WO2018037886A1 - Sensor device, and body with built-in sensor - Google Patents

Sensor device, and body with built-in sensor Download PDF

Info

Publication number
WO2018037886A1
WO2018037886A1 PCT/JP2017/028513 JP2017028513W WO2018037886A1 WO 2018037886 A1 WO2018037886 A1 WO 2018037886A1 JP 2017028513 W JP2017028513 W JP 2017028513W WO 2018037886 A1 WO2018037886 A1 WO 2018037886A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
electrically connected
power supply
pressure
unit
Prior art date
Application number
PCT/JP2017/028513
Other languages
French (fr)
Japanese (ja)
Inventor
恵大 小西
隆文 福井
勝村 英則
加賀田 博司
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2018037886A1 publication Critical patent/WO2018037886A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/20Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/20Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
    • G01L1/22Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges

Definitions

  • the present invention relates to a small sensor device used in a portable device or the like and a sensor built-in body.
  • the conventional sensor device has a power supply unit, a sensor unit, and a processing unit.
  • the power supply unit is electrically connected to the sensor unit.
  • the processing unit is electrically connected to a portion (conductive wire) between the sensor unit and the power supply unit.
  • the power supply unit applies a constant voltage to the sensor.
  • a sensor part changes resistance value according to pressure. That is, the sensor unit converts a change in pressure applied to the sensor unit into a change in potential. Then, the processing unit detects a change in potential. Accordingly, the processing unit detects the pressure applied to the sensor.
  • Such a conventional sensor device further includes a circuit for supplying power from the power supply unit to the sensor unit, and a circuit for supplying power for driving the processing unit from the power supply unit to the processing unit.
  • the sensor part and the process part are electrically connected by the separate conducting wire.
  • Patent Document 1 is known as prior art document information related to the invention of this application.
  • the power supply unit always supplies power for driving the processing unit to the processing unit in the power-on state.
  • the processing unit includes a semiconductor (IC). Therefore, even when the sensor unit does not detect pressure, the conventional sensor device consumes power due to standby power, leakage current, and the like.
  • the present invention provides a sensor device that suppresses power consumption.
  • the present invention suppresses power consumption when the sensor does not detect pressure.
  • the sensor device of the present invention includes a power supply unit, a sensor unit, and a processing unit.
  • the power supply unit supplies DC power.
  • the sensor unit is electrically connected to the power supply unit.
  • the processing unit is electrically connected to the sensor unit.
  • the sensor unit When the first pressure is applied, the sensor unit outputs a control signal and a first electric signal to the processing unit.
  • the control signal controls starting or stopping of the processing unit.
  • the first electrical signal is generated based on the first pressure.
  • the sensor device of the present invention drives the processing unit when the sensor unit detects pressure. Therefore, the sensor device of the present invention can suppress power consumption due to leakage current or standby power when the sensor does not detect pressure. In particular, the sensor device of the present invention can suppress power consumption in the processing unit.
  • the wearing items are, for example, clothes, shoes, watches, wristbands, gloves, hats, and the like.
  • a smart shoe is a sensor built-in body in which a sensor device is built in a shoe.
  • People use smart shoes to record and analyze daily activities such as walking and running. Then, people can obtain exercise information such as the number of walks, walk distance, walk time, walk posture, and health status.
  • the present invention provides a sensor device that suppresses power consumption.
  • the sensor device of the present invention suppresses power consumption in the processing unit when the sensor unit does not detect pressure.
  • FIG. 1 is a simplified circuit diagram of the sensor device 100.
  • electrically connected means that an electronic circuit is configured. That is, the electronic component can output an electric signal, input an electric signal, or supply electric power between the electronic component and an electronic component electrically connected to the electronic component. Therefore, “electrically connected” includes, for example, a configuration in which two opposing coils are connected by dielectric action.
  • the electronic component A and the electronic component B are electrically connected may be via the electronic component C in the process of an electrical signal or power from the electronic component A to the electronic component B.
  • the battery and the load are electrically connected means that the battery is connected to the load via electronic components such as transistors, field effect transistors, diodes, switches, converters, resistors, capacitors, amplifiers, and filters. Including the circuit that leads to.
  • the sensor device 100 includes a power supply unit 10, a sensor unit 20, and a processing unit 30.
  • the power supply unit 10 supplies DC power to the sensor unit 20 and the processing unit 30.
  • the sensor unit 20 is electrically connected to the power supply unit 10.
  • the processing unit 30 is electrically connected to the sensor unit 20.
  • the sensor unit 20 has a structure for receiving the first pressure. Or the sensor part 20 is arrange
  • the sensor unit 20 is applied with the first pressure and outputs the first electric signal to the processing unit 30.
  • the first electrical signal is generated by the sensor unit 20 based on the first pressure.
  • the voltage of the first electric signal increases as the resistance value of the sensor unit 20 decreases. That is, the voltage of the first electric signal increases as the first pressure increases. Further, the voltage of the first electric signal decreases as the resistance value of the sensor unit 20 increases. That is, the voltage of the first electric signal is lowered by the decrease in the first pressure. In this way, the sensor unit 20 generates a first electrical signal based on the first pressure from the electric power supplied to the sensor unit 20.
  • the sensor unit 20 outputs a control signal.
  • the control signal controls the start or stop of the processing unit 30.
  • the voltage of the control signal increases as the resistance value of the sensor unit 20 decreases. Further, the voltage of the control signal decreases as the resistance value of the sensor unit 20 increases.
  • the processing unit 30 is activated when the voltage value of the control signal becomes equal to or higher than the first value. In addition, the processing unit 30 stops when the voltage value of the control signal falls below the second value. When activated, the processing unit 30 analyzes the first electrical signal. Then, the processing unit 30 obtains the first pressure based on the first electric signal.
  • the processing unit 30 may be activated when the voltage value of the control signal exceeds the first value, and may be stopped when the voltage value of the control signal becomes equal to or less than the second value.
  • the first value and the second value may be the same value or different values.
  • the processing unit 30 starts when the voltage of the control signal exceeds the first value, and when the voltage of the control signal falls below the second value. You may stop.
  • the processing unit 30 starts when the voltage of the control signal is equal to or higher than the first value, and when the voltage of the control signal is equal to or lower than the second value. You may stop.
  • the sensor unit 20 has a function of detecting the first pressure and a function as a switch of the processing unit 30. Therefore, when the sensor unit 20 is not sensing, the processing unit 30 and the power supply unit 10 are substantially electrically disconnected.
  • the sensor device 100 can suppress power consumption due to leakage current from the processing unit 30, standby power, or the like.
  • the sensor device 100 can suppress power consumption in the processing unit 30 when the sensor unit 20 does not detect pressure.
  • the sensor device 100 will be described in detail with reference to FIG.
  • the sensor device 100 includes a power supply unit 10, a sensor unit 20, a processing unit 30, and a ground 17A.
  • the processing unit 30 includes a power supply circuit 32 and a signal processing device 33.
  • the signal processing device 33 includes a power supply terminal 33A, a first signal input terminal 33B, a second signal input terminal 33C, and a third signal input terminal 33D.
  • the power supply unit 10 includes a power generator 13, a rectifier circuit 15, and a power storage element 17.
  • the power generator 13 generates AC power.
  • a vibration power generation element or a power generator using electromagnetic induction may be used as the power generation body 13, for example.
  • the vibration power generation element generates power by, for example, mechanical strain or magnetic strain.
  • the generator using electromagnetic induction is, for example, a motor.
  • the first terminal of the rectifier circuit 15 is electrically connected to the power generator 13.
  • the second terminal of the rectifier circuit 15 is electrically connected to a first sensor 20A (described later).
  • the rectifier circuit 15 converts AC power input to the first terminal into DC power and outputs the DC power from the second terminal.
  • the rectification method of the rectifier circuit 15 may be a full-wave type with good conversion efficiency from AC to DC. However, the rectification method of the rectifier circuit 15 may be a half-wave type.
  • the first terminal of the electricity storage element 17 is electrically connected to a portion between the second terminal of the rectifier circuit and the first sensor 20A.
  • the second terminal of the electricity storage element 17 is electrically connected to the ground 17A.
  • the electrical storage element 17 can store DC power.
  • the power storage element 17 may include a capacitor, for example.
  • the power supply unit 10 can temporarily store the generated power. Therefore, the power supply unit 10 can supply power to the sensor unit 20 even when power generation by the power generation body 13 is stopped.
  • the electrical storage element 17 is not an essential structure.
  • the power generator 13 may generate DC power.
  • the power generation body 13 may be a thermoelectric conversion element or a photoelectric conversion element.
  • the power supply unit 10 can omit the rectifier circuit 15.
  • the power supply unit 10 may be configured by only the power generator 13.
  • the sensor device 100 can supply the electric power necessary for its own driving within the sensor device 100. Therefore, the sensor device 100 does not require battery replacement.
  • the power supply unit 10 may use a battery instead of the power generator 13.
  • the battery is, for example, a primary battery or a secondary battery. As a result, the power supply unit 10 can omit the rectifier circuit 15 and the storage element 17.
  • the power supply unit 10 may include a power generator 13 and a battery. Thereby, the discharge time of the battery can be extended. Further, when the power generator 13 does not have sufficient power for starting the processing unit 30, the processing unit 30 can be started by a battery.
  • the sensor unit 20 includes a first sensor 20A, a second sensor 20B, and a third sensor 20C.
  • the first sensor 20A outputs a control signal.
  • the second sensor 20B outputs a first electrical signal.
  • the third sensor 20C outputs a second electrical signal.
  • the sensor unit 20 does not have the second sensor 20B or the third sensor 20C as an essential configuration.
  • the sensor unit 20 may include only the first sensor 20A.
  • the sensor unit 20 may have three or more sensors in addition to the first sensor 20A.
  • the first sensor 20A, the second sensor 20B, and the third sensor 20C are pressure-sensitive sensors.
  • the resistance value of the pressure-sensitive sensor changes according to the applied pressure. Specifically, the resistance value of the pressure sensor decreases as the applied pressure increases. In addition, the resistance value of the pressure sensor increases as the applied pressure decreases.
  • the pressure sensitive sensor has a pressure sensitive conductive member. Examples of the pressure-sensitive conductive member include a pressure-sensitive conductive rubber, a pressure-sensitive conductive film, and a pressure-sensitive conductive metal thin film.
  • the pressure-sensitive conductive member may be appropriately selected depending on the sensing accuracy and the environment in which the sensor device 100 is used.
  • a pressure-sensitive conductive thin film may be selected as the pressure-sensitive conductive member when pressure-sensitive conductive thin film is required, and pressure-sensitive conductive rubber is selected when flexibility or durability is required.
  • the first sensor 20A is electrically connected to the rectifier circuit 15.
  • the first sensor 20A is electrically connected to the power supply circuit 32. Further, the first sensor 20A is electrically connected to the third signal input terminal 33D.
  • the first sensor 20A has a structure that receives the second pressure. Alternatively, the first sensor 20A is disposed at a position that receives the second pressure.
  • the resistance value of the first sensor 20A varies depending on the second pressure. Specifically, the resistance value of the first sensor 20A decreases as the second pressure increases. Conversely, the resistance value of the first sensor 20A increases as the second pressure decreases. Then, the first sensor 20 ⁇ / b> A is applied with the second pressure and outputs a control signal to the power supply circuit 32.
  • the control signal is generated by the first sensor 20A based on the second pressure.
  • the voltage of the control signal increases as the resistance value of the first sensor 20A decreases. That is, the voltage of the control signal increases as the second pressure increases.
  • the voltage of the control signal decreases as the resistance value of the first sensor 20A increases. That is, the voltage of the control signal is lowered by the decrease in the second pressure. In this way, the first sensor 20A generates a control signal based on the second pressure from the electric power supplied to the first sensor 20A.
  • the electrical connection between the first sensor 20A and the third signal input terminal 33D is not essential. Further, the voltage of the control signal may not be based on the second pressure. Therefore, for example, the first sensor 20A may use a push switch or a membrane switch.
  • the second sensor 20B is electrically connected to the rectifier circuit 15.
  • the second sensor 20B is electrically connected to the first signal input terminal 33B. Further, the second sensor 20B is electrically connected to the power supply circuit 32.
  • the second sensor 20B has a structure that receives the first pressure. Alternatively, the second sensor 20B is disposed at a position that receives the first pressure.
  • the resistance value of the second sensor 20B varies depending on the first pressure. Specifically, the resistance value of the second sensor 20B decreases as the first pressure increases. Conversely, the resistance value of the second sensor 20B increases with a decrease in the first pressure.
  • the first electric signal is generated by the second sensor 20B based on the first pressure.
  • the voltage of the first electric signal increases as the resistance value of the second sensor 20B decreases. That is, the voltage of the first electric signal increases as the first pressure increases.
  • the voltage of the first electrical signal decreases as the resistance value of the second sensor 20B increases. That is, the voltage of the first electric signal is lowered by the decrease in the first pressure. In this way, the second sensor 20B generates a first electrical signal based on the first pressure from the electric power supplied to the second sensor 20B.
  • the electrical connection between the second sensor 20B and the rectifier circuit 15 is not essential.
  • AC power may be input to the second sensor 20B.
  • the first electric signal is an alternating current. Therefore, the sensor device 100 may have a configuration that rectifies the first electric signal in the process until the first electric signal is input to the first signal input terminal 33B. Further, the electrical connection between the second sensor 20B and the power supply circuit 32 is not essential.
  • the third sensor 20C is electrically connected to the rectifier circuit 15.
  • the third sensor 20C is electrically connected to the second signal input terminal 33C. Further, the third sensor 20 ⁇ / b> C is electrically connected to the power supply circuit 32.
  • the third sensor 20C has a structure that receives the third pressure. Or the 3rd sensor 20C is arranged in the position which receives the 3rd pressure.
  • the resistance value of the third sensor 20C varies with the third pressure. Specifically, the resistance value of the third sensor 20C decreases as the third pressure increases. Conversely, the resistance value of the third sensor 20C increases as the third pressure decreases.
  • the third sensor 20C receives the third pressure and outputs the second electric signal to the second signal input terminal 33C.
  • the second electric signal is generated by the third sensor 20C based on the third pressure.
  • the voltage of the second electric signal increases as the resistance value of the third sensor 20C decreases. That is, the voltage of the second electric signal increases with the increase in the third pressure.
  • the voltage of the second electric signal decreases as the resistance value of the third sensor 20C increases. That is, the voltage of the second electric signal is lowered by the decrease in the third pressure.
  • the third sensor 20C generates a third electrical signal based on the third pressure from the electric power supplied to the third sensor 20C.
  • the electrical connection between the third sensor 20C and the rectifier circuit 15 is not essential.
  • AC power may be input to the third sensor 20C.
  • the second electric signal is an alternating current. Therefore, the sensor device 100 may have a configuration that rectifies the second electric signal in the process until the second electric signal is input to the second signal input terminal 33C. Further, the electrical connection between the third sensor 20C and the power supply circuit 32 is not essential.
  • the processing unit 30 includes a power circuit 32, a first resistor 30 ⁇ / b> A, a second resistor 30 ⁇ / b> B, and a signal processing device 33. Then, the signal processing device 33 measures the resistance values of the second sensor 20B and the third sensor 20C using a voltage dividing circuit.
  • the power supply circuit 32 is electrically connected to the first sensor 20A.
  • the power circuit 32 is electrically connected to the power terminal 33A.
  • a control signal is input to the power supply circuit 32 from the first sensor 20A.
  • the power supply circuit 32 has a first value as a threshold value for determining whether to start. When the voltage value of the control signal exceeds the first value, the power supply circuit 32 is activated.
  • the power supply circuit 32 converts the control signal into drive power and outputs the drive power to the signal processing device 33.
  • the voltage of the driving power (the output voltage of the power supply circuit 32) is higher than the voltage of the control signal.
  • the power supply circuit 32 has a second value as a threshold value for determining whether to stop. Then, when the voltage value of the control signal is lower than the second value, the power supply circuit 32 stops.
  • the power supply circuit 32 is electrically connected to the second sensor 20B and the third sensor 20C.
  • the power supply circuit 32 receives the first electric signal and the second electric signal. Therefore, even when the voltage value of the first electric signal or the second electric signal exceeds the first value, the power supply circuit 32 is activated.
  • the power supply circuit 32 converts the first electric signal and the second electric signal into driving power and outputs the driving power.
  • the voltage of the driving power (the output voltage of the power supply circuit 32) is higher than the voltages of the first electric signal and the second electric signal. Further, when the voltage value of the first electric signal or the second electric signal is lower than the second value, the power supply circuit 32 stops.
  • the first value and the second value are the same value, the value for starting (first value) and the value for stopping (second value) are set independently. Does not mean that In other words, the first value and the second value may be set as a single threshold value.
  • the power supply circuit 32 is a step-up converter, a step-down converter, a buck-boost converter, or the like.
  • the power supply circuit 32 is, for example, a DC / DC (Direct Current / Direct Current) converter, an AC / DC (Alternating Current / Direct Current) converter, or the like.
  • the power supply circuit 32 has an IC (Integrated Circuit). The first value and the second value are stored in the IC.
  • the power supply circuit 32 may include a diode (not shown) inside. As a result, the power supply circuit 32 causes the current flow from the first sensor 20A to the second sensor 20B or the third sensor 20C, and from the second sensor 20B to the first sensor 20A or the third sensor 20C. The flow of current and the flow of current from the third sensor 20C to the first sensor 20A and the third sensor 20C can be suppressed.
  • the driving power voltage (output voltage of the power supply circuit 32) is preferably a voltage suitable for driving the signal processing device 33.
  • the voltage of the driving power (the output voltage of the power supply circuit 32) may be lower than the voltage of the control signal, the first electric signal, or the second electric signal.
  • the voltage of the driving power (the output voltage of the power supply circuit 32) may be the same as the voltage of the control signal, the first electric signal, or the second electric signal.
  • electrical connection between the power supply circuit 32 and the second sensor 20B and electrical connection between the power supply circuit 32 and the third sensor 20C are not essential.
  • the power supply circuit 32 may further include a switching element such as a field effect transistor.
  • the power supply circuit 32 switches between starting and stopping of the power supply circuit 32 by changing the voltage applied to the gate terminal of the field effect transistor based on the control signal, the first electric signal, and the second electric signal. Also good.
  • the first terminal of the first resistor 30A is electrically connected to the second sensor 20B.
  • the second terminal of the first resistor 30A is electrically connected to the power supply circuit 32.
  • the resistance value of the first resistor 30A may be known. Therefore, the first resistor 30A is a fixed resistor. However, if the signal processing device 33 can measure the resistance value of the first resistor 30A, the first resistor 30A may use a variable resistor.
  • the second terminal of the first resistor 30 ⁇ / b> A may not be electrically connected to the power supply circuit 32.
  • the second terminal of the first resistor 30A may be electrically connected to the ground.
  • the first terminal of the second resistor 30B is electrically connected to the third sensor 20C.
  • the second terminal of the second resistor 30B is electrically connected to the power supply circuit 32. Therefore, the second resistor 30B is a fixed resistor. However, if the signal processing device 33 can measure the resistance value of the second resistor 30B, the second resistor 30B may use a variable resistor.
  • the second terminal of the second resistor 30B may not be electrically connected to the power supply circuit 32.
  • the second terminal of the second resistor 30B may be electrically connected to the ground.
  • the signal processing device 33 includes a power supply terminal 33A, a first signal input terminal 33B, a second signal input terminal 33C, a third signal input terminal 33D, a control unit 33F, a detection unit 33E, and a storage unit. 33G and a communication unit 33H. Note that the storage unit 33G and the communication unit 33H are not essential components.
  • the first signal input terminal 33B is electrically connected to the second sensor 20B.
  • the first signal input terminal 33B is electrically connected to a connection portion (wiring) between the second sensor 20B and the first resistor 30A.
  • the first electric signal is input to the first signal input terminal 33B.
  • the second signal input terminal 33C is electrically connected to the third sensor 20C.
  • the second signal input terminal 33C is electrically connected to a connection portion (wiring) between the third sensor 20C and the second resistor 30B. Then, the second electric signal is input to the second signal input terminal 33C.
  • the third signal input terminal 33D is electrically connected to the first sensor 20A.
  • the third signal input terminal 33D is electrically connected to a connection portion (wiring) between the first sensor 20A and the power supply circuit 32.
  • a control signal is input to the third signal input terminal 33D.
  • the first signal input terminal 33B, the second signal input terminal 33C, and the third signal input terminal 33D may be appropriately changed depending on the configuration of the sensor unit 20.
  • the third signal input terminal 33D can be omitted when the control signal is not input to the third signal input terminal 33D.
  • the second signal input terminal 33C can be omitted when the third sensor 20C is not used.
  • the detection unit 33E is electrically connected to the first signal input terminal 33B. Then, the detection unit 33E detects the voltage of the first electric signal. The detection unit 33E is electrically connected to the second signal input terminal 33C. Then, the detection unit 33E detects the voltage of the second electric signal. Furthermore, the detection unit 33E is electrically connected to the third signal input terminal 33D. The detection unit 33E detects the voltage of the control signal.
  • the detection unit 33E includes, for example, an A / D (Analog / Digital) converter and a comparator.
  • the signal processing device 33 includes a plurality of detection units (for example, A / D converters) respectively connected to the first signal input terminal 33B, the second signal input terminal 33C, and the third signal input terminal 33D. Or a comparator).
  • the detection unit 33E may detect the current of the first electric signal, the second electric signal, or the control signal.
  • the power supply terminal 33A is electrically connected to the power supply circuit 32. Driving power is input to the power supply terminal 33A.
  • the control unit 33F is electrically connected to the power supply terminal 33A.
  • the control unit 33F is driven by receiving drive power.
  • the control unit 33F is electrically connected to the detection unit 33E (not shown).
  • the control part 33F acquires the voltage of a 1st electrical signal, a 2nd electrical signal, and a control signal.
  • the control unit 33F includes, for example, an MCU (Micro controller Unit). Then, the control unit 33F outputs a detection result (for example, a signal indicating the first pressure, the second pressure, or the third pressure) based on the acquired voltage. Further, the control unit 33F analyzes the detection result. In addition, when not analyzing a detection result within the sensor apparatus 100, the control part 33F does not need to analyze a detection result.
  • the storage unit 33G includes a recording medium such as a nonvolatile memory, a hard disk, an SD memory card, a DVD, a CD, or a USB memory.
  • the storage unit 33G may be a built-in recording medium built in the sensor device 100 or an external recording medium attached to the sensor device 100.
  • the storage unit 33G includes, for example, data for calculating the pressure applied to the first sensor 20A, the second sensor 20B, and the third sensor 20C. Further, the storage unit 33G stores, for example, detection results and analysis results of the control unit 33F.
  • the communication unit 33H communicates with an external device outside the sensor device 100 by, for example, Bluetooth (registered trademark), Wi-Fi, near field communication, or the like. Then, the communication unit 33H receives data from the external device and transmits data to the external device.
  • Bluetooth registered trademark
  • Wi-Fi Wi-Fi
  • near field communication or the like.
  • FIG. 2 is a timing diagram of the sensor device 100.
  • FIG. 2 shows the relationship between the first sensor 20 ⁇ / b> A, the second sensor 20 ⁇ / b> B, and the power supply circuit 32.
  • FIG. 2 shows a case where pressure is applied to the second sensor 20B after pressure is applied to the first sensor 20A.
  • FIG. 2 is an example of the operation of the sensor device 100. That is, FIG. 2 does not limit the operation of the sensor device 100.
  • the output voltage of the power supply unit 10 is constant (voltage V vol ). Further, the value for starting (first value) and the value for stopping (second value) of the power supply circuit 32 are the same value (V 3 ).
  • the power supply circuit 32 outputs drive power when activated.
  • the voltage of the driving power (the output voltage of the power supply circuit 32) is assumed to be the voltage Vac .
  • the time T 0 is when the second pressure applied to the first sensor 20A is substantially zero.
  • the resistance value of the first sensor 20A is a very large value when the second pressure is not applied. Therefore, at time T 0, the output voltage V 1 of the first sensor 20A is almost zero.
  • the first pressure being applied to the second sensor 20B is substantially zero.
  • the resistance value of the second sensor 20B is a very large value when the first pressure is not applied. Therefore, at time T 0, the output voltage V 2 of the second sensor 20B is substantially zero.
  • the power supply circuit 32 outputs drive power (voltage V ac ) when the voltage value of the input electric signal (control signal or first electric signal) is equal to or higher than the first value V 3 .
  • the power supply circuit 32 is stopped when the voltage value of the input electrical signal (the control signal or the first electric signal) is below a first value V 3. Therefore, at time T 0, the power supply circuit 32 is stopped. Note that almost 0 includes 0.
  • the time T 1 and later, the second pressure is gradually increased.
  • the resistance value of the first sensor 20A gradually decreases. Therefore, the output voltage V1 of the first sensor 20A starts to increase.
  • the output voltage V 1 of the first sensor 20A has not reached the first value V 3.
  • the first pressure is substantially zero. Therefore, the output voltage V2 of the second sensor 20B is almost zero.
  • the output voltage V 1 of the first sensor 20A is equal to the first value V 3.
  • the first pressure is substantially zero. Therefore, at time T 2, the output voltage V2 of the second sensor 20B is substantially zero. At time T 2, the output voltage V 1 of the first sensor 20A has reached the first value V 3. Therefore, the power supply circuit 32 is activated. The power supply circuit 32 outputs drive power.
  • the output voltage V 1 of the first sensor 20A has a flat before and after the time T 3. This means that the second pressure exceeds the range of the resistance value that can be changed with respect to the pressure of the first sensor 20A. Therefore, the output voltage V 1 reflects the shape of the output voltage of the power supply unit 10.
  • the output voltage V 2 of the second sensor 20B is equal to the first value V 3. Also, at time T 4, the output voltage V 1 of the first sensor 20A, the first is greater than the value V 3 (the output voltages V 1> first value V 3). Therefore, the power supply circuit 32 outputs driving power.
  • Output voltage V 1 of the first sensor 20A is, and the time T 5 when we started to descend. This means that the second pressure has started to drop.
  • the output voltage V 1 of the first sensor 20A the first is greater than the value V 3 (the output voltages V 1> first value V 3).
  • the output voltage V 2 of the second sensor 20B the first is greater than the value V 3 (the output voltage V 1> first value V 3). Therefore, the power supply circuit 32 outputs driving power.
  • Output voltage V 1 of the first sensor 20A is a time falls below a first value V 3 and the time T 6.
  • the output voltage V 1 of the first sensor 20A the first below the value V 3 (the output voltages V 1 ⁇ the first value V 3).
  • the output voltage V 2 of the second sensor 20B the first is greater than the value V 3 (the output voltage V 2> first value V 3). Therefore, the power supply circuit 32 outputs drive power. In the case where the second sensor 20B and the power supply circuit 32 is not electrically connected, the power supply circuit 32 is stopped at time T 6.
  • Output voltage V 2 of the second sensor 20B is, to a time below a first value V 3 and the time T 7. At time T 7, the output voltage V1 of the first sensor 20A is almost zero. That is, the first sensor 20A is not applied with the first pressure. Further, the output voltage V 2 of the second sensor 20B is lower than the first value V 3 (output voltage V 2 ⁇ first value V 3 ). Therefore, the power supply circuit 32 stops.
  • Output voltage V 2 of the output voltages V 1 and the second sensor 20B of the first sensor 20A is a T 8 to time becomes substantially 0 time. That is, the first sensor 20A is not applied with the first pressure. Further, the second pressure is not applied to the second sensor 20B. At time T 8, the power supply circuit 32 is stopped.
  • the power supply circuit 32 may start to be activated by the voltage of the second electric signal.
  • the power supply circuit 32 the output voltage V 2 before the output voltages V 1 may be activated by reaching the first value V 3.
  • the controller 33F is driven by inputting driving power to the power supply terminal 33A. Therefore, the control unit 33F starts driving at time T 2. Then, the control unit 33F stops driving at time T 7. The controller 33F acquires the output voltage V1 of the first sensor 20A via the detector 33E. Further, the control unit 33F detects the voltage applied to the first signal input terminal 33B via the detection unit 33E.
  • the second sensor 20B is electrically connected in parallel to the first sensor 20A. Therefore, the control unit 33F is assumed voltage across the output voltages V 1 to the second sensor 20B. Further, the resistance value of the first resistor 30A is known. Therefore, the control unit 33F calculates the resistance value of the second sensor 20B from the voltage applied to the first signal input terminal 33B and the resistance value of the first resistor 30A.
  • the signal processing device 33 has data in which the relationship between the resistance value and pressure of each sensor is recorded. Therefore, the control unit 33F can detect the first pressure applied to the second sensor 20B from the data and the calculated resistance value.
  • the control unit 33F assumes that the output voltage V1 of the first sensor 20A is a voltage applied to the second sensor 20B. Therefore, the first sensor 20A may be a sensor that reaches the detection limit with a pressure smaller than that of the second sensor 20B. Thus, the first sensor 20A is in a state in which the output voltages V 1 reached a detection limit is stable is determined the resistance of the second sensor 20B not reached the detection limit.
  • the control unit 33F When the voltage applied to the second sensor 20B is known or when the control unit 33F can acquire the voltage applied to the second sensor 20B via the detection unit 33E, the control unit 33F The resistance value of the second sensor 20B may be calculated by calculating the voltage dividing ratio of the resistance value of the second sensor 20B to the resistance value of the first resistor 30A. That is, the controller 33F may not assume that the voltage applied to the first sensor 20A is the voltage applied to the second sensor 20B.
  • the control unit 33F outputs the output current values of the first sensor 20A, the first resistor 30A, and the second resistor 30B, and the first sensor 20A, the second sensor 20B, and the third sensor 20C.
  • the resistance values of the second sensor 20B and the third sensor 20C may be calculated from the output voltage value.
  • the first input voltage is applied to the first sensor 20A.
  • the first sensor 20A is applied with a second pressure. Then, the first sensor 20A outputs a control signal.
  • the voltage of the control signal is the first output voltage.
  • the power supply circuit 32 is activated when the voltage value of the control signal becomes equal to or higher than the first value. That is, the first sensor 20A functions as a switch.
  • the second input voltage is applied to the second sensor 20B.
  • the second sensor 20B is applied with the first pressure.
  • the second sensor 20B outputs a first electric signal.
  • the voltage of the first electric signal is the second output voltage.
  • the control unit 33F outputs a signal indicating the first pressure based on the voltage of the first electric signal. That is, the second sensor 20B functions as a sensor.
  • the resistance value of the first sensor 20A is the second value when the second pressure is applied and the first sensor 20A outputs a control signal and when the first pressure is equal to the second pressure.
  • the resistance value is preferably smaller than the resistance value of the sensor 20B.
  • the potential difference between the first input voltage and the first output voltage may be smaller than the potential difference between the second input voltage and the second output voltage.
  • the third sensor 20C is applied with a third input voltage. Further, the third pressure is applied to the third sensor 20C. Then, the third sensor 20C outputs a second electric signal. Here, the voltage of the second electric signal is the third output voltage. Further, the control unit 33F outputs a signal indicating the third pressure based on the voltage of the second electric signal. That is, the third sensor 20C functions as a sensor.
  • the resistance value of the first sensor 20A is the third resistance value when the second pressure is applied and the first sensor 20A outputs a control signal and when the first pressure is equal to the third pressure.
  • the resistance value is preferably smaller than the resistance value of the sensor 20C.
  • the potential difference between the first input voltage and the first output voltage may be smaller than the potential difference between the third input voltage and the third output voltage.
  • the area that receives the pressure of the first sensor 20A is preferably larger than the area that receives the pressure of the second sensor 20B. Therefore, the first sensor 20A can easily output the control signal. Therefore, the power supply circuit 32 can be started more stably.
  • the second sensor 20B functions as a sensor. Therefore, it is preferable that a certain relationship be established between the resistance value of the second sensor 20B and the first pressure. That is, it is preferable that there is reproducibility between the resistance value of the second sensor 20B and the first pressure. Such a relationship only needs to be established at least within the pressure range detectable by the sensor device 100.
  • the changing relationship including a continuous function such as a polynomial function, a fractional function, an exponential function, or a logarithmic function is between the resistance value of the second sensor 20B and the first pressure.
  • the controller 33F can easily calculate the first pressure.
  • the control unit 33F can calculate the first pressure more accurately. That is, the sensor device 100 can improve sensing accuracy.
  • the resistance value of the second sensor 20B may change intermittently with respect to the first pressure.
  • the relationship between the resistance value of the second sensor 20B and the second pressure may be a relationship like a step function.
  • the control unit 33F may record a pressure-resistance value table in the control unit 33F or the storage unit 33G, and approximate the resistance value or the first pressure of the second sensor 20B from the table.
  • the third sensor 20C functions as a sensor. Therefore, it is preferable that a certain relationship be established between the resistance value of the third sensor 20C and the third pressure. That is, it is preferable that there is reproducibility between the resistance value of the third sensor 20C and the third pressure. Such a relationship only needs to be established at least within the pressure range detectable by the sensor device 100.
  • the changing relationship including a continuous function such as a polynomial function, a fractional function, an exponential function, or a logarithmic function is between the resistance value of the third sensor 20C and the third pressure.
  • the controller 33F can easily calculate the third pressure.
  • the control unit 33F can calculate the third pressure more accurately. That is, the sensor device 100 can improve sensing accuracy.
  • the resistance value of the third sensor 20C may change intermittently with respect to the third pressure.
  • the relationship between the resistance value of the third sensor 20C and the third pressure may be a relationship like a step function.
  • the control unit 33F may record the pressure-resistance value table in the control unit 33F or the storage unit 33G, and approximate the resistance value or the third pressure of the third sensor 20C therefrom.
  • the first sensor 20A does not need to establish a relationship between the pressure and the resistance value unlike the second sensor 20B and the third sensor 20C. Therefore, a push switch or a membrane switch may be used for the first sensor 20A. Thereby, the first sensor 20A can improve conductivity, and can function as a switch more than when a pressure-sensitive sensor is used.
  • FIG. 3 is a simplified circuit diagram of the sensor device 101 according to a modification of the embodiment of the present invention.
  • the sensor device 100 is configured to calculate the first pressure and the third pressure by resistance partial pressure.
  • the sensor device 101 has a configuration in which the first pressure and the third pressure are calculated by a delay element.
  • the sensor device 101 differs from the sensor device 100 in that it includes a processing unit 31 and a ground 31C that is electrically connected to the processing unit 31.
  • the processing unit 31 includes a first delay element 31A and a second delay element 31B.
  • the first terminal of the first delay element 31A is electrically connected to a portion (wiring) between the second sensor 20B and the detection unit 33E (first signal input terminal 33B).
  • the second terminal of the first delay element 31A is electrically connected to the ground 31C.
  • the first delay element 31A is, for example, a capacitor having a known electric capacity.
  • the third terminal of the second delay element 31B is electrically connected to a portion (wiring) between the third sensor 20C and the detection unit 33E (second signal input terminal 33C).
  • the fourth terminal of the second delay element 31B is electrically connected to the ground 31C.
  • the second delay element 31B is, for example, a capacitor having a known electric capacity.
  • the detection unit 33E detects the voltage of the first electric signal and the voltage of the second electric signal.
  • the voltage of the first electric signal can be regarded as constant in a very short time by the first delay element 31A.
  • the voltage of the second electric signal can be regarded as constant in a minute time by the second delay element 31B. Therefore, the control unit 33F can calculate the resistance value of the first sensor 20A and the resistance value of the second sensor 20B. Thereby, the control part 33F calculates
  • the sensor built-in body 200 will be described with reference to FIG. FIG. 4 is a partial cross-sectional view of the sensor built-in body 200.
  • the sensor built-in body 200 includes a sensor device 100 and a storage unit 201.
  • the storage unit 201 incorporates the power supply unit 10 and the processing unit 30 shown in FIG.
  • the sensor built-in body 200 may incorporate the sensor device 101. Further, the storage unit 201 may store the power supply unit 10 and the processing unit 30 (processing unit 31) shown in FIGS. 1 and 3 separately.
  • Sensor built-in body 200 is, for example, a shoe.
  • the sensor built-in body 200 includes the sensor device 100 and the storage unit 201.
  • the sensor device 100 is stored in the storage unit 201.
  • the storage unit 201 may be provided, for example, in the insole, midsole, outer sole, or upper.
  • the sensor device 100 may be integrated with, for example, an insole, a midsole, an outer sole, and an upper.
  • the sensor unit 20 can accurately detect the pressure of the sole. Therefore, the sensor built-in body 200 can accurately provide information such as the user's walking posture and running posture.
  • the sensor device 100 may be provided at the sole portion. Thereby, the sensor device 100 can be replaced. Therefore, it is possible to suppress a decrease in sensor sensitivity of the sensor unit 20 due to a user's sweat, moisture, aging degradation, and the like. In addition, the user can continue to use the same shoes for a long time. For example, a company can collect the sensor device 100 by replacement. Therefore, the sensor device 100 can be regenerated and used.
  • the sensor unit 20 may be attached to the side or front of the shoe upper. Thereby, the sensor built-in body 200 can provide the user with information about where the ball is captured like soccer shoes. Thereby, it is possible to obtain information as to which part of the upper has caught the ball. Therefore, the user can search for a more effective play style.
  • the power generator 13 and the signal processing device 33 are provided on the shoe sole. Thereby, durability of the electric power generation body 13 and the signal processing apparatus 33 can be improved.
  • the sensor device 100 and the sensor device 101 can also be used for stuffed animals.
  • a storage part is formed on the back of the stuffed fabric.
  • the sensor apparatus 100 and the sensor apparatus 101 are accommodated in the storage part of a stuffed toy.
  • the sensor device 100 and the sensor device 101 can detect the degree of hugging as pressure. Then, the stuffed toy speaks according to the detected pressure, or transmits a stuffed toy response to the mobile terminal.
  • the sensor device of the present invention is effective when used for a sensor built-in body that requires battery replacement or charging.

Abstract

This sensor device has a power supply unit, a processing unit, and a sensor unit. The power supply unit supplies direct current power. The processing unit is electrically connected to the power supply unit. Between the power supply unit and the processing unit, the sensor unit is electrically connected to the power supply unit and the processing unit. The sensor unit outputs a control signal and a first electrical signal to the processing unit in the cases where first pressure is applied to the sensor unit. The control signal is a signal for controlling start-up or stopping of the processing unit. The first electrical signal is a signal generated on the basis of the first pressure.

Description

センサ装置と、センサ内蔵体Sensor device and sensor built-in body
 本発明は、ポータブルデバイスなどに用いる小型のセンサ装置とセンサ内蔵体に関する。 The present invention relates to a small sensor device used in a portable device or the like and a sensor built-in body.
 従来のセンサ装置は、電源部と、センサ部と、処理部とを有する。電源部は、センサ部と電気的に接続されている。処理部は、センサ部と電源部との間の部位(導線)と電気的に接続されている。電源部は、一定の電圧をセンサに印加する。センサ部は、圧力に応じて抵抗値を変化する。つまり、センサ部は、センサ部に加えられた圧力の変化を電位の変化に変換する。そして、処理部は、電位の変化を検出する。これにより、処理部は、センサに加えられた圧力を検出する。 The conventional sensor device has a power supply unit, a sensor unit, and a processing unit. The power supply unit is electrically connected to the sensor unit. The processing unit is electrically connected to a portion (conductive wire) between the sensor unit and the power supply unit. The power supply unit applies a constant voltage to the sensor. A sensor part changes resistance value according to pressure. That is, the sensor unit converts a change in pressure applied to the sensor unit into a change in potential. Then, the processing unit detects a change in potential. Accordingly, the processing unit detects the pressure applied to the sensor.
 このような従来のセンサ装置は、電源部からセンサ部へ電力を供給する回路と、処理部を駆動するための電力を電源部から処理部へ供給する回路とをさらに有する。また、センサ部と処理部とは別々の導線によって電気的に接続されている。 Such a conventional sensor device further includes a circuit for supplying power from the power supply unit to the sensor unit, and a circuit for supplying power for driving the processing unit from the power supply unit to the processing unit. Moreover, the sensor part and the process part are electrically connected by the separate conducting wire.
 なお、この出願の発明に関連する先行技術文献情報としては、例えば、特許文献1が知られている。 For example, Patent Document 1 is known as prior art document information related to the invention of this application.
特表2015-512674号公報JP-T-2015-512673
 電源部は、電源ON状態において、処理部を駆動するための電力を処理部に常に供給する。また、処理部は、半導体(IC)を有する。そのため、センサ部が圧力を検出していない場合でも、従来のセンサ装置は、待機電力やリーク電流などによって電力を消費する。 The power supply unit always supplies power for driving the processing unit to the processing unit in the power-on state. The processing unit includes a semiconductor (IC). Therefore, even when the sensor unit does not detect pressure, the conventional sensor device consumes power due to standby power, leakage current, and the like.
 そこで、本発明は、電力の消費を抑制するセンサ装置を提供する。特に、本発明は、センサが圧力を検出していない場合における電力の消費を抑制する。本発明のセンサ装置は、電源部と、センサ部と、処理部とを有する。電源部は、直流電力を供給する。センサ部は、電源部と電気的に接続されている。処理部は、センサ部と電気的に接続されている。 Therefore, the present invention provides a sensor device that suppresses power consumption. In particular, the present invention suppresses power consumption when the sensor does not detect pressure. The sensor device of the present invention includes a power supply unit, a sensor unit, and a processing unit. The power supply unit supplies DC power. The sensor unit is electrically connected to the power supply unit. The processing unit is electrically connected to the sensor unit.
 センサ部は、第1の圧力を加えられると、制御信号と、第1の電気信号とを処理部へ出力する。制御信号は、処理部の起動または停止を制御する。第1の電気信号は、第1の圧力に基づいて生成される。 When the first pressure is applied, the sensor unit outputs a control signal and a first electric signal to the processing unit. The control signal controls starting or stopping of the processing unit. The first electrical signal is generated based on the first pressure.
 これにより、本発明のセンサ装置は、センサ部が圧力を検出している場合に処理部を駆動する。そのため、本発明のセンサ装置は、センサが圧力を検出していない場合におけるリーク電流や待機電力などによる電力の消費を抑制できる。特に、本発明のセンサ装置は、処理部における電力の消費を抑制できる。 Thereby, the sensor device of the present invention drives the processing unit when the sensor unit detects pressure. Therefore, the sensor device of the present invention can suppress power consumption due to leakage current or standby power when the sensor does not detect pressure. In particular, the sensor device of the present invention can suppress power consumption in the processing unit.
本発明の実施の形態におけるセンサ装置の簡易回路図Simplified circuit diagram of the sensor device according to the embodiment of the present invention 本発明の実施の形態におけるセンサ装置のタイミング図Timing diagram of sensor device in embodiment of the present invention 本発明の実施の形態の変形例におけるセンサ装置の簡易回路図Simplified circuit diagram of a sensor device in a modification of the embodiment of the present invention センサ装置を内蔵したセンサ内蔵体の部分断面図Partial cross-sectional view of sensor built-in body with built-in sensor device
 実施形態の説明に先立って、センサ内蔵体の形態とセンサ内蔵体に用いられるセンサ装置の開発に対する市場の要求について説明する。 Prior to the description of the embodiment, the form of the sensor built-in body and the market demand for the development of the sensor device used for the sensor built-in body will be described.
 近年、健康への関心が高まっている。そして、人々は、ランニング、テニス、ヨガ、フィットネス、登山、スキー、スノーボード、ボルダリングなどのスポーツを楽しんでいる。また、人々は、スマートフォンやタブレット端末といった携帯情報端末を利用している。 In recent years, interest in health has increased. And people enjoy sports such as running, tennis, yoga, fitness, climbing, skiing, snowboarding and bouldering. In addition, people use portable information terminals such as smartphones and tablet terminals.
 そこで、企業は、携帯情報端末を用いて活動を記録したり、解析したりするサービスの提供を始めている。また、企業は、装着物にセンサ装置を内蔵したセンサ内蔵体の開発に活発に取り組んでいる。装着物は、たとえば、服、靴、時計、リストバンド、グローブ、帽子などである。 Therefore, companies are starting to provide services for recording and analyzing activities using portable information terminals. In addition, companies are actively working on the development of a sensor built-in body in which a sensor device is built in a wearing object. The wearing items are, for example, clothes, shoes, watches, wristbands, gloves, hats, and the like.
 たとえば、スマートシューズは、靴にセンサ装置を内蔵したセンサ内蔵体である。人々は、スマートシューズを使って、ウォーキングやランニングといった日常生活を記録や解析する。そして、人々は、歩行数、歩行距離、歩行時間、歩行姿勢、健康状態などの運動情報を得られる。 For example, a smart shoe is a sensor built-in body in which a sensor device is built in a shoe. People use smart shoes to record and analyze daily activities such as walking and running. Then, people can obtain exercise information such as the number of walks, walk distance, walk time, walk posture, and health status.
 このように、使用者は、日々の生活の中でセンサ内蔵体を多用する。そのため、使用者は、電池の交換や充電に多くの時間を費やさなければならなくなる。そして、使用者は、電池の交換や充電に対してわずらわしさを抱いてしまう。 In this way, users frequently use the sensor built-in body in their daily lives. Therefore, the user has to spend a lot of time for battery replacement and charging. And a user will have trouble with replacement | exchange and charge of a battery.
 そこで、人々は、電池の交換や充電の頻度を減らしたセンサ内蔵体の開発を強く求めている。言い換えれば、人々は、電池の交換や充電の頻度を減らしたセンサ装置の開発を強く求めている。 Therefore, people are strongly demanding the development of a sensor built-in body that reduces the frequency of battery replacement and charging. In other words, people are eager to develop sensor devices that reduce the frequency of battery replacement and charging.
 そこで、本発明は、電力の消費を抑制するセンサ装置を提供する。特に、本発明のセンサ装置は、センサ部が圧力を検出していない場合における処理部での電力の消費を抑制する。 Therefore, the present invention provides a sensor device that suppresses power consumption. In particular, the sensor device of the present invention suppresses power consumption in the processing unit when the sensor unit does not detect pressure.
 図1を参照して、本発明の実施の形態におけるセンサ装置100を説明する。図1は、センサ装置100の簡易回路図である。 With reference to FIG. 1, a sensor device 100 according to an embodiment of the present invention will be described. FIG. 1 is a simplified circuit diagram of the sensor device 100.
 「電気的に接続」という用語を実施の形態の説明に用いる。「電気的に接続」は、電子回路を構成していることを意味する。つまり、電子部品は、当該電子部品と電気的に接続されている電子部品との間で、電気信号を出力でき、あるいは電気信号を入力でき、あるいは電力を供給できる。そのため、「電気的に接続」は、たとえば、誘電作用によって対向する2つのコイルが接続されている構成をも含む。 The term “electrically connected” is used to describe the embodiment. “Electrically connected” means that an electronic circuit is configured. That is, the electronic component can output an electric signal, input an electric signal, or supply electric power between the electronic component and an electronic component electrically connected to the electronic component. Therefore, “electrically connected” includes, for example, a configuration in which two opposing coils are connected by dielectric action.
 また、「電子部品Aと電子部品Bとが電気的に接続されている」は、電子部品Aから電子部品Bまでに電気信号や電力が至る過程において電子部品Cを介していてもよい。たとえば、「電池と負荷とが電気的に接続されている」とは、トランジスタ、電界効果トランジスタ、ダイオード、スイッチ、コンバータ、抵抗器、コンデンサ、アンプ、フィルタなどの電子部品を介して電池から負荷へと至る回路をも含む。 Also, “the electronic component A and the electronic component B are electrically connected” may be via the electronic component C in the process of an electrical signal or power from the electronic component A to the electronic component B. For example, “the battery and the load are electrically connected” means that the battery is connected to the load via electronic components such as transistors, field effect transistors, diodes, switches, converters, resistors, capacitors, amplifiers, and filters. Including the circuit that leads to.
 センサ装置100は、電源部10と、センサ部20と、処理部30とを有する。電源部10は、センサ部20と処理部30とに直流電力を供給する。センサ部20は、電源部10と電気的に接続されている。また、処理部30は、センサ部20と電気的に接続されている。 The sensor device 100 includes a power supply unit 10, a sensor unit 20, and a processing unit 30. The power supply unit 10 supplies DC power to the sensor unit 20 and the processing unit 30. The sensor unit 20 is electrically connected to the power supply unit 10. The processing unit 30 is electrically connected to the sensor unit 20.
 センサ部20は、第1の圧力を受ける構造を有する。あるいは、センサ部20は、第1の圧力を受ける位置に配置されている。また、センサ部20の抵抗値は、第1の圧力によって変化する。具体的には、センサ部20の抵抗値は、第1の圧力の増加によって減少する。逆に、センサ部20の抵抗値は、第1の圧力の減少によって増加する。 The sensor unit 20 has a structure for receiving the first pressure. Or the sensor part 20 is arrange | positioned in the position which receives a 1st pressure. Further, the resistance value of the sensor unit 20 varies depending on the first pressure. Specifically, the resistance value of the sensor unit 20 decreases as the first pressure increases. On the contrary, the resistance value of the sensor unit 20 increases as the first pressure decreases.
 そして、センサ部20は、第1の圧力を加えられて第1の電気信号を処理部30へ出力する。第1の電気信号は、第1の圧力に基づいてセンサ部20で生成される。第1の電気信号の電圧は、センサ部20の抵抗値が減少すれば増加する。つまり、第1の電気信号の電圧は、第1の圧力の増加によって増加する。また、第1の電気信号の電圧は、センサ部20の抵抗値が増大すれば低下する。つまり、第1の電気信号の電圧は、第1の圧力の減少によって低下する。このようにして、センサ部20は、第1の圧力に基づいた第1の電気信号をセンサ部20に供給される電力から生成する。 Then, the sensor unit 20 is applied with the first pressure and outputs the first electric signal to the processing unit 30. The first electrical signal is generated by the sensor unit 20 based on the first pressure. The voltage of the first electric signal increases as the resistance value of the sensor unit 20 decreases. That is, the voltage of the first electric signal increases as the first pressure increases. Further, the voltage of the first electric signal decreases as the resistance value of the sensor unit 20 increases. That is, the voltage of the first electric signal is lowered by the decrease in the first pressure. In this way, the sensor unit 20 generates a first electrical signal based on the first pressure from the electric power supplied to the sensor unit 20.
 さらに、センサ部20は、制御信号を出力する。制御信号は、処理部30の起動または停止を制御する。制御信号の電圧は、センサ部20の抵抗値が減少すれば増加する。また、制御信号の電圧は、センサ部20の抵抗値が増大すれば低下する。 Furthermore, the sensor unit 20 outputs a control signal. The control signal controls the start or stop of the processing unit 30. The voltage of the control signal increases as the resistance value of the sensor unit 20 decreases. Further, the voltage of the control signal decreases as the resistance value of the sensor unit 20 increases.
 処理部30は、制御信号の電圧値が第1の値以上となった場合に起動する。また、処理部30は、制御信号の電圧値が第2の値を下回った場合に停止する。処理部30は、起動すると第1の電気信号を解析する。そして、処理部30は、第1の電気信号に基づいて第1の圧力を求める。 The processing unit 30 is activated when the voltage value of the control signal becomes equal to or higher than the first value. In addition, the processing unit 30 stops when the voltage value of the control signal falls below the second value. When activated, the processing unit 30 analyzes the first electrical signal. Then, the processing unit 30 obtains the first pressure based on the first electric signal.
 なお、処理部30は、制御信号の電圧値が第1の値を上回った場合に起動し、制御信号の電圧値が第2の値以下となった場合に停止してもよい。また、第1の値と第2の値とは、同じ値であってもよく、異なる値であってもよい。第1の値と第2の値とが同じ場合、処理部30は、制御信号の電圧が第1の値を上回った場合に起動し、制御信号の電圧が第2の値を下回った場合に停止してもよい。一方、第1の値と第2の値とが異なる場合、処理部30は、制御信号の電圧が第1の値以上の場合に起動し、制御信号の電圧が第2の値以下の場合に停止してもよい。 Note that the processing unit 30 may be activated when the voltage value of the control signal exceeds the first value, and may be stopped when the voltage value of the control signal becomes equal to or less than the second value. Further, the first value and the second value may be the same value or different values. When the first value and the second value are the same, the processing unit 30 starts when the voltage of the control signal exceeds the first value, and when the voltage of the control signal falls below the second value. You may stop. On the other hand, when the first value and the second value are different, the processing unit 30 starts when the voltage of the control signal is equal to or higher than the first value, and when the voltage of the control signal is equal to or lower than the second value. You may stop.
 このようにセンサ部20は、第1の圧力を検出する機能と、処理部30のスイッチとしての機能とを有する。そのため、センサ部20がセンシングしていない場合は、処理部30と電源部10との間は電気的にほぼ遮断される。 Thus, the sensor unit 20 has a function of detecting the first pressure and a function as a switch of the processing unit 30. Therefore, when the sensor unit 20 is not sensing, the processing unit 30 and the power supply unit 10 are substantially electrically disconnected.
 これにより、センサ装置100は、処理部30からのリーク電流や待機電力などによる電力の消費を抑制できる。特に、センサ装置100は、センサ部20が圧力を検出していない場合における処理部30での電力の消費を抑制できる。 Thereby, the sensor device 100 can suppress power consumption due to leakage current from the processing unit 30, standby power, or the like. In particular, the sensor device 100 can suppress power consumption in the processing unit 30 when the sensor unit 20 does not detect pressure.
 図1を参照しながら、センサ装置100について詳細に説明する。センサ装置100は、電源部10と、センサ部20と、処理部30と、グランド17Aとを有する。詳細は後述するが、処理部30は、電源回路32と、信号処理装置33とを有する。信号処理装置33は、電源端子33Aと、第1の信号入力端子33Bと、第2の信号入力端子33Cと、第3の信号入力端子33Dとを有する。 The sensor device 100 will be described in detail with reference to FIG. The sensor device 100 includes a power supply unit 10, a sensor unit 20, a processing unit 30, and a ground 17A. As will be described in detail later, the processing unit 30 includes a power supply circuit 32 and a signal processing device 33. The signal processing device 33 includes a power supply terminal 33A, a first signal input terminal 33B, a second signal input terminal 33C, and a third signal input terminal 33D.
 (電源部10)
 電源部10は、発電体13と、整流回路15と、蓄電素子17とを有する。発電体13は、交流電力を発生する。発電体13は、たとえば、振動発電素子や電磁誘導を用いた発電器などを用いるとよい。なお、振動発電素子は、たとえば、力学歪みや磁気歪みなどによって電力を発生させる。電磁誘導を用いた発電器は、たとえば、モータなどである。
(Power supply unit 10)
The power supply unit 10 includes a power generator 13, a rectifier circuit 15, and a power storage element 17. The power generator 13 generates AC power. As the power generation body 13, for example, a vibration power generation element or a power generator using electromagnetic induction may be used. Note that the vibration power generation element generates power by, for example, mechanical strain or magnetic strain. The generator using electromagnetic induction is, for example, a motor.
 整流回路15の第1端子は、発電体13と電気的に接続されている。また、整流回路15の第2端子は、第1のセンサ20A(後述)と電気的に接続されている。そして、整流回路15は、第1端子に入力される交流電力を直流電力に変換して第2端子から出力する。 The first terminal of the rectifier circuit 15 is electrically connected to the power generator 13. The second terminal of the rectifier circuit 15 is electrically connected to a first sensor 20A (described later). The rectifier circuit 15 converts AC power input to the first terminal into DC power and outputs the DC power from the second terminal.
 なお、整流回路15の整流方法は、交流から直流への変換効率のよい全波型を用いるとよい。しかしながら、整流回路15の整流方法は、半波型でもよい。 Note that the rectification method of the rectifier circuit 15 may be a full-wave type with good conversion efficiency from AC to DC. However, the rectification method of the rectifier circuit 15 may be a half-wave type.
 蓄電素子17の第1端子は、整流回路の第2端子と第1のセンサ20Aとの間の部位と電気的に接続されている。蓄電素子17の第2端子は、グランド17Aと電気的に接続されている。これにより、蓄電素子17は、直流電力を蓄電できる。蓄電素子17は、たとえばコンデンサを含むとよい。 The first terminal of the electricity storage element 17 is electrically connected to a portion between the second terminal of the rectifier circuit and the first sensor 20A. The second terminal of the electricity storage element 17 is electrically connected to the ground 17A. Thereby, the electrical storage element 17 can store DC power. The power storage element 17 may include a capacitor, for example.
 これにより、電源部10は、発電した電力を一時的に溜め込める。そのため、電源部10は、発電体13による発電が停止した場合でもセンサ部20へ電力を供給できる。なお、蓄電素子17は、必須の構成ではない。 Thereby, the power supply unit 10 can temporarily store the generated power. Therefore, the power supply unit 10 can supply power to the sensor unit 20 even when power generation by the power generation body 13 is stopped. In addition, the electrical storage element 17 is not an essential structure.
 なお、発電体13は、直流電力を発生してもよい。たとえば、発電体13は、熱電変換素子や光電変換素子であってもよい。この場合、電源部10は、整流回路15を省ける。 It should be noted that the power generator 13 may generate DC power. For example, the power generation body 13 may be a thermoelectric conversion element or a photoelectric conversion element. In this case, the power supply unit 10 can omit the rectifier circuit 15.
 なお、電源部10は、発電体13のみで構成してもよい。これにより、センサ装置100は、自己の駆動に必要な電力を、センサ装置100内で賄える。したがって、センサ装置100は、電池交換が不要となる。 In addition, the power supply unit 10 may be configured by only the power generator 13. As a result, the sensor device 100 can supply the electric power necessary for its own driving within the sensor device 100. Therefore, the sensor device 100 does not require battery replacement.
 なお、電源部10は、発電体13の代わりにバッテリーを用いてもよい。バッテリーは、たとえば、一次電池や二次電池などである。これにより、電源部10は、整流回路15や蓄電素子17を省ける。 The power supply unit 10 may use a battery instead of the power generator 13. The battery is, for example, a primary battery or a secondary battery. As a result, the power supply unit 10 can omit the rectifier circuit 15 and the storage element 17.
 なお、電源部10は、発電体13とバッテリーとを有してもよい。これにより、バッテリーの放電時間を延長できる。また、発電体13が処理部30の起動に充分な電力を有さない場合は、バッテリーによって処理部30を起動できる。 The power supply unit 10 may include a power generator 13 and a battery. Thereby, the discharge time of the battery can be extended. Further, when the power generator 13 does not have sufficient power for starting the processing unit 30, the processing unit 30 can be started by a battery.
 (センサ部20)
 センサ部20は、第1のセンサ20Aと、第2のセンサ20Bと、第3のセンサ20Cとを有する。第1のセンサ20Aは、制御信号を出力する。第2のセンサ20Bは、第1の電気信号を出力する。第3のセンサ20Cは、第2の電気信号を出力する。
(Sensor unit 20)
The sensor unit 20 includes a first sensor 20A, a second sensor 20B, and a third sensor 20C. The first sensor 20A outputs a control signal. The second sensor 20B outputs a first electrical signal. The third sensor 20C outputs a second electrical signal.
 なお、センサ部20は、第2のセンサ20Bや第3のセンサ20Cを必須の構成としない。たとえば、センサ部20は、第1のセンサ20Aのみを有してもよい。また、センサ部20は、第1のセンサ20Aの他に3つ以上のセンサを有してもよい。 In addition, the sensor unit 20 does not have the second sensor 20B or the third sensor 20C as an essential configuration. For example, the sensor unit 20 may include only the first sensor 20A. The sensor unit 20 may have three or more sensors in addition to the first sensor 20A.
 第1のセンサ20Aと、第2のセンサ20Bと、第3のセンサ20Cとは、感圧センサである。感圧センサの抵抗値は、加えられた圧力に応じて変化する。具体的には、感圧センサの抵抗値は、加えられた圧力の増加によって減少する。また、感圧センサの抵抗値は、加えられた圧力の減少によって増加する。感圧センサは、感圧導電性部材を有する。感圧導電性部材は、たとえば、感圧導電性ゴム、感圧導電性フィルム、感圧導電性金属薄膜などである。 The first sensor 20A, the second sensor 20B, and the third sensor 20C are pressure-sensitive sensors. The resistance value of the pressure-sensitive sensor changes according to the applied pressure. Specifically, the resistance value of the pressure sensor decreases as the applied pressure increases. In addition, the resistance value of the pressure sensor increases as the applied pressure decreases. The pressure sensitive sensor has a pressure sensitive conductive member. Examples of the pressure-sensitive conductive member include a pressure-sensitive conductive rubber, a pressure-sensitive conductive film, and a pressure-sensitive conductive metal thin film.
 感圧導電性部材は、センシング精度やセンサ装置100を用いる環境によって適宜選択するとよい。たとえば、精度のよいセンシングが求められる場合は感圧導電性薄膜を、屈曲性や耐久性を求められる場合は感圧導電性ゴムを感圧導電性部材として選択するとよい。 The pressure-sensitive conductive member may be appropriately selected depending on the sensing accuracy and the environment in which the sensor device 100 is used. For example, a pressure-sensitive conductive thin film may be selected as the pressure-sensitive conductive member when pressure-sensitive conductive thin film is required, and pressure-sensitive conductive rubber is selected when flexibility or durability is required.
 第1のセンサ20Aは、整流回路15と電気的に接続されている。また、第1のセンサ20Aは、電源回路32と電気的に接続されている。さらに、第1のセンサ20Aは、第3の信号入力端子33Dと電気的に接続されている。また、第1のセンサ20Aは、第2の圧力を受ける構造を有する。あるいは、第1のセンサ20Aは、第2の圧力を受ける位置に配置されている。 The first sensor 20A is electrically connected to the rectifier circuit 15. The first sensor 20A is electrically connected to the power supply circuit 32. Further, the first sensor 20A is electrically connected to the third signal input terminal 33D. The first sensor 20A has a structure that receives the second pressure. Alternatively, the first sensor 20A is disposed at a position that receives the second pressure.
 第1のセンサ20Aの抵抗値は、第2の圧力によって変化する。具体的には、第1のセンサ20Aの抵抗値は、第2の圧力の増加によって減少する。逆に、第1のセンサ20Aの抵抗値は、第2の圧力の減少によって増加する。そして、第1のセンサ20Aは、第2の圧力を加えられて制御信号を電源回路32へ出力する。 The resistance value of the first sensor 20A varies depending on the second pressure. Specifically, the resistance value of the first sensor 20A decreases as the second pressure increases. Conversely, the resistance value of the first sensor 20A increases as the second pressure decreases. Then, the first sensor 20 </ b> A is applied with the second pressure and outputs a control signal to the power supply circuit 32.
 制御信号は、第2の圧力に基づいて第1のセンサ20Aで生成される。制御信号の電圧は、第1のセンサ20Aの抵抗値が減少すれば増加する。つまり、制御信号の電圧は、第2の圧力の増加によって増加する。また、制御信号の電圧は、第1のセンサ20Aの抵抗値が増加すれば低下する。つまり、制御信号の電圧は、第2の圧力の減少によって低下する。このようにして、第1のセンサ20Aは、第2の圧力に基づいた制御信号を第1のセンサ20Aに供給される電力から生成する。 The control signal is generated by the first sensor 20A based on the second pressure. The voltage of the control signal increases as the resistance value of the first sensor 20A decreases. That is, the voltage of the control signal increases as the second pressure increases. In addition, the voltage of the control signal decreases as the resistance value of the first sensor 20A increases. That is, the voltage of the control signal is lowered by the decrease in the second pressure. In this way, the first sensor 20A generates a control signal based on the second pressure from the electric power supplied to the first sensor 20A.
 なお、第1のセンサ20Aと第3の信号入力端子33Dとの電気的な接続は必須でない。また、制御信号の電圧は、第2の圧力に基づいていなくてもよい。そのため、たとえば、第1のセンサ20Aは、プッシュスイッチやメンブレンスイッチを用いてもよい。 Note that the electrical connection between the first sensor 20A and the third signal input terminal 33D is not essential. Further, the voltage of the control signal may not be based on the second pressure. Therefore, for example, the first sensor 20A may use a push switch or a membrane switch.
 第2のセンサ20Bは、整流回路15と電気的に接続されている。また、第2のセンサ20Bは、第1の信号入力端子33Bと電気的に接続されている。さらに、第2のセンサ20Bは、電源回路32と電気的に接続されている。また、第2のセンサ20Bは、第1の圧力を受ける構造を有する。あるいは、第2のセンサ20Bは、第1の圧力を受ける位置に配置されている。 The second sensor 20B is electrically connected to the rectifier circuit 15. The second sensor 20B is electrically connected to the first signal input terminal 33B. Further, the second sensor 20B is electrically connected to the power supply circuit 32. The second sensor 20B has a structure that receives the first pressure. Alternatively, the second sensor 20B is disposed at a position that receives the first pressure.
 第2のセンサ20Bの抵抗値は、第1の圧力によって変化する。具体的には、第2のセンサ20Bの抵抗値は、第1の圧力の増加によって減少する。逆に、第2のセンサ20Bの抵抗値は、第1の圧力の減少によって増加する。 The resistance value of the second sensor 20B varies depending on the first pressure. Specifically, the resistance value of the second sensor 20B decreases as the first pressure increases. Conversely, the resistance value of the second sensor 20B increases with a decrease in the first pressure.
 第1の電気信号は、第1の圧力に基づいて第2のセンサ20Bで生成される。第1の電気信号の電圧は、第2のセンサ20Bの抵抗値が減少すれば増加する。つまり、第1の電気信号の電圧は、第1の圧力の増加によって増加する。また、第1の電気信号の電圧は、第2のセンサ20Bの抵抗値が増加すれば低下する。つまり、第1の電気信号の電圧は、第1の圧力の減少によって低下する。このようにして、第2のセンサ20Bは、第1の圧力に基づいた第1の電気信号を第2のセンサ20Bに供給される電力から生成する。 The first electric signal is generated by the second sensor 20B based on the first pressure. The voltage of the first electric signal increases as the resistance value of the second sensor 20B decreases. That is, the voltage of the first electric signal increases as the first pressure increases. In addition, the voltage of the first electrical signal decreases as the resistance value of the second sensor 20B increases. That is, the voltage of the first electric signal is lowered by the decrease in the first pressure. In this way, the second sensor 20B generates a first electrical signal based on the first pressure from the electric power supplied to the second sensor 20B.
 なお、第2のセンサ20Bと整流回路15との電気的な接続は必須でない。たとえば、第2のセンサ20Bは、交流電力を入力されてもよい。この場合、第1の電気信号は交流となる。そのため、センサ装置100は、第1の信号入力端子33Bに第1の電気信号が入力されるまでの過程に第1の電気信号を整流する構成を有するとよい。また、第2のセンサ20Bと電源回路32との電気的な接続は必須でない。 Note that the electrical connection between the second sensor 20B and the rectifier circuit 15 is not essential. For example, AC power may be input to the second sensor 20B. In this case, the first electric signal is an alternating current. Therefore, the sensor device 100 may have a configuration that rectifies the first electric signal in the process until the first electric signal is input to the first signal input terminal 33B. Further, the electrical connection between the second sensor 20B and the power supply circuit 32 is not essential.
 第3のセンサ20Cは、整流回路15と電気的に接続されている。また、第3のセンサ20Cは、第2の信号入力端子33Cと電気的に接続されている。さらに、第3のセンサ20Cは、電源回路32と電気的に接続されている。また、第3のセンサ20Cは、第3の圧力を受ける構造を有する。あるいは、第3のセンサ20Cは、第3の圧力を受ける位置に配置されている。 The third sensor 20C is electrically connected to the rectifier circuit 15. The third sensor 20C is electrically connected to the second signal input terminal 33C. Further, the third sensor 20 </ b> C is electrically connected to the power supply circuit 32. The third sensor 20C has a structure that receives the third pressure. Or the 3rd sensor 20C is arranged in the position which receives the 3rd pressure.
 第3のセンサ20Cの抵抗値は、第3の圧力によって変化する。具体的には、第3のセンサ20Cの抵抗値は、第3の圧力の増加によって減少する。逆に、第3のセンサ20Cの抵抗値は、第3の圧力の減少によって増加する。そして、第3のセンサ20Cは、第3の圧力を加えられて第2の電気信号を第2の信号入力端子33Cへ出力する。 The resistance value of the third sensor 20C varies with the third pressure. Specifically, the resistance value of the third sensor 20C decreases as the third pressure increases. Conversely, the resistance value of the third sensor 20C increases as the third pressure decreases. The third sensor 20C receives the third pressure and outputs the second electric signal to the second signal input terminal 33C.
 第2の電気信号は、第3の圧力に基づいて第3のセンサ20Cで生成される。第2の電気信号の電圧は、第3のセンサ20Cの抵抗値が減少すれば増加する。つまり、第2の電気信号の電圧は、第3の圧力の増加によって増加する。また、第2の電気信号の電圧は、第3のセンサ20Cの抵抗値が増加すれば低下する。つまり、第2の電気信号の電圧は、第3の圧力の減少によって低下する。このようにして、第3のセンサ20Cは、第3の圧力に基づいた第3の電気信号を第3のセンサ20Cに供給される電力から生成する。 The second electric signal is generated by the third sensor 20C based on the third pressure. The voltage of the second electric signal increases as the resistance value of the third sensor 20C decreases. That is, the voltage of the second electric signal increases with the increase in the third pressure. In addition, the voltage of the second electric signal decreases as the resistance value of the third sensor 20C increases. That is, the voltage of the second electric signal is lowered by the decrease in the third pressure. In this way, the third sensor 20C generates a third electrical signal based on the third pressure from the electric power supplied to the third sensor 20C.
 なお、第3のセンサ20Cと整流回路15との電気的な接続は必須でない。たとえば、第3のセンサ20Cは、交流電力を入力されてもよい。この場合、第2の電気信号は、交流となる。そのため、センサ装置100は、第2の信号入力端子33Cに第2の電気信号が入力されるまでの過程で第2の電気信号を整流する構成を有するとよい。また、第3のセンサ20Cと電源回路32との電気的な接続は必須でない。 Note that the electrical connection between the third sensor 20C and the rectifier circuit 15 is not essential. For example, AC power may be input to the third sensor 20C. In this case, the second electric signal is an alternating current. Therefore, the sensor device 100 may have a configuration that rectifies the second electric signal in the process until the second electric signal is input to the second signal input terminal 33C. Further, the electrical connection between the third sensor 20C and the power supply circuit 32 is not essential.
 (処理部30)
 処理部30は、電源回路32と、第1の抵抗器30Aと、第2の抵抗器30Bと、信号処理装置33とを有する。そして、信号処理装置33は、分圧回路によって第2のセンサ20Bおよび第3のセンサ20Cの抵抗値を測定する。
(Processing unit 30)
The processing unit 30 includes a power circuit 32, a first resistor 30 </ b> A, a second resistor 30 </ b> B, and a signal processing device 33. Then, the signal processing device 33 measures the resistance values of the second sensor 20B and the third sensor 20C using a voltage dividing circuit.
 電源回路32は、第1のセンサ20Aと電気的に接続されている。また、電源回路32は、電源端子33Aと電気的に接続されている。電源回路32には、第1のセンサ20Aから制御信号が入力される。電源回路32は、起動するか否かを判断する閾値としての第1の値を有する。制御信号の電圧値が第1の値を上回る場合に、電源回路32は起動する。そして、電源回路32は、制御信号を駆動電力に変換して信号処理装置33へ出力する。ここで、駆動電力の電圧(電源回路32の出力電圧)は、制御信号の電圧よりも高い。また、電源回路32は、停止するか否かを判断する閾値としての第2の値を有する。そして、制御信号の電圧値が第2の値を下回る場合に、電源回路32は停止する。 The power supply circuit 32 is electrically connected to the first sensor 20A. The power circuit 32 is electrically connected to the power terminal 33A. A control signal is input to the power supply circuit 32 from the first sensor 20A. The power supply circuit 32 has a first value as a threshold value for determining whether to start. When the voltage value of the control signal exceeds the first value, the power supply circuit 32 is activated. The power supply circuit 32 converts the control signal into drive power and outputs the drive power to the signal processing device 33. Here, the voltage of the driving power (the output voltage of the power supply circuit 32) is higher than the voltage of the control signal. The power supply circuit 32 has a second value as a threshold value for determining whether to stop. Then, when the voltage value of the control signal is lower than the second value, the power supply circuit 32 stops.
 なお、制御信号の電圧値が第1の値以上となる場合に、電源回路32は起動してもよい。また、制御信号の電圧値が第2の値以下となる場合に、電源回路32は停止してもよい。また、第1の値と第2の値とは同値であってもよい。この場合、電源回路32は、制御信号の電圧値が第1の値(=第2の値)以上の場合に起動し、制御信号の電圧値が第2の値(=第1の値)を下回る場合に停止するとよい。あるいは、電源回路32は、制御信号の電圧値が第1の値(=第2の値)を上回る場合に起動し、制御信号の電圧値が第2の値(=第1の値)以下の場合に停止するとよい。このように第1の値と第2の値とが同値である場合、起動のための値(第1の値)と停止のための値(第2の値)とが、それぞれ独立に設定されていることを意味しない。言い換えれば、第1の値と第2の値とは、ただひとつの閾値として設定されていてもよい。 Note that the power supply circuit 32 may be activated when the voltage value of the control signal is equal to or higher than the first value. Further, the power supply circuit 32 may be stopped when the voltage value of the control signal is equal to or less than the second value. Further, the first value and the second value may be the same value. In this case, the power supply circuit 32 is activated when the voltage value of the control signal is equal to or higher than the first value (= second value), and the voltage value of the control signal becomes the second value (= first value). It is better to stop when below. Alternatively, the power supply circuit 32 is activated when the voltage value of the control signal exceeds the first value (= second value), and the voltage value of the control signal is equal to or less than the second value (= first value). If you want to stop. In this way, when the first value and the second value are the same value, the value for starting (first value) and the value for stopping (second value) are set independently. Does not mean that In other words, the first value and the second value may be set as a single threshold value.
 さらに、電源回路32は、第2のセンサ20Bおよび第3のセンサ20Cと電気的に接続されている。電源回路32には、第1の電気信号や第2の電気信号が入力される。そのため、第1の電気信号や第2の電気信号の電圧値が第1の値を上回る場合であっても、電源回路32は起動する。そして、電源回路32は、第1の電気信号や第2の電気信号を駆動電力に変換して出力する。ここで、駆動電力の電圧(電源回路32の出力電圧)は、第1の電気信号や第2の電気信号の電圧よりも高い。また、第1の電気信号や第2の電気信号の電圧値が、第2の値を下回る場合に、電源回路32は停止する。 Furthermore, the power supply circuit 32 is electrically connected to the second sensor 20B and the third sensor 20C. The power supply circuit 32 receives the first electric signal and the second electric signal. Therefore, even when the voltage value of the first electric signal or the second electric signal exceeds the first value, the power supply circuit 32 is activated. The power supply circuit 32 converts the first electric signal and the second electric signal into driving power and outputs the driving power. Here, the voltage of the driving power (the output voltage of the power supply circuit 32) is higher than the voltages of the first electric signal and the second electric signal. Further, when the voltage value of the first electric signal or the second electric signal is lower than the second value, the power supply circuit 32 stops.
 なお、第1の電気信号や第2の電気信号の電圧値が第1の値以上となる場合に、電源回路32は起動してもよい。また、第1の電気信号や第2の電気信号の電圧値が第2の値以下となる場合に、電源回路32は停止してもよい。また、第1の値と第2の値とは同値であってもよい。この場合、電源回路32は、第1の電気信号や第2の電気信号の電圧値が第1の値(=第2の値)以上の場合に起動し、第1の電気信号や第2の電気信号の電圧値が第2の値(=第1の値)を下回る場合に停止するとよい。または、第1の電気信号や第2の電気信号の電圧値が第1の値(=第2の値)を上回る場合に起動し、第1の電気信号や第2の電気信号の電圧値が第2の値(=第1の値)以下の場合に停止するとよい。このように第1の値と第2の値とが同値である場合、起動のための値(第1の値)と停止のための値(第2の値)とが、それぞれ独立に設定されていることを意味しない。言い換えれば、第1の値と第2の値とは、ただひとつの閾値として設定されていてもよい。 The power supply circuit 32 may be activated when the voltage value of the first electric signal or the second electric signal is equal to or higher than the first value. Further, the power supply circuit 32 may be stopped when the voltage value of the first electric signal or the second electric signal is equal to or lower than the second value. Further, the first value and the second value may be the same value. In this case, the power supply circuit 32 is activated when the voltage value of the first electric signal or the second electric signal is equal to or higher than the first value (= second value), and the first electric signal or the second electric signal It may be stopped when the voltage value of the electric signal is lower than the second value (= first value). Or, when the voltage value of the first electric signal or the second electric signal exceeds the first value (= second value), the voltage value of the first electric signal or the second electric signal is increased. It is good to stop when it is equal to or less than the second value (= first value). In this way, when the first value and the second value are the same value, the value for starting (first value) and the value for stopping (second value) are set independently. Does not mean that In other words, the first value and the second value may be set as a single threshold value.
 電源回路32は、昇圧式コンバータや、降圧式コンバータや、昇降圧式コンバータなどである。また、電源回路32は、たとえば、DC/DC(Direct Current/Direct Current)コンバータや、AC/DC(Alternating Current/Direct Current)コンバータなどである。 The power supply circuit 32 is a step-up converter, a step-down converter, a buck-boost converter, or the like. The power supply circuit 32 is, for example, a DC / DC (Direct Current / Direct Current) converter, an AC / DC (Alternating Current / Direct Current) converter, or the like.
 また、電源回路32は、IC(Integrated Circuit)を有する。そして、第1の値や第2の値は、ICに記憶されている。また、電源回路32は、内部にダイオード(図示せず)を含んでいるとよい。これにより、電源回路32は、第1のセンサ20Aから第2のセンサ20Bや第3のセンサ20Cへの電流の流れ、第2のセンサ20Bから第1のセンサ20Aや第3のセンサ20Cへの電流の流れ、第3のセンサ20Cから第1のセンサ20Aや第3のセンサ20Cへの電流の流れを抑制できる。 Further, the power supply circuit 32 has an IC (Integrated Circuit). The first value and the second value are stored in the IC. The power supply circuit 32 may include a diode (not shown) inside. As a result, the power supply circuit 32 causes the current flow from the first sensor 20A to the second sensor 20B or the third sensor 20C, and from the second sensor 20B to the first sensor 20A or the third sensor 20C. The flow of current and the flow of current from the third sensor 20C to the first sensor 20A and the third sensor 20C can be suppressed.
 なお、駆動電力の電圧(電源回路32の出力電圧)は、信号処理装置33の駆動に適した電圧であるとよい。そのため、駆動電力の電圧(電源回路32の出力電圧)は、制御信号や第1の電気信号や第2の電気信号の電圧よりも低くてもよい。また、駆動電力の電圧(電源回路32の出力電圧)は、制御信号や第1の電気信号や第2の電気信号の電圧と同じであってもよい。また、電源回路32と第2のセンサ20Bとの電気的な接続や電源回路32と第3のセンサ20Cとの電気的な接続は必須でない。 The driving power voltage (output voltage of the power supply circuit 32) is preferably a voltage suitable for driving the signal processing device 33. For this reason, the voltage of the driving power (the output voltage of the power supply circuit 32) may be lower than the voltage of the control signal, the first electric signal, or the second electric signal. The voltage of the driving power (the output voltage of the power supply circuit 32) may be the same as the voltage of the control signal, the first electric signal, or the second electric signal. Further, electrical connection between the power supply circuit 32 and the second sensor 20B and electrical connection between the power supply circuit 32 and the third sensor 20C are not essential.
 なお、電源回路32は、たとえば電界効果トランジスタなどのスイッチング素子をさらに有していてもよい。そして、電源回路32は、制御信号や第1の電気信号や第2の電気信号に基づいて、電界効果トランジスタのゲート端子に印加する電圧を変えることによって電源回路32の起動と停止とを切り替えてもよい。 The power supply circuit 32 may further include a switching element such as a field effect transistor. The power supply circuit 32 switches between starting and stopping of the power supply circuit 32 by changing the voltage applied to the gate terminal of the field effect transistor based on the control signal, the first electric signal, and the second electric signal. Also good.
 第1の抵抗器30Aの第1の端子は、第2のセンサ20Bと電気的に接続されている。第1の抵抗器30Aの第2の端子は、電源回路32と電気的に接続されている。第1の抵抗器30Aの抵抗値は既知であればよい。そのため、第1の抵抗器30Aは固定抵抗器である。しかしながら、信号処理装置33が、第1の抵抗器30Aの抵抗値を測定できる場合、第1の抵抗器30Aは可変抵抗器を用いてもよい。 The first terminal of the first resistor 30A is electrically connected to the second sensor 20B. The second terminal of the first resistor 30A is electrically connected to the power supply circuit 32. The resistance value of the first resistor 30A may be known. Therefore, the first resistor 30A is a fixed resistor. However, if the signal processing device 33 can measure the resistance value of the first resistor 30A, the first resistor 30A may use a variable resistor.
 なお、第1の抵抗器30Aの第2の端子は、電源回路32と電気的に接続されていなくてもよい。たとえば、センサ装置100が処理部30と電気的に接続されているグランドをさらに有する場合、第1の抵抗器30Aの第2の端子はグランドと電気的に接続されてもよい。 Note that the second terminal of the first resistor 30 </ b> A may not be electrically connected to the power supply circuit 32. For example, when the sensor device 100 further includes a ground that is electrically connected to the processing unit 30, the second terminal of the first resistor 30A may be electrically connected to the ground.
 第2の抵抗器30Bの第1の端子は、第3のセンサ20Cと電気的に接続されている。第2の抵抗器30Bの第2の端子は、電源回路32と電気的に接続されている。そのため、第2の抵抗器30Bは固定抵抗器である。しかしながら、信号処理装置33が、第2の抵抗器30Bの抵抗値を測定できる場合、第2の抵抗器30Bは可変抵抗器を用いてもよい。 The first terminal of the second resistor 30B is electrically connected to the third sensor 20C. The second terminal of the second resistor 30B is electrically connected to the power supply circuit 32. Therefore, the second resistor 30B is a fixed resistor. However, if the signal processing device 33 can measure the resistance value of the second resistor 30B, the second resistor 30B may use a variable resistor.
 なお、第2の抵抗器30Bの第2の端子は、電源回路32と電気的に接続されていなくてもよい。たとえば、センサ装置100が処理部30と電気的に接続されているグランドを有する場合、第2の抵抗器30Bの第2の端子はグランドと電気的に接続されてもよい。 Note that the second terminal of the second resistor 30B may not be electrically connected to the power supply circuit 32. For example, when the sensor device 100 has a ground that is electrically connected to the processing unit 30, the second terminal of the second resistor 30B may be electrically connected to the ground.
 信号処理装置33は、電源端子33Aと、第1の信号入力端子33Bと、第2の信号入力端子33Cと、第3の信号入力端子33Dと、制御部33Fと、検出部33Eと、記憶部33Gと、通信部33Hとを有する。なお、記憶部33Gや通信部33Hは必須の構成でない。 The signal processing device 33 includes a power supply terminal 33A, a first signal input terminal 33B, a second signal input terminal 33C, a third signal input terminal 33D, a control unit 33F, a detection unit 33E, and a storage unit. 33G and a communication unit 33H. Note that the storage unit 33G and the communication unit 33H are not essential components.
 第1の信号入力端子33Bは、第2のセンサ20Bと電気的に接続されている。特に、第1の信号入力端子33Bは、第2のセンサ20Bと第1の抵抗器30Aとの間の接続部位(配線)と電気的に接続されている。そして、第1の信号入力端子33Bには、第1の電気信号が入力される。 The first signal input terminal 33B is electrically connected to the second sensor 20B. In particular, the first signal input terminal 33B is electrically connected to a connection portion (wiring) between the second sensor 20B and the first resistor 30A. The first electric signal is input to the first signal input terminal 33B.
 第2の信号入力端子33Cは、第3のセンサ20Cと電気的に接続されている。特に、第2の信号入力端子33Cは、第3のセンサ20Cと第2の抵抗器30Bとの間の接続部位(配線)と電気的に接続されている。そして、第2の信号入力端子33Cには、第2の電気信号が入力される。 The second signal input terminal 33C is electrically connected to the third sensor 20C. In particular, the second signal input terminal 33C is electrically connected to a connection portion (wiring) between the third sensor 20C and the second resistor 30B. Then, the second electric signal is input to the second signal input terminal 33C.
 第3の信号入力端子33Dは、第1のセンサ20Aと電気的に接続されている。特に、第3の信号入力端子33Dは、第1のセンサ20Aと電源回路32との間の接続部位(配線)と電気的に接続されている。そして、第3の信号入力端子33Dには、制御信号が入力される。 The third signal input terminal 33D is electrically connected to the first sensor 20A. In particular, the third signal input terminal 33D is electrically connected to a connection portion (wiring) between the first sensor 20A and the power supply circuit 32. A control signal is input to the third signal input terminal 33D.
 なお、第1の信号入力端子33Bと、第2の信号入力端子33Cと、第3の信号入力端子33Dとは、センサ部20の構成により適宜変更するとよい。たとえば、第3の信号入力端子33Dは、制御信号を第3の信号入力端子33Dに入力しない場合に省略できる。また、たとえば、第2の信号入力端子33Cは、第3のセンサ20Cを用いない場合に省略できる。 Note that the first signal input terminal 33B, the second signal input terminal 33C, and the third signal input terminal 33D may be appropriately changed depending on the configuration of the sensor unit 20. For example, the third signal input terminal 33D can be omitted when the control signal is not input to the third signal input terminal 33D. Further, for example, the second signal input terminal 33C can be omitted when the third sensor 20C is not used.
 検出部33Eは、第1の信号入力端子33Bと電気的に接続されている。そして、検出部33Eは、第1の電気信号の電圧を検出する。また、検出部33Eは、第2の信号入力端子33Cと電気的に接続されている。そして、検出部33Eは、第2の電気信号の電圧を検出する。さらに、検出部33Eは、第3の信号入力端子33Dと電気的に接続されている。そして、検出部33Eは、制御信号の電圧を検出する。検出部33Eは、たとえば、A/D(Analog/Digital)コンバータやコンパレータを有する。 The detection unit 33E is electrically connected to the first signal input terminal 33B. Then, the detection unit 33E detects the voltage of the first electric signal. The detection unit 33E is electrically connected to the second signal input terminal 33C. Then, the detection unit 33E detects the voltage of the second electric signal. Furthermore, the detection unit 33E is electrically connected to the third signal input terminal 33D. The detection unit 33E detects the voltage of the control signal. The detection unit 33E includes, for example, an A / D (Analog / Digital) converter and a comparator.
 なお、信号処理装置33は、第1の信号入力端子33Bと、第2の信号入力端子33Cと、第3の信号入力端子33Dとにそれぞれ接続されている複数の検出部(たとえばA/Dコンバータやコンパレータ)を有してもよい。また、検出部33Eは、第1の電気信号や第2の電気信号や制御信号の電流を検出してもよい。 The signal processing device 33 includes a plurality of detection units (for example, A / D converters) respectively connected to the first signal input terminal 33B, the second signal input terminal 33C, and the third signal input terminal 33D. Or a comparator). The detection unit 33E may detect the current of the first electric signal, the second electric signal, or the control signal.
 電源端子33Aは、電源回路32と電気的に接続されている。そして、電源端子33Aには、駆動電力が入力される。 The power supply terminal 33A is electrically connected to the power supply circuit 32. Driving power is input to the power supply terminal 33A.
 制御部33Fは、電源端子33Aと電気的に接続されている。制御部33Fは、駆動電力を入力されて駆動する。また、制御部33Fは、検出部33Eと電気的に接続されている(図示せず)。そして、制御部33Fは、第1の電気信号や第2の電気信号や制御信号の電圧を取得する。制御部33Fは、たとえば、MCU(Micro controller Unit)などを有する。そして、制御部33Fは、取得した電圧に基づき検出結果(たとえば、第1の圧力や第2の圧力や第3の圧力を示す信号)を出力する。また、制御部33Fは、検出結果を解析する。なお、センサ装置100内で検出結果の解析を行わない場合、制御部33Fは検出結果を解析しなくてもよい。 The control unit 33F is electrically connected to the power supply terminal 33A. The control unit 33F is driven by receiving drive power. The control unit 33F is electrically connected to the detection unit 33E (not shown). And the control part 33F acquires the voltage of a 1st electrical signal, a 2nd electrical signal, and a control signal. The control unit 33F includes, for example, an MCU (Micro controller Unit). Then, the control unit 33F outputs a detection result (for example, a signal indicating the first pressure, the second pressure, or the third pressure) based on the acquired voltage. Further, the control unit 33F analyzes the detection result. In addition, when not analyzing a detection result within the sensor apparatus 100, the control part 33F does not need to analyze a detection result.
 記憶部33Gは、たとえば、不揮発メモリ、ハードディスク、SDメモリカード、DVD、CD、USBメモリなどの記録媒体を有する。記憶部33Gは、センサ装置100に内蔵された内蔵型記録媒体であってもよく、センサ装置100に外付けされた外付型記録媒体であってもよい。記憶部33Gは、たとえば、第1のセンサ20Aや第2のセンサ20Bや第3のセンサ20Cに加えられた圧力を算出するためのデータを有する。また、記憶部33Gは、たとえば、制御部33Fの検出結果や解析結果を記憶する。 The storage unit 33G includes a recording medium such as a nonvolatile memory, a hard disk, an SD memory card, a DVD, a CD, or a USB memory. The storage unit 33G may be a built-in recording medium built in the sensor device 100 or an external recording medium attached to the sensor device 100. The storage unit 33G includes, for example, data for calculating the pressure applied to the first sensor 20A, the second sensor 20B, and the third sensor 20C. Further, the storage unit 33G stores, for example, detection results and analysis results of the control unit 33F.
 通信部33Hは、たとえば、Bluetooth(登録商標)、Wi-Fi、近距離無線通信などによってセンサ装置100の外部にある外部機器と通信する。そして、通信部33Hは、外部機器からデータを受信し、外部機器へデータを送信する。 The communication unit 33H communicates with an external device outside the sensor device 100 by, for example, Bluetooth (registered trademark), Wi-Fi, near field communication, or the like. Then, the communication unit 33H receives data from the external device and transmits data to the external device.
 (センサ装置100の動作)
 図2を参照してセンサ装置100の動作を説明する。図2は、センサ装置100のタイミング図である。図2は、第1のセンサ20Aと、第2のセンサ20Bと、電源回路32との関係を示している。特に、図2は、第1のセンサ20Aに圧力が加えられたあと、第2のセンサ20Bに圧力が加えられた場合を示している。ここで、図2は、センサ装置100の動作の一例である。すなわち、図2は、センサ装置100の動作を限定するものでない。
(Operation of the sensor device 100)
The operation of the sensor device 100 will be described with reference to FIG. FIG. 2 is a timing diagram of the sensor device 100. FIG. 2 shows the relationship between the first sensor 20 </ b> A, the second sensor 20 </ b> B, and the power supply circuit 32. In particular, FIG. 2 shows a case where pressure is applied to the second sensor 20B after pressure is applied to the first sensor 20A. Here, FIG. 2 is an example of the operation of the sensor device 100. That is, FIG. 2 does not limit the operation of the sensor device 100.
 なお、説明を簡略化するために導線の抵抗は無視する。また、電源部10の出力電圧は一定(電圧Vvol)とする。また、電源回路32の起動のための値(第1の値)と停止のための値(第2の値)とは同値(V)とする。電源回路32は、起動すると駆動電力を出力する。ここで、駆動電力の電圧(電源回路32の出力電圧)は、電圧Vacとする。 In order to simplify the explanation, the resistance of the conducting wire is ignored. The output voltage of the power supply unit 10 is constant (voltage V vol ). Further, the value for starting (first value) and the value for stopping (second value) of the power supply circuit 32 are the same value (V 3 ). The power supply circuit 32 outputs drive power when activated. Here, the voltage of the driving power (the output voltage of the power supply circuit 32) is assumed to be the voltage Vac .
 第1のセンサ20Aに加えられている第2の圧力がほぼ0であるときを時間Tとする。第1のセンサ20Aの抵抗値は、第2の圧力を加えられていない状態で非常に大きい値となる。そのため、時間Tにおいて、第1のセンサ20Aの出力電圧Vはほぼ0である。 The time T 0 is when the second pressure applied to the first sensor 20A is substantially zero. The resistance value of the first sensor 20A is a very large value when the second pressure is not applied. Therefore, at time T 0, the output voltage V 1 of the first sensor 20A is almost zero.
 時間Tにおいて、第2のセンサ20Bに加えられている第1の圧力はほぼ0である。第2のセンサ20Bの抵抗値は、第1の圧力を加えられていない状態で非常に大きい値となる。そのため、時間Tにおいて、第2のセンサ20Bの出力電圧Vはほぼ0である。 At time T 0, the first pressure being applied to the second sensor 20B is substantially zero. The resistance value of the second sensor 20B is a very large value when the first pressure is not applied. Therefore, at time T 0, the output voltage V 2 of the second sensor 20B is substantially zero.
 電源回路32は、入力された電気信号(制御信号または第1の電気信号)の電圧値が第1の値V以上の場合に駆動電力(電圧Vac)を出力する。また、電源回路32は、入力された電気信号(制御信号または第1の電気信号)の電圧値が第1の値Vを下回った場合に停止する。そのため、時間Tにおいて、電源回路32は停止している。なお、ほぼ0は、0を含む。 The power supply circuit 32 outputs drive power (voltage V ac ) when the voltage value of the input electric signal (control signal or first electric signal) is equal to or higher than the first value V 3 . The power supply circuit 32 is stopped when the voltage value of the input electrical signal (the control signal or the first electric signal) is below a first value V 3. Therefore, at time T 0, the power supply circuit 32 is stopped. Note that almost 0 includes 0.
 第2の圧力が増加し始めたときを時間Tとする。時間T以降に、第2の圧力は徐々に増加する。そして、第1のセンサ20Aの抵抗値は徐々に減少する。そのため、第1のセンサ20Aの出力電圧Vは上昇し始める。しかしながら、時間Tにおいて、第1のセンサ20Aの出力電圧Vは第1の値Vに達していない。時間Tにおいて、第1の圧力はほぼ0である。そのため、第2のセンサ20Bの出力電圧Vはほぼ0である。 Second pressure to the time T 1 when started to increase. The time T 1 and later, the second pressure is gradually increased. Then, the resistance value of the first sensor 20A gradually decreases. Therefore, the output voltage V1 of the first sensor 20A starts to increase. However, at time T 1, the output voltage V 1 of the first sensor 20A has not reached the first value V 3. At time T 1, the first pressure is substantially zero. Therefore, the output voltage V2 of the second sensor 20B is almost zero.
 時間Tにおいて、第1のセンサ20Aの出力電圧Vは第1の値Vに達していない。また、第2のセンサ20Bの出力電圧Vはほぼ0である。そのため、電源回路32は停止している。 At time T 1, the output voltage V 1 of the first sensor 20A has not reached the first value V 3. Further, the output voltage V2 of the second sensor 20B is almost zero. Therefore, the power supply circuit 32 is stopped.
 時間Tにおいて、第1のセンサ20Aの出力電圧Vは、第1の値Vと等しい。時間Tにおいて、第1の圧力はほぼ0である。そのため、時間Tにおいて、第2のセンサ20Bの出力電圧V2はほぼ0である。時間Tにおいて、第1のセンサ20Aの出力電圧Vは第1の値Vに達している。そのため、電源回路32は起動する。そして、電源回路32は、駆動電力を出力する。 At time T 2, the output voltage V 1 of the first sensor 20A is equal to the first value V 3. At time T 2, the first pressure is substantially zero. Therefore, at time T 2, the output voltage V2 of the second sensor 20B is substantially zero. At time T 2, the output voltage V 1 of the first sensor 20A has reached the first value V 3. Therefore, the power supply circuit 32 is activated. The power supply circuit 32 outputs drive power.
 第1の圧力が増加し始めたときを時間Tとする。時間T以降に、第1の圧力は、徐々に増加する。そして、第2のセンサ20Bの抵抗値は徐々に減少する。そのため、第2のセンサ20Bの出力電圧Vは上昇を始める。しかしながら、時間Tにおいて、第2のセンサ20Bの出力電圧Vは第1の値Vに達していない。しかしながら、時間Tにおいて、第1のセンサ20Aの出力電圧Vは、第1の値Vを上回っている(出力電圧V>第1の値V)。そのため、電源回路32は、駆動電力を出力している。 First pressure and the time T 3 when started to increase. The time T 3 after the first pressure is increased gradually. Then, the resistance value of the second sensor 20B gradually decreases. Therefore, the output voltage V2 of the second sensor 20B starts to increase. However, at time T 3, the output voltage V 2 of the second sensor 20B does not reach the first value V 3. However, at time T 3 , the output voltage V 1 of the first sensor 20A exceeds the first value V 3 (output voltage V 1 > first value V 3 ). Therefore, the power supply circuit 32 outputs driving power.
 なお、第1のセンサ20Aの出力電圧Vは、時間Tの前後でフラットとなっている。これは、第2の圧力が、第1のセンサ20Aの圧力に対して変化できる抵抗値の範囲を超えていることを意味している。そのため、出力電圧Vは、電源部10の出力電圧の形状を反映している。 The output voltage V 1 of the first sensor 20A has a flat before and after the time T 3. This means that the second pressure exceeds the range of the resistance value that can be changed with respect to the pressure of the first sensor 20A. Therefore, the output voltage V 1 reflects the shape of the output voltage of the power supply unit 10.
 時間Tにおいて、第2のセンサ20Bの出力電圧Vは、第1の値Vと等しい。また、時間Tにおいて、第1のセンサ20Aの出力電圧Vは、第1の値Vを上回っている(出力電圧V>第1の値V)。そのため、電源回路32は、駆動電力を出力している。 At time T 4, the output voltage V 2 of the second sensor 20B is equal to the first value V 3. Also, at time T 4, the output voltage V 1 of the first sensor 20A, the first is greater than the value V 3 (the output voltages V 1> first value V 3). Therefore, the power supply circuit 32 outputs driving power.
 第1のセンサ20Aの出力電圧Vが、降下を始めたときを時間Tとする。これは、第2の圧力が低下し始めたことを意味する。しかしながら、時間Tにおいて、第1のセンサ20Aの出力電圧Vは、第1の値Vを上回っている(出力電圧V>第1の値V)。また、時間Tにおいて、第2のセンサ20Bの出力電圧Vは、第1の値Vを上回っている(出力電圧V>第1の値V)。そのため、電源回路32は、駆動電力を出力している。 Output voltage V 1 of the first sensor 20A is, and the time T 5 when we started to descend. This means that the second pressure has started to drop. However, at time T 5, the output voltage V 1 of the first sensor 20A, the first is greater than the value V 3 (the output voltages V 1> first value V 3). Also, at time T 5, the output voltage V 2 of the second sensor 20B, the first is greater than the value V 3 (the output voltage V 1> first value V 3). Therefore, the power supply circuit 32 outputs driving power.
 第1のセンサ20Aの出力電圧Vが、第1の値Vを下回った時間を時間Tとする。時間Tにおいて、第1のセンサ20Aの出力電圧Vは、第1の値Vを下回っている(出力電圧V<第1の値V)。しかしながら、時間Tにおいて、第2のセンサ20Bの出力電圧Vは、第1の値Vを上回っている(出力電圧V>第1の値V)。そのため、電源回路32は、駆動電力を出力する。なお、第2のセンサ20Bと電源回路32とが電気的に接続されていない場合、電源回路32は時間Tで停止する。 Output voltage V 1 of the first sensor 20A is a time falls below a first value V 3 and the time T 6. At time T 6, the output voltage V 1 of the first sensor 20A, the first below the value V 3 (the output voltages V 1 <the first value V 3). However, at time T 6, the output voltage V 2 of the second sensor 20B, the first is greater than the value V 3 (the output voltage V 2> first value V 3). Therefore, the power supply circuit 32 outputs drive power. In the case where the second sensor 20B and the power supply circuit 32 is not electrically connected, the power supply circuit 32 is stopped at time T 6.
 第2のセンサ20Bの出力電圧Vが、第1の値Vを下回った時間を時間Tとする。時間Tにおいて、第1のセンサ20Aの出力電圧V1はほぼ0である。つまり、第1のセンサ20Aは、第1の圧力を加えられていない。また、第2のセンサ20Bの出力電圧Vは、第1の値Vを下回っている(出力電圧V<第1の値V)。そのため、電源回路32は停止する。 Output voltage V 2 of the second sensor 20B is, to a time below a first value V 3 and the time T 7. At time T 7, the output voltage V1 of the first sensor 20A is almost zero. That is, the first sensor 20A is not applied with the first pressure. Further, the output voltage V 2 of the second sensor 20B is lower than the first value V 3 (output voltage V 2 <first value V 3 ). Therefore, the power supply circuit 32 stops.
 第1のセンサ20Aの出力電圧Vおよび第2のセンサ20Bの出力電圧Vが、ほぼ0になる時間を時間Tとする。つまり、第1のセンサ20Aは、第1の圧力を加えられていない。また、第2のセンサ20Bは、第2の圧力を加えられていない。時間Tにおいて、電源回路32は停止している。 Output voltage V 2 of the output voltages V 1 and the second sensor 20B of the first sensor 20A is a T 8 to time becomes substantially 0 time. That is, the first sensor 20A is not applied with the first pressure. Further, the second pressure is not applied to the second sensor 20B. At time T 8, the power supply circuit 32 is stopped.
 なお、電源回路32は、第2の電気信号の電圧によって起動し始めてもよい。たとえば、電源回路32は、出力電圧Vよりも先に出力電圧Vが第1の値Vに到達することで起動してもよい。 The power supply circuit 32 may start to be activated by the voltage of the second electric signal. For example, the power supply circuit 32, the output voltage V 2 before the output voltages V 1 may be activated by reaching the first value V 3.
 制御部33Fは、電源端子33Aに駆動電力を入力されることで駆動する。そのため、制御部33Fは、時間Tで駆動を開始する。そして、制御部33Fは、時間Tで駆動を停止する。制御部33Fは、検出部33Eを介して第1のセンサ20Aの出力電圧Vを取得する。また、制御部33Fは、検出部33Eを介して第1の信号入力端子33Bに印加された電圧を検出する。 The controller 33F is driven by inputting driving power to the power supply terminal 33A. Therefore, the control unit 33F starts driving at time T 2. Then, the control unit 33F stops driving at time T 7. The controller 33F acquires the output voltage V1 of the first sensor 20A via the detector 33E. Further, the control unit 33F detects the voltage applied to the first signal input terminal 33B via the detection unit 33E.
 また、第2のセンサ20Bは、第1のセンサ20Aに対して電気的に並列に接続されている。そのため、制御部33Fは、出力電圧Vを第2のセンサ20Bにかかる電圧と仮定する。また、第1の抵抗器30Aの抵抗値は既知である。そのため、制御部33Fは、第1の信号入力端子33Bに印加された電圧と、第1の抵抗器30Aの抵抗値とから第2のセンサ20Bの抵抗値を算出する。 The second sensor 20B is electrically connected in parallel to the first sensor 20A. Therefore, the control unit 33F is assumed voltage across the output voltages V 1 to the second sensor 20B. Further, the resistance value of the first resistor 30A is known. Therefore, the control unit 33F calculates the resistance value of the second sensor 20B from the voltage applied to the first signal input terminal 33B and the resistance value of the first resistor 30A.
 また、信号処理装置33は、各センサの抵抗値と圧力の関係を記録したデータを有している。そのため、制御部33Fは、そのデータと算出した抵抗値とから第2のセンサ20Bに加えられた第1の圧力を検出できる。 Further, the signal processing device 33 has data in which the relationship between the resistance value and pressure of each sensor is recorded. Therefore, the control unit 33F can detect the first pressure applied to the second sensor 20B from the data and the calculated resistance value.
 なお、制御部33Fは、第1のセンサ20Aの出力電圧Vを第2のセンサ20Bにかかる電圧と仮定している。そのため、第1のセンサ20Aは、第2のセンサ20Bよりも小さい圧力で検出限界を迎えるセンサであるとよい。これにより、第1のセンサ20Aは検出限界を迎えて出力電圧Vが安定している状態で、検出限界を迎えていない第2のセンサ20Bの抵抗を求められる。 Note that the control unit 33F assumes that the output voltage V1 of the first sensor 20A is a voltage applied to the second sensor 20B. Therefore, the first sensor 20A may be a sensor that reaches the detection limit with a pressure smaller than that of the second sensor 20B. Thus, the first sensor 20A is in a state in which the output voltages V 1 reached a detection limit is stable is determined the resistance of the second sensor 20B not reached the detection limit.
 なお、圧力の分布の状態のみを知るセンシングを行う場合は、相対的な圧力を求めることができればよいので、基準値を必要しない。このような場合、出力電圧Vを信号処理装置33へ供給する必要がない。 Note that when sensing only the pressure distribution state, it is only necessary to be able to determine the relative pressure, and therefore no reference value is required. In such a case, it is not necessary to supply the output voltage V 1 to the signal processing device 33.
 なお、第2のセンサ20Bに印加される電圧が既知である場合や、検出部33Eを介して第2のセンサ20Bに印加される電圧を制御部33Fが取得できる場合、制御部33Fは、第1の抵抗器30Aの抵抗値に対する第2のセンサ20Bの抵抗値の分圧比を算出して第2のセンサ20Bの抵抗値を算出してもよい。すなわち、制御部33Fは、第1のセンサ20Aに印加される電圧を第2のセンサ20Bに印加される電圧と仮定しなくともよい。 When the voltage applied to the second sensor 20B is known or when the control unit 33F can acquire the voltage applied to the second sensor 20B via the detection unit 33E, the control unit 33F The resistance value of the second sensor 20B may be calculated by calculating the voltage dividing ratio of the resistance value of the second sensor 20B to the resistance value of the first resistor 30A. That is, the controller 33F may not assume that the voltage applied to the first sensor 20A is the voltage applied to the second sensor 20B.
 なお、制御部33Fは、第1のセンサ20A、第1の抵抗器30A、第2の抵抗器30Bの出力電流値と、第1のセンサ20A、第2のセンサ20B、第3のセンサ20Cの出力電圧値とから、第2のセンサ20Bと第3のセンサ20Cの抵抗値を算出してもよい。 The control unit 33F outputs the output current values of the first sensor 20A, the first resistor 30A, and the second resistor 30B, and the first sensor 20A, the second sensor 20B, and the third sensor 20C. The resistance values of the second sensor 20B and the third sensor 20C may be calculated from the output voltage value.
 (センサ部20の設計)
 第1のセンサ20Aの抵抗値と、第2のセンサ20Bの抵抗値と、第3のセンサ20Cの抵抗値と、各センサに加えられる圧力との関係について説明する。
(Design of sensor unit 20)
The relationship between the resistance value of the first sensor 20A, the resistance value of the second sensor 20B, the resistance value of the third sensor 20C, and the pressure applied to each sensor will be described.
 第1のセンサ20Aは、第1の入力電圧を印加される。また、第1のセンサ20Aは、第2の圧力を加えられる。そして、第1のセンサ20Aは、制御信号を出力する。ここで、制御信号の電圧は、第1の出力電圧である。また、電源回路32は、制御信号の電圧値が第1の値以上となった場合に起動する。つまり、第1のセンサ20Aは、スイッチとして機能する。 The first input voltage is applied to the first sensor 20A. The first sensor 20A is applied with a second pressure. Then, the first sensor 20A outputs a control signal. Here, the voltage of the control signal is the first output voltage. The power supply circuit 32 is activated when the voltage value of the control signal becomes equal to or higher than the first value. That is, the first sensor 20A functions as a switch.
 第2のセンサ20Bは、第2の入力電圧を印加される。また、第2のセンサ20Bは、第1の圧力を加えられる。そして、第2のセンサ20Bは、第1の電気信号を出力する。ここで、第1の電気信号の電圧は、第2の出力電圧である。また、制御部33Fは、第1の電気信号の電圧に基づいて、第1の圧力を示す信号を出力する。つまり、第2のセンサ20Bは、センサとして機能する。 The second input voltage is applied to the second sensor 20B. In addition, the second sensor 20B is applied with the first pressure. Then, the second sensor 20B outputs a first electric signal. Here, the voltage of the first electric signal is the second output voltage. The control unit 33F outputs a signal indicating the first pressure based on the voltage of the first electric signal. That is, the second sensor 20B functions as a sensor.
 そのため、第1のセンサ20Aの抵抗値は、第2の圧力を加えられて第1のセンサ20Aが制御信号を出力する場合かつ第1の圧力が第2の圧力と等しい場合において、第2のセンサ20Bの抵抗値よりも小さいとよい。言い換えると、前述の場合において、第1の入力電圧と第1の出力電圧との電位差が、第2の入力電圧と第2の出力電圧との電位差よりも小さいとよい。これにより、電源回路32は、より安定して起動できる。 Therefore, the resistance value of the first sensor 20A is the second value when the second pressure is applied and the first sensor 20A outputs a control signal and when the first pressure is equal to the second pressure. The resistance value is preferably smaller than the resistance value of the sensor 20B. In other words, in the above-described case, the potential difference between the first input voltage and the first output voltage may be smaller than the potential difference between the second input voltage and the second output voltage. Thereby, the power supply circuit 32 can be started more stably.
 また、第3のセンサ20Cは、第3の入力電圧を印加される。また、第3のセンサ20Cは、第3の圧力を加えられる。そして、第3のセンサ20Cは、第2の電気信号を出力する。ここで、第2の電気信号の電圧は、第3の出力電圧である。また、制御部33Fは、第2の電気信号の電圧に基づいて、第3の圧力を示す信号を出力する。つまり、第3のセンサ20Cは、センサとして機能する。 The third sensor 20C is applied with a third input voltage. Further, the third pressure is applied to the third sensor 20C. Then, the third sensor 20C outputs a second electric signal. Here, the voltage of the second electric signal is the third output voltage. Further, the control unit 33F outputs a signal indicating the third pressure based on the voltage of the second electric signal. That is, the third sensor 20C functions as a sensor.
 そのため、第1のセンサ20Aの抵抗値は、第2の圧力を加えられて第1のセンサ20Aが制御信号を出力する場合かつ第1の圧力が第3の圧力と等しい場合において、第3のセンサ20Cの抵抗値よりも小さいとよい。言い換えると、前述の場合において、第1の入力電圧と第1の出力電圧との電位差が、第3の入力電圧と第3の出力電圧との電位差よりも小さいとよい。これにより、電源回路32は、より安定して起動できる。 Therefore, the resistance value of the first sensor 20A is the third resistance value when the second pressure is applied and the first sensor 20A outputs a control signal and when the first pressure is equal to the third pressure. The resistance value is preferably smaller than the resistance value of the sensor 20C. In other words, in the above-described case, the potential difference between the first input voltage and the first output voltage may be smaller than the potential difference between the third input voltage and the third output voltage. Thereby, the power supply circuit 32 can be started more stably.
 また、第1のセンサ20Aの圧力を受ける面積は、第2のセンサ20Bの圧力を受ける面積よりも広いとよい。これにより、第1のセンサ20Aは、制御信号を容易に出力できる。そのため、電源回路32は、より安定して起動できる。 Also, the area that receives the pressure of the first sensor 20A is preferably larger than the area that receives the pressure of the second sensor 20B. Thereby, the first sensor 20A can easily output the control signal. Therefore, the power supply circuit 32 can be started more stably.
 第2のセンサ20Bは、センサとして機能する。そのため、第2のセンサ20Bの抵抗値と第1の圧力との間には、ある関係性が成立するとよい。つまり、第2のセンサ20Bの抵抗値と第1の圧力との間には、再現性があることが好ましい。なお、このような関係は、センサ装置100の検出可能な圧力の範囲内で少なくとも成立していればよい。 The second sensor 20B functions as a sensor. Therefore, it is preferable that a certain relationship be established between the resistance value of the second sensor 20B and the first pressure. That is, it is preferable that there is reproducibility between the resistance value of the second sensor 20B and the first pressure. Such a relationship only needs to be established at least within the pressure range detectable by the sensor device 100.
 たとえば、多項式関数、分数関数、指数関数、対数関数といった連続的な関数を含んで変化する関係が、第2のセンサ20Bの抵抗値と第1の圧力との間にあるとよい。これにより、制御部33Fは、第1の圧力を容易に算出できる。 For example, it is preferable that the changing relationship including a continuous function such as a polynomial function, a fractional function, an exponential function, or a logarithmic function is between the resistance value of the second sensor 20B and the first pressure. Thereby, the controller 33F can easily calculate the first pressure.
 さらに、たとえば、第2のセンサ20Bの抵抗値が、検出範囲内で第1の圧力に対して一義的に変化する関係でもよい。これにより、制御部33Fは、より正確に第1の圧力を算出できる。つまり、センサ装置100は、センシング精度を向上できる。なお、この場合、第2のセンサ20Bの抵抗値は、第1の圧力に対して断続的に変化してもよい。 Furthermore, for example, the relationship in which the resistance value of the second sensor 20B is uniquely changed with respect to the first pressure within the detection range may be employed. Thereby, the control unit 33F can calculate the first pressure more accurately. That is, the sensor device 100 can improve sensing accuracy. In this case, the resistance value of the second sensor 20B may change intermittently with respect to the first pressure.
 また、センサ装置100が大体の範囲内での圧力値を分かればよい場合、第2のセンサ20Bの抵抗値と第2の圧力との関係は、階段関数のような関係であってもよい。また、制御部33Fは、圧力-抵抗値テーブルを制御部33Fや記憶部33Gに記録させ、そのテーブルから第2のセンサ20Bの抵抗値や第1の圧力を概算してもよい。 Further, when the sensor device 100 only needs to know the pressure value within a general range, the relationship between the resistance value of the second sensor 20B and the second pressure may be a relationship like a step function. Alternatively, the control unit 33F may record a pressure-resistance value table in the control unit 33F or the storage unit 33G, and approximate the resistance value or the first pressure of the second sensor 20B from the table.
 第3のセンサ20Cは、センサとして機能する。そのため、第3のセンサ20Cの抵抗値と第3の圧力との間には、ある関係性が成立するとよい。つまり、第3のセンサ20Cの抵抗値と第3の圧力との間には、再現性があることが好ましい。なお、このような関係は、センサ装置100の検出可能な圧力の範囲内で少なくとも成立していればよい。 The third sensor 20C functions as a sensor. Therefore, it is preferable that a certain relationship be established between the resistance value of the third sensor 20C and the third pressure. That is, it is preferable that there is reproducibility between the resistance value of the third sensor 20C and the third pressure. Such a relationship only needs to be established at least within the pressure range detectable by the sensor device 100.
 たとえば、多項式関数、分数関数、指数関数、対数関数といった連続的な関数を含んで変化する関係が、第3のセンサ20Cの抵抗値と第3の圧力との間にあるとよい。これにより、制御部33Fは、第3の圧力を容易に算出できる。 For example, it is preferable that the changing relationship including a continuous function such as a polynomial function, a fractional function, an exponential function, or a logarithmic function is between the resistance value of the third sensor 20C and the third pressure. Thereby, the controller 33F can easily calculate the third pressure.
 さらに、たとえば、第3のセンサ20Cの抵抗値が、検出範囲内で第3の圧力に対して一義的に変化する関係でもよい。これにより、制御部33Fは、より正確に第3の圧力を算出できる。つまり、センサ装置100は、センシング精度を向上できる。なお、この場合、第3のセンサ20Cの抵抗値は、第3の圧力に対して断続的に変化してもよい。 Furthermore, for example, the relationship in which the resistance value of the third sensor 20C changes uniquely with respect to the third pressure within the detection range may be employed. Thereby, the control unit 33F can calculate the third pressure more accurately. That is, the sensor device 100 can improve sensing accuracy. In this case, the resistance value of the third sensor 20C may change intermittently with respect to the third pressure.
 また、センサ装置100が大体の範囲内での圧力値を分かればよい場合、第3のセンサ20Cの抵抗値と第3の圧力との関係は、階段関数のような関係であってもよい。また、制御部33Fは、圧力-抵抗値テーブルを制御部33Fや記憶部33Gに記録させ、そこから第3のセンサ20Cの抵抗値や第3の圧力を概算してもよい。 In addition, when the sensor device 100 only needs to know the pressure value within an approximate range, the relationship between the resistance value of the third sensor 20C and the third pressure may be a relationship like a step function. Further, the control unit 33F may record the pressure-resistance value table in the control unit 33F or the storage unit 33G, and approximate the resistance value or the third pressure of the third sensor 20C therefrom.
 なお、第1のセンサ20Aは、第2のセンサ20B、第3のセンサ20Cのように圧力と抵抗値との間にある関係が成立することを要しない。そのため、第1のセンサ20Aには、プッシュスイッチやメンブレンスイッチを用いてもよい。これにより、第1のセンサ20Aは、導電性を向上でき、感圧センサを用いる場合に比べよりスイッチとして機能できる。 Note that the first sensor 20A does not need to establish a relationship between the pressure and the resistance value unlike the second sensor 20B and the third sensor 20C. Therefore, a push switch or a membrane switch may be used for the first sensor 20A. Thereby, the first sensor 20A can improve conductivity, and can function as a switch more than when a pressure-sensitive sensor is used.
 (変形例)
 図3を参照して、センサ装置100の変形例であるセンサ装置101を説明する。図3は、本発明の実施の形態の変形例におけるセンサ装置101の簡易回路図である。なお、図3において、図1と同じ構成のものには同じ符号を付す。また、それらの説明は省略する。
(Modification)
With reference to FIG. 3, the sensor apparatus 101 which is a modification of the sensor apparatus 100 is demonstrated. FIG. 3 is a simplified circuit diagram of the sensor device 101 according to a modification of the embodiment of the present invention. In FIG. 3, the same components as those in FIG. Moreover, those descriptions are omitted.
 センサ装置100は、第1の圧力や第3の圧力を抵抗分圧によって算出する構成である。一方、センサ装置101は、第1の圧力や第3の圧力を遅延素子で算出する構成を有する。 The sensor device 100 is configured to calculate the first pressure and the third pressure by resistance partial pressure. On the other hand, the sensor device 101 has a configuration in which the first pressure and the third pressure are calculated by a delay element.
 センサ装置101は、処理部31と、処理部31と電気的に接続されているグランド31Cとを有する点でセンサ装置100と異なる。処理部31は、第1の遅延素子31Aと、第2の遅延素子31Bとを有する。 The sensor device 101 differs from the sensor device 100 in that it includes a processing unit 31 and a ground 31C that is electrically connected to the processing unit 31. The processing unit 31 includes a first delay element 31A and a second delay element 31B.
 第1の遅延素子31Aの第1の端子は、第2のセンサ20Bと検出部33E(第1の信号入力端子33B)との間の部分(配線)と電気的に接続されている。第1の遅延素子31Aの第2の端子は、グランド31Cと電気的に接続されている。第1の遅延素子31Aは、電気容量を既知のたとえばコンデンサである。 The first terminal of the first delay element 31A is electrically connected to a portion (wiring) between the second sensor 20B and the detection unit 33E (first signal input terminal 33B). The second terminal of the first delay element 31A is electrically connected to the ground 31C. The first delay element 31A is, for example, a capacitor having a known electric capacity.
 第2の遅延素子31Bの第3の端子は、第3のセンサ20Cと検出部33E(第2の信号入力端子33C)との間の部分(配線)と電気的に接続されている。第2の遅延素子31Bの第4の端子は、グランド31Cと電気的に接続されている。第2の遅延素子31Bは、電気容量を既知のたとえばコンデンサである。 The third terminal of the second delay element 31B is electrically connected to a portion (wiring) between the third sensor 20C and the detection unit 33E (second signal input terminal 33C). The fourth terminal of the second delay element 31B is electrically connected to the ground 31C. The second delay element 31B is, for example, a capacitor having a known electric capacity.
 このような構成において、検出部33Eは、第1の電気信号の電圧や第2の電気信号の電圧を検出する。第1の電気信号の電圧は、第1の遅延素子31Aによって微小時間において一定とみなせる。また、第2の電気信号の電圧は、第2の遅延素子31Bによって微小時間において一定とみなせる。そのため、制御部33Fは、第1のセンサ20Aの抵抗値や第2のセンサ20Bの抵抗値を算出できる。これにより、制御部33Fは、第1の圧力および第2の圧力を求められる。 In such a configuration, the detection unit 33E detects the voltage of the first electric signal and the voltage of the second electric signal. The voltage of the first electric signal can be regarded as constant in a very short time by the first delay element 31A. Further, the voltage of the second electric signal can be regarded as constant in a minute time by the second delay element 31B. Therefore, the control unit 33F can calculate the resistance value of the first sensor 20A and the resistance value of the second sensor 20B. Thereby, the control part 33F calculates | requires a 1st pressure and a 2nd pressure.
 (センサ内蔵体200)
 図4を参照して、センサ内蔵体200を説明する。図4は、センサ内蔵体200の部分断面図である。センサ内蔵体200は、センサ装置100と、収納部201とを有する。収納部201は、図1に示す電源部10と処理部30とを内蔵する。
(Built-in sensor 200)
The sensor built-in body 200 will be described with reference to FIG. FIG. 4 is a partial cross-sectional view of the sensor built-in body 200. The sensor built-in body 200 includes a sensor device 100 and a storage unit 201. The storage unit 201 incorporates the power supply unit 10 and the processing unit 30 shown in FIG.
 なお、センサ内蔵体200は、センサ装置101を内蔵してもよい。また、収納部201は、図1や図3に示す電源部10と、処理部30(処理部31)とを別々に収納してもよい。 The sensor built-in body 200 may incorporate the sensor device 101. Further, the storage unit 201 may store the power supply unit 10 and the processing unit 30 (processing unit 31) shown in FIGS. 1 and 3 separately.
 このようなセンサ内蔵体200の例をいくつか説明する。センサ内蔵体200は、たとえば靴である。この場合、センサ内蔵体200は、センサ装置100と収納部201を含んでいる。センサ装置100は、収納部201に収納されている。収納部201は、たとえばインソール、ミッドソール、アウターソール、アッパーに設けるとよい。なお、センサ装置100は、たとえばインソール、ミッドソール、アウターソール、アッパーと一体にしてもよい。 Some examples of such a sensor built-in body 200 will be described. Sensor built-in body 200 is, for example, a shoe. In this case, the sensor built-in body 200 includes the sensor device 100 and the storage unit 201. The sensor device 100 is stored in the storage unit 201. The storage unit 201 may be provided, for example, in the insole, midsole, outer sole, or upper. The sensor device 100 may be integrated with, for example, an insole, a midsole, an outer sole, and an upper.
 これにより、センサ部20が足裏の圧力を正確に検出できる。そのため、センサ内蔵体200は、使用者の歩行姿勢や走行姿勢等の情報を的確に提供できる。 Thereby, the sensor unit 20 can accurately detect the pressure of the sole. Therefore, the sensor built-in body 200 can accurately provide information such as the user's walking posture and running posture.
 特に、靴が靴底を張替え可能である場合、靴底の部分にセンサ装置100を設けるとよい。これにより、センサ装置100を交換できる。そのため、使用者の汗や、湿気、経年劣化等によるセンサ部20のセンサ感度の低下を抑制できる。また、使用者は、同じ靴を長期間使い続けられる。また、たとえば企業は、交換によってセンサ装置100を回収できる。そのため、センサ装置100は、再生して使用できる。 In particular, when the shoe can change the sole, the sensor device 100 may be provided at the sole portion. Thereby, the sensor device 100 can be replaced. Therefore, it is possible to suppress a decrease in sensor sensitivity of the sensor unit 20 due to a user's sweat, moisture, aging degradation, and the like. In addition, the user can continue to use the same shoes for a long time. For example, a company can collect the sensor device 100 by replacement. Therefore, the sensor device 100 can be regenerated and used.
 また、センサ部20(図1参照)は、靴のアッパーの側面や前面に取り付けるとよい。これにより、センサ内蔵体200は、サッカーシューズのようにボールをどの位置で捕らえているかについての情報を使用者に提供できる。これにより、アッパーのどの部分でボールを捕らえたかという情報を得ることができる。よって、使用者は、より効果的なプレイスタイルを模索することが可能となる。 The sensor unit 20 (see FIG. 1) may be attached to the side or front of the shoe upper. Thereby, the sensor built-in body 200 can provide the user with information about where the ball is captured like soccer shoes. Thereby, it is possible to obtain information as to which part of the upper has caught the ball. Therefore, the user can search for a more effective play style.
 また、発電体13や信号処理装置33は、靴底に設けることが好ましい。これにより、発電体13や信号処理装置33の耐久性を向上できる。 Further, it is preferable that the power generator 13 and the signal processing device 33 are provided on the shoe sole. Thereby, durability of the electric power generation body 13 and the signal processing apparatus 33 can be improved.
 センサ装置100やセンサ装置101は、ぬいぐるみに用いることもできる。この場合は、ぬいぐるみの布地の裏に収納部を形成する。そして、センサ装置100やセンサ装置101は、ぬいぐるみの収納部に収納される。このように構成することにより、センサ装置100やセンサ装置101は、抱き締め具合を圧力として検出できる。そして、ぬいぐるみは、検出した圧力に応じて言葉を発したり、携帯端末へぬいぐるみの反応を送信したりする。 The sensor device 100 and the sensor device 101 can also be used for stuffed animals. In this case, a storage part is formed on the back of the stuffed fabric. And the sensor apparatus 100 and the sensor apparatus 101 are accommodated in the storage part of a stuffed toy. With this configuration, the sensor device 100 and the sensor device 101 can detect the degree of hugging as pressure. Then, the stuffed toy speaks according to the detected pressure, or transmits a stuffed toy response to the mobile terminal.
 本発明のセンサ装置は、電池の交換や充電を必要とするセンサ内蔵体等に用いると効果的である。 The sensor device of the present invention is effective when used for a sensor built-in body that requires battery replacement or charging.
10 電源部
13 発電体
15 整流回路
17 蓄電素子
17A グランド
20 センサ部
20A 第1のセンサ
20B 第2のセンサ
20C 第3のセンサ
30 処理部
30A 第1の抵抗器
30B 第2の抵抗器
31 処理部
31A 第1の遅延素子
31B 第2の遅延素子
31C グランド
32 電源回路
33 信号処理装置
33A 電源端子
33B 第1の信号入力端子
33C 第2の信号入力端子
33D 第3の信号入力端子
33E 検出部
33F 制御部
33G 記憶部
33H 通信部
100 センサ装置
101 センサ装置
200 センサ内蔵体
201 収納部
DESCRIPTION OF SYMBOLS 10 Power supply part 13 Electric power generation body 15 Rectifier circuit 17 Power storage element 17A Ground 20 Sensor part 20A 1st sensor 20B 2nd sensor 20C 3rd sensor 30 Processing part 30A 1st resistor 30B 2nd resistor 31 Processing part 31A First delay element 31B Second delay element 31C Ground 32 Power supply circuit 33 Signal processing device 33A Power supply terminal 33B First signal input terminal 33C Second signal input terminal 33D Third signal input terminal 33E Detector 33F Control Unit 33G storage unit 33H communication unit 100 sensor device 101 sensor device 200 sensor built-in body 201 storage unit

Claims (19)

  1. 直流電力を供給する電源部と、
    前記電源部と電気的に接続され、第1の圧力を加えられるセンサ部と、
    前記センサ部と電気的に接続された処理部と、
    を備え、
    前記センサ部は、
     前記処理部の起動または停止を制御する制御信号と、
     前記第1の圧力に基づいて生成される第1の電気信号と、
    を前記処理部へ出力する、
    センサ装置。
    A power supply for supplying DC power;
    A sensor unit electrically connected to the power supply unit and to which a first pressure is applied;
    A processing unit electrically connected to the sensor unit;
    With
    The sensor unit is
    A control signal for controlling the start or stop of the processing unit;
    A first electrical signal generated based on the first pressure;
    Is output to the processing unit,
    Sensor device.
  2. 前記センサ部は、
     前記電源部と前記処理部とに電気的に接続され、第2の圧力を加えられることにより前記制御信号を前記処理部に出力する第1のセンサと、
     前記処理部と電気的に接続され、前記第1の電気信号を前記処理部に出力する第2のセンサと、
    を有する、
    請求項1記載のセンサ装置。
    The sensor unit is
    A first sensor that is electrically connected to the power supply unit and the processing unit and outputs a control signal to the processing unit by applying a second pressure;
    A second sensor electrically connected to the processing unit and outputting the first electrical signal to the processing unit;
    Having
    The sensor device according to claim 1.
  3. 前記処理部は、
     前記第1のセンサと電気的に接続され、前記制御信号を駆動電力に変換する電源回路と、
     前記電源回路と電気的に接続されて前記駆動電力を入力される電源端子と、前記第2のセンサと電気的に接続されて前記第1の電気信号を入力される第1の信号入力端子とを含む信号処理装置と、
    を有する、
    請求項2記載のセンサ装置。
    The processor is
    A power supply circuit electrically connected to the first sensor for converting the control signal into drive power;
    A power supply terminal that is electrically connected to the power supply circuit and receives the driving power; and a first signal input terminal that is electrically connected to the second sensor and receives the first electrical signal; A signal processing device including:
    Having
    The sensor device according to claim 2.
  4. 前記信号処理装置は、
     前記電源端子と電気的に接続され、前記駆動電力によって駆動する制御部と、
     前記第1の信号入力端子と電気的に接続され、前記第1の電気信号を検出する検出部と、
    を含み、
    前記制御部は、前記検出部の検出した前記第1の電気信号に基づいて、前記第1の圧力を示す信号を出力する、
    請求項3記載のセンサ装置。
    The signal processing device includes:
    A control unit electrically connected to the power supply terminal and driven by the driving power;
    A detector that is electrically connected to the first signal input terminal and detects the first electric signal;
    Including
    The control unit outputs a signal indicating the first pressure based on the first electric signal detected by the detection unit.
    The sensor device according to claim 3.
  5. 前記信号処理装置は、前記検出部と電気的に接続された第2の信号入力端子をさらに有し、
    前記センサ部は、前記第2の信号入力端子と電気的に接続され、第3の圧力を加えられて第2の電気信号を出力する第3のセンサをさらに有する、
    請求項4記載のセンサ装置。
    The signal processing device further includes a second signal input terminal electrically connected to the detection unit,
    The sensor unit further includes a third sensor that is electrically connected to the second signal input terminal and outputs a second electric signal when a third pressure is applied.
    The sensor device according to claim 4.
  6. 前記制御部は、前記検出部の検出した前記第2の電気信号に基づいて、前記第3の圧力を示す信号を出力する、請求項5記載のセンサ装置。 The sensor device according to claim 5, wherein the control unit outputs a signal indicating the third pressure based on the second electric signal detected by the detection unit.
  7. 前記処理部は、
     前記第2のセンサと前記検出部との間の部分と電気的に接続された第1端子と、グランドと電気的に接続された第2端子とを含む第1の遅延素子と、
     前記第3のセンサと前記第2の信号入力端子との間の部分と電気的に接続された第3端子と、前記グランドと電気的に接続された第4端子とを含む第2の遅延素子をさらに有する、
    請求項6記載のセンサ装置。
    The processor is
    A first delay element including a first terminal electrically connected to a portion between the second sensor and the detection unit; and a second terminal electrically connected to the ground;
    A second delay element including a third terminal electrically connected to a portion between the third sensor and the second signal input terminal, and a fourth terminal electrically connected to the ground Further having
    The sensor device according to claim 6.
  8. 前記検出部は、前記第2の電気信号の電圧値を検出し、
    前記制御部は、前記検出部の検出した前記第2の電気信号の電圧値に基づいて、前記第3の圧力を示す信号を出力する、
    請求項6記載のセンサ装置。
    The detector detects a voltage value of the second electric signal;
    The control unit outputs a signal indicating the third pressure based on the voltage value of the second electric signal detected by the detection unit.
    The sensor device according to claim 6.
  9. 前記処理部は、
     前記第2のセンサと前記第1の信号入力端子との間の部分と電気的に接続された第1端子と、グランドと電気的に接続された第2端子とを含む第1の遅延素子をさらに有する
    請求項4記載のセンサ装置。
    The processor is
    A first delay element including a first terminal electrically connected to a portion between the second sensor and the first signal input terminal; and a second terminal electrically connected to the ground. Furthermore, the sensor apparatus of Claim 4 which has.
  10. 前記検出部は、前記第1の電気信号の電圧値を検出し、
    前記制御部は、前記検出部の検出した前記第1の電気信号の電圧値に基づいて、前記第1の圧力を示す信号を出力する、
    請求項4記載のセンサ装置。
    The detector detects a voltage value of the first electric signal;
    The control unit outputs a signal indicating the first pressure based on a voltage value of the first electric signal detected by the detection unit.
    The sensor device according to claim 4.
  11. 前記電源回路は、
     前記第2のセンサおよび前記第3のセンサと電気的に接続され、前記第1の電気信号および前記第2の電気信号を前記駆動電力に変換する、
    請求項4記載のセンサ装置。
    The power supply circuit is
    Electrically connected to the second sensor and the third sensor to convert the first electrical signal and the second electrical signal into the driving power;
    The sensor device according to claim 4.
  12. 前記電源回路は、
     前記第2のセンサと電気的に接続され、前記第1の電気信号を前記駆動電力に変換する、
    請求項3記載のセンサ装置。
    The power supply circuit is
    Electrically connected to the second sensor and converting the first electrical signal into the driving power;
    The sensor device according to claim 3.
  13. 前記電源回路は、前記第2のセンサと電気的に接続されており、
    前記処理部は、前記第2のセンサと前記電源回路の間で、前記第2のセンサと電気的に接続された抵抗器をさらに有し、
    前記第1の信号入力端子は、前記第2のセンサと前記抵抗器との間の部位と電気的に接続されている、
    請求項3記載のセンサ装置。
    The power supply circuit is electrically connected to the second sensor;
    The processing unit further includes a resistor electrically connected to the second sensor between the second sensor and the power supply circuit,
    The first signal input terminal is electrically connected to a portion between the second sensor and the resistor;
    The sensor device according to claim 3.
  14. 前記第2のセンサの抵抗値は、前記第1の圧力の増大に伴って減少する、
    請求項2記載のセンサ装置。
    The resistance value of the second sensor decreases as the first pressure increases.
    The sensor device according to claim 2.
  15. 前記第2のセンサの抵抗値は、前記第1の圧力の増大に対して連続的に減少する、
    請求項14記載のセンサ装置。
    The resistance value of the second sensor continuously decreases with the increase in the first pressure.
    The sensor device according to claim 14.
  16. 前記電源部は、
     交流電力を発生する発電体と、
     前記発電体と電気的に接続された第1端子と、前記第1のセンサと電気的に接続された第2端子とを有し、前記交流電力を前記直流電力に変換する整流回路と、
    を有する請求項2記載のセンサ装置。
    The power supply unit is
    A power generator that generates AC power;
    A rectifier circuit having a first terminal electrically connected to the power generator and a second terminal electrically connected to the first sensor, and converting the AC power into the DC power;
    The sensor device according to claim 2.
  17. 前記電源部は、前記整流回路と前記第1のセンサとの間の部位と電気的に接続された第3端子と、グランドと電気的に接続された第4端子とを有する蓄電素子をさらに有する、
    請求項16記載のセンサ装置。
    The power supply unit further includes a storage element having a third terminal electrically connected to a portion between the rectifier circuit and the first sensor, and a fourth terminal electrically connected to the ground. ,
    The sensor device according to claim 16.
  18. 前記第1のセンサは、第1の入力電圧を入力されて第1の出力電圧の前記制御信号を出力し、
    前記第2のセンサは、第2の入力電圧を入力されて第2の出力電圧の前記第1の電気信号を出力し、
    前記第1のセンサが前記制御信号を出力している場合かつ前記第1の圧力が前記第2の圧力と等しい場合において、
    前記第1の入力電圧と前記第1の出力電圧との差は、前記第2の入力電圧と前記第2の出力電圧との差よりも小さい、
    請求項2記載のセンサ装置。
    The first sensor receives the first input voltage and outputs the control signal of the first output voltage;
    The second sensor receives a second input voltage and outputs the first electric signal having a second output voltage;
    When the first sensor is outputting the control signal and the first pressure is equal to the second pressure,
    A difference between the first input voltage and the first output voltage is smaller than a difference between the second input voltage and the second output voltage;
    The sensor device according to claim 2.
  19. 請求項1記載のセンサ装置と、
    前記電源部と、前記処理部とを収納する収納部と、
    を備えた、
    センサ内蔵体。
    A sensor device according to claim 1;
    A storage section for storing the power supply section and the processing section;
    With
    Sensor built-in body.
PCT/JP2017/028513 2016-08-23 2017-08-07 Sensor device, and body with built-in sensor WO2018037886A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-162356 2016-08-23
JP2016162356 2016-08-23

Publications (1)

Publication Number Publication Date
WO2018037886A1 true WO2018037886A1 (en) 2018-03-01

Family

ID=61245754

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/028513 WO2018037886A1 (en) 2016-08-23 2017-08-07 Sensor device, and body with built-in sensor

Country Status (1)

Country Link
WO (1) WO2018037886A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4858045U (en) * 1971-11-05 1973-07-24
JPH1123385A (en) * 1997-06-30 1999-01-29 Omron Corp Pressure sensor
JP2002119498A (en) * 2000-10-17 2002-04-23 Suzuki Sogyo Co Ltd Sporting goods with health care function
JP2006337071A (en) * 2005-05-31 2006-12-14 Nitta Ind Corp Resistance type sensor
JP2013140502A (en) * 2012-01-05 2013-07-18 Dainippon Printing Co Ltd Ic card
CN104655353A (en) * 2015-02-12 2015-05-27 淄博飞雁先行测控技术有限公司 Micro power digital pressure gauge and pressure measuring method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4858045U (en) * 1971-11-05 1973-07-24
JPH1123385A (en) * 1997-06-30 1999-01-29 Omron Corp Pressure sensor
JP2002119498A (en) * 2000-10-17 2002-04-23 Suzuki Sogyo Co Ltd Sporting goods with health care function
JP2006337071A (en) * 2005-05-31 2006-12-14 Nitta Ind Corp Resistance type sensor
JP2013140502A (en) * 2012-01-05 2013-07-18 Dainippon Printing Co Ltd Ic card
CN104655353A (en) * 2015-02-12 2015-05-27 淄博飞雁先行测控技术有限公司 Micro power digital pressure gauge and pressure measuring method

Similar Documents

Publication Publication Date Title
CN107006940B (en) Energy collecting sole
Meier et al. A piezoelectric energy-harvesting shoe system for podiatric sensing
CN107666172B (en) Apparatus for receiving wireless power and method of controlling the same
US9679052B2 (en) Portable electronic device, signal processing method and playback method
US10110032B2 (en) Charge control circuit using battery voltage tracking, and a device having the same
US20090251099A1 (en) Passive over/under voltage control and protection for energy storage devices associated with energy harvesting
KR20150048019A (en) Multifunctional shoes employing piezoelectric sensor
CN109009138B (en) Gait recognition method and recognition device
JP4454092B2 (en) Body fat mass measuring device
TW201916585A (en) Rf tag circuit
WO2018037886A1 (en) Sensor device, and body with built-in sensor
Reyes et al. Reconfigurable system for electromagnetic energy harvesting with inherent activity sensing capabilities for wearable technology
US10536023B2 (en) Intelligent insole module
US9339199B2 (en) Physiological signal detection device
US10132646B1 (en) Measuring device for ambulation data
ITTO20120833A1 (en) COUNTERPASS DEVICE EQUIPPED WITH FUNCTIONALITY OF ENERGY COLLECTION AND METHOD OF COUNTING STEPS
JP2021117217A (en) Sensor element and sensor system
US9997945B2 (en) Chargeable device and charger thereof
US20140035475A1 (en) Controller of an ac-dc converter for led lighting
WO2021149734A1 (en) Sensor element and sensor system
Kang et al. Concurrent plantar stress sensing and energy harvesting technique by piezoelectric insole device and rectifying circuitry for gait monitoring in the internet of health things
JP6278377B1 (en) Electronic circuit, measuring device and measuring method for measuring device
Demir et al. Energy-harvesting methods for WBAN applications
JP2015015983A (en) Route measuring apparatus
US20240106283A1 (en) Selective data transfer for efficient wireless charging

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17843371

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17843371

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP