WO2018037892A1 - Light-emitting device, display device, and illumination device - Google Patents
Light-emitting device, display device, and illumination device Download PDFInfo
- Publication number
- WO2018037892A1 WO2018037892A1 PCT/JP2017/028529 JP2017028529W WO2018037892A1 WO 2018037892 A1 WO2018037892 A1 WO 2018037892A1 JP 2017028529 W JP2017028529 W JP 2017028529W WO 2018037892 A1 WO2018037892 A1 WO 2018037892A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- light
- emitting device
- light emitting
- flat surface
- concave
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21S—NON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
- F21S2/00—Systems of lighting devices, not provided for in main groups F21S4/00 - F21S10/00 or F21S19/00, e.g. of modular construction
Definitions
- the present disclosure relates to a light emitting device that can be used as a surface light source, and a display device and a lighting device including the light emitting device.
- Light emitted from a light source such as a light emitting diode (Light Emitting Diode) is incident on the backlight of a liquid crystal display device or lighting device from the end surface of the light guide plate, and the light is emitted from the main surface of the light guide plate.
- a surface light emitting device that emits light is employed, for example, see Patent Document 1).
- a light emitting device that can obtain a desired luminance distribution in the light emitting surface, and a display device and an illumination device including the light emitting device.
- a light-emitting device as an embodiment of the present disclosure includes a plurality of light sources and a light guide.
- the plurality of light sources are arranged in the first direction and emit light in a second direction different from the first direction.
- the light guide includes an end face that faces the plurality of light sources and receives light from the plurality of light sources, and a surface that spreads in a direction intersecting with the end faces and that emits light incident from the end faces.
- the end surface of the light guide is a concavo-convex structure in which a first flat surface and a concave surface including a curved surface curved with respect to the first flat surface are alternately arranged along the first direction. It has a plurality of regions.
- a display device and a lighting device as an embodiment of the present disclosure include the light emitting device.
- the end surface of the light guide has a plurality of uneven regions in which the first flat surface and the concave surface including the curved surface are repeatedly arranged. did. For this reason, part of the light incident on the concave surface from the light source is scattered in a direction different from the second direction on the curved surface. On the other hand, a part of the light incident on the first flat surface from the light source passes through the first flat surface with almost no scattering and then travels straight inside the light guide.
- the light-emitting device in the light guide, incident light is appropriately scattered due to the presence of the concave surface including the curved surface, and the unevenness of the emission luminance distribution is reduced, and the first flatness is achieved. Due to the presence of the surface, straightness of incident light is ensured, and high surface emission luminance as a whole can be obtained.
- this light emitting device it is possible to emit light having a desired luminance distribution from the surface of the light guide while suppressing a decrease in light emission efficiency.
- the display device provided with such a light emitting device it can be expected to exhibit excellent video expression.
- the illuminating device using this light-emitting device it is possible to perform high-quality illumination such as performing more uniform illumination on an object.
- the effect of this indication is not limited to this, Any effect described below may be sufficient.
- FIG. 2 is a plan view illustrating a schematic configuration of a light source and a light guide plate illustrated in FIG. 1.
- FIG. 4 is an enlarged plan view illustrating an enlarged vicinity of a light incident surface of the light guide plate illustrated in FIG. 3.
- FIG. 4 is an enlarged plan view showing the vicinity of a light incident surface of the light guide plate shown in FIG. 3 in a further enlarged manner.
- FIG. 4 is a schematic plan view for explaining a dot pattern provided on the back surface of the light guide plate shown in FIG. 3.
- FIG. 14 is a perspective view illustrating an appearance of a display device according to a second embodiment of the present disclosure.
- FIG. It is a perspective view which decomposes
- FIG. 10 is an exploded perspective view illustrating the panel module illustrated in FIG. 9. It is a perspective view showing the external appearance of the tablet-type terminal device carrying the display apparatus of this indication. It is a perspective view showing the external appearance of the other tablet-type terminal device carrying the display apparatus of this indication.
- FIG. 1 illustrates an overall configuration of a light emitting device 1 as a first embodiment of the present disclosure.
- FIG. 2 illustrates a cross-sectional configuration of the light emitting device 1.
- the light emitting device 1 is used, for example, as a backlight that illuminates a transmissive liquid crystal panel from behind, or as an illumination device in a room or the like, and includes a plurality of light sources 10, a light guide plate 20, and the light guide plate 20. It has an optical sheet 30 and a reflective sheet 40 facing each other.
- the light guide plate 20 of the present embodiment corresponds to a specific example of “light guide” in the present disclosure.
- the lamination direction of the optical sheet 30, the light guide plate 20, and the reflection sheet 40 is the Z direction (front-rear direction), and the left-right direction is X on the main surface (widest surface) of the light guide plate 20 orthogonal to the Z direction.
- the direction and the vertical direction are defined as the Y direction.
- the light source 10 is a package of one point light source, and specifically includes a light emitting diode (LED: Light Emitting Diode). As the LED, for example, one that emits red, green, or blue light is used.
- the light sources 10 are disposed so as to face the light incident surfaces (incident end surfaces) 22 of the light guide plate 20, respectively, and a plurality of the light sources 10 are provided so as to be intermittently arranged in a line along the Y-axis direction, for example.
- the light guide plate 20 is, for example, a rectangular parallelepiped member composed of a pair of main surfaces (front surface 21A and back surface 21B) facing in the front-rear direction (Z direction) and four end surfaces (side surfaces) connecting these four sides. is there.
- one of the four end surfaces is a light incident surface 22 that faces the light source 10.
- all of the four end surfaces may be the light incident surface 22, and any two or three of the four end surfaces may be the light incident surface 22.
- the front surface 21A and the back surface 21B are parallel to each other.
- the light incident surface 22 of the present embodiment corresponds to a specific example of an “end surface” of the light guide in the present disclosure.
- the light guide plate 20 guides the light L emitted from the light source 10 and incident from the light incident surface 22 in the ⁇ X direction, and finally exits from the surface 21A, which is the light emitting surface, toward the optical sheet 30.
- the light source 10 irradiates the light incident surface 22 of the light guide plate 20 with light in the ⁇ X direction. With such a configuration, the light L from the light source 10 incident from the light incident surface 22 propagates in the approximately ⁇ X direction inside the light guide plate 20.
- the light guide plate 20 mainly includes a transparent thermoplastic resin such as polycarbonate resin (PC) or acrylic resin (for example, PMMA (polymethyl methacrylate)).
- a transparent thermoplastic resin such as polycarbonate resin (PC) or acrylic resin (for example, PMMA (polymethyl methacrylate)).
- the light guide plate 20 may be made of glass.
- FIG. 3 is an XY plan view showing an arrangement relationship between the light guide plate 20 and a plurality of light sources 10 that make light incident on the light guide plate 20.
- FIG. 4 is a partially enlarged cross-sectional view showing the vicinity of the light incident surface 22 in the light guide plate 20 shown in FIG. 3 in an enlarged manner.
- FIG. 5 is an enlarged view of one concave surface 24 shown in FIG.
- the light incident surface 22 is selectively subjected to special fine processing. Specifically, as illustrated in FIG. 3, the light incident surface 22 includes a plurality of uneven regions R1 and flat regions R2 that are alternately arranged in the Y-axis direction. That is, the plurality of uneven regions R1 are provided intermittently in the Y-axis direction. As shown in FIG. 4, in the uneven region R1, the flat surface 23 and the concave surface 24 are regularly arranged alternately along the Y-axis direction.
- the concave surface 24 has a shape protruding in a direction opposite to the light source 10 ( ⁇ X direction).
- the plurality of concave surfaces 24 preferably have substantially the same shape and substantially the same size as each other, and are arranged at substantially the same arrangement pitch P1 (see FIG.
- the concave surface 24 includes a curved surface 24 ⁇ / b> U that is curved with respect to the flat surface 23.
- the light incident surface 22 is configured to include a flat surface 25 in the flat region R2.
- the flat surface 23 and the flat surface 25 are both included in a substantially common common plane that is parallel to the YZ plane. That is, the flat surface 23 is located on the extension of the flat surface 25. Further, the width W1 of the flat surface 23 is narrower than the width W25 of the flat surface 25 in the Y-axis direction.
- region R1 is good to be provided in the position corresponding to the light source 10, respectively.
- the center position of each uneven region R1 and the center position of each light source 10 coincide with each other.
- the outputs of the light sources 10 with respect to the applied voltage are substantially equal to each other, and the distance between each light source 10 and the light incident surface 22 is also substantially equal to each other.
- the concave surface 24 includes, for example, a bottom 24A including the deepest portion 24D and a pair of inclined portions 24B and 24C facing each other across the bottom 24A.
- the curved surface 24U may be present at a position deeper than, for example, half of the depth D in the concave surface 24.
- the deepest portion 24D of the concave surface 24 is preferably included in the curved surface 24U.
- the concave surface 24 is inclined surfaces 24L1, 24L2 extending linearly at the inclined portions 24B, 24C.
- the inclined surfaces 24L1, 24L2 are inclined with respect to the YZ plane.
- the light emitting device 1 may be configured to satisfy the following conditional expressions (1) and (2).
- D P1 ⁇ X (1) 0.1 ⁇ X ⁇ 0.6 (2)
- D is the distance between the flat surface 23 and the deepest part of the concave surface 24, and P1 is the arrangement pitch of the plurality of concave surfaces 24 arranged in the Y-axis direction (see FIG. 4).
- the light emitting device 1 may be configured to satisfy the following conditional expressions (3) and (4).
- W1 (PA ⁇ Y1) ⁇ 2 (3) 1.0 ⁇ Y1 ⁇ 4.0 (4)
- W1 is the width
- PA is a half width in the Y-axis direction of the light source 10 corresponding to the uneven
- the surface 21A of the light guide plate 20 includes an effective area 20A that functions as a light emitting surface and a peripheral area 20B that surrounds the effective area 20A.
- the light emitting device 1 may be further configured to satisfy the following conditional expressions (5) and (6).
- H P2 ⁇ Y2 (5) 0.3 ⁇ Y2 ⁇ 0.6 (6)
- H is the distance from the light source 10 to the effective area 20A
- P2 is the arrangement pitch of the plurality of light sources 10 arranged in the Y-axis direction.
- Both the front surface 21A and the back surface 21B of the light guide plate 20 have a planar shape corresponding to an irradiated object (for example, a liquid crystal panel 122 described later) disposed to face the front surface 21A, for example.
- the surface 21A may be provided with a concavo-convex pattern made up of fine convex portions, for example.
- the convex portion is, for example, a strip-shaped ridge or ridge extending in the left-right direction.
- a scattering agent is printed in a dot pattern.
- a silk screen, a hot stamp, a roll stamp, or the like can be applied.
- a scattering structure it is also possible to use a structure provided with a part including a filler instead of the scattering agent, or a structure in which the back surface 21B is partially roughened by laser light irradiation or the like.
- FIG. 6 is a schematic diagram for explaining an example of a dot pattern as a scattering structure formed on the back surface 21 ⁇ / b> B of the light guide plate 20.
- a dot pattern in which a plurality of fine dots (convex portions) made of, for example, a scattering agent are regularly or irregularly (randomly) provided is formed.
- the dot pattern 26 includes a scattering region 26A and a scattering region 26B.
- the scattering region 26A is a region having a relatively low density of dots provided in front of the light source 10 (position facing in the X-axis direction), that is, in the vicinity of the uneven region R1.
- the scattering region 26B is located in the region between the adjacent light sources 10, that is, in the vicinity of the flat region R2, and is a region where the dot density is relatively high. Therefore, the scattering intensity of the scattering region 26A is relatively low, and the scattering intensity of the scattering region 26B is relatively high. For this reason, in the light guide plate 20, the light emission luminance is suppressed in the scattering region 26A more than in the scattering region 26B. That is, if the luminance of the incident light is the same, the emission luminance in the scattering region 26A is slightly lower, and the emission luminance in the scattering region 26B is slightly higher.
- the amount of light L incident on the scattering region 26A located in front of the light source 10 is higher than the amount of light L incident on the scattering region 26B located between adjacent light sources 10. For this reason, as a result, the light emission luminance in the scattering region 26A and the light emission luminance in the scattering region 26B become substantially equal due to the above-described effect due to the difference in dot density.
- the reflection sheet 40 is a plate-like or sheet-like member provided to face the back surface 21 ⁇ / b> B of the light guide plate 20, and returns light leaking from the light guide plate 20 toward the light guide plate 20.
- the reflection sheet 40 has, for example, functions such as reflection, diffusion, and scattering, thereby making it possible to efficiently use the light from the light source 10 and increase the front luminance.
- the reflection sheet 40 is made of, for example, foamed PET (polyethylene terephthalate), a silver deposited film, a multilayer reflective film, or white PET.
- the surface of the reflection sheet 40 is preferably subjected to a treatment such as silver vapor deposition, aluminum vapor deposition, or multilayer film reflection.
- the reflection sheet 40 may be integrally formed by a technique such as hot press molding using a thermoplastic resin or melt extrusion molding, or, for example, PET It may be formed by applying an energy ray (for example, ultraviolet ray) curable resin on a substrate made of, for example, and then transferring the shape to the energy ray curable resin.
- the thermoplastic resin include polycarbonate resins, acrylic resins such as PMMA (polymethyl methacrylate resin), polyester resins such as polyethylene terephthalate, and amorphous copolymers such as MS (copolymer of methyl methacrylate and styrene). Examples thereof include a polymerized polyester resin, a polystyrene resin, and a polyvinyl chloride resin.
- the substrate may be glass.
- the optical sheet 30 is provided so as to face the surface 21A that is a light emitting surface of the light guide plate 20, and includes, for example, a diffusion plate, a diffusion sheet, a lens film, a polarization separation sheet, and the like. Providing such an optical sheet 30 makes it possible to raise light emitted in an oblique direction from the light guide plate 20 in the front direction (+ Z direction), and to further increase the front luminance.
- the light emitting device 1 In the light emitting device 1, the light L emitted from the light source 10 enters the light incident surface 22 of the light guide plate 20, propagates through the light guide plate 20, and is finally emitted from the surface 21 ⁇ / b> A. Light emitted from the surface 21A of the light guide plate 20 passes through the optical sheet 30 and is observed as light emission.
- FIG. 7A shows a light emission luminance distribution in the XY plane of a light emitting device as a reference example provided with a light guide plate 1020 having a light incident surface 1022 composed of only a flat surface.
- the light incident surface 22 of the light guide plate 20 has a plurality of uneven regions R1 in which the flat surface 23 and the concave surface 24 including the curved surface 24U are repeatedly arranged. Therefore, a part of the light L incident on the curved surface 24U from the light source 10 is scattered in a direction different from the ⁇ X direction on the curved surface 24U and propagates in the light guide plate 20 so as to spread in the XY plane. On the other hand, a part of the light L incident on the flat surface 23 from the light source 10 propagates so as to travel straight through the light guide plate 20 after passing through the flat surface 23 without being scattered.
- FIG. 7B shows a light emission luminance distribution in the XY plane in an example of the light emitting device 1 of the present disclosure in which the light incident surface 22 includes the light guide plate 20 including the flat surface 23 and the concave surface 24.
- the light emitting device 1 can emit light having a desired luminance distribution (eg, a uniform luminance distribution with little luminance unevenness) from the surface 21A of the light guide plate 20 while suppressing a decrease in luminous efficiency.
- the flat surfaces 23 and the concave surfaces 24 are regularly and alternately arranged along the Y-axis direction in the uneven region R ⁇ b> 1, and the plurality of concave surfaces 24 have substantially the same shape and substantially the same size. And are arranged at substantially the same arrangement pitch P1. For this reason, a more uniform emission luminance distribution can be obtained.
- the bottom 24 ⁇ / b> A including the deepest portion 24 ⁇ / b> D of the concave surface 24 is a curved surface 24 ⁇ / b> U. Since the deepest portion 24D is a portion directly facing the light L traveling in the ⁇ X direction, the deepest portion 24D and its vicinity can be made the curved surface 24U, so that the light L can be more effectively scattered. it can.
- the conditional expressions (1) to (6) are further satisfied, light having a more uniform luminance distribution is emitted from the surface 21A of the light guide plate 20 while suppressing a decrease in light emission efficiency. be able to.
- the dot pattern 26 on the back surface 21B of the light guide plate 20 further includes a scattering region 26A and a scattering region 26B having different scattering intensities.
- the scattering intensity of the scattering region 26A located in front of the light source 10 is relatively low, and the scattering intensity of the scattering region 26A located in the area between the adjacent light sources 10 is relatively high.
- the overall emission luminance distribution can be made more uniform.
- FIG. 8 illustrates an appearance of the display device 101 according to the second embodiment of the present disclosure.
- the display device 101 includes the light emitting device 1 and is used as, for example, a thin television device, and has a configuration in which a flat main body 102 for image display is supported by a stand 103.
- the display device 101 is used as a stationary type with the stand 103 attached to the main body 102 and placed on a horizontal surface such as a floor, a shelf, or a stand, but the stand 103 is removed from the main body 102. It can also be used as a wall-hanging type.
- FIG. 9 is an exploded view of the main body 102 shown in FIG.
- the main body 102 has, for example, a front exterior member (bezel) 111, a panel module 112, and a rear exterior member (rear cover) 113 in this order from the front side (viewer side).
- the front exterior member 111 is a frame-shaped member that covers the peripheral edge of the front surface of the panel module 112, and a pair of speakers 114 are disposed below the front exterior member 111.
- the panel module 112 is fixed to the front exterior member 111, and a power supply board 115 and a signal board 116 are mounted on the rear surface thereof, and a mounting bracket 117 is fixed.
- the mounting bracket 117 is for mounting a wall-mounted bracket, mounting a board, etc., and mounting the stand 103.
- the rear exterior member 113 covers the back and side surfaces of the panel module 112.
- FIG. 10 is an exploded view of the panel module 112 shown in FIG.
- the panel module 112 includes, for example, a front casing (top chassis) 121, a liquid crystal panel 122, a frame-shaped member (middle chassis) 123, an optical sheet 30, a light guide plate 20, and a light source 10, from the front side (viewer side).
- the reflective sheet 40, the rear housing (back chassis) 124, and the timing controller board 127 are provided in this order.
- the front housing 121 is a frame-shaped metal part that covers the front peripheral edge of the liquid crystal panel 122.
- the liquid crystal panel 122 includes, for example, a liquid crystal cell 122A, a source substrate 122B, and a flexible substrate 122C such as a COF (Chip On On Film) that connects them.
- the frame-shaped member 123 is a frame-shaped resin component that holds the liquid crystal panel 122 and the optical sheet 30.
- the rear housing 124 is a metal part made of iron (Fe) or the like that houses the liquid crystal panel 122, the frame-like member 123, and the light emitting device 1.
- the timing controller board 127 is also mounted on the back surface of the rear housing 124.
- the light from the light emitting device 1 is selectively transmitted through the liquid crystal panel 122, thereby displaying an image.
- the display quality of the display device 101 is improved.
- display device 101 As described above to an electronic device will be described.
- the electronic device include a television device, a digital camera, a notebook personal computer, a mobile terminal device such as a mobile phone, or a video camera.
- the display device can be applied to electronic devices in various fields that display a video signal input from the outside or a video signal generated inside as an image or video.
- FIG. 11A shows the appearance of a tablet terminal device to which the display device 101 of the above embodiment is applied.
- FIG. 11B shows the appearance of another tablet terminal device to which the display device 101 of the above embodiment is applied.
- Each of these tablet-type terminal devices has, for example, a display unit 210 and a non-display unit 220, and the display unit 210 is configured by the display device 101 of the above embodiment.
- lighting device> 12 and 13 illustrate the appearance of a tabletop lighting device to which the light-emitting device 1 of the above embodiment is applied.
- the illumination device is a device in which an illumination unit 843 is attached to a support column 842 provided on a base 841, and the illumination unit 843 includes the light-emitting device 1 according to the first embodiment.
- the illumination unit 843 can have an arbitrary shape such as a cylindrical shape shown in FIG. 12 or a curved shape shown in FIG. 13 by making the optical sheet 30, the light guide plate 20, the reflection sheet 40, etc. into a curved shape. Is possible.
- FIG. 14 shows the appearance of an indoor lighting device to which the light emitting device 1 of the above embodiment is applied.
- This illuminating device has the illumination part 844 comprised by the light-emitting device 1 which concerns on the said 1st Embodiment, for example.
- the illumination units 844 are arranged at an appropriate number and interval on the ceiling 850A of the building. Note that the lighting unit 844 can be installed not only in the ceiling 850A but also in an arbitrary place such as a wall 850B or a floor (not shown) depending on the application.
- illumination is performed by light from the light emitting device 1.
- the light-emitting device 1 with improved in-plane luminance distribution uniformity is provided, the illumination quality is improved.
- the light incident surface 22 includes the concave surface 24, so that it is more than the case of the light incident surface consisting of only a flat surface (reference example). It was found that a highly uniform emission luminance distribution can be obtained. In particular, it has been found that when the conditional expression (1) and the conditional expression (2) are satisfied, the uniformity of the light emission luminance in the vicinity of the light incident surface 22 is further improved.
- the light incident surface 22 includes a plurality of the uneven regions R1 and the flat regions R2, but the present disclosure is not limited to this.
- the uneven region R ⁇ b> 1 may be provided over the entire light incident surface 22. That is, only the uneven region may be provided without a gap from one end to the other end of the light guide without providing the second flat surface.
- the numbers of the uneven regions R1 and the flat regions R2 are not particularly limited.
- the light source 10 is a light emitting diode (LED)
- the light source 10 may be a laser diode such as a semiconductor laser or another light source having directivity.
- laser diodes and light emitting diodes may be mixed and used.
- the flat surface 23 and the concave surface 24 are regularly and alternately arranged along the Y-axis direction on the light incident surface 22, and the size and shape of the concave surface 24 are all substantially the same.
- the present disclosure is not limited to this.
- a plurality of concave surfaces having different sizes and depths (distances D) may be arranged so as to intentionally form a desired light emission luminance distribution.
- the configurations of the light-emitting device 1 and the display device 101 have been specifically described in the above-described embodiment and the like, but it is not necessary to include all the components, and other components May be provided.
- this technique can take the following structures.
- a plurality of light sources each arranged in a first direction and emitting light in a second direction different from the first direction;
- a light guide that includes an end face on which the light from the plurality of light sources is incident facing the plurality of light sources, and a surface that is spread in a direction intersecting the end face and on which the light incident from the end face is emitted.
- the end surface includes a plurality of concave and convex regions in which a first flat surface and a concave surface including a curved surface curved with respect to the first flat surface are alternately arranged along the first direction.
- Light emitting device (2) The light emitting device according to (1), wherein the plurality of uneven regions are provided intermittently in the first direction. (3) The light emitting device according to (2), wherein the end surface includes a second flat surface between the plurality of uneven regions. (4) The first flat surface and the second flat surface are both parallel to the first direction, The light emitting device according to (3), wherein the first flat surface and the second flat surface are included in a substantially common common plane. (5) The light emitting device according to (4), wherein in the first direction, a first width of the first flat surface is narrower than a second width of the second flat surface.
- W1 (PA ⁇ Y1) ⁇ 2 (3) 1.0 ⁇ Y1 ⁇ 4.0 (4) However, W1: width of the uneven area in the first direction PA: half width in the first direction of the light source corresponding to the uneven area (10)
- the surface of the light guide includes an effective area that functions as a light emitting surface, and a peripheral area that surrounds the effective area, The light emitting device according to any one of (1) to (9), wherein the following conditional expression (5) and conditional expression (6) are satisfied.
- H P2 ⁇ Y2 (5) 0.3 ⁇ Y2 ⁇ 0.6 (6)
- H Distance from light source to effective area
- P2 Arrangement pitch of a plurality of light sources arranged in the first direction
- the scattering structure has a plurality of first scattering regions having a first scattering intensity, and a plurality of second scattering regions having a second scattering intensity higher than the first scattering intensity,
- the plurality of first scattering regions are at positions facing each of the plurality of light sources,
- the light emitting device A plurality of light sources each arranged in a first direction and emitting light in a second direction different from the first direction;
- a light guide that includes an end face on which the light from the plurality of light sources is incident facing the plurality of light sources, and a surface that is spread in a direction intersecting the end face and on which the light incident from the end face is emitted.
- the end surface includes a plurality of concave and convex regions in which a first flat surface and a concave surface including a curved surface curved with respect to the first flat surface are alternately arranged along the first direction. Display device.
- the light emitting device A plurality of light sources each arranged in a first direction and emitting light in a second direction different from the first direction;
- a light guide that includes an end face on which the light from the plurality of light sources is incident facing the plurality of light sources, and a surface that is spread in a direction intersecting the end face and on which the light incident from the end face is emitted.
- the end surface includes a plurality of concave and convex regions in which a first flat surface and a concave surface including a curved surface curved with respect to the first flat surface are alternately arranged along the first direction. Lighting device.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Planar Illumination Modules (AREA)
Abstract
The present invention provides a light-emitting device in which a desired brightness distribution in a light-emitting surface can be obtained. The light-emitting device includes a plurality of light sources and a light guide body. The plurality of light sources are arranged in a first direction and emit light in a second direction. The light guide body includes an end face that faces the plurality of light sources and on which the light from the plurality of light sources is incident and a surface extending in a direction intersecting the light-incident surface and from which the light incident from the end face exits. The end face includes a plurality of uneven regions in each of which first flat surfaces and recessed surfaces including curved surfaces curved with respect to the first flat surfaces are alternately and repeatedly arranged in the first direction.
Description
本開示は、面光源として利用され得る発光装置、ならびにこれを備えた表示装置および照明装置に関する。
The present disclosure relates to a light emitting device that can be used as a surface light source, and a display device and a lighting device including the light emitting device.
液晶表示装置のバックライトまたは照明装置などに、発光ダイオード(Light Emitting Diode)等の光源から出射した光を導光板の端面から入射させ、その導光板の主面からその光を出射させることで面発光を行う面発光装置が採用されている例えば特許文献1参照)。
Light emitted from a light source such as a light emitting diode (Light Emitting Diode) is incident on the backlight of a liquid crystal display device or lighting device from the end surface of the light guide plate, and the light is emitted from the main surface of the light guide plate. A surface light emitting device that emits light is employed, for example, see Patent Document 1).
最近では、より少ない個数の光源を用いて所望の輝度分布を形成することのできる発光装置が望まれる。
Recently, a light emitting device capable of forming a desired luminance distribution using a smaller number of light sources is desired.
したがって、発光面内において所望の輝度分布が得られる発光装置、ならびにこれを備えた表示装置および照明装置を提供することが望ましい。
Therefore, it is desirable to provide a light emitting device that can obtain a desired luminance distribution in the light emitting surface, and a display device and an illumination device including the light emitting device.
本開示の一実施形態としての発光装置は、複数の光源と導光体とを備える。複数の光源は、第1の方向に並ぶと共に第1の方向と異なる第2の方向へ光を各々発する。導光体は、複数の光源と対向して複数の光源からの光が入射する端面と、その端面と交差する方向に広がると共に端面から入射した光が出射される表面とを含む。ここで導光体の端面は、第1の平坦面と、その第1の平坦面に対して湾曲する湾曲面を含む凹面とが前記第1の方向に沿って交互に繰り返し配置されてなる凹凸領域を、複数有するものである。
また、本開示の一実施形態としての表示装置および照明装置は、上記発光装置を備えたものである。 A light-emitting device as an embodiment of the present disclosure includes a plurality of light sources and a light guide. The plurality of light sources are arranged in the first direction and emit light in a second direction different from the first direction. The light guide includes an end face that faces the plurality of light sources and receives light from the plurality of light sources, and a surface that spreads in a direction intersecting with the end faces and that emits light incident from the end faces. Here, the end surface of the light guide is a concavo-convex structure in which a first flat surface and a concave surface including a curved surface curved with respect to the first flat surface are alternately arranged along the first direction. It has a plurality of regions.
In addition, a display device and a lighting device as an embodiment of the present disclosure include the light emitting device.
また、本開示の一実施形態としての表示装置および照明装置は、上記発光装置を備えたものである。 A light-emitting device as an embodiment of the present disclosure includes a plurality of light sources and a light guide. The plurality of light sources are arranged in the first direction and emit light in a second direction different from the first direction. The light guide includes an end face that faces the plurality of light sources and receives light from the plurality of light sources, and a surface that spreads in a direction intersecting with the end faces and that emits light incident from the end faces. Here, the end surface of the light guide is a concavo-convex structure in which a first flat surface and a concave surface including a curved surface curved with respect to the first flat surface are alternately arranged along the first direction. It has a plurality of regions.
In addition, a display device and a lighting device as an embodiment of the present disclosure include the light emitting device.
本開示の一実施形態としての発光装置、表示装置および照明装置では、導光体の端面が、第1の平坦面と湾曲面を含む凹面とが繰り返し配置されてなる凹凸領域を複数有するようにした。このため、光源から凹面に入射した一部の光は、湾曲面において第2の方向と異なる方向へ散乱する。一方、光源から第1の平坦面に入射した一部の光は、ほとんど散乱されることなく第1の平坦面を透過したのち導光体の内部を直進する。
In the light emitting device, the display device, and the lighting device according to an embodiment of the present disclosure, the end surface of the light guide has a plurality of uneven regions in which the first flat surface and the concave surface including the curved surface are repeatedly arranged. did. For this reason, part of the light incident on the concave surface from the light source is scattered in a direction different from the second direction on the curved surface. On the other hand, a part of the light incident on the first flat surface from the light source passes through the first flat surface with almost no scattering and then travels straight inside the light guide.
本開示の一実施形態としての発光装置によれば、導光体において、湾曲面を含む凹面の存在により入射光が適度に散乱されて発光輝度分布を偏りが緩和されると共に、第1の平坦面の存在により入射光の直進性が確保されて全体として高い面発光輝度を得ることができる。その結果、この発光装置によれば、発光効率の低下を抑制しつつ、導光体の表面から所望の輝度分布の光を発することができる。
また、このような発光装置を備えた表示装置によれば、優れた映像表現を発揮することが期待できる。さらに、この発光装置を用いた照明装置によれば、対象物に対し、例えばより均質な照明を行うなどの高品位の照明を行うことができる。
なお、本開示の効果はこれに限定されるものではなく、以下に記載のいずれの効果であってもよい。 According to the light-emitting device as an embodiment of the present disclosure, in the light guide, incident light is appropriately scattered due to the presence of the concave surface including the curved surface, and the unevenness of the emission luminance distribution is reduced, and the first flatness is achieved. Due to the presence of the surface, straightness of incident light is ensured, and high surface emission luminance as a whole can be obtained. As a result, according to this light emitting device, it is possible to emit light having a desired luminance distribution from the surface of the light guide while suppressing a decrease in light emission efficiency.
Moreover, according to the display device provided with such a light emitting device, it can be expected to exhibit excellent video expression. Furthermore, according to the illuminating device using this light-emitting device, it is possible to perform high-quality illumination such as performing more uniform illumination on an object.
In addition, the effect of this indication is not limited to this, Any effect described below may be sufficient.
また、このような発光装置を備えた表示装置によれば、優れた映像表現を発揮することが期待できる。さらに、この発光装置を用いた照明装置によれば、対象物に対し、例えばより均質な照明を行うなどの高品位の照明を行うことができる。
なお、本開示の効果はこれに限定されるものではなく、以下に記載のいずれの効果であってもよい。 According to the light-emitting device as an embodiment of the present disclosure, in the light guide, incident light is appropriately scattered due to the presence of the concave surface including the curved surface, and the unevenness of the emission luminance distribution is reduced, and the first flatness is achieved. Due to the presence of the surface, straightness of incident light is ensured, and high surface emission luminance as a whole can be obtained. As a result, according to this light emitting device, it is possible to emit light having a desired luminance distribution from the surface of the light guide while suppressing a decrease in light emission efficiency.
Moreover, according to the display device provided with such a light emitting device, it can be expected to exhibit excellent video expression. Furthermore, according to the illuminating device using this light-emitting device, it is possible to perform high-quality illumination such as performing more uniform illumination on an object.
In addition, the effect of this indication is not limited to this, Any effect described below may be sufficient.
以下、本開示の実施の形態について図面を参照して詳細に説明する。なお、説明は以下の順序で行う。
1.第1の実施の形態
導光板の入射端面が、湾曲面を含む凹面と平坦面とが規則的に交互配置された凹凸領域を複数有するようにした発光装置。
2.第2の実施の形態(表示装置;液晶表示装置)
3.表示装置の適用例
4.照明装置の適用例
5.実験例
6.その他の変形例 Hereinafter, embodiments of the present disclosure will be described in detail with reference to the drawings. The description will be given in the following order.
1. 1st Embodiment The light-emitting device which the incident end surface of the light-guide plate had multiple uneven | corrugated area | regions in which the concave surface containing a curved surface and a flat surface were alternately arranged regularly.
2. Second embodiment (display device; liquid crystal display device)
3. 3. Application example of display device 4. Application example of lighting device Experimental Example 6. Other variations
1.第1の実施の形態
導光板の入射端面が、湾曲面を含む凹面と平坦面とが規則的に交互配置された凹凸領域を複数有するようにした発光装置。
2.第2の実施の形態(表示装置;液晶表示装置)
3.表示装置の適用例
4.照明装置の適用例
5.実験例
6.その他の変形例 Hereinafter, embodiments of the present disclosure will be described in detail with reference to the drawings. The description will be given in the following order.
1. 1st Embodiment The light-emitting device which the incident end surface of the light-guide plate had multiple uneven | corrugated area | regions in which the concave surface containing a curved surface and a flat surface were alternately arranged regularly.
2. Second embodiment (display device; liquid crystal display device)
3. 3. Application example of display device 4. Application example of lighting device Experimental Example 6. Other variations
<1.第1の実施の形態>
[発光装置1の構成]
図1は、本開示の第1の実施の形態としての発光装置1の全体構成を表したものである。図2は、発光装置1の断面構成を表したものである。発光装置1は、例えば、透過型の液晶パネルを背後から照明するバックライトとして、あるいは室内等において照明装置として用いられるものであり、複数の光源10と、導光板20と、この導光板20を挟んで対向する光学シート30および反射シート40を有している。なお、本実施の形態の導光板20は、本開示における「導光体」の一具体例に相当する。 <1. First Embodiment>
[Configuration of Light Emitting Device 1]
FIG. 1 illustrates an overall configuration of alight emitting device 1 as a first embodiment of the present disclosure. FIG. 2 illustrates a cross-sectional configuration of the light emitting device 1. The light emitting device 1 is used, for example, as a backlight that illuminates a transmissive liquid crystal panel from behind, or as an illumination device in a room or the like, and includes a plurality of light sources 10, a light guide plate 20, and the light guide plate 20. It has an optical sheet 30 and a reflective sheet 40 facing each other. The light guide plate 20 of the present embodiment corresponds to a specific example of “light guide” in the present disclosure.
[発光装置1の構成]
図1は、本開示の第1の実施の形態としての発光装置1の全体構成を表したものである。図2は、発光装置1の断面構成を表したものである。発光装置1は、例えば、透過型の液晶パネルを背後から照明するバックライトとして、あるいは室内等において照明装置として用いられるものであり、複数の光源10と、導光板20と、この導光板20を挟んで対向する光学シート30および反射シート40を有している。なお、本実施の形態の導光板20は、本開示における「導光体」の一具体例に相当する。 <1. First Embodiment>
[Configuration of Light Emitting Device 1]
FIG. 1 illustrates an overall configuration of a
本明細書では、光学シート30、導光板20および反射シート40の積層方向をZ方向(前後方向)とし、そのZ方向と直交する導光板20の主面(最も広い面)において左右方向をX方向、上下方向をY方向とする。
In this specification, the lamination direction of the optical sheet 30, the light guide plate 20, and the reflection sheet 40 is the Z direction (front-rear direction), and the left-right direction is X on the main surface (widest surface) of the light guide plate 20 orthogonal to the Z direction. The direction and the vertical direction are defined as the Y direction.
光源10は1つの点光源がパッケージ化されたものであり、具体的には発光ダイオード(LED:Light Emitting Diode)を含んで構成されている。LEDとしては、例えば赤色、緑色あるいは青色の各色光を出射するものが用いられる。光源10は、導光板20の光入射面(入射端面)22とそれぞれ対向して配置され、例えばY軸方向に沿って間欠的に一列に並ぶように複数設けられている。
The light source 10 is a package of one point light source, and specifically includes a light emitting diode (LED: Light Emitting Diode). As the LED, for example, one that emits red, green, or blue light is used. The light sources 10 are disposed so as to face the light incident surfaces (incident end surfaces) 22 of the light guide plate 20, respectively, and a plurality of the light sources 10 are provided so as to be intermittently arranged in a line along the Y-axis direction, for example.
導光板20は、例えば、前後方向(Z方向)に対向する一対の主面(表面21Aおよび裏面21B)と、これらの4辺同士を繋ぐ4つの端面(側面)とからなる直方体形状の部材である。ここでは、4つの端面のうちの1つが光源10と対向する光入射面22となっている。なお、4つの端面の全てを光入射面22としてもよいし、4つの端面のうちの任意の2つもしくは3つを光入射面22としてもよい。また、表面21Aと裏面21Bとは互いに平行であることが望ましい。なお、本実施の形態の光入射面22は、本開示における導光体の「端面」の一具体例に相当する。
The light guide plate 20 is, for example, a rectangular parallelepiped member composed of a pair of main surfaces (front surface 21A and back surface 21B) facing in the front-rear direction (Z direction) and four end surfaces (side surfaces) connecting these four sides. is there. Here, one of the four end surfaces is a light incident surface 22 that faces the light source 10. Note that all of the four end surfaces may be the light incident surface 22, and any two or three of the four end surfaces may be the light incident surface 22. Further, it is desirable that the front surface 21A and the back surface 21B are parallel to each other. Note that the light incident surface 22 of the present embodiment corresponds to a specific example of an “end surface” of the light guide in the present disclosure.
導光板20は、光源10から発せられて光入射面22から入射した光Lを-X方向へ導き、最終的に光出射面である表面21Aから光学シート30へ向けて出射するものである。光源10は導光板20の光入射面22に対して-X方向に光を照射するようになっている。このような構成により、光入射面22から入射した光源10からの光Lは、導光板20の内部においておおよそ-X方向へ伝播することとなる。
The light guide plate 20 guides the light L emitted from the light source 10 and incident from the light incident surface 22 in the −X direction, and finally exits from the surface 21A, which is the light emitting surface, toward the optical sheet 30. The light source 10 irradiates the light incident surface 22 of the light guide plate 20 with light in the −X direction. With such a configuration, the light L from the light source 10 incident from the light incident surface 22 propagates in the approximately −X direction inside the light guide plate 20.
導光板20は、例えば、ポリカーボネート樹脂(PC)またはアクリル樹脂(例えば、PMMA(ポリメチルメタクリレート))などの透明熱可塑性樹脂を主に含んで構成されている。あるいは、導光板20は、ガラスにより構成されていてもよい。
The light guide plate 20 mainly includes a transparent thermoplastic resin such as polycarbonate resin (PC) or acrylic resin (for example, PMMA (polymethyl methacrylate)). Alternatively, the light guide plate 20 may be made of glass.
図3は、導光板20と、その導光板20へ光を入射する複数の光源10との配置関係を表すXY平面図である。また、図4は、図3に示した導光板20のうちの光入射面22の近傍を拡大して表した部分拡大断面図である。さらに図5は、図4に示した1つの凹面24を拡大して表したものである。
FIG. 3 is an XY plan view showing an arrangement relationship between the light guide plate 20 and a plurality of light sources 10 that make light incident on the light guide plate 20. FIG. 4 is a partially enlarged cross-sectional view showing the vicinity of the light incident surface 22 in the light guide plate 20 shown in FIG. 3 in an enlarged manner. Further, FIG. 5 is an enlarged view of one concave surface 24 shown in FIG.
光入射面22には、特殊な微細加工が選択的に施されている。具体的には、図3に示したように、光入射面22は、Y軸方向において交互に配置された凹凸領域R1と平坦領域R2とを、それぞれ複数有している。すなわち、複数の凹凸領域R1は、Y軸方向において間欠的に設けられている。図4に示したように、凹凸領域R1においては、平坦面23と凹面24とが、Y軸方向に沿って規則的に交互配置されている。凹面24は、光源10と反対方向(-X方向)に突出した形状を有している。なお、複数の凹面24は、互いに実質的に同一の形状および実質的に同一の大きさを有し、実質的に同一の配列ピッチP1(図4参照)で配列されたものであるとよい。より均質の発光輝度分布が得られやすくなるからである。図5に示したように、凹面24には、平坦面23に対して湾曲する湾曲面24Uが含まれている。また、光入射面22は、平坦領域R2において平坦面25を含んで構成されている。平坦面23および平坦面25は、いずれもYZ平面と平行である、実質的に共通の共通平面内に含まれる。すなわち、平坦面23は、平坦面25の延長上に位置する。また、Y軸方向において、平坦面23の幅W1は平坦面25の幅W25よりも狭い。
The light incident surface 22 is selectively subjected to special fine processing. Specifically, as illustrated in FIG. 3, the light incident surface 22 includes a plurality of uneven regions R1 and flat regions R2 that are alternately arranged in the Y-axis direction. That is, the plurality of uneven regions R1 are provided intermittently in the Y-axis direction. As shown in FIG. 4, in the uneven region R1, the flat surface 23 and the concave surface 24 are regularly arranged alternately along the Y-axis direction. The concave surface 24 has a shape protruding in a direction opposite to the light source 10 (−X direction). The plurality of concave surfaces 24 preferably have substantially the same shape and substantially the same size as each other, and are arranged at substantially the same arrangement pitch P1 (see FIG. 4). This is because a more uniform emission luminance distribution is easily obtained. As shown in FIG. 5, the concave surface 24 includes a curved surface 24 </ b> U that is curved with respect to the flat surface 23. Further, the light incident surface 22 is configured to include a flat surface 25 in the flat region R2. The flat surface 23 and the flat surface 25 are both included in a substantially common common plane that is parallel to the YZ plane. That is, the flat surface 23 is located on the extension of the flat surface 25. Further, the width W1 of the flat surface 23 is narrower than the width W25 of the flat surface 25 in the Y-axis direction.
また、各凹凸領域R1は、光源10とそれぞれ対応する位置に設けられているとよい。特に、Y軸方向において、各凹凸領域R1の中央の位置と、各光源10の中央の位置とは互いに一致していることが望ましい。また、各光源10の印加電圧に対する出力は互いに実質的に等しく、各光源10と光入射面22との距離についても互いに実質的に等しいことが望ましい。
Moreover, each uneven | corrugated area | region R1 is good to be provided in the position corresponding to the light source 10, respectively. In particular, in the Y-axis direction, it is desirable that the center position of each uneven region R1 and the center position of each light source 10 coincide with each other. Further, it is desirable that the outputs of the light sources 10 with respect to the applied voltage are substantially equal to each other, and the distance between each light source 10 and the light incident surface 22 is also substantially equal to each other.
また図5に示したように、凹面24は、例えば最深部24Dを含む底部24Aと、それを挟んで対向する一対の傾斜部24B,24Cとを含んでいる。湾曲面24Uは、凹面24のうち、例えば深さDの半分よりも深い位置に存在するとよい。特に、凹面24の最深部24Dが湾曲面24Uに含まれているとよい。凹面24は、傾斜部24B,24Cにおいて直線状に延びる斜面24L1,24L2となっている。斜面24L1,24L2は、YZ平面に対して傾斜している。
As shown in FIG. 5, the concave surface 24 includes, for example, a bottom 24A including the deepest portion 24D and a pair of inclined portions 24B and 24C facing each other across the bottom 24A. The curved surface 24U may be present at a position deeper than, for example, half of the depth D in the concave surface 24. In particular, the deepest portion 24D of the concave surface 24 is preferably included in the curved surface 24U. The concave surface 24 is inclined surfaces 24L1, 24L2 extending linearly at the inclined portions 24B, 24C. The inclined surfaces 24L1, 24L2 are inclined with respect to the YZ plane.
発光装置1は、以下の条件式(1)および条件式(2)を満たすように構成されているとよい。
D=P1×X ……(1)
0.1≦X≦0.6 ……(2)
但し、Dは平坦面23と凹面24の最深部との距離であり、P1はY軸方向に並ぶ複数の凹面24の配列ピッチである(図4参照)。 Thelight emitting device 1 may be configured to satisfy the following conditional expressions (1) and (2).
D = P1 × X (1)
0.1 ≦ X ≦ 0.6 (2)
However, D is the distance between theflat surface 23 and the deepest part of the concave surface 24, and P1 is the arrangement pitch of the plurality of concave surfaces 24 arranged in the Y-axis direction (see FIG. 4).
D=P1×X ……(1)
0.1≦X≦0.6 ……(2)
但し、Dは平坦面23と凹面24の最深部との距離であり、P1はY軸方向に並ぶ複数の凹面24の配列ピッチである(図4参照)。 The
D = P1 × X (1)
0.1 ≦ X ≦ 0.6 (2)
However, D is the distance between the
発光装置1は、以下の条件式(3)および条件式(4)を満たすように構成されているとよい。
W1=(PA×Y1)×2 ……(3)
1.0≦Y1≦4.0 ……(4)
但し、W1はY軸方向における凹凸領域R1の幅であり、PAは、その凹凸領域R1に対応する光源10の、Y軸方向における半分の幅である。 Thelight emitting device 1 may be configured to satisfy the following conditional expressions (3) and (4).
W1 = (PA × Y1) × 2 (3)
1.0 ≦ Y1 ≦ 4.0 (4)
However, W1 is the width | variety of the uneven | corrugated area | region R1 in a Y-axis direction, PA is a half width in the Y-axis direction of thelight source 10 corresponding to the uneven | corrugated area | region R1.
W1=(PA×Y1)×2 ……(3)
1.0≦Y1≦4.0 ……(4)
但し、W1はY軸方向における凹凸領域R1の幅であり、PAは、その凹凸領域R1に対応する光源10の、Y軸方向における半分の幅である。 The
W1 = (PA × Y1) × 2 (3)
1.0 ≦ Y1 ≦ 4.0 (4)
However, W1 is the width | variety of the uneven | corrugated area | region R1 in a Y-axis direction, PA is a half width in the Y-axis direction of the
導光板20の表面21Aは、図3に示したように、発光面として機能する有効領域20Aと、その有効領域20Aを取り囲む周辺領域20Bとを含んでいる。発光装置1は、さらに、以下の条件式(5)および条件式(6)を満たすように構成されているとよい。
H=P2×Y2 ……(5)
0.3≦Y2≦0.6 ……(6)
但し、Hは光源10から有効領域20Aまでの距離であり、P2はY軸方向に並ぶ複数の光源10の配列ピッチである。 As shown in FIG. 3, thesurface 21A of the light guide plate 20 includes an effective area 20A that functions as a light emitting surface and a peripheral area 20B that surrounds the effective area 20A. The light emitting device 1 may be further configured to satisfy the following conditional expressions (5) and (6).
H = P2 × Y2 (5)
0.3 ≦ Y2 ≦ 0.6 (6)
However, H is the distance from thelight source 10 to the effective area 20A, and P2 is the arrangement pitch of the plurality of light sources 10 arranged in the Y-axis direction.
H=P2×Y2 ……(5)
0.3≦Y2≦0.6 ……(6)
但し、Hは光源10から有効領域20Aまでの距離であり、P2はY軸方向に並ぶ複数の光源10の配列ピッチである。 As shown in FIG. 3, the
H = P2 × Y2 (5)
0.3 ≦ Y2 ≦ 0.6 (6)
However, H is the distance from the
導光板20の表面21Aおよび裏面21Bは、いずれも、例えば表面21Aと対向して配置される被照射物(例えば後述の液晶パネル122)に対応した平面形状を有している。表面21Aには、導光板20の内部を伝播する光Lの直進性を向上させるために、例えば微細な凸部よりなる凹凸パターンが設けられていてもよい。その凸部は、例えば左右方向に延在する帯状の突条または畝である。一方、裏面21Bには、導光板20の内部を伝播する光Lを散乱させる散乱構造として、例えば、散乱剤がドットパターン状に印刷されている。その印刷手法としては、シルクスクリーンやホットスタンプ、ロールスタンプなどが適用可能である。なお、散乱構造としては、散乱剤に代えて、フィラーを含んだ部位を設けたものや、レーザ光照射などにより裏面21Bを部分的に粗面にしたものを利用することも可能である。
Both the front surface 21A and the back surface 21B of the light guide plate 20 have a planar shape corresponding to an irradiated object (for example, a liquid crystal panel 122 described later) disposed to face the front surface 21A, for example. In order to improve the straightness of the light L propagating through the inside of the light guide plate 20, the surface 21A may be provided with a concavo-convex pattern made up of fine convex portions, for example. The convex portion is, for example, a strip-shaped ridge or ridge extending in the left-right direction. On the other hand, on the back surface 21B, as a scattering structure that scatters the light L propagating through the light guide plate 20, for example, a scattering agent is printed in a dot pattern. As the printing method, a silk screen, a hot stamp, a roll stamp, or the like can be applied. In addition, as a scattering structure, it is also possible to use a structure provided with a part including a filler instead of the scattering agent, or a structure in which the back surface 21B is partially roughened by laser light irradiation or the like.
図6は、導光板20の裏面21Bに形成された、散乱構造としてのドットパターンの一例を説明するための模式図である。上述したように、導光板20の裏面21Bには、例えば散乱剤などからなる微細なドット(凸部)が規則的または不規則的に(ランダムに)複数設けられたドットパターンがそれぞれ形成されている。図6に示した例では、ドットパターン26が、散乱領域26Aと散乱領域26Bとを含んでいる。ここで、散乱領域26Aは光源10の正面(X軸方向において対向する位置)、すなわち凹凸領域R1の近傍に設けられた、ドットの密度が比較的低い領域である。一方、散乱領域26Bは隣り合う光源10同士の間の領域、すなわち平坦領域R2の近傍に位置しており、ドットの密度が比較的高い領域である。よって、散乱領域26Aの散乱強度は比較的低く、散乱領域26Bの散乱強度は比較的高い。このため、導光板20では、散乱領域26Aにおいて散乱領域26Bよりも発光輝度が抑えられる。すなわち、入射光の輝度が同等であれば、散乱領域26Aでの発光輝度はやや低くなり、散乱領域26Bでの発光輝度はやや高くなる。ところが実際には、光源10の正面に位置する散乱領域26Aに入射する光Lの光量が、隣り合う光源10同士の間に位置する散乱領域26Bに入射する光Lの光量よりも高い。このため、ドット密度の違いに起因する上記作用により、結果として散乱領域26Aにおける発光輝度と散乱領域26Bにおける発光輝度とがほぼ同等となる。
FIG. 6 is a schematic diagram for explaining an example of a dot pattern as a scattering structure formed on the back surface 21 </ b> B of the light guide plate 20. As described above, on the back surface 21B of the light guide plate 20, for example, a dot pattern in which a plurality of fine dots (convex portions) made of, for example, a scattering agent are regularly or irregularly (randomly) provided is formed. Yes. In the example shown in FIG. 6, the dot pattern 26 includes a scattering region 26A and a scattering region 26B. Here, the scattering region 26A is a region having a relatively low density of dots provided in front of the light source 10 (position facing in the X-axis direction), that is, in the vicinity of the uneven region R1. On the other hand, the scattering region 26B is located in the region between the adjacent light sources 10, that is, in the vicinity of the flat region R2, and is a region where the dot density is relatively high. Therefore, the scattering intensity of the scattering region 26A is relatively low, and the scattering intensity of the scattering region 26B is relatively high. For this reason, in the light guide plate 20, the light emission luminance is suppressed in the scattering region 26A more than in the scattering region 26B. That is, if the luminance of the incident light is the same, the emission luminance in the scattering region 26A is slightly lower, and the emission luminance in the scattering region 26B is slightly higher. However, in practice, the amount of light L incident on the scattering region 26A located in front of the light source 10 is higher than the amount of light L incident on the scattering region 26B located between adjacent light sources 10. For this reason, as a result, the light emission luminance in the scattering region 26A and the light emission luminance in the scattering region 26B become substantially equal due to the above-described effect due to the difference in dot density.
反射シート40は、導光板20の裏面21Bと対向して設けられた板状またはシート状部材であり、導光板20から漏れ出てきた光を、導光板20へ向けて戻すものである。反射シート40は、例えば、反射、拡散、散乱などの機能を有しており、これにより光源10からの光を効率的に利用し、正面輝度を高めることが可能となっている。
The reflection sheet 40 is a plate-like or sheet-like member provided to face the back surface 21 </ b> B of the light guide plate 20, and returns light leaking from the light guide plate 20 toward the light guide plate 20. The reflection sheet 40 has, for example, functions such as reflection, diffusion, and scattering, thereby making it possible to efficiently use the light from the light source 10 and increase the front luminance.
反射シート40は、例えば、発泡PET(ポリエチレンテレフタレート),銀蒸着フィルム,多層膜反射フィルム,または白色PETにより構成されている。反射シート40に正反射(鏡面反射)の機能を持たせる場合には、反射シート40の表面は、銀蒸着,アルミニウム蒸着,または多層膜反射などの処理がなされたものであることが好ましい。反射シート40に微細形状を付与する場合は、反射シート40は、熱可塑性樹脂を用いた熱プレス成型,または溶融押し出し成型などの手法で一体的に形成されていてもよいし、また、例えばPETなどからなる基材上にエネルギー線(たとえば紫外線)硬化樹脂を塗布したのち、そのエネルギー線硬化樹脂に形状を転写して形成されていてもよい。ここで、熱可塑性樹脂としては、例えば、ポリカーボネート樹脂、PMMA(ポリメチルメタクリレート樹脂)などのアクリル樹脂、ポリエチレンテレフタレートなどのポリエステル樹脂、MS(メチルメタクリレートとスチレンの共重合体)などの非晶性共重合ポリエステル樹脂、ポリスチレン樹脂およびポリ塩化ビニル樹脂などが挙げられる。また、エネルギー線(たとえば紫外線)硬化樹脂に形状を転写する場合は、基材はガラスであってもよい。
The reflection sheet 40 is made of, for example, foamed PET (polyethylene terephthalate), a silver deposited film, a multilayer reflective film, or white PET. When the reflection sheet 40 has a regular reflection (specular reflection) function, the surface of the reflection sheet 40 is preferably subjected to a treatment such as silver vapor deposition, aluminum vapor deposition, or multilayer film reflection. When a fine shape is imparted to the reflection sheet 40, the reflection sheet 40 may be integrally formed by a technique such as hot press molding using a thermoplastic resin or melt extrusion molding, or, for example, PET It may be formed by applying an energy ray (for example, ultraviolet ray) curable resin on a substrate made of, for example, and then transferring the shape to the energy ray curable resin. Here, examples of the thermoplastic resin include polycarbonate resins, acrylic resins such as PMMA (polymethyl methacrylate resin), polyester resins such as polyethylene terephthalate, and amorphous copolymers such as MS (copolymer of methyl methacrylate and styrene). Examples thereof include a polymerized polyester resin, a polystyrene resin, and a polyvinyl chloride resin. Further, when the shape is transferred to an energy ray (for example, ultraviolet ray) curable resin, the substrate may be glass.
光学シート30は、導光板20の光出射面である表面21Aと対向して設けられ、例えば、拡散板,拡散シート,レンズフィルム,偏光分離シートなどを含んでいる。このような光学シート30を設けることにより、導光板20から斜め方向に出射した光を正面方向(+Z方向)に立ち上げることが可能となり、正面輝度をさらに高めることが可能となる。
The optical sheet 30 is provided so as to face the surface 21A that is a light emitting surface of the light guide plate 20, and includes, for example, a diffusion plate, a diffusion sheet, a lens film, a polarization separation sheet, and the like. Providing such an optical sheet 30 makes it possible to raise light emitted in an oblique direction from the light guide plate 20 in the front direction (+ Z direction), and to further increase the front luminance.
[発光装置1の作用および効果]
発光装置1では、光源10から出射した光Lは、導光板20の光入射面22に入射したのち、導光板20の内部を伝播して最終的に表面21Aから出射される。導光板20の表面21Aから出射された光が、光学シート30を通過して発光として観測される。 [Operation and Effect of Light-Emitting Device 1]
In thelight emitting device 1, the light L emitted from the light source 10 enters the light incident surface 22 of the light guide plate 20, propagates through the light guide plate 20, and is finally emitted from the surface 21 </ b> A. Light emitted from the surface 21A of the light guide plate 20 passes through the optical sheet 30 and is observed as light emission.
発光装置1では、光源10から出射した光Lは、導光板20の光入射面22に入射したのち、導光板20の内部を伝播して最終的に表面21Aから出射される。導光板20の表面21Aから出射された光が、光学シート30を通過して発光として観測される。 [Operation and Effect of Light-Emitting Device 1]
In the
先に述べたように、光源10から出射した光Lは、-X方向に進行して光入射面22から導光板20の内部に進入する。光入射面22から入射した光Lは、高い直進性を有するので、導光板20の内部においておおよそ-X方向へ伝播することとなる。したがって、光入射面22が平坦面のみからなる場合、光Lは、X軸方向と直交する方向には広がりにくい。そのため、隣り合う光源10同士の間隔が広がりすぎると、特に光入射面22の近傍において、発光輝度が比較的高い領域と発光輝度が比較的低い領域とがY軸方向において交互に(比較的顕著に)生じるおそれがある(例えば図7A参照)。図7Aは、平坦面のみからなる光入射面1022を有する導光板1020を備えた、参考例としての発光装置におけるXY面内の発光輝度分布を示したものである。
As described above, the light L emitted from the light source 10 travels in the −X direction and enters the light guide plate 20 from the light incident surface 22. Since the light L incident from the light incident surface 22 has high straightness, the light L propagates approximately in the −X direction inside the light guide plate 20. Therefore, when the light incident surface 22 is composed only of a flat surface, the light L hardly spreads in a direction orthogonal to the X-axis direction. For this reason, if the interval between the adjacent light sources 10 is excessively widened, particularly in the vicinity of the light incident surface 22, a region having a relatively high light emission luminance and a region having a relatively low light emission luminance are alternately (relatively significant). (See, for example, FIG. 7A). FIG. 7A shows a light emission luminance distribution in the XY plane of a light emitting device as a reference example provided with a light guide plate 1020 having a light incident surface 1022 composed of only a flat surface.
そこで、本実施の形態では、導光板20の光入射面22が、平坦面23と湾曲面24Uを含む凹面24とが繰り返し配置されてなる凹凸領域R1を複数有するようにしている。このため、光源10から湾曲面24Uに入射した一部の光Lは、湾曲面24Uにおいて-X方向と異なる方向へ散乱し、XY平面内において広がるように導光板20の内部を伝播する。一方、光源10から平坦面23に入射した一部の光Lは、ほとんど散乱されることなく平坦面23を透過したのち導光板20の内部を直進するように伝播する。したがって、導光板20では、湾曲面24Uを含む凹面24の存在により光Lが適度に散乱されて発光輝度分布の偏りが緩和される一方、平坦面23の存在により光Lの直進性が確保されて全体として高い面発光輝度を得ることができる(例えば図7B参照)。図7Bは、光入射面22が平坦面23と凹面24とを含む導光板20を備えた、本開示の発光装置1の一例におけるXY面内の発光輝度分布を示したものである。その結果、この発光装置1では、発光効率の低下を抑制しつつ、導光板20の表面21Aから所望の(例えば輝度むらの少ない均質の)輝度分布を有する光を発することができる。
Therefore, in the present embodiment, the light incident surface 22 of the light guide plate 20 has a plurality of uneven regions R1 in which the flat surface 23 and the concave surface 24 including the curved surface 24U are repeatedly arranged. Therefore, a part of the light L incident on the curved surface 24U from the light source 10 is scattered in a direction different from the −X direction on the curved surface 24U and propagates in the light guide plate 20 so as to spread in the XY plane. On the other hand, a part of the light L incident on the flat surface 23 from the light source 10 propagates so as to travel straight through the light guide plate 20 after passing through the flat surface 23 without being scattered. Therefore, in the light guide plate 20, the light L is appropriately scattered by the presence of the concave surface 24 including the curved surface 24U, and the unevenness of the light emission luminance distribution is alleviated, while the straightness of the light L is ensured by the presence of the flat surface 23. As a whole, high surface emission luminance can be obtained (see, for example, FIG. 7B). FIG. 7B shows a light emission luminance distribution in the XY plane in an example of the light emitting device 1 of the present disclosure in which the light incident surface 22 includes the light guide plate 20 including the flat surface 23 and the concave surface 24. As a result, the light emitting device 1 can emit light having a desired luminance distribution (eg, a uniform luminance distribution with little luminance unevenness) from the surface 21A of the light guide plate 20 while suppressing a decrease in luminous efficiency.
発光装置1では、凹凸領域R1において、平坦面23と凹面24とがY軸方向に沿って規則的に交互配置され、複数の凹面24は互いに実質的に同一の形状および実質的に同一の大きさを有し実質的に同一の配列ピッチP1で配列されている。このため、より均質の発光輝度分布が得られる。
In the light emitting device 1, the flat surfaces 23 and the concave surfaces 24 are regularly and alternately arranged along the Y-axis direction in the uneven region R <b> 1, and the plurality of concave surfaces 24 have substantially the same shape and substantially the same size. And are arranged at substantially the same arrangement pitch P1. For this reason, a more uniform emission luminance distribution can be obtained.
発光装置1では、凹面24のうちの最深部24Dが含まれる底部24Aを湾曲面24Uとした。最深部24Dは-X方向に進行する光Lと正対する部分であることから、最深部24Dおよびその近傍を湾曲面24Uとすることにより、より効果的に光Lの散乱を生じされることができる。
In the light emitting device 1, the bottom 24 </ b> A including the deepest portion 24 </ b> D of the concave surface 24 is a curved surface 24 </ b> U. Since the deepest portion 24D is a portion directly facing the light L traveling in the −X direction, the deepest portion 24D and its vicinity can be made the curved surface 24U, so that the light L can be more effectively scattered. it can.
発光装置1では、さらに、条件式(1)~(6)を満たすようにすれば、発光効率の低下を抑制しつつ、導光板20の表面21Aからよりいっそう均質の輝度分布を有する光を発することができる。
In the light emitting device 1, if the conditional expressions (1) to (6) are further satisfied, light having a more uniform luminance distribution is emitted from the surface 21A of the light guide plate 20 while suppressing a decrease in light emission efficiency. be able to.
発光装置1では、さらに、導光板20の裏面21Bにおけるドットパターン26が、散乱強度の異なる散乱領域26Aおよび散乱領域26Bを含むようにした。ここで、光源10の正面に位置する散乱領域26Aの散乱強度を比較的低くし、隣り合う光源10同士の間の領域に位置する散乱領域26Aの散乱強度を比較的高くするようにしたので、全体としての発光輝度分布をより均質化することができる。
In the light emitting device 1, the dot pattern 26 on the back surface 21B of the light guide plate 20 further includes a scattering region 26A and a scattering region 26B having different scattering intensities. Here, the scattering intensity of the scattering region 26A located in front of the light source 10 is relatively low, and the scattering intensity of the scattering region 26A located in the area between the adjacent light sources 10 is relatively high. The overall emission luminance distribution can be made more uniform.
<2.第2の実施の形態>
図8は、本開示の第2の実施の形態に係る表示装置101の外観を表したものである。この表示装置101は、発光装置1を備え、例えば薄型テレビジョン装置として用いられるものであり、画像表示のための平板状の本体部102をスタンド103により支持した構成を有している。なお、表示装置101は、スタンド103を本体部102に取付けた状態で、床,棚または台などの水平面に載置して据置型として用いられるが、スタンド103を本体部102から取り外した状態で壁掛型として用いることも可能である。 <2. Second Embodiment>
FIG. 8 illustrates an appearance of thedisplay device 101 according to the second embodiment of the present disclosure. The display device 101 includes the light emitting device 1 and is used as, for example, a thin television device, and has a configuration in which a flat main body 102 for image display is supported by a stand 103. The display device 101 is used as a stationary type with the stand 103 attached to the main body 102 and placed on a horizontal surface such as a floor, a shelf, or a stand, but the stand 103 is removed from the main body 102. It can also be used as a wall-hanging type.
図8は、本開示の第2の実施の形態に係る表示装置101の外観を表したものである。この表示装置101は、発光装置1を備え、例えば薄型テレビジョン装置として用いられるものであり、画像表示のための平板状の本体部102をスタンド103により支持した構成を有している。なお、表示装置101は、スタンド103を本体部102に取付けた状態で、床,棚または台などの水平面に載置して据置型として用いられるが、スタンド103を本体部102から取り外した状態で壁掛型として用いることも可能である。 <2. Second Embodiment>
FIG. 8 illustrates an appearance of the
図9は、図8に示した本体部102を分解して表したものである。本体部102は、例えば、前面側(視聴者側)から、前部外装部材(ベゼル)111,パネルモジュール112および後部外装部材(リアカバー)113をこの順に有している。前部外装部材111は、パネルモジュール112の前面周縁部を覆う額縁状の部材であり、下方には一対のスピーカー114が配置されている。パネルモジュール112は前部外装部材111に固定され、その背面には電源基板115および信号基板116が実装されると共に取付金具117が固定されている。取付金具117は、壁掛けブラケットの取付、基板等の取付およびスタンド103の取付のためのものである。後部外装部材113は、パネルモジュール112の背面および側面を被覆している。
FIG. 9 is an exploded view of the main body 102 shown in FIG. The main body 102 has, for example, a front exterior member (bezel) 111, a panel module 112, and a rear exterior member (rear cover) 113 in this order from the front side (viewer side). The front exterior member 111 is a frame-shaped member that covers the peripheral edge of the front surface of the panel module 112, and a pair of speakers 114 are disposed below the front exterior member 111. The panel module 112 is fixed to the front exterior member 111, and a power supply board 115 and a signal board 116 are mounted on the rear surface thereof, and a mounting bracket 117 is fixed. The mounting bracket 117 is for mounting a wall-mounted bracket, mounting a board, etc., and mounting the stand 103. The rear exterior member 113 covers the back and side surfaces of the panel module 112.
図10は、図9に示したパネルモジュール112を分解して表したものである。パネルモジュール112は、例えば、前面側(視聴者側)から、前部筐体(トップシャーシ)121,液晶パネル122,枠状部材(ミドルシャーシ)123,光学シート30,導光板20および光源10,反射シート40,後部筐体(バックシャーシ)124およびタイミングコントローラ基板127をこの順に有している。
FIG. 10 is an exploded view of the panel module 112 shown in FIG. The panel module 112 includes, for example, a front casing (top chassis) 121, a liquid crystal panel 122, a frame-shaped member (middle chassis) 123, an optical sheet 30, a light guide plate 20, and a light source 10, from the front side (viewer side). The reflective sheet 40, the rear housing (back chassis) 124, and the timing controller board 127 are provided in this order.
前部筐体121は、液晶パネル122の前面周縁部を覆う枠状の金属部品である。液晶パネル122は、例えば、液晶セル122Aと、ソース基板122Bと、これらを接続するCOF(Chip On Film)などの可撓性基板122Cとを有している。枠状部材123は、液晶パネル122および光学シート30を保持する枠状の樹脂部品である。後部筐体124は、液晶パネル122,枠状部材123および発光装置1を収容する、鉄(Fe)等よりなる金属部品である。タイミングコントローラ基板127もまた、後部筐体124の背面に実装されている。
The front housing 121 is a frame-shaped metal part that covers the front peripheral edge of the liquid crystal panel 122. The liquid crystal panel 122 includes, for example, a liquid crystal cell 122A, a source substrate 122B, and a flexible substrate 122C such as a COF (Chip On On Film) that connects them. The frame-shaped member 123 is a frame-shaped resin component that holds the liquid crystal panel 122 and the optical sheet 30. The rear housing 124 is a metal part made of iron (Fe) or the like that houses the liquid crystal panel 122, the frame-like member 123, and the light emitting device 1. The timing controller board 127 is also mounted on the back surface of the rear housing 124.
この表示装置101では、発光装置1からの光が液晶パネル122により選択的に透過されることにより、画像表示が行われる。ここでは、第1の実施の形態で説明したように、面内の輝度分布の均質性が向上した発光装置1を備えているので、表示装置101の表示品質が向上する。
In the display device 101, the light from the light emitting device 1 is selectively transmitted through the liquid crystal panel 122, thereby displaying an image. Here, as described in the first embodiment, since the light-emitting device 1 having improved in-plane luminance distribution uniformity is provided, the display quality of the display device 101 is improved.
<3.表示装置の適用例>
以下、上記のような表示装置101の電子機器への適用例について説明する。電子機器としては、例えばテレビジョン装置,デジタルカメラ,ノート型パーソナルコンピュータ、携帯電話等の携帯端末装置あるいはビデオカメラ等が挙げられる。言い換えると、上記表示装置は、外部から入力された映像信号あるいは内部で生成した映像信号を、画像あるいは映像として表示するあらゆる分野の電子機器に適用することが可能である。 <3. Application example of display device>
Hereinafter, application examples of thedisplay device 101 as described above to an electronic device will be described. Examples of the electronic device include a television device, a digital camera, a notebook personal computer, a mobile terminal device such as a mobile phone, or a video camera. In other words, the display device can be applied to electronic devices in various fields that display a video signal input from the outside or a video signal generated inside as an image or video.
以下、上記のような表示装置101の電子機器への適用例について説明する。電子機器としては、例えばテレビジョン装置,デジタルカメラ,ノート型パーソナルコンピュータ、携帯電話等の携帯端末装置あるいはビデオカメラ等が挙げられる。言い換えると、上記表示装置は、外部から入力された映像信号あるいは内部で生成した映像信号を、画像あるいは映像として表示するあらゆる分野の電子機器に適用することが可能である。 <3. Application example of display device>
Hereinafter, application examples of the
図11Aは、上記実施の形態の表示装置101が適用されるタブレット型端末装置の外観を表したものである。図11Bは、上記実施の形態の表示装置101が適用される他のタブレット型端末装置の外観を表したものである。これらのタブレット型端末装置は、いずれも、例えば表示部210および非表示部220を有しており、この表示部210が上記実施の形態の表示装置101により構成されている。
FIG. 11A shows the appearance of a tablet terminal device to which the display device 101 of the above embodiment is applied. FIG. 11B shows the appearance of another tablet terminal device to which the display device 101 of the above embodiment is applied. Each of these tablet-type terminal devices has, for example, a display unit 210 and a non-display unit 220, and the display unit 210 is configured by the display device 101 of the above embodiment.
<4.照明装置の適用例>
図12および図13は、上記実施の形態の発光装置1が適用される卓上用の照明装置の外観を表したものである。この照明装置は、例えば、基台841に設けられた支柱842に、照明部843を取り付けたものであり、この照明部843は、上記第1の実施の形態に係る発光装置1により構成されている。照明部843は、光学シート30,導光板20および反射シート40などを湾曲形状とすることにより、図12に示した筒状、または図13に示した曲面状など、任意の形状とすることが可能である。 <4. Application example of lighting device>
12 and 13 illustrate the appearance of a tabletop lighting device to which the light-emittingdevice 1 of the above embodiment is applied. For example, the illumination device is a device in which an illumination unit 843 is attached to a support column 842 provided on a base 841, and the illumination unit 843 includes the light-emitting device 1 according to the first embodiment. Yes. The illumination unit 843 can have an arbitrary shape such as a cylindrical shape shown in FIG. 12 or a curved shape shown in FIG. 13 by making the optical sheet 30, the light guide plate 20, the reflection sheet 40, etc. into a curved shape. Is possible.
図12および図13は、上記実施の形態の発光装置1が適用される卓上用の照明装置の外観を表したものである。この照明装置は、例えば、基台841に設けられた支柱842に、照明部843を取り付けたものであり、この照明部843は、上記第1の実施の形態に係る発光装置1により構成されている。照明部843は、光学シート30,導光板20および反射シート40などを湾曲形状とすることにより、図12に示した筒状、または図13に示した曲面状など、任意の形状とすることが可能である。 <4. Application example of lighting device>
12 and 13 illustrate the appearance of a tabletop lighting device to which the light-emitting
図14は、上記実施の形態の発光装置1が適用される室内用の照明装置の外観を表したものである。この照明装置は、例えば、上記第1の実施の形態に係る発光装置1により構成された照明部844を有している。照明部844は、建造物の天井850Aに適宜の個数および間隔で配置されている。なお、照明部844は、用途に応じて、天井850Aに限らず、壁850Bまたは床(図示せず)など任意の場所に設置することが可能である。
FIG. 14 shows the appearance of an indoor lighting device to which the light emitting device 1 of the above embodiment is applied. This illuminating device has the illumination part 844 comprised by the light-emitting device 1 which concerns on the said 1st Embodiment, for example. The illumination units 844 are arranged at an appropriate number and interval on the ceiling 850A of the building. Note that the lighting unit 844 can be installed not only in the ceiling 850A but also in an arbitrary place such as a wall 850B or a floor (not shown) depending on the application.
これらの照明装置では、発光装置1からの光により、照明が行われる。ここでは面内の輝度分布の均質性が向上した発光装置1を備えているので、照明品質が向上する。
In these illumination devices, illumination is performed by light from the light emitting device 1. Here, since the light-emitting device 1 with improved in-plane luminance distribution uniformity is provided, the illumination quality is improved.
<5.実験例>
上記第1の実施の形態に係る発光装置1において、XY面内における発光輝度分布について調査した。ここでは、平坦面23と凹面24の最深部との距離(すなわち深さ)Dと、複数の凹面24の配列ピッチP1との関係を変化させ、発光輝度分布の比較をおこなった。ここでは、距離Dが25μm~300μmの範囲で互いに異なる値とした10個のサンプルを作製し、各々の発光輝度分布を測定した。併せて、参考例として、凹凸構造を有しない導光板を有する発光装置についても同様の調査を実施した。また、全てに共通の条件として、配列ピッチP1を500μmとし、光源10と光入射面22との距離を0.35mmとした。それらの結果を図15に示す。 <5. Experimental example>
In thelight emitting device 1 according to the first embodiment, the light emission luminance distribution in the XY plane was investigated. Here, the relationship between the distance (ie, depth) D between the flat surface 23 and the deepest portion of the concave surface 24 and the arrangement pitch P1 of the plurality of concave surfaces 24 was changed, and the light emission luminance distributions were compared. Here, ten samples having different values in the range of the distance D in the range of 25 μm to 300 μm were prepared, and the light emission luminance distribution of each sample was measured. At the same time, as a reference example, the same investigation was performed on a light emitting device having a light guide plate having no uneven structure. As common conditions for all, the arrangement pitch P1 was 500 μm, and the distance between the light source 10 and the light incident surface 22 was 0.35 mm. The results are shown in FIG.
上記第1の実施の形態に係る発光装置1において、XY面内における発光輝度分布について調査した。ここでは、平坦面23と凹面24の最深部との距離(すなわち深さ)Dと、複数の凹面24の配列ピッチP1との関係を変化させ、発光輝度分布の比較をおこなった。ここでは、距離Dが25μm~300μmの範囲で互いに異なる値とした10個のサンプルを作製し、各々の発光輝度分布を測定した。併せて、参考例として、凹凸構造を有しない導光板を有する発光装置についても同様の調査を実施した。また、全てに共通の条件として、配列ピッチP1を500μmとし、光源10と光入射面22との距離を0.35mmとした。それらの結果を図15に示す。 <5. Experimental example>
In the
図15に示したように、本実施の形態の発光装置1によれば、光入射面22が凹面24を含むようにしたので、平坦面のみからなる光入射面の場合(参考例)よりも均質性の高い発光輝度分布が得られることがわかった。特に、条件式(1)および条件式(2)を満たす場合に、光入射面22の近傍での発光輝度の均質性がより向上することがわかった。
As shown in FIG. 15, according to the light emitting device 1 of the present embodiment, the light incident surface 22 includes the concave surface 24, so that it is more than the case of the light incident surface consisting of only a flat surface (reference example). It was found that a highly uniform emission luminance distribution can be obtained. In particular, it has been found that when the conditional expression (1) and the conditional expression (2) are satisfied, the uniformity of the light emission luminance in the vicinity of the light incident surface 22 is further improved.
<6.その他の変形例>
以上、いくつかの実施の形態および変形例を挙げて本開示を説明したが、本開示は上記実施の形態等に限定されるものではなく、種々の変形が可能である。例えば、上記実施の形態等において説明した導光板20の材料や光入射面22の形状などは上述のものに限定されるものではなく、他の材料および他の形状としてもよい。 <6. Other variations>
Although the present disclosure has been described with some embodiments and modifications, the present disclosure is not limited to the above-described embodiments and the like, and various modifications are possible. For example, the material of thelight guide plate 20 and the shape of the light incident surface 22 described in the above embodiments are not limited to those described above, and other materials and other shapes may be used.
以上、いくつかの実施の形態および変形例を挙げて本開示を説明したが、本開示は上記実施の形態等に限定されるものではなく、種々の変形が可能である。例えば、上記実施の形態等において説明した導光板20の材料や光入射面22の形状などは上述のものに限定されるものではなく、他の材料および他の形状としてもよい。 <6. Other variations>
Although the present disclosure has been described with some embodiments and modifications, the present disclosure is not limited to the above-described embodiments and the like, and various modifications are possible. For example, the material of the
また、上記実施の形態等では、光入射面22が、凹凸領域R1と平坦領域R2とをそれぞれ複数有するようにしたが、本開示はこれに限定されるものではない。例えば、光入射面22の全てに亘って凹凸領域R1を設けるようにしてもよい。すなわち、導光体の端面における一端から他端に至るまで、第2の平坦面を設けることなく凹凸領域のみを隙間なく設けるようにしてもよい。また、凹凸領域R1および平坦領域R2の数は特に限定されない。
In the above-described embodiment and the like, the light incident surface 22 includes a plurality of the uneven regions R1 and the flat regions R2, but the present disclosure is not limited to this. For example, the uneven region R <b> 1 may be provided over the entire light incident surface 22. That is, only the uneven region may be provided without a gap from one end to the other end of the light guide without providing the second flat surface. Further, the numbers of the uneven regions R1 and the flat regions R2 are not particularly limited.
また、例えば、上記実施の形態等では、光源10が発光ダイオード(LED)である場合について説明したが、光源10は半導体レーザなどのレーザダイオードや、指向性を有する他の光源であってもよい。また、複数の光源10として、レーザダイオードと発光ダイオードとを混在させて用いてもよい。
For example, in the above-described embodiment and the like, the case where the light source 10 is a light emitting diode (LED) has been described. However, the light source 10 may be a laser diode such as a semiconductor laser or another light source having directivity. . Further, as the plurality of light sources 10, laser diodes and light emitting diodes may be mixed and used.
また、上記第1の実施の形態では、光入射面22において平坦面23と凹面24とがY軸方向に沿って規則的に交互配置され、凹面24の大きさおよび形状が全て実質的に同一となるようにしたが、本開示はこれに限定されるものではない。例えば大きさや深さ(距離D)が互いに異なる複数の凹面を配列し、所望の発光輝度分布を意図的に形成するようにしてもよい。
Further, in the first embodiment, the flat surface 23 and the concave surface 24 are regularly and alternately arranged along the Y-axis direction on the light incident surface 22, and the size and shape of the concave surface 24 are all substantially the same. However, the present disclosure is not limited to this. For example, a plurality of concave surfaces having different sizes and depths (distances D) may be arranged so as to intentionally form a desired light emission luminance distribution.
さらに、例えば、上記実施の形態等において発光装置1、表示装置101(テレビジョン装置)の構成を具体的に挙げて説明したが、全ての構成要素を備える必要はなく、また、他の構成要素を備えていてもよい。
Furthermore, for example, the configurations of the light-emitting device 1 and the display device 101 (television device) have been specifically described in the above-described embodiment and the like, but it is not necessary to include all the components, and other components May be provided.
なお、本明細書中に記載された効果はあくまで例示であってその記載に限定されるものではなく、他の効果があってもよい。また、本技術は以下のような構成を取り得るものである。
(1)
第1の方向に並ぶと共に前記第1の方向と異なる第2の方向へ光を各々発する複数の光源と、
前記複数の光源と対向して前記複数の光源からの前記光が入射する端面と、前記端面と交差する方向に広がると共に前記端面から入射した前記光が出射される表面とを含む導光体と
を備え、
前記端面は、第1の平坦面と、前記第1の平坦面に対して湾曲する湾曲面を含む凹面とが前記第1の方向に沿って交互に繰り返し配置されてなる凹凸領域を、複数有する
発光装置。
(2)
複数の前記凹凸領域は、前記第1の方向において間欠的に設けられている
上記(1)記載の発光装置。
(3)
前記端面は、前記複数の凹凸領域同士の間に第2の平坦面を含む
上記(2)記載の発光装置。
(4)
前記第1の平坦面および前記第2の平坦面は、いずれも前記第1の方向と平行であり、
前記第1の平坦面と前記第2の平坦面とは、実質的に共通の共通平面内に含まれる
上記(3)記載の発光装置。
(5)
前記第1の方向において、前記第1の平坦面の第1の幅は前記第2の平坦面の第2の幅よりも狭い
上記(4)記載の発光装置。
(6)
複数の前記凹凸領域は、前記複数の光源の各々と対応する位置に設けられている
上記(1)から(5)のいずれか1つに記載の発光装置。
(7)
前記凹面の最深部は、前記湾曲面に含まれている
上記(1)から(5)のいずれか1つに記載の発光装置。
(8)
以下の条件式(1)および条件式(2)を満たす
上記(1)から(7)のいずれか1つに記載の発光装置。
D=P1×X ……(1)
0.1≦X≦0.6 ……(2)
但し、
D:第1の平坦面と凹面の最深部との距離
P1:第1の方向に並ぶ複数の凹面の配列ピッチ
(9)
以下の条件式(3)および条件式(4)を満たす
上記(1)から(8)のいずれか1つに記載の発光装置。
W1=(PA×Y1)×2 ……(3)
1.0≦Y1≦4.0 ……(4)
但し、
W1:第1の方向における凹凸領域の幅
PA:上記凹凸領域に対応する光源の、第1の方向における半分の幅
(10)
前記導光体の表面は、発光面として機能する有効領域と、前記有効領域を取り囲む周辺領域とを含み、
以下の条件式(5)および条件式(6)を満たす
上記(1)から(9)のいずれか1つに記載の発光装置。
H=P2×Y2 ……(5)
0.3≦Y2≦0.6 ……(6)
但し、
H:光源から有効領域までの距離
P2:第1の方向に並ぶ複数の光源の配列ピッチ
(11)
前記凹面は、前記第1の方向に対して傾斜した1対の斜面を含む
上記(1)から(10)のいずれか1つに記載の発光装置。
(12)
前記導光体は、前記表面と対向すると共に前記光の一部が散乱される散乱構造が形成された裏面をさらに含んでいる
上記(1)から(11)のいずれか1つに記載の発光装置。
(13)
前記散乱構造は、第1の散乱強度を有する複数の第1の散乱領域と、前記第1の散乱強度よりも高い第2の散乱強度を有する複数の第2の散乱領域とを有し、
前記複数の第1の散乱領域は、前記複数の光源の各々と対向する位置にあり、
前記複数の第2の散乱領域は、前記第1の方向において前記複数の第1の散乱領域同士の間に位置する
上記(12)に記載の発光装置。
(14)
表示パネルと、前記表示パネルを照明する発光装置とを備え、
前記発光装置は、
第1の方向に並ぶと共に前記第1の方向と異なる第2の方向へ光を各々発する複数の光源と、
前記複数の光源と対向して前記複数の光源からの前記光が入射する端面と、前記端面と交差する方向に広がると共に前記端面から入射した前記光が出射される表面とを含む導光体と
を備え、
前記端面は、第1の平坦面と、前記第1の平坦面に対して湾曲する湾曲面を含む凹面とが前記第1の方向に沿って交互に繰り返し配置されてなる凹凸領域を、複数有する
表示装置。
(15)
発光装置を備え、
前記発光装置は、
第1の方向に並ぶと共に前記第1の方向と異なる第2の方向へ光を各々発する複数の光源と、
前記複数の光源と対向して前記複数の光源からの前記光が入射する端面と、前記端面と交差する方向に広がると共に前記端面から入射した前記光が出射される表面とを含む導光体と
を備え、
前記端面は、第1の平坦面と、前記第1の平坦面に対して湾曲する湾曲面を含む凹面とが前記第1の方向に沿って交互に繰り返し配置されてなる凹凸領域を、複数有する
照明装置。 In addition, the effect described in this specification is an illustration to the last, and is not limited to the description, There may exist another effect. Moreover, this technique can take the following structures.
(1)
A plurality of light sources each arranged in a first direction and emitting light in a second direction different from the first direction;
A light guide that includes an end face on which the light from the plurality of light sources is incident facing the plurality of light sources, and a surface that is spread in a direction intersecting the end face and on which the light incident from the end face is emitted. With
The end surface includes a plurality of concave and convex regions in which a first flat surface and a concave surface including a curved surface curved with respect to the first flat surface are alternately arranged along the first direction. Light emitting device.
(2)
The light emitting device according to (1), wherein the plurality of uneven regions are provided intermittently in the first direction.
(3)
The light emitting device according to (2), wherein the end surface includes a second flat surface between the plurality of uneven regions.
(4)
The first flat surface and the second flat surface are both parallel to the first direction,
The light emitting device according to (3), wherein the first flat surface and the second flat surface are included in a substantially common common plane.
(5)
The light emitting device according to (4), wherein in the first direction, a first width of the first flat surface is narrower than a second width of the second flat surface.
(6)
The light emitting device according to any one of (1) to (5), wherein the plurality of concave and convex regions are provided at positions corresponding to each of the plurality of light sources.
(7)
The deepest part of the concave surface is included in the curved surface. The light-emitting device according to any one of (1) to (5).
(8)
The light emitting device according to any one of (1) to (7), wherein the following conditional expression (1) and conditional expression (2) are satisfied.
D = P1 × X (1)
0.1 ≦ X ≦ 0.6 (2)
However,
D: Distance between the first flat surface and the deepest part of the concave surface P1: Arrangement pitch of a plurality of concave surfaces arranged in the first direction (9)
The light emitting device according to any one of (1) to (8), wherein the following conditional expression (3) and conditional expression (4) are satisfied.
W1 = (PA × Y1) × 2 (3)
1.0 ≦ Y1 ≦ 4.0 (4)
However,
W1: width of the uneven area in the first direction PA: half width in the first direction of the light source corresponding to the uneven area (10)
The surface of the light guide includes an effective area that functions as a light emitting surface, and a peripheral area that surrounds the effective area,
The light emitting device according to any one of (1) to (9), wherein the following conditional expression (5) and conditional expression (6) are satisfied.
H = P2 × Y2 (5)
0.3 ≦ Y2 ≦ 0.6 (6)
However,
H: Distance from light source to effective area P2: Arrangement pitch of a plurality of light sources arranged in the first direction (11)
The light emitting device according to any one of (1) to (10), wherein the concave surface includes a pair of inclined surfaces inclined with respect to the first direction.
(12)
The light guide according to any one of (1) to (11), wherein the light guide further includes a back surface facing the front surface and formed with a scattering structure in which a part of the light is scattered. apparatus.
(13)
The scattering structure has a plurality of first scattering regions having a first scattering intensity, and a plurality of second scattering regions having a second scattering intensity higher than the first scattering intensity,
The plurality of first scattering regions are at positions facing each of the plurality of light sources,
The light emitting device according to (12), wherein the plurality of second scattering regions are located between the plurality of first scattering regions in the first direction.
(14)
A display panel; and a light emitting device that illuminates the display panel;
The light emitting device
A plurality of light sources each arranged in a first direction and emitting light in a second direction different from the first direction;
A light guide that includes an end face on which the light from the plurality of light sources is incident facing the plurality of light sources, and a surface that is spread in a direction intersecting the end face and on which the light incident from the end face is emitted. With
The end surface includes a plurality of concave and convex regions in which a first flat surface and a concave surface including a curved surface curved with respect to the first flat surface are alternately arranged along the first direction. Display device.
(15)
With a light emitting device,
The light emitting device
A plurality of light sources each arranged in a first direction and emitting light in a second direction different from the first direction;
A light guide that includes an end face on which the light from the plurality of light sources is incident facing the plurality of light sources, and a surface that is spread in a direction intersecting the end face and on which the light incident from the end face is emitted. With
The end surface includes a plurality of concave and convex regions in which a first flat surface and a concave surface including a curved surface curved with respect to the first flat surface are alternately arranged along the first direction. Lighting device.
(1)
第1の方向に並ぶと共に前記第1の方向と異なる第2の方向へ光を各々発する複数の光源と、
前記複数の光源と対向して前記複数の光源からの前記光が入射する端面と、前記端面と交差する方向に広がると共に前記端面から入射した前記光が出射される表面とを含む導光体と
を備え、
前記端面は、第1の平坦面と、前記第1の平坦面に対して湾曲する湾曲面を含む凹面とが前記第1の方向に沿って交互に繰り返し配置されてなる凹凸領域を、複数有する
発光装置。
(2)
複数の前記凹凸領域は、前記第1の方向において間欠的に設けられている
上記(1)記載の発光装置。
(3)
前記端面は、前記複数の凹凸領域同士の間に第2の平坦面を含む
上記(2)記載の発光装置。
(4)
前記第1の平坦面および前記第2の平坦面は、いずれも前記第1の方向と平行であり、
前記第1の平坦面と前記第2の平坦面とは、実質的に共通の共通平面内に含まれる
上記(3)記載の発光装置。
(5)
前記第1の方向において、前記第1の平坦面の第1の幅は前記第2の平坦面の第2の幅よりも狭い
上記(4)記載の発光装置。
(6)
複数の前記凹凸領域は、前記複数の光源の各々と対応する位置に設けられている
上記(1)から(5)のいずれか1つに記載の発光装置。
(7)
前記凹面の最深部は、前記湾曲面に含まれている
上記(1)から(5)のいずれか1つに記載の発光装置。
(8)
以下の条件式(1)および条件式(2)を満たす
上記(1)から(7)のいずれか1つに記載の発光装置。
D=P1×X ……(1)
0.1≦X≦0.6 ……(2)
但し、
D:第1の平坦面と凹面の最深部との距離
P1:第1の方向に並ぶ複数の凹面の配列ピッチ
(9)
以下の条件式(3)および条件式(4)を満たす
上記(1)から(8)のいずれか1つに記載の発光装置。
W1=(PA×Y1)×2 ……(3)
1.0≦Y1≦4.0 ……(4)
但し、
W1:第1の方向における凹凸領域の幅
PA:上記凹凸領域に対応する光源の、第1の方向における半分の幅
(10)
前記導光体の表面は、発光面として機能する有効領域と、前記有効領域を取り囲む周辺領域とを含み、
以下の条件式(5)および条件式(6)を満たす
上記(1)から(9)のいずれか1つに記載の発光装置。
H=P2×Y2 ……(5)
0.3≦Y2≦0.6 ……(6)
但し、
H:光源から有効領域までの距離
P2:第1の方向に並ぶ複数の光源の配列ピッチ
(11)
前記凹面は、前記第1の方向に対して傾斜した1対の斜面を含む
上記(1)から(10)のいずれか1つに記載の発光装置。
(12)
前記導光体は、前記表面と対向すると共に前記光の一部が散乱される散乱構造が形成された裏面をさらに含んでいる
上記(1)から(11)のいずれか1つに記載の発光装置。
(13)
前記散乱構造は、第1の散乱強度を有する複数の第1の散乱領域と、前記第1の散乱強度よりも高い第2の散乱強度を有する複数の第2の散乱領域とを有し、
前記複数の第1の散乱領域は、前記複数の光源の各々と対向する位置にあり、
前記複数の第2の散乱領域は、前記第1の方向において前記複数の第1の散乱領域同士の間に位置する
上記(12)に記載の発光装置。
(14)
表示パネルと、前記表示パネルを照明する発光装置とを備え、
前記発光装置は、
第1の方向に並ぶと共に前記第1の方向と異なる第2の方向へ光を各々発する複数の光源と、
前記複数の光源と対向して前記複数の光源からの前記光が入射する端面と、前記端面と交差する方向に広がると共に前記端面から入射した前記光が出射される表面とを含む導光体と
を備え、
前記端面は、第1の平坦面と、前記第1の平坦面に対して湾曲する湾曲面を含む凹面とが前記第1の方向に沿って交互に繰り返し配置されてなる凹凸領域を、複数有する
表示装置。
(15)
発光装置を備え、
前記発光装置は、
第1の方向に並ぶと共に前記第1の方向と異なる第2の方向へ光を各々発する複数の光源と、
前記複数の光源と対向して前記複数の光源からの前記光が入射する端面と、前記端面と交差する方向に広がると共に前記端面から入射した前記光が出射される表面とを含む導光体と
を備え、
前記端面は、第1の平坦面と、前記第1の平坦面に対して湾曲する湾曲面を含む凹面とが前記第1の方向に沿って交互に繰り返し配置されてなる凹凸領域を、複数有する
照明装置。 In addition, the effect described in this specification is an illustration to the last, and is not limited to the description, There may exist another effect. Moreover, this technique can take the following structures.
(1)
A plurality of light sources each arranged in a first direction and emitting light in a second direction different from the first direction;
A light guide that includes an end face on which the light from the plurality of light sources is incident facing the plurality of light sources, and a surface that is spread in a direction intersecting the end face and on which the light incident from the end face is emitted. With
The end surface includes a plurality of concave and convex regions in which a first flat surface and a concave surface including a curved surface curved with respect to the first flat surface are alternately arranged along the first direction. Light emitting device.
(2)
The light emitting device according to (1), wherein the plurality of uneven regions are provided intermittently in the first direction.
(3)
The light emitting device according to (2), wherein the end surface includes a second flat surface between the plurality of uneven regions.
(4)
The first flat surface and the second flat surface are both parallel to the first direction,
The light emitting device according to (3), wherein the first flat surface and the second flat surface are included in a substantially common common plane.
(5)
The light emitting device according to (4), wherein in the first direction, a first width of the first flat surface is narrower than a second width of the second flat surface.
(6)
The light emitting device according to any one of (1) to (5), wherein the plurality of concave and convex regions are provided at positions corresponding to each of the plurality of light sources.
(7)
The deepest part of the concave surface is included in the curved surface. The light-emitting device according to any one of (1) to (5).
(8)
The light emitting device according to any one of (1) to (7), wherein the following conditional expression (1) and conditional expression (2) are satisfied.
D = P1 × X (1)
0.1 ≦ X ≦ 0.6 (2)
However,
D: Distance between the first flat surface and the deepest part of the concave surface P1: Arrangement pitch of a plurality of concave surfaces arranged in the first direction (9)
The light emitting device according to any one of (1) to (8), wherein the following conditional expression (3) and conditional expression (4) are satisfied.
W1 = (PA × Y1) × 2 (3)
1.0 ≦ Y1 ≦ 4.0 (4)
However,
W1: width of the uneven area in the first direction PA: half width in the first direction of the light source corresponding to the uneven area (10)
The surface of the light guide includes an effective area that functions as a light emitting surface, and a peripheral area that surrounds the effective area,
The light emitting device according to any one of (1) to (9), wherein the following conditional expression (5) and conditional expression (6) are satisfied.
H = P2 × Y2 (5)
0.3 ≦ Y2 ≦ 0.6 (6)
However,
H: Distance from light source to effective area P2: Arrangement pitch of a plurality of light sources arranged in the first direction (11)
The light emitting device according to any one of (1) to (10), wherein the concave surface includes a pair of inclined surfaces inclined with respect to the first direction.
(12)
The light guide according to any one of (1) to (11), wherein the light guide further includes a back surface facing the front surface and formed with a scattering structure in which a part of the light is scattered. apparatus.
(13)
The scattering structure has a plurality of first scattering regions having a first scattering intensity, and a plurality of second scattering regions having a second scattering intensity higher than the first scattering intensity,
The plurality of first scattering regions are at positions facing each of the plurality of light sources,
The light emitting device according to (12), wherein the plurality of second scattering regions are located between the plurality of first scattering regions in the first direction.
(14)
A display panel; and a light emitting device that illuminates the display panel;
The light emitting device
A plurality of light sources each arranged in a first direction and emitting light in a second direction different from the first direction;
A light guide that includes an end face on which the light from the plurality of light sources is incident facing the plurality of light sources, and a surface that is spread in a direction intersecting the end face and on which the light incident from the end face is emitted. With
The end surface includes a plurality of concave and convex regions in which a first flat surface and a concave surface including a curved surface curved with respect to the first flat surface are alternately arranged along the first direction. Display device.
(15)
With a light emitting device,
The light emitting device
A plurality of light sources each arranged in a first direction and emitting light in a second direction different from the first direction;
A light guide that includes an end face on which the light from the plurality of light sources is incident facing the plurality of light sources, and a surface that is spread in a direction intersecting the end face and on which the light incident from the end face is emitted. With
The end surface includes a plurality of concave and convex regions in which a first flat surface and a concave surface including a curved surface curved with respect to the first flat surface are alternately arranged along the first direction. Lighting device.
本出願は、日本国特許庁において2016年8月22日に出願された日本特許出願番号2016-162047号を基礎として優先権を主張するものであり、この出願のすべての内容を参照によって本出願に援用する。
This application claims priority on the basis of Japanese Patent Application No. 2016-162047 filed on August 22, 2016 at the Japan Patent Office. The entire contents of this application are hereby incorporated by reference. Incorporated into.
当業者であれば、設計上の要件や他の要因に応じて、種々の修正、コンビネーション、サブコンビネーション、および変更を想到し得るが、それらは添付の請求の範囲やその均等物の範囲に含まれるものであることが理解される。
Those skilled in the art will envision various modifications, combinations, subcombinations, and changes, depending on design requirements and other factors, which are within the scope of the appended claims and their equivalents. It is understood that
Claims (15)
- 第1の方向に並ぶと共に前記第1の方向と異なる第2の方向へ光を各々発する複数の光源と、
前記複数の光源と対向して前記複数の光源からの前記光が入射する端面と、前記端面と交差する方向に広がると共に前記端面から入射した前記光が出射される表面とを含む導光体と
を備え、
前記端面は、第1の平坦面と、前記第1の平坦面に対して湾曲する湾曲面を含む凹面とが前記第1の方向に沿って交互に繰り返し配置されてなる凹凸領域を、複数有する
発光装置。 A plurality of light sources each arranged in a first direction and emitting light in a second direction different from the first direction;
A light guide that includes an end face on which the light from the plurality of light sources is incident facing the plurality of light sources, and a surface that is spread in a direction intersecting the end face and on which the light incident from the end face is emitted. With
The end surface includes a plurality of concave and convex regions in which a first flat surface and a concave surface including a curved surface curved with respect to the first flat surface are alternately arranged along the first direction. Light emitting device. - 複数の前記凹凸領域は、前記第1の方向において間欠的に設けられている
請求項1記載の発光装置。 The light emitting device according to claim 1, wherein the plurality of uneven regions are provided intermittently in the first direction. - 前記端面は、前記複数の凹凸領域同士の間に第2の平坦面を含む
請求項2記載の発光装置。 The light emitting device according to claim 2, wherein the end surface includes a second flat surface between the plurality of uneven regions. - 前記第1の平坦面および前記第2の平坦面は、いずれも前記第1の方向と平行であり、
前記第1の平坦面と前記第2の平坦面とは、実質的に共通の共通平面内に含まれる
請求項3記載の発光装置。 The first flat surface and the second flat surface are both parallel to the first direction,
The light emitting device according to claim 3, wherein the first flat surface and the second flat surface are included in a substantially common common plane. - 前記第1の方向において、前記第1の平坦面の第1の幅は前記第2の平坦面の第2の幅よりも狭い
請求項4記載の発光装置。 The light emitting device according to claim 4, wherein, in the first direction, a first width of the first flat surface is narrower than a second width of the second flat surface. - 複数の前記凹凸領域は、前記複数の光源の各々と対応する位置に設けられている
請求項1記載の発光装置。 The light emitting device according to claim 1, wherein the plurality of concave and convex regions are provided at positions corresponding to the plurality of light sources. - 前記凹面の最深部は、前記湾曲面に含まれている
請求項1記載の発光装置。 The light emitting device according to claim 1, wherein a deepest portion of the concave surface is included in the curved surface. - 以下の条件式(1)および条件式(2)を満たす
請求項1記載の発光装置。
D=P1×X ……(1)
0.1≦X≦0.6 ……(2)
但し、
D:第1の平坦面と凹面の最深部との距離
P1:第1の方向に並ぶ複数の凹面の配列ピッチ The light emitting device according to claim 1, wherein the following conditional expression (1) and conditional expression (2) are satisfied.
D = P1 × X (1)
0.1 ≦ X ≦ 0.6 (2)
However,
D: Distance between the first flat surface and the deepest portion of the concave surface P1: Arrangement pitch of a plurality of concave surfaces arranged in the first direction - 以下の条件式(3)および条件式(4)を満たす
請求項1記載の発光装置。
W1=(PA×Y1)×2 ……(3)
1.0≦Y1≦4.0 ……(4)
但し、
W1:第1の方向における凹凸領域の幅
PA:上記凹凸領域に対応する光源の、第1の方向における半分の幅 The light emitting device according to claim 1, wherein the following conditional expression (3) and conditional expression (4) are satisfied.
W1 = (PA × Y1) × 2 (3)
1.0 ≦ Y1 ≦ 4.0 (4)
However,
W1: Width of the uneven area in the first direction PA: Half width in the first direction of the light source corresponding to the uneven area - 前記導光体の表面は、発光面として機能する有効領域と、前記有効領域を取り囲む周辺領域とを含み、
以下の条件式(5)および条件式(6)を満たす
請求項1記載の発光装置。
H=P2×Y2 ……(5)
0.3≦Y2≦0.6 ……(6)
但し、
H:光源から有効領域までの距離
P2:第1の方向に並ぶ複数の光源の配列ピッチ The surface of the light guide includes an effective area that functions as a light emitting surface, and a peripheral area that surrounds the effective area,
The light-emitting device according to claim 1, wherein the following conditional expression (5) and conditional expression (6) are satisfied.
H = P2 × Y2 (5)
0.3 ≦ Y2 ≦ 0.6 (6)
However,
H: Distance from the light source to the effective area P2: Arrangement pitch of a plurality of light sources arranged in the first direction - 前記凹面は、前記第1の方向に対して傾斜した1対の斜面を含む
請求項1記載の発光装置。 The light emitting device according to claim 1, wherein the concave surface includes a pair of inclined surfaces inclined with respect to the first direction. - 前記導光体は、前記表面と対向すると共に前記光の一部が散乱される散乱構造が形成された裏面をさらに含んでいる
請求項1記載の発光装置。 The light-emitting device according to claim 1, wherein the light guide further includes a back surface facing the front surface and formed with a scattering structure in which a part of the light is scattered. - 前記散乱構造は、第1の散乱強度を有する複数の第1の散乱領域と、前記第1の散乱強度よりも高い第2の散乱強度を有する複数の第2の散乱領域とを有し、
前記複数の第1の散乱領域は、前記複数の光源の各々と対向する位置にあり、
前記複数の第2の散乱領域は、前記第1の方向において前記複数の第1の散乱領域同士の間に位置する
請求項12記載の発光装置。 The scattering structure has a plurality of first scattering regions having a first scattering intensity, and a plurality of second scattering regions having a second scattering intensity higher than the first scattering intensity,
The plurality of first scattering regions are at positions facing each of the plurality of light sources,
The light emitting device according to claim 12, wherein the plurality of second scattering regions are located between the plurality of first scattering regions in the first direction. - 表示パネルと、前記表示パネルを照明する発光装置とを備え、
前記発光装置は、
第1の方向に並ぶと共に前記第1の方向と異なる第2の方向へ光を各々発する複数の光源と、
前記複数の光源と対向して前記複数の光源からの前記光が入射する端面と、前記端面と交差する方向に広がると共に前記端面から入射した前記光が出射される表面とを含む導光体と
を備え、
前記端面は、第1の平坦面と、前記第1の平坦面に対して湾曲する湾曲面を含む凹面とが前記第1の方向に沿って交互に繰り返し配置されてなる凹凸領域を、複数有する
表示装置。 A display panel; and a light emitting device that illuminates the display panel;
The light emitting device
A plurality of light sources each arranged in a first direction and emitting light in a second direction different from the first direction;
A light guide that includes an end face on which the light from the plurality of light sources is incident facing the plurality of light sources, and a surface that is spread in a direction intersecting the end face and on which the light incident from the end face is emitted. With
The end surface includes a plurality of concave and convex regions in which a first flat surface and a concave surface including a curved surface curved with respect to the first flat surface are alternately arranged along the first direction. Display device. - 発光装置を備え、
前記発光装置は、
第1の方向に並ぶと共に前記第1の方向と異なる第2の方向へ光を各々発する複数の光源と、
前記複数の光源と対向して前記複数の光源からの前記光が入射する端面と、前記端面と交差する方向に広がると共に前記端面から入射した前記光が出射される表面とを含む導光体と
を備え、
前記端面は、第1の平坦面と、前記第1の平坦面に対して湾曲する湾曲面を含む凹面とが前記第1の方向に沿って交互に繰り返し配置されてなる凹凸領域を、複数有する
照明装置。 With a light emitting device,
The light emitting device
A plurality of light sources each arranged in a first direction and emitting light in a second direction different from the first direction;
A light guide that includes an end face on which the light from the plurality of light sources is incident facing the plurality of light sources, and a surface that is spread in a direction intersecting the end face and on which the light incident from the end face is emitted. With
The end surface includes a plurality of concave and convex regions in which a first flat surface and a concave surface including a curved surface curved with respect to the first flat surface are alternately arranged along the first direction. Lighting device.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016-162047 | 2016-08-22 | ||
JP2016162047 | 2016-08-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018037892A1 true WO2018037892A1 (en) | 2018-03-01 |
Family
ID=61246550
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/028529 WO2018037892A1 (en) | 2016-08-22 | 2017-08-07 | Light-emitting device, display device, and illumination device |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2018037892A1 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10293202A (en) * | 1997-04-17 | 1998-11-04 | Enplas Corp | Side light type surface light source device |
JP2009238733A (en) * | 2007-12-07 | 2009-10-15 | Mabuchi Shomei Seisakusho:Kk | Light guide illumination device |
JP2013016485A (en) * | 2011-06-30 | 2013-01-24 | Skc Haas Display Films Co Ltd | Symmetric serrated edge light guide film having elliptical base segment |
JP2013174717A (en) * | 2012-02-24 | 2013-09-05 | Asahi Kasei Corp | Light guide plate and half cut sheet |
-
2017
- 2017-08-07 WO PCT/JP2017/028529 patent/WO2018037892A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10293202A (en) * | 1997-04-17 | 1998-11-04 | Enplas Corp | Side light type surface light source device |
JP2009238733A (en) * | 2007-12-07 | 2009-10-15 | Mabuchi Shomei Seisakusho:Kk | Light guide illumination device |
JP2013016485A (en) * | 2011-06-30 | 2013-01-24 | Skc Haas Display Films Co Ltd | Symmetric serrated edge light guide film having elliptical base segment |
JP2013174717A (en) * | 2012-02-24 | 2013-09-05 | Asahi Kasei Corp | Light guide plate and half cut sheet |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6092522B2 (en) | LIGHT EMITTING DEVICE, DISPLAY DEVICE, AND LIGHTING DEVICE | |
JP6192897B2 (en) | LIGHT EMITTING DEVICE, DISPLAY DEVICE, AND LIGHTING DEVICE | |
JP6991373B2 (en) | Light emitting device, display device and lighting device | |
JP6265055B2 (en) | LIGHT EMITTING DEVICE, DISPLAY DEVICE, AND LIGHTING DEVICE | |
KR101676870B1 (en) | Backlight unit and display apparatus thereof | |
JP2012204336A (en) | Illumination device and display device | |
WO2016208484A1 (en) | Light emission device, display device, and illumination device | |
TW201925872A (en) | Curved liquid crystal display device | |
JP2014225379A (en) | Light emitting device, display device and illumination device | |
JP2024020648A (en) | light emitting device | |
JP6771476B2 (en) | Light emitting device, display device and lighting device | |
KR101593690B1 (en) | Backlight unit and display apparatus thereof | |
JP6567576B2 (en) | Display device | |
KR20120054967A (en) | Back light unit and display apparatus having the same | |
WO2018037892A1 (en) | Light-emitting device, display device, and illumination device | |
KR20110054459A (en) | Dual-type liquid crystal display module and portable phone having the same | |
JP2017204484A (en) | Display device | |
JP6961754B2 (en) | Display device and light emitting device | |
TWI507781B (en) | Backlight module and liquid crystal display device | |
KR101537561B1 (en) | Backlight unit and Liquid crystal display device module including the same | |
JP2010123345A (en) | Planar lighting system and liquid crystal display device | |
JP2012015074A (en) | Lighting system and display device | |
JP2018147604A (en) | Illuminance distribution adjustment plate, backlight device and display device | |
WO2012176699A1 (en) | Light source module, illuminating apparatus, display apparatus, and television receiver | |
WO2014050726A1 (en) | Light source apparatus and display apparatus provided with same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17843377 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
NENP | Non-entry into the national phase |
Ref country code: JP |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17843377 Country of ref document: EP Kind code of ref document: A1 |