21Y are removed from the bottom, and then, with the upper platform 21X and the intermediate frame 21M coupled, the lower platform 21Y is moved fully in the positive direction of Y as shown in FIG. Thereafter, the four support legs 26 of the lower platform 21Y are grounded.
(手順3-2)その後、基地制御ユニット45は、下部プラットフォーム21Yの支持脚26を着底させたまま、上部プラットフォーム21Xの4つの支持脚26を離底させ、次いで、上部プラットフォーム21Xと中間フレーム21Mを固定した状態で、図32(b)に示すように、上部プラットフォーム21Xと中間フレーム21MをYの正方向一杯に移動させる。その後、上部プラットフォーム21Xの4つの支持脚26を着底させる。 (Procedure 3-2) After that, the base control unit 45 leaves the four support legs 26 of the upper platform 21X while keeping the support legs 26 of the lower platform 21Y bottomed, and then the upper platform 21X and the intermediate frame With the 21M fixed, the upper platform 21X and the intermediate frame 21M are moved fully in the Y direction as shown in FIG. Thereafter, the four support legs 26 of the upper platform 21X are grounded.
(手順3-3)次いで、基地制御ユニット45は、上部プラットフォーム21Xの支持脚26を着底させたまま、下部プラットフォーム21Yの4つの支持脚26を離底させ、上部プラットフォーム21Xと中間フレーム21Mを結合した状態で、図32(c)に示すように、下部プラットフォーム21YをYの正方向に、下部プラットフォーム21Yの平面中心が上部プラットフォーム21Xおよび中間フレーム21Mの平面中心に一致する位置まで移動させる。
 その後、基地制御ユニット45は、下部プラットフォーム21Y4つの支持脚26を着底させる。これにより、上下のプラットフォーム21X、21Yの内側の所定領域が、図23に示す第五の区画Eとなる。図33に示すように、第五の区画Eにおいて、基地制御ユニット45は、管理コンピュータから採掘開始命令を受けると、中間フレーム21Mの内側の所定領域を採掘する。
(Procedure 3-3) Next, the base control unit 45 leaves the four support legs 26 of the lower platform 21Y while keeping the support legs 26 of the upper platform 21X bottomed, and removes the upper platform 21X and the intermediate frame 21M. In the coupled state, as shown in FIG. 32C, the lower platform 21Y is moved in the positive direction of Y to a position where the plane center of the lower platform 21Y coincides with the plane centers of the upper platform 21X and the intermediate frame 21M.
Thereafter, the base control unit 45 bottoms the four support legs 26 of the lower platform 21Y. Thereby, the predetermined area inside the upper and lower platforms 21X and 21Y becomes the fifth section E shown in FIG. As shown in FIG. 33, in the fifth section E, when receiving the mining start command from the management computer, the base control unit 45 mines a predetermined area inside the intermediate frame 21M.
(4) 繰返し
 以下、図33(a)~(c)に示すように、Xの負方向に移動する場合は、Xの正方向と同様の手順を逆方向に向けて行えばよく、予定採掘区域(40×40m)の掘削終了まで、上述した(手順2)と(手順3)の動作を繰り返し行う。また、X方向の走行に関しては、Xの正方向と負方向の手順を交互に実行すればよい。
(4) Repetition As shown in FIGS. 33 (a) to 33 (c), when moving in the negative direction of X, the same procedure as in the positive direction of X may be performed in the reverse direction. Until the end of the excavation of the area (40 × 40 m), the above-described operations (procedure 2) and (procedure 3) are repeated. For traveling in the X direction, the procedure for the positive and negative directions of X may be executed alternately.
 このように、第三実施形態の採鉱ステーション220によれば、海底鉱床の傾斜や起伏に対応できる上、採鉱ステーション220を自走可能な構成とすることにより、採鉱ステーションの位置替え(リロケーション)を行う支援船である架設配置用母船2を不要または使用を要する状態を大幅に少なくすることができる。そのため、プロジェクトの工期とコストを大幅に減少することができる。 As described above, according to the mining station 220 of the third embodiment, the mining station can be repositioned by making the mining station 220 self-propelled in addition to being able to cope with the inclination and undulation of the seabed deposits. It is possible to greatly reduce the state in which the construction placement mother ship 2 which is a support ship to be used is unnecessary or needs to be used. Therefore, the construction period and cost of the project can be greatly reduced.
 なお、上記第一実施形態では、架設配置用母船2は、図1のように、揚鉱ユニット4および複数の採鉱ステーション20を運搬する大型船舶の例を示したが、これに限定されず、例えば図34に示すように、小型の架設配置用母船2を用いることができる。
 同図の架設配置用母船2は、平面視が矩形枠状の船体を有し、船体の左右が浮体2fとされている。平面視で、船体中央は、矩形状のムーンプール2pとされ、ムーンプール2pを跨ぐようにクレーン11が船体上に跨設されている。
 船体の甲板には、居住室2hおよび貯蔵室2sが設けられるとともに、適所にウインチ11wが装備され、ムーンプール2pから採鉱ステーション220を海中に吊り下ろし、および引き揚げ可能になっている。なお、同図(c)の符号DおよびUは、採鉱ステーション220の吊り下ろし、および引き揚げ可能なイメージを示している。
In the first embodiment, the erection and placement mother ship 2 is an example of a large ship that carries the mining unit 4 and the plurality of mining stations 20 as shown in FIG. 1, but is not limited thereto. For example, as shown in FIG. 34, a small erection and placement mother ship 2 can be used.
The erection and placement mother ship 2 shown in the figure has a rectangular frame-shaped hull in plan view, and the left and right sides of the hull are floating bodies 2f. In plan view, the center of the hull is a rectangular moon pool 2p, and the crane 11 is straddled on the hull so as to straddle the moon pool 2p.
On the deck of the hull, a living room 2h and a storage room 2s are provided, and a winch 11w is equipped at an appropriate place, and the mining station 220 can be suspended from the moon pool 2p and can be lifted. In addition, the code | symbol D and U of the same figure (c) have shown the image which can hang | hang the mining station 220 and can lift.
 なお、この架設配置用母船2の寸法は、上記第三実施形態の採鉱ステーション220を架設配置する上で、全長72m×全幅48m程度とし、ムーンプール2pの寸法を30m×33m程度とすれば好適である。このような小型の架設配置用母船2を用いれば、支援船自体の費用や、海上に停泊させる際の用船費等をより少なくできるため、コストを減少する上でより好ましい。 It is to be noted that the size of the mother ship 2 for erection and arrangement is suitable if the mining station 220 of the third embodiment is erected and arranged to have a total length of 72 m × total width of about 48 m and the size of the moon pool 2p is about 30 m × 33 m. It is. The use of such a small laying arrangement mother ship 2 is more preferable in terms of cost reduction because the cost of the support ship itself, the chartering cost when moored at sea, etc. can be reduced.
 ここで、海底熱水鉱床には、海山の熱水が噴出するチムニー(煙突状の熱水噴出突起)が存在する。そのため、上記各実施形態の採鉱ステーション20、120、220を海底に立設する際、および、上記第二ないし第三実施形態の採鉱ステーション120、220の歩行動作を行う際に、採鉱ステーションとチムニー等の障害物との干渉を防止または抑制する必要がある。そこで、以下、チムニー監視手段を備える採鉱ステーション、および採鉱基地監視装置、並びにチムニー回避方法について説明する。 Here, there is a chimney (a chimney-like hot-water ejection protrusion) from which hot water from the seamount erupts. Therefore, when the mining stations 20, 120, and 220 of the above embodiments are erected on the seabed, and when the walking operations of the mining stations 120 and 220 of the second to third embodiments are performed, the mining station and the chimney It is necessary to prevent or suppress interference with obstacles such as. Therefore, hereinafter, the mining station including the chimney monitoring means, the mining base monitoring device, and the chimney avoidance method will be described.
 第三実施形態の採鉱ステーション220は、図35に示すように、上記基地制御ユニット45が、チムニー探知部91を含んで構成されている。チムニー探知部91は、海底鉱床のチムニーを検出するチムニー検出手段である。チムニー探知部91は、超音波送受信部92と、超音波による水中探知で得たエコーに基づいてチムニーを検出する検出部93とを有する。 In the mining station 220 of the third embodiment, the base control unit 45 includes a chimney detector 91 as shown in FIG. The chimney detection unit 91 is chimney detection means for detecting the chimney of the seabed deposit. The chimney detection unit 91 includes an ultrasonic transmission / reception unit 92 and a detection unit 93 that detects chimney based on echoes obtained by underwater detection using ultrasonic waves.
 超音波送信部92は、基地側から海底鉱床に向けて超音波を発射し、直ちに受信状態に切り替わり、海底鉱床からの反射波を受信する。検出部94は、超音波の発射時から反射波の受信時までの往復時間を測定し、その往復時間を距離に換算して、採鉱ステーション220からチムニーまでの距離を測定するとともに、海底鉱床の界面状態およびチムニーの有無を探知する。 The ultrasonic transmission unit 92 emits ultrasonic waves from the base side toward the seabed deposit, immediately switches to the reception state, and receives the reflected wave from the seabed deposit. The detection unit 94 measures the round trip time from the time when the ultrasonic wave is emitted to the time when the reflected wave is received, converts the round trip time into a distance, measures the distance from the mining station 220 to the chimney, and Detect interface state and presence of chimney.
 図35に示すチムニー検出手段は、チムニー探知部91に駆動部90が付設されたサーチライト型ソナー(マルチビームソナー)である。チムニー探知部91は、例えばプラットフォーム21の中央の最も高い適所に設けられ、チムニー探知部91が所定角度の視野角で探査を行いつつ、駆動部90によってチムニー探知部91が水平面上で360°回転される。これにより、採鉱ステーション220の全周を探知可能になっている。
 なお、チムニー探知部91の設置箇所は、「プラットフォーム21の中央の最も高い適所」に限定されず、所期の探査が可能であれば、採鉱ステーション220の他の位置に設置できる。例えば、プラットフォーム21の鉱床側を向く面にチムニー探知部91を設けてもよい。この場合、プラットフォーム21の鉱床側を向く面から、自身の支持脚26やガイドシェル48を含み、自身下部とその周囲の地形の高さを測定して鉱床の凹凸を検知することができる。
The chimney detection means shown in FIG. 35 is a searchlight type sonar (multi-beam sonar) in which a drive unit 90 is attached to a chimney detection unit 91. The chimney detection unit 91 is provided, for example, at the highest proper position in the center of the platform 21, and the chimney detection unit 91 rotates 360 ° on the horizontal plane by the drive unit 90 while searching at a predetermined viewing angle. Is done. As a result, the entire circumference of the mining station 220 can be detected.
Note that the installation location of the chimney detection unit 91 is not limited to “the highest appropriate place in the center of the platform 21”, and can be installed at other positions of the mining station 220 as long as the intended search is possible. For example, a chimney detector 91 may be provided on the surface of the platform 21 facing the deposit. In this case, the unevenness of the ore deposit can be detected by measuring the height of the lower part of the platform 21 and the surrounding terrain including the support leg 26 and the guide shell 48 from the surface facing the deposit side of the platform 21.
 なお、チムニー検出手段は、サーチライト型ソナーに限らず、例えばスキャニング型ソナーを用いてもよい。スキャニング型ソナーであれば、一度に採鉱ステーション220の360度全周を探知できる。また、第三実施形態の採鉱ステーション220は、チムニー検出手段として、超音波を用いたチムニー探知部91を備える例を説明したが、これに限らず、チムニー検出手段として、光を用いてチムニーを検出してもよい。例えば、基地制御ユニット45が、カメラまたは画像センサで海底鉱床のチムニーを検出する画像処理部を有する構成とすることができる。 Note that the chimney detection means is not limited to the search light type sonar, and for example, a scanning type sonar may be used. Scanning sonar can detect the entire 360 degree circumference of the mining station 220 at once. Moreover, although the mining station 220 of 3rd embodiment demonstrated the example provided with the chimney detection part 91 using an ultrasonic wave as a chimney detection means, it is not restricted to this, Chimney is detected using light as a chimney detection means. It may be detected. For example, the base control unit 45 may include an image processing unit that detects the chimney of the seabed deposit with a camera or an image sensor.
 さらに、第三実施形態の採鉱ステーション220は、基地制御ユニット45が、検出したチムニーを避ける回避制御を実行するように構成されている。
 具体的には、図35に示すように、基地制御ユニット45は、上述した各移動機構を駆動するモータのトルクをそれぞれのトルク検出器52x、44y、47z、71r、9p、Mx、My、Mz(49)の検出値からを取得することによって監視可能に構成されている。また、基地制御ユニット45は、チムニー回避処理のプログラムを実行可能に構成されている。
Furthermore, the mining station 220 of the third embodiment is configured such that the base control unit 45 executes avoidance control that avoids the detected chimney.
Specifically, as shown in FIG. 35, the base control unit 45 uses the torque detectors 52x, 44y, 47z, 71r, 9p, Mx, My, and Mz for the torque of the motor that drives each of the moving mechanisms described above. Monitoring is possible by obtaining from the detection value of (49). The base control unit 45 is configured to be able to execute a program for chimney avoidance processing.
 なお、同図において、符号52xは、X方向用移動機構52のモータに付設されるトルク検出器、符号44yは、Y方向用移動機構44のモータに付設されるトルク検出器、符号47zは、スライド移動機構47のモータに付設されるトルク検出器、符号71rは、ハウジング部71の回転駆動機構に付設されるトルク検出器、符号9pは、高圧水供給管9の高圧水供給ポンプの駆動部に付設されるトルク検出器、符号Mx、My、Mz(49)それぞれは、上記X駆動モータMx、Y駆動モータMyおよびジャッキ機構49のモータにそれぞれ付設されるトルク検出器である。 In the figure, reference numeral 52x denotes a torque detector attached to the motor of the X-direction moving mechanism 52, reference numeral 44y denotes a torque detector attached to the motor of the Y-direction moving mechanism 44, and reference numeral 47z denotes A torque detector attached to the motor of the slide moving mechanism 47, reference numeral 71r is a torque detector attached to the rotation drive mechanism of the housing part 71, and reference numeral 9p is a drive part of the high-pressure water supply pump of the high-pressure water supply pipe 9. Reference numerals Mx, My, Mz (49) are attached to the X drive motor Mx, the Y drive motor My, and the motor of the jack mechanism 49, respectively.
 詳しくは、基地制御ユニット45でチムニー回避処理が実行されると、図36に示すように、ステップS21に移行し、ステップS21では、X駆動モータMxおよびY駆動モータMyに付設されたトルク検出器に基づきモータトルクを確認する。トルクが正常値の範囲であれば(Yes)続くステップS22に移行し、トルクが異常値、つまり、監視するトルクが所定を超えたときは(No)、対応する移動機構がチムニーに接触したと判定してステップS26に移行する。
 ステップS22では、採鉱基地監視装置80からの回避命令(例えばオペレータによるマニュアル操作)の有無を確認し、回避命令が有れば(Yes)処理を戻して回避命令に応じた制御を行い、回避命令が無ければ(No)、続くステップS23に移行する。
Specifically, when the chimney avoidance process is executed in the base control unit 45, the process proceeds to step S21 as shown in FIG. 36, and in step S21, torque detectors attached to the X drive motor Mx and the Y drive motor My are detected. Check motor torque based on If the torque is in the normal value range (Yes), the process proceeds to the subsequent step S22, and if the torque is an abnormal value, that is, if the monitored torque exceeds a predetermined value (No), the corresponding moving mechanism is in contact with the chimney. Determination is made and the process proceeds to step S26.
In step S22, the presence / absence of an avoidance command (for example, manual operation by the operator) from the mining base monitoring device 80 is confirmed. If there is an avoidance command (Yes), the process is returned and control according to the avoidance command is performed. If there is no (No), the process proceeds to the following step S23.
 ステップS23では、チムニー探知部91が探知したエコー画像情報を取得し、続くステップS24では、チムニー探知部91が探知したチムニーの位置情報を取得してステップS25に移行する。ステップS25では、採鉱ステーション220自身の位置情報とチムニーの位置情報とを関連付けする処理を行う。この関連付け処理では、採鉱ステーション220自身の各部の位置情報とチムニーの位置情報相互の界面情報を比較して相対距離を算出し、所定の閾値よりも相対距離が近い場合には障害物と判定する。
 例えばプラットフォーム21の鉱床側を向く面にチムニー探知部91が装備されている場合は、自身の支持脚26やガイドシェル48の位置情報から、プラットフォーム21の設定高さとの高低差を判断可能であり、さらに、採鉱ステーション220の移動方向から障害物を判定できる。
In step S23, the echo image information detected by the chimney detection unit 91 is acquired. In subsequent step S24, the position information of the chimney detected by the chimney detection unit 91 is acquired, and the process proceeds to step S25. In step S25, a process of associating the position information of the mining station 220 with the position information of the chimney is performed. In this associating process, the relative distance is calculated by comparing the position information of each part of the mining station 220 itself and the interface information between the position information of the chimneys, and if the relative distance is closer than a predetermined threshold, it is determined as an obstacle. .
For example, when the chimney detector 91 is mounted on the surface of the platform 21 facing the deposit, the height difference from the set height of the platform 21 can be determined from the position information of its own support leg 26 and guide shell 48. Furthermore, the obstacle can be determined from the moving direction of the mining station 220.
 続くステップS26では、回避制御が実行される。回避制御は、検出したチムニーのうち、障害物と判定したチムニーを避けるための処理である。例えば、ステップS21から移行した場合、障害物に接触時の回避対応として、監視するトルクが所定を超えたと判定されたいずれかの駆動モータMx、Myに対し、そのトルクが正常値の範囲に戻るまで、対応するモータを逆転駆動する制御を行う。 In subsequent step S26, avoidance control is executed. The avoidance control is a process for avoiding chimneys determined as obstacles among the detected chimneys. For example, when the process proceeds from step S21, the torque returns to a normal value range for any of the drive motors Mx and My that have been determined that the monitored torque has exceeded a predetermined value as an avoidance measure when contacting an obstacle. Until then, the control to drive the corresponding motor in the reverse direction is performed.
 また、例えば上記予定採掘区域(40×40m)の掘削を行っている場合であれば、予定採掘区域の区画内に障害物と判定したチムニーがあるときは、障害物に非接触時の回避対応として、該当する区画を全体的に迂回する迂回プログラムを実行し、障害物と判定したチムニーを避ける。また、障害物に非接触時の回避対応として、採鉱ステーション220自身の歩行処理を中断または低速駆動にて制御し、ステップS27に移行して、オペレータの指示を待つように構成してもよい。 For example, if excavation of the planned mining area (40 × 40m) is performed, and there is a chimney that is determined to be an obstacle in the planned mining area, avoidance measures when no obstacle is in contact with the obstacle As a result, a detour program for detouring the corresponding section as a whole is executed to avoid the chimney determined as an obstacle. Further, as a countermeasure for avoiding contact with an obstacle, the walking process of the mining station 220 itself may be controlled by interruption or low-speed driving, and the process may proceed to step S27 to wait for an operator's instruction.
 非接触時の回避対応として、オペレータの指示を待つ場合、ステップS27に移行し、障害物と判定したチムニーの位置情報を含む探知情報を採鉱基地監視装置80に出力する。これにより、採鉱基地監視装置80で監視中のオペレータは、採鉱基地監視装置80のディスプレイの画像表示および界面情報並びに相対距離の情報等を勘案して、採鉱ステーション220を適切にマニュアル操作できる。
 ここで、非接触時の回避対応をオペレータが行う場合、例えばプラットフォーム21の底面のチムニー探知部91により、採鉱ステーション220の支持脚26やガイドシェル48の位置情報を含む脚底情報から地形の高さを測定して鉱床の凹凸を検知するとともに、超音波画像、およびカメラによる撮像画像を参照してチムニーをマニュアル回避することが好ましい。
When waiting for an operator's instruction as an avoidance response at the time of non-contact, the process proceeds to step S27, and detection information including the position information of the chimney determined as an obstacle is output to the mining base monitoring device 80. Thereby, the operator who is monitoring by the mining base monitoring device 80 can appropriately manually operate the mining station 220 in consideration of the image display on the display of the mining base monitoring device 80, the interface information, the information on the relative distance, and the like.
Here, when the operator performs avoidance measures at the time of non-contact, for example, the chimney detection unit 91 on the bottom surface of the platform 21 determines the height of the terrain from the bottom information including the position information of the support leg 26 and the guide shell 48 of the mining station 220. It is preferable to detect the unevenness of the ore deposit by measuring and to manually avoid the chimney by referring to the ultrasonic image and the image captured by the camera.
 その理由は、一般に、水深2kmの海底基地を海上からのソナーで計測したときの誤差は20m程度(水深の1%)であり、採鉱ステーション220の想定サイズは20m程度である。一方、採鉱ステーション220に搭載したチムニー探知部91はチムニーを検出するに充分な分解能を有する。そのため、海上と海底で同時に計測した画像を単純に照合するのは補正処理が困難な場合があるからである。また、あらかじめ海底近くで得た詳細画像(地図)と海底計測画像との照合も、地形に特徴がないと単純には照合が困難な場合があるからである。 The reason for this is that, generally, the error when measuring a seafloor base with a depth of 2 km with sonar from the sea is about 20 m (1% of the water depth), and the assumed size of the mining station 220 is about 20 m. On the other hand, the chimney detection unit 91 mounted on the mining station 220 has sufficient resolution to detect the chimney. For this reason, simply collating images measured simultaneously on the sea and the sea floor is because correction processing may be difficult. Moreover, it is because the collation with the detailed image (map) previously obtained near the seabed and the seabed measurement image may be difficult simply if there is no feature in the topography.
 なお、採鉱ステーション220の位置・方位の計測は、海上基地となる採鉱母船1または架設配置用母船2と採鉱ステーション220とをつなぐ超音波、採鉱ステーション220に装備したジャイロ、さらに深度計を搭載して精度を上げることが好ましい。または、海上基地から採鉱ステーション220を投入する際に、GPSで投入位置を計測し、海底に着座するまでの経路を採鉱ステーション220に搭載された慣性センサで計測することが好ましい。海底着座開始地点から海底を歩行する移動工程では、海底基地のメカニカルな移動量、移動方向から積算することが好ましい。
 続くステップS28では、探知情報を再取得するか否かが判定される。つまり、海上のオペレータから、探知情報を再取得する命令が入力されていればステップS21に処理を戻し、そうでなければ処理を主制御処理に戻す。
The position and direction of the mining station 220 are measured using ultrasonic waves that connect the mining mother ship 1 or the laying mother ship 2 and the mining station 220 as a marine base, a gyro equipped in the mining station 220, and a depth meter. It is preferable to increase the accuracy. Alternatively, when the mining station 220 is introduced from the marine base, it is preferable that the input position is measured by GPS, and the route to be seated on the sea floor is measured by an inertial sensor mounted on the mining station 220. In the movement process of walking on the sea floor from the seabed seating start point, it is preferable to integrate from the mechanical movement amount and movement direction of the seabed base.
In a succeeding step S28, it is determined whether or not the detection information is reacquired. That is, if a command for reacquiring detection information is input from an offshore operator, the process returns to step S21; otherwise, the process returns to the main control process.
 次に、採鉱基地監視装置について図37および図38を適宜参照しつつ説明する。
 図37に示す採鉱基地監視装置80は、採鉱ステーション220を監視するために海上基地となる採鉱母船1または架設配置用母船2に装備される上記管理コンピュータが対応する。なお、本実施形態では、採鉱基地監視装置80を海上基地に装備した例を説明するが、これに限定されず、採鉱基地監視装置80を陸上基地に装備し、監視するオペレータは海上基地でなく、離れた陸上基地において監視することもできる。
Next, the mining base monitoring apparatus will be described with reference to FIGS. 37 and 38 as appropriate.
The mining base monitoring device 80 shown in FIG. 37 corresponds to the management computer installed in the mining mother ship 1 or the construction placement mother ship 2 that serves as a maritime base in order to monitor the mining station 220. In addition, although this embodiment demonstrates the example which equipped the mining base monitoring apparatus 80 in the sea base, it is not limited to this, The operator who equips the land base with the mining base monitoring apparatus 80, and monitors it is not a sea base. It can also be monitored at remote land bases.
 図37に示すように、第三実施形態の採鉱基地監視装置80は、制御部81、表示部86、入力部87および海中探知装置82を備える採鉱ステーション位置監視手段であって、また、チムニー監視手段でもある。制御部81は、チムニー監視処理に必要なソフトウェアと、そのソフトウェアによる情報処理を具体的に実行するハードウェア資源であるコンピュータとを含む。制御部81は、アンビリカルケーブル8を介して基地制御ユニット45と通信可能に接続されるとともに、ディスプレイ等の表示部86およびキーボード等の入力部87に対し必要なデータ通信が可能に信号線を介して接続されている。表示部86は、採鉱ステーション220の位置情報およびチムニーのエコー画像を監視画面上に表示可能に構成される。 As shown in FIG. 37, the mining base monitoring device 80 according to the third embodiment is a mining station position monitoring means including a control unit 81, a display unit 86, an input unit 87, and an underwater detection device 82, and also chimney monitoring. It is also a means. The control unit 81 includes software necessary for chimney monitoring processing and a computer that is a hardware resource that specifically executes information processing by the software. The control unit 81 is communicably connected to the base control unit 45 via the umbilical cable 8 and can perform necessary data communication with respect to the display unit 86 such as a display and the input unit 87 such as a keyboard via a signal line. Connected. The display unit 86 is configured to be able to display the position information of the mining station 220 and the chimney echo image on the monitoring screen.
 海中探知装置82は、採鉱ステーション220に装備される超音波送信器83と、採鉱母船1または架設配置用母船2の船底部の三箇所に装備される超音波受信器84、探知部85とから構成され、例えば、SSBL(スーパー・ショート・ベース・ライン)と同様の技術によって、採鉱ステーションの位置情報を得ることができる。 The underwater detection device 82 includes an ultrasonic transmitter 83 provided in the mining station 220, an ultrasonic receiver 84 and a detection unit 85 provided at three locations on the bottom of the mining mother ship 1 or the laying mother ship 2. For example, the position information of the mining station can be obtained by the same technology as SSBL (Super Short Base Line).
 チムニー監視を行う場合、オペレータが採鉱基地監視装置80の入力部87から所定の入力操作を行うとチムニー監視処理が実行され、採鉱基地監視装置80の制御部81は、図38に示すように、まず、ステップS11に移行し、コンピュータの記憶装置等に予め格納されている海底地図データベースから、対応海域の海底地図情報を読み込んでステップS12に移行する。続くステップS12~S13では、上記基地制御ユニット45のチムニー探知部91で検出されたチムニーのエコー画像情報、および、チムニーの位置情報を取得する(チムニー情報取得部に対応)。 In the case of performing chimney monitoring, when an operator performs a predetermined input operation from the input unit 87 of the mining base monitoring device 80, chimney monitoring processing is executed, and the control unit 81 of the mining base monitoring device 80, as shown in FIG. First, the process proceeds to step S11, and the seafloor map information of the corresponding sea area is read from the seafloor map database stored in advance in the storage device of the computer and the process proceeds to step S12. In subsequent steps S12 to S13, the chimney echo image information detected by the chimney detection unit 91 of the base control unit 45 and the position information of the chimney are acquired (corresponding to the chimney information acquisition unit).
 続くステップS14では、基地制御ユニット45から取得した採鉱ステーション220の姿勢等の情報を含む海中採鉱基地の位置情報を取得する。なお、基地制御ユニット45は、三次元ジャイロセンサを備え、架設配置用母船2から採鉱ステーション220が吊り降ろされたときの初期位置情報を基準として、その後の採鉱ステーション220の相対的な位置変化に基づき、海中での採鉱ステーション220の位置情報を随時に生成することができる。 In subsequent step S14, the position information of the underwater mining base including information such as the attitude of the mining station 220 acquired from the base control unit 45 is acquired. The base control unit 45 includes a three-dimensional gyro sensor, and uses the initial position information when the mining station 220 is suspended from the laying mother ship 2 as a reference to change the relative position of the mining station 220 thereafter. Based on this, position information of the mining station 220 in the sea can be generated at any time.
 そして、ステップS15では、上記取得したチムニーの画像情報および位置情報、並びに採鉱ステーション220の位置情報に基づいて、対応海域の海底地図情報との関連付け処理を行う。これにより、採鉱ステーション220の位置情報、および、チムニーのエコー画像とそのチムニーの位置情報が対応海域の海底地図情報と関連付けられる。続くステップS16では、関連付けられたデータに基づく画像を、監視画面である表示部86に重畳表示させる。 And in step S15, based on the acquired image information and position information of the chimney and position information of the mining station 220, an association process with the seafloor map information of the corresponding sea area is performed. Thereby, the position information of the mining station 220, the echo image of the chimney and the position information of the chimney are associated with the seabed map information of the corresponding sea area. In subsequent step S16, an image based on the associated data is superimposed and displayed on the display unit 86 which is a monitoring screen.
 これにより、オペレータは、表示部86に重畳表示された画像によって、対応海域の海底地図に対する、海中での採鉱ステーション220の位置およびそのイメージ画像、並びに、チムニーの位置およびそのイメージ画像を目視確認により監視可能になっている(表示合成部に対応)。制御部81は、採鉱ステーション220の移動にあわせて、表示部86に重畳表示している海底地図およびチムニーのエコー画像を移動させる。
 これにより、採鉱ステーション220が歩行中の随時のイメージ画像を常に表示部86に表示することができる。なお、チムニーの位置情報と採鉱ステーション220の位置情報は、緯度情報および経度情報を含むものであり、また、チムニーと採鉱ステーション220の深度情報を含むものである。これにより、より精度の高い探査が可能となる。また、界面状態を正確に判定する上で好適である。
Thus, the operator visually confirms the position of the mining station 220 in the sea and the image thereof, and the position of the chimney and the image thereof with respect to the seafloor map of the corresponding sea area, using the image superimposed on the display unit 86. Monitoring is possible (corresponding to the display composition unit). The control unit 81 moves the seabed map and the chimney echo image superimposed on the display unit 86 in accordance with the movement of the mining station 220.
Thereby, the image image at any time while the mining station 220 is walking can always be displayed on the display unit 86. The position information of the chimney and the mining station 220 includes latitude information and longitude information, and includes depth information of the chimney and the mining station 220. As a result, more accurate exploration is possible. Moreover, it is suitable for accurately determining the interface state.
 そして、続くステップS17では、障害判定処理を実行し、障害判定処理では、上記関連付けられたチムニーの位置情報と採鉱ステーション220の位置情報とから、採鉱ステーション220への障害となるチムニーを判定する(判定部に対応)。障害判定処理では、表示部86の監視画面上に表示される複数のチムニーのうち、例えば、採鉱ステーション220の移動方向に基づいて、最も採鉱ステーション220に近いチムニーを障害となるチムニーと判定する。 In the subsequent step S17, a failure determination process is executed. In the failure determination process, a chimney that is a failure to the mining station 220 is determined from the position information of the associated chimney and the position information of the mining station 220 ( Corresponds to the determination unit). In the failure determination process, among the plurality of chimneys displayed on the monitoring screen of the display unit 86, for example, based on the moving direction of the mining station 220, the chimney closest to the mining station 220 is determined to be a chimney that becomes a failure.
 障害となるチムニーと判定された場合、例えば、当該チムニーの表示画像を、通常色(例えば青)から警戒色(例えば赤)に替えたり、他のチムニーよりも明るく表示したり、あるいは点滅させたりするなどにより、オペレータに対する注意を喚起させる注意喚起表示を行う。
 続くステップS18では、オペレータによる入力部87からの再探査要求の入力操作の有無を見て、再探査要求があれば(Yes)ステップS12に処理を戻し、そうでなければ(No)ステップS14に処理を戻し、採鉱ステーション220の位置情報以外の情報を引き続き用いる。
When the chimney is determined to be an obstacle, for example, the display image of the chimney is changed from a normal color (for example, blue) to a warning color (for example, red), or displayed brighter than other chimneys, or blinked. For example, a warning display for calling attention to the operator is performed.
In the subsequent step S18, it is checked whether or not the operator has performed a re-exploration request input operation from the input unit 87. If there is a re-exploration request (Yes), the process returns to step S12, otherwise (No) to step S14. The processing is returned and information other than the position information of the mining station 220 is continuously used.
 次に、チムニー回避方法について図39、図40を参照しつつ説明する。
 上述したように、第三実施形態では、作業装置である採鉱ステーション220は、基地制御ユニット45がチムニー探知部91を含んで構成され、また、採鉱母船1または架設配置用母船2は、採鉱基地監視装置80を備えるので、第三実施形態の構成であれば、障害物となるチムニーを回避できる。
Next, a chimney avoidance method will be described with reference to FIGS.
As described above, in the third embodiment, the mining station 220, which is a working device, is configured such that the base control unit 45 includes the chimney detection unit 91, and the mining mother ship 1 or the construction placement mother ship 2 is the mining base. Since the monitoring device 80 is provided, a chimney that becomes an obstacle can be avoided with the configuration of the third embodiment.
 つまり、採鉱ステーション220は、上述したように、基地制御ユニット45は、検出したチムニーを避ける回避制御を実行し、チムニー探知部91が、超音波の送受信による水中探知で得たエコーに基づいて海底鉱床のチムニーを検出し(チムニー検出工程)、検出されたチムニーの位置情報に基づいて、障害物と判定したチムニーを避ける回避制御が実行されるので、障害物となるチムニーとの干渉を回避できる(干渉回避工程)。 In other words, as described above, the base control unit 45 executes the avoidance control to avoid the detected chimney, and the chimney detection unit 91 performs the underwater detection by transmitting and receiving ultrasonic waves, as described above. Since the chimney of the ore deposit is detected (chimney detection process) and avoidance control is performed to avoid the chimney determined as an obstacle based on the detected position information of the chimney, interference with the chimney that is an obstacle can be avoided. (Interference avoidance process).
 なお、ステップS26の回避制御で説明したように、予定採掘区域の区画内に障害物と判定したチムニーがあるときに、該当する区画を全体的に迂回する迂回プログラムを実行して障害物と判定したチムニーを避けるのであれば、図39に事前回避のイメージを示すように、障害物となるチムニーとの干渉を事前に回避できる。また、採鉱ステーション220自身の歩行処理を中断して、オペレータの指示を待つ場合であっても、障害物となるチムニーとの干渉を事前に回避できる。 As described in the avoidance control in step S26, when there is a chimney determined as an obstacle in the planned mining area, a bypass program that bypasses the corresponding area as a whole is executed and determined as an obstacle. If the chimney is avoided, interference with the chimney as an obstacle can be avoided in advance, as shown in FIG. Further, even when the walking process of the mining station 220 is interrupted and the operator's instruction is waited for, interference with the chimney that becomes an obstacle can be avoided in advance.
 これに対し、ステップS26の回避制御で説明したように、基地制御ユニット45は、歩行に係る駆動モータMx、My等の駆動機構のモータトルクを監視しているので、なんらかの理由で事前回避ができなかったときであっても、障害物となるチムニーとの干渉を事後的に自動で回避できる。換言すれば、オペレータの指示によらない自動制御での採掘を行う場合や、万一、オペレータがマニュアル操作を誤って、採鉱ステーション220がチムニー(障害物)に接触した場合であっても、チムニーとの過剰な衝突を防止または抑制できる。 On the other hand, as explained in the avoidance control in step S26, the base control unit 45 monitors the motor torque of the drive mechanism such as the drive motors Mx and My related to walking, and therefore can be avoided in advance for some reason. Even when there is not, interference with the chimney as an obstacle can be automatically avoided afterwards. In other words, even if mining is performed by automatic control not instructed by the operator, or if the operator accidentally performs a manual operation and the mining station 220 contacts the chimney (obstacle), the chimney It is possible to prevent or suppress excessive collisions.
 つまり、図40に事後的回避のイメージを示すように、いま、同図において、下部プラットフォーム21YがX方向に移動中に(符号Mを付した矢印は移動のイメージ)、チムニーCに支持脚26が接触した場合を想定する。
 このときは、下部プラットフォーム21Yを駆動するY駆動モータMyに異常トルクが生じることになる。そのため、Y駆動モータMyのトルク検出器は、ただちに異常値を出力する。これにより、基地制御ユニット45は、Y駆動モータMyに対応する移動機構がチムニーに接触したと判定し(図36のステップS21の「No」)、回避制御により、Y駆動モータMyのトルクが正常値の範囲に戻るまで、対応するY駆動モータMyを逆転駆動できる(図36のステップS26)。よって、チムニーに接触した場合であっても、チムニーとの過剰な衝突を防止または抑制できる。
In other words, as shown in FIG. 40, an image of ex-post evasion is shown. In FIG. 40, while the lower platform 21Y is moving in the X direction (the arrow with the symbol M is an image of movement), the support leg 26 is attached to the chimney C. Suppose that touches.
At this time, an abnormal torque is generated in the Y drive motor My that drives the lower platform 21Y. Therefore, the torque detector of the Y drive motor My immediately outputs an abnormal value. Thereby, the base control unit 45 determines that the moving mechanism corresponding to the Y drive motor My has contacted the chimney (“No” in step S21 in FIG. 36), and the torque of the Y drive motor My is normal by the avoidance control. The corresponding Y drive motor My can be driven in reverse until it returns to the value range (step S26 in FIG. 36). Therefore, even when it contacts the chimney, excessive collision with the chimney can be prevented or suppressed.
 さらに、採鉱母船1または架設配置用母船2のオペレータは、採鉱基地監視装置80にチムニー監視処理を実行させる。これにより、採鉱基地監視装置80は、チムニー探知部91の超音波の送受信による水中探知で得たエコーに基づいて海底鉱床のチムニーを検出し(チムニー検出工程)、監視画面である表示部86に海底地図を表示するとともに、障害判定の表示も含め、採鉱ステーション220およびチムニーのエコー画像を重畳表示させることができる。
 よって、オペレータは、海中の採鉱ステーション220の状態を随時に監視し、検出されたチムニーの位置情報に基づいて、採鉱ステーション220にチムニーが干渉するおそれがあると判断したら、マニュアル操作によって、障害物となるチムニーとの干渉を事前に回避できる(干渉回避工程)。
Furthermore, the operator of the mining mother ship 1 or the laying arrangement mother ship 2 causes the mining base monitoring device 80 to perform chimney monitoring processing. Thereby, the mining base monitoring device 80 detects the chimney of the seabed deposit based on the echo obtained by the underwater detection by the transmission and reception of the ultrasonic wave of the chimney detection unit 91 (chimney detection process), and the display unit 86 which is a monitoring screen While displaying the seabed map, the echo image of the mining station 220 and the chimney can be displayed in a superimposed manner, including the display of the failure determination.
Therefore, the operator monitors the state of the underwater mining station 220 at any time, and if it is determined that there is a possibility that the chimney interferes with the mining station 220 based on the detected position information of the chimney, Interference with the chimney can be avoided in advance (interference avoidance process).
 1  採鉱母船(海上採鉱基地)
 2  架設配置用母船
 3  運搬船
 4  揚鉱ユニット
 5  吸込管
 6  揚鉱管
 7  排出管
 8  アンビリカルケーブル
 9  高圧水供給管
 10 採掘装置本体
 11 作業機
 12 発電機
 13 貯蔵器
 20、120、220 採鉱ステーション(海中採鉱基地)
 21 ベースフレーム(プラットフォーム)
 25 揚鉱用ポンプ
 26 支持脚
 27 分級器
 30 採掘装置
 31 シリンダ
 32 通水孔
 33 シリンダライナ
 34 ハンマ
 35 連結部材
 36 シリンダブシュ
 37 チェックバルブ
 38 スリーブ
 39 リング
 40 二重管ロッド
 41 シリンダ前室
 42 シリンダ後室
 43 移動フレーム
 45 基地制御ユニット(コントローラ)
 48 ガイドシェル
 49 ジャッキ機構
 50 ビット
 71 ハウジング部
 80 採鉱基地監視装置
 81 制御部
 82 海中探知装置
 83 超音波送信器
 84 超音波受信器
 85 探知部
 86 表示部
 87 入力部
 90 駆動部
 91 チムニー探知部
 92 超音波送受信部
 93 検出部
 SL  海上
 SB  海底
 OD  海底鉱床
 VH  竪穴(有底穴)
 
1 Mining mother ship (offshore mining base)
2 Mothership for installation and placement 3 Transport ship 4 Pumping unit 5 Suction pipe 6 Pumping pipe 7 Discharge pipe 8 Umbilical cable 9 High pressure water supply pipe 10 Mining equipment body 11 Working machine 12 Generator 13 Storage machine 20, 120, 220 Mining station ( Underwater mining base)
21 Base frame (platform)
25 Pump for pumping 26 Support leg 27 Classifier 30 Mining equipment 31 Cylinder 32 Water passage hole 33 Cylinder liner 34 Hammer 35 Connecting member 36 Cylinder bushing 37 Check valve 38 Sleeve 39 Ring 40 Double pipe rod 41 Cylinder front chamber 42 Cylinder rear Chamber 43 Moving frame 45 Base control unit (controller)
48 Guide Shell 49 Jack Mechanism 50 Bit 71 Housing Unit 80 Mining Base Monitoring Device 81 Control Unit 82 Underwater Detection Device 83 Ultrasonic Transmitter 84 Ultrasonic Receiver 85 Detection Unit 86 Display Unit 87 Input Unit 90 Drive Unit 91 Chimney Detection Unit 92 Ultrasonic transmission / reception unit 93 Detection unit SL Marine SB Submarine OD Submarine deposit VH Cave (bottomed hole)

Claims (22)

  1.  海中に配置されて且つ海底に立設されるとともに、海底鉱床に有底穴を形成しつつ採掘された海底鉱物を有底穴内から回収する海中採鉱基地であって、
     海底鉱床に有底穴を形成する海底鉱物採掘装置と、該海底鉱物採掘装置が装備されるプラットフォームと、を備え、
     前記プラットフォームは、複数の支持脚を有し、各支持脚は、垂直方向への移動機構を介してZ方向に個別に相対的スライド移動が可能に構成されていることを特徴とする海中採鉱基地。
    An underwater mining base that is located in the sea and is erected on the sea floor and collects the seabed minerals mined while forming a bottomed hole in the seabed deposit,
    A seabed mineral mining device for forming a bottomed hole in the seabed deposit, and a platform equipped with the seabed mineral mining device,
    The platform has a plurality of support legs, and each support leg is configured to be capable of individually sliding relative to the Z direction via a vertical movement mechanism. .
  2.  海中に配置されて且つ海底に立設されるとともに、海底鉱床に有底穴を形成しつつ採掘された海底鉱物を有底穴内から回収する海中採鉱基地であって、
     海底鉱床に有底穴を形成する海底鉱物採掘装置と、該海底鉱物採掘装置が装備されるとともに水平面で互いに直交するX方向およびY方向の少なくとも一方に自ら移動可能なプラットフォームと、を備えることを特徴とする海中採鉱基地。
    An underwater mining base that is located in the sea and is erected on the sea floor and collects the seabed minerals mined while forming a bottomed hole in the seabed deposit,
    A submarine mineral mining device that forms a bottomed hole in a submarine deposit, and a platform that is equipped with the submarine mineral mining device and that is movable in at least one of the X and Y directions perpendicular to each other in a horizontal plane. Characteristic underwater mining base.
  3.  前記プラットフォームは、上部プラットフォーム、下部プラットフォーム、および、これら上下のプラットフォームの間に配置される中間フレームを有し、
     前記中間フレームと前記上部プラットフォームとは、水平方向への移動機構を介して一の方向に相対的スライド移動が可能に構成されるとともに、
     前記中間フレームと前記下部プラットフォームとは、水平方向への移動機構を介して前記一の方向と直交する他の方向に相対的スライド移動が可能に構成され、
     前記上下のプラットフォームそれぞれは、複数の支持脚を有し、各支持脚は、垂直方向への移動機構を介してZ方向に個別に相対的スライド移動が可能に構成されている請求項2に記載の海中採鉱基地。
    The platform has an upper platform, a lower platform, and an intermediate frame disposed between the upper and lower platforms,
    The intermediate frame and the upper platform are configured to be capable of relative sliding movement in one direction via a horizontal movement mechanism,
    The intermediate frame and the lower platform are configured to be capable of relative sliding movement in another direction orthogonal to the one direction via a horizontal movement mechanism,
    3. Each of the upper and lower platforms has a plurality of support legs, and each support leg is configured to be individually slidable in the Z direction via a vertical movement mechanism. Underwater mining base.
  4.  前記上部プラットフォームまたは前記下部プラットフォームに装備されて移動機構により移動可能な移動フレームを更に備え、
     前記海底鉱物採掘装置は、前記移動機構の駆動により前記装備されたプラットフォームに沿って水平面で互いに直交するX方向およびY方向の少なくとも一方に移動可能に前記移動フレームに装着されている請求項3に記載の海中採鉱基地。
    A moving frame mounted on the upper platform or the lower platform and movable by a moving mechanism;
    The submarine mineral mining device is attached to the moving frame so as to be movable in at least one of an X direction and a Y direction orthogonal to each other on a horizontal plane along the equipped platform by driving the moving mechanism. The listed underwater mining base.
  5.  前記海底鉱物採掘装置は、前記移動フレームに固定されて上下方向に延びるガイドシェルと、前記ガイドシェル上部に取り付けられた給進機構と、前記給進機構に連結されて該給進機構の駆動によって前記ガイドシェルに沿って上下動する採掘装置本体と、前記採掘装置本体のロッドに連結されて該ロッドとともに前記採掘装置本体を回転させる回転機構とを有する請求項4に記載の海中採鉱基地。 The submarine mineral mining device includes a guide shell fixed to the moving frame and extending in the vertical direction, a feeding mechanism attached to the upper part of the guide shell, and a driving mechanism coupled to the feeding mechanism. The underwater mining base according to claim 4, comprising a mining device main body that moves up and down along the guide shell, and a rotation mechanism that is connected to a rod of the mining device main body and rotates the mining device main body together with the rod.
  6.  前記支持脚は、前記支持脚を上下にスライド移動およびその移動位置の保持が可能なジャッキ機構を介して前記移動フレームに固定されている請求項3~5のいずれか一項に記載の海中採鉱基地。 The underwater mining according to any one of claims 3 to 5, wherein the support leg is fixed to the moving frame via a jack mechanism capable of sliding the support leg up and down and holding the movement position. base.
  7.  前記移動フレームは、相互に水平方向にスライド移動可能に組み合わされた複数のフレームと、該複数のフレーム相互を水平方向にスライド移動させる移動機構とを有する請求項4~6のいずれか一項に記載の海中採鉱基地。 7. The moving frame according to claim 4, wherein the moving frame includes a plurality of frames that are slidably movable in the horizontal direction and a moving mechanism that slides the plurality of frames in the horizontal direction. The listed underwater mining base.
  8.  前記プラットフォームに装備された移動機構の全てまたはいずれかを制御するコントローラを備える請求項1~7のいずれか一項に記載の海中採鉱基地。 The underwater mining base according to any one of claims 1 to 7, further comprising a controller that controls all or any of the moving mechanisms installed in the platform.
  9.  海中姿勢の安定機構として傾斜センサを更に備え、
     前記コントローラは、前記傾斜センサの出力に基づいて、基地自体の姿勢の不均衡の程度を判定し、各支持脚の垂直方向への移動機構を制御して基地自体の姿勢安定を維持する姿勢安定制御を実行する請求項8に記載の海中採鉱基地。
    A tilt sensor is further provided as an underwater posture stabilization mechanism,
    The controller determines the degree of imbalance of the posture of the base itself based on the output of the tilt sensor, and controls the movement mechanism of each supporting leg in the vertical direction to maintain the posture stability of the base itself. The underwater mining base according to claim 8, which executes control.
  10.  前記海底鉱床のチムニーを検出するチムニー検出手段を更に備える請求項8または9に記載の海中採鉱基地。 The submarine mining base according to claim 8 or 9, further comprising chimney detection means for detecting the chimney of the submarine deposit.
  11.  前記チムニー検出手段は、超音波を送受信する超音波送受信部と、超音波による水中探知で得たエコーに基づいて前記チムニーを検出する検出部とを有する請求項10に記載の海中採鉱基地。 The underwater mining base according to claim 10, wherein the chimney detection means includes an ultrasonic transmission / reception unit that transmits / receives an ultrasonic wave and a detection unit that detects the chimney based on an echo obtained by underwater detection using ultrasonic waves.
  12.  前記チムニー検出手段は、カメラまたは画像センサで前記海底鉱床の前記チムニーを検出する画像処理部を有する請求項10に記載の海中採鉱基地。 The submarine mining base according to claim 10, wherein the chimney detection means includes an image processing unit that detects the chimney of the submarine deposit with a camera or an image sensor.
  13.  前記コントローラは、検出したチムニーを避ける回避制御を実行する請求項10~12のいずれか一項に記載の海中採鉱基地。 The underwater mining base according to any one of claims 10 to 12, wherein the controller executes avoidance control to avoid the detected chimney.
  14.  前記プラットフォームに装備された各移動機構は、モータによって駆動されるものであり、
     前記コントローラは、各移動機構を駆動するモータのトルクを監視し、監視するトルクが所定値を超えたときには、対応する移動機構が前記チムニーに接触したと判定して前記回避制御を実行する請求項13に記載の海中採鉱基地。
    Each moving mechanism equipped on the platform is driven by a motor,
    The controller monitors the torque of a motor that drives each moving mechanism, and when the monitored torque exceeds a predetermined value, determines that the corresponding moving mechanism has contacted the chimney and executes the avoidance control. 13. Underwater mining base according to 13.
  15.  請求項1~14のいずれか一項に記載の海中採鉱基地を監視するために海上または陸上の基地に装備される採鉱基地監視装置であって、
     前記海底鉱床のチムニーを監視するチムニー監視手段を備えることを特徴とする採鉱基地監視装置。
    A mining base monitoring device equipped on a marine or land base for monitoring the subsea mining base according to any one of claims 1 to 14,
    A mining base monitoring apparatus comprising chimney monitoring means for monitoring the chimney of the seabed deposit.
  16.  前記チムニー監視手段は、前記チムニーのエコー画像を監視画面上に表示する表示部を有する請求項15に記載の採鉱基地監視装置。 The mining base monitoring apparatus according to claim 15, wherein the chimney monitoring means includes a display unit that displays an echo image of the chimney on a monitoring screen.
  17.  前記チムニー監視手段は、検出された前記チムニーのエコー画像と前記チムニーの位置情報とを取得するチムニー情報取得部と、前記取得した位置情報に基づいて、予め取得されている海底地図情報との関連付けをするとともに、前記監視画面上に、当該チムニーのエコー画像を海底地図と重畳表示させる表示合成部と、前記海中採鉱基地への障害となるチムニーを判定する判定部とを備える請求項16に記載の採鉱基地監視装置。 The chimney monitoring means includes a chimney information acquisition unit that acquires the detected echo image of the chimney and the position information of the chimney, and an association between seabed map information acquired in advance based on the acquired position information The display composition part which superimposes and displays the echo image of the said chimney with a submarine map on the above-mentioned surveillance screen, and the judgment part which judges the chimney which becomes an obstacle to the underwater mining base on the monitoring screen. Mining base monitoring equipment.
  18.  前記位置情報は、緯度情報および経度情報を含む請求項17に記載の採鉱基地監視装置。 The mining base monitoring apparatus according to claim 17, wherein the position information includes latitude information and longitude information.
  19.  前記位置情報は、前記チムニーの深度情報を含む請求項17または18に記載の採鉱基地監視装置。 The mining base monitoring device according to claim 17 or 18, wherein the position information includes depth information of the chimney.
  20.  前記判定部は、前記監視画面上に表示される複数のチムニーのうち、前記海中採鉱基地の移動方向に基づいて、最も海中採鉱基地に近いチムニーを障害となるチムニーと判定する請求項17~19のいずれか一項に記載の採鉱基地監視装置。 The determination unit determines a chimney closest to the subsea mining base as a chimney that becomes an obstacle based on a moving direction of the subsea mining base among a plurality of chimneys displayed on the monitoring screen. The mining base monitoring device according to any one of the above.
  21.  前記表示合成部は、前記海中採鉱基地の移動にあわせて、前記監視画面上に重畳表示している海底地図およびチムニーのエコー画像を移動させる請求項17~20のいずれか一項に記載の採鉱基地監視装置。 The mining according to any one of claims 17 to 20, wherein the display synthesis unit moves the seabed map and the chimney echo image superimposed on the monitoring screen in accordance with the movement of the subsea mining base. Base monitoring device.
  22.  海底鉱床で用いられて海底を自走しつつ採掘に必要な作業を行う作業装置と海底鉱床のチムニーとの干渉を回避する方法であって、
     超音波の送受信による水中探知で得たエコーに基づいて海底鉱床のチムニーを検出するチムニー検出工程と、該チムニー検出工程で得たチムニーの位置情報に基づいて前記作業装置とチムニーとの干渉を回避する干渉回避工程と、を含むことを特徴とする海底鉱床のチムニー回避方法。
    A method of avoiding interference between a working device that is used in a submarine deposit and performs the work necessary for mining while self-propelled on the seabed, and a chimney of the submarine deposit,
    Chimney detection process for detecting chimneys in seabed deposits based on echoes obtained by underwater detection by transmission and reception of ultrasonic waves, and avoiding interference between the working device and chimneys based on chimney position information obtained in the chimney detection process A method of avoiding interference, and a chimney avoidance method for a submarine deposit.
PCT/JP2017/029984 2016-04-28 2017-08-22 Undersea mining base, mining base monitoring device, and chimney avoidance method for seabed deposit WO2018038119A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
SG11201901362SA SG11201901362SA (en) 2016-04-28 2017-08-22 Undersea mining base, mining base monitoring device, and chimney avoidance method for seabed deposit
US16/327,627 US10781656B2 (en) 2016-04-28 2017-08-22 Undersea mining base, mining base monitoring device, and chimney avoidance method for seabed deposit

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016091995 2016-04-28
JP2016163682A JP6859050B2 (en) 2016-04-28 2016-08-24 Underwater mining bases and mining base monitoring equipment and chimney avoidance methods for submarine deposits
JP2016-163682 2016-08-24

Publications (1)

Publication Number Publication Date
WO2018038119A1 true WO2018038119A1 (en) 2018-03-01

Family

ID=60264927

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/029984 WO2018038119A1 (en) 2016-04-28 2017-08-22 Undersea mining base, mining base monitoring device, and chimney avoidance method for seabed deposit

Country Status (4)

Country Link
US (1) US10781656B2 (en)
JP (1) JP6859050B2 (en)
SG (1) SG11201901362SA (en)
WO (1) WO2018038119A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020172749A (en) * 2019-04-08 2020-10-22 鹿島建設株式会社 Excavator, installation method of excavator, and ground excavation method

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11501629B2 (en) 2016-09-14 2022-11-15 Alert Patent Holdings Llc System and method for responding to an active shooter
US11145182B2 (en) * 2016-09-14 2021-10-12 Alert Patent Holdings Llc System and method for responding to an active shooter
JP2018172891A (en) * 2017-03-31 2018-11-08 古河機械金属株式会社 Undersea mining base
JP7082880B2 (en) * 2018-02-13 2022-06-09 古河機械金属株式会社 Multi-legged walking robot and underwater mining base equipped with it
AU2021309555A1 (en) * 2020-07-16 2023-02-09 Single Buoy Moorings Inc. Floating dewatering storage and offloading vessel
CN112001102B (en) * 2020-07-27 2022-04-15 中南大学 Ore drawing automatic control method, controller, ore drawing machine, system and storage medium
CN113153153A (en) * 2021-03-12 2021-07-23 中交广州航道局有限公司 Deepwater hard rock crushing device and using method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04169694A (en) * 1990-10-31 1992-06-17 Furukawa Co Ltd Drilling device
JPH05256082A (en) * 1991-04-18 1993-10-05 Kaiyo Kogyo Kk Method of collecting submarine mineral, etc. and device thereof
JP2004204440A (en) * 2002-12-20 2004-07-22 Komatsu Ltd Underwater walking type working machine and working method therefor
JP2005030138A (en) * 2003-07-10 2005-02-03 Nishimatsu Constr Co Ltd Dredging device
US20090218136A1 (en) * 2008-02-29 2009-09-03 Yoshio Asakawa Water bottom ore sampler and method of using the same
JP2013163902A (en) * 2012-02-09 2013-08-22 Japan Agengy For Marine-Earth Science & Technology Recovery method and recovery system for sea bottom hydrothermal mineral resources
JP2016000930A (en) * 2014-06-12 2016-01-07 東亜建設工業株式会社 Water bottom ground excavator and water bottom ground excavation system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07248817A (en) * 1994-03-12 1995-09-26 Nec Corp Underwater running machine
JP5890403B2 (en) 2010-06-18 2016-03-22 ノーチラス・ミネラルズ・パシフイツク・プロプライエタリー・リミテツド Method and apparatus for auxiliary seabed mining
US20180355674A1 (en) * 2015-09-10 2018-12-13 Cameron International Corporation Subsea Hydrocarbon Extraction System

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04169694A (en) * 1990-10-31 1992-06-17 Furukawa Co Ltd Drilling device
JPH05256082A (en) * 1991-04-18 1993-10-05 Kaiyo Kogyo Kk Method of collecting submarine mineral, etc. and device thereof
JP2004204440A (en) * 2002-12-20 2004-07-22 Komatsu Ltd Underwater walking type working machine and working method therefor
JP2005030138A (en) * 2003-07-10 2005-02-03 Nishimatsu Constr Co Ltd Dredging device
US20090218136A1 (en) * 2008-02-29 2009-09-03 Yoshio Asakawa Water bottom ore sampler and method of using the same
JP2013163902A (en) * 2012-02-09 2013-08-22 Japan Agengy For Marine-Earth Science & Technology Recovery method and recovery system for sea bottom hydrothermal mineral resources
JP2016000930A (en) * 2014-06-12 2016-01-07 東亜建設工業株式会社 Water bottom ground excavator and water bottom ground excavation system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020172749A (en) * 2019-04-08 2020-10-22 鹿島建設株式会社 Excavator, installation method of excavator, and ground excavation method
JP7281327B2 (en) 2019-04-08 2023-05-25 鹿島建設株式会社 Excavator, installation method of excavator, and ground excavation method

Also Published As

Publication number Publication date
US20190186225A1 (en) 2019-06-20
US10781656B2 (en) 2020-09-22
JP6859050B2 (en) 2021-04-14
JP2017201116A (en) 2017-11-09
SG11201901362SA (en) 2019-03-28

Similar Documents

Publication Publication Date Title
WO2018038119A1 (en) Undersea mining base, mining base monitoring device, and chimney avoidance method for seabed deposit
CN1304718C (en) Real-time control system and method for controlling underground boring machine
JP5754581B2 (en) Mining method and unit for submarine deposits
JP5681986B2 (en) Mining method and unit for submarine deposits
CN106065767B (en) Method for the drilling equipment for generating cased bore-bole and for operating drilling equipment
JP5890403B2 (en) Method and apparatus for auxiliary seabed mining
JP6530925B2 (en) Submarine Mineral Mining Equipment and Submarine Mineral Mining System
CN105691568B (en) A kind of underwater equipment installation recycling system and method
JPH10508270A (en) Multifunctional offshore exploration and / or development drilling method and apparatus
EP3329055B1 (en) Method for laying in a trench a continuous pipeline
CN105370208A (en) Underwater drill-burst ship and drilling construction method thereof
JP7082880B2 (en) Multi-legged walking robot and underwater mining base equipped with it
US20190032433A1 (en) Method for Collecting Geological Samples and Attitude-Controllable Work Apparatus
US7252159B2 (en) Underwater rock boring apparatus having differential global positioning system receiver and boring method thereof
JP6850596B2 (en) Mining method for submarine hydrothermal deposits, charge equipment for submarine hydrothermal deposits, and explosive cartridges for submarine hydrothermal deposits
JP6386802B2 (en) Submarine ground excavator and submarine ground excavation system
JP6954771B2 (en) Underwater mining base and method of excavating submarine deposits using this
Ishiguro et al. Development of mining element engineering test machine for operating in seafloor hydrothermal deposits
JP2018172891A (en) Undersea mining base
JP7340189B2 (en) Seabed mining equipment and seabed mining method
RU2598010C2 (en) System for production of ferromanganese concretions
Watanabe et al. Scale Model Test of a Self-Walking Vertical Mining System Using DTH for Seafloor Mining and Sampling
JP2019085703A (en) Mining system of seabed deposit, mining machine and diving machine used for mining of the same, and mining method of the same
Hirabayashi et al. Considering methods of executing work in undersea resources development
JP6813990B2 (en) Submarine deposit mining and exploration methods, as well as submarine deposit mining and exploration bases, submarine deposit exploration equipment and fluorescent X-ray analyzers

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17843597

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17843597

Country of ref document: EP

Kind code of ref document: A1